当前位置: 仪器信息网 > 行业主题 > >

乙烯基二甲基硅氧基

仪器信息网乙烯基二甲基硅氧基专题为您提供2024年最新乙烯基二甲基硅氧基价格报价、厂家品牌的相关信息, 包括乙烯基二甲基硅氧基参数、型号等,不管是国产,还是进口品牌的乙烯基二甲基硅氧基您都可以在这里找到。 除此之外,仪器信息网还免费为您整合乙烯基二甲基硅氧基相关的耗材配件、试剂标物,还有乙烯基二甲基硅氧基相关的最新资讯、资料,以及乙烯基二甲基硅氧基相关的解决方案。

乙烯基二甲基硅氧基相关的资讯

  • 全自动乌氏粘度仪-甲基乙烯基硅橡胶粘均分子量测定
    甲基乙烯基硅橡胶简称乙烯基硅橡胶,是由二甲基硅氧烷与少量乙烯基硅氧烷共聚而成,乙烯基含量一般为0.1%~0.3% (摩尔分数)。少量不饱和乙烯基的引入使它的硫化工艺及成品性能,特别是耐热老化性和高温抗压缩变形有很大改进。甲基乙烯基硅氧烷单元的含量对硫化作用和硫化胶耐热性有很大影响,含量过少则作用不显著,含量过大【达0.5% (摩尔分数)】 会降低硫化胶的耐热性。甲基乙烯基硅橡胶具有很好的耐高、低温性,可在-50~250℃下长期工作,防潮、电绝缘性,耐电弧,电晕性。耐老化、耐臭氧性。表面不粘性和憎水性。压缩变形小,耐饱和蒸汽性。广泛应用于耐高、低温密封管、垫圈、滚筒、按键胶辊、瓷绝缘子的更新换代。按照GB/T 28610粘均分子量测定方法。粘度法是测定聚合物分子量较为简捷的方法。特性粘度[η]是高分子溶液浓度趋近于零时的粘数值或对数粘数值(ηsp/C或Inηr/C)。在甲苯溶剂中,高分子物质的分子量和特性粘度的关系用下式表示: [η]=KMα式中:K-----常数,K=9.46×10-3;M----粘均分子量; α-----特性常数值;α=0.71用此计算公式计算得到分子量。实验所需仪器:卓祥全自动粘度仪、多位溶样器、自动配液器、万分之一电子天平。实验所需试剂:甲苯、无水乙醇。(AR级)溶剂粘度的测定:卓祥全自动粘度仪设置到实验目标温度值并且稳定后,加入甲苯,软件中启动测试任务待结束。粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。样品制备:在万分之一天平上精准称量精确到0.0001g,通过自动配液器将溶液浓度精准配制,再将样品瓶放置到多位溶样器室温中溶解,待溶解完毕取出待用(室温静置需N小时以上)。样品粘度的测定:加入样品,启动软件中特定公式测试,待任务结束。粘度管的清洗:再次启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。按照以下公式1-5计算:ηr=t/t0---------------------------------------------------1ηsp=ηr-1--------------------------------------------------2c=m/v---------------------------------------------------3[η]=KMα-------------------------------------------------5式中:ηr------相对粘度;t ------溶液时间值,单位为秒(s);t0-----溶剂时间值,单位为秒(s);ηsp-----增比粘度;c------样品的浓度,单位为克每毫升g/ml;m----样品质量,单位为g;v---溶剂体积,单位为ml;[η]------特性粘度;M----粘均分子量; K-----常数,K=9.46×10-3; α-----特性常数值,α=0.71;
  • 欧盟禁止2,5-二甲基-3-乙酰基噻吩作为食用香料
    2013年6月15日,据欧盟网站消息,欧盟发布(EU)No 545/2013号委员会条例,修订了(EC)No 1334/2008号食用香精香料法规,禁止2,5-二甲基-3-乙酰基噻吩(3-acetyl-2,5-dimethylthiophene)作为食用香料用于食品。   据欧洲食品安全局2013年5月15日公布的2,5-二甲基-3-乙酰基噻吩评估结果,2,5-二甲基-3-乙酰基噻吩在体内外试验均具有致突变性,因此本法规将其从许可香料清单中删除。   同时,禁止2,5-二甲基-3-乙酰基噻吩作为食用香料投放市场或用于食品;禁止含有香料物质2,5-二甲基-3-乙酰基噻吩的食品投放市场,禁止2,5-二甲基-3-乙酰基噻吩作为香料进口或含有2,5-二甲基-3-乙酰基噻吩的食品进口。   对于在本法规生效前上市的含有2,5-二甲基-3-乙酰基噻吩的食品可在其保质期内进行销售;本法规生效前进口的含有2,5-二甲基-3-乙酰基噻吩的食品不适用于本法规。   本法规自公布之日起生效。
  • 气相顶空级二甲基亚砜,DMSO促销
    顶空气相色谱法(HS-GC)已经被制药企业的实验室采用了很多年,但是人们尚未找到过一种挥发性有机物杂质背景值含量极低的溶剂。最近几年,随着检测器的灵敏度不断的增加,残留溶剂最小量的控制要求也越来越严格,所以寻找一种高质量并且适用于HS-GC-FID/HS-GC-MS分析的溶剂成为大势所趋。 气相色谱顶空溶剂中如甲醇、乙腈、乙醇、异丙醇、正丙醇、正丁醇、环己烷、正己烷、正庚烷、二恶烷、二氯甲烷、吡啶、四氢呋喃、叔丁基甲醚、乙酸乙酯、乙酸丁酯、乙酸异丙酯、苯系物(甲苯、乙苯、二甲苯)等数十种有机挥发性化合物杂质背景值极低,均低于1ppm。 产品货号:4.109003.1000 产品名称:气相顶空级二甲基亚砜,DMSO 报价:520.00元/瓶 促销价:416.00元/瓶 促销日期截止2012.6.30日 上海安谱科学仪器有限公司 地址:上海市斜土路2897弄50号海文商务楼5层 [200030] 电话:86-21-54890099 传真:86-21-54248311 网址:www.anpel.com.cn 联系方式:shanpel@anpel.com.cn 技术支持:techservice@anpel.com.cn
  • 科学家开发出精氨酸二甲基化蛋白质组分析新方法
    近日,中国科学院大连化学物理研究所生物分离分析新材料与新技术研究组研究员叶明亮团队和上海有机化学研究所生物与化学交叉研究中心研究员刘聪团队合作,将硼酸化学引入到甲基化蛋白质组分析方法中,并巧妙利用精氨酸残基上不同修饰基团的位阻差异,实现高效的精氨酸二甲基化肽段富集,显著提高了蛋白质甲基化的分析能力;利用此新方法,系统分析了蛋白质分相过程中精氨酸二甲基化的变化,揭示了此类修饰的发生会降低蛋白质的分相能力。  蛋白质精氨酸甲基化是一种调控蛋白质功能的重要翻译后修饰,与较多疾病的发生发展相关。研究表明,精氨酸二甲基化会影响一些神经退行性疾病相关蛋白的液-液相分离,以及相分离所驱动的无膜细胞器的产生。然而,受限于目前精氨酸二甲基化蛋白质组分析技术覆盖率不足,这类研究仅聚焦于少数几个蛋白,尚未系统性探究精氨酸甲基化对蛋白质相分离的影响。  本研究发现,不同甲基化修饰的精氨酸残基在与邻二酮类化合物反应时,由于位阻不同,反应活性差异巨大。合作团队据此设计了一种精氨酸二甲基化肽段的富集方法:先利用环己二酮选择性的封闭无修饰精氨酸残基,随后利用丙酮醛选择性的在二甲基化精氨酸残基上修饰顺式邻二羟基,从而使得硼酸材料可以选择性的富集精氨酸二甲基化肽段。相比传统的免疫亲和富集方法,该方法拥有较强的精氨酸二甲基化肽段富集能力,特别是在鉴定RG/RGG序列上的精氨酸二甲基化位点方面有更高的灵敏度。合作团队将该方法应用于分析蛋白质相分离过程中精氨酸甲基化的变化,发现包括G3BP1,FUS,hnRNPA1、KHDRBS1在内的一些与无膜细胞器或神经退行性疾病相关的蛋白质上的精氨酸二甲基化程度发生了显著变化;系列实验验证发现,精氨酸甲基化会显著降低这些蛋白质的分相能力,且上述蛋白质组分析中鉴定到变化的甲基化位点是调控蛋白质相分离的关键因素。本工作开发了基于化学反应的精氨酸二甲基化蛋白质组分析方法,并利用这一方法揭示了精氨酸二甲基化对蛋白质液-液相分离具有重要的调控作用。  叶明亮团队致力于蛋白质磷酸化、糖基化、甲基化等翻译后修饰分析新方法的研究,发展了基于可逆酶促化学标记的O-GlcNAc糖肽无痕富集方法,克服了标记基团对糖肽质谱检测的干扰,实现了O-GlcNAc糖基化的高灵敏分析(Angew. Chem. Int. Edit.);利用不同糖肽的同一肽段骨架具有相似碎裂规律的特点,发展出基于“模式识别”的肽段序列鉴定新方法,实现了谱图拓展,显著提高了N-链接位点特异性糖型的鉴定灵敏度,并可发现未知的糖链及糖链修饰(Nat. Commun.)。  相关研究成果以Global profiling of arginine dimethylation in regulating protein phase separation by a steric effect-based chemical-enrichment method为题,发表在《美国国家科学院院刊》(PNAS)上。研究工作得到国家重点研发计划、国家自然科学基金、大连化物所创新基金等的支持。
  • 李灵军合作成果:mNeuCode支持精氨酸二甲基化的靶向蛋白质组分析
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation1,文章的通讯作者是威斯康星大学麦迪逊分校的李灵军教授和国家蛋白质科学中心的常乘、贾辰熙教授。  蛋白质精氨酸甲基化是一种广泛存在于真核生物中且相对保守的翻译后修饰,参与包括RNA加工、DNA修复、染色体组织、蛋白质折叠和基因表达在内的多种生物学过程。蛋白质精氨酸二甲基化在生物过程和人类疾病中发挥着重要作用,但与此同时,精氨酸二甲基化的相对丰度和化学计量通常很低,并且表现出较宽的动态变化范围,这些问题都给分析带来了巨大的挑战。在这篇文章中,作者设计了一种用于二甲基精氨酸代谢标记的mNeuCode标签,并开发了一个名为NeuCodeFinder的软件工具,用于在MS全扫描中筛选NeuCode信号,从而能够在蛋白质组范围内对蛋白质二甲基化进行靶向LC-MS/MS分析。作者将该方法应用到HeLa细胞精氨酸二甲基化的全蛋白质组分析中,证实了该方法的有效性:在70种蛋白质上鉴定到176个精氨酸二甲基化位点,其中38%是新位点。  图1 用于细胞培养代谢标记的mNeuCode的化学设计。含有由稳定同位素标记的甲硫氨酸和精氨酸的不同组合的mNeuCode-I(红色)和mNeuCode-II(蓝色)分别用于两组细胞培养。同位素标记的甲硫氨酸经过代谢转化为甲基供体S-腺苷甲硫氨酸(AdoMet ),随后由蛋白质精氨酸甲基转移酶(PRMT)催化转移到精氨酸侧链的甲基上。细胞裂解后,将两种样品混合并制备用于高分辨率LC-MS分析。含有二甲基精氨酸的肽的NeuCode同源物被解析后,将显示出43 mDa的质量差异并作为诊断峰。  图2 基于mNeuCode的精氨酸二甲基化靶向蛋白质组分析。(A)NeuCodeFinder从高分辨率质谱数据中筛选NeuCode同位素峰对的工作流程。从原始数据文件中提取全扫描质谱。单峰被配对以形成NeuCode等值线簇。最终的NeuCode对列表与提取的离子色谱(XIC)值一起导出。(B)靶向LC-MS/MS分析的工作流程,包括样品制备、富集以及MS1和MS2分析。  在mNeuCode-I标记组中,使用含有正常L-精氨酸和同位素标记L-蛋氨酸[D3]的培养基 在mNeuCode-Ⅱ标记组中,则使用同位素标记的L-精氨酸[15N4]和L-甲硫氨酸[13C]进行培养(图1)。收集两组全细胞蛋白提取物并等量混合,蛋白经还原烷基化与酶切后,得到的肽段通过StageTip分级分离和HILIC tip富集,以提高样品肽段的识别率。处理的样品先进行LC-MS全扫描,通过作者的自制软件NeuCodeFinder生成包含列表,此包含列表用于辅助进一步的平行反应监测(PRM)模式分析(图2)。    图3 已鉴定的精氨酸甲基化位点的生物信息学分析。(A)鉴定的精氨酸二甲基化位点和(B)精氨酸二甲基化蛋白质。橙色柱表示未报道的精氨酸二甲基化位点或蛋白质。绿色柱表示只有单甲基化是已知的,但是二甲基化还没有报道。(C)韦恩图显示,通过使用胰蛋白酶和镜像胰蛋白酶作为消化试剂,从两组实验中鉴定的精氨酸二甲基化位点。(D)蛋白质上位点数目的分布。每个蛋白质上精氨酸二甲基化位点的数量显示在饼图周围,蛋白质的数量列在饼图中。鉴定的精氨酸-二甲基化蛋白质的(E) GO富集和(F)KEGG途径分析。(G)使用STRING数据库将二甲基化蛋白质映射到蛋白质相互作用网络上。综合得分 0.4。(H)已鉴定的精氨酸二甲基化位点中-6和+6氨基酸残基的序列标志。  通过对数据结果的分析,最终共鉴定到70种蛋白质上的176个精氨酸二甲基化位点,其中37-38%的精氨酸二甲基化位点是新的修饰位点,29%的精氨酸二甲基化蛋白没有被报道过,这证明了mNeuCode方法的有效性。与常规的鸟枪法蛋白质组学策略所获得的数据相比,mNeuCode方法在鉴定低丰度精氨酸二甲基化肽方面具有独特的优势,并且能够补充许多传统鸟枪法蛋白质组学所无法鉴定到的精氨酸二甲基化位点。对mNeuCode方法鉴定到的精氨酸二甲基化蛋白进行生物信息学分析后,发现这些蛋白质主要与RNA的加工、剪接和稳定性相关,参与了RNA的代谢过程。  图4 FAM98A上精氨酸二甲基化位点的突变抑制了细胞迁移。(A)通过蛋白质印迹检测FAM98A在HeLa细胞中敲除和重建的效果。用siFAM98A-1和siFAM98-2沉默HeLa细胞,然后用Flag标记的WT或突变的FAM98A质粒重建。Anti-FAM98A显示内源性FAM98A的干扰。Anti-Flag显示外源FAM98A的重建。(B)图像和(C)柱状图显示了HeLa细胞的细胞迁移。  FAM98A是一种微管相关蛋白,与结直肠癌和非小细胞肺癌的增殖有关。有研究者发现FAM98A是PRMT1的底物,但未能确定确切的甲基化位点。而在作者的研究结果中,成功鉴定到FAM98A上五个新的精氨酸二甲基化位点。为了验证这些二甲基化位点是否参与细胞迁移的调节,作者使用FAM98A敲除和FAM98A WT或突变重建细胞系进行了伤口愈合试验。将HeLa细胞的FAM98A基因敲除后,分别用WT或突变的flag-FAM98A重建FAM98A沉默细胞,其中突变的flag-FAM98A将二甲基化位点R351、R360、R363、R371和R375突变为赖氨酸以抑制甲基化。实验结果显示,当FAM98A基因被敲除时,细胞的迁移能力受到抑制,WT FAM98A的重建挽救了FAM98A敲除导致的细胞迁移缺陷,但是突变型FAM98A的重建却不能挽救。该结果证实了FAM98A上的二甲基化位点在细胞迁移中起到的作用。  总之,在这篇文章中作者发明了一种mNeuCode方法,并开发了NeuCodeFinder软件,使得能够以全蛋白质组的方式进行精氨酸二甲基化的靶向MS/MS分析。实验结果证明了mNeuCode技术对于精氨酸二甲基化的靶向蛋白质组分析的能力和有效性,并证实HeLa细胞FAM98A上新的精氨酸二甲基化位点在细胞迁移调节中的功能,有助于更好地理解癌症发展的潜在机制,为蛋白质组分析的方法学提供了新的思路。  撰稿:梁梓欣  编辑:李惠琳  文章引用:mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  Wang, Q., Yan, X., Fu, B., Xu, Y., Li, L., Chang, C., & Jia, C. (2023). mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation. Analytical chemistry
  • 曝光!“副”产物生产N,N-二甲基乙酰胺,难道这是新工艺?
    前言:聚四氢呋喃生产过程中产生副产物生产N,N-二甲基乙酰胺新工艺研究报道一、背景介绍精细化工生产过程中常常会产生副产物。处理或有效利用副产物是生产企业非常关注的问题。将副产物深度加工,生产出更有价值的产品-“变副为宝",既可减少三废,又能为企业创造更多价值。今天,小编来分享一个利用上游工艺副产物作为原料,通过康宁G1反应器生产N,N-二甲基乙酰胺工艺研究成果。在聚四氢呋喃生产过程中产生副产物乙酸甲酯甲醇溶液。但由于该溶液易形成二元共沸物,常规的乙酸甲酯精馏或萃取提纯,很难得到高纯度的乙酸乙酯,且操作复杂、能耗很高。将副产物直接用于反应生产高附加值的产品,那是一条更加经济的解决方案。研究者决定将该副产物溶液用于N,N-二甲基乙酰胺(缩写为DMAC)的生产。TipsN,N-二甲基乙酰胺( 缩写为DMAC),是一种重要的精细化工产品,主要被应用在塑料、化妆品、制药、纤维、有机合成等多个领域。预计到2025年,DMAC产能达到22万吨。目前,乙酸甲酯法合成DMAC 采用传统间歇釜式。连续流技术是未来的发展方向,可以减少占地和人员,提高生产效率和自动化的程度,对传统工艺有着巨大的冲击。因此,传统工艺的连续流技术改造有着非常重要的意义。此外,釜式工艺的连续流改造升级,可以创造新的知识产权,为未来的发展获得竞争力。作者使用康宁G1反应器,对DMAC 的连续流工艺进行了研究。考察了反应温度、停留时间、催化剂含量等对反应结果的影响,优化工艺条件,形成一种以微通道反应器合成DMAC 的合成工艺技术。图1. 工艺流程图二、研究过程1、釜式实验研究者进行了釜式工艺的实验,结果如表1。经过分析,在釜式反应时间4h时选择性最高是96.2%。2、连续流工艺简介研究者结合微通道反应器的特点,可模块化设计,对反应器进行设计及改装如图2所示,选择9个模块组建成反应区。乙酸甲酯甲醇溶液与甲醇钠混合形成进料1,无水二甲胺液体储存于密封容器( 压力使无水二甲胺保持液相) 为进料2,两股物料泵入微通道反应器,然后在反应器进行液-液均相反应。调节仪器温度和压力,待反应温度和压力稳定,以及物料流速都达到测试要求时,开始计时。当运行时间达到为3 ~ 5 倍停留时间进行取样,用于气相色谱分析。3、连续流工艺条件优化作者研究了反应温度、 催化剂量、 原料配比、 停留时间等主要因素对乙酸甲酯转化率、 DMAC 选择性的影响,其实验结果及分析如下。如上图结果经过分析,该连续流工艺最佳反应条件为:反应温度 140 ℃,停留时间 72 s,反应压力为 1. 5 MPa,n(甲醇钠) ∶ n( 乙酸甲酯)= 0. 02∶ 1,乙酸甲酯与二甲胺摩尔比例为 1∶ 1. 1。在最佳条件下乙酸甲酯单程转化率 97. 5% ,DMAC选择性达到 100%。从连续流结果可以看出:对于均相反应,在不需要工艺强化的条件下,微反应取得了比釜式反应更好的结果,尤其是在微通道反应器内停留时间只有72秒。三、实验总结以聚四氢呋喃装置副产物乙酸甲酯甲醇溶液、无水二甲胺为原料、甲醇钠为催化剂,应用微通道反应器得到了新的 DMAC连续流新工艺。通过实验筛选获得较优的工艺条件和较佳实验结果,乙酸甲酯单程转化率 97. 5%,DMAC 选择性达到 100% 均优于釜式工艺。与传统间歇高压釜工艺相比,微通道反应器内乙酸甲酯转化率和DMAC选择性更高,且明显缩短反应时间。四、编者语微通道反应器常用于解决化学工艺中的安全问题被人熟知。实际上对于平时一般的釜式反应,即使是不需要强混合的均相反应,微通道连续流技术也是可行的。这对于化工的连续化,智能化以及多步反应的全连续至关重要;釜式工艺的连续流改造升级,可以创造新的知识产权,为未来的发展获得竞争力; 康宁反应器无缝放大的技术特性有助于快速实现工业化生产。参考文献:《广 州 化 工》,2019 年 10 月,第 47 卷第 20 期
  • 千呼万唤始出来,测定N-二甲基亚硝胺的新标准终于上线啦!
    测定N-二甲基亚硝胺的新标准!本次标准更新,新增了QuEChERS法测定,Detelogy带你一起解读!亚硝酸盐广泛存在于食品之中,很容易与胺化合,生成亚硝胺。亚硝胺与苯并(α)芘、黄曲霉素是世界公认的三大强致癌物质。N-二甲基亚硝胺是N-亚硝胺类化合物的一种,食品中天然存在的N-亚硝胺类化合物含量极微,但其前体物质亚硝酸盐和胺类广泛存在于自然界中,在适宜的条件下可以形成N-亚硝胺类化合物。N-二甲基亚硝胺是国际公认的毒性较大的污染物,具有肝毒性和致癌性。N-二甲基亚硝胺在啤酒、肉制品及鱼类腌制品等食品和环境中广泛存在。肉制品加工过程中会使用亚硝酸盐添加剂,使其产生理想的粉红色,增加风味,且还具有抗氧化的效果。但是,亚硝酸盐在腌肉中可以转化为亚硝酸,极易反应生成致癌性物质:N-亚硝胺类化合物;水产品腌制过程中使用的粗盐通常含有硝酸盐、亚硝酸盐,加上微生物能将硝酸盐还原成亚硝酸盐,从而蓄积亚硝酸盐。在适宜的条件下,亚硝酸盐与胺类发生亚硝基化作用,最终生成N-二甲基亚硝胺。2023年9月25日,国家卫生健康委员会发布了85项食品安全国家标准和3项修改单(卫健委2023年第6号公告),其中就有GB 5009.26-2023《食品中N-亚硝胺类化合物的测定》。此次更新,大家的目光都聚焦在新增的第二法:QuEChERS-气相色谱-质谱/质谱法上,相比起其他实验方法,不仅精简了实验设备,在一定程度上也加快了实验的效率。下面一起来看看!实 验 步 骤 提 取 干制品称取5g于50mL离心管,加入5mL水,振荡混匀(鲜样品称取10g置于50 mL离心管中),加入N-二甲基亚硝胺内标中间液(1μg/mL)50μL,向其准确加入10mL乙腈,MultiVortex多样品涡旋混合器调节3000rpm,涡旋振荡2min后置于-20℃冰箱冷冻20min,取出后加入陶瓷研磨珠1粒以及4g硫酸镁和1g氯化钠,放入MGS-24高通量智能动植物研磨均质仪振荡2min,置于冷冻离心机中,转速9000r/min,10℃离心5min,上清液待净化。 净 化 称取150mgPLS-A粉末(或1g增强型脂质去除EMR-Lipid萃取粉剂或同级品)于15mL离心管中,加入5mL水于MultiVortex多样品涡旋混合器涡旋振荡,立即加入5mL待净化上清液涡旋振荡1min,置于冷冻离心机,9000r/min,10℃离心5min,待除水。 除 水 称取1.6g硫酸镁和0.4g氯化钠于另一15mL离心管,加入上述待除水净化液于MultiVortex多样品涡旋混合器涡旋振荡2min,置于冷冻离心机中,转速9000r/min,10℃离心5min。取上层有机相经0.22μm微孔滤膜过滤后。上机测定。“PreferenceDetelogy优选仪器
  • 应用丨N-二甲基亚硝胺检测前处理解决方案
    亚硝酸盐在腌肉中转化为亚硝酸,极易生成致癌性物质:N-亚硝胺类化合物。在适宜的条件下,亚硝酸盐与胺类发生亚硝基化作用,最终生成N-二甲基亚硝胺。N-二甲基亚硝胺广泛存在于啤酒、肉制品及鱼类腌制品等食品和环境中,可溶于水、乙醇、乙醚、二氯甲烷,用于制造二甲基肼,是国际公认的毒性较大的污染物,具有肝毒性和致癌性。2023年9月25日,国家卫生健康委员会发布了85项食品安全国家标准和3项修改单(卫健委2023年第6号公告),其中就有GB5009.26-2023《食品中N-亚硝胺类化合物的测定》。此次增加QuEChERS-气相色谱-质谱/质谱法(第二法),QuEChERS方法相较于其他前处理方法操作更简单,更容易实现批量前处理,试剂使用量更少,更环保。 样品前处理步骤提取 干制品称取5g于50mL离心管(RC-50004M,50mL尖底) 加入5mL水,振荡混匀(鲜样品称取10g置于50mL离心管中) 加入N-二甲基亚硝胺内标中间液(1μg/mL)50μL,向其准确加入10mL乙腈 MTV3000多管涡旋混合仪2500rpm,涡旋振荡2min,置于-20℃冰箱冷冻20min 取出后加入1颗陶瓷均质子(RC-5003C)以及提取盐包(RC-50106M,内含4g硫酸镁和1g氯化钠) 置于V20垂直振荡器,1300rpm振荡2min 置于冷冻离心机中,转速9000r/min,10℃离心5min 上清液待净化净化 量取5mL水加入15mL净化管(RC-15164M含有150mgHLB-2粉末或RC-15165M,含有1gHolipid) 置于MTV 3000多管涡旋混合仪,2500rpm 涡旋混匀,立即加入5mL待净化上清液涡旋振荡1min 取出置于冷冻离心机,9000r/min,10℃离心5min 待除水除水 取上述待除水净化液加入15mL除水净化管中(RC-15166M,含有1.6g硫酸镁和0.4g氯化钠) 置于MTV3000多管涡旋混合仪,2500rpm涡旋振荡2min 置于冷冻离心机中,转速9000r/min,10℃离心5min 取上层有机相经0.22μm微孔滤膜过滤后 上机测定前处理仪器及耗材推荐Raykol V20垂直振荡器 振荡方式:垂直振荡 振荡速度:500-1800rpm 振幅:32mm样品数量:50mL*20,15mL*38,100mL*10,2mL*52等,96孔板*6,可定制 7寸彩色触摸屏,实时显示速度、工作时间及倒计时等 预约启动,预约时间0-840minRaykol MTV3000多管涡旋混合仪 振荡方式:偏芯振荡 振荡速度:最高速度3000rpm 操作简单,适配各种管架 7寸彩色触摸屏,实时显示速度、工作时间及倒计时等耗材RC-50004M50mL螺口尖底管,PP材质,25支/包,2包RC-50106M萃取盐包:4g MgSO4+1g NaCl,50/盒RC-5003C陶瓷均质子,用于50mL萃取管,100个/瓶RC-15164M15mL净化管:150mg HLB-2,25支/盒RC-15165M15mL净化管:1g Holipid,25支/盒RC-15166M15mL净化管:400mg NaCl+1600mg MgS04, 50支/盒
  • 解密“N-二甲基亚硝胺”,浅谈基因毒性杂质
    2018年中旬,长春长生的疫苗案还未彻底了结,缬沙坦原料药事件让N-二甲基亚硝胺(NDMA)又一次上了热搜。 时至今日,风波犹存,欧盟范围内对所有沙坦类药物进行审查。之后EMA通报,分别在印度药企Hetero Labs和Aurobindo Pharma生产的氯沙坦及厄贝沙坦原料药中,同样发现了含量极低的亚硝胺类化合物。美国FDA 仍在继续评估含缬沙坦的药物,并将获得的新信息持续更新「召回范围内的药物清单」和「不在召回范围内的药物清单」。 “治病”?“致病”!众所周知,药品是特殊的商品,它可以预防、治疗、诊断人的疾病。近年来,多种新药例如PD1/PD-L1免疫抑制剂的问世,让攻克癌症不再是梦想。 同时,药品的副作用及其安全性很大程度上决定其使用效果,有时不仅不能“治病”,还可能“致病”,甚至危及生命安全,所以药品生产商和监管部门对药品追溯和管理承担着不可或缺的责任。 揭开“基因毒性杂质”真面目NDMA是亚硝胺化合物的一种,而亚硝胺化合物、甲基磺酸酯、烷基-氧化偶氮等又均为常见的基因毒性杂质。基因毒性杂质(或遗传毒性杂质, Genotoxic Impurity, GTI)一般指能直接或间接损伤细胞DNA,产生致突变和致癌作用的物质,具有致癌可能或者倾向。 基因毒性杂质向来受到了严格的监控,2006年爆发甲磺酸奈非那非(维拉赛特锭)事件后,欧洲药品管理局( EMA)随即颁布了《基因毒性杂质限度指南》,人用药品注册技术要求国际协调会议(ICH)与美国食品与药品监督管理局( FDA)出台了相应的法规,中国国家食品药品监督管理总局也密切跟踪国际药品质量控制技术要求,不断完善现有药典收载技术指南,包括方法学验证、药品稳定性评价指导原则以及药品基因毒性杂质评价技术指南等。 药物合成、纯化和储存运输(与包装物接触)等过程中,多个环节均有产生或有可能产生基因毒性杂质。在工艺研究中采用“避免-控制-清除(ACP)”的策略能够最大限度减少基因毒性杂质对原料药物的影响,从而快速灵敏的监测分析手段变得尤为重要。 这时候,飞飞在此!今天赛默飞借助全新一代LC-QQQ技术,让我们一起助力“解密N-二甲基亚硝胺”。 赛默飞针对药品中基因毒性杂质液质检测解决方案 飞飞芳基磺酸酯类基因毒性解决方案Thermo Scientific™ 全新液相色谱三重四极杆质谱TSQ Fortis™ 平台建立了检测8种磺酸酯类的方法(苯磺酸酯类3个、对甲苯磺酸酯类3个、1,5-戊二醇单苯磺酸酯、 1,5-戊二醇二苯磺酸酯)。本方法灵敏度高、专属性强、稳定性好,可以满足各药企对此类基因毒性杂质的检测要求,可为基因毒性杂质风险监控提供有效的技术支持。结果如下:图1. 8种芳基磺酸酯提取离子流图(点击查看大图) 图2. 部分化合物标准曲线图(点击查看大图) 可以看出实验建立了三重四极杆液质联用仪(TSQ Fortis)分析8种芳基磺酸酯类的检测方法。实验结果表明,基于Thermo Scientific™ TSQ Fortis™ 建立的检测方法不仅具有优异的灵敏度和线性范围,同时具备良好的重现性。本方法可用于芳基磺酸酯类基因毒性化合物的日常分析检测。 飞飞N-亚硝基类基因毒性解决方案Thermo Scientific™ TSQ Fortis™ 针对基因毒性物质10个N-亚硝基化合物建立了稳定灵敏的分析方法。该方法在电喷雾离子化(ESI)条件下即可进行有效检测分析,试验结果优异,该方法稳定,快速,满足日常微量基因毒性物质N-亚硝胺类化合物的分析要求。图3. 10个N-亚硝基化合物的色谱图(5ng/mL)(点击查看大图) 图4. 部分化合物标准曲线图(点击查看大图) 从上图中可以看出建立的方法灵敏,快速和稳定性,色谱峰形良好,同时具备优异的重现性,可以满足药品中日常分析N-亚硝基类基因毒性杂质的检测要求。 飞飞总结语此次的应用案例就分享到这里了,不过难道只有这些?不!后续赛默飞更会带来应对基因毒性杂质的多平台解决方案,令“NDMA们” 无所遁形,敬请期待!扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯
  • 欧盟禁止进口含二甲基甲酰胺的鞋和家具
    据波兰媒体报道,自今年5月1日起,欧盟将禁止进口含有二甲基甲酰胺(DMF)的鞋和家具产品。欧盟称该物质吸收潮湿空气后会引发过敏反应。外界认为此举主要针对中国。
  • 中国氟硅有机材料工业协会《含氢硅油中含氢量的测定 顶空气相色谱法》等25项待发布团体标准公示
    经项目征集、审核、发布审议等程序,氟硅协会拟于2023年3月发布《含氢硅油中含氢量的测定 顶空气相色谱法》等25项待发布团体标准,为保障项目立项的公正性,现对13项氟硅团体标准进行公示,公示时间2023年3月16日至3月25日,共计10日。如任何单位、个人对拟发布标准持有异议,请以正式发函方式向协会提出意见和建议。氟硅协会标委会邮箱:fsibwh@163.com。1、FGJ2021001《含氢硅油中含氢量的测定 顶空气相色谱法》报批稿.pdf2、FGJ2021002《乙烯基硅油、甲基乙烯基硅橡胶中乙烯基含量的测定 顶空气相色谱法》报批稿.pdf3、FGJ2021033《“领跑者”标准评价要求 硅酮建筑密封胶》报批稿.pdf4、FGJ2021034 《硅橡胶组合物 分类与命名》 报批稿.pdf5、FGJ2021034《六甲基二硅烷》报批稿.pdf6、FGJ2021040《乙烯基三甲基硅烷》报批稿.pdf7、FGJ2021041《低挥发性环甲基硅氧烷端乙烯基硅油》报批稿.pdf8、FGJ2021042《低挥发性甲基环硅氧烷的二甲基硅油》(报批稿).pdf9、FGJ2021057 《缩合型甲基苯基硅树脂》 报批稿.pdf10、FGJ2021052《纸张用无溶剂型有机硅离型剂》报批稿.pdf11、FGJ2021046 《乙烯基三甲氧基硅烷》 报批稿.pdf12、FGJ2021048《274#高真空扩散泵油》报批稿.pdf13、FGJ2021049 《275#高真空扩散泵油》报批稿.pdf14、FGJ2021050《通讯基站冷缩套管用硅橡胶》报批稿.pdf15、FGJ2021051《新能源汽车线缆用硅橡胶》报批稿.pdf16、FGJ2021056《加成型硅凝胶》报批稿.pdf17、FGJ2021013《保护膜用加成型有机硅压敏胶》报批稿.pdf18、FGJ2021016《按键用液体硅橡胶》(报批稿).pdf19、FGJ2021017《冷缩电缆附件用液体硅橡胶》(报批稿).pdf20、FGJ2021036《绝缘栅双极型晶体管用有机硅凝胶》(报批稿).pdf21、FGJ2021009《全氟-2-(2-硫酰氟乙氧基)丙基乙烯基醚》 报批稿.pdf22、FGJ2021010《全氟乙基乙烯基醚》报批稿.pdf23、FGJ2021011《全氟甲基乙烯基醚》报批稿.pdf24、FGJ2021012《全氟正丙基乙烯乙基醚》报批稿.pdf25、FGJ2021059《乙烯-三氟氯乙烯共聚物(ECTFE)树脂》(报批稿).pdf
  • ASTM就聚氯乙烯中的邻苯二甲酸酯管控发布新规
    美国材料与实验协会(The American Society for Testing and Materials ,ASTM)就聚氯乙烯塑料(PVC)中的低水平邻苯二甲酸酯的控制决定发布自愿性标准ASTM D7823-13。该标准提供了热脱附–气相色谱/质谱法(Thermal Desorption – Gas hromatography / Mass Chromatography,TD-GCMS)来识别并测定6种邻苯二甲酸酯(DBP、BBP、DEHP、DNOP、DINP 和 DIDP)的数量。   新的ASTM标准介绍TDGC/MS为一种分析方法。样本是通过将PVC原料溶解在四氢呋喃(tetrahydrofuran)中而制备。“低水平”定义为1000 毫克/千克,然而目前还没有检测或定量的限值参考。所有邻苯二甲酸酯的相对标准偏差应好于5%。   涉及到的六种邻苯二甲酸酯受到以下法规规管,分别为:   一. 2008消费者产品安全改进法案(The Consumer Products Safety Improvement Act of 2008 ,CPSIA)   二. 欧洲委员会法规(EC) 552/2009(REACH法规附件17)第51和52部分   三.日本卫生、劳动及福利部第336号指导法案(Japan’s Health, Labour and Welfare Ministry (HLWM) Guideline No. 336)(2010)   四.加拿大消费者安全法案(The Canada Consumer Product Safety Act)SOR/2010-298   应该注明的是,受规管的邻苯二甲酸酯并不只是这些。比如,加州在第65号提案中规管了这六种中的四种(DNOP 和 DINP并不在65号提案的列表中),但是提案中另外一种邻苯二甲酸酯DnHP并不在本新规范围内。同时,丹麦环境部将在2015年规管上述的前三种邻苯二甲酸酯(DBP、BBP、DEHP)以及DIBP。最新的REACH SVHC候选清单中还包括了DPP、nPIPP、DIPP、BMP、DIBP、BBP、和 DPP。   表1 本文中使用的简称对照 简称 全名 CAS号 DEHP 邻苯二甲酸二辛酯 117-81-7 BBP 邻苯二甲酸丁苄酯 85-68-7 DBP 邻苯二甲酸二丁酯 84-74-2DIBP 邻苯二甲酸二异丁酯 84-69-5 DNOP 邻苯二甲酸二正辛酯 117-84-0 DINP 邻苯二甲酸二异壬酯 28553-12-0和 68515-48-0 DIDP 邻苯二甲酸二异癸酯 26761-40-0 和 68515-49-1 DnHP 邻苯二甲酸二正己酯 84-75-3 BMP 邻苯二甲酸二(2-甲氧基乙基)酯 117-82-8 nPIPP 邻苯二甲酸正戊基异戊基酯 776297-69-9 DPP 邻苯二甲酸二戊酯 131-18-0 DIPP 邻苯二甲酸二异戊酯 605-50-5
  • 北京工商大学孙宝国院士团队:综合多种方法探究芝麻香型白酒中二甲基三硫与香气活性化合物间的相互作用
    2023年1月,北京工商大学孙宝国院士团队在国际食品Top期刊Food Chemistry(Q1,IF: 8.8)发表题为“Investigation on the interaction between 1,3-dimethyltrisulfide and aroma-active compounds in sesame-flavor baijiu by Feller Additive Model, Odor Activity Value and Partition Coefficient”的研究性论文。北京工商大学硕士研究生杨世琪为第一作者,通讯作者为北京工商大学中国轻工业酿酒分子工程重点实验室副研究员李贺贺。芝麻香型白酒作为十二大香型之一,以其独特风味受到消费者的喜爱。但迄今为止芝麻香型白酒特征风味物质尚不明确,越来越多的研究推测芝麻香型白酒特征风味的形成源自于香气活性化合物间的相互作用。本研究以芝麻香型白酒中关键风味物质为研究对象,综合利用S型曲线法、OAV法、分配系数法等探究了芝麻香型白酒中二甲基三硫与酯类、醇类、酸类、醛类间的相互作用类型及规律。结果表明,物质的结构和特征香气是影响相互作用结果的重要原因之一,并且在52%乙醇-水溶液中,二甲基三硫与己酸乙酯、癸酸乙酯、糠醇香气的释放呈促进作用。分配系数法证明了二甲基三硫的添加会导致酯类化合物的峰面积和分配系数的变化,而化合物挥发性的变化是相互作用影响香气感知的原因之一,并且在较高相比下,碳链较长的乙酯类化合物的挥发性更易受到促进。此外,初步提出了相互作用预测模型为 y = 2.0112 ln(x) + 0.1461,预测模型表明当酯类化合物的嗅觉阈低于33.80 μg/L时更易于二甲基三硫发生正向作用。本研究为风味物质间相互作用规律和影响因素的探究提供了新思路,有助于相互作用机制的揭秘,同时也为芝麻香型白酒特征风味物质的揭示以及国标的建立奠定了基础。研究亮点首次探究了芝麻香型白酒中关键风味物质间的相互作用。证明了结构和相比会影响二甲基三硫添加后酯类化合物挥发性的变化。首次建立了相互作用预测模型,实现了二元混合物间相互作用的快速判定。研究结论通过S型曲线法和OAV法明确了二甲基三硫与18种关键香气活性化合物间的相互作用类型,证明了二甲基三硫可以促进某些呈水果香气和烤香物质的挥发,如己酸乙酯、糠醇等。分配系数法结合OAV法和S型曲线法进一步证明了物质挥发性的变化是相互作用影响人体嗅觉感知的重要原因之一,并且在较高相比下,碳链较长的乙酯类化合物的挥发性更易受到促进。如分配系数法证明二甲基三硫添加后己酸乙酯的峰面积与分配系数增大,同时S型曲线法与OAV法表明两者为加成作用;且随着体系相比的增加,己酸乙酯峰面积的增大程度逐渐加强。根据相互作用结果建立了二甲基三硫与酯类化合物间相互作用预测模型,实现了二元混合物间相互作用类型的快速判断。预测模型表明33.80 μg/L的酯类化合物嗅觉阈值浓度是二甲基三硫与酯类化合物之间相互作用类型变化的临界值。原文链接https://doi.org/10.1016/j.foodchem.2023.135451
  • 公开征集对《环氧乙烯基酯树脂》等505项行业标准和53项推荐性国家标准计划项目的意见
    p style=" text-align: center " strong 公开征集对《环氧乙烯基酯树脂》等505项行业标准 /strong /p p style=" text-align: center " strong 和53项推荐性国家标准计划项目的意见 /strong /p p br/ /p p style=" text-indent: 2em " 根据标准化工作的总体安排,现将申请立项的《环氧乙烯基酯树脂》等505项行业标准计划项目和《半导体器件 机械和气候试验方法 第7部分:内部水汽含量测试和其它残余气体分析》等53项推荐性国家标准计划项目予以公示(见附件1、2),截止日期为2018年5月28日。如对拟立项标准项目有不同意见,请在公示期间填写《标准立项反馈意见表》(见附件3)并反馈至工业和信息化部科技司,电子邮件发送至KJBZ@miit.gov.cn(邮件主题注明:标准立项公示反馈)。 br/ /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " 地址:北京市西长安街13号 工业和信息化部科技司 标准处 /p p style=" text-indent: 2em " 邮编:100846 /p p style=" text-indent: 2em " 联系电话:010-68205241 /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " 公示时间:2018年4月27日-2018年5月28日 /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " 附件: /p p style=" line-height: 16px text-indent: 2em " 1. img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a href=" http://img1.17img.cn/17img/files/201805/ueattachment/7df061fd-09ed-4c73-8b2a-4a13e8bc3dc7.docx" 《环氧乙烯基酯树脂》等505项行业标准制修订计划(征求意见稿).docx.docx /a /p p style=" line-height: 16px text-indent: 2em " 2. img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a href=" http://img1.17img.cn/17img/files/201805/ueattachment/42cef454-a775-4eca-8729-8bd443ee71da.docx" 《半导体器件 机械和气候试验方法 第7部分:内部水汽含量测试和其它残余气体分析》等53项国家标准制修订计划.docx& nbsp /a /p p style=" line-height: 16px text-indent: 2em " 3. img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a href=" http://img1.17img.cn/17img/files/201805/ueattachment/db790b51-8e34-4048-807f-a40e0f01499b.doc" 标准立项反馈意见表.doc /a /p p br/ /p p style=" text-align: right " 工业和信息化部科技司 /p p style=" text-align: right " 2018年4月27日 /p p & nbsp /p p & nbsp /p p br/ /p
  • 中国化学试剂工业协会印发2023年第二批中国化学试剂工业协会团体标准《化学试剂 气相色谱用对照品 N,N-二甲基甲酰胺》等14项团体标准项目
    各有关单位: 按照《中国化学试剂工业协会团体标准管理办法(2021 年修订版)》(中试协字〔2021〕 63 号)的要求,现予批准印发中国化学试剂工业协会 2023 年第二批团体标准《化学试剂 气相色谱用对照品 N,N-二甲基甲酰胺》等 14 项团体标准。请起草单位抓紧落实和实施项目计划,在标准制定过程中加强与有关方面的协调,广泛听取意见,保证标准质量和水平,按时完成团体标准制定任务。标准项目计划执行过程中有关问题,请及时与中试协团标委办公室联系。联系方式:联系人:朱传俊电话:18526778029中试协团标办公室邮箱:hxsjtbw@163.com中国化学试剂工业协会2023年8月16日文件66 2023年印发第二批14项团体标准制定计划通知.pdf
  • 美环保局撤销对亚乙烯基酯的进口限制建议
    美国环保局(EPA)近日撤销了根据《有毒物质控制法案》对亚乙烯基酯(vinylidene esters)发布一项重要新用途规则的提案,该物质也是两个&ldquo 制造前通知(pre-manufacture notices)&rdquo 的目标物质。EPA指出,采取该行动是对拟议规则收到的公众评议的回应。具体来说,提交的信息表明,氰基丙烯酸酯(cyanoacrylates)比拟议规则中的亚乙烯基酯更适合作为评估水生生物潜在毒性的结构类似物,这是拟议的重要新用途规则的通知要求的依据。   决定一种新的化学品作为新用途使用必须考虑以下相关因素,包括(一)该化学物质的预计制造和加工量 (二)该使用方法改变人类或环境暴露于该化学物质的类型或形式的程度 (三)该使用方法增加人类或环境暴露于该化学物质的强度和持续时间的程度 (四)制造、加工、分销,以及处理该化学物质的合理预期方式和方法 和(五)任何其他相关因素。
  • Sigma-Aldrich SPME + GCMS 快速、灵敏检测邻苯二甲酸酯
    SPME + GCMS 快速、灵敏检测邻苯二甲酸酯 &mdash &mdash Sigma-Aldrich/Supelco 应对方案 下载详细资料请至: http://www.instrument.com.cn/netshow/SH101420/down_170241.htm 关键词:起云剂 邻苯二甲酸酯 SPME 固相微萃取 气相色谱 前言 邻苯二甲酸酯类物质常被用于增塑剂、起云剂等添加到柔软的聚氯乙烯类产品中,从而增加塑料材质的韧性、通透度、强度和寿命。近期研究发现,邻苯二甲酸酯类物质主要会引起内分泌紊乱(女孩性早熟,男性生殖损害),致癌(乳腺癌)和肝毒性等方面的健康危害。出于公众健康方面的考虑,邻苯二甲酸酯类已经在美国、加拿大和欧盟等地域的部分产品中禁用。 最为常见的邻苯二甲酸酯类物质为:邻苯二甲酸(2-乙基己基)酯(DEHP),邻苯二甲酸二异癸酯(DIDP),邻苯二甲酸二异壬酯(DINP),邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP) 、邻苯二甲酸二丙酯(DPrP)、邻苯二甲酸丁基苄基酯(BBP)、邻苯二甲酸二丁酯(DBP) 、邻苯二甲酸二戊酯(DPP)、邻苯二甲酸二环己酯(DCHP )、邻苯二甲酸二己酯(DHP)。 Sigma-Aldrich公司的Supelco SPME 摈弃传统前处理的两大缺点:较长时间的样品前处理及大量的溶剂耗费,带给您更快速、灵敏及方便的分析检测方案。 检测方法: SPME 萃取头:7 &mu mPDMS (货号:57302) 萃取方式:直接浸没,15分钟,快速搅拌 载气:氦气 流速:40 cm/sec; 质谱:45 - 465 m/z 进样口温度:280 ° C 色谱柱:PTE-5, 30 m × 0.25 mm I.D × df0.25 &mu m (货号:24135-U) 柱温:60 ° C (3 min) -320 ° C(10 ° C/min) 检测结果: 结论: 通过使用7 &mu m 聚二甲基硅烷(PDMS)纤维萃取头的样品前处理,对加标样品浓度10~200ppb进行考察(方法625和8060)。实验结果数据中,稳定的响应因子和浓度值表现出良好的线性,多点加标(n=5)相对方差(RSD)和标准方差反映了实验卓越的重现性和SPME令人满意的表现。 (表1. 使用7 &mu m 聚二甲基硅烷(PDMS)纤维萃取头实验结果相应因子) 订购信息: 产品描述 货号 SPME 萃取手柄(初次购买需要购置手柄,手柄非耗材,可反复使用) 适用于手动进样 57330-U 适用于自动进样器或SPME/HPLC 接口 57331 SPME萃取头套装#3 100 &mu m PDMS(适合分析挥发性物质)   用于手动进样 57300-U 适用于自动进样器或SPME/HPLC 接口 57301 30 &mu m PDMS(适合分析非极性半挥发物质) 用于手动进样 57308 适用于自动进样器或SPME/HPLC 接口 57309 7 &mu m PDMS(适合分析中等极性到非极性的半挥发物质) 用于手动进样 57302 适用于自动进样器或SPME/HPLC 接口 57303 65 &mu m PDMS/DVB (适合分析极性物质) 用于手动进样 57310-U 适用于自动进样器或SPME/HPLC 接口 57311 60 &mu m PDMS/DVB (适合分析不挥发性物质)   适用于自动进样器或SPME/HPLC 接口 57317 75 &mu m Carboxen&trade /PDMS (适合分析气体样本和小分子类物质) 用于手动进样 57318适用于自动进样器或SPME/HPLC 接口 57319 85 &mu m PA (聚丙烯酸酯,适合分析极性半挥发物质) 适用于手动进样 57304 适用于自动进样器或SPME/HPLC 接口 57305 SPME萃取头套装#1 (其它套装请查询目录) 85 &mu m PA,100 &mu m 和7 &mu m PDMS各一支   用于手动进样 57306 适用于自动进样器或SPME/HPLC 接口 57307 SPME/HPLC 进样装置和Rheodyne® 阀 57353 气相色谱柱 PTE-5,30 m× 0.25 mm I.D × df 0.25 &mu m 24135-U SLB&trade -5ms,30 m× 0.25 mmI.D × df 0.25 &mu m 28471-U SLB&trade -5ms,30 m× 0.25 mm I.D × df 1.00 &mu m 28476-U 气相附件耗材(衬管、隔垫、石墨压环、石英棉、微量进样器、气体净化设备等)请垂询热线 标准品 英文名 货号 包装 邻苯二甲酸二甲酯DMP Dimethyl phthalate 36738-1G 1g 邻苯二甲酸二乙酯DEP Diethyl phthalate 36737-1G 1g 邻苯二甲酸二异丁酯DIBP Diisobutyl phthalate 152641-1L 1L 邻苯二甲酸二丁酯DBP Dibutyl phthalate 36736-1G 1g 邻苯二甲酸二(2-甲氧基)乙酯DMEP Bis(2-methoxyethyl) phthalate 36934-250MG 250mg 邻苯二甲酸二戊酯DPP Dipentyl phthalate 442867 1g 邻苯二甲酸丁基苄基酯BBP Benzyl butyl phthalate 442503 1g 邻苯二甲酸二环己酯DCHP Dicyclohexyl phthalate 36908-250MG 250mg 邻苯二甲酸二(2-乙基)己酯DEHP Bis(2-ethylhexyl) phthalate 36735-1G 1g 邻苯二甲酸二苯酯 Diphenyl phthalate 36617-1G-R 1g 邻苯二甲酸二正辛酯DNOP Di-n-octyl phthalate 31301-250MG 250MG 邻苯二甲酸二壬酯DNP Dinonyl phthalate 80151-25ML 25ML 邻苯二甲酸二异壬酯DINP Diisononyl phthalate 376663-1L 1L 邻苯二甲酸异癸酯DIDP Diisodecyl phthalate 80135-10ML 10ML 47643-U 11种邻苯二甲酸酯类混标 2000&mu g/ml溶于二氯甲烷 1ml BBP 双-(2-氯乙氧基)甲烷 双(2-氯乙基)醚 DEHP 4-溴联苯醚 4-氯二苯醚 双(2-氯异丙基)醚 DBP DEP DMP DNOP 48741 6种邻苯二甲酸酯类混标 200 &mu g/ml 溶于甲醇 1ml BBP DEHP DBP DEP DMP DNOP 47973 7种邻苯二甲酸酯类混标 500 &mu g/mL 溶于甲醇 1ml BBP 己二酸二(2-乙基己)酯 DEHP DBP DEP DMP 五氯苯酚 48223 6种邻苯二甲酸酯类混标 500 &mu g/ml溶于甲醇 1ml BBP 己二酸二(2-乙基己)酯 DEHP DBP DEP DMP 48805-U 6种邻苯二甲酸酯类混标 2000 &mu g/ml溶于甲醇 1ml DEHP BBP DBP DNOP DEP DMP 48231 6种邻苯二甲酸酯类混标 2000 &mu g/ml溶于己烷 1ml DEHP BBP DBP DNOP DEP DMP 110 7种邻苯二甲酸甲酯定制混标 1000 ppm 溶于二氯甲烷 1 ml 邻苯二甲酸二异壬酯 68515-48-0 DINP 邻苯二甲酸二正辛酯 117-84-0 DNOP 邻苯二甲酸二(2-乙基)己酯 117-81-7 DEHP 邻苯二甲酸二异癸酯 26761-40-0 DIDP 邻苯二甲酸丁基苄基酯 85-68-7 BBP 邻苯二甲酸二丁酯 84-74-2 DBP 邻苯二甲酸二异丁酯 84-69-5 DIBP 110 16种邻苯二甲酸酯类混标 1000ug/ml 溶于正己烷 1 ml 邻苯二甲酸二甲酯 131-11-3 DMP 邻苯二甲酸二乙酯 84-66-2 DEP 邻苯二甲酸二异丁酯 84-69-5 DIBP 邻苯二甲酸二丁酯 84-74-2 DBP 邻苯二甲酸二(2-甲氧基)乙酯 117-82-8 DMEP 邻苯二甲酸二(4-甲基-2-戊基)酯 146-50-9 BMPP 邻苯二甲酸二(2-乙氧基)乙酯 605-54-9 DEEP 邻苯二甲酸二戊酯 131-18-0 DPP 邻苯二甲酸二己酯 84-75-3 DHXP 邻苯二甲酸丁基苄基酯 85-68-7 BBP 邻苯二甲酸二(2-丁氧基)乙酯 117-83-9 DBEP 邻苯二甲酸二环己酯 84-61-7 DCHP 邻苯二甲酸二(2-乙基)己酯 117-81-7 DEHP 邻苯二甲酸二苯酯 84-62-8 邻苯二甲酸二正辛酯 117-84-0 DNOP 邻苯二甲酸二壬酯 84-76-4 DNP 41F/ K. Wah Centre / 1010 Huai Hai Zhong Road / Shanghai 200031 / China Ordering Email: orderCN@sial.com Toll-Free(免费订购电话): 400 620 3333, 800 819 3336
  • 傅若农:一扫而光——吹扫捕集-气相色谱的发展
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。 第一讲:傅若农讲述气相色谱技术发展历史及趋势 第二讲:傅若农:从三家公司GC产品更迭看气相技术发展 第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状 第四讲:傅若农:气相色谱固定液的前世今生 第五讲:傅若农:气-固色谱的魅力 第六讲:傅若农:PLOT气相色谱柱的诱惑力 第七讲:傅若农:酒驾判官&mdash 顶空气相色谱的前世今生 酒驾判官&mdash 顶空气相色谱的前世今生-2 动态顶空进样&mdash &mdash 吹扫捕集   动态顶空常用的方法是吹扫捕集技术,吹扫-捕集实质上是一种连续气体萃取技术,吹扫气(一般使用氮气)通过液体或固体样品,将样品中的可挥发组分(其中包括欲测组分)带出,然后用冷冻或固体吸附剂吸附的方法,将欲测组分捕集下来,再通过热解吸的方法,将欲测组分解吸下来,进行分析。   1974年在美国辛辛那提市环保局工作的Tom Bellar 为了分析10-9浓度挥发性污染物(如苯),开发了&ldquo 吹扫-捕集&rdquo 技术,使分析灵敏度比当时现有方法提高了100倍。1972年成立的Tekmar公司敏感地捕捉到&ldquo 吹扫-捕集&rdquo 技术是一个潜力股,于1976开发了第一个商品化&ldquo 吹扫-捕集&rdquo 设备LSC-1。在以后的发展中Tekmar成为制造分析水、空气和土壤中挥发性有机物的知名厂家。世界上有很多领域使用这一技术,美国EPA601 , 602 , 603 , 624 , 501.1 与524.2 等标准方法均采用吹扫捕集技术。 吹扫-捕集的示意图见图1,实际使用的吹扫-捕集装置如图2所示 图1 吹扫-捕集的示意图   A 是用惰性气体(IG)从样品容器(SV)中把要分析的样品吹扫出来,吸附于吸附剂管(TB)中。   B 是把吸附剂管加热用载气(CG)把样品吹扫到冷阱(CT)中,再去掉冷阱用载气经分流管(SP)到色谱柱(CC) 图2 吹扫-捕集(右)连接到气相色谱仪上   吹扫捕集的特点是可使挥发性欲测组分与不挥发性基体和不挥发性干扰组分分离,在捕集的过程中通过吸附剂的选择,可使欲测组分进一步与干扰组分分离,并得到富集。吹扫和捕集是两个独立进行的过程,此技术的主要问题是捕集技术和捕集后的解吸技术。当样品本身是气体时,可直接引入捕集装置捕集,解吸后进行分析。 吹扫-捕集装置由吹扫装置、捕集器及解吸系统组成:   (1)玻璃吹扫装置可具有容纳5 mL 或25 mL样品, 当检测的灵敏度能以达到方法的检测限时,使用5 mL 的吹扫装置, 应尽量减少样品上方气体空间,减少死体积的影响, 吹扫瓶底部有一玻璃砂芯, 它使吹扫气成为分散细微的气泡通过水样, 并使吹扫气从距水样底部5 mm 处引入, 初始气泡直径应3 mm , 吹扫装置也可使用针型喷口。   (2)捕集器是一种装有吸附剂短柱的装置, 人们普遍使用的美国EPA 方法。使用Tenax GC 、活性炭和硅胶组成的混合吸附剂,富集样品中痕量挥发性物质。吸附管长度不小于25 cm , 内径不小于0 .27 cm , 为了防止高沸点的有机物使吸附剂永久性吸附,在吸附管入口处分别填充一些固定相如聚二甲基硅氧烷渍在载体的固定相、Tenax GC(聚2,6-苯基对苯醚,担体或等效物)、硅胶等。初次使用前, 捕集器应在180 ℃下, 用惰性气体以不小于20 mL/min 的速度反吹一夜, 排气不得进入色谱柱内。日常使用捕集器前, 应在180 ℃反吹10 min。硅化玻璃棉可以代替捕集器进口的填充物。   (3)解吸器必须在解吸气流到达以前或刚开始时, 可快速地将捕集器加热到180 ℃, 捕集器聚合物部分不要超过200 ℃, 否则会缩短捕集器的使用寿命。解吸系统的作用在于经过解吸器加热解析, 可将被富集的有机物以柱塞式释放, 反吹入气相色谱进样口进行检测。因此, 当吹扫气通过玻璃吹扫装置中样品时, 经鼓泡使挥发性组分由水相转入吹气中, 将含有挥发性组分的吹气经过捕集器, 挥发性有机物则被吸附剂捕集, 由解吸器加热解析将有机物反吹入气相色谱进样口进行检测。如在吹扫时通过捕集器的压力下降3 Psi(1 Pa =0 .0147 Psi)以上或溴仿检测的灵敏度很低均说明捕集器失效。(张莘民,环境污染治理技术与设备,2002,3(11):31-37)   为了了解吹扫捕集实际的应用和多数人所使用的吹扫捕集装置,表1列出了近年国内文献中吹扫捕集技术的应用论文和所使用的吹扫捕集装置。 表1 吹扫捕集论文的对象和仪器 序号 题目 仪器 文献 1 常温吹扫捕集-气相色谱法测定海水中氧化亚氮 吹扫捕集装置( Encon,美国EST公司) 陈勇等,分析化学, 2007,35(6):897~900 2 吹扫-捕集-气相色谱法测定海水中氯甲烷和溴甲烷 自己设计 杨桂朋等,分析化学,2010,38(5):719~722 3 吹扫-捕集-气质联用法分析测定侧柏挥发物 TCT-GC/MS(热脱附-气相色谱/质谱联用),(Chrompack公司) 武晓颖,等,生态学报,2009,29(10):5708~5712 4 吹扫/捕集-热脱附气质联用法对荷叶挥发油成分的对比分析 Gerstel TDS3 半自动热脱附进样器(德国Gerstel公司), 吹扫捕集器(自制)张赟彬等,化学学报,2009,67(20):2368~2374 5 吹扫-捕集气相色谱法测定海水中挥发性卤代烃 自己设计 杨桂朋等,中国海洋大学学报,2007,37 (2) :299~304 6 吹扫/捕集与气质联用技术测定 水中挥发性有机物 TEKMR DOHRMNN 3100 样品浓缩器 张灿等,云南环境科学 2006, 25 (2) : 50 ~ 52 7 吹扫捕集2GC-MS-SIM法测定水中挥发性硫化合物 Tekmar 2016吹扫捕集自动进样器 , Tekmar 3000吹扫捕集装置 吴婷等,分析试验室,2007,26(4):54~57 8 吹扫捕集-GC-MS-测定底泥中的 挥发性和半挥发性有机物 Tekmar 3000吹扫捕集装置 张占恩等,苏州科技学院学报)工程技术版,2006,19(2):42~46 9 吹扫捕集-GC-MS 测定废水中的硝基氯苯 Tekmar 3000吹扫捕集装置 张丽萍等,环境污染与防治2007,29(4):306~308,318 10 吹扫捕集- GC/MS法测定生活饮用水中13种苯系物的方法研究 美国O I公司4560型P&T装,置配4551A型自动进样器 许瑛华等,中国卫生检验杂志, 2006,16(8):914~915,949 11 吹扫-捕集-气相色谱法测定海水中氯甲烷和溴甲烷 自己设计 杨桂朋等,分析化学,2010,38(5):719~722 12 吹扫捕集-GC-MS法测定水中26种挥发性有机物 EST 7000 型吹扫-捕集浓缩器、自动进样器 张芹等,西南大学学报(自然科学版),2013,35(3):146~151 13 吹扫捕集- GC /MS法测定饮用水中致嗅物质 美国O I公司4660型吹扫捕集样品浓缩仪, 带4551A型液体自动进样器 沈斐等,环境监测管理与技术,2010,22(5):31~34 14 吹扫捕集/GC-MS联用法测定水中挥发性卤代烃的方法优化 EST 7000型吹扫-捕集浓缩器、自动进样器 张芹等,热带作物学报,2013, 34(9): 1831~1835 15 吹扫捕集-串连双检测器气相色谱同时测定卷烟包装材料中的6种溶剂残留 美国O I公司 4660型吹扫捕集样品浓缩仪 孙林等,中国烟草学报,2008,14(3):8~12 16 吹扫捕集- 毛细管气相色谱法测定饮用水中的挥发性有机物 美国O I公司4660型吹扫捕集装置,配4552型自动进样器 甘凤娟等,中国卫生检验杂志,2008,18(1):92-93 17 吹扫捕集/气相色谱- 质谱法测定地下水中30 种挥发性有机物 美国O I公司4660型吹扫捕集装置,配4552型自动进样器 冯丽等,岩矿测试,2012,31(6):1037~1042 18 吹扫捕集-气相色谱-质谱法测定地下水中苯系物的不确定度评定 美国O I公司4660型吹扫捕集装置 李松等,光谱实验室,2010,27(2):423~429 19 吹扫捕集- 气相色谱/质谱法测定地下水中的挥发性有机物 Tekmar Stratum 型吹扫捕集浓缩仪,配Aquatek 70 液体自动进样器 李丽君等,岩矿测试,2010,29(5)547 ~ 551 20 吹扫捕集-气相色谱-质谱法测定地下水中挥发性有机物 PTA 3000 型吹扫捕集器及液体自动进样器 胡璟珂等,理化检验-化学分册,2009,45(3):280~284 21 吹扫捕集-气相色谱-质谱法测定海岸带表层沉积物中挥发性有机物 PTA 3000 型吹扫捕集器及液体自动进样器 胡璟珂等,理化检验-化学分册,2012,48(2):165~168 22 吹扫捕集- 气相色谱- 质谱法测定水中9 种挥发性有机物 HP- 7695 吹扫捕集装置 罗光华等,实用预防医学, 2006,13 (4):1036~1037 23 吹扫捕集-气相色谱/质谱法测定土壤中挥发性有机化合物 美国O I公司4660型吹扫捕集装置,配4552型自动进样器 贾静等,岩矿测试,2008,27(6): 413 ~ 417 24 吹扫捕集-气相色谱/质谱法分析卷烟烟丝的嗅香成分张 美国O I公司4660型吹扫捕集装置, 张丽等,烟草化学,2013,(4):63~70 25 吹扫捕集-气相色谱-质谱法同时测定土壤中27 种挥发性有机物 Tekmar Stratum 吹扫捕集浓缩仪, Tekmar Aqua 70 液体自动进样器 李丽君等,理化检验-化学分册,2011,47():937-941 26 吹扫捕集-气相色谱-质谱法同时分析饮用水源水中9 种氯苯系化合物 意大利DANI 公司SPT 37.50 型吹扫捕集仪 赖永忠, 化学分析计量, 2011,20 (5 ):50~53 27 吹扫捕集-气相色谱-质谱联用测定城市饮用水中苯系物 Tekmar 3100吹扫捕集装置 华树岸等,光谱实验室,2005,22(3):641~644 28 吹扫捕集-气相色谱-质谱联用法 测定饮用水中痕量1,2 - 二溴乙烯与五氯丙烷 ENCON Evolution 吹扫捕集浓缩仪, Centurion 自动进样器 魏立菲,水资源保护, 2014,30(5): 73~75 29 吹扫捕集/气相色谱- 质谱联用法测定水中54 种挥发性有机物 Tekmar Atomx 型吹扫捕集仪 曹林波等,中国卫生检验杂志 2011,21 (12):2857~2862 30吹扫捕集/气相色谱- 质谱联用法同时测定水中62种挥发性有机物 Tekmar Atomx型吹扫捕集仪 郑能雄等,中国卫生检验杂志 2010,20 (6):1268~1270,1489 31 吹扫捕集-气相色谱法测定海水 中的氟氯烃 吹扫捕集仪( Tekmar-Dohramann 3100,美国Tekmar 公司 蔡明刚等,分析化学,2013,41(2):268 ~ 272 32 吹扫捕集-气相色谱法测定生活饮用水中挥发性有机物 美国OI 公司4560 型吹扫捕集仪,配置4551A 型自动进样器, 许瑛华等,卫生研究,2006,35(5):644~646 33 吹扫捕集- 气相色谱法测定水中的乙醛和丙烯醛 美国Tekmar 公司3100 型 吹扫捕集仪 许雄飞等,环境科学与技术,2011,34 (1):121~123 34 吹扫捕集气相色谱法测定水中七种氯苯类化合物 吹扫捕集浓缩器( Tekmer-Dohrm ann 3100, 配样品加热器) 张月琴等,岩矿测试,2005,24(3):189~193 35 吹扫捕集&mdash 气相色谱法测定水中一氯苯 吹扫捕集设备:Tekmar 8900 型,美国安普科技中心 罗文斌等,中国科技信息2012 ,(01): 43-44 36 吹扫捕集-气相色谱法测定水中乙醛、丙烯醛、丙烯腈 Tekmar velocity XPT吹扫捕集浓缩仪 陆文娟等,理化检验-化学分册,2011,47(10):1214~1215,1252 37 吹扫捕集气相色谱- 质谱法测定全国地下水调查样品中 挥发性有机污染物 美国OI 公司Eclipse 4660吹扫捕集自动进样器 黄毅等,岩矿测试,2009,28(1):15-20 38 吹扫捕集气相色谱法测定水性涂料中的苯系物 Tekmar Stratum 吹扫捕集浓缩仪 张瑞平等,涂料工业,2012,42(10):69~72 39 吹扫捕集气相色谱法测定水中苯系物 TMR-9800 型吹扫捕集浓缩仪( 美国Tekmar 公司) 国青等,干旱环境监测,2011,25(2):115~118 40 吹扫捕集气相色谱法测定水中苯系物 Tekmar velocity XPT吹扫捕集浓缩仪 卢明伟, 化学分析计量2008,17(2): 25~27 41 吹扫捕集气相色谱法测定饮用水中多种卤代烃 美国0I公司4660型吹扫捕集 装置,配4551A 型自动迸样器, 刘盛田,中国卫生检验杂志,2010,20(10): 2450~2452 42 吹扫捕集气相色谱质谱法测定土壤中挥发性有机物 TekmarXPT 吹扫捕集装置 秦宏兵等,中国环境监测2009,25(4):38~41 43 吹扫捕集气相色谱质谱法测定饮用水中挥发性有机物 美国Tekmar 公司Tekmar 3100吹扫捕集装置 罗添等,卫生研究,2006,35(4):504~50 44 吹扫捕集气质联用法测定水中4种挥发性有机物 美国EST 公司ENCON EVOLUTION吹扫捕集仪 秦明友等,环境科学与技术,2013,36(1):93~96 45 吹扫捕集与气相色谱一质谱联用测定水体中的芳烃化合物 Tekmar velocity XPT吹扫捕集装置 何桂英等,光谱实验室,2005,22(3):502~505 46 吹扫捕集与气相色谱-质谱联用测定饮用水和地表水中挥发性有机污染物 HP 7695 吹扫捕集浓缩器 刘劲松等,中国环境监测,2000.16(4):18~22 47 吹扫捕集与色谱质谱联用测定水中挥发性有机物 美国 Tekmar 3000吹扫捕集浓缩器 张立尖等,上海环境科学,1998,17(9):40~42 48 吹脱-捕集气相色谱法测定底质中易挥发性有机物 HP 7695 吹扫捕集浓缩器 应红梅等,环境污染与防治,1999,21(5):43~46 49 吹脱捕集-毛细管气相色谱法测定环境空气中的苯系物HL- 800 型二次热解吸仪( 上 海科创色谱仪器有限公司) 王春风等,科技信息。2008,(13):24~25 50 吹脱捕集-毛细管气相色谱法测定饮用水及水源水中苯系物 美国O I公司4660型吹扫捕集装置 陈斌生等,中国卫生检验杂志,2009,19(9):2008~2009   从表1 中的数据可见使用最多的是美国Tekmar公司的几种吹扫捕集装置和美国O I公司的几种吹扫捕集装置。图 3是美国O I公司4660型吹扫捕集装置。   4660型吹扫捕集样品浓缩器的设计符合美国EPA的方法标准,它将水、空气、土壤/固体/软泥中易挥发的有机物吹扫并浓缩到一个富集管中,然后热脱附与GC或GC/MS联机分析。 4660型吹扫捕集样品浓缩器的特点:   1. 专利的水管理器(可有效地去除80-90%的水)消除水对色谱柱及色谱检测器的影响 。   2. Trap的快速升温(800-1000℃/min)、冷却技术,大大缩短运行周期。   3. 红外线样品吹扫管加热器,可有效地提取极性化合物。   4. 泡沫过滤器,防止样品的携带,减少交叉污染,提高回收。   5. 惰性取样路径,减少了样品传输过程中的损失。   6. 反吹烘焙技术,可有效地防止交叉污染的发生。   7. 微阱选择,可实现无分流进样的高灵敏度分析。 图 4 是Tekmar 公司的Velocity XPT&trade 吹扫捕集浓缩器和进样器 图4 Velocity XPT&trade 吹扫捕集浓缩器和进样器 Velocity XPT吹扫捕集浓缩仪特点:   1. Velocity XPT吹扫捕集浓缩仪是美国Tekmar公司根据美国EPA标准方法推出的新一代吹扫捕集浓缩仪。   2. 吹扫时间设定为11 min时,Velocity XPT的运行周期在15min以内,与气相色谱同步运行,可显著提高工作效率。   3. 捕集管后配有专利技术FFC&trade 前聚焦系统能有效改善色谱峰型。   4. 专利技术DryFlow湿气捕集器,从样品解析到色谱柱之前去水效率&ge 90%。   5. 采用加温的High Temperature OptiRinseTM自动清洗样品通道和吹扫系统,有效消除残留,防止交叉污染。   6. 自动进样器同样是根据美国EPA标准方法设计,有70个样品位。 图 5是Tekmar 公司的3100吹扫捕集进样系统。 图 5 Tekmar 3100吹扫捕集进样系统 吹扫捕集的3个步骤的设备: 吹扫捕集的样品容器 吹扫捕集的样品容器多为U型玻璃管,典型的结构如图6所示。吹扫捕集容器有各种各样形式见图7。图6中右下方是吹扫气入口,先经过13 X分子筛干燥,通过1.6mm外径的不锈钢管和吹扫容器6.4mm 外径的进口管相连。吹扫管宽的部分直径为14mm,长100 mm,窄的部分为10mm。吹扫气出口为6.4mm,最上面是一个消除泡沫的球,其出口也是6.4mm。扫捕集管顶部是进样口,有两通针阀,通过6mm橡胶隔垫注入样品。 图 6 典型吹扫捕集容器 (美国卫生协会,试验水和废水的标准方法,1998,p.568) 图 7 各种吹扫捕集容器试样 捕集管和吸附剂   捕集管用不锈钢制成,内径3-4mm,长100mm,如图 8所示(美国SIS公司&mdash &mdash Scientific instrument services Inc)。管子两端装玻璃棉,中间装所需要的吸附剂。常用聚合物型吸附剂见表2,所用碳类型吸附剂见表 3. 图 8 捕集管示意图 表2 捕集管使用的聚合物型吸附剂类型和性质 吸附剂 组成 比表面/(m2/g) 温度上限/℃Tenax GC 聚(2,6-二苯基-p-二苯醚 19-30 450 Tenax TA 聚(2,6-二苯基-p-二苯醚 35 300 Tenax GR 聚(2,6-二苯基-p-二苯醚含23%石墨化炭黑 350 Chromosorb 101 苯乙烯二乙烯基苯共聚物 350 275 Chromosorb 102 苯乙烯二乙烯基苯共聚物 350 250 Chromosorb 103 交联聚苯乙烯 350 275 Chromosorb 104 丙烯腈二乙烯基苯共聚物 100-200 250 Chromosorb 105 聚芳烃 600-700 250 Chromosorb 106 聚苯乙烯 700-800 225 Chromosorb 107 聚丙烯酸酯 400-500 225 Chromosorb 108 交联丙烯酸酯 100-200 225 Porapak N 聚乙烯吡咯烷酮 225-350 190 Porapak P 苯乙烯二乙烯基苯共聚物 100-200 250 Porapak Q 乙基乙烯苯-二乙烯基苯共聚物 500-600 250 Porapak R 聚乙烯吡咯烷酮 450-600 250 Porapak S 聚乙烯吡啶 300-450 250 Porapak T二甲基己二酸乙二醇酯 250-350 190 HaeSep A 二乙烯基苯-二甲基丙烯酸乙二醇酯共聚物 526 165 HaeSep D 二乙烯基苯聚合物 795 290 HaeSep N 二乙烯基苯-二甲基丙烯酸乙二醇酯共聚物 405 165 HaeSep P 苯乙烯二乙烯基苯共聚物 165 230 HaeSep Q 二乙烯基苯聚合物 582 275 HaeSep R 二乙烯基苯-N-乙烯-2-吡咯烷酮共聚物 344 250 HaeSep S 二乙烯基苯-4-乙烯吡啶共聚物 583 250 XAD-2 苯乙烯二乙烯基苯共聚物 300 200 XAD-4 苯乙烯二乙烯基苯共聚物 750150 XAD-7 聚甲基丙烯酸酯树脂 450 150 XAD-8 聚甲基甲基丙烯酸酯树脂 140 150 V Camel et al.,J Chromatogr A,1995,710:3-19 表3 捕集管使用的碳吸附剂类型和性质 吸附剂 比表面/(m2/g) 温度上限/℃ 椰子壳活性炭 1070 220 石墨化炭黑 carbotrap 100 400 Carbotrap C 10 400 Carbopack Carbopack B100 〉400 Carbopack C 10 〉400 Carbopack F 5 碳分子筛 Corbosive G 910 225 Corbosive S-III
  • 傅若农:凌空一瞥洞察一切——神通广大的固相微萃取(SPME)
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。 第一讲:傅若农讲述气相色谱技术发展历史及趋势 第二讲:傅若农:从三家公司GC产品更迭看气相技术发展 第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状 第四讲:傅若农:气相色谱固定液的前世今生 第五讲:傅若农:气-固色谱的魅力 第六讲:傅若农:PLOT气相色谱柱的诱惑力 第七讲:傅若农:酒驾判官&mdash 顶空气相色谱的前世今生 第八讲:傅若农:一扫而光&mdash &mdash 吹扫捕集-气相色谱的发展 固相微萃取(Solid Phase Micro Extraction,SPME)顶空气相色谱是一种简洁、便捷、环保、一举三得(萃取、浓缩、进样)的制样和分析并举的方法。SPME不仅可以和气相色谱仪器结合使用还可以和其他分析方法如液相色谱及各种质谱分析相结合。SPME有八大优点:1、操作简单,2、功能多样,3、设备低廉,4、萃取快捷,5、无需溶剂,6、在线、活体取样,7、可自动化,8、可在分析系统直接脱附。所以SPME是一种神通广大的样品制备技术。 1. 固相微萃取的由来   加拿大的 Pawliszyn 研究组在1987年研究气相色谱(GC)的快速进样技术,他们使用激光加热样品,使之快速汽化,这种 GC进样技术是把样品涂渍在激光光导纤维头部,把光导纤维头置于GC 汽化室中,用激光使样品中挥发性组分进入色谱系统,在研究中发现样品化气样速度很快,但是样品前处理却要耗费很长的时间。为了把样品处理时间缩短,他们就把处理和GC进样合二为一。即把光导纤维的石英丝涂渍上固定相(高聚物或吸附剂),因为当时 GC 毛细管石英色谱柱的涂渍工艺已经是成熟技术了,把涂渍固定相的石英丝放在样品水溶液中,吸收(吸附)被分析物,一段时间后取出石英丝置于 GC 汽化室中进行 GC 分析[3,4],这就是SPME 的开始。   为了把涂渍固定相的石英丝放入和取出 GC 的进样口不并且不影响 GC 气路系统的密封性,他们把涂渍固定相的石英丝粘接到 Hamilton 7000 型注射器针头上,如图 1 所示。用一支内径略大的不锈钢毛细管代替注射器的金属活塞棒,取一段 1.5 cm 石英丝,剥去一端0.5cm 的保护涂层,把另一端用环氧树脂粘接插入到不锈钢毛细管中,这个粘接着涂有固定相石英丝的不锈钢毛细管可以伸出或缩回到注射器针头中,以便通过隔垫把微萃取丝插到GC进样口中。其结构如图2所示。   图1 原始的SPME装置 图2 原始的SPME 针头和萃取丝装置 2.SPME 的理论研究   为了更好地理解 SPMEP 的本质和影响吸收过程的因素,Pawliszyn 研究组在发明了 SPME 以后就立刻进行了理论研究,考察了 SPME 萃取头在从水溶液中直接吸收被分析物的动力学过程,他们研究的一个模型说明,在充分搅拌溶液的条件下,样品吸收的时间只取决于样品在固定相中的扩散速度。另一个模型说明在静止的溶液中,样品吸收的时间取决于样品在溶液中的扩散速度,在使用标准的搅拌器械时,SPME 的萃取过程受溶质扩散过围绕 SPME 萃取丝周围一层静止的溶液液膜的控制。   他们还考察了SPME 萃取头在顶空情况下萃取挥发性样品的过程,这一研究说明:在溶液静态不搅拌情况下,进行顶空SPME 萃取,适合于具有高亨利常数、疏水性较强有机物的分析, 而且这种有机物在萃取固定相和空间气氛之间的分配系数较小,这一方法对测定难挥发性物质中的挥发性有机物有利。同时也详细研究了在充分搅拌被测溶液情况下进行顶空 SPME 萃取的过程,各种参数对萃取的影响。这些模型的研究促进了对 SPME 过程的理解,有利于这一方法的推广。 3.国内近年使用顶空固相微萃取气相色谱案例   我们从实际出发,看看国内近两年使用这一方法的进展,表 1 列出2013-2014年国内期刊上发表的HS-SPME-GC-MS分析案例。从这些发表的文章刊出:(1) HS-SPME-GC-MS使用十分广泛 (2) 国内的研究工作相比前几年有很大的提高(都使用了GC-MS作深入一些的研究) (3)研究工作大都使用商品化产品。 表 1 国内期刊上发表的HS-SPME-GC-MS分析案例 序号 分析对象 主要设备 文献 1 3种山茶属花香气成分的HS-SPME-GC-MS分析 安捷伦6890-5975C GC-MS联用仪,50mL顶空采样瓶、手动固相微萃取装置(美国Supelco公司);萃取纤维头2cm.50/30&mu m DVB 甘秀海,梁志远,王道平等,食品科学,2013,34(6):204-207 2 HS-SPME-GC-MS分析刺梨种子挥发性香气成分 安捷伦6890-5975C GC-MS联用仪,15mL顶空采样瓶手动固相微萃取装置(美国Supelco公司);萃取纤维头70&mu m PDMS 陈青,高健,中国酿造,2014,33(1):141-142 3 HS-SPME-GC-MS分析香荚兰豆中挥发性成分 安捷伦6890-5973 GC-MS联用仪,15mL顶空采样瓶, 萃取纤维头德国IKA公司),65&mu m聚二甲基硅氧烷.二乙烯基苯(PDMS&mdash DVB)萃取纤维头及100 17),手动固相微萃取(SPME)进样器装置(美国Supelco公司),65 Ixm聚二甲基硅氧烷/二乙烯基苯(PDMS/DVB)萃取头(美国Supelco公司),15 mL样品瓶。m PDMS萃取纤维头(美国Supelco公司) 卢金清,李雨玲,张锐等,中国实验方剂学杂志,20414,20(3):79-82 4 HS-SPME-GC-MS结合化学计量法对不同产地艾叶药材挥发性成分的比较分析 安捷伦6890-5973 GC-MS联用仪65 &mu mPDMS/DVB萃取头(美国Supelco公司),手动固相微萃取进样器装置(美国Supelco公司), 梁欢,卢金清,戴艺等,中国实验方剂学杂志,2014,20(18):85-90 5HS-SPME和VDE两种方法对普洱茶香气成分分析的比较研究 HS-SPME手动进样,500顶空采样瓶, 谢吉林,肖海军&rdquo ,鲍治帆等,云南农业大学学报,2014,29(6):873&mdash 879 6 SD-HS-SPME-GC-MS分析华中碎米荠挥发性成分 Agilent 6890/5973 GC-MS联用仪,17),手动固相微萃取进样器装置(美国Supelco公司),65 &mu m聚二甲基硅氧烷/二乙烯基苯(PDMS/DVB)萃取头(美国Supelco公司),15 mL样品瓶。 卢金清,李婷+,郭彧等,中国实验方剂学杂志,2013,19(1):148-152 7 SPME-GC-MS法分析金华火腿风味物质的条件优化 Trace Ultra气相色谱.DSQ II质谱联用仪器、Triplus自动进样器美国, Thermo公司;75 gm CAR/PDMS萃取头(美国Supelco公司) 李鑫,刘登勇,李亮等,食品科学,2014,35(4):122-126 8 SPME-GC-MS法分析室内空气中挥发性有机物 Varian 4000 GC/MS气相色谱-质谱仪&rsquo ,分流/不分流进样口和离子阱质谱检测器。固相微萃取装置(美国Supelco公司),包括手柄和100 &mu m PDMS、65}&mu m PDMS/DVB、75肚m Carboxen/PDMS三种吸附纤维,15 mL顶空瓶(德国CNW公司)。 降升平,张小红,张玲玲等,太原理工大学学报,2013,44(3):272-277 9 SPME-GC-MS分析高梁 、大豆丹贝和大豆丹贝中的挥发性成分 SPME手动进样柄及75&mu m CAR/PDMS萃取头(美国Supelco公司); 1200 GC(美国瓦里安公司) 丁一,肖愈,黄瑾等,食品科学,2013,34(20):131 - 134 10 SPME-GC-MS 分析商品藤茶中环烃类化合物 Agilent 6890/5975C GC/ MS 联用仪, 手动固相微萃取装置(美国Supelco 公司),萃取纤维头为:2 cm - 50/30 &mu m DVB/ CAR/ PDMS 赖茂林,郁建平,山地农业生物学报,2014,33(4) :092 - 094, 11 SPME-GC-MS检测不同中西方奶酪的挥发性风味物质及比较 Agilent 6890N,59731气相色谱-质谱联用仪:SPME手柄、75&mu m CAR/PDMS萃取头(美国Supelco公司) 马艳丽,曹雁平,杨贞耐等,食品科学,2013,34(20):103 - 107 12 SPME-GC-MS联合分析槟榔花香气成分 岛津QP 2010 Plus型气相色谱-质谱联用仪(GC&mdash MS); 自动SPME进样器;5&mu mPDMS&mdash DVB萃取纤维头。 张明,黄玉林,宋菲等,热带作物学报,2014,35(6):1244-1249 13 薄皮甜瓜品种&lsquo 白玉糖&rsquo 香气成分的HS-SPME/GC-MS 分析 100&mu m PDMS(聚二甲基氧硅烷)萃取头(美国Supelco),Agilent 7890A/5975C GC-MS 气相色谱质谱联用仪 赵光伟,徐志红,孔维虎等,中国瓜菜,2014,27(5):14-17 14 保留指数在茶叶挥发物鉴定中的 应用及保留指数库的建立 SPME 65 &mu m 聚二甲基硅氧烷/二乙烯基苯(PDMS/DVB)萃取头(美国Supelco 公司);6890 气相色谱-5973 质谱仪(Agilent 公司);自制改良顶空瓶(容积150 mL 玻璃试验瓶) 林杰,陈莹,施元旭等,茶叶科学, 2014,34(3):261-270 15 不同高山杜鹃品种杂交后代花瓣香气成分的HS-SPME.GC.MS分析 Trace GCMS&mdash DSQ II气相色谱-质谱联用仪(Thermo,USA),萃取头的材料未报道 苏家乐,何丽斯,刘晓青等,江苏农业学报,2014,30(1):227-229 16 顶空固相微萃取结合气相色谱.质谱法分析兔肉的挥发性风味物质 QP 2010气相色谱-质谱联用仪(日本岛津公司);手动SPME进样器、75&mu m碳分子筛/ 聚二甲基硅氧烷(CAR/PDMS)涂层萃取头(美国Supelco公司):萃取瓶美国Perkinelmer公司 王琚,贺稚非,李洪军等,食品科学,2013,34(14):212-217 17 顶空固相微萃取-气相色谱-质谱法分析东北油豆角挥发性成分 6890N-5975气相色谱-质谱联用仪,20 mL钳口项空样品瓶(美国Agilent公司);65&mu m PDMS,DVB萃取头(美国Supelco公司) 王艳,宋述尧牢,张越等,食品科学,2014,35(12):169-173 18 顶空固相微萃取-气相色谱-质谱法分析玉兰花的挥发性成分 Agilent 6890 GC-5975MS气质联用仪(美国安捷伦公司);固相微萃取装置,75 &mu mCAR/PDMS萃取头(美国Supelco公司) 许柏球,栾崇林,刘莉萍等,香料香精化妆品 ,2014,(3): 19 顶空- 固相微萃取-气相色谱- 质谱联用法分析 &ldquo 无锡毫茶&rdquo 中的香气成分 Trace MS 气相色谱-四极杆质谱联用仪(美国Finnigan 公司);手动SPME 进样器(美国Supelco 公司);100 &mu m 聚二甲基硅氧烷(PDMS)萃取头、75 &mu m 碳分子筛/ 聚二甲基硅氧烷(CAR/ PDMS)萃取头、65 &mu m 二乙烯基苯/ 聚二甲基硅氧烷( DVB/ PDMS)萃取头、50/30 &mu m 二乙烯基苯/ 碳分子筛/ 聚二甲基硅氧烷(DVB/ CAR/ PDMS)萃取头、15 mL 顶空瓶(上海安谱科学仪器有限公司) 曾 茜,曹光群,李 明等,分析测试学报,2014,3(10):1136 -1141 20 顶空固相微萃取.气质联用分析并比较两种延胡索挥发性成分 Trace DSQ型气质联用仪(美国Thermo Finnigan公司),手动固相微萃取装置,聚二甲基硅氧烷涂层萃取头 (100 &mu m聚二甲基硅氧烷)和125 m1带聚四氟乙烯涂层硅橡胶垫的螺口玻璃瓶(美国supelco公司) 施华青,陈彬,寿佳妮等,中国医药工业杂志, 2014,45(1):66-68,75 21 顶空固相微萃取一气质色谱联用技术分析海州香薷与石香薷中挥发性成分 Agilent 7890N-5973N GC.MSD气相色谱质谱联用仪(美国Agilent公司),GC-MSD数据分析系统65&mu m PDMS/DVB(聚二甲基硅氧烷/二乙烯苯)SPME萃取头。 李佳,刘红燕,张永清,中国实验方剂学杂志,2013,19(16):118-122 22 发酵牛肉肠挥发性成分固相微萃取条件优化分析 , SCION TQ气质联用仪(德国布鲁克公司),固相微萃取头和57330U固相微萃取手柄美国(Supelco公司), 用DVB/CAR/DMS、PDMS/DVB,CAR/PDMS 3种萃取头 董琪,王武宰,陈从贵等,食品科学,2014,35(12):174-178 23 固相微萃取条件对橙汁主要挥发性成分GC-FID测定的影响 6890-5973气相色谱(美国Agilent公司); SP3400气相色谱仪(北分瑞利分析仪器公司),固相微萃100&mu m PDMS(美国Supelco公司) 牛丽影,郁萌,吴继红等,食品科学,2013,34(22):224-233 24 酒醅微量挥发性成分的HS-SPME和GC-MS分析 6890N-5973I气相色谱-质谱联用仪(美国安捷伦公司),PC420固相微萃取仪,萃取头(75&mu m CAR/PDMS、65&mu m PDMS/DVB,50/30&mu m DVB,CAR/PDMS 100&mu m PDMS(颜色分别为黑色、蓝色、灰色、红色,美国Supelo公司) 赵爽,张毅斌,张弦等,食品科学,2013,34(4):118-124 25 食用油品中己醛的分析 GC-2010气相色谱仪(本岛津公司), SPME手柄及SPME纤维(Supelco公司), 100 &mu m PDMS, 65 &mu m PDMS/DVB, 85 &mu m PA, 85 &mu m CAR/PDMS 和70 &mu m CW/DVB,最终选取 85 &mu mCAR/PDMS 陈冬梅, 福建分析测试, 2014,23(3):22-26 26 同时蒸馏萃取法和固相微萃取法分析棕榈油与菜籽油复合火锅底料中的风味物质 QP2010型气相色谱-质谱联用仪(日本岛津公司),固相微萃取手柄、75 &mu m CAR/DMS固相微萃取头(美国Supelco公司) 张丽珠,黄湛,唐洁等,食品科学,2014,35(18):156-160 27 应用SPME-GC-MS分析变温压差膨化干燥香蕉脆片香气成分 萃取头65 &mu m DVB/PDMS(美国Supelco公司),QP 2010 Plus气相色谱-质谱联用仪(日本岛津公司) 李宝玉,杨君,尹凯丹等,食品科学,2014,35(14):184-18828 HS-SPME-GC-MS分析河南产牛至挥发性成分 美国安捷伦公司GC 6890 N GC/5975 MS型气相色谱-质谱联用仪,美国Supelco公司手动固相微萃取(SPME)装置,萃取头为65&mu m PDMS-DVB 尹震花,王海燕,彭涛, 中国实验方剂学杂志,2014,20(6):77-80 29 HS-SPME-GC-MS分析藿香蓟花中的挥发性成分 美国安捷伦公司GC 6890 N GC/5975 MS气相色谱-质谱联用仪,美国supelco公司手动固相微萃取(SPME)装置,萃取头为100&mu m PDMS-DVB 张橡楠,张一冰,张勇等,中国实验方剂学杂志,2014,20(9):99-101 30 SPME与SD提取八角茴香挥发性风味成分的GC-MS比较 美国安捷伦公司GC 6890 N GC/5973 MS型气相色谱-质谱联用仪,65&mu mPDMS/DVB萃取纤维头, 顶空瓶15mL(德国IKA公司) 黎强,卢金清,郭胜男, 中国调味品,2014,39(7):107-109 31 SPME-GC/MS/O法分析水性涂料的气味问题 气相色谱-质谱-嗅觉测量联用仪(Agilent 6890-5973 MSD-O),固相微萃取装置(Combi&mdash PAL,CTC-SPME),萃取纤维(Supelco,50/30&mu m DVB/CAR/PDMS StableFlex/SS l cm),20 mL顶空样品瓶 董婕,朱莉莉,方芳等,涂料工业,2014,44(5):53-55 32 SPME-GC-MS法研究竹叶柴胡和北柴胡挥发性成分差异 6890-5973N型气相色谱-质谱联用仪 (美国Agilent公司),手动固相微萃取装置(美国Supelco公司),萃取纤维头(100&mu m PDMS,7&mu m PDMS,85&mu m PA),5 mL SPME.GC专用采样瓶(美国Supelco公司) 王砚,王书林, 中国实验方剂学杂志,2014,20(14):104-108 33 SPME/GC-MS鉴别地沟油新方法(Ⅲ) Agilent 6890 GC/5973i MS气相色谱-质谱联用仪(美国安捷伦公司);自制SPME固相微萃取头NACC-1。 吴惠勤,黄晓兰,林晓珊等,分析测试学报,2014,32(11):1277-1282 34 巴氏灭菌对不同品种菠萝蜜汁挥发性香气成分的影响 Thermo Trace 1300-ISQ气相色谱一质谱联用仪,20mL样品瓶、固相微萃取自动进样手柄美国Thermo公司;固相微萃取头(65 &mu m PDMS/DVB) 美国Supelco公司。 皋香,施瑞城,谷风林等,食品科学,2014,35(9):63-68 35 保留指数在茶叶挥发物鉴定中的应用及保留指数库的建立 SPME 手持器(SAAB-57330U)和65 &mu m聚二甲基硅氧烷/二乙烯基苯(PDMS/DVB)萃取头(美国Supelco 公司);6890 气相色谱-5973 质谱仪(Agilent公司);自制改良顶空瓶(容积150 mL 玻璃试验瓶) 林杰,陈莹,施元旭等,茶叶科学, 2014,34(3):261-270 36 不同地区黄酒挥发性物质差异性分析 75 &mu mCAR/PDMS固相微萃取头(美国Suplco公司), Trace MS气相色谱-质谱联用仪(美国Finnigan公司) 王培璇,毛健,李晓钟等,食品科学,2014,35(6):83-89 37 不同性别伊拉兔肉挥发性风味物质的SPME-GC-MS分析 QP 2010气相色谱-质谱联用仪(日本岛津公司);手动固相微萃取进样器、75&mu m CAR/PDMS涂层萃取头(美国Supelco公司) 陈康,李洪军,贺稚非等,食品科学,2014,35(6):96-102 38 顶空固相微萃取-气相色谱.质谱联用法分析仔姜与老姜的挥发性成分 QP 2010型气相色谱-质谱联用仪(日本岛津公司;固相微萃取装置(配有50/30&mu m DVB/CAR/PDMS萃取头) 美国 Supelco公司;萃取瓶美国Perkin Elmer公司 汪莉莎,陈光静,张甫生等,食品科学,2014,35(10):153-157 39 顶空固相微萃取与气相色谱.电子捕获技术联用检测软木塞中2,4,6.三氯苯甲醚 CP-3800气相色谱仪(美国Varian公司),20 mL项空瓶,;手动固相微萃取手柄,100&mu m聚二甲基硅氧烷涂层萃取头(美国sigma公司) 张哲琦,王玉春,陈臣等,食品科学,2014,35(12):148-150 40 多种提取方法分析蛇莓挥发性组分 QP 2010-Plus 气相色谱-质谱联用仪(日本岛津公司),顶空进样针PDMS 100 &mu m, PDMS-DVB 65 &mu m, CAR-PDMS 75 &mu m,PA 85&mu m (美国Sigma 公司) 王晨旭,于兰,杨艳芹等,分析化学,2014,42(11):1710 -1714 41 海南主要地域生咖啡豆挥发性化学成分对比研究 QP 2010 Plus气质联用系统(日本岛津公司),20 mL顶空瓶,未报道萃取头品种 胡荣锁,初众,谷风林等,光谱学与光谱分析,2013,33(2):548-55342 葎草鲜品不同部位的挥发油成分及含量 仪器:Aghilent 6890-5973 GC/MS ;手动固相微萃取(美国Supelco公司),萃取纤维头为:100&mu mPDMS 彭小冰,邵进明,刘炳新等,贵州农业科学,2014,42(4):178-181  43 熟化方式对小米粉制品挥发性成分的影响 气相色谱质谱联用仪(美国Varian公司);顶空固相微萃取装置(美国Supelco公司), DVB/CAR/PDMS萃取头 李雯,陈怡菁,任建华等,中国粮油学报,2014,29(4):93-97 44 GC-MS分析比较3个特产香椿品种的挥发性成分 Varian 4000 GC-MS(美国瓦里安公司);顶空固相微萃取装置(包括手持式手柄,50/30&mu m DVB/PDMS、75 &mu m CAR/PDMS、lOO&mu m PDMS、65&mu m PDMS/DVB 4种萃取头,40mL顶空瓶)( 美国Supelco公司) 刘常金,张杰,周争艳等,食品科学,2013,34(20):261-267 45 HS-SPME-GC-MS法分析肉桂子挥发性化学成分 QP2010气相色谱-质谱联用仪(日本岛津公司),;手持固相微萃取设备(美国,Supelco公司)100&mu m PDMS ,75&mu m PDMS/CAR ,65&mu m PDMS/DVB 和50/30&mu m PDMS/DVB/CAR萃取 头 熊梅,张正方,唐军等中国调味品,2013,38(1):88-91 46 HS-SPME-GC-MS分析两种南瓜瓤挥发性成分 Agilent GC 6890 N /5975 MS,Supelco SPME 65&mu m PDMSA-DVB 萃取头物膜(聚二甲基硅氧烷)   小结:SPME 是现今和气相色谱仪连接使用最多的一种结合样品处理与分离分析在一起的方法,应用模式和应用范围还在发展。   下一讲讨论样品处理的另一种模式&mdash &mdash &ldquo 悬空济世&mdash 单滴液体微萃取的妙用&rdquo 。   最后预祝读者羊年快乐!万事如意!
  • 傅若农:气相色谱固定液的前世今生
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。   第一讲:傅若农讲述气相色谱技术发展历史及趋势   第二讲:傅若农:从三家公司GC产品更迭看气相技术发展   第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状   气相色谱(GC)技术至今已有52年的历史了,其现在已经是相当成熟的技术。今天气相色谱仪已经相当普及,就像分析天平一样,在许多实验室都可以见到。而对于分析人员而言,气相色谱仪的操作也很简单,样品处理完以后装到进样瓶中,之后往自动进样器上一放就自动进行分析了。而这一切的实现其实是50年来无数分析人员及厂家设计制造人员的研究,借助现代科学技术集成起来的成就。但是气相色谱仪和气相色谱方法具有相当的科学内涵,值得从事气相色谱分析人员深入地去学习和领会,才能使你在长期气相色谱分析当中应付自如、游刃有余。这里我们先从气相色谱的核心气相色谱固定液谈起,本章所谈只限于液体固定相,即在工作温度下固定相以液态存在。   首先,我讲一个我自己经历的故事。1974年我们买了一台北京分析仪器厂的SP-2305 E型气相色谱仪,为了测试仪器的性能,我们就用仪器附带的、厂家事先配制好的固定液 DNP(邻苯二甲酸二壬酯)做测试,但是厂家没有在固定液的包装上注明它的最高使用温度(低于130 ℃),我们在设定温度时设定为130 ℃,结果由于固定液流失把热导池污染了,不能正常使用,没有办法只好到北京分析仪器厂又更换了热丝。后来查了文献才知道这种固定液在130 ℃就会流失。因此我意识到做气相色谱必须要了解、熟悉气相色谱固定液的性能,当然了解气相色谱固定液的性能的重要性还远不止于此,因为气相色谱固定液的性能是影响色谱分离的主要因素。   一.早期使用的气相色谱固定液   气相色谱发明人马丁(Martin)1950 年使用硅藻土(Celite)做载体,用硅油(DC 550)做固定液,用气体做流动相, 分离氨、脂肪胺和吡啶同系物。 DC 550(含25%苯基的甲基聚硅氧烷)原为工业用的耐高温硅油。   马丁使用硅油(聚硅氧烷)作气相色谱固定液以后,开辟了聚硅氧烷作气相色谱固定液的先河。但是聚硅氧烷类固定液在当时还没有占主导地位,人们更多地使用各种低分子化合物。如1956年有人提出了&ldquo 标准&rdquo 固定液:正十六烷、角鲨烷、苄基联苯、邻苯二甲酸二壬酯、二甲基甲酰胺、二缩甘油。(J.Chromatogr.Sci. 1973,11(4):216)。   后来也使用了一些高聚物用作气相色谱固定液,如聚乙二醇类,各种聚酯类,以及各类从石油提炼出来的润滑脂阿皮松-L 、阿皮松-M等。当时使用的一些聚硅氧类固定液也都是工业品,如 DC-550 、DC-710 、QF -1、 DC-11 、SE-30(聚二甲基硅氧烷),聚二甲基硅氧烷之后成为非常广泛使用的GC固定液 。   1964年又有人提出 58 个常用固定液,使用频率最高的十个固定液是阿皮松-L、SE-30、邻苯二甲酸二壬酯、角鲨烷、PEG 20M、己二酸乙二醇聚酯、PEG 400、DC 550、磷酸三甲酚酯、PEG 1500。   为了适应各种各样混合物的分离,固定液如雨后春笋地增长,在1972年出版的 &ldquo Gas Chromatographic Data Compilation DS 25 A S-1&rdquo 中收集了700多种气相色谱固定液。   在气相色谱以填充柱为主的时代,由于填充柱的柱效有限,为了能分离各类混合物,人们研究发展了上千种固定液,但是固定液量太多了又带来新的麻烦。为此,许多人致力于固定液的分类和精选最常用的固定液,最有影响的是Rohrschneider和McReynolds的固定液表,下表1是McReynolds固定液表的一部分,它发表于1970年的色谱科学杂志上(J chromatogr Sci 1970,8:685-691)。 表1 McReynolds 固定液表   说明:X' , Y' ,Z' ,U' ,S' 分别代表苯、正丁醇、2-戊酮、1-硝基丙烷、吡啶   McReynolds用10种典型化合物,苯、正丁醇、2-戊酮、1-硝基丙烷、吡啶、2-甲基2-戊醇、碘丁烷、2-辛炔、二氧六环和顺八氢化茚,在120℃柱温下测定了226种固定液上的保留指数差(△I),以前五种化合物△I之和的大小来表示固定液的极性。   McReynolds 工作的目的是为了解各种固定液的性能,选择时可以寻找性能类似的品种,减少测试比较固定液的数量。   后来Hawkes推荐的较常用的气液色谱固定液有下列一些:   (1) 聚二甲基硅氧烷 (OV-101, OV-1, SE-30 )   (2) SE-54 ( 含5%苯基和1%乙烯基的聚甲基硅氧烷)   (3) OV-7 ( 含20%苯基的聚甲基硅氧烷)   (4) OV-1701 ( 含7%苯基和7% 氰丙基的聚甲基硅氧烷)   (5) OV-17 [ 含50% 苯基的聚甲基硅氧烷(油) ]   (6) OV-17(gum)[ 含50%苯基, 2%乙烯基的聚甲基硅硅氧烷(橡胶) ]   (7) OV-25 [ 含75%苯基的聚甲基硅氧烷(油)]   (8) OV-210 [( 含50% 三氟丙基的甲基硅氧烷(油))   (9) OV-215 [含50%苯基, 2%乙烯基的聚甲基硅氧烷(橡胶)]   (10) UCON HB 5100 ( 约50/50的聚乙/丙基醚 )   (11) OV-225 ( 含25% 氰丙基﹑25% 苯基的聚甲基硅油或硅橡胶 )   (12) Superox-4 ( 高分子量的聚乙二醇, 使用温度可到300℃ )   (13) Superox-0.1 ( 聚乙二醇,使用温度可到 280℃ )   (14) Superox 20M ( 聚乙二醇, 使用温度可到 300℃)   (15) PEG-20M ( 聚乙二醇, 使用温度可到 300℃)   (16) Silar 5CP ( 含 50% 氰丙基﹑50% 苯基的聚甲基硅油 )   (17) SP-2340 (含75% 氰丙基的聚甲基硅油 )   (18) Silar 10 CP ( 含100% 氰丙基的硅油 )   (19) OV-275 ( 含 100% 氰乙基的硅油 )。   他还推荐了最常用的 6 种气相色谱固定液如下表2。 表2 最常用的6种气相色谱固定液   自从1979年弹性石英毛细管柱问世之后,毛细管气相色谱得到了迅速的发展。以毛细管柱代替填充柱的趋势日益明显,特别是1983年大内径厚液膜毛细管柱的发展和应用。而优秀的气-固色谱毛细管柱&mdash &mdash PLOT柱的出现把填充柱仅剩余的一点优势也给抵消了。   有人认为毛细管柱具有非凡的高柱效,对固定液的选择性就降低了要求,只要有三支毛细管柱(聚二甲基硅氧烷、聚乙二醇20M、氰基聚二甲基硅氧烷)就可以应付80%的分析任务。但是要解决高沸点复杂混合物、各种沸点相近的异构体,性质极为相近的光学异构体,必须要有新的、热稳定性极好的、重复性好的、有不同选择性的固定液,为此多年来研究人员合成了许名适用于毛细管柱的固定液。   二、硅氧烷是现时气相色谱固定液的主体   尽管使用和研究过的气相色谱固定液有千余种,以适应填充柱低柱效和高选择性的要求。但是对现代毛细管色谱柱而言,这些固定液合用者很少。其中尚可在毛细管色谱柱中使用的除去聚乙二醇外几乎都是聚硅氧烷类,因而在新的固定液合成中也还限于以聚硅氧烷作为骨架,同时引入不同的选择性基团。这是因为聚硅氧烷类固定液具有以下的优点:(1)热稳定性好 (2)成膜性能好 (3)玻璃化温度低,使用温度范围宽 ( 4)如在分子中有一定量的乙烯基则易于交联 (5)扩散性能好,传质阻力小,易获高柱效 (6)可在聚硅氧烷侧链上引入各种有机分子片段,调节选择性。从上世纪70年代至今,以聚硅氧烷类固定液为基础发展了一系列优秀的气相色谱固定液。   (一)热稳定性好的固定液   目前有许多高沸点复杂混合物的分离要使用耐高温的毛细管色谱柱,如石油中碳数高达100的烃类,食品中的甘油三酸酯,环境污染物中六、七环多环芳烃等,均需要热稳定性极好的固定液。过去用的固定液几乎没有能经受370℃高温的。为此近年来出现了一些可在400℃左右使用的毛细管柱固定液。   (1)耐高温聚二甲基硅氧烷   有人利用涂有聚二甲基硅氧烷的毛细管柱,在390℃下分离碳数高达90的烃类。用程序升温到430℃ ,可使100-110个碳原子的烃类流出色谱柱。   前几年VIBI公司使用窄分布的聚二甲基硅氧烷(Unimolecular Low Bleed VB-1),它的特点是纯化预聚体除去低聚物,聚硅氧烷链上有支链,减少交联剂量,使用全部交联原理把端基也纳入,使其交联行成一个网络整体,没有低分子化合物。   (2)使用交联的聚硅氧烷固定液提高其热稳定性   在毛细管柱进行原位交联(固相化)是提高液膜稳定性的重要途径,也是制备抗溶剂冲洗的必要手段。但是一些苯基含量高的聚甲基硅氧烷,如OV-17、OV-25、以及OV-225难以用引发剂使之交联,但如引入一定量的乙烯基后它们可以交联,所以在研究毛细管色谱用固定液时,往固定液分子中引入乙烯基或使用端羟基聚硅氧烷固定液。   (a)引入乙烯基   早在80年代初,M.L.Lee研究组和Blomberg研究组就研究把乙烯基引入含苯基和氰丙基的聚硅氧烷的分子中使之易于交联。因为很早人们就知道含有乙烯基的聚硅氧烷很容易被过氧化物或其它引发剂使之交联的。例如在含50%苯基的聚硅氧烷中引入1%的乙烯基,在含70%苯基的聚硅氧烷中引入4%的乙烯基,就可以在加入过氧化物引发剂的情况下较为容易地进行交联。对含有苯基和氰丙基的聚硅氧烷,Markeides等人采用先制备含有乙烯基的预聚体,然后再在柱中进行原位交联。对这类固定液可采用过氧化物、偶氮化合物,甚至臭氧都可以使之引发交联。   (b)用端羟基聚硅氧烷固定液交联并和毛细管壁进行键合   1983年Verzele提出用端羟基的聚硅氧烷固定液。1985年Blum又进一步研究了非极性和中等极性的聚硅氧烷(以羟基为端基)的固定液,以及毛细管柱的制备工艺问题。1986年Lipsky等人首次把端羟基聚二甲基硅氧烷涂渍在弹性石英毛细管柱上,石英柱的外涂层不用聚酰亚胺,而使用金属铝,端羟基聚二甲基硅氧烷在高温下加热(375-400℃),形成交联并键合的液膜。这一色谱柱在8-12h内逐渐从350℃升温到425℃。利用这种色谱柱分离原油组分,程序升温可达425&mdash 440℃。   (3)利用硅氧烷/硅亚芳基共聚物提高热稳定性   在聚硅氧烷中如把主链中的氧原子用亚苯基取代,它的热稳定性就会提高,这类化合物用作气相色谱固定液可以耐高温,其结构如下图1: 图1 硅氧烷/硅亚芳基共聚物结构   其热稳定性当R及R为苯基时提高,见下表中的数据。据Buijten等的研究结果,用这类化合物可涂渍出高效毛细管柱,涂渍效率达102%。这种色谱柱可在370 ℃下分离多环芳烃. 下表是硅氧烷/硅亚芳基共聚物在氮中热重分析数据。目前在GC/MS中使用最多的含5%苯基的硅氧烷/硅亚芳基共聚物,硅氧烷/硅亚芳基共聚物的热性能见表3。如DB-5MS色谱柱就是使用这类固定液。 表3 硅氧烷/硅亚芳基共聚物在氮中的热重分析数据   (4) 在聚硅氧烷链中引入硼烷提高热稳定性   在硅氧烷链中引入十硼烷,可以提高固定液的耐热性,现在网上有信息显示,北京绿百草科技提供信和固定相Dexsil 300 GC,该固定相主要用于药物、三酸甘油酯和醚、高沸点脂肪烃、高沸点烃、甾族化合物、杀虫剂和糖类。   Dexsil有三个品种及其结构和极性如下表4: 表4 三个品种Dexsil的结构及极性   HT-5 高温固定液就是Dexsil 400 GC 固定液制备的色谱柱,用以进行模拟蒸馏的色谱图2: 图2 DB-HT Sim Dis 色谱柱的模拟蒸馏色谱图   色谱柱:DB-HT Sim Dis 5 m x 0.53 mm I.D., 0.15 &mu m   载气:氦,18 mL/min, 在 35下测定   拄温:30-430 ℃,程序升温,10℃/min   检测器温度:FID 450 ℃   三、极性固定液   小分子的极性固定液极性最强的是b,b-氧二丙氰,但是它的耐温性很差,于是人们就研究各种极性高的高聚物,聚乙二醇20M (即分子量为20000的聚乙二醇)是使用最多中等极性的固定液。多年来人们知道往聚硅氧烷分子中引入苯基可以提高极性,所以上世纪七八十年代OV公司就合成了含不同数量苯基的甲基苯基聚硅氧烷固定液,OV-7是较早使用的含20% 苯基的甲基聚硅氧烷固定液,又如 SE-54 (含5% 苯基),OV-17 (含 50% 苯基),OV-25 (含 75% 苯基,含5% 苯基的聚二甲基硅氧烷)是各个公司制备毛细管柱的主要气相色谱固定液,如安捷伦公司的 HP-5、DB-5. Restke公司的Rtx-5 SGE公司的BP-5 Supelco公司的SPB-5 PerkinElmer公司的PE-2等。OV-17在农残分析中多有使用,相当于安捷伦公司的DB-17, Restke 公司的 Rtx-50,SGE公司的 BPX-50, Supelco公司的 SP-2250,使用DB-17ms(用于GC/MS的色谱柱)分析22种杀虫剂的色谱如图 3(安捷伦公司的图谱)。 图3 使用DB-17ms分析22种杀虫剂的色谱图   另外往聚硅氧烷分子中引入氰乙基、氰丙基、三氟丙基等可提高其极性。如 OV-275,Silar10C ,OV-1701 ,OV-210 。OV-275,Silar10C是含100% 氰乙基或氰丙基的聚甲基硅氧烷,OV-1701是含7% 氰丙基和7% 苯基的聚甲基硅氧烷 ,OV-210含三氟丙基的聚甲基硅氧烷。但是这类种固定液不易涂渍,也不易交联,所以多年来人们研究易于涂渍、易于交联的含高氰丙基的聚硅氧烷固定液,本世纪多个公司有所突破,制备成功各种各样的极性固定液和毛细管色谱柱。用OV-1701涂渍的毛细管色谱柱DB-1701分离22种杀虫剂的色谱见图4(安捷伦公司的图谱) 图4 DB-1701 分离22种杀虫剂的色谱图   各种固定液使用频率有很大的差别,国外有人统计各类固定液在色谱柱中使用的百分比见表5。 表5 五类典型气相色谱固定液的使用情况   四、选择性固定液   选择性固定液是近年来研究最多的气相色谱固定液,而且主要是针对手性异构体的分离。因为化合物的手性特征十分普遍,它在医药,农药应用中具有重要意义,所以对分析手性化合物提出迫切要求。而分离对映异构体的核心是寻找合适的手性固定相。气相色谱中手性固定相一般讲有三大类:第1类是手性氨基酸的衍生物 第2类是手性金属配合物 第3类是环糊精衍生物和其他主客体相互作用固定液,如冠醚类、杯芳烃类固定液。   第1类和第2类手性固定相有不少好的固定相,例如1978年有人把手性氨基酸的衍生物接枝到聚硅氧烷上,并有商品色谱柱上市,即把L-缬氨酸-特丁酰胺接枝到聚硅氧烷上,商品名&ldquo Chirasil-Val&rdquo 。这一固定液可以使用到220℃。特别适用于氨基酸手性异构体的分离,以及对手性胺类、氨基醇类、&alpha -羟基基酸酰胺类的分离。但是近年来大量研究的手性固定液的、能成为商品毛细管的只有环糊精(CD衍生物固定液。基于美国密苏里-罗拉大学的环糊精研究者Armstrong的研究结果,1990年美国的ASTEK公司推出一套CD毛细管色谱柱,典型的有下列9种,见表6。 表6 ASTEK公司的9种环糊精衍生物毛细管商品柱   五、近年商品柱所使用的新固定液   近几年在气相色谱的进展中只有气相色谱固定相的发展有所突破,即室温离子液体的研究和用它们制备的商品化气相色谱柱 金属有机框架化合物用于气相色谱固定相的研究有很大进展 碳纳米管作气相色谱固定相的研究也所发展,但是后二者应属于气-固色谱固定相,而且还没有商品化色谱柱的出现,所以本章暂不讨论。   室温离子液体是在常温下呈液态的离子型化合物,常由较大的有机阳离子( 如烷基咪唑盐、烷基吡啶盐、烷基季铵盐、烷基季膦盐) 和相对较小的无机或有机阴离子( 如六氟磷酸根、四氟硼酸根、硝酸根)构成。室温离子液体所以能在许多领域获得广泛的应用,是因为它的热稳定性好、粘度高而且随温度变化的波动小、表面张力小、蒸汽压力低、物理性能可变换幅度大、有成千上万的品种可供选择。而这些性能正好符合气相色谱固定相的要求,所以选择它作气相色谱固定相是很自然的事。下表7是Supelco公司的商品离子液体固定相的牌号和极性(J Chromatogr A, 2012,1255:130-144)。 表7 几种商品离子液体固定相的极性(Supelco公司)   *相对极性数=(Px x 100)/ PSLB-IL 100= McRynolds 极性乘以100再除以SLB-IL 100的McRynolds 极性   小结:   气相色谱固定液是气相色谱仪的核心和灵魂,也是迄今为止气相色谱不断研究的课题之一。现在聚硅硅氧烷类固定液是气相色谱固定液的主体,其中含5%苯基的聚甲基硅氧烷占有半壁江山,而极性固定相使用较多的是聚乙二醇固定液和含氰丙基、三氟丙基聚甲基硅氧烷的固定液。选择性固定液目前有商品柱的主要是环糊精衍生物固定液,近年发展和研究最多并成为商品柱的新型固定液主要是室温离子液体固定液。下一章,我将为大家讲述气相色谱固体固定相的今夕。(未完待续)   (作者:北京理工大学傅若农教授)
  • TF-SPME萃取法帮你分析,你的橄榄油品质是否过关?
    特级初榨橄榄油EVOO是在果实处于*成熟阶段时通过机械和其他物理方法从橄榄中获得的,无需任何进一 步提炼即可食用。橄榄油富含但不饱和脂肪酸,对心脑血管健康有一定作用,定期食用 EVOO 对健康有益。西班牙的橄榄油产量占全球的45%,被西班牙人誉为“黄金液体”。 由于其挥发性化合物,EVOO 还是一种具有极佳感官香气的植物油,香气是食品的主要质量指标之一。同时EVOO的特征挥发化合物会受气候、土壤、地理来源、橄榄品种、果实成熟度或其储存条件等因素影响。EVOO 香气由大量挥发性化合物构成,如醇类、酯类、醛类、酮类、呋喃类、碳氢化合物等。挥发性化合物的主要前体是脂肪酸,因为在榨油过程中, 内源性酶的作用通过降解多不饱和脂肪酸形成这些挥发性化合物。在以下实验中,我们采用两种不同技术进行对比:HSSE-PDMS和TF-SPME。对比实验过程01 样品制备:5g橄榄油,放置在20mL顶空瓶中,分别使用TF-SPME固相微萃取薄膜和磁力搅拌吸附萃取搅拌子顶空式萃取,37℃恒温水浴萃取60min;02 涂层:薄膜固相微萃取 (TF-SPME),采用两种不同的涂层,二乙烯基苯/聚二甲基硅氧烷涂层 (DVR/PDMS) 或羧烯/聚二甲基硅氧烷 (CAR/PDMS) 作为萃取相,PDMS Twister® 长度为10 mm,涂层为24µ L EG/S Twister® 长度为10 mm,涂层为32µ L TF-SPME装置为20 × 4.8 mm碳网片,浸渍有涂层相。分析使用了Agilent 6890气相色谱系统和Agilent 5975惰性四极杆质谱仪(Agilent, Santa Clara, CA, US),配备了Gerstel热解吸系统(TDS2)和CIS-4PTV进样口冷却系统。03 解吸温度程序如下:温度保持在 35℃ 0.1 分钟,然后以 60℃/min 的速度升温至 220℃并保持 5 分钟; 色谱柱:50 m × 0.25 mm×0.20 µ m J&W CPWax-57CB 载气:He; 流速:1ml /min; 气相色谱升温程序如下: 35℃保持 4分钟,然后以2.5℃/min升至220℃(保持15分钟) ; 四极杆、离子源和传输线温度分别维持在150℃、230℃和280℃。实验结果在70 eV的全扫描模式下记录了电子电离质谱,电子能量在29 ~ 300 m/z之间。在Picual品种EVOO中,用2TF-SPME和hsse - pdms分别测定了49个和43个化合物)。在Hojiblanca品种EVOO中,HSSE-PDMS提取的化合物数量(34)与2TF-SPME(32)相似。然而,在这两种情况下,使用2TF-SPME方法获得的总面积值最高(如图1所示)。 图1:通过 HSSE-PDMS 和 2TF-SPME 获得的 EVOO Picual 和 Hojiblanca 品种的总峰面积值(除以 107)和挥发性化合物的数量。误差条显示标准偏差 (SD) 值在 Picual 橄榄油的醛和内酯采样技术与 Hojiblanca 的萜烯采样技术之间观察到了统计学上的显着差异。在所有情况下,均使用 2TF-SPME 方法达到最高值(如图 2所示)。2TF-SPME装置是检测以下8种挥发性化合物的*方法:丙酸、1-丙醇、2-甲基-2-戊烯醛、5-羟甲基糠醛、4-己烯-1-醇乙酸、2-环戊烯- 1,3 -二酮和对花癸烯。 图2:通过HSSE-PDMS和2TF-SPME获得的EVOO Picual和Hojiblanca品种主要化学基团的总峰面积值的百分比总结两种提取方法均可根据橄榄品种对EVOO样品进行分离和区分。然而,考虑到线性和获得的峰面积值,以及测定的挥发性化合物的数量,2TF-SPME方法更适合于最好地表征这些类型的EVOO。薄膜固相微萃取 薄膜固相微萃取,简称TF-SPME或ThinFilm SPME,是把吸附相涂在碳网片上的固相微萃取新技术,由加拿大皇家科学院院士以及滑铁卢大学的JanuszPawliszyn教授发明,德祥科技旗下品牌INNOTEG英诺德和JanuszPawliszyn教授一起合作研发,用于分析痕量的VOSs和SVOCs等挥发性有机物。TF-SPME通过增加萃取相体积和表面积,不牺牲分析时间的同时,大大提高了灵敏度,解决了传统固相微萃取过程中所存在的吸收速率和吸收能力限制的问题,是一种应用广泛的提取浓缩新技术,与GC/MS联用,特别适用于食品、香料、饮料和环境监测等行业。固相微萃取 固相微萃取(SPME)由手柄和萃取头或纤维头 (fiber)构成。萃取头是一根1cm/2cm长的熔融石英纤维头,涂有不同的固定相和吸附剂,是一种集采样,萃取,浓缩和进样于一体的无溶剂萃取技术。操作更简单,携带更方便,操作费用也更加低廉;另外克服了传统样品前处理所存在的 回收率低、吸附剂孔道易堵塞的缺点。 可以与气相、气相-质谱联用,广泛应用于环保及水质处理、食品香精、公安法检分析、临床 药理、制药、化工等领域。应用范围产品涂层应用范围TF-SPMEPDMS适用于非极性化合物SVOCs分析PDMS/DVB适用于非极性化合物VOCs和SVOCs分析PDMS/HLB (1um)对极性和非极性化合物具有平衡亲和力,适用于极性和非极性VVOCs,VOCs,SVOCs分析PDMS/HLB (5um)对极性和非极性化合物具有平衡亲和力,适用于极性和非极性VVOCs,VOCs,SVOCs分析SPME94um聚二甲基硅氧烷(PDMS)挥发性物质,胺类,硝基芳香类化合物44um聚二甲基硅氧烷(PDMS)非极性半挥发性、挥发性物质空针(无涂层,可定制) _德祥科技德祥集团成立于1992年,总部位于香港特别行政区。作为卓越的科学仪器供应商和服务商,德祥服务于大中华区和亚太地区,每年都为数以千计的客户提供全套解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。作为深耕科学仪器行业的供应商与服务商,德祥现已服务于政府、高校、科研、制药、检测、食品、医疗、工业、环保、石化以及商业实验室等众多领域。公司目前在亚太地区设有13个办事处和销售网点,3个维修中心和1个样机实验室。2009至2021年间,德祥先后荣获了“最具影响力经销商”、“年度*代理商“、”年度最高销售奖“等殊荣。我们始终秉承诚信经营的理念,致力于成为*的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每*都在使这个世界变得更美好!INNOTEG英诺德INNOTEG英诺德是德祥科技旗下一家专业从事科学仪器设备研发生产的高科技企业,是集实验室设备研发生产、方法开发、实验室仪器销售和技术服务为一体的专业厂家。公司十分重视技术的研究和储备,一直保持高比例研发投入,创建了一支由博士、硕士和行业专家等构成的经验丰富,技术精湛的研发团队,在仪器分析技术领域开展了卓有成效的研究开发工作。此外,INNOTEG英诺德还与各大科研院所、高校合作,积极推进科技成果项目的产业化。INNOTEG英诺德凭借强大的研发能力,注重前瞻性技术研发,已推出多款科学仪器设备及实验室耗材产品。
  • 全自动乌氏粘度计-用毛细管法测定聚乙烯基吡咯烷酮的k值
    聚乙烯吡咯烷酮(polyvinyl pyrrolidone)简称PVP,是一种非离子型高分子化合物,是N-乙烯基酰胺类聚合物中最具特色,且被研究得最深、广泛的精细化学品品种。已发展成为非离子、阳离子、阴离子3大类,工业级、医药级、食品级3种规格,相对分子质量从数千至一百万以上的均聚物、共聚物和交联聚合物系列产品,并以其优异独特的性能获得广泛应用。PVP按其平均分子量大小分为四级,习惯上常以K值表示,不同的K值分别代表相应的PVP平均分子量范围。K值实际上是与PVP水溶液的相对粘度有关的特征值,而粘度又是与高聚物分子量有关的物理量,因此可以用K值来表征PVP的平均分子量。通常K值越大,其粘度越大,粘接性越强。测定K值最常用的方法是用毛细管粘度计测的PVP水溶液的相对粘度n,再根据公式计算出K值。 实验方法如下实验所需仪器:卓祥全自动粘度仪、自动配液器、万分之一电子天平。实验所需试剂1:溶剂:纯水,无水乙醇为清洗剂。溶剂粘度的测定:卓祥全自动粘度仪设置到实验目标温度值并且稳定后,加入纯水,软件中启动测试任务待结束,测的溶剂时间T0。粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。样品溶液的制备:在万分之一天平上精准称量精确到*g,溶解在**ml溶剂中,通过自动配液器将溶液浓度精准配制到**g/ml,溶解条件:常温搅拌。样品粘度的测定:加入**ml样品,测量样品时间**,计算粘度结果粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。
  • 言"硅"正传,论硅油的正确打开方式
    油浴在科研实验室中的使用非常普遍,特别是有机合成实验室,处处弥漫着硅油的气息。小编走过了全国各地多个高校及研究所,看见学弟学妹们娇小的身影穿梭其中,作为曾经的学长,不经陷入沉思: “我走过许多地方的高校,行过许多地方的研究所,看过许多次数的实验,闻过许多种类的硅油,却开始担心自己的身体。”于是心中惴惴不安地百度了一下: 做有机合成的同学,吸了这么多硅油,大家身体有什么感觉吗? 小编喝着枸杞菊花茶,跟某知名品牌的硅油厂商工程师纠缠了半天,终于搞到了实验室油浴秘籍,我看大家聪慧好学,决定结合ika的应用秘籍,分享考考大家:1. 实验油浴的硅油建议选择哪一种?a.羟基硅油 b . 苯基硅油 c.二甲基硅油 d. 花生油就行注意:如果使用高粘度硅油作为实验油浴,由于导热性能差,容易产生控温不准确,且伴随温度过高的安全隐患。答案:C ,二甲基硅油又叫“三甲基硅氧基封端的二甲基硅氧烷”,不含有害成分。But 当二甲基硅油加热到发烟或者燃烧时,会产生:碳氧化物、硅氧化物、甲醛等对人体有危害的产物。是众多疾病的诱因,可能引发急性中毒或慢性中毒。并且,如使用不合格的甲基硅油,化学成分复杂,沸程变宽,杂质碳化后污染硅油,降低导热能力;同时也更容易产生蒸汽, 严重时可能造成呼吸道黏膜过敏。2. 实验油浴应该选择多大粘度的硅油?a. <100 cs b.500 cs c. 1000 cs d.看采购老师心情答案:A, 不同粘度的硅油对应不同的行业应用,常见几种应用如下:注意:如果使用高粘度硅油作为实验油浴,由于导热性能差,容易产生控温不准确,且伴随温度过高的安全隐患。3.实验油浴如何控温更准确?a.选用低粘度二甲基硅油b.加热时同时搅拌c.温度传感器放置正确d.让师兄帮忙做答案:ABC,选用粘度小于100 CS的二甲基硅油;加热时同时搅拌有利于热传导,防止产生温度过冲现象;温度探头浸入介质深度至少20 mm,距离容器底部至少 10 mm,避免直接接触容器底部。单身建议选D。4.如何防止实验油浴温度过高,冒烟或燃烧产生危害?a.在通风橱中进行实验b.磁力搅拌器设置安全温度c.使用金属加热块代替油浴d.会爆炸么?不会?那还怕什么!答案:ABC,在通风橱中进行可以及时排出硅油蒸汽;磁力搅拌器设置安全温度可以避免硅油温度达到闪点;使用加热块代替油浴,升温更快,温度均匀性更好,同时保持实验台清洁无油污。5. 使用磁力搅拌器设置安全温度时,应参照硅油哪个参数进行设置?a.组成成分 b. 粘度 c.开杯闪点 d.保质期答案:C,仪器安全温度设定值应该至少低于硅油开杯闪点25°C,如某品牌粘度50 CS的二甲基硅油,其开杯闪点是318℃(达到这个温度遇到火源容易出现闪燃),那么建议磁力搅拌器的安全温度设置为293℃。同时应注意硅油保质期,通常为出厂起36个月,超过保质期影响口感,哦不,可能变质。如上秘籍小编已经修炼成熟,顺便给大家几点建议: 1.选择合格的二甲基硅油(小编用的是道康宁的pmx 200 50cs)2.将仪器设定合适的安全温度(ika hs 7 control,手动机械调节安全温度,更可靠)3.在通风橱中使用(虽然我知道你们通风橱经常不给力)4.注意个人防护措施(虽然我知道说了你们懒得戴口罩)好了就这样,下期再见。哦,对了,忘了打个广告 我明白你会来,所以我等
  • Sigma-Aldrich提供塑化剂邻苯二甲酸酯(DEHP等)检测的解决方案
    最近台湾出现的塑化剂污染饮料事件备受关注,一些不法商贩为了节约成本,用塑化剂替代棕榈油添加到&ldquo 起云剂&rdquo 中。塑化剂学名叫邻苯二甲酸酯,过多使用的话将影响生殖功能甚至导致癌症。对于塑化剂(邻苯二甲酸酯)的检测,Sigma-aldrich可以提供固相萃取的方法解决这一问题,采用Supelco玻璃管(无邻苯二甲酸酯类杂质干扰)SPE小柱对饮料中的邻苯二甲酸酯进行固相萃取富集,然后进行液相色谱或者GC/MS分析。此外,我们还可提供SPME(固相微萃取)快速检测邻苯二甲酸酯的检测方法。标准品、色谱溶剂、色谱柱等相关产品清单如下: 标准品 英文名 货号 包装 单价 邻苯二甲酸二甲酯DMP Dimethyl phthalate 36738-1G 1g 280.8 邻苯二甲酸二乙酯DEP Diethyl phthalate36737-1G 1g 267.93 邻苯二甲酸二异丁酯DIBP Diisobutyl phthalate 152641-1L 1L 533.52 邻苯二甲酸二丁酯DBP Dibutyl phthalate 36736-1G 1g 267.93 邻苯二甲酸二(2-甲氧基)乙酯DMEP Bis(2-methoxyethyl) phthalate 36934-250MG 250mg 341.64 邻苯二甲酸二戊酯DPP Dipentyl phthalate 442867 1g 1932.84 邻苯二甲酸丁基苄基酯BBP Benzyl butyl phthalate 442503 1g 238.68 邻苯二甲酸二环己酯 DCHP Dicyclohexyl phthalate 36908-250MG 250mg 310.05 邻苯二甲酸二(2-乙基)己酯DEHP Bis(2-ethylhexyl) phthalate 36735-1G 1g 401.31 邻苯二甲酸二(2-乙基)己酯DEHP Bis(2-ethylhexyl) phthalate 48557 1g 527.67 邻苯二甲酸二苯酯 Diphenyl phthalate 36617-1G-R 1g 267.93 邻苯二甲酸二正辛酯DNOP Di-n-octyl phthalate 31301-250MG 250MG 299.52 邻苯二甲酸二壬酯DNP Dinonyl phthalate 80151-25ML 25ML 849.42 邻苯二甲酸二异壬酯DINP Diisononyl phthalate 376663-1L 1L 417.69 邻苯二甲酸异癸酯DIDP Diisodecyl phthalate 80135-10ML 10ML 506.61 邻苯二甲酸二异丙酯DIPrP Diisopropyl phthalate 80137-50ML 50ML 2190.24 邻苯二甲酸二烯丙酯DAP Diallyl phthalate 36925-250MG 250MG 341.64 邻苯二甲酸二丙酯DPrP Dipropyl phthalate 45624-250MG 250MG 267.93 邻苯二甲酸二庚酯DHP Diheptyl phthalate 454818-10G 10G 865.80 47643-U 11种邻苯二甲酸酯类混标 2000&mu g/ml溶于二氯甲烷 1ml 453.96 BBP 双-(2-氯乙氧基)甲烷 双(2-氯乙基)醚 DEHP 4-溴联苯醚 4-氯二苯醚 双(2-氯异丙基)醚 DBP DEP DMP DNOP 48741 6种邻苯二甲酸酯类混标 200 &mu g/ml 溶于甲醇 1ml 424.71 BBP DEHP DBP DEP DMP DNOP 47973 7种邻苯二甲酸酯类混标 500 &mu g/mL 溶于甲醇 1ml424.71 BBP 己二酸二(2-乙基己)酯 DEHP DBP DEP DMP 五氯苯酚 48223 6种邻苯二甲酸酯类混标 500 &mu g/ml溶于甲醇 1ml 464.49 BBP 己二酸二(2-乙基己)酯 DEHP DBP DEP DMP 48805-U 6种邻苯二甲酸酯类混标 2000 &mu g/ml溶于甲醇 1ml 475.02 DEHP BBP DBP DNOPDEP DMP 48231 6种邻苯二甲酸酯类混标 2000 &mu g/ml溶于己烷 1ml 475.02 DEHP BBP DBP DNOP DEP DMP 110 7种邻苯二甲酸甲酯定制混标 1000 ppm 溶于二氯甲烷 1 ml 咨询 邻苯二甲酸二异壬酯 68515-48-0 DINP 邻苯二甲酸二正辛酯 117-84-0 DNOP 邻苯二甲酸二(2-乙基)己酯 117-81-7 DEHP 邻苯二甲酸二异癸酯 26761-40-0 DIDP 邻苯二甲酸丁基苄基酯 85-68-7BBP 邻苯二甲酸二丁酯 84-74-2 DBP 邻苯二甲酸二异丁酯 84-69-5 DIBP 110 16种邻苯二甲酸酯定制混标 1000ug/ml 溶于正己烷 1 ml 咨询 邻苯二甲酸二甲酯 131-11-3 DMP 邻苯二甲酸二乙酯 84-66-2 DEP 邻苯二甲酸二异丁酯 84-69-5 DIBP 邻苯二甲酸二丁酯 84-74-2 DBP 邻苯二甲酸二(2-甲氧基)乙酯 117-82-8 DMEP 邻苯二甲酸二(4-甲基-2-戊基)酯 146-50-9 BMPP 邻苯二甲酸二(2-乙氧基)乙酯 605-54-9 DEEP 邻苯二甲酸二戊酯 131-18-0 DPP 邻苯二甲酸二己酯 84-75-3 DHXP 邻苯二甲酸丁基苄基酯 85-68-7 BBP 邻苯二甲酸二(2-丁氧基)乙酯 117-83-9DBEP 邻苯二甲酸二环己酯 84-61-7 DCHP 邻苯二甲酸二(2-乙基)己酯 117-81-7 DEHP 邻苯二甲酸二苯酯 84-62-8 邻苯二甲酸二正辛酯 117-84-0 DNOP 邻苯二甲酸二壬酯 84-76-4 DNP 110 17种邻苯二甲酸酯定制混标 1000ug/ml 溶于正己烷 1 ml 咨询 邻苯二甲酸二甲酯 131-11-3 DMP 邻苯二甲酸二乙酯 84-66-2 DEP 邻苯二甲酸二异丁酯 84-69-5 DIBP 邻苯二甲酸二丁酯 84-74-2 DBP 邻苯二甲酸二(2-甲氧基)乙酯 117-82-8 DMEP 邻苯二甲酸二(4-甲基-2-戊基)酯 146-50-9 BMPP 邻苯二甲酸二(2-乙氧基)乙酯 605-54-9 DEEP 邻苯二甲酸二戊酯 131-18-0 DPP 邻苯二甲酸二己酯 84-75-3 DHXP 邻苯二甲酸丁基苄基酯 85-68-7 BBP 邻苯二甲酸二(2-丁氧基)乙酯 117-83-9 DBEP 邻苯二甲酸二环己酯 84-61-7 DCHP 邻苯二甲酸二(2-乙基)己酯 117-81-7 DEHP 邻苯二甲酸二苯酯 84-62-8 邻苯二甲酸二正辛酯 117-84-0 DNOP 邻苯二甲酸二壬酯 84-76-4 DNP 邻苯二甲酸二异壬酯 68515-48-0 DINP 色谱溶剂         正已烷 农残级 34484-2.5L 2.5L 418.86 乙酸乙酯 农残级 31063-2.5L 2.5L 418.86 环己烷 农残级 34496-2.5L 2.5L 528.84 石油醚,40-60 ° C 农残级 34491-2.5L 2.5L 645.84 乙醇 色谱级 34964-2.5L 2.5L 1744.47 乙酸 LC-MS级 49199-50ML-F 50ML 603.72 异辛烷 农残级 34499-2.5L 2.5L 1690.65 甲醇 农残级 34485-2.5L 2.5L 279.63 试剂         无水硫酸钠 农残级 35896-500G 500G 308.88 气相柱         SLB&trade -5ms Capillary GC 30m× 0.25mm× 0.25&mu m 28471-U 1根 4699.89 SLB&trade -5ms Capillary GC 30m× 0.25mm× 0.10&mu m 28467-U 1根 4699.89 液相柱         Ascentis® C18液相柱 5&mu m,25cm× 4.6mm 581325-U 1根 3239.73 Ascentis® C18保护柱 5&mu m,2cm× 4.0mm 581373-U 1kit 1077.57 固相萃取产品         防交叉污染固相萃取装置 12位 57044 1套 5717.79Supelclean&trade LC-Si 500mg/6ml 505374 30支/盒 741.78 Supelclean&trade LC-Si 1g/6ml(玻璃管,PTFE筛板 54335-U 30支/盒 3127.41 无邻苯二甲酸酯类杂质干扰) Supelclean&trade ENVI-18 500mg/6ml(玻璃管,PTFE筛板 54331-U 30支/盒 2190.24 无邻苯二甲酸酯类杂质干扰) Supelclean&trade ENVI-Florisil® 500mg/3ml(PTFE筛板) 57058 54支/盒 1736.28 装置         Supelco索氏抽提器 200mL 64826 1套 4186.26 产品适用的国家标准: GB/T 21911-2008 食品中邻苯二甲酸酯的测定 GB/T 21928-2008 食品塑料包装材料中邻苯二甲酸酯的测定 GB/T 22048-2008 玩具及儿童用品 聚氯乙烯塑料中邻苯二甲酸酯增塑剂的测定 GB/T 20388-2006 纺织品 邻苯二甲酸酯的测定 SN/T 2037-2007 与食品接触的塑料成型品中邻苯二甲酸酯类增塑剂迁移量的测定 气相色谱质谱联用法 SN/T 2249-2009 塑料及其制品中邻苯二甲酸酯类增塑剂的测定 气相色谱-质谱法 SN/T 1779-2006 塑料血袋中邻苯二甲酸酯类增塑剂的测定 气相色谱串联质谱法 WS/T 149-1999 作业场所空气中邻苯二甲酸二丁酯和邻苯二甲酸二辛酯的高效液相色谱测定方法
  • 月旭科技拍了拍你,为你送来毛细管色谱柱基本知识
    在气相分析过程中,色谱柱可谓是气相色谱仪的“心脏”,对待测组分进行定性定量分析起着至关重要的作用。今天,小编就和大家一起学习气相柱的相关规格参数,了解其主要参数和含义,有助于方法开发中色谱柱的选择。 气相色谱柱分为填充柱和毛细管柱两类,色谱柱内具有吸附作用的填充物质称为固定相,根据固定相的不同,可把色谱柱分为气液分配和气固分配两种模式 。在实际应用中,毛细管柱相比于填充柱,其柱效更好,分离效率更高,应用也更为广泛,小编主要介绍毛细管柱的相关参数及其含义。 固定相种类色谱柱的包装盒和支架上的标牌会有相关参数信息标牌和包装盒上标注的WM-5、WM-35、WM-InoWAX;WM表示色谱柱品牌,色谱柱的品牌种类繁多,如Elite、TG、DB、Rtx、SH等,无需深究其具体含义;品牌之后的数字和字母代表气相柱的固定相种类。 毛细管柱的基本结构主要包括三部分:最外层聚酰亚胺涂层(增强管壁韧性)、中间熔融石英层、最内层的固定相。如下图:01 目前常用的固定相有聚硅氧烷类的固定液、聚乙二醇、具有吸附作用的固体微粒 WM-1(100%二甲基聚硅氧烷)WM-5(5%苯基,95%二甲基聚硅氧烷)WM-624/1301(6%氰丙基苯基,94%二甲基聚硅氧烷)WM-1701(14%氰丙基苯基,86%二甲基聚硅氧烷)WM-INOWAX(聚乙二醇)WM-FFAP(硝基对苯二甲酸改性的聚乙二醇) WEL-PLOT Al2O3/S(硫酸钠改性的氧化铝)等 另外,现在的分析实验室越来越多地使用GC-MS、GC-MS/MS分析仪器,这些仪器要求使用惰性更好、柱流失更低、耐受温度更高的色谱柱。针对这一需求,市场上也相继推出了“MS”质谱专用柱,如WM-1MS、WM-5MS等;这类色谱柱在较高温度下,柱流失也非常低。 现在的毛细管柱主要分为WCOT/SCOT/PLOTWCOT(涂壁开管色谱柱)内壁预处理后再把固定液直接涂覆或交联键合到毛细管内壁上,目前使用的毛细管色谱柱大部分属于这种类型。 SCOT(载体涂渍开管色谱柱)毛细管内壁上涂一层载体,载体上再涂固定液,这种毛细管柱液膜较厚,柱容量也较涂壁开管柱大。 PLOT(多孔层开管色谱柱)在管壁上涂一层具有吸附作用的固体微粒,不再涂固定液,属于一种气固色谱开管柱,这款柱子主要用来分离**性气体和低分子量有机化合物。 常见的PLOT(多孔层开管色谱柱)固定相主要有多孔聚二乙烯基苯、去活氧化铝、分子筛。 02 柱长、内径、液膜厚度参数色谱柱越长,总效能就越高,组分分离度也越好,但分析时间也越长,相应的色谱柱成本也越高。样品组分较少,并且容易分离时,我们可以选择长度较短的柱子,常见的有10-15m。色谱柱的内径:毛细管柱的理论塔板高度与内径成正比,同样长度的毛细管柱内径越小,理论塔板高度越小,理论塔板数越高,柱效越好。细口径色谱柱适用于对分离度要求较高的多组分农药残留分析;粗口径色谱柱容量大、柱效相对较低,适用于大口径直接进样、柱上进样和不分流进样。液膜厚,色谱柱容量大,目标化合物在色谱柱内保留时间长,适用于挥发性较强组分的分离、分析。挥发性弱、沸点较高的样品组分则可选用液膜较薄的色谱柱。 如:规格为30m*0.25mm*0.25μm的色谱柱,表示其柱长为30m,内径为0.25mm,液膜厚度为0.25μm。 03 色谱柱的使用温度限毛细管柱一般有3个温度使用限值,如:-60 to 325/350℃。-60℃:温度下限;当低于这个温度使用时,色谱柱内的固定液会比较黏稠,柱效会变差;而且柱温过低,样品很容易在柱子中发生冷凝,不能正常分离。325℃:恒温温度上限;表示色谱柱在此温度下可以长时间进行使用。350℃:程序升温温度上限;程序升温时不可超过此温度,且在此温度下不可长时间停留,色谱柱长时间处于温度上限,固定相会发生热损坏(固定相严重流失)。
  • 探索分析新境界 — 珀金埃尔默GC气相色谱柱系列
    在化学分析的广阔天地中,珀金埃尔默携其卓越的GC气相色谱柱系列,为您的实验探索之旅添上精准与效率的双翼! 一 Clarus® 590/690 GC 二 Clarus® SQ 8 GC/MS 三 TurboMatrix热脱附仪 四 TurboMatrix™顶空和顶空捕集阱顶空进样器和带捕集阱顶空进样器 1 通用型GC色谱柱:一柱在手,分析无忧 Elite-1:烃类化合物的分析专家 Elite-1 100%二甲基聚硅氧烷色谱柱是一种高度通用的非极性、交联通用相,其坚固耐用,使用寿命长,流失率低,最高工作温度高。 Elite-5:捕捉挥发性与半挥发性化合物的能手 Elite-5是5%二苯基/95%二甲基聚硅氧烷固定相。它被视为一种通用型低极性相,是最普遍的GC固定相,用于各种各样的应用中。 Elite-17 & Elite-35:极性化合物的分离艺术大师Elite-17是通用型色谱柱,中等极性,(50%-苯基)-甲基聚硅氧烷固定相,采用交联技术,具有柱流失非常低,寿命较长的特点。 Elite-624:多化合物分析的全能选手 Elite-624色谱柱是一种经过特殊设计的,低至中等极性(6%-氰丙基苯基)-二甲基聚硅氧烷相。该相的独特极性使其成为分析挥发性有机污染物的理想选择,美国EPA方法中推荐使用。 Elite-WAX:高沸点与强极性化合物的专属解析者 Elite-WAX为极性聚乙二醇(PEG)固定相色谱柱,是一种通用型极性PEG相,通常用于分析极性化合物,如烯醇、乙二醇和醛类工作温度范围高达250℃,有利于分析挥发性范围广泛的化合物。2 GC/MS专用色谱柱:质谱检测的黄金搭档 Elite-1ms:低流失,质谱分析的精准之选 Elite-1ms相为非极性相(交联二甲基聚硅氧烷),设计用于稳定的质谱应用。热稳定性改善以及超低流失,提高了灵敏度。 Elite-5ms:环境污染物追踪的隐形猎手 Elite-5ms相(1.4-二(二甲基硅氧基)亚苯基二甲基聚硅氧烷)聚合物主链中加入了一个苯基,提高热稳定性,减少流失,使相不易氧化。 Elite-17ms:复杂样品中的极性化合物分析专家 Elite-17ms为通用型色谱柱,中等极性,具有交联(50%-二苯基)-二甲基聚硅氧烷涂层,设计为极低流失,以满足灵敏的MS检测器要求。 Elite-35ms:高温下的稳定质谱分析伙伴 Elite-35ms为通用型、中等极性色谱柱,在较高温度下的流失极低。 Elite-624ms:高分辨率质谱分析的明星柱 Elite-624ms采用独有的氰丙基和甲基硅氧烷专有混合物,使该柱具有超高惰性、极低柱流失,和高度热稳定性。 感谢您关注珀金埃尔默气相色谱柱系列。我们期待与您携手,共创精准分析的未来。若您对产品有更多疑问或需求,欢迎随时联系我们。 扫码左侧二维码 开启您的高效分析之旅 关注我们
  • 德可納利推出邻苯二甲酸酯在聚乙烯固态塑料的标准物质
    美国SPEX-中国独家总代理德可纳利科技集团(TKI),推出邻苯二甲酸酯在聚乙烯固态塑料的标准物质,用於美國消費者和玩具安全改進法規,相关参数请参考卖场,欢迎来电询价选购。 电话:021-64665918 021-64665971 传真:021-51079676 联系人:王小姐 邮箱:info@tkichina.com 地址:襄阳南路500号巴黎时韵大厦2509室 邮编:200031 公司网站:www.tkichina.com www.spexcsp.com
  • 食品接触材料及制品 菲罗门色谱柱解决方案
    小伙伴们,2017 年 4 月 19 日起,一大波食品接触材料及制品的食品安全国家标准来袭, 你准备好了吗?是不是还在纠结柱子选的对不对,还在犯愁哪里能订到如此特殊规格的色谱柱? 菲罗门想您所想,为您提供一站式的解决方案。 序号国标编号国标名称方法固定相菲罗门对应产品货号1GB 31604.11-20161,3-苯二甲胺迁移量的测定液相C18,5μm 150×4.6mmTitank C185μm 150×4.6mmFMF-5560-EONU2GB 31604.12-20161,3-丁二烯的测定和迁移量的测定气相聚苯乙烯-二乙烯基苯石英毛细管柱30m×0.32mm×10μmFB-PLOT Q30m×0.32mm×10μm30M-L086-1003GB 31604.13-201611-氨基十一酸迁移量的测定液相C18,5μm 250×4.6mmACE Excel C185μm 250×4.6mmEXL-121-2546U4GB 31604.14-20161-辛烯和四氢呋喃迁移量的测定气相(5%-苯基)-甲基聚硅氧烷石英毛细管柱30m×0.25mm×0.25μmFB-530m×0.25mm×0.25μm30G-L005-0255GB 31604.15-20162,4,6-三氨基-1,3,5-三嗪(三聚氰胺)迁移量的测定液相氨基柱5μm 250×4.6mmACE Excel NH25μm 250×4.6mmEXL-1214-2546U6GB 31604.16-2016苯乙烯和乙苯的测定气相聚乙二醇30m×0.32mm×0.5μmFB-Inowax30m×0.32mm×0.5μm30M-L020-0507GB 31604.17-2016丙烯腈的测定和迁移量的测定气相交联键合聚乙二醇30m×0.32mm×0.25μmFB-Inowax30m×0.32mm×0.25μm30M-L020-025 8GB 31604.18-2016丙烯酰胺迁移量的测定液相Venusil CIS 离子排斥色谱柱5μm 250×4.6mmMARS CIS5μm 250×4.6mmFMG-1038-EONU9GB 31604.19-2016己内酰胺的测定和迁移量的测定液相C18,5μm 250×4.6mmACE Excel C185μm 250×4.6mmEXL-121-2546U10GB 31604.20-2016醋酸乙烯酯迁移量的测定气相DB-5 石英毛细管柱30m×0.32mm×0.25μmFB-530m×0.32mm×0.25μm30M-L005-025气质DB-5ms30m×0.25mm×0.25μmFB-5MS30m×0.25mm×0.25μm30G-L015-02511GB 31604.21-2016对苯二甲酸迁移量的测定液相C18,5μm 250×4.6mmACE Excel C185μm 250×4.6mmEXL-121-2546U液质C18,5μm 150×4.6mmACE Excel C185μm 150×4.6mmEXL-121-1546U12GB 31604.22-2016发泡聚苯乙烯成型品中二氟二氯甲烷的测定气相6%腈丙苯基-94%二甲基聚硅氧烷毛细管色谱柱30m×0.32mm×0.18μmFB-62430m×0.32mm×0.18μm30M-L062-01813GB 31604.23-2016复合食品接触材料中二氨基甲苯的测定气相HP-5MS30m×0.25mm×0.25μmFB-5MS30m×0.25mm×0.25μm30G-L015-02514GB 31604.26-2016环氧氯丙烷的测定迁移量的测定液相C8,5μm 250×4.6mmACE Excel C85μm 250×4.6mmEXL-122-2546U气质聚乙二醇30m×0.25mm×0.25μmFB-Inowax30m×0.25mm×0.25μm30G-L020-02516GB 31604.27-2016塑料中环氧乙烷和环氧丙烷的测定气相键合苯乙烯-二乙烯苯的 PLOT 柱30m×0.32mm×20μmFB-PLOT Q30m×0.32mm×20μm30M-L086-200 17GB 31604.28-2016己二酸二(2-乙基)己酯的测定和迁移量的测定气相(5%)二苯基(- 95%)二甲基亚芳基硅氧烷共聚物30m×0.32mm×0.25μmFB-5MS UI30m×0.32mm×0.25μm30M-L015-025UI18GB 31604.29-2016甲基丙烯酸甲酯迁移量的测定气相聚乙二醇(PEG)30m×0.25mm×0.25μmFB-Inowax30m×0.25mm×0.25μm30G-L020-02519GB 31604.30-2016邻苯二甲酸酯的测定和迁移量的测定气相5%苯基-甲基聚硅氧烷石英毛细管柱30m×0.25mm×0.25μmFB-5MS30m×0.25mm×0.25μm30G-L015-02520GB 31604.31-2016氯乙烯的测定和迁移量的测定气相聚乙二醇30m×0.32mm×1μmFB-Inowax30m×0.32mm×1μm30M-L020-10021GB 31604.35-2016全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA)的测定SPE弱阴离子交换,WAX150mg/6mLPolyClean X-WAX150mg/6mL9B-P005-06150液质C18,3μm 150×2.1mmACE Excel C183μm 150×2.1mmEXL-111-1502U22GB 31604.36-2016软木中杂酚油的测定气质HP-INNOWax30m×0.25mm×0.25μmFB-Inowax30m×0.25mm×0.25μm30G-L020-02523GB 31604.37-2016三乙胺和三正丁胺的测定气相ZB-530m×0.32mm×5μmFB-530m×0.32mm×5μm30M-L005-50024GB 31604.39-2016食品接触用纸中多氯联苯的测定气相5%苯基-甲基聚硅烷30m×0.25mm×0.25μmFB-530m×0.25mm×0.25μm30G-L005-02525GB 31604.40-2016顺丁烯二酸及其酸酐迁移量的测定液相C18,5μm 250×4.6mmACE Excel C185μm 250×4.6mmEXL-121-2546U26GB 31604.43-2016乙二胺和己二胺迁移量的测定气相100%二甲基硅氧烷柱30m×0.32mm×5μmFB-130m×0.32mm×5μm30M-L001-500 27GB 31604.44-2016乙二醇和二甘醇迁移量的测定气相硝基对苯二酸修饰的聚乙二醇毛细管柱30m×0.32mm×1μmFB-FFAP30m×0.32mm×1μm30M-L021-10028GB 31604.45-2016异氰酸酯的测定液相C18,5μm 150×4.6mmACE Excel C185μm 150×4.6mmEXL-121-1546U29GB 23296.19-2009食品中模拟物中乙酸乙烯酯的测定气相色谱法气相100%二甲基硅氧烷柱25m×0.32mm×5μmFB-125m×0.32mm×5μm25M-L001-500聚乙二醇25m×0.32mm×1μmFB-Inowax25m×0.32mm×1μm25M-L020-100
  • 离子液体柱——脂质组学中分离脂肪酸的气相色谱柱
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。 第一讲:傅若农讲述气相色谱技术发展历史及趋势 第二讲:傅若农:从三家公司GC产品更迭看气相技术发展 第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状 第四讲:傅若农:气相色谱固定液的前世今生 第五讲:傅若农:气-固色谱的魅力 第六讲:傅若农:PLOT气相色谱柱的诱惑力 第七讲:傅若农:酒驾判官&mdash &mdash 顶空气相色谱的前世今生 第八讲:傅若农:一扫而光&mdash &mdash 吹扫捕集-气相色谱的发展 第九讲:傅若农:凌空一瞥洞察一切&mdash &mdash 神通广大的固相微萃取(SPME) 第十讲:傅若农:悬&ldquo 珠&rdquo 济世&mdash &mdash 单液滴微萃取(SDME)的妙用 第十一讲:傅若农:扭转乾坤&mdash &mdash 神奇的反应顶空气相色谱分析 第十二讲:擒魔序曲&mdash &mdash 脂质组学研究中的样品处理 前言   作为代谢组学的重要分支之一,脂质组学(Lipidomics)的研究对象是生物体的所有脂质分子,并以此为依据推测其它与脂质作用的生物分子的变化,进而揭示脂质在各种生命活动中的重要作用机制。脂质组学是总体研究和这些疾病有关的脂质化合物,找到昭示这些疾病的生物标记物。   前一篇讲述了脂质组学研究中的样品处理技术,一般情况下样品处理后可以直接用鸟枪法进行质谱分析,但是如果是一个成分复杂的系统,就要进行分离,可以用气相色谱、液相色谱、薄层色谱或毛细管电泳,本文介绍代谢组学研究中使用离子液体色谱柱分离脂肪酸的气相色谱方法。 1、基本情况   由于脂质分子是不挥发性的化合物,同时有些脂质分子受热易于降解,所以在脂质组学研究中使用气相色谱有些困难,逊色于薄层色谱和液相色谱。如果使用气相色谱进行衍生化是必须的步骤,但是很多情况下衍生化会丧失脂质分子种类特点的结构信息。但是由于气相色谱以其对异构体的高分离能力、高灵敏度、便于进行定量分析的能力,它仍然是脂质组学分析中的有力工具。通常气相色谱用于分析某些类别的脂质,可以获得很高的分离度和灵敏度,所以经过很特殊的萃取、用TLC 或 HPLC与分离、再经衍生化是用气相色谱进行脂质组学研究的基本方法。用气相色谱可以很灵敏地检测许多类别的脂质,如脂肪酸、磷脂、鞘脂类、甘油酯、胆固醇和类固醇。分析高分子量的化合物,必须使用高柱温,甚至需要400 C,近年Sutton等配置了高温气相色谱-飞行时间质谱,这一系统可以进行高分子量化合物(m/z达1850),进行在线质谱分析温度达430℃,这样的系统适合于长链脂质的分析。   近年把离子液体用作气相色谱固定相,用以分离脂质混合物,特别是脂质的异构体。Delmonte等讨论了脂肪酸顺反异构体的分离问题,一些单不饱和脂肪酸的几何和位置异构体可以得到很好的分离。使用这一方法对18:1 FFA的各种异构体可以分离出10个单独的峰,此后使用这一方法分析了人头发、指甲等实际样品,因此建议使用离子液体毛细管色谱柱分析全脂肪酸或脂肪酸甲酯,这种固定相适合于脂质组学,得到更多脂质分子的种类信息。(刘虎威研究组,Anal Chem, 2014, 86, 161&minus 175) 2、室温离子液体作气相色谱固定相   室温离子液体,是指室温或接近室温时呈液态的离子化合物,一般由体积相对较大的有机阳离子(如烷基咪唑盐、烷基吡啶盐、烷基季铵盐、烷基季膦盐)和相对较小的无机或有机阴离子如六氟磷酸根([PF6]-)、四氟硼酸根([BF4]-)、硝酸根(NO3-)、三氟甲基磺酰亚胺([{CF3SO2}2N]-)等构成。离子液体,早期称作熔盐,在一战时期(1914)发现的第一个室温离子液体为乙基季胺硝酸盐。第一个使用熔盐作气相色谱固定相的是Barber(1959年),他利用硬脂酸和二价金属离子的盐(锰、钴、镍、铜和锌盐)作气相色谱固定相,测定了烃类、酮类、醇类和胺类在156℃下的保留行为,具有特点的是用锰的硬脂酸熔盐作固定相可以很好地分离&alpha -甲基吡啶和&beta -甲基吡啶,而使用相阿皮松一类固定相则完全不能分离。1982年 Poole等研究了乙基季胺硝酸盐作气相色谱固定相的保留行为,发现这一固定相可在40-120℃范围内使用,是一种极性强于PEG20M 的具有静电力和氢键力的极性固定相,适于分离醇类和苯的单功能团取代衍生物,而胺类与固定相有强烈的作用,不能从色谱柱洗脱出来。就在这一年 Wilker 等报道了首例基于1-烷基-3-甲基咪唑为阳离子的室温离子液体,研究了它们的合成方法和在电化学中的应用。此后Armstrong等在1999年首先将六氟磷酸 1-丁基-3-甲基咪唑 ([BuMIm][PF6] ) 及相应的氯化物([BuMIm][Cl] )用作气相色谱固定相 ,通过分离烃类、芳香族化合物、醛、酰胺、醚、酮、醇、酚、胺及羧酸类化合物 ,发现离子液体固定相具有双重性质:当分离非极性物质或弱极性物质时表现为非极性或弱极性固定相 当分离含有酸性或碱性官能团的分子时 ,表现为强极性固定相,并测定了[BuMIm][PF6]和[BuMIm][Cl]色谱固定相的麦氏(McRynolds)常数。之后的几年里Armstrong等进行了一系列有关室温离子液体作气相色谱固定相的研究,奠定了室温离子液体固定相在实际中应用的基础。此后人们竞相研究室温离子液体用作气相色谱固定相的问题,最近两年由于Supelco公司承袭了Armstrong研究团队的研究成果,把室温离子液体固定相商品化,出现了几种性能优越的室温离子液体毛细管色谱柱,就促使许多研究者使用商品室温离子液体柱,分离一些复杂的难分离的混合物,因而也大大促进了离子液体气相色谱固定相的广泛使用。(傅若农,化学试剂,2013,35( 6): 481 ~ 490) (1).室温离子液体气相色谱固定相的特点   室温离子液在许多领域得到了广泛的应用,如有机合成溶剂、催化剂用溶剂、基质辅助激光解析/电离质谱的液体基质、萃取溶剂、液相微萃取溶剂、毛细管电泳缓冲溶液添加剂等,此外它们在分析化学领域得样品制备、分离介质中也得到充分的应用,气相色谱固定相是应用最多的一个领域。所以能得到如此广泛的应用是因为它具有许多特殊的性能,联系到气相色谱固定相,它们非常适应毛细管色谱柱的多方面要求: (a) 蒸汽压低   气相色谱固定相在使用温度下具有很低的蒸汽压是必要条件,室温离子液体具有很低的蒸汽压,它们能很好地满足气相色谱固定相的这一要求,例如现在使用较多的1-丁基-3-甲基咪唑二(三氟甲基磺酰)亚胺([C4mim][NTf2])的蒸汽压见下表1,从表中数据看出在在不到180℃下蒸汽压不到1 mm Hg柱,这完全符合气相色谱固定相的要求。 表1 [C4mim][NTf2]在不同温度下的蒸汽压 温度/℃ 蒸汽压/P× 102 (Pa) 184.5 1.22(0.92 mmHg柱) 194.42.29(1.72 mmHg柱) 205.5 5.07 (3.8 mmHg柱) 214.4 8.74 (6.6 mmHg柱) 224.4 15.2 (11.4 mmHg柱) 234.4 27.4 (20.5 mmHg柱) 244.3 46.6 (35.0 mmHg柱) (b) 粘度高   室温离子液体的粘度高,适合于气相色谱固定相的要求,而且在较宽的温度范围内变化不大,因为粘度低会影响色谱柱的分离效率和寿命,因为气相色谱固定相在温度升高时趋向于降低粘度使液膜流动,造成膜厚改变,降低柱效,甚至液膜破裂降低柱寿命,室温离子液体的黏度比一般溶剂高很多,例如二乙基咪唑二(三氟甲基磺酰)亚胺在20℃的粘度为34cP,n-己基-3-甲基咪唑氯化物在25℃的粘度为18000 cP,所以离子液体的粘度一般比传统溶剂高1到3个数量级 。 (c) 湿润性好   要使毛细管色谱柱的柱效提高,就要把固定相涂渍成一层均匀、牢固的薄膜,这样固定相对毛细管壁要有很好的湿润性,室温离子液体正好具备这样的特性,它们的表面张力在 30 到 50 dyne/cm 之间,例如1-丁基-3-甲基咪唑六氟磷酸盐,1-己基-3-甲基咪唑六氟磷酸盐,和1-辛基-3-甲基咪唑六氟磷酸盐分别为44.81, 39.02, 和 35.16 dyne/cm,这样的表面张力正好可以让固定相溶液湿润并铺展在未经处理的石英毛细管内壁上 。 (d)热稳定性好   大家都知道色谱柱的保留性能稳定性和柱寿命都与固定相的热稳定性有关,室温离子液体气相色谱固定相的热稳定性自然是十分重要的关键性能,离子液体的热稳定性随其阴阳离子的不同有很大的差异,离子液体的阴离子具有低亲和性及共轭键时(如三氟磺酸基,三氟甲基磺酰亚胺阴离子)就有很高的热稳定性,反之具有亲和性强的阴离子(如卤素基)其热稳定性就不好,一般像二烷基咪唑类离子液体固定相在220&ndash 250℃之间稳定,具有长烷基链的季鏻基离子液体可以在335&ndash 405℃之间稳定,Anderson等研究了双阴离子咪唑和双吡咯烷鎓基离子液体的热稳定性。极性强的室温离子液体气相色谱固定相(比如商品名为SLB-IL 111)的热稳定性虽然比不上二甲基硅氧烷的好,但是要比强极性固定相(氰丙基聚硅氧烷)的热稳定性要好,可是它的极性要比后者高,因而在分离脂肪酸甲酯的能力要大大优于后者。从图1可以看出商品离子液体柱SLB-IL82的热稳定性大大优于一些常用的极性固定相。 图1 几种离子液体色谱柱和常规固定相色谱柱热稳定性的比较 (e) 极性高   固定相的极性是极为重要的关键指标,目前表示固定相极性的有Mcrynolds常数,和Abrham溶剂化参数,离子液体的极性也仍然使用这两种方法表示,McReynolds常数是于120℃下以10种典型化合物测定所研究固定相的保留指数差(△I) ,用五种典型化合物(苯、正丁醇、2-戊酮、硝基丙烷和吡啶)的保留指数差(△I)之和来表示固定液的极性。Abraham表征固定相的方法是使用多种具有特殊作用力的标样来表征固定相和溶质 n-电子对及&pi -电子对作用能力、与溶质的静电和诱导作用能力、与溶质的氢键碱性作用能力、与溶质的氢键酸性作用能力、与溶质的色散作用能力。表 2 是几种商品离子液体固定相的极性,从表中数据看出,室温离子液体的极性要比极性最强的TCEP(1,2,3-三(2-氰乙氧基)丙烷)还要高,这样在分离脂肪酸甲酯和石油样品分析中就有特殊的用途。 表 2 几种商品离子液体固定相的极性 商品色谱柱 组成 McRynolds 极性(P) 相对极性数(p.N.)* SLB-IL 111 1,5-二(2,3-二甲基咪唑)戊烷二(三氟甲基磺酰基)亚胺 5150 116 SLB-IL 100 1,9-二(3-乙烯基咪唑)壬烷二(三氟甲磺酰基)亚胺4437 100 TCEP 1,2,3-三(2-氰乙氧基)丙烷 4294 94 SLB-IL 82 1,12-二(2,3-二甲基咪唑)十二烷二(三氟甲基磺酰基)亚胺 3638 82 SLB-IL 76 三(三丙基鏻六氨基)三甲氨(三氟甲基磺酰基)亚胺 3379 76 SLB-IL 69 未知 3126 70 SLB-IL 65 未知 2834 64 SLB-IL 61 1,12-二(三丙基鏻)十二烷-(三氟甲基磺酰基)亚胺-三氟甲基磺酸盐 2705 61 SLB-IL 60 1,12-二(三丙基鏻)十二烷二(三氟甲基磺酰基)亚胺(柱表面去活) 2666 60 SLB-IL 59 1,12-二(三丙基鏻)十二烷二(三氟甲基磺酰基)亚胺 2624 59 SupelcoWax 100%聚乙二醇 2324 52 SPB-5MS 5%二苯基/95%二甲基)硅氧烷 251 6 Equity-1 100%聚二甲基硅氧烷 130 3 *相对极性数=(Px x 100)/ PSLB-IL 100= McRynolds 极性乘以100再除以SLB-IL 100的 McRynolds 极性 (McRynolds 极性指标是上世纪60年代中期研究建立的一种气相色谱固定相极性量度指标,近半个世纪一直在使用,W O McReynolds.J Chromatogr Sci,1970,8:685-691) 几种离子液体色谱柱的结构和性能见表3 表3:几种离子液体色谱柱的结构和性能 3、几种商品离子液体色谱柱在脂肪酸甲酯分离中应用举例,见表4 表4 离子液体色谱柱在脂肪酸甲酯分离中应用 1 SLB-IL111 奶油中的脂肪酸 使用200m 长的SLB-IL111色谱柱可以很好地分离奶油中的脂肪酸,包括顺反和位置异构体 1 2 SLB-IL 82 和 SLB-IL 100 水藻中的脂肪酸 这两种商品离子液体柱用于分离水藻中的脂肪酸,具有很好的选择性和低流失,可以得到详细的脂肪酸分布,这是一种分析各种脂肪酸的色谱柱。 一维:聚二甲基硅氧烷 二维:SLB-IL 82 和 SLB-IL 100 2 3 SLB-IL100 鱼的类脂中反式20碳烯酸顺反异构体的分析 用60m长色谱柱可把C20:13和C20:11异构体得到基线分离,分离因子1.02,分离度1,57 3 4 SLB-IL111 分离16碳烯酸顺反异构体和其他不饱和脂肪酸 如果不使用SLB-IL111柱就不可能发现岩芹酸(顺式-6-十八碳烯酸),可以把cis-8 18:1和cis-6 18:1基线分离。证明岩芹酸在人的头发、指甲和皮肤中是内源性脂肪酸。 4 5 SLB-IL111 分离脂肪酸顺反异构体 SLB-IL111 可以很好地分离cis-,trans-18:1和 cis/trans 共轭异构体脂肪酸 5 6 SLB-IL100 牛奶和牛油中的脂肪酸顺反异构体 使用全二维GC,把离子液体柱用作第一维色谱柱 一维:SLB-IL100 二维:SGE BPX50 (50% 苯基聚亚芳基硅氧烷 6 7 SLB-IL 100(快速柱) 生物柴油中的脂肪酸甲酯(C1-C28) SLB-IL100是极性很高的固定相,可以排除样品中的饱和烴的干扰,减少了样品处理难度,免去使用全二维GC。 7 8 SLB-IL100 分离C18:1, C18:2, 和 C18:3顺反异构体 SLB-IL100是极性很高的固定相,可以很好地分离不饱和脂肪酸顺反异构体,优于二丙氰聚硅氧烷色谱柱 8 9 SLB-IL111 SLB-IL100 SLB-IL82 SLB-IL76 SLB-IL61 SLB-IL60 SLB-IL59 评价7种商品离子液体固定相分离37种脂肪酸甲酯的分离性能 IL59, IL60, 和 IL61三种色谱柱性能近似,不能分离C18:1脂肪酸的顺/反异构体,所有的色谱柱度可以基线分离C18:2 顺/反, C18:3 n6/n3, 和 C20:3 n6/n3异构体,IL82柱以5℃/min程序升温,可以把实验的37种脂肪酸甲酯分离开 9 10 SLB-IL59 SLB-IL60 SLB-IL61 SLB-IL76 SLB-IL82 SLB-IL100 SLB-IL111 用7种商品离子液体固定相分离脂肪酸甲酯的及和异构体 除去IL60柱以外所有色谱柱上对饱和脂肪酸的洗脱温度,随它们的极性降低而增加,当固定相极性增加是它们的等价链长急剧增加。还研究了脂肪酸甲酯在这些色谱柱上Abraham 的保留能量线性关系 10 11 SLB-IL111 使用强极性离子液体色谱柱快速分离食用油中的反式脂肪酸 使用强极性薄液膜细内径离子液体毛细管柱(75 m × 0.18 mm i d , 0.18 &mu m)快速分离食用油(例如奶油)中的反式脂肪酸 11 12 SLB-IL111 使用强极性离子液体色谱柱分析食用油中顺反式硬脂酸 在120℃柱温下可以分离所有cis-C18:1位置异构体,把柱温提高到160℃可以分离反-6-C18:1 和 反-7-C18:1异构体 12 表中文献 1 Delmonte P, Fardin-Kia A R, Kramer J K G,et al, Evaluation of highly polar ionic liquid gas chromatographic column for the determination of the fatty acids in milk fat [J].J. Chromatogr.A,2012, 1233:137-146 2 Gua, Q , David F., Lynen F. et al., Evaluation of ionic liquid stationary phases for one dimensional gas chromatography&ndash mass spectrometry and comprehensive two dimensional gas chromatographic analyses of fatty acids in marine biota[J]. J. Chromatogr.A, 2011, 1218:3056-3063 3 Ando Y.Sasaki, GC separation of cis-eicosenoic acid positional isomers on an ionic liquid SLB-IL100 stationary phase[J]. J. Am. Chem. Oil Soc.,2011,88:743-748 4 Destaillats F.,Guitard M. Cruz-Hernandez C, Identification of _6-monounsaturated fatty acids in human hair and nail samples by gas-chromatography&ndash mass-spectrometry using ionic-liquid coated capillary column[J]. J.Chromatogr.A 2011,1218: 9384&ndash 9389 5 Delmonte P, Fardin Kia A-R, Kramerb J.K.G.et al, Separation characteristicsof fatty acid methyl esters using SLB-IL111, a new ionic liquid coated capillary gas chromatographic column[J]. J.Chromatogr.A, 2011,1218: 545&ndash 554 6 Villegas C.Zhao, Y.Curtis J M, Two methods for the separation of monounsaturated octadecenoic acid isomers [J].J. Chromatogr. A, 1217 (2010) 775&ndash 784 7Ragonesea C,Tranchidaa P. Q.,Sciarronea D.et al, Conventional and fast gas chromatography analysis of biodiesel blends using an ionic liquid stationary phase[J]. J. Chromatogr.A, 2009,1216:8992&ndash 8997 8 Ragonese C, Tranchida P Q, Dugo P,et al,Evaluation of use of a dicationic liquid stationary phase in the fast and Cconventional gas chromatographic analysis of health-Hazardous C18 Cis/Trans fatty acids[J]. Anal. Chem., 2009, 81:5561&ndash 5568 9 Dettmer K, Assessment of ionic liquid stationary phases for the GC analysis of fatty acid methyl esters,Anal Bioanal Chem ,2014, 406:4931&ndash 4939 10 Characterisation of capillary ionic liquid columns for gaschromatography&ndash mass spectrometry analysis of fatty acid methylestersAnnie Zeng X, Chin S , Nolvachai Y,et al, Anal Chim Acta , 2013 803:166&ndash 173 11 Inagaki S,Numata M, Fast GC Analysis of Fatty Acid Methyl Esters Using a Highly Polar Ionic Liquid Column and its Application for the Determination of Trans Fatty Acid Contents in Edible Oils,Chromatographia , 2015,78:291&ndash 295 12 Yoshinaga K,Asanuma M,Mizobe H et al,Characterization of cis- and trans-octadecenoic acid positional isomers in edible fat and oil using gas chromatography&ndash flame ionisation detector equipped with highly polar ionic liquid capillary column, Food Chemistry , 2014 160:39&ndash 45 有关离子液体固定相在分离脂肪酸时的一些选择性和分离特点在下一讲叙述。
  • 药监局发布《Q3C(R9):杂质:残留溶剂的指导原则》征求意见稿
    为推动人用药品技术要求国际协调理事会(ICH)指导原则在国内的平稳落地实施,国家药品监督管理局药品审评中心拟定了《Q3C(R9)指导原则实施建议》,同时组织翻译了Q3C(R9)指导原则的中文版。现对该实施建议和中文版公开征求意见,征求意见时间自2024年3月22日至2024年4月22日止。药物中的残留溶剂在此定义为在原料药或辅料的生产中以及制剂制备过程中使用或产生的有机挥发性化合物。这些溶剂在现有生产技术条件下不能完全除去。选择适当的溶剂来合成原料药可提高收率或决定药物的性质,如晶型、纯度和溶解度。因此,溶剂有时可能是合成工艺的关键要素。 由于残留溶剂并不能助益治疗,故应尽可能除去所有残留溶剂,以符合制剂质量标准、生产质量管理规范(GMP)或其他质量要求。制剂的残留溶剂量不应高于安全性数据可支持的水平。除非在风险-收益评估中强有力地论证了使用这些溶剂的合理性,否则在生产原料药、辅料或制剂时,应规避一些已知会引起不可接受的毒性的溶剂(1类,表1)。对于一些毒性不那么严重的溶剂(2 类,表 2),应进行限制,以防止患者出现潜在的不良反应。如切合实际,应尽可能使用低毒溶剂(3 类,表 3)。本指导原则的适用范围包括原料药、辅料和制剂中所含的残留溶剂。因此,当已知生产或纯化工艺中会出现这些溶剂时,应进行残留溶剂检查,且仅有必要对原料药、辅料或制剂的生产或纯化中使用或产生的溶剂进行检查。生产商可选择检验制剂,也可根据制剂生产所用的各成分的残留溶剂水平,累积计算出制剂中残留溶剂整体水平。如果算出的结果等于或低于本指导原则建议的水平,则不需考虑对制剂进行该残留溶剂检查。但如果计算结果高于建议水平,则应对制剂进行检验,以确定制剂工艺是否将有关溶剂的量降至可接受水平。如果制剂生产中用到某种溶剂,也应对制剂进行检验。分析方法残留溶剂通常用色谱技术(如气相色谱法)测定。如可行,应采用药典规定的统一的残留溶剂测定方法。生产商也可针对特定申请自行选择经验证的适宜分析方法。当仅有3类溶剂存在时,如果验证得当,可使用非专属性的方法(如,干燥失重)进行控制。验证时应考虑溶剂的挥发性对分析方法的影响。表 1:制剂中的 1 类溶剂(应避免的溶剂)溶剂浓度限度(ppm)关注点苯2致癌物四氯化碳4有毒和危害环境1,2-二氯乙烷5有毒1,1-二氯乙烯8有毒1,1,1-三氯乙烷1500危害环境表 2:制剂中的 2 类溶剂(应限制的溶剂)溶剂PDE(mg/天)浓度限度(ppm)乙腈4.1410氯苯3.6360氯仿0.660异丙基苯0.770环己烷38.83880环戊基甲基醚15.015001,2-二氯乙烯18.71870二氯甲烷6.06001,2-二甲氧基乙烷1.0100N,N-二甲基乙酰胺10.91090N,N-二甲基甲酰胺8.88801,4-二噁烷3.83802-乙氧基乙醇1.6160乙二醇6.2620甲酰胺2.2220己烷2.9290甲醇30.030002-甲氧基乙醇0.550甲基丁基酮0.550甲基环己烷11.81180甲基异丁基酮454500N-甲基吡咯烷酮5.3530硝基甲烷0.550吡啶2.0200环丁砜1.6160叔丁醇353500四氢呋喃7.2720四氢萘1.0100甲苯8.98901,1,2-三氯乙烯0.880二甲苯*21.72170表 3:应受 GMP 或其他质量要求限制的 3 类溶剂(低潜在毒性的溶剂)乙酸庚烷丙酮乙酸异丁酯苯甲醚乙酸异丙酯1-丁醇乙酸甲酯2-丁醇3-甲基-1-丁醇乙酸丁酯甲基乙基酮叔丁基甲基醚2-甲基-1-丙醇二甲基亚砜2-甲基四氢呋喃乙醇戊烷乙酸乙酯1-戊醇乙醚1-丙醇甲酸甲酯2-丙醇甲酸乙酸丙酯三乙胺表 4:无足够毒理学数据的溶剂1.1-二乙氧基丙烷甲基异丙基酮1.1-二甲氧基甲烷石油醚2.2-二甲氧基丙烷三氯乙酸异辛烷三氟乙酸异丙醚附件:Q3C(R9)指导原则实施建议.docxQ3C(R9):杂质:残留溶剂的指导原则(中文版).docxQ3C(R9):杂质:残留溶剂的指导原则(英文版).pdf
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制