当前位置: 仪器信息网 > 行业主题 > >

十一碳烯酰基苯丙氨酸

仪器信息网十一碳烯酰基苯丙氨酸专题为您提供2024年最新十一碳烯酰基苯丙氨酸价格报价、厂家品牌的相关信息, 包括十一碳烯酰基苯丙氨酸参数、型号等,不管是国产,还是进口品牌的十一碳烯酰基苯丙氨酸您都可以在这里找到。 除此之外,仪器信息网还免费为您整合十一碳烯酰基苯丙氨酸相关的耗材配件、试剂标物,还有十一碳烯酰基苯丙氨酸相关的最新资讯、资料,以及十一碳烯酰基苯丙氨酸相关的解决方案。

十一碳烯酰基苯丙氨酸相关的资讯

  • AKF-CH6卡尔费休水分仪在L-丙氨酸水分测定中的精确应用
    在生物化学与医药研究领域,L-丙氨酸作为构成人体蛋白质的重要氨基酸,其品质直接影响着其在营养补充、医药合成等应用中的效果。水分含量是评价L-丙氨酸纯度的关键指标之一,过高的水分不仅会影响其稳定性,还可能导致产品质量下降。因此,采用精确的水分测定技术对L-丙氨酸进行质量控制至关重要。本文介绍了一项应用AKF-CH6卡尔费休水分仪测定L-丙氨酸水分含量的实验,展示了该仪器在精细化学分析中的高效与精确性。 精密配置,确保测量准确实验采用的AKF-CH6卡尔费休水分仪,配备了全封闭安全滴定池组件、双铂针电极和隔膜电解电极,这一组合设计确保了在进行水分测定时的高精度与安全性。卡尔费休库仑法试剂的使用,进一步提升了检测的灵敏度,即使微量水分也能准确捕捉。 高效测定流程,优化操作体验实验过程中,通过选择固体样品测试方法,加热温度(150℃)和通气流量(25mL/min),确保样品在适宜条件下充分释放水分。自动电解档位与稳定的搅拌速度(5转/分钟)保证了滴定过程的平稳与高效。操作简便,仅需将称量好的样品放入进样瓶,放置于加热槽中,点击开始测量与穿刺按钮,系统即自动进行测定,大大节省了时间与人力。 数据准确,结果可靠在26.2℃的环境温度与51.1%的环境湿度条件下,测试时间仅为10分钟,显示了AKF-CH6卡尔费休水分仪的高效性。通过三次平行测试,得到了水质量分别为585.67ug、549.09ug和546.22ug,对应测试结果为335.2ppm、322.8ppm和328.4ppm。计算平均值,样品水分含量约为328.8ppm,显示了测定结果的稳定性和高重复性。序号样品量/g水质量/ug测试结果/ppm平均值/ppm10.5927585.67335.2 328.820.5021549.09322.830.4849546.22328.4AKF-CH6卡尔费休水分仪在L-丙氨酸水分含量测定中的应用,不仅展现了其在生物化学领域测定水分的高精度与快速响应能力,还凸显了仪器设计的实用性和操作的便捷性。通过该仪器的精确测定,能够有效控制L-丙氨酸的水分含量,确保其在后续应用中的稳定性和质量,对提升产品品质、促进医药及营养品行业发展具有重要意义。
  • 兰州化物所开发出氮掺杂多孔石墨烯制备新方法并用于稀土分离
    近日,中国科学院兰州化学物理研究所手性分离与微纳分析课题组开发出一种多重限域的一步可控合成掺杂方法,制备出对稀土离子具有高分离选择性的氮掺杂纳孔石墨烯膜(专利申请号:CN 202010861481.0)。该研究在吸附了苯丙氨酸的氧化石墨烯膜的二维层间空间限域生长层状锌类水滑石,从而构建类水滑石/苯丙氨酸/氧化石墨烯三明治型复合材料。由于锌类水滑石层间夹层可作为密闭反应器,通过限域燃烧,可将苯丙氨酸中的氮原子掺杂到石墨烯晶格中。同时,形成的多孔锌类水滑石可作为模板,通过孔区域内限域燃烧在氧化石墨烯上蚀刻出孔径可控的纳米孔(图1)。  科研人员将获得的氮掺杂纳孔石墨烯(图2)制备成膜用于稀土元素的分离,获得了良好的分离选择性,最高膜分离因子达到3.7。理论模拟表明,氮掺杂纳孔石墨烯中的吡咯氮原子,在稀土离子的选择性分离过程中起到主要作用。该制备方法简单高效、膜分离稳定性优异。该研究不仅为杂原子掺杂纳孔石墨烯材料的制备开辟了新途径,而且为实现稀土离子的高选择性膜分离提供了新思路,具有潜在的工业应用前景。相关研究成果发表在Cell Press旗下综合类子刊iScience上,博士生谭洪鑫为论文第一作者,研究员李湛和邱洪灯为论文共同通讯作者。  此外,研究人员在自主研发的纳孔石墨烯/氧化锌纳米复合材料的基础上,利用固相合成策略,使均苯三甲酸与纳孔石墨烯表面的氧化锌纳米颗粒直接反应,原位绿色合成出纳孔石墨烯/MOF复合纳米材料,并发现该材料适合于水溶液中稀土离子的选择性固相吸附分离,该研究成果发表在Analytical Chemistry上。  研究工作得到国家重点研发计划、国家自然科学基金、中科院和甘肃省人才计划项目的支持。 图1.多重限域策略可控合成氮掺杂纳孔石墨烯示意图 图2.氮掺杂纳孔石墨烯表征图
  • 三孩政策来了!优生优育,先来了解下新生儿疾病筛查
    三孩时代,出生缺陷一级预防显得尤其重要。在符合三孩政策条件的妇女当中,有60%是超过35岁以上的高龄孕产妇。这些高龄产妇生育三孩将面临怀孕难、容易流产等风险,出生缺陷发生率也更高。专家表示,35岁以上的女性有生育计划的,一定要找有资质的医疗机构,做好孕前、产前的相关检查,最大程度减少出生缺陷儿的发生。什么是新生儿疾病筛查新生儿疾病筛查是指通过血液检查对某些危害严重的先天性代谢病及内分泌病进行群体过筛,使患儿得以早期诊断,早期治疗,避免因脑、肝、肾等损害导致生长、智力发育障碍甚至死亡。欧美、日本等发达国家新生儿疾病筛查覆盖率近100%。我国新生儿疾病筛查始于1981年,目前覆盖率已接近50%。新生儿疾病筛查的应用筛查对象:所有出生72小时(哺乳至少6~8次)的新生儿。筛查内容:我国目前筛查疾病仍以苯丙酮尿症(PKU)和先天性甲状腺功能减低症(CH)为主,某些地区则根据疾病的发生率选择如葡萄糖-6-磷酸脱氢酶(G6PD)缺陷病等筛查或开始试用串联质谱技术进行其他氨基酸、有机酸、脂肪酸等少见遗传代谢病的新生儿筛查。【疾病小常识】先天性甲状腺功能低下症:又称“呆小病”,患儿由于先天性甲状腺发育障碍,不能产生足够的甲状腺素,引起生长迟缓、智力发育落后。相关症状在新生儿期往往是隐匿的,不引起家长甚至医生的注意而延误了诊治,常导致脑发育产生不可逆的损害。苯丙酮尿症:是一种染色体遗传病。患儿不能正常代谢苯丙氨酸,使苯丙氨酸及其代谢产物在体内蓄积,引起脑萎缩和智力低下。患儿刚出生时外表没有特殊症状,常在出生后3个月左右出现头发由黑变黄、小便有难闻的臭味、患儿不能抬头。几乎所有未经治疗的患儿都有严重的智力障碍。筛查流程1、填写采血卡信息:记录采血卡片编号、产妇姓名及住院号、出生时间、采血时间、采血人、联系地址、邮编、电话、样本送出时间及特殊情况记录等。2、采血取样:采血部位宜选择足跟内、外侧缘。采血人应清洗双手,佩戴无滑石粉手套,用75%乙醇消毒采血部位,待乙醇自然挥发或用无菌棉球擦掉多余乙醇后开始采血。采血使用一次性采血针刺足跟,刺入深度8 mm)。禁止在1个圆圈处反复多次浸血。采血后用无菌棉球轻压采血部位止血,胶布固定。3、打孔取样:使用自动打孔仪或手动打孔器将干血斑样本打3 mm孔,置于96孔板内。每个96孔板中前2~4个孔用于空白对照。4、临床检测:将96孔板置于自动进样器中,启动程序,创建工作列表,选择合适的数据采集方法运行。由于采血人员技术、血片保存条件、递送方式差异等各种原因,各地新生儿疾病筛查中心都会有不合格血片出现。我们针对此问题设计了SAP 20自动干血斑(DBS)打孔仪,能够为用户提供精确、安全、高效、便捷的 打孔操作。该仪器集控制系统,图像采集设备,条码信息采集设备,打孔装置于一身,用户可实时的在控制软件上观测打孔样本的收集结果,大大提高了样本打孔流程的可靠性。只需将滤纸干血片放到相应打孔区域,即可完成打孔操作,可降低纯手工操作误差并大大降低操作人员的劳动强度,提高工作效率。
  • 老板再也不用担心我的多肽合成 ---来阿拉丁一站式购齐所需试剂和容器
    ALADDIN的优势多肽在基础生理学、生物化学和医药研究,尤其是医药行业新药筛选中起关键作用,新的短链肽和模拟肽在新药研发中为新药提供了较强的生物活性和蛋白酶水解抗性。短肽还可以作为分子探针,更好的阐述生物系统的功能。因此肽合成在化学生物学领域所占份额越来越大。阿拉丁为你提供高质固相和液相肽合成的一站式服务,包括带有Fmoc、Boc和Cbz保护基团的天然或非天然氨基酸合成砌块、偶联试剂、预装树脂、Linker、N-保护试剂。产品列表多肽固相合成管固相多肽合成预装树脂N-保护试剂耦合试剂Fmoc修饰的氨基酸及氨基酸衍生物列表Boc修饰的氨基酸及氨基酸衍生物列表更多相关产品耗材产品列表多肽固相合成管货号品名包装容量外径螺纹口砂板孔隙度P3597-01-1EAP3597-01 多肽固相合成管1个25ml25mm25G2P3597-02-1EAP3597-02 多肽固相合成管1个25ml25mm25G3 试剂产品列表固相多肽合成预装树脂货号品名规格包装 A116077Fmoc-Arg(Pbf)-Wang resin100-200 mesh, 1%DVB1g,5g,25g A116080Fmoc-Asn(Trt)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.41g,5g,25g A116082Fmoc-Asp(OtBu)-王氏树脂100-200 mesh, 1%DVB,Substitution 0.1g,5g,25g A118255Fmoc-氨基酸-王树脂100-200 mesh, 1%DVB,Substitution 0.3-0.8mmol/g5g,25g A118270AminoMethyl Polystyrene Resin0.5~1.5mmol/g, 100~200 mesh5g,25g,100g C110262氯甲基化聚苯乙烯树脂1% DVB交联 1.0~1.24mmol/g , 100~200 mesh, 1% DVB5g,25g,100g C1182692-Chlorotrityl Chloride Resin0.8-1.5mmol/g, 100~200 mesh5g,25g,100g G116092Fmoc-Glu(OtBu)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.1g,5g G116094Fmoc-Gly-Wang resin100-200 mesh, Substitution 0.3-0.8mmol/g5g,25g L116104Fmoc-Leu-王氏树脂100-200 mesh, Substitution 0.3-0.8mmol/g5g,25g L116107Fmoc-Lys(Boc)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-1g,5g,25g M118256Fmoc-Met-王氏树脂100-200 mesh, 1%DVB,Substitution 0.3-0.1g,5g,25g M118275MBHA Resin0.3~0.8mmol/g, 100~200 mesh, 1% DVB1g,5g,25g P118257Fmoc-D-Phe-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-0.5g,25g P118258Fmoc-Phe(4-Cl)-Wang resin100-200 mesh, 1%DVB1g,5g,25g P118261Fmoc-Pro-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-0.8m5g,25g R118279Rink Amide-AM Resin 0.3~0.8mmol/g, 100~200 mesh, 1% DVB1g,5g,25g R118280聚合物键合型 Rink 酰胺 4-甲基二苯甲胺0.3~0.8mmol/g, 100~2001g,5g,25g S118282Sieber 酰胺树脂0.3~0.8mmol/g, 100~200 mesh, 1% DVB5g,25g,100g T118264Fmoc-Thr(tBu)-王氏树脂100-200 mesh, 1%DVB,Substitution 0.31g,5g,25g T118267Fmoc-Tyr(tBu)-Wang resin100-200 mesh, 1%DVB,Substitution 0.5g,25g T118281Fmoc-Threoninol(tBu) DHP HM Resin 0.3~0.8mmol/g, 100~200 mes5g,25g V118268Fmoc-Val-Wang resin100-200 mesh, 1%DVB,Substitution 0.3-0.85g,25gN-保护试剂氨基保护是合成化学和肽合成中必须部分,有效的保护基团可以从合成的化合物易于添加和除去。货号品名规格cas号包装 B105737氯甲酸苄酯 96%,含约 0.1% 碳酸钠稳定剂501-53-125g,100g,500g,2.5kg D106158二碳酸二叔丁酯 98%24424-99-525g,100g,500g,1kg D106159二碳酸二叔丁酯 99%24424-99-525g,100g,1kg D106160二碳酸二叔丁酯 96%24424-99-5100g,500g F1061739-芴甲基-N-琥珀酰亚胺基碳酸酯 98%82911-69-15g,25g,100g F113338芴甲氧羰酰胺 99%84418-43-95g,25g,100g I105738氯甲酸异丁酯 98%543-27-125g,100g,500g耦合试剂由于肽合成中较低的消旋化是固相肽合成的一个关键指标,阿拉丁为你提供各种高质量偶联试剂,包括碳化二亚胺、脲类和磷型的偶联试剂,可以快速、有效和无消旋的缩合货号品名规格cas号包装 A1133452-(7-氮杂苯并三氮唑)-N,N,N' ,N' -四甲基脲四氟硼酸盐 98%873798-09-55g,25g,100g B106161卡特缩合剂 98%56602-33-65g,25g,100g,500g B1093122-溴-1-乙基吡啶四氟硼酸盐 98%878-23-95g,25g B113336溴代三(二甲基氨基)磷鎓六氟磷酸盐 98%50296-37-21g,5g,25g B113343三吡咯烷基溴化鏻六氟磷酸盐 98%132705-51-21g C109314N,N' -羰基二咪唑 &ge 97.0% (T)530-62-12.5kg,25g,100g,500g C109315N,N' -羰基二咪唑 99%530-62-11kg C113337N,N' -羰基二(1,2,4-三氮唑) 96%41864-22-65g,25g,100g H1061761-羟基苯并三唑一水合物 &ge 97.0%123333-53-925g,100g,250g,500g H1061773-羟基-1,2,3-苯并三嗪-4(3H)-酮 98%28230-32-25g,25g,100g H106354N-羟基邻苯二甲酰亚胺 98%524-38-92.5kg,25g,100g,500g H1093281-羟基-7-偶氮苯并三氮唑 99%39968-33-75g,25g,100g,500g H109329N-羟基-5-降冰片稀-2,3-二酰亚胺 99%21715-90-210g,50g,250gH109330N-羟基琥珀酰亚胺 98%6066-82-62.5kg,25g,100g,500g H109337N-羟基硫代琥珀酰亚胺 钠盐 98%106627-54-71g,5g,25g N102772N-琥珀酰亚胺基-N-甲基氨基甲酸酯 97%18342-66-05g,25g N113351TNTU 98%125700-73-41g,5g,25g,100g C113347多肽试剂TCTU 98%330641-16-25g,25g,100g C1171602-氯-1,3-二甲基咪唑六氟磷酸盐 98%101385-69-71g,5g,25g D1028482-(2-吡啶酮-1-基)-1,1,3,3-四甲基脲四氟硼酸盐 99%125700-71-21g,5g,25g D106162N,N' -二异丙基碳二酰亚胺(DIC) 98%693-13-010ml,25ml,100ml,500ml D106171N,N' -琥珀酰亚胺基碳酸酯 98%74124-79-15g,25g,100g D106284N,N-二甲基丙烯基脲(DMPU) 99%7226-23-525g,100g,500g D109331二吡咯烷基(N-琥珀酰亚氨氧基)碳六氟磷酸盐 98%207683-26-91g,5g,25g O113352TOTT 98%255825-38-85g,25g,100g P1091051-苯基-3-甲基-5-吡唑啉酮 99%89-25-82.5kg,100g,500g W111795伍德沃德氏试剂K 98%4156-16-51gFmoc修饰的氨基酸及氨基酸衍生物列表货号品名规格cas号包装 A107817Fmoc-L-天冬氨酸 4-烯丙酯 98%146982-24-31g,5g,25g A140203N-Fmoc-8-氨基辛酸 &ge 98.0%(HPLC)126631-93-41g,5g B116715N-Boc-N' -Fmoc-D-赖氨酸 97%115186-31-75g,25g B121679N-Boc-顺式-4-Fmoc-氨基-L-脯氨酸 97%174148-03-91g,5g C115874FMOC-&beta -环己基-L-丙氨酸 98%135673-97-11g,5g,25g C115932Fmoc-Cys(Mbzl)-OH 98%136050-67-41g,5g,25g D115880N&alpha -Fmoc-L-2,3-二氨基丙酸 97%181954-34-71g,5g,25g F100409Fmoc-S-三苯甲基-L-半胱氨酸 98%103213-32-75g,25g F100413Fmoc-O-叔丁基-L-谷氨酸 98%71989-18-95g,25g F100419Fmoc-L-谷氨酸 98%121343-82-65g,25g F100746N-Fmoc-N' -Boc-L-鸟氨酸 96%109425-55-01g,5g,25g F100759Fmoc-Val-OSu 97%130878-68-15g,25g F100801Fmoc-L-天冬氨酸 98%119062-05-41g,5g,25g,100g F100805Fmoc-L-缬氨酸 98%68858-20-85g,25g,100g F100808Fmoc-L-亮氨酸 98%35661-60-05g,25g,100g F101115FMOC-L-炔丙基甘氨酸 98%198561-07-81g,5g,250mg F101121FMOC-D-炔丙基甘氨酸 96%220497-98-31g,250mg F101195Fmoc-D-烯丙基甘氨酸 96%170642-28-11g,250mgF101202FMOC-D-3-(4-吡啶基)-丙氨酸 98%205528-30-91g,5g F101214Fmoc-3-(3-吡啶基)-L-丙氨酸 98%175453-07-31g,5g,250mg F101220FMOC-L-3-(2-吡啶基)-丙氨酸 97%185379-40-21g,250mg F101223FMOC-D-3-(2-吡啶基)-丙氨酸 98%185379-39-91g,5g F101459Fmoc-2-氨基异丁酸 97%94744-50-05g,25g F101574FMOC-L-4-甲基苯丙氨酸 98%199006-54-71g,250mg F101598FMOC-L-3-甲基苯丙氨酸 98%211637-74-01g,250mg F101600FMOC-D-3-甲基苯丙氨酸 98%352351-64-51gBoc修饰的氨基酸及氨基酸衍生物列表td style="padding-left: 12px "98%货号品名规格cas号包装 B100726BOC-O-苄基-L-酪氨酸 98%2130-96-35g,25g,100g B100799Boc-L-谷氨酰胺 98%13726-85-75g,25gB101207BOC-D-3-(3-吡啶基)-丙氨酸 98%98266-33-21g,5g,250mg B101451BOC-D-丙氨酸 98%7764-95-65g,25g B101478Boc-D-酪氨酸 70642-86-31g,5g,25g,100g B101548BOC-L-4-甲基苯丙氨酸 98%80102-26-71g,5g,250mg B101595BOC-L-3-甲基苯丙氨酸 98%114873-06-21g,5g B101597BOC-D-3-甲基苯丙氨酸 98%114873-14-21g,5g B101616BOC-L-2-甲基苯丙氨酸 98%114873-05-11g B101623BOC-D-2-甲基苯丙氨酸 98%80102-29-01g B101627BOC-D-4-溴苯丙氨酸 98%79561-82-31g B101633BOC-L-2-溴苯丙氨酸 98%261165-02-0500mg B101661BOC-L-3,4-二氯苯丙氨酸 98%80741-39-51g,5g,250mg B101686BOC-L-2-氯苯丙氨酸 98%114873-02-81g,5g B101696BOC-D-2-氯苯丙氨酸 98%80102-23-45g B102424Boc-L-脯氨酸酰胺 97%35150-07-31g,5g B102427N-BOC-L-苯丙氨醛 97%72155-45-41g,250mg B102428Boc-L-脯氨醛 97%69610-41-91g,5g B1024361-(Boc-氨基)环戊烷羧酸 98%35264-09-61g,5g B102447N(&alpha )-Boc-L-2,3-二氨丙酸 97%73259-81-11g,5g B102996BOC-L-异亮氨酸 99%13139-16-75g,25g,100g B103072N-Boc-N' -Cbz-L-赖氨酸 98%2389-45-95g,25g,100g B103084N-Boc-4-氧-L-脯氨酸甲酯 97%102195-80-21g,5g,250mg B103160(S)-N-BOC-4-溴苯丙氨酸 98%62129-39-91g,5g,25g更多产品请访问阿拉丁官网
  • 卫生部:串联质谱法将用于新生儿疾病筛查
    新生儿疾病筛查是减少出生缺陷、提高我国出生人口素质的三级预防措施之一。为进一步做好新生儿疾病筛查工作,卫生部于2008年开始对2004年印发的《新生儿疾病筛查技术规范》进行修订。经多次研讨并广泛征求有关专家、各省(区、市)卫生厅局及卫生部相关司局意见,形成了《新生儿疾病筛查技术规范(2010年版)》(以下简称《技术规范(2010版)》)。   《技术规范(2010年版)》由六个部分组成:新生儿遗传代谢病筛查血片采集技术规范 新生儿遗传代谢病筛查实验室检测技术规范 苯丙酮尿症和先天性甲状腺功能减低症诊治技术规范 新生儿遗传代谢病筛查操作流程 新生儿遗传代谢病筛查知情同意书 新生儿听力筛查技术规范、新生儿听力筛查技术流程和新生儿听力筛查知情同意书。主要对筛查机构、诊治机构、人员和设备要求以及技术流程等内容作了具体规定和修改。与2004年版的技术规范相比,《技术规范(2010年版)》有以下几个方面特点:   一是强调了新生儿疾病筛查中心的设置必须符合《新生儿疾病筛查管理办法》的要求   二是在《新生儿遗传代谢病筛查血片采集技术规范》中增加了“采血机构和人员职责”内容,强调“血片采集步骤”中的生物安全,以及明确了“合格滤纸干血片”的内容   三是在《新生儿遗传代谢病筛查实验室检测技术规范》中强调了实验室硬件和软件的建设,筛查实验室必须符合《新生儿疾病筛查管理办法》及《医疗机构临床实验室管理办法》,在苯丙氨酸的检测方法上增加了串联质谱法   四是在《苯丙酮尿症和先天性甲状腺功能减低症诊治技术规范》中,更加明确了“机构设置”、“人员要求”和“机构与人员职责”,增加了“召回制度”,在诊断方面,增加了“四氢生物蝶呤缺乏症(BH4D)”内容   五是“新生儿遗传代谢病筛查操作流程”更明确具体,并新增加了“新生儿遗传代谢病筛查知情同意书”   六是《新生儿听力筛查技术规范》增加了随访及康复环节的内容、以及技术流程与知情同意书。
  • 阿斯巴甜,福兮祸兮?
    你可能听说过一类食品添加剂,叫“甜味剂”,比如最常见的糖精、阿斯巴甜。但你很可能不知道它们的来历,其实是一些不遵守实验室操作规程的粗枝大叶的理科男无意中发现或发明了它们:1879年一个俄国化学家在实验室倒腾完瓶瓶罐罐,没洗手就回家吃饭,结果发现吃啥都是甜的,“糖精”被发现 1965年一个叫施莱特的化学家在合成药物的时候无意中舔了一下手指,大名鼎鼎的甜味剂“阿斯巴甜”问世。   甜味剂的诞生对于食品工业来说是个天大的好消息,因为它们的甜度数百倍于蔗糖,能大大降低成本。对于消费者来说,其实这也是一个好消息,因为它们提供的热量远低于蔗糖,甚至可以忽略不计,所以既可以满足你对甜食的渴望,又可以避免因能量摄入过多导致的肥胖、糖尿病等慢性疾病。   但是相比那些什么都敢舔的“发明家”,普通人显得谨小慎微,因为大家对“化学合成”的物质总是充满了敬畏、怀疑甚至抵触。所以各国的监管者和研究者都在不断的检验它们的安全性,确保不会对消费者的健康造成损害。当然,科学存在不确定性,科学也在不断发展,随着研究证据的积累,科学界对安全性的诠释也会与时俱进,糖精、甜蜜素、阿斯巴甜等诸多“化学合成”物质都曾在安全和不安全之间多次翻转。   争论其实并不是坏事,自从1976年美国FDA批准阿斯巴甜,围绕它的各种流言、阴谋论、利益绑架疑云甚至漫长的法律诉讼从来没有间断过。这通折腾也许是值得的,后来美国FDA把阿斯巴甜描述为“研究最彻底的食品添加剂之一”,其安全性“毋庸置疑”。美国疾控中心也证实,“没有流行病学证据可以验证阿斯巴甜能引起重大伤害或严重风险”。美国FDA为它制定了每公斤体重50毫克的安全摄入量。   当然,作为阿斯巴甜的主要生产者和推动者,美国拥有很多与之相关的专利,所以始终有人怀疑这里面有利益绑架的嫌疑。但世界各国的权威机构几乎都认可了阿斯巴甜的安全性,世界卫生组织下属的食品添加剂联合专家委员会(JECFA)两次对其安全性进行评估。在动物身上做实验证明,每公斤体重4000毫克也未出现不良反应(NOAEL),考虑到各种不确定因素,设定100倍保险系数,最后确立每公斤体重40毫克为安全摄入水平(ADI)。有100多个国家依此批准它作为食品添加剂使用,包括历来以保守、苛刻着称的欧洲。   最近欧盟食品安全局(EFSA)又一次为阿斯巴甜出具了“安全证明”,之所以说“又”,因为他们在2011年的时候就已经给出结论“阿斯巴甜是安全的”。EFSA对现有证据重新进行了梳理和细致研究,最终再次认定,对于普通人群而言,每公斤体重40毫克的摄入水平是非常安全的,这相当于一个60公斤体重的成年人每天吃2.4克,吃一辈子也没事。   阿斯巴甜是蔗糖甜度的200倍,所以2.4克差不多可以提供1斤白糖的甜度。相对而言,每天2.4克阿斯巴甜或1斤白糖,你会选择哪一个呢?以某品牌的无糖饮料为例,355mL罐装饮料约含有阿斯巴甜180毫克,相当于每天要喝13罐,如果换成含糖饮料呢?对于这样的“吃货”,我真的觉得甜味剂是最后的救命稻草了。   对于网络上传说阿斯巴甜的各种“健康危害”,EFSA的评估结果都予以了否认。他们综合大量研究结果认为,阿斯巴甜不会损伤大脑和神经组织,也不会影响人的行为和认知功能,包括儿童。对于孕妇来说,在当前的安全摄入量下,阿斯巴甜不会影响胎儿的发育(有苯丙酮酸尿症的孕妇除外)。基于动物和人体的充分研究证据,EFSA也排除了阿斯巴甜的致癌可能,这与国际癌症研究中心的资料是吻合的,我没有在致癌物列表中看到它的身影。   对于阿斯巴甜安全性的担忧还来自于它的代谢物,它在体内会降解为苯丙氨酸、天冬氨酸和甲醇。甲醇不是有毒的吗?实际上,水果、蔬菜中也会天然含有少量甲醇,比如果汁生产中,果胶水解会生成甲醇,新鲜果汁甲醇含量可以达到每升一百多毫克,酿制的果酒中甲醇可以达到每升数百毫克甚至更多,而一升无糖饮料中的阿斯巴甜最多生成几十毫克甲醇。所以EFSA的总体结论是,阿斯巴甜的降解产物和我们每天正常吃进去的同类物质相比是“毛毛雨”。当然EFSA也指出,“苯丙酮酸尿症”患者应当避免摄入阿斯巴甜,因为苯丙氨酸的缘故。   我知道还会有人心存疑虑,明明有“科学证据”证明阿斯巴甜有害健康,为什么你故意视而不见?就和法国人做的“转基因玉米导致大鼠肿瘤”一样,个别研究的“惊人”结论往往出自不符合科学规范的实验设计、统计方法等,而搅动舆论的恰恰是它们。相对于个别研究,我更信任经过严格筛选的科学证据集合,比如上述的EFSA评估结果以及之前JECFA的评估。   阿斯巴甜的安全性经历了多年的争论,这次欧盟的评估结论或许能让争论暂时告一段落,但围绕“人造”、“化学合成”物质的安全性争论不会走远,人们对“安全”的渴望也会促使科学界不断的深入研究,去探索人类健康的奥秘。对于我个人来说,我是不担心它的安全性的,在超市选择碳酸饮料的时候还会特意选择使用甜味剂的品种。虽然我也知道平衡膳食、多运动才是王道,但还是义无反顾的选择用甜味剂去平衡我的懒。
  • 可口可乐旗下健怡可乐被指存致癌风险
    美国消费者倡导组织&mdash &mdash 公共利益科学中心(CSPI)近日发表公开信,呼吁格莱美获得者、美国女歌手泰勒· 斯威夫特停止为健怡可乐代言。而理由是,可口可乐公司旗下的健怡可乐(diet coke)中含有人工甜味剂&mdash &mdash 阿斯巴甜(aspartame)。这种添加剂在经过实验后被发现,对动物具有致癌性。   今晨,这封公开信的执笔人、美国公益科学中心主任迈克尔· F· 雅各布森先生接受《法制晚报》记者采访时表示,从一些人的角度来看,健怡可乐的确比一般可乐&ldquo 健康&rdquo ,但可能有着令他最为担心的危害&mdash &mdash 致癌。   公开喊话   别&ldquo 忽悠&rdquo 粉丝痛饮   目前美国公益科学中心已经向斯威夫特致以公开信,信中称相对于普通的可乐而言,健怡可乐的确更不易让人患上糖尿病、心脏病和肥胖病。但这种添加了阿斯巴甜的饮品,却可能让人患上其他的严重疾病。   这封公开信指出:&ldquo 你(斯威夫特)代言的产品,在你数以百万计的粉丝面前具有非常大的分量,我很欣赏你在慈善事业上的投入,特别是你对一些与癌症相关的慈善机构的支持&rdquo 。&ldquo 不过你的代言却让更多的人开始喝健怡可乐,或让他们喝得更频繁,所以你的代言很可能让你的粉丝患上癌症。即使这个风险较小,但我们还是觉得你不应该拿自己的名字、形象、声誉去代言任何一款会增加患癌几率的产品。&rdquo   据该组织介绍,斯威夫特从2013年1月开始担任健怡可乐的形象大使,当时在youtube上有她的推广视频。而在视频中,她还让粉丝给健怡可乐的Facebook页面点&ldquo 赞&rdquo 。而在2014年10月,健怡可乐推出由斯威夫特和几十只小猫主演的一个广告,斯威夫特还把这个广告链接分享给自己的社交网络Twitter上的粉丝,而她的Twitter粉丝数量为5000万。据社交媒体市场调研公司的统计,在这些粉丝中,有三分之一是16岁或16岁以下的年轻人。   对话笔者 为什么呼吁停止代言?   雅各布森告诉本报记者,斯威夫特是一名非常棒的歌手,她拥有非常多的粉丝。但是因为为健怡可乐代言,她也成了阿斯巴甜的最大&ldquo 消费推手&rdquo 。   雅各布森表示,现在的名人可以自由地赞同任何一个东西,但像斯威夫特这样拥有高知名度的明星,应该有一个更高的标准来&ldquo 适度挑剔&rdquo 一下代言的产品。她们不应该用自己的影响力,来代言那些垃圾食品。这对其粉丝,尤其是孩子会造成很不好的影响。   阿斯巴甜能够致癌?   雅各布森说,阿斯巴甜是由两种氨基酸和甲醇通过化学合成的手段制成。虽然这种添加剂通过了美国卫生部的允许,但现有的实验结果还是证明,阿斯巴甜会使实验用的老鼠患上癌症。   而现在科学界普遍赞同的是,如果一种化学添加剂会使动物致癌,那它很可能会对人类有相似的作用。   都有哪些&ldquo 致病&rdquo 证据?   到目前为止,已经有3项独立的测试证明了阿斯巴甜的危害性。雅各布森说,去年,5名美国科学家研究了阿斯巴甜对于大老鼠和小老鼠的影响。   而在研究后发现,阿斯巴甜能让大老鼠们患上淋巴瘤、白血病、肾肿瘤和乳腺癌。而许多进行实验的小老鼠,则患上了肝癌和肺癌。   &ldquo 这是非常可怕的事情,这一切很可能会在人类身上发生。&rdquo 雅各布森说,不过,目前研究尚未发现何种类型的人最容易受这个添加剂影响。   它还在哪些产品中存在?   在美国,很多的软饮料里都含有这种人造甜味剂。除了健怡可乐之外,较为著名的还有百事可乐公司的轻怡可乐。   雅各布森说,现在,饮用健怡可乐可能是全世界人最容易接触阿斯巴甜的方式。   已显现出了怎样的影响?   雅各布森最后告诉记者,现在对包括美国、中国在内的许多国家而言,肥胖是一个非常严重的问题,而过度饮用可乐是导致这一现象的其中一个原因,因为普通可乐中含有大量的糖分,所以人们应尽量少饮用可乐。   目前公共利益科学中心已经敦促企业应该不向食品中添加阿斯巴甜,也建议消费者不要饮用健怡可乐。但要让消费者真正远离含有阿斯巴甜的饮品,雅各布森认为卫生部门应该禁止企业在食品中添加阿斯巴甜。   追访专家   人工合成添加剂   特殊人群不能食用   阿斯巴甜,是一种非碳水化合物类的人造甜味剂。因其甜味高和热量低,主要添加于饮料、维他命含片或口香糖中代替糖的使用。   今天上午,国家二级公共营养师谷传玲告诉法晚记者,阿斯巴甜本身并不会对人体造成很大伤害,但是由于它是一种人工合成的添加剂,生产过程中可能会产生有害物质,这也很可能是致病的罪魁祸首。   谷传玲提醒,只要是人工合成的添加剂,就算本身足够安全,但因为是人工合成,过量使用也会导致不良反应。因为阿斯巴甜在消化后会产生苯丙氨酸,所以苯丙酮尿症的患者不能食用阿斯巴甜,因为这样会造成患者体内苯丙氨酸无法代谢,从而导致疾病。
  • 全新上线!曼哈格氨基酸/神经递质/儿茶酚胺检测试剂盒(液相色谱-串联质谱法)
    今日,曼哈格和博莱克联合研发生产的蛋白质氨基酸/神经递质/儿茶酚胺检测试剂盒(液相色谱-串联质谱法)隆重推出。本次推出的3套kit是建立在高效液相色谱质谱平台上,可针对实验动物和人体血样、尿样中的20种蛋白质氨基酸、12种神经递质和6种儿茶酚胺进行精准定量检测。检测试剂盒检测指标▣ 20种蛋白质氨基酸Asparagine天冬酰胺proline脯氨酸Histidine组氨酸Tyrosine酪氨酸Serine丝氨酸Methionine甲硫氨酸Glycine甘氨酸Lysine赖氨酸Glutamine谷氨酰胺Valine缬氨酸Arginine精氨酸Isoleucine异亮氨酸Aspartic acid天冬氨酸Leucine亮氨酸Glutamic acid谷氨酸Phenylalanine苯丙氨酸Threonine苏氨酸Tryptophan色氨酸Alanine丙氨酸Cysteine半胱氨酸▣ 12种神经递质Norepinephrine去甲肾上腺素γ-Aminobutyricacid4-氨基丁酸Metanephrine甲氧基肾上腺素Octopamine章鱼胺Epinephrine肾上腺素Tyramine酪胺Dopamine多巴胺Agmatine胍丁胺Serotonin5-羟色胺Methoxytyramine甲氧酩胺Tryptamine色胺Histamine组胺▣ 6种儿茶酚胺Normetanephrine甲氧基去甲肾上腺素Epinephrine肾上腺素Norepinephrine去甲肾上腺素Dopamine多巴胺Metanephrine甲氧基肾上腺素Methoxytyramine甲氧酪胺产品优势
  • 代糖食品安全性存争议
    用人工合成的甜味剂来取代天然蔗糖增加食物的甜度和口感,是食品行业一条默认的规则。但是,一个如影相随的问题是——甜味剂安全吗?   由于可能会引发不安全的后果,因甜味剂而禁售的食物屡见不鲜。2009年6月10日,委内瑞拉就以零度可口可乐中添加了甜蜜素为由将其封杀,尽管可口可乐声明在中国的同类产品使用的甜味剂是阿斯巴甜,但仍然有许多人开始对零度可口可乐敬而远之。   究竟阿斯巴甜是什么,甜蜜素又是什么,二者有何不同?其实,两者都是甜味剂。甜味剂有效解决了蔗糖成本高、能量高等不足,而且其甜度与蔗糖相比只有过之而无不及。因为用在食品中也会让人产生“甜”的感觉,所以甜味剂的名字也叫“代糖”。   与天然的蔗糖相比,种类繁多的甜味剂被有针对性地用于食品中,比如,中国允许甜蜜素作为甜味剂使用在酱菜、调味酱汁、配置酒、糕点、饼干、面包、雪糕、冰淇淋、冰棍、饮料等食品中,而阿斯巴甜则被允许用于乳制品、糖果、巧克力、胶姆糖、餐桌甜味剂、保健食品、腌渍物和冷饮制品等,这是因为阿斯巴甜在高温或高pH值情形下会水解,因此不适于需用高温烘焙的食品。   说专业一点,甜蜜素是环己基氨基磺酸钠,是由氨基磺酸与环己胺及氢氧化钠这两种有机化学制剂反应而成的,甜度是蔗糖的30倍,价格却仅为后者的3倍。而阿斯巴甜化学名天门冬酰苯丙氨酸甲酯,是由苯丙氨酸先与甲醇反应后再和天冬氨酸酯化产生,是一种非碳水化合物类的人造甜味剂,甜度更甚甜蜜素,是蔗糖的200倍,价格为后者的70倍。蔗糖、甜蜜素和阿斯巴甜的单位甜度价格比(价格/甜度)为1:0.1:0.35,要达到同样的甜度,蔗糖的单位价格是最高的,最不经济实惠。   然而,1966年的一项研究报告显示,甜蜜素或许会增加患膀胱癌的几率,因此美国和英国先后于1969年和1970年发布了禁用甜蜜素作为食品添加剂的禁令。之后,也有研究认为甜蜜素会导致睾丸萎缩因而增加患膀胱癌的几率。甚至还有人发现甜蜜素似乎影响到精子的产量,因此推理其可能会损害男性生殖基因。对于这些研究结果,至今似乎还没有任何其他支持或反对的证据。   事实上,即使在那些还没有对甜蜜素发布禁令的国家,也已经制定出来了限量使用的标准。根据中国《食品添加剂使用卫生标准》(GB2760-2007)的规定,就引发争议的可乐而言,甜蜜素的最大使用量为0.65g/kg(与糕点和雪糕、冰淇凌等一致)。   根据该标准,另一种充满了争议的甜味素——阿斯巴甜则被注明“按生产需要而适量添加”,国家标准并没有对它做出确切的定量。这与国际粮农组织和世界卫生组织的规定不同。1984年,两家机构规定阿斯巴甜在饮料中的使用量不能超过0.1%。事实上,阿斯巴甜的使用很早就引起了广泛的争议。有些研究发现不能排除阿斯巴甜引发脑瘤、脑损伤以及淋巴癌等严重后果的可能性。   美国食品药物管理局曾经为此延期数年才允许在食品中添加阿斯巴甜。这些早期的实验结果与阿斯巴甜的生产企业有明显的利益冲突,当然也在审批认证过程中引起很大争议。参考了更多的实验结果后,美国食品药物管理局自1983年逐渐放宽阿斯巴甜的使用限制,直至1996年终于取消所有限制。中国农业大学教授何计国介绍,长期过量摄取阿斯巴甜会对身体产生毒性。这是因为阿斯巴甜会在消化道内被分解成苯丙氨酸、天门冬氨酸和甲醇,天门冬氨酸会造成脑部伤害、内分泌失调或肿瘤,而甲醇在体内可以代谢成甲醛和甲酸等有害物质,先天性苯丙氨酸羟化酶缺陷患者如果服用苯丙氨酸会导致智力发育障碍,这被称为苯丙酮尿症。而且,怀孕中的妇女最好也不要摄入阿斯巴甜。   资料表明,已经有近100个国家批准阿斯巴甜作为甜味剂,其中一些国家使用已经超过了20年。在动物实验中每千克体重每天摄入4000毫克阿斯巴甜也尚未观察到危害。欧洲的食品科学委员会(SCF)在2002年重审了关于阿斯巴甜的研究并再次确认食用阿斯巴甜是安全的,2007年发表在《Critical Reviews in Toxicology》上的综述也列明迄今为止没有证据表明阿斯巴甜有安全性的问题。   但阿斯巴甜还是处于争议中。   2008年,菲律宾有议员希望能在该国禁用阿斯巴甜。同年,美国新墨西哥州通过禁用阿斯巴甜法案。最新的消息是,英国食品标准署在其网站上发表了一份声明,称将开始对阿斯巴甜展开新的研究,聚焦为何有人报告食用后引发头痛、腹痛等不同的症状。从阿斯巴甜的例子可以看出,各国对某一种甜味剂的使用和限量是不尽相同的。   不管是用了甜蜜素还是阿斯巴甜,对于零度可乐的死忠粉丝来说,需要认清的是关于“无糖依然可乐”的另外一个真相。因为热量低,无糖可乐受到糖尿病患者和减肥人士的喜爱,但无糖只是不含蔗糖,其实里面还是有糖分的。如果将其视为绝对不含糖分而肆意摄入,那和摄入高糖食品其实没什么本质性的区别,所以要小心掉入甜蜜的陷阱里!   相关链接:   添加甜蜜素,各国标准不同   1969年之前,甜蜜素被公认为安全物质。1969年美国国家科学院研究委员会收到有关甜蜜素为致癌物的实验证据,美国食品药物管理局为此立即发布规定严格限制使用,并于1970年8月发出了全面禁止的命令。1982年9月,Abbott实验室和能量控制委员会在大量试验事实的基础上,以最新的研究事实证明甜蜜素的食用安全性,许多国际组织也相继发表大量评论明确表示甜蜜素为安全物质。虽然美国食品药物管理局至今还没有最终解决这个问题。但是,目前仍有许多国家(包括中国)继续承认甜蜜素的甜味剂地位,允许甜蜜素的使用。   中国:   根据中国《食品添加剂使用卫生标准》(GB2760-2007)的规定   酱菜、调味酱汁、配置酒、糕点、饼干、面包、雪糕、冰淇淋、冰棍、饮料等最大使用量为0.65g/kg   蜜饯最大使用量为1.0g/kg   陈皮、话梅、话李、杨梅干等最大使用量8.0g/kg。   日本、美国、英国:禁止使用   欧盟:   非酒精饮料,降能或不含糖水性加香饮料,降能或不含糖的牛乳和牛乳派生基质的制品或果汁基质的饮料,使用最大限量为0.25g/L 甜点及类似产品、降能或不含糖水性加香饮料、降能或不含糖的牛乳和牛乳派生基质的制品、降能或不含糖果蔬基质甜点、降能或不含糖蛋基质甜品、降能或不含糖的谷物基质甜点、降能或不含糖的油脂基质甜点,最大使用限量为0.25g/kg 糖制食品,降能或不含糖的可可、牛乳、水果干或油脂基质的三明治涂抹食品,降能或不含糖的罐装的水果,使用的最大限量为0.5g/kg 降能的果酱果冻和橘子,最大使用限量为1g/kg。
  • 【NIFDC经典文献系列赏析】融合蛋白电荷变异体表征先进技术
    蛋白新药的设计得益于重组DNA技术的发展。融合蛋白是指通过基因融合两个或更多蛋白质结构域来创造一个具有新功能的嵌合蛋白。每个融合体的功能通常分为一个载体结构域和一个效应结构域,前者有助于提高稳定性和药代动力学,后者具有从细胞毒性到识别和结合等不同的功能。截至2019年,已有11种Fc融合蛋白疗法被FDA批准。 生物制药的电荷变异体(电荷异质性)来自翻译后修饰,如磷酸化、糖基化和脱酰胺化,须在整个生产过程中密切监测,因为它可能影响产品的安全性和有效性。全柱成像毛细管等电聚焦(icIEF)已被证明有诸多良好检测性能特征,如高分辨率、自动化、定量准确、重现性好和易用性。凭借这些优势,它已成为生物制品,特别是单克隆抗体电荷变异体表征的主流技术。 与单克隆抗体等传统生物药相比,融合蛋白的电荷异质性差异更大,这使得表征融合蛋白成为一个挑战。建立一种适用于分析多种融合蛋白的平台方法可以方便方法开发并且简化生产流程。2021年,中国食品药品鉴定研究院(NIFDC)利用全柱成像毛细管等电聚焦电泳技术的双通道(紫外&自发荧光)表征9种融合蛋白药物的电荷异质性,其中6种蛋白为商业化蛋白。紫外吸收UV280nm是经典icIEF等电聚焦电泳检测通道。自发荧光(NIF:Native Fluorescence)是指利用芳香族氨基酸(色氨酸、酪氨酸、苯丙氨酸)的自发荧光来实现检测,无需添加染料。 结果表明,icIEF方法可用于重组蛋白类药物电荷异质性及等电点分析。该方法快速、准确、重复性好,为保障融合蛋白类产品生产工艺的稳定性及质量控制提供了一种可靠的平台分析方法。9种融合蛋白9种融合蛋白治疗剂(在本研究中被命名为样品1-9),其中6种已商业化,包括:样品1:安进公司的依那西普;样品2:百时美施贵宝公司的阿巴泰普;样品3:再生元公司的阿夫利贝特;样品5:重组人肿瘤坏死因子-α受体II:海正药业的IgGFc融合蛋白;样品6:嘉宏药业的康柏西肽;样品7:百时美施贵宝的贝拉塔塞普;三个样品正处于不同临床试验阶段,包括VEGFR-Fc融合蛋白样品4,血小板生成素模拟肽-Fc融合蛋白样品8和胰高血糖素样肽-1-Fc融合蛋白样品9。结果通用稳定剂SimpleSol 大多数融合蛋白在传统电聚焦凝胶电泳(IEF)分析过程中会聚集或沉淀,需要添加剂来保持稳定性。尿素已被证明可以减少蛋白质聚集,并提高IEF分析的重复性。因为本研究的目的是开发一个平台方法,所以需要确定一种能在多种融合蛋白中发挥作用的稳定剂。为此,研究人员比较了尿素和商业稳定剂SimpleSol(来自ProteinSimple)对三种不同的融合蛋白治疗剂(样品1-3)的影响。 在没有稳定剂的情况下,样品1在电泳分析过程中发生聚集,形成不可重复的峰型(图1)。在加入2M尿素的情况下,样品1的峰型重复性得到提升。然而,在有尿素的情况下,峰高明显降低,约为无尿素情况的25%。相比之下,当样品1在含50%的SimpleSol的体系下进行分析时,峰型变得可重复,而且峰高和分辨率都保持不变(图1)。因此,对于样品1,SimpleSol比尿素更适合作为icIEF分析的稳定剂。图1 对于样品2,在没有添加稳定剂的情况下也观察到了聚集现象,导致了峰型的不可重复(图2)。与样品1不同,加入2M尿素并没有改善峰型的分离。只有当加入4M尿素时,峰型才变得可重现。然而,在这两种条件下,峰高和分辨率也都明显降低。在SimpleSol的存在下,峰高和分辨率都得到了保持(图2),再次证明SimpleSol在稳定样品方面优于尿素。对于样品2,SimpleSol同样比尿素更适合作为icIEF分析的稳定剂。数据表明,SimpleSol可以作为一种通用的蛋白质稳定剂用于融合蛋白的icIEF分析方法。图2紫外吸收和自发荧光双通道检测 在紫外吸收检测模式下研究人员分析样品1,样品峰从嘈杂的基线中区分不明显(图3)。为了克服这一挑战,研究人员同时利用自发荧光通道检测。与紫外吸收检测相比,荧光检测的每个峰组都显示出更高的信号,并且荧光检测的基线噪音更小。图3与传统IEF方法对比 icIEF方法与平板凝胶IEF方法产生了相似的峰型(图4)。然而,icIEF方法的每个峰的分辨率均得到了改善。此外,icIEF方法的灵敏度明显高于IEF方法;在获得凝胶IEF结果时,每个泳道要上样大约20μg的蛋白质,而利用icIEF分析时,最终样品溶液进样浓度为0.225μg/μL至0.45μg/μL。每次进样量约为5μL。相当于2.25μg-4.5μg的蛋白质,极大节约了样品。图4. icIEF方法与平板IEF方法检测融合蛋白对比图总结 NIFDC利用ProteinSimple全柱成像毛细管等电聚焦电泳技术建立并证明了用于融合蛋白电荷异质性表征的方法平台。该平台有如下特点: 使用了通用的蛋白质稳定剂SimpleSol,可以有效避免融合蛋白发生聚集或沉淀。对于一些样品,无需任何添加剂就能获得可重复峰型,与没有稳定剂的相同蛋白质的峰型相比,添加这种稳定剂对蛋白质的峰型的不利影响很小。使得该方法可以广泛用于分析多种融合蛋白,而不需要根据不同的样品更换稳定剂。同时可通过紫外和自发荧光双通道来检测蛋白质。自发荧光检测模式利用芳香族氨基酸(色氨酸、酪氨酸、苯丙氨酸)的自发荧光来实现且无需染料,可以提高灵敏度,减少由载体两性电解质引起的背景噪音。通过icIEF分离得到的每个峰组分的峰面积百分比和表观pI值,重复性好。总共对9种融合蛋白药物进行表征,每个组分的峰面积百分比和表观PI值的定量分析都有极佳的重复性。扫描下方二维码,获取ProteinSimple融合蛋白表征解决方案参考文献:1. Wu, Gang et al. “A platform method for charge heterogeneity characterization of fusion proteins by icIEF.” Analytical biochemistry vol. 638 (2022): 114505.关于我们ProteinSimple是美国纳斯达克上市公司Bio-Techne集团(NASDAQ:TECH)旗下行业领先的蛋白质分析品牌。我们致力于研发和生产更精准、更快速、更灵敏的创新性蛋白质分析工具,包括蛋白质电荷表征、蛋白质纯度分析、蛋白质翻译后修饰定量检测、蛋白质免疫实验如Western和ELISA定量检测蛋白质表达等技术,帮助疫苗研发、生物制药、细胞治疗、基因治疗、生物医学和生命科学等领域科学家解决蛋白质分析问题,深度解析蛋白质和疾病相互关系。联系我们地址:上海市长宁路1193号来福士广场3幢1901室 电话:021-60276091热线:4000-863-973邮箱:PS-Marketing.CN@bio-techne.com网址:www.bio-techne.com
  • 报告称无糖饮料存隐患
    日前,英国食品标准署表示将重新对阿斯巴甜展开研究,希望弄清楚为何长期以来总有部分人群声称食用后身体产生不良反应。专家指由于仍存有学术争议,有关产品应该在包装上标明成分。 记者日前在英国食品标准署网站上看到了这份声明。声明称,将开始对阿斯巴甜展开新的研究,聚焦为何有人报告对这种人工甜味剂产生不良反应,包括声称食用后引发头痛、腹痛等不同的症状。   阿斯巴甜的甜度是蔗糖的200倍,并一直使用在多种“无糖”食品中。包括各种常见的饮料和小食中,该署首席科学家安德鲁魏吉表示,这个研究不是针对阿斯巴甜的安全性的,原因是它的安全性已经被证明。   据这份声明称,英国食品标准署仍然会视阿斯巴甜为可安全消费,也不推荐改变它的使用现状,但是该署指知道有部分人会把身体不适和消费阿斯巴甜联系起来,所以认为研究很重要,将有助增加了解到底是怎么一回事。   据悉,有关研究将在7月份开始,并按照欧洲的标准进行,预计将会耗时约18个月。目前,正处于鉴别和选择实验自愿者的阶段,希望有关结果能在2011年初发布。   专家:明确标示成分由消费者选择   记者昨日在市面看见,阿斯巴甜已经作为一种取代蔗糖、白砂糖的化合物,被广泛应用于各种食品之中,这些产品大多标注“无糖”。例如可口可乐的零度可乐含有阿斯巴甜(含苯丙氨酸),啤儿茶爽等都有阿斯巴甜成分,不过记者发现百事可乐新上市的极度可乐将其写为甜味素(含苯丙氨酸)。   中山大学公共卫生学院营养学系教授蒋卓勤告诉本报记者,阿斯巴甜是最常用的甜味剂,对于英国重启研究,他并不意外,因为各国对阿斯巴甜可以有不同规定,甚至有些国家禁止添加。   鉴于目前阿斯巴甜仍在学术范围惹起争论,专家呼吁产品应尽量明示,由消费者去选择。暨南大学食品研究中心傅亮质疑百事可乐甜味素(含苯丙氨酸)的写法不是一个标准术语。“不管天然或合成成分,标签都必须明确标示名称,在食品添加剂中并没有‘甜味素’这个说法,也没有这个国家标准。”(刘俊)   链接一   国外阿斯巴甜禁用情况   反方:2007年,印尼考虑禁用阿斯巴甜。2008年,菲律宾有议员希望禁用阿斯巴甜。同年,美国新墨西哥州引入禁用阿斯巴甜法案,夏威夷也申请FDA解除对阿斯巴甜的使用批准。   正方:阿斯巴甜在全球近100个国家被批准作为食品添加剂的甜味素和增味剂,一些国家批准使用已超过20年。 (刘俊)   链接二   市面部分含人工合成甜味剂食品和饮料   百事轻怡:甜味素(含苯丙氨酸)   可口可乐健怡:安赛蜜   健力宝部分口味:安赛蜜   乐事部分薯片:阿斯巴甜   可比克部分薯片:阿斯巴甜   格力高部分百力滋:阿斯巴甜   喜之郎乳酸果冻:甜蜜素   四洲紫菜番茄味:阿斯巴甜   洽洽香瓜子:甜蜜素、安赛蜜   卡乐B粟一烧:阿斯巴甜   绿箭粒装:甜味素、安赛蜜   益达:甜味素、安赛蜜   劲浪口香糖:甜味素、安赛蜜   娃哈哈AD钙奶、营养快线:阿斯巴甜、安赛蜜 (刘俊)
  • 日立最新型号氨基酸分析仪LA8080
    1. 前言 1958年,D.H.Spackman,W.H.Stein和S.Moore发明了离子交换分离、茚三酮柱后衍生氨基酸技术,使得氨基酸分析选择性高、分析速度快、准确度高。而且成功实现了自动化,是研究的重要里程碑。自此,氨基酸分析仪被广泛应用到饲料、药物、食物等的氨基酸及其类似物的分析中。 日立从1962年开始潜心研究氨基酸分析仪,并在技术上取得了巨大的进步(图1)。图1 日立氨基酸分析仪的发展史 2. 产品特点 LA8080全自动氨基酸分析仪采用离子交换色谱分离和茚三酮柱后衍生技术,是分析氨基酸的专用仪,主要有以下三大特点: 操作简便设计符合人体工学,充分考虑到用户的视野范围和操作流程。衍生化反应前才将两种溶液进行实时混合,因此茚三酮溶剂无需冷藏。可直接使用市售的缓冲液和衍生溶剂。设计紧凑日立首次采用台式设计。占地空间小,主机体积缩小了约30%。前置设计综合考虑了多种因素,方便放试剂瓶和样品,更换色谱柱和密封配件也十分简便。数据可靠性高秉承了之前型号“L-8900”“L-8800”的优异性能,采用离子交换色谱法,基本分析条件和之前型号一样。茚三酮柱后衍生反应的稳定性高,因此可在蛋白水解和生理体液分析法中获得良好的定量分析数据。3. 应用 图2所示为通过标准分析法来分析蛋白质水解液的色谱图。以0.40mL/min流速输送柠檬酸钠缓冲液,使粒径为3μm的阳离子交换树脂色谱柱(i.d.4.6mm×60mm)保持57℃。然后,以0.35mL/min流速输送茚三酮试剂与缓冲液混合,135℃时衍生,在570nm和440nm的波长处测量吸光度。 分析30分钟后,各成分分离度达到1.2以上。另外,天门冬氨酸(Asp)的检出限为2.5 pmol以下(信噪比=2),峰面积重现性(2 nmol)良好,RSD低于1.0%。图2 蛋白质水解分析实例 在做蛋白质成分分析时,一般我们使用盐酸来水解蛋白,但是半胱氨酸、胱氨酸和蛋氨酸很容易被氧化。因此,目前在分析磺丙氨酸(CySO3H)和蛋氨酸砜(MetSON)时,先用过甲酸氧化,然后再加盐酸水解。如图5所示为仅分析CySO3H和MetSON的短程序分析应用实例。图3 过甲酸氧化水解和短程序分析实例4. 总结 Moore等人发明的氨基酸分析方法能够一直沿用至今,是因为他们在设计分离系统和衍生系统时,经过反复斟酌,精心设计。聚苯乙烯聚合物的离子交换树脂与氨基酸的相互作用十分巧妙,芳香族的中性氨基酸如苯丙氨酸和酪氨酸,增强了与色谱柱填料聚合物之间的疏水相互作用,从而实现了良好的分离。茚三酮的柱后衍生方法对样品中的杂质有较高的选择性,用户只需认真完成去蛋白以及过滤处理,即可获得高可靠性的分析结果。 “前人栽树,后人乘凉”,我十分惊叹于前人的智慧并满怀感激,今后我们会将氨基酸分析技术在日立发扬光大。撰写人*1 伊藤正人,成松郁子,裴敏伶,森崎敦己,福田真人,八木隆,大月繁夫,关一也,丰崎耕作日立高新科学公司 开发设计本部 *2 铃木裕志日立高新科学公司 应用技术部关于日立LA8080全自动氨基酸分析仪的详情,请见链接:https://www.instrument.com.cn/netshow/SH102446/C296474.htm 关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。
  • 婴幼儿食品和乳品中乳清蛋白的测定
    乳清蛋白是采用先进工艺从牛奶中分离提取出来的珍贵蛋白质,以其具有高生物价、高消化率、高蛋白质功效比和高利用率等优点,被誉为“蛋白zhi王”,是公认的人体优质蛋白质补充剂之一。其含量的高低决定了婴幼儿奶粉的品质,相关国标通过酸水解以后的氨基酸来评价乳清蛋白的含量,月旭科技推出的检测方法检测更加快捷可靠。样品前处理称取0.1g试样(含蛋白质7.5mg-25mg的样品),于水解管中,在冰水浴中冷却 30min后加入2mL已经冷却的过甲酸溶液,盖好瓶塞后置于0℃±1℃冰箱中,冰浴16h。向各水解管中加入0.3mL氢溴酸,振摇后冰浴 30min,在60℃±2℃氮吹仪上浓缩至干。向水解管内加入6moL/L盐酸10mL,冲入氮气1min 后,拧紧螺丝盖,将水解管放在110℃±1℃的恒温干燥箱内水解24h后取出冷却至室温。将水解液用超纯水转移并定容至25mL容量瓶中,混匀,滤纸过滤。吸取滤液1mL于60℃±2℃氮吹仪上浓缩至干,残留物用1mL超纯水溶解,待衍生。标准品溶液用超纯水配置磺基丙氨酸、天冬氨酸、丙氨酸、脯氨酸、苯丙氨酸标准品溶液1μmoL/mL,待衍生。衍生方法分别将月旭科技氨基酸衍生方法包中 A、B两种衍生试剂用稀释剂稀释至原来浓度的 1/5;精密量取混标溶液及样品溶液各160μL,加入稀释后的衍生溶液 A、B 各100μL,混匀,室温反应60min;然后加入正己烷溶液 400μL,旋紧盖子后振摇10s,室温静置分层,取下层液200μL,加入800μL水中,混匀;再移取200μL加入到800μL水中,混匀,用0.45μm 有机滤膜过滤,即得。色谱条件色谱柱:月旭Ultimate® AQ-C18(4.6×250mm,3μm)。柱温:40℃;紫外检测器:254nm; 流速:1.0mL/min; 进样量:5μL。谱图和数据1. 磺基丙氨酸、天冬氨酸、丙氨酸、脯氨酸、苯丙氨酸标准品溶液1μmoL/mL。2. 样品水解结论用月旭Ultimate® AQ-C18(4.6×250mm,3μm)色谱柱,在该色谱条件下测定,能满足实验需求。
  • 优化规模生产iPSC衍生的胰岛素合成的β细胞关键工艺参数
    一、摘要:1型糖尿病是一种会导致胰腺β细胞破坏的自身免疫性疾病,需要终身胰岛素治疗。胰岛移植提供了一个很有前途的解决方案,但也面临着诸如可用性有限和需要免疫抑制等挑战。诱导多能干细胞(iPSCs)为功能性β细胞提供了一个潜在的替代来源,并具有大规模生产的能力。然而,目前的分化方案,主要是在混合或2D环境中进行的,缺乏可延展性和悬浮培养的最佳条件。我们研究了一系列可能影响分化过程的生物反应器放大过程参数。该研究采用了一种优化的HD-DoE协议,该协议设计具有可扩展性,并在0.5L(PBS-0.5 Mini)垂直轮式生物反应器中实现。我们开发了一种三阶段的悬浮生长过程,从贴壁培养过渡到悬浮培养,TB2培养基在规模化过程中支持iPSC的生长。阶段性优化方法和延长分化时间用于增强iPSC衍生的胰岛样簇的标记物表达和成熟。连续的生物反应器运行被用于研究营养和生长的限制以及对分化的影响。将连续生物反应器与对照培养基变化生物反应器进行比较,显示出代谢变化和更类似b细胞的分化谱。从试验中收集的低温保存的聚集物被恢复,恢复后显示出活力和胰岛素分泌能力得到维持,这表明它们具有存储和未来移植治疗的潜力。本研究表明,阶段时间的增加或限制培养基补充以减少乳酸积累可以增加在大规模悬浮环境中培养的胰岛素合成细胞的分化能力。二、实验内容节选:营养消耗和代谢物的分析 为了检测细胞潜在的替代碳源和氮源,我们分析了对照组和连续生物反应器在整个培养过程中的氨基酸代谢(图S5A-B)。使用快速培养基氨基酸维生素分析仪Rebel(908 Devices)来分析氨基酸浓度。必需氨基酸,如组氨酸、异亮氨酸、亮氨酸、赖氨酸、蛋氨酸、苯丙氨酸、苏氨酸、色氨酸和缬氨酸在整个培养期间都保持不变。然而,一些氨基酸在两种培养基中都完全耗尽,包括5天后的L-天冬氨酸和16天后的L-谷氨酸。氨基酸代谢对正常的胰腺β细胞功能至关重要,丙氨酸和谷氨酰胺以其调节β细胞功能和胰岛素分泌的作用而闻名。在培养结束时,谷氨酰胺和丙氨酸的浓度高于新鲜培养基,表明它们不限制生长(图S5A-B)。然而,它们增加的来源仍然未知,不像之前的观察而将它们的增加归因于GlutaMAX&trade 添加剂。与起始培养基相比,丙氨酸和谷氨酰胺水平的升高在对照组生物反应器中没有观察到,后者在不同阶段之间和整个延长的内分泌诱导阶段都有频繁的培养基变化。两种生物反应器之间无其他显著性差异。如前所述,限制培养基补充的生物反应器比对照培养基变化的生物反应器具有更好的分化能力。氨基酸浓度调节和血清缺乏与促进来自人类干细胞的胰腺β细胞的发育有关。 此外,使用FLEX2(Nova Biomedical)对两种培养结果进行评估,分析两种反应器的整个培养期间Gln、Glu、NH4+、Na+、K+、Ca++、pH、PCO2和PO2(图S6A-B)。在连续生物反应器中,培养基的渗透压稳定增加,但保持在280-320mOsm/kg范围内。这种增加可以归因于由营养物质代谢和其他废物产生的溶质的积累。相比之下,对照培养基的渗透压变化的生物反应器随着培养基在细胞分化过程的不同阶段被补充而波动。谷氨酰胺和谷氨酸水平也进行了评估,两者都显示随着时间的推移而消耗。这与使用Rebel分析仪进行的测量结果一致。两种生物反应器在生物分化上具有可比性,除了在连续生物反应器中pH的持续下降和预期的耗氧速率方面的主要差异。在反应液中测量的气体可能会受到收集和测量之间时间的影响,但是,对所有样品的总体影响是相同的。总体数据显示,在培养10天或PP诱导分化阶段后,PO2水平开始稳步下降。尽管反应液与两个生物反应器顶空内的气体体积相同(500毫升),但与控制培养基补充变化生物反应器相比,进入反应液的氧气通量可能不足以补充0.5L连续容器中增加的耗氧量。文献来源:doi.org/10.21203
  • 使用超高效合相色谱分析短杆菌肽
    使用超高效合相色谱(UPC2)分析短杆菌肽 Sean M. McCarthy, Andrew J. Aubin, 和 Michael D. Jones 沃特世公司(美国马萨诸塞州米尔福德) 应用效益 ■ 快速分离短杆菌肽 ■ 载量线性响应 ■ 准确、高精度分析短杆菌肽的方法 ■ 有可能用于其它疏水性肽和蛋白质 沃特世解决方案 ACQUITY UPC2系统 ACQUITY® SQD ACQUITY UPC2 CSH氟苯基色谱柱 Empower&trade 3软件 关键词 超高效合相色谱、UPC2、疏水性肽、短杆菌肽 简介 用反相液相色谱(RPLC)分析疏水性肽和蛋白质难度很大,因为溶液中经常需要使用洗涤剂保持疏水性物质的稳定性,而这些洗涤剂容易发生聚集和/或沉淀,严重影响它们的回收,这些因素以及其它原因使得难以用RPLC分离疏水性肽和蛋白质。 在本应用纪要中,我们为您介绍一种在ACQUITY UPC2TM系统上使用沃特世(Waters® )超高效合相色谱技术分离典型跨膜肽-短杆菌肽的方法。 短杆菌肽是由芽孢杆菌产生的一种常见和已被良好表征的跨膜肽物质,它被用作对抗革兰氏阳性和某些革兰氏阴性细菌的局部用抗生素,短杆菌肽包括通用组成为甲酰-L-缬氨酸-甘氨酸-L-丙氨酸-D-亮氨酸-L-丙氨酸-D-缬氨酸-L-缬氨酸-D-缬氨酸-L-色氨酸-D-亮氨酸-L-X-D-亮氨酸-L-色氨酸-D-亮氨酸-L-色氨酸-氨基乙醇的一族化合物,其中X取决于短杆菌肽分子,即分别占总短杆菌肽量约87.5%、7.1%和5.1%的革兰氏A(X=色氨酸)、革兰氏B(X=苯丙氨酸)和革兰氏C(X=酪氨酸),1需要交替的D和L氨基酸单元构成_-螺旋状。 我们研究了色谱柱化学品、流动相改性剂和梯度斜率对分离短杆菌肽的影响。采用优化方法分离市场上销售的非处方药物(OTC),将测定的短杆菌肽浓度与标示量进行对比。采用质谱仪测定短杆菌肽的浓度,采用选择离子谱表征每种物质。在ACQUITY UPC2系统上使用我们的方法,可得到线性和可重复的结果&mdash &mdash 测定的OTC制剂浓度为标示量的98.4%。 试验 测试条件 除非另有说明,以下是用于所有色谱最终方法的最佳条件。 UPC2测试条件 UPC2系统: ACQUITY UPC2 检测器: PDA、ACQUITY SQD PDA @ 280nm,分辨率为6 nm(补偿400至500 nm) 色谱柱: ACQUITY UPC2 CSH 氟苯基,3.0 x 100 mm, 1.7 &mu m 柱温: 50 ° C 样品温度: 15 ° C UPC2 ABPR: 1885 psi 进样量: 1 &mu L 流速: 2.0 mL/min 流动相A: CO2 流动相B: 含0.1%TFA的甲醇(除非另有标示) 梯度: 20%至30% B,1.5min SQD条件 离子源: ES+ 锥孔电压: 20 V 毛细管电压:3.7kV 源温度: 150 ° C 脱溶剂气温度: 500 ° C 脱溶剂气体流速: 400 L/hr 锥孔气体流速: 25 L/hr SIR: 922.6,930.3,941.9 数据管理 Empower 3软件 样品描述 用解硫胺素芽孢杆菌(短芽孢杆菌)制备的短杆菌肽从Sigma Aldrich公司购买,将样品溶解在甲醇中制成0.5mg/mL浓度的溶液,如需要,可用甲醇稀释。含有短杆菌肽的非处方软膏是从当地药店购买的。将0.2g软膏溶解在10mL正己烷中,然后用5mL甲醇萃取短杆菌肽,去除甲醇层,用0.2-&mu m的烧结玻璃盘过滤,然后直接进样ACQUITY UPC2系统。 结果与讨论 我们系统性地筛选了四种色谱柱,测定哪种分离效果最佳,结果如图1所示,色谱柱筛选过程可在1小时内非常快速地完成。在我们设定的筛选条件下,BEH 2-EP和BEH色谱柱未检测到谱峰,由于其它色谱柱表现出合适的色谱性能,因而未对这两者的非洗脱原因深入研究,其中ACQUITY UPC2 CSH氟苯基色谱柱检测的色谱峰形最佳,因此采用该色谱柱继续研究。 图1.通过短杆菌肽标准物的色谱峰形和保留时间筛选各种化学特性色谱柱。所有色谱柱规格为3.0x100mm,填装亚-2-微米填料;所有分离条件都采用流动相 A:CO2、流动相 B、含0.1% FA的MeOH、2 mL/min, 3%B至25% B,5min。 为了分离短杆菌肽物质,对酸性改性剂的影响进行了研究,结果表明:使用三氟乙酸(TFA)可得到稍好的峰形,提高了短杆菌肽A和短杆菌肽C之间的分离度,结果如图2所示。已知TFA会抑制质谱电离,但每种物质的信号都足以定量检测治疗制剂,后续将对此进行讨论。对于要求更高灵敏度的应用,可能需要降低TFA浓度或使用甲酸,以达到希望的检测限值。 图2.酸性改性剂对分离短杆菌肽的影响。 当设置好合适色谱条件后,通过减少梯度时间优化分离过程,结果如图3所示,我们能够在1.5分钟时间内使每种短杆菌肽组分的分离度达到1.4或更高,在相同流速下通过减少运行时间增加梯度斜率,不但实现有效分离,同时还将短杆菌肽A的信噪比从336提高至605。 图3.UV 280-nm痕量检测优化分离短杆菌肽A、B和C。 我们测试了最佳分离条件,能够使用单四极杆质谱(SQD)检测每种物质,图4显示:每种物质都被质谱良好分离和检测到,另外每种短杆菌肽物质都显示含有绝大多数的M+2H离子,后续的研究将使用这些参数进行选择离子监测。 图4:每种短杆菌肽物质的总离子图谱-A和加合离子图谱-B-D。选择强度最高的离子评估市场上销售的抗菌制剂中的短杆菌肽含量,对于多肽序列,红色残基是L型同分异构体,黑色残基是D型同分异构体。 为了评估我们的方法是否适用于定量分析市场上销售的非处方药中的短杆菌肽,我们在ACQUITY SQD上使用选择离子监测,结果如图5A所示。我们绘制浓度-峰面积曲线,得到每种物质的校正曲线。结果发现:如图5B-D所示,每种成分在测试范围内都呈线性响应。另外还使用校正曲线测定了非处方药物中的每种短杆菌肽物质浓度。 图5,图A-25.0、12.5、1.25和0.625mg/mL浓度的标准溶液中含有短杆菌肽物质的叠加选择离子谱。图B、C和D-每种短杆菌肽A、B和C各自的MS峰面积线性拟合图。 使用开发的方法评估非处方药物中的短杆菌肽物质的浓度和相对丰度。如图6所示,重复分析结果表明:每种短杆菌肽%RSD值小,计算浓度与标签上的标称值相吻合;我们还发现短杆菌肽物质的相对丰度与文献报道的丰度非常吻合1。 图6. 从抗菌软膏中萃取的短杆菌肽A、B和C的叠加选择离子谱重复进样分析的计算RSD值(N=3)在可接受限值以内,计算丰度与文献报道数值非常吻合1。 结论 正如本应用纪要所展示的,ACQUITY UPC2系统与ACQUITYUPC2色谱柱化学结合使用,可为短杆菌肽提供简单、准确和可重现的分析方法。该工作表明ACQUITY UPC2系统可用于分析疏水性肽,还可能用于分析疏水性蛋白质,例如膜蛋白。 参考文献 1. The Merck Index and Encyclopedia of Chemicals, Drugs, and Biologicals.13th ed. Whitehouse Station, NJ : Merck Research Laboratories 2001. 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2010年沃特世拥有16.4亿美元的收入和5,400名员工,它将继续带领全世界的客户探索科学并取得卓越成就。 联系人: 叶晓晨 沃特世科技(上海)有限公司 市场服务部 xiao_chen_ye@waters.com 周瑞琳(GraceChow) 泰信策略(PMC) 020-83569288 13602845427 grace.chow@pmc.com.cn
  • 人工甜味剂“阿斯巴甜”会致癌吗?
    【谣言】最近有一则消息引发了中国消费者的担忧:2015年8月起,百事可乐旗下的健怡系列汽水将不再使用有致癌争议的代糖“阿斯巴甜”,改用由三氯蔗糖、乙酰磺胺酸钾混合而成的代糖。这一改变仅限于美国,不涉及中国市场。  【真相】人工甜味剂是否致癌是个老调重弹的问题。多个权威机构都曾为“阿斯巴甜”开出安全证书,包括FDA(美国食品药品监督管理局)、EFSA(欧盟食品安全局)、国际食品添加剂委员会等权威机构都认为,“阿斯巴甜”在推荐剂量内使用不会对健康造成危害,也没有发现对人体有危害或者致癌的案例。唯一需要强调的是,由于“阿斯巴甜”含有苯丙氨酸,有苯丙酮酸尿症的患者不能食用,还有一部分人有“阿斯巴甜”不耐症,会产生诸如呕吐、恶心等类似过敏症状。
  • 《NY/T 3001-2016 饲料中氨基酸的测定 毛细管电泳法》发布-农业部公告第2466号
    《NY/T 3001-2016 饲料中氨基酸的测定 毛细管电泳法》等83项标准业经专家审定通过,现批准发布为中华人民共和国农业行业标准,自2017年4月1日起实施。本分析方法用于测定饲料和饲料原料中的下列氨基酸:精氨酸、赖氨酸、 酪氨酸、苯丙氨酸、组氨酸、亮氨酸和异亮氨酸(总量)、蛋氨酸、缬氨酸、脯氨酸、苏氨酸、丝氨酸、丙氨酸、甘氨酸、半胱氨酸、色氨酸、谷氨酸和天门冬氨酸。 高效毛细管电泳仪是一种快速、简便的分析仪器,可应用于该标准采用LUMEX的毛细管电泳仪及等。多个行业,可进行定性和定量分析。仪器性价比高,无需要色谱柱,维护成本趋于零。俄罗斯已有多家企业顺利应用。农业部标准链接:http://www.moa.gov.cn/zwllm/tzgg/gg/201611/t20161103_5348351.htm
  • 上海通微最新推出饲料添加剂检测解决方案
    近几年,人类食品安全质量问题层出不穷,成为国内外关注焦点。跟食品安全息息相关的饲料行业也成为重点管控对象。2012年,一系列的饲料、畜牧法规条例相继出台,标志着将对畜牧产品质量安全、饲料行业行为将更加规范。   2012年5月1日生效的国务院令第609号《饲料和饲料添加剂管理条例》明确规定: 饲料、饲料添加剂生产企业应当按照国务院农业行政主管部门的规定和有关标准,对采购的饲料原料、单一饲料、饲料添加剂、药物饲料添加剂、添加剂预 混合饲料和用于饲料添加剂生产的原料进行查验或者检验。   2012年10月22日,农业部1849号公告,公布了《饲料生产企业许可条件》和《混合型饲料添加剂生产企业许可条件》。两许可条件自2012年12月1日起施行。该许可条件规定必须没有饮料检测实验室,规定检测实验室中必须配备的仪器,其中包括原子吸收分光光度计、高效液相色谱仪等相关检测仪器。   上海通微分析技术有限公司依托自身强大的研发团队,利用EasySepTM-1020高性能自动化液相色谱系统为饲料行业开发出多套饲料添加剂检测专用高效解决方案。检测项目包括:   饲料中20种氨基酸的检测:牛磺酸(2-aminoethanesulfonic acid)、甘氨酸(Gly)、丝氨酸(Ser)、天冬氨酸(Asp)、谷氨酰胺(Gln)、苏氨酸(Thr)、丙氨酸(Ala)、半胱氨酸(Cys)、脯氨酸(Pro)、胱氨酸(Cys)、赖氨酸(Lys)、组氨酸(His)、缬氨酸(Val)、甲硫氨酸(Met)、精氨酸(Arg)、酪氨酸(Tyr)、异亮氨酸(Ile)、亮氨酸(Leu)、苯丙氨酸(Phe)、色氨酸(Trp)   饲料中维生素的检测:烟酸、维生素B5、维生素B6、维生素B1、叶酸、维生素B12、维生素B2、维生素K3、维生素A、乙酸酯、维生素D3、维生素E   饲料中其他添加剂的检测:苏丹红、三聚氰胺   上海通微分析技术有限公司独创未衍生氨基酸的直接测定分析法,比传统的衍生检测法更快速、简便、成本低、准确度高。   详情,请咨询上海通微分析技术有限公司http://www.instrument.com.cn/netshow/SH100522/office.asp   上海通微公司实力   留美博士阎超教授2002年创办,总部位于美国硅谷的美国通微技术股份有限公司。   中国分析仪器行业内唯一一家经国家批准的企业博士后科研工作站。   通微自主研发生产的产品获得国家和行业内无数奖项,也是取得国内外专利最多的科技型企机构   与国内多所著名研究所和高校联合,设有联合实验室,在行业解决方案方面提供强有力的技术支持   上海通微分析技术有限公司是国内一流的集色谱仪器研发、生产、销售为一体高新技术企业,下设有苏州环球色谱有限责任公司、无锡通微检测技术有限公司两个全资子公司。
  • 合成生物学前沿 | 代谢组结合代谢流研究高效解析糖基转移酶生物功能
    合成生物学正在引领第三次生物技术革新,其作为底层技术将驱动多个领域的创新发展,包括医药、食品、农业、材料、环境甚至信息存储等。合成生物学是生物学工程化高度交叉的前沿学科研究域,包含几个不同的研究层次:认识生命、改造生命和创造生命;要想实现其终极目标,还需要在生命本质探索及相关技术的不断创新与应用上持续深入。我们将紧跟合成生物学领域的前沿研究进展,为大家系列解读该领域的最新科研成果。本期分享植物酶功能研究新方法,酶功能的深入认识将为下一步异源设计细胞工厂提供重要依据。研究成果来自中国科学院深圳先进技术研究院合成基因组学研究中心的赵乔研究员课题组在 Molecular Plant 上发表的题为“Glycosides-specific metabolomics combined with precursor isotopic labeling for characterizating plant glycosyltransferases”的研究论文[1],为大家介绍一种特异针对糖基化合物的代谢组(glycosides-specific metabolomics,GSM)和同位素标记前体化合物示踪(precursor isotopic labeling,PIL)相结合的方法,可以高效、准确鉴定糖基转移酶(glycosyltransferases,GTs)在植物体内的产物,解析 GTs 在特定代谢通路中的作用。该方法极大缩小了目标化合物的范围,在糖基化合物定性、方法可靠性方面较传统生化手段或非靶向方法有较大提升,为植物糖基转移酶的功能解析提供了新手段。专家解读核心信息赵乔研究员中国科学院深圳先进技术研究院合成所合成基因组学研究中心主任。于美国俄亥俄州立大学植物系 Iris Meier 实验室取得博士学位后,在美国 Noble Foundation 美国科学院院士 Richard Dixon 实验室从事博士后研究。主要研究领域是植物天然产物的合成以及调控机制。已在该领域取得了一系列重要的成果,共发表 SCI 论文 30 余篇,累计他引 1500 次,其中第一或通讯作者的文章发表在包括 Molecular Plant、PNAS、Plant Cell 以及 Trends in Plant Science 等国际专业期刊上。“植物的次生代谢物种类繁多且修饰丰富,其中糖基化修饰在提供结构基础的同时也为其多样化的生物学功能发挥了重要作用。为了有效鉴定糖基化过程,需要使用高分辨质谱进行非靶向的特异性代谢组学研究,同时结合同位素标记来跟踪不同糖苷代谢物在突变体中的示踪结果以分析 UGTs 的功能,进而全面表征植物糖基化修饰的次级代谢物,为拓展天然化合物的高效生物合成提供依据。”酶功能研究及植物次级代谢产物鉴定的挑战植物中含有丰富的次级代谢产物,种类超过 40 万种。糖基化是一种常见的修饰方式,赋予化合物复杂且多样的结构,形成种类繁多的糖基化产物。糖基化修饰可以改变相应苷元的催化活性、溶解性、稳定性及其在细胞中的定位,在调节激素的稳态平衡,外源有害物质解毒,抵御生物和非生物胁迫中都发挥着重要的作用。同时,糖基化修饰可以改变天然产物的药理活性和生物利用率等性质,这些糖苷类化合物是天然药物的重要来源。植物 UGTs(UDP 糖基转移酶)以多基因家族的形式存在,它们能够利用不同的糖基供体,糖基化多种多样的植物小分子化合物。目前的研究多数集中在生化功能的确定上,UGTs 具有底物杂泛性和催化杂泛性,同一个 UGT 在体外可以催化结构不同的底物,且不同的 UGTs 可以识别同一种的底物。此外,由于植物体内的底物可得性和特殊且复杂多变的细胞环境,这些通过生化方法对 UGTs 活性、生理功能等的研究结果往往不能反映 UGTs 在植物体内的真实功能。GSM-PIL 方法实现对植物糖基化修饰次级代谢物的高效、准确鉴定非靶向特异性代谢组学(GSM):基于内源碰撞诱导解离(ISCID)的中性质量丢失模式建立非靶向特异性代谢组学方法,以对糖基化修饰的次级代谢物进行针对性分析。该 GSM 方法可将受到 UDP 糖基转移酶(以 UGT72Es 为例)影响的代谢物范围从 1000 种缩小至 100 个。同位素标记前体化合物示踪(PIL,代谢流):使用同位素标记的苯丙氨酸前体对 UGT72E 在特定的苯丙氨酸代谢通路中的作用进行示踪分析,可进一步将目标产物范围缩小到 22 个。图 1. GSM-PIL 方法解析 UGT72Es 在植物体内的功能GSM-PIL 方法的适用性及可靠性通过 GSM-PIL 方法,不但可以鉴定到已发表的两种木质素单体糖基化产物,还发现 UGT72E 家族参与植物苯丙烷通路中其他 15 种化合物的糖基修饰作用。进一步通过 UGT72Es 的体外酶活分析,植物内源基因过表达以及遗传互补等实验证实 UGT72Es 对这些化合物的糖基化作用,验证了 GSM-PIL 方法的可靠性。同时,该研究还发现了 UGT72Es 在植物体内对香豆素的糖基化作用,进而在植物碱性缺铁胁迫环境下发挥重要作用。最后,通过 UGT78D2 的功能解析,展示了 GSM-PIL 方法的普遍适用性。高分辨质谱结合数据高效提取软件协助 GSM-PIL 方法建立为了确保糖基化修饰的次级代谢物以及同位素示踪化合物的的高效检测,本研究采用安捷伦 6546 QTOF LCMS 系统进行数据采集;进一步结合 MassHunter、Profinder 数据处理软件对代谢组和同位素示踪数据进行有效提取和解析。图 2. 基于高分辨质谱的 GSM-PIL 方法建立 结 语 综上,基于液相-高分辨质谱的 GSM-PIL 方法可以高效解析 UGTs 在植物体内的功能。相对于传统一对一“钓鱼”式地探索 UGTs 功能,GSM-PIL 方法可以“捕鱼”式地一网打尽 UGTs 的产物,全面鉴定未知的底物或糖基化产物,解析 UGTs 在植物中未知的生理功能,揭示了植物中的糖基化网络比我们想象中更复杂。同时该方法可用于探索其他代谢途径,帮助人们进一步了解、进而利用植物合成途径,为拓展天然化合物的高效生物合成提供依据。参考文献:[1] Jie Wu, Wentao Zhu, Xiaotong Shan, Jinyue Liu, Lingling Zhao and Qiao Zhao. Glycosides-specific metabolomics combined with precursor isotopic labeling for characterizating plant glycosyltransferases. Molecular Plant 15, 1517-1532.
  • 阿斯巴甜被列为致癌物,“无糖”爱好者的狂欢结束了?
    近日,世界卫生组织下属国际癌症研究机构(IARC)宣布了一则重磅消息,无糖饮食中常用的代糖——阿斯巴甜被正式列为2B类致癌物阿斯巴甜究竟是什么? 自20世纪80年代起,阿斯巴甜就广泛用于各种食品和工业,作为一种人造甜味剂,它的甜度大约是糖的200倍,且1克阿斯巴甜仅产生约4卡路里的热量。在世界卫生组织建议限制糖类摄入后,阿斯巴甜更是以“代糖”的身份广泛出现在消费市场,市面上常见零度可乐、无糖饮料、糖果、调制酒、酸奶、蛋糕等日常食品饮料都有着阿斯巴甜的身影。阿斯巴甜由苯丙胺酸及天冬胺酸这两种胺基酸所合成,含有50%苯丙氨酸、40%天门冬胺酸、10%甲醇。除了提供甜味外,阿斯巴甜中的苯丙氨酸是人体必需的且不能自身合成的氨基酸之一,它在人体内能合成重要的神经递质与激素,对人体有许多作用,例如可以令情绪变得高昂,消除抑郁情绪,降低饥饿感等等。但阿斯巴甜也并非适合所有人食用,如孕妇、婴幼儿、苯丙酮尿症患者就必须避免食用阿斯巴甜,以免对身体产生健康危害。被列为致癌物,和“无糖”饮食说再见?IARC大致将致癌性分为5个等级,包括1类(有确认致癌性)、2A类(很可能有致癌性)、2B类(有可能致癌)、3类(尚不能确定是否致癌)、4类(基本无致癌作用)。2A和2B的界定类似但又有区别:2A类致癌物是对人很可能致癌,此类致癌物对人的致癌性证据有限,对实验动物致癌性证据充分。2B类致癌物则是对人可能致癌,此类致癌物对人致癌性证据有限,对实验动物致癌性证据并不充分,或对人类致癌性证据不足,对实验动物致癌性证据充分。阿斯巴甜此次被列为致癌物的分类处于2B类——可能对人类有致癌性但缺乏充分科学证据。其分类低于日常接触频率更多的食用红肉、烟酒槟榔等。粮食及农业组织食品添加剂联合专家委员会(JECFA)认为,评估的数据表明没有足够的理由改变先前确定的阿斯巴甜每日可接受摄入量(ADI)0-40 毫克/公斤体重。因此,委员会重申,一个人每天的摄入量在这个限度内是安全的。例如,假设没有从其他食物来源摄入,一罐含有 200 或 300 毫克阿斯巴甜的无糖软饮料,一个体重 70 公斤的成年人每天需要消耗 9-14 罐以上才能超过可接受的每日摄入量。IARC的 Mary Schubauer-Berigan 博士表示,“在人类和动物中致癌证据有限,如何致癌的机制证据同样有限,需要更多的研究来完善对食用阿斯巴甜是否构成致癌危害的理解。”同样,我国对食品安全有着严格的国家标准,对阿斯巴甜的使用范围、最大使用量等进行严格规范管理。依据的《食品添加剂使用标准》(GB2760),在食品添加剂批准使用前都会经过一系列严格的程序,保证其安全性和工艺必要性。国家食品安全风险评估中心联合国家癌症中心结合JECFA最新评估结果和我国居民消费情况进行安全性评估,阿斯巴甜按照我国现行标准规范使用可以保障安全。捍卫食品安全标准,海岸鸿蒙提供优质解决方案食品安全是保障人类健康和生命安全的基础,关系到每位公民的生活,因此确保食品安全是一个国家的重要任务,是相关企业应尽的责任义务。海岸鸿蒙深耕标准物质领域27年,拥有一系列食品检测用标准物质,助力检测检验机构的工作,共同捍卫食品安全标准。编号名称质量浓度介质规格标准值BW0826阿斯巴甜溶液标准物质1000μg/mLH2O5mLBW0777纽甜溶液标准物质1000μg/mLH2O5mLGBW(E)100166食品甜味剂糖精钠溶液标准物质10.0mg/mLH2O10mlGBW(E)100171食品甜味剂乙酰磺胺酸钾溶液标准物质10.0mg/mLH2O5mLGBW(E)100172食品甜味剂乙酰磺胺酸钾、糖精钠溶液标准物质10.0mg/mLH2O5mLGBW(E)100173食品甜味剂环己基氨基磺酸钠(甜蜜素)溶液标准物质10.00mg/mLH2O5mLBW0815苯甲酸、山梨酸、糖精钠、安赛蜜混合溶液标准物质100μg/mLH2O10ml
  • 基于NMR的代谢组学研究助力新冠肺炎重症早发现*
    虽然造成新冠肺炎(COVID-19)的新型冠状病毒(SARS-CoV-2)主要是呼吸道病毒,但这种疾病会累及全身的器官。除了肺部损伤和呼吸困难外,新冠肺炎患者还表现出神经、肾、肝和血管受损的症状。 研究表明,新冠肺炎患者具有与健康对照者不同的、提示代谢紊乱和血脂异常的代谢谱,且它们也与疾病的严重度相关联。这提升了利用代谢组学来识别具有最高重症风险的新冠肺炎患者的可能性。然而,大多数此类研究只是将新冠肺炎患者与健康对照者进行比较,导致无法确定这种关联是新冠肺炎特有的,还是只是提示危重疾病的普适性标志。 来自德国吕贝克大学的研究人员,通过将接受重症监护室(ICU)治疗的新冠肺炎患者,与在同一ICU进行心源性休克治疗的患者进行比较,研究了代谢谱的特异性。 近乎完美的区分 研究人员分析了5名接受ICU治疗的新冠肺炎患者、11名新冠病毒检测阴性的心源性休克患者,以及58名健康对照者的代谢和脂蛋白谱。他们在布鲁克Avance IVDr平台*(配备TXI探头的布鲁克核磁共振代谢分析系统)上总共分析了276份血清样品。初步的非靶向NMR代谢组学和脂质组学研究表明,新冠肺炎患者与健康对照者及心源性休克患者之间都存在差异。通过针对性分析,研究人员能够量化来自NMR谱图的代谢物和脂蛋白,并识别引起最大差异的代谢物类别。这些分析实现了对新冠肺炎患者与健康对照者及心源性休克患者近乎完美的区分。 为了进一步研究新冠肺炎的代谢影响,研究人员对代谢物和脂蛋白进行了比对分析。结果显示,有许多与能量状态紊乱、肝损伤和血脂异常相关的一致变化。 与其他重症患者截然不同的代谢谱 被识别出的一些关键特征包括低谷氨酰胺/谷氨酸比值,这是由分解代谢疾病状态下谷氨酰胺消耗增加所导致的。这一重症感染的典型指标与新冠肺炎有关联,但与心源性休克无关联。 苯丙氨酸是新冠肺炎患者出现上升的另一特征参数。该氨基酸通常在肝脏中代谢,其水平上升提示肝功能受损。 一些标志物提示能量代谢严重紊乱和代谢抑制,包括葡萄糖水平升高,以及组氨酸、蛋氨酸和乳酸水平降低。但是,这些变化只是新冠肺炎患者相比健康对照者所存在的差异,而与心源性休克患者相比没有这些差异,这表明它们可能不是新冠肺炎所特有的,而是提示危重患者能量状态紊乱的普适性指标。 根据之前的研究,研究人员还发现,新冠肺炎患者的脂蛋白谱严重紊乱,提示心血管疾病风险上升。该脂蛋白谱中很大一部分都与心源性休克患者不同。尤其要提到的是,新冠肺炎患者的极低密度脂蛋白(VLDL)、小颗粒VLDL组分及中密度脂蛋白水平上升——它们相比更大的低密度脂蛋白颗粒更易导致动脉粥样化;因此是引起心血管疾病和心脏损伤的风险因素。此外,新冠肺炎患者的甘油三酯水平相比健康对照者和心源性休克患者都有上升。 惊人的关联 该研究还研究了无症状感染或轻症之后持续发生的代谢变化。为此,研究人员分析了来自18个具有新冠病毒抗体的人的34份血清样本,并与来自相同年龄和性别的、不具有新冠病毒抗体的对照者的样本进行了比较。两组患者在采血前的急性冠状病毒感染检测均为阴性。 主成分分析(PCA)显示,两组之间的代谢谱和脂蛋白谱无显著差异,区分度很低,说明总体血清谱无显著差异。研究人员表示,这意味着新冠肺炎感染康复之后代谢谱回归正常。 然而,在来自曾经的轻症感染者的样本中,发现了抗体滴度和代谢健康标志物之间的关联。例如,抗体滴度与心血管风险标志物(包括小颗粒LDL-6、胆固醇和磷脂)呈负相关。还发现抗体滴度与作为代谢健康标志物的甘氨酸呈正相关。研究人员指出,他们无法从现有数据中确定因果关系,但拥有健康的代谢状态的个体可能更有可能对病毒产生有效的免疫反应,使得感染后的抗体滴度更高。 总之,研究人员表示,他们的发现表明新冠肺炎重症患者的代谢高度紊乱,包括分解代谢状态、肝损伤和严重血脂异常等。这一信息表明,基于NMR的代谢组学研究可被进一步用于患者的识别和分层,以帮助预测新冠肺炎的严重度。 *布鲁克核磁共振波谱仪仅供研究人员使用,不能用于临床诊断。 参考资料 Schmelter F, Foeh B, Mallagaray A et al. (2021) Metabolic markers distinguish COVID-19 from other intensive care patients and show potential to stratify for disease risk. medRxiv preprint. doi: https://doi.org/10.1101/2021.01.13.21249645.
  • 2秒检测出“农药残留”—新型且无酶便携式传感平台研发成功
    近日,中国科学院合肥物质科学研究院固体物理研究所研究员蒋长龙团队开发了一种新型且无酶的便携式传感平台(以下简称传感平台),2秒内检测出环境和食品中的草甘膦残留,最终浓度结果直接显示在智能手机上。相关研究成果发表于《危害物质杂志》。课题组人员用试纸现场检测草甘膦 课题组供图 现场2秒“看到”结果 “人们只需将瓜果蔬菜表面润湿,用检测试纸在表面轻轻擦拭,约2秒后,用紫外灯照射,通过试纸颜色变化就可以大致判断草甘膦残留浓度的高低。”蒋长龙向《中国科学报》介绍。如果试纸是蓝色,说明草甘膦残留浓度很低;试纸是粉色时,说明浓度较大;当试纸呈现橙红色时,说明浓度很高。 “这种方法属于初筛,适合人们居家自测。”蒋长龙说,若想得到更精确结果,需要将试纸放入传感平台的试纸槽内。通过传感平台自带的紫外灯照射,再用手机拍摄试纸照片,利用手机的颜色识别软件自动分析转换,显示最终农残浓度结果超标还是未超标。 蒋长龙介绍,传感平台包括传感器、可用于读取数据的智能手机、提供荧光检测环境的手机附件。“传感器是主要‘功臣’,由团队设计制备的蓝色碳点和金纳米团簇构成,能快速‘识别检测草甘膦’。”其原理是当草甘膦加入传感器后,与碳点反应,导致碳点的蓝色荧光快速猝灭,而金纳米团簇的橙色荧光保持不变。从视觉上来看,试纸荧光颜色变化从蓝色到粉色最终变为橙红色。团队对一些实际样品,比如沾有草甘膦残留的瓜果蔬菜、水样进行测试,其检测结果与实验室的检测结果基本一致。 蒋长龙表示,其团队研发的传感器更加快速便捷,没有经过专业培训的人也可操作使用,并且实现实验室检测无法做到的现场或实时检测,适用于基层环境监督部门、农贸市场及超市、个体消费者。比率荧光传感器快速可视化定量检测草甘膦残留示意图 课题组供图 “农药残留”不等于“农药残留超标” 草甘膦是目前国际上使用量最大的除草剂,在有机磷农药中占有重要位置。“这也是团队选择草甘膦做农残检测的重要原因。” 蒋长龙说。 草甘膦通过茎叶吸收后传导到植物各部位,抑制植物体内的烯醇丙酮基莽草素磷酸合成酶,从而抑制莽草素向苯丙氨酸、酪氨酸及色氨酸的转化,使蛋白质合成受到干扰,从而导致植物死亡。 然而,较高的使用量及不合理的使用方法会造成农产品中草甘膦残留量超标。 随着生活水平的提高,人们的环保意识、安全意识与日俱增。蒋长龙说,“目前,人们通常采用实验室仪器或酶抑制法等方法检测农残,但这种检测多由专业人员完成,检测仪器昂贵,检测结果两至三天才能出来。” 因此,发展快速有效、现场检测草甘膦残留的方法,成为控制和处理有机磷农残污染与危害的关键环节。“需要指出的是,农药残留并不等同于农药残留超标。按照农残限量,中国拟定草甘膦残留最大限量为4.14 微摩尔。 ”蒋长龙说,如果农药残留不超过最大限量,即为安全,人们可以放心食用。 此外,值得注意的是,随着瓜果蔬菜等农产品在我国膳食中占比越来越大,其质量安全备受关注,残留限量标准也正向着“科学、严谨”的方向修改。基于智能手机的监测平台可视化定量检测草甘膦 课题组供图 构建多种目标分析物快速检测平台 “本文报道了一种用于草甘膦定量检测的快速可视化荧光传感平台。该方法的创新之处在于结合智能手机对荧光信号进行处理,方便、准确。此外,该传感体系使用两种荧光物质作为信号,而不是依赖于酶,在现场检测中具有一定应用潜力。” 一位审稿人如是说。 但蒋长龙坦言,此次研发的传感器仅针对草甘膦残留检测,“目前,团队正在探究与研发其他类农药的快检方法与器件,如菊酯类、氨基甲酸酯类等。“ 此外,传感器的检测信号依赖于宽光谱荧光色度的变化,而这种荧光色度可能会受到使用环境光的影响。蒋长龙说,“我们希望可以进一步升级检测平台的配件,或是研发其他检测方法并构建传感器,避免一切外界因素对检测结果的不良干扰。” 下一步,研究团队将着力探索多色发光纳米探针的制备,进一步构建对于多种目标分析物的快速检测平台,建立基于纳米光效应传感器件,用于环境中多种污染物检测的评价体系与技术标准,期望在人体健康预警可视化分析检测方面取得新进展。
  • 前沿应用∣岛津高分辨质谱助力合成多肽药物杂质结构鉴定
    截至2020年,全球共有76个多肽类药物被批准上市,7000多个活性多肽被发现,约150个多肽药物进入临床试验,在过去20多年中,平均每年被批准的多肽药物约3个。微球、脂质体、聚乙二醇(PEG)修饰等方法的深入应用解决了多肽药物稳定性差、体内易降解、半衰期短等成药性差的问题,促进了多肽药物的开发利用。多肽药物药效广泛,临床上以慢性病治疗为主,例如罕见病、肿瘤、糖尿病、胃肠道、骨科、免疫、心血管疾病等。国内外药典将合成多肽类药物列入化药的范畴进行杂质的控制。欧洲药典规定合成多肽含量在0.5%以上的相关杂质需进行定性分析,对含量在1%以上的相关杂质进行定量分析并考察其毒副作用。2007年国家食品药品监督管理局发布了《合成多肽药物药学研究技术指导原则》,指出合成多肽原料药中工艺杂质的来源和一般化学药物有所不同,其可能的工艺杂质如:缺失肽、断裂肽、去酰胺多肽、氨基酸侧链的不完全脱保护所形成的副产物、氧化肽、二硫键交换的产物、非对映异构的多肽、低聚物和/或聚合物及合成中所用的毒性试剂和溶剂等。 多肽含有二硫键、裸露的氨基和羧基,容易因分子间二硫键或氨基羧基间脱水形成共价聚合物。共价键形成的聚合物杂质可能存在较大免疫原性风险,在多肽类药物制剂质量研究和新药申报中应予以重点关注。质谱分析、氨基酸组成分析和氨基酸序列测定是合成多肽药物及杂质结构确证最常用的技术手段。 岛津解决方案 ● 分析仪器岛津液相系统Nexera LC-40 +高分辨质谱仪LCMS-9030 ● 分析条件流动相为水:乙腈:TFA=60:40:0.2流速:0.5 mL/min等度洗脱柱温:25℃质谱:离子源:ESI(+)扫描范围:m/z 100 ~5000 多肽药物应用案例一STN聚合物杂质结构鉴定图1. 注射用STN破坏样品HPLC色谱图(UV 210 nm)图2. STN聚合物杂质可能的聚合方式 通过STN聚合物杂质精确质量数预测其分子式,结合多肽的质谱峰归属对STN聚合物杂质进行结构推测(如图2)。STN结构中含有一对二硫键,综合判断其聚合位点为分子间二硫键。 多肽药物应用案例二TJN聚合物杂质结构鉴定图3. 注射用TJN破坏样品HPLC色谱图(UV 214 nm) 图4. TJN聚合物杂质MS2质谱图 使用岛津精确分子式预测工具Formula Predictor对TJN聚合物杂质进行分子式预测,其分子式预测结果恰好相当于两分子TJN脱水,因此推测其聚合位点为两分子TJN的氨基端和羧基端缩合生成肽键。TJN为20肽,其游离氨基端为苯丙氨酸,游离羧基端为亮氨酸。结合TJN二聚体的推定氨基酸序列进行二级质谱碎片归属,TJN聚合物MS2质谱图中识别出多种特征碎片。特别是y19和b21碎片的存在证明聚合位点为亮氨酸(L)和苯丙氨酸(F)缩合而成的肽键。 结论随着我国成为国际人用药品注册技术协调会(ICH)成员国,药品的技术标准逐步与国际接轨。同时随着我国药品一致性评价工作的全面开展,合成多肽药物杂质结构鉴定将面临巨大的技术挑战。岛津公司采用尺寸排阻色谱法建立合成多肽药物的聚合物分析方法,并通过高分辨质谱LCMS-9030测定聚合物的准确质量数推测其分子式,同时结合MS/MS特征碎片推测聚合物杂质的结构。本文展示LCMS-9030在多肽药物的两种主要聚合方式(二硫键和肽键)鉴定中的应用。岛津液相色谱四极杆飞行时间串联质谱LCMS-9030具有高质量准确度,高分辨率的性能优势,是合成多肽药物杂质一级结构鉴定的强有力工具。 本文内容非商业广告,仅供专业人士参考。
  • 基于拉曼光谱技术的自动反馈补料控制策略在高接种密度培养平台的应用
    01背景这篇文竟是关于拉曼自动化反馈控制多种补料成分以实现高接种密度增强型fed-batch平台过程的研究论文。该研究旨在开发控制策略,通过在线拉曼光谱法监测和调整代谢物浓度,以实现高接种密度下的细胞培养过程中的高产量和稳定性。具体使用了增强型high inoculation density (HID)高接种密度培养fed-batch平台过程来培养五个不同谷氨酰胺合成酶piggyBac® 中国仓鼠卵巢细胞CHO克隆。通过在线拉曼光谱法连续监测残余glucose葡萄糖、phenylalanine苯丙氨酸和methionine 甲硫氨酸的浓度变化,开发了partial least squares models偏最小二乘模型。通过持续监测残余代谢物浓度,自动调整三种补充成分的补料速率,从而保持葡萄糖、苯丙氨酸和甲硫氨酸在期望的设定点上,并确保其他营养物质浓度在所有培养的克隆中保持在可接受的水平。02材料与设备细胞系与培养使用了Lonza HID平台的 GS piggyBac® CHO clones细胞系,共有5个克隆体。采用了100*105的初始接种密度,在1L或者5L的体积进行培养。模型建立使用了SIMCA v16分别对glucose, phenylalanine and methionine进行建模处理。首先是光谱区域的选择,主要是基于了在纯水中他们各自的特征光谱范围。其次,通过 first derivative, Savitzky-Golay smoothing and standard normalvariate normalization (SNV) 的方法对原始光谱进行了预处理。建立的模型结果如Table 1所示。参考已知的文献并结合所建模型的R2以及root mean squared error of estimation and cross-validation (RMSEE/RMSECV) ,初步判断模型可用。分对于glucose, phenylalanine, and methionine,如果RMSEPs 是 可以看出,利用拉曼自动回路控制的方式,通过动态提供培养物所需的氨基酸,有助于降低克隆间代谢的差异性。此外,为了进一步验证拉曼自动控制的HID培养的效果,研究人员通过Peak VCC、Harvest VCC、 Harvest viability、Harvest lactate、Harvest NH4、Harvest product concentration六个维度来评估对细胞生长和产量的实际影响。可以看出,在HID平台上培养的所有克隆均获得较高的Peak VCC(320.5±32.3×105) cells/ mL),且直到收获当天,大多数HID培养保持在以上200.0×105 cells/mL(4/5clones)。总的来说,除2 clone号外,在HID工艺上培养的所有克隆在收获时都有很高的活力(2clone的收获活力较低,是因为在培养结束时无意添加了碱基,导致VCC下降)。除2 clone,收获时培养存活率均大于85%。在HID培养过程中使用的自动培养策略的另一个好处是代谢副产物的低水平。乳酸和铵是代谢副产物,其积累与抑制细胞生长有关。总体而言,在HID工艺下培养的所有克隆的平均乳酸收获浓度(0.8±0.5 g/L)和铵收获浓度(0.07±0.02 g/L)均较低,这表明以该种控制策略培养,不仅对氨基酸副产物的积累影响很小,而且对其他常见抑制副产物的积累影响也很小。最后,本研究使用的5个clone在HID培养过程中获得了较高的收获产物浓度(6.5±1.2 g/L)。相比之下,本研究中获得的收获产物浓度平均略高于之前所报道的(6.5±1.2 g/L)。也可以得出结论,在本研究中观察到的较高的产品浓度,部分原因是由于提出的自动化策略可以维持高接种密度培养的营养需求,从而实现所需要补料操作的自动化,减少了危险副产品的积累。05结论该研究通过应用在线拉曼监控技术和自动化反馈控制策略,实现了高接种密度下的增强型细胞培养过程的稳定和高产量。这为生物制药行业开发更高效、成本更低的生产过程提供了新的思路和方法。Webster, T.A., Hadley, B.C., Dickson, M., Hodgkins, J., Olin, M., Wolnick, N., Armstrong, J., Mason, C. & Downey, B. 2023, "Automated Raman feed-back control of multiple supplemental feeds to enable an intensified high inoculation density fed-batch platform process", Bioprocess and biosystems engineering
  • 食品、保健品的分析和检测,电位滴定仪哪家好?
    关键词:AT-6,电位滴定仪,自动电位滴定仪,果维康维生素,保健品随着大众消费水平的提高和保健意识的增强,保健食品在居民日常消费中所占比重日益增高,一些进口保健食品也受到不少消费者的青睐。然而,保健食品市场中存在的标签证号缺失、功能声称夸大、产品真假难辨等乱象,正日渐成为市场隐患,损害了消费者的健康和权益。2015年10月1日新修订的《中华人民共和国食品安全法》其对保健食品审批、功能宣称等内容进行了新的规定。 果维康维生素是以维生素c、山梨醇、硬脂酸镁、阿斯巴甜(含苯丙氨酸)、薄荷香精、亮蓝铝色淀、羟丙甲纤维素为主要原料制成的保健食品,经功能试验证明,具有补充维生素C的保健功能。维生素c又称抗坏血酸,是人体不可缺少的一种营养素。人体自身无法合成维生素c,必须额外从食物中获取。维生素c普遍存在于蔬菜水果中,但容易因外在坏境的改变而遭到破坏。维生素C,具有抗氧化自由基的作用、并能刺激身体制造干扰素来破坏病毒以减少白血球与病毒的组合,保持白血球的数目,提高中性细胞和淋巴细胞的杀菌和抗病毒能力,对提高人体免疫力有着重要作用。因此,在感冒早期服用维生素C,可以减轻感冒症状,缩短近1/4的感冒时间。能够影响人类身体健康与生命安全的食品、药品、保健品在生产中含量检测都需要严格把控。 采用上海禾工AT-6电位滴定仪完全可以满足果维康中维生素c含量的测定需求。 AT-6电位滴定仪是一款智能的滴定分析器,根据样品性质,仪器选用不同电极可进行酸碱滴定、氧化还原滴定、络合滴定、非水滴定和pH测量等多种滴定。AT-6电位滴定仪具备多项专利技术,仪器运行安静平稳,检测精度高,测量结果重复性好,各项性能指标达到进口同类产品,同时仪器故障率及使用寿命远高于国内同类产品。仪器具有串口通讯连接打印机实现分析结果打印,具有USB接口连接U盘实现数据备份,具有WLAN接口连接电脑实现联机控制。
  • 惹争议!阿斯巴甜致癌?世卫组织7月14日将回应
    据媒体报道,世界卫生组织下属的国际癌症研究机构7月将宣布阿斯巴甜为“可能致癌物”,这将使该机构与食品行业和监管机构形成对立。消息人士说,阿斯巴甜将于今年7月首次被世界卫生组织(WHO)的癌症研究机构——国际癌症研究机构(IARC)列为“可能对人类致癌的物质”。市面上销售的诸多打上“无糖”标签的食品饮料中,实际上都使用了阿斯巴甜等甜味剂。阿斯巴甜是什么?什么产品中含有阿斯巴甜?阿斯巴甜安全吗?阿斯巴甜是一种人工甜味剂,多用于无糖饮料、口香糖、酸奶等。它的化学名称为天门冬酰苯丙胺酸甲酯,由化学家在1965年研制溃疡药物时发现,甜度是普通蔗糖的约200倍。阿斯巴甜尽管有强烈甜味,但热量几乎为零,而且没有糖精那样的苦味,因此被食品工业视为代替蔗糖的甜味剂。阿斯巴甜于1974年被美国食品和药物管理局批准用作甜味剂以及多种食品的添加剂。在欧洲,阿斯巴甜1994年获准作为蔗糖的替代物添加到食品中。迄今,阿斯巴甜在食品中的使用已在英国、西班牙、法国、意大利、丹麦、德国、澳大利亚和新西兰等近100个国家获得许可。世卫组织和联合国粮农组织食品添加剂联合专家委员会(JECFA)建议的阿斯巴甜日容许摄入量为每公斤体重40毫克以内。但围绕阿斯巴甜对健康的影响,数十年来争议不断。在致癌性方面,美国“公众利益科学中心”2013年发表声明说,动物实验发现阿斯巴甜可能导致白血病、淋巴癌等癌症,它不应出现在食品供应体系中。然而,尽管一些动物实验称阿斯巴甜有诱发肿瘤的作用,但JECFA、美国食品和药物管理局等此前评估认为阿斯巴甜对动物无致癌作用。美国癌症学会此前指出,多项人体研究表明,阿斯巴甜与癌症风险增加之间没有关联。世卫组织正在调查,下月出结果目前,IARC依据患癌几率的高低将致癌因素分为五类:1类:对人类有确认的致癌性2A类:对人类很可能有致癌性2B类:有可能对人类致癌3类:尚不能确定其是否对人体致癌4类:对人体基本无致癌作用根据媒体披露的信息,IARC将把阿斯巴甜列为“2B类”,即有可能对人类致癌。就在不久前,联合国粮农组织/世界卫生组织食品添加剂联合专家委员会(JECFA)也在调查阿斯巴甜对人体健康的影响,该机构于6月底召开会议,并且也将于7月14日宣布其调查结果。早在今年5月,世界卫生组织发布了一份关于非糖甜味剂的新指南,建议大多数人应避免食用安赛蜜、阿斯巴甜、糖精、三氯蔗糖、甜菊糖等非糖甜味剂。世卫组织在指南中表示,有证据表明,使用非糖甜味剂对减少成人或儿童的体脂没有任何长期益处。此外,长期使用非糖甜味剂可能会产生潜在的不良影响,例如导致成人患2型糖尿病、心血管疾病和死亡率的风险增加。据了解,上述指南所指的非糖甜味剂主要包括安赛蜜、阿斯巴甜、安美、甜蜜素、纽甜、糖精、三氯蔗糖、甜菊糖和甜菊糖衍生物等等。倘若世卫组织该篇指南中的结论最终被全面证实,主打非糖甜味剂的无糖饮料行业或将面临逻辑被颠覆的风险。为规范阿斯巴甜行业发展,我国出台了食品添加剂国家标准GB2760-2014对其应用范围和剂量进行了规定。根据该标准规定,阿斯巴甜可在胶基糖果、蜜饯、甜点、酸奶、风味饮料、冷冻饮品、面包、预制水产品、水产品罐头等共计41种食品中使用。同时我国也出台了以下检测标准,进一步管理阿斯巴甜。1、GB 1886.47-2016 食品安全国家标准 食品添加剂 天门冬酰苯丙氨酸甲酯(又名阿斯巴甜)2、GB 22367-2008 食品添加剂 天门冬酰苯丙氨酸甲酯(阿斯巴甜)3、GB/T 22254-2008 食品中阿斯巴甜的测定4、NY/T 3473-2019 饲料中纽甜、阿力甜、阿斯巴甜、甜蜜素、安塞蜜、糖精钠的测定 液相色谱-串联质谱法5、GOST EN 12856-2015 食品. 采用高效液相色谱法测定安赛蜜, 阿斯巴甜和糖精
  • 中科院物理所团队发现小分子药物调控人源电压门控钠离子通道蛋白的结构学基础
    电压门控钠离子通道蛋白在产生和传导动作电位中发挥重要作用。在哺乳动物中,基于组织特异性,至少有9种电压门控钠离子通道异构体,其中命名为“Nav1.3”的电压门控钠离子通道蛋白在中枢神经系统中表达量高。有证据表明Nav1.3蛋白的突变与局灶性癫痫和多微脑回畸形疾病有关,因此Nav1.3蛋白可以作为治疗癫痫药物的靶点。  3月11日,中国科学院物理研究所团队在nature communications杂志上发表了题为“Structural basis for modulation of human Nav1.3 by clinical drug and selective antagonist”的文章,解析了Nav1.3/β1/β2分别与小分子药物乌头碱A和选择性拮抗剂ICA121431结合的冷冻电镜三维结构,揭示了乌头碱A和ICA121431调节Nav1.3的不同机制。  研究表明,Nav1.3蛋白的整体结构与已报道的其他哺乳动物Nav蛋白结构高度相似。调控Nav1.3蛋白功能的β1亚基通过其N端结构域和Nav1.3蛋白相互作用,同时其C端跨模域的螺旋稳定在Nav1.3蛋白第三个结构域上。调控Nav1.3蛋白功能的β2亚基柔性大,整体分辨率较低,但仍能看到其第55位的半胱氨酸与Nav1.3蛋白第911位的半胱氨酸形成了二硫键。小分子药物乌头碱A结合位点位于Nav1.3蛋白第一个结构域与第二个结构域之间,部分阻挡了离子通道。选择性拮抗剂ICA121431结合位点位于Nav1.3蛋白第四个结构域,增强了“异亮氨酸-苯丙氨酸-甲硫氨酸”模体与该模体的受体的结合,将离子通道稳定在失活状态。  该研究解析了不同小分子调节剂与Nav1.3蛋白结合位点的结构,阐明了这些小分子在Nav1.3蛋白上的作用机制,为后续基于结构开发特异性更高的药物提供支撑。  论文链接:https://www.nature.com/articles/s41467-022-28808-5
  • LUMEX诚邀您5月15日参加网络讲堂:《饲料中氨基酸及营养指标的快速测定-LUMEX毛细管电泳法》
    讲堂议题:饲料中氨基酸及营养指标的快速测定-LUMEX毛细管电泳法  时间:2017年05月15日 10:00  主讲人:张超 LUMEX资深应用工程师,负责中国区应用方法开发和技术支持,全面参与《NY/T3001-2016 饲料中氨基酸的测定 毛细管电泳法》标准制定 饲料中的氨基酸是畜禽的重要营养物质,动物对蛋白质的需求实际上是对氨基酸的需求。饲料中含有的氨基酸种类和含量是判定饲料质量高低的重要指标。饲料由于其成分复杂、干扰物多等特点,因此,饲料中氨基酸的准确分析、测定十分重要。 农业部饲料所编制的《NY/T3001-2016 饲料中氨基酸的测定 毛细管电泳法》已被批准发布为中华人民共和国农业行业标准,2017年4月1日正式执行。针对该标准方法和当前行业氨基酸及营养指标测定的需求,本次网络讲堂将详细介绍该最新出炉的行业标准及相关方法的应用。 本次网络讲堂主要与大家分享18种氨基酸的测定,包括饲料原料、预混饲料中的氨基酸,如精氨酸、赖氨酸、 酪氨酸、苯丙氨酸、组氨酸、亮氨酸和异亮氨酸(总量)、蛋氨酸、缬氨酸、脯氨酸、苏氨酸、丝氨酸、丙氨酸、甘氨酸、半胱氨酸、色氨酸、谷氨酸和天门冬氨酸等。同时毛细管电泳还可用于农药及兽药残留检测,维生素及有机酸等营养指标的监控,为畜禽类企业,饲料原料品控及相关质检部门提供有效经济的检测和分析手段。 Lumex通过毛细管电泳方法进行饲料中氨基酸指标的检测和分析,快速简便,分析效率高,能够检测多种综合指标,仪器结构检测,操作便捷,在相关的指标检测方面有多种检测优势。Lumex公司现已成功的将毛细管电泳法发展为实验室常规的分析方法,成熟的仪器和优化的配置,配备大量的应用发法包于一体。被用户称为目前性价比最优的毛细管电泳。毛细管电泳法符合多项国内外标准,如EPA6500,ASTMD6508-00;ASTMD7881/2;ЕU № 1234/2007;OIV MA–AS313-19 等。国内外20多项毛细管相关标准均由LUMEX公司参与制定或修订。其中很多标准已发展成为国际通用标准。(来源:LUMEX分析仪器)
  • 南方医科大学研究团队成果:人参皂苷Rg1通过调节肠道菌群、色氨酸代谢和血清素能系统功能减轻吗啡依赖
    南方医科大学研究团队发表相关论文,英文题目:GinsenosideRg1 mitigates morphine dependence via regulation of gut microbiota,tryptophan metabolism, and serotonergic system function。中文题目:人参皂苷Rg1通过调节肠道菌群、色氨酸代谢和血清素能系统功能减轻吗啡依赖研究背景吗啡依赖是一种毁灭性的神经精神疾病,可能与肠道菌群失调密切相关。人参皂苷Rg1(Rg1)是从人参根中提取的活性成分,对神经系统具有潜在的保健作用。然而,它在物质使用障碍中的作用仍不清楚。该文探索了Rg1在对抗吗啡依赖中的潜在调节作用。研究结果1.人参皂甙 Rg1 抑制吗啡诱导的小鼠的条件位置偏好(CPP)调理训练后各组小鼠体重略有增加,但是未观察到显著差异(图1C)。使用Smart3.0软件在15分钟内跟踪小鼠头部并记录它们的轨迹和停留时间。对照组和其他组之间的轨迹或CPP分数没有显着差异。在吗啡注射后在白室中花费的时间与基线相比以及在盐水处理后在白室中花费的时间显着增加(图1C,D),表明吗啡成功诱导CPP在实验小鼠中。MRH和MRL组与模型组相比,MRL和MRH小鼠在药物配对隔室的停留时间和轨迹显着减少。然而,在单独用人参皂甙Rg1治疗的小鼠中,没有观察到CPP评分和活动途径的变化。2.人参皂甙Rg1改善CPP小鼠肠道菌群失调阿片类药物成瘾通常与肠道菌群失调有关。为了进一步探索Rg1介导的抗成瘾机制,对粪便进行了16S rRNA 基因扩增子测序,以评估有或没有Rg1处理的CPP小鼠肠道微生物群的组成。维恩图显示了对照组和其他组小鼠共有476个OTU(图2A)。然而,对照组有1108个OTU,M组有1304个,MM组有19个,MRL组有548个,MRH组有1702个,CR组有195个。这些数据暗示了吗啡治疗诱导的肠道微生物群紊乱和人参皂苷Rg1给药后的部分恢复。值得注意的是,使用Chao1指数进行的α多样性分析显示,Rg1阻止了吗啡引起的细菌丰富度下降(图2B);然而,各组之间的香农指数没有差异(图2C)。通过Bray-Curtis主坐标分析(PCoA)研究肠道菌群的整体结构表明,吗啡组的细菌组成发生了变化,与对照组不同,表明肠道菌群失调吗啡处理诱导了微生物群(图2D)。然而,MRL、MRH、MM和CR组显示了四种不同的细菌组成簇。值得注意的是,MRL中的微生物群与MRH组中的微生物群更紧密地聚集在一起。我们在门水平上进一步分析了每组的肠道细菌组成。人参皂甙Rg1显着增加吗啡诱导的拟杆菌门和厚壁菌门相对丰度的降低(图2E),并显着降低吗啡诱导的蓝藻和变形杆菌的相对丰度增加。在家族水平上的进一步分析显示,吗啡处理导致随着叶绿体和线粒体的增加,拟杆菌属、Sutterellaceae和Tannerellaceae的相对丰度急剧下降。在MRL和MRH组中,吗啡诱导的丰度变化不同程度地逆转(图2F,G)。此外,Kruskal-WallisH检验用于评估指定组之间在物种水平上的差异的显着性,并观察到15个优势物种(图2H)。考虑到报告显示吗啡依赖模型中拟杆菌属的丰度低于对照,我们专注于拟杆菌属物种B.vulgatus、B.xylanisolvens和B.acidifaciens。吗啡显着降低了B.acidifaciens、B.vulgatus和B.xylanisolvens 的丰度。值得注意的是,B.vulgatus的相对丰度在Rg1给药后显着增加(图2I)。除了16SrRNA 测序外,我们还用B.vulgatus特异性引物进行了定量PCR,证实吗啡显着降低了丰度,人参皂苷Rg1处理后丰度显着增加(图2J)。图片图片图23.人参皂甙 Rg1抑制肠道微生物群衍生的水平和CPP小鼠血清色氨酸代谢物在药物依赖期间,肠道代谢谱发生变化,宿主代谢途径可能发生改变。我们假设人参皂苷Rg1可能通过肠道微生物发酵过程中产生的代谢物影响CPP。基于这一理论,我们使用非靶向代谢组学来识别可能在小鼠血清和肠道中改变的关键代谢物和代谢途径。MRL组和MRH组对吗啡诱导的CPP的疗效没有观察到统计学差异;然而,行为分析数据显示,MRH组的疗效优于MRL组。因此,我们选择MRH组作为非靶向代谢组学分析的代表性药物干预组。在血清和粪便中分别鉴定出1955和559种代谢物。偏最小二乘判别分析(PLS-DA)模型分别在血清和粪便中的CONTROL、MODEL和MRH组中显示出显着的聚类分离(图3A、G)。热图分析显示,CPP导致代谢物发生显着变化,小鼠粪便和血清中共有177种代谢物(96种上调和81种下调)和69种代谢物(44种上调和25种下调)分别显着改变(图3D和J)。此外,对代谢物途径的分析表明,与对照组相比,CPP小鼠的以下途径发生了显着变化:色氨酸、α-亚麻酸、甘油磷脂、精氨酸和脯氨酸、苯丙氨酸、酪氨酸和色氨酸代谢。值得注意的是,色氨酸代谢受到粪便和血清中吗啡的显着影响(图3B和H)。将MRH与MODEL组进行比较,在人参皂苷Rg1处理后,粪便和血清中的195种代谢物(94种上调和101种下调)和115种代谢物(60种上调和55种下调)分别显着改变(图3E和K)。代谢组学图显示色氨酸代谢受到Rg1补充的显着影响(图3C和I)。色氨酸代谢在微生物组-肠-脑轴中起关键作用。在这种情况下,我们专注于色氨酸代谢相关的代谢物。具体而言,色氨酸代谢相关代谢物的热图分析表明,参与色氨酸代谢的四种主要中间代谢物L-色氨酸、吲哚、N' -甲酰基犬尿氨酸和血清素是对吗啡的反应最显着增加的代谢物,它们的水平在Rg1处理后,粪便或血清中的含量降低。具体来说,我们发现与模型组相比,Rg1处理的肠道色氨酸和血浆血清素水平下调(图3F和L)。4.人参皂甙 Rg1 改善 CPP 小鼠海马 5-羟色胺能系统的变化血清色氨酸浓度会影响大脑的血清素系统。我们推测宿主色氨酸代谢物的变化可能与CPP小鼠的海马血清素能系统和其他神经递质有关。为了验证这一假设,使用酶联免疫吸附法检测海马和外周血清中谷氨酸、多巴胺、γ-GABA和5-HT的表达水平。在海马中,相对于对照组,CPP小鼠表现出显着升高的多巴胺水平和降低的γ-GABA水平(图4C)。然而,组间谷氨酸和血清素的浓度没有差异(图4A)。与M组相比,MRH组海马中GABA含量增加。此外,在MRL和MRH小鼠中观察到多巴胺水平显着下降。注射吗啡后血清中血清素和多巴胺水平升高,γ-GABA水平降低。所有CPP诱导的变化都被Rg1处理逆转(图4B、D、S2B)。为了进一步探索Rg1介导的抗成瘾机制,我们使用qPCR检测了小鼠海马中奖赏相关基因mRNA的相对转录水平,包括脑源性神经营养因子(BDNF)、神经营养酪氨酸激酶受体2型(TrkB)和血清素受体。与Rg1治疗组的转录水平相比,吗啡组中5-羟色胺受体(5-HTR1B和5-HTR2A)、BDNF和TrkB的转录水平因人参皂苷Rg1给药而下调(图4E、F)。这些数据表明人参皂甙Rg1可能通过抑制血清素系统来改善吗啡依赖。5.肠道微生物组的调控影响人参皂甙 Rg1 对吗啡诱导的小鼠 CPP 的抑制作用为了研究肠道菌群失调对吗啡诱导的小鼠行为的影响,我们在进行吗啡依赖性CPP训练之前,给BALB/cSPF 小鼠施用了不可吸收的抗菌剂或无菌水的混合物7天,然后进行CPP测试(图5A)。ATM治疗后各组小鼠体重下降,调理训练后略有增加;然而,各组之间没有观察到差异(图5B)。ABX与对照组相比,同时给予多种抗生素后,所有抗生素治疗小鼠在药箱中的停留时间均增加。此外,与ABX组相比,AM组在药物配对隔室中的停留时间明显增加。令人惊讶的是,小鼠在AMRL、AMRH和AMM组的药物配对隔室中的停留时间与AM组没有显着差异(图5D)。我们在鼠标头部轨迹中观察到相同的现象(图5C)。为了评估抗生素暴露后小鼠肠道微生物群发生的变化,通过16SrRNA 基因测序测定了粪便细菌组成。抗生素治疗极大地改变了微生物组并减少了细菌负荷(图5E)。为了研究肠道菌群失调对吗啡诱导的小鼠行为的影响,我们使用了维恩图显示了对照组和其他抗生素治疗小鼠共享的476个OTU;然而,1606个OTU是对照组独有的,48-68个OTU是其他六个抗生素治疗组独有的。随后用抗生素混合物治疗导致肠道微生物群显着消耗,细菌多样性显着降低。PCoA显示抗生素治疗的小鼠与对照小鼠相比具有显着不同的微生物群落(图5F)。但ABX、AM、AMRL、AMRH、AMM和AR组的细菌多样性没有显着变化,说明抗生素治疗根除大部分共生菌,吗啡和人参皂苷Rg1治疗后没有显着变化.我们在ABX小鼠的粪便中发现了几种细菌门,这些细菌门相对于对照组的粪便发生了改变(图5G)。优势门不同,伴随着Proteobacteria的丰度显着增加,而Verrucomicrobiota、Cyanobacteria、Firmicutes和Deferribacterota的丰度在抗生素处理后下降。然而,用抗生素治疗小鼠并没有改变拟杆菌的相对丰度,尽管抗生素治疗耗尽了肠道微生物组成。最后,我们用B.vulgatus特异性引物进行了定量PCR,并证实与对照组相比,抗生素治疗组的细菌显着减少了数百至数千倍(图5H)。此外,吗啡和人参皂甙Rg1并没有改变B.vulgatus对抗生素的反应。6.肠道微生物组的消耗影响色氨酸代谢并抑制 Rg1 诱导的基因表达接下来检测了抗生素混合物治疗对吗啡诱导的CPP小鼠代谢物和代谢途径的影响。偏最小二乘判别分析(PLS-DA)模型显示,在粪便中的代谢物方面,对照组和ABX组之间的簇显着分离(图6A)。值得注意的是,抗生素治疗后ABX、AM和AMRH组之间没有明显的代谢物聚集。我们专注于色氨酸代谢途径,并观察到参与色氨酸代谢的代谢物被ATM显着改变。然而,在ABX、AM和AMRH中未观察到显着变化。因此,这些数据表明抗生素治疗强烈降低了粪便中色氨酸代谢物的水平(图6C),并且由吗啡和Rg1引起的代谢改变被消除。此外,在血清中,PLS-DA结果显示四组(对照组、ABX、AM和AMRH)的代谢物谱不同(图6B)。ATM显着改变了色氨酸代谢物。值得注意的是,与 ABX小鼠相比,注射吗啡的小鼠的代谢物发生了相当大的变化。具体而言,与 AM组相比,色氨酸代谢物在Rg1处理后没有显示出显着变化(图6D)。我们发现 Rg1治疗组和模型组在ABX治疗后肠道色氨酸和血浆血清素水平没有差异(图6E和F)。随后,我们发现微生物组消耗抵消了 Rg1在CPP小鼠海马体中诱导的变化(图6G-L)。Rg1治疗未能逆转5-HT、多巴胺、5-HTR1B/5-HTR2A 和BDNF-TrkB信号通路。7.B.vulgatus 协同增强人参皂苷 Rg1 抑制吗啡诱导的小鼠 CPP因为肠道B.vulgatus 减少和增加与吗啡诱导的CPP增加和Rg1降低CPP一致,并且在抗生素处理的小鼠中消除了人参皂苷Rg1对CPP的改善,我们探讨了B.vulgatus 是否在吗啡中起作用依赖。作为典型的拟杆菌属物种,普通拟杆菌是小鼠肠道中的主要细菌物种,我们试图确定普通拟杆菌是否会影响CPP进展。我们首先使用抗生素治疗来消耗肠道微生物群,然后再用B.vulgatus 定植。在吗啡诱导的CPP小鼠模型中检查B.vulgatus 对吗啡成瘾的影响(图7A)。抗生素治疗或B.vulgatus 移植没有显着改变体重(图7B)。单独使用B.vulgatus (AMBV) 进行灌胃显着降低了白框中的停留时间和轨迹百分比,而吗啡则增加了该百分比(图7C、7D)。值得注意的是,与B.vulgatus 和人参皂苷Rg1(AMBVR)共同治疗的小鼠在药物配对隔室中的停留时间和轨迹百分比显着降低。这些数据清楚地表明AMBVR在抑制CPP方面比AMBV取得了更好的功效。值得注意的是,在我们的研究中,用“吗啡”微生物组(AMF)进行肠道再定殖并没有诱导CPP行为。8.B.vulgatus 可以改变肠道微生物组成小鼠粪便样本的16SrRNA 基因测序揭示了用活的B.vulgatus灌胃肠道微生物群组成的变化。拟杆菌门的相对丰度从AM组的不到20%增加到AMBV组的40%和AMBVR组的60%(图7E)。定量PCR证实,与对照组相比,AMBV和AMBVR组灌胃后肠道中的细菌显着过度生长数百至数万倍(图7F)。这些数据表明,人参皂甙Rg1提高了CPP小鼠中普通双歧杆菌的丰度。9.B.vulgatus 改变了肠道微生物群衍生和宿主色氨酸代谢物对小鼠的粪便和血清进行了代谢组学分析。偏最小二乘判别分析(PLS-DA)显示AM、AMBV和AMBVR组之间完全分离(图8A和D)。热图分析显示,仅用B.vulgatus灌胃导致CPP小鼠代谢物发生显着变化,粪便中有332种代谢物(211种上调和121种下调),血清中有82种代谢物(58种上调和24种下调)。我们对具有已知KEGGID 的332和82种显着不同的代谢物进行了KEGG途径富集分析,并分别鉴定了14和11种富含色氨酸代谢的代谢物。同时,将AMBVR与AM组进行比较,粪便中的313种代谢物(237种上调和76种下调)和血清中的82种代谢物(44种上调和38种下调)在与普通芽孢杆菌和人参皂甙Rg1共同处理后显着改变。在粪便中发现了13种代谢物,血清中发现了11种代谢物富集到色氨酸代谢,AMBV和AMBVR都改变了肠道微生物群衍生和宿主色氨酸代谢。我们随后检查了粪便和血清中由AMBV和AMBVR改变的色氨酸代谢物的相对丰度(图8B,C)。用B.vulgatus 灌胃下调色氨酸和血清素水平(图8E-I和9B)。10.B.vulgatus 协同增强人参皂甙-Rg1 诱导的吗啡诱导的海马 5-羟色胺能变化的抑制作用最后,为了证实人参皂甙Rg1通过影响肠道微生物群衍生的色氨酸代谢-血清素途径来减轻吗啡依赖,我们测定了海马和血清中5-HT、多巴胺和GABA的水平。CPP小鼠中血清素和多巴胺的血浆浓度较低,而GABA的血浆浓度高于单独用普通双歧杆菌灌胃或与Rg1共同治疗的小鼠(图9A-D)。值得注意的是,AMBVR小鼠的海马5-HT浓度显着低于AM小鼠。qPCR进一步证实了血清素受体和BDNF-TrkB的mRNA水平升高。我们观察到5-HTR1B、5-HTR2A和BDNF-TrkB的表达被B.vulgatus 定植和Rg1处理有效抑制(图9E、F)。研究结论该研究表明人参皂苷Rg1对吗啡依赖的改善作用与肠道微生物群有关。此外,我们发现微生物组的消耗和拟杆菌的补充可以影响吗啡依赖性并影响Rg1的功效,伴随着色氨酸代谢和5-羟色胺的变化。该研究结果提供了一个新的框架来理解中药通过肠道微生物群-色氨酸代谢和血清素能系统拮抗吗啡成瘾的机制,可能会带来新的诊断和治疗策略。
  • 生物物理所等在GPCR别构调节机制研究方面取得进展
    近日,《美国化学会志》期刊在线发表了中国科学院生物物理研究所王江云课题组与上海科技大学刘志杰和华甜课题组的研究论文。该研究首次通过基因密码子扩展方法,在昆虫细胞表达系统中实现含氟非天然氨基酸(3-三氟甲基-L-苯丙氨酸,mtfF)的插入,并成功用于大麻素受体CB1别构调节机制的研究。  氟原子由于具有对蛋白质环境变化高度敏感、100%天然丰度及没有背景信号等特点,被广泛用于蛋白质动态构象的研究。目前利用19F-NMR检测蛋白质动态构象主要通过蛋白质的半胱氨酸标记含氟原子的基团,进而实现信号检测。但是这需要在目标蛋白表面感兴趣的标记位点存在可接近的半胱氨酸残基,同时要将其他所有暴露在表面的半胱氨酸残基突变掉,这将会影响蛋白质的结构稳定性。半胱氨酸介导的位点特异性标记对于含有少量半胱氨酸残基的蛋白质来说是方便且通用的。然而,近2/3的人类GPCR含有超过10个半胱氨酸残基,并且所有暴露于表面的半胱氨酸残基的突变可能会对目标蛋白造成显著的结构扰动。此外,隐藏在蛋白质疏水核心内的残基不能通过这种方法进行标记。基于半胱氨酸标记方法局限性,发展简单便捷的真核系统蛋白质氟探针标记方法对研究真核生物蛋白质构象十分重要。  大麻素受体CB1是人大脑里表达量最高的GPCR之一,调控多种重要的生理活动,是治疗神经和精神类疾病、肥胖等的重要靶点。刘志杰/华甜课题组一直聚焦于大麻素受体结构与功能的系统性研究,在过去几年中成功解析了大麻素受体CB1和CB2在拮抗状态、类激活和激活状态下的三维结构,揭示了正构调节配体对大麻素受体的作用机制。为了进一步探究别构调节剂对CB1的调控机理以及不同配体如何对GPCR的动态构象进行调控等科学问题,王江云课题组与刘志杰/华甜课题组以及iHuman研究所核磁共振实验室副研究员刘东升合作,利用基因密码子扩展方法,首次获得真核细胞内识别含氟非天然氨基酸的mtfF-氨酰-tRNA合成酶,在昆虫细胞中实现CB1构象变化敏感位点的标记。借助上海科技大学iHuman研究所核磁共振平台,探究了不同正构配体以及别构调节剂Org27569对CB1的动态构象变化的调控,首次发现了Org27569和激动剂如何在CB1激活过程中协同稳定以前未被识别的前激活状态。  通过团队的密切合作和不懈努力,使用19F-NMR破译了受体的动态过程和多态性,同时结合X-射线晶体学方法,揭示了别构调节剂Org27569对CB1的独特调控机理,提出了CB1的激活和别构调节模型,尤其是Org27569和胆固醇分子在CB1激活过程中扮演的角色。基因编码的非天然氨基酸mtfF方法的建立可广泛用于GPCR动态构象变化研究的标记系统,也可以用于其它真核蛋白质动态构象的研究。  该研究得到国家自然科学基金委和国家高技术研究发展计划资助项目的支持。  论文链接
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制