当前位置: 仪器信息网 > 行业主题 > >

卡巴拉汀二乙基类似物

仪器信息网卡巴拉汀二乙基类似物专题为您提供2024年最新卡巴拉汀二乙基类似物价格报价、厂家品牌的相关信息, 包括卡巴拉汀二乙基类似物参数、型号等,不管是国产,还是进口品牌的卡巴拉汀二乙基类似物您都可以在这里找到。 除此之外,仪器信息网还免费为您整合卡巴拉汀二乙基类似物相关的耗材配件、试剂标物,还有卡巴拉汀二乙基类似物相关的最新资讯、资料,以及卡巴拉汀二乙基类似物相关的解决方案。

卡巴拉汀二乙基类似物相关的资讯

  • 生物类似物分析相似性研究
    p   strong   span style=" color: rgb(0, 176, 240) " 一. 生物类似物获批情况 /span /strong /p p   从FDA数据库可以查到,截止2018.8.24美国共有12款生物类似物获批。其中部分小分子(如ELI LILLY的甘精胰岛素BASAGLAR)也已获批,但为NDA,因此不作为类似物统计。 /p p style=" text-align: center " img width=" 599" height=" 446" title=" q.jpg" style=" width: 488px height: 332px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/58c99f7e-92e6-4c9c-8b19-eeacaf8385c2.jpg" / /p p style=" text-align: center " img width=" 598" height=" 236" title=" w.jpg" style=" width: 490px height: 172px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/5391e126-7471-42dd-b508-c9f272d09b28.jpg" / /p p style=" text-align: center "   从EMA数据库可以查到,截止2018.8.24欧盟共有45款生物类似物获批: img width=" 599" height=" 388" title=" e.png" style=" width: 498px height: 298px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/d67d7398-bb31-486f-85c7-6056bafefaed.jpg" / /p p style=" text-align: center " & nbsp img width=" 601" height=" 421" title=" r.png" style=" width: 528px height: 358px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/e4f16b4f-f1ba-43ab-a6b2-17e0da5ef487.jpg" / /p p style=" text-align: center " img width=" 600" height=" 405" title=" t.png" style=" width: 515px height: 298px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/34f42b07-aa1c-4f54-a1bd-89c6c7022f91.jpg" / /p p   从获批情况分析,较早批准的产品都已经出现较多类似物,这一点在EMA中体现的尤为明显,如药王adalimumab、infliximab及filgrastim等均已有若干类似物获批。而从生产上来看,Sandoz毫无疑问是生物类似物的最大赢家,其在EMA有9款类似物获批。 /p p   对比美国以及欧盟生物类似物批准的情况,可以很明显的发现欧盟批准的生物类似物数量远多于美国,究其原因主要包括以下几点: /p p   EMA在2005年便建立生物类似物的申报途径,而FDA则是在2009年才在BPCI法案中提出生物类似物的申报途径,EMA比FDA更早建立生物类似物申报途径 /p p    EMA将甘精胰岛素这类小分子制品也归属为生物制品,EMA批准的生物类似物中多款均为小分子制品。但在FDA这类小分子与化学药一样采用NDA的申报途径,而不是生物制品的BLA申报途径。且在FDA甘精胰岛素审评由CDER负责,而生物制品的审评由CBER负责,这也导致FDA的生物类似物获批清单中未将甘精胰岛素这类小分子纳入 /p p    对于生物制品分析相似性研究,FDA的规定非常严格(如研究的批次数、相似性的标准等),这直接导致生物相似性研究周期很长,如Amgen申请的贝伐珠单抗MASVI分析相似性研究持续6了年,前后共使用20余批次原研Avastin。这也使得FDA的生物类似物获批更为滞后 /p p   从数据中可以看出FDA批准的生物类似物集中于近几年,2015年1款,2016年3款,2017年5款,2018截至目前为3款。有这些基础之后,相信未来FDA批准生物类似物的速度会越来越快。 /p p   span style=" color: rgb(0, 176, 240) " strong  二. 分析相似性研究 /strong /span /p p   分析相似性研究(analytical similarity)在欧盟被称为可比性研究(Comparability exercise)。其是指用于证明用于证明生物类似物与原研高度相似,但允许临床非活性组分存在微小差异的分析研究。一般应使用多批次自研产品与原研在包括结构、理化以及功能属性方面的对比,并使用数据统计方法对各质量属性对比结果进行统计及对比。分析相似性是生物类似物的基础,在生物类似物开发中很重要。 /p p   strong  相关指南 /strong /p p   针对生物类似物分析相似性研究,FDA以及欧盟均发布了不少指南。以CMC领域为例,部分重点指南如下: /p p   FDA发布的指南有: /p p   Quality Considerations in Demonstrating Biosimilarity to a Reference Protein Product /p p   Scientific Considerations in Demonstrating Biosimilarity to a Reference Product /p p   Reference Product Exclusivity for Biological Products Filed Under Section 351(a) of the PHS Act(Draft guidance) /p p   Biosimilars: Questions and Answers Regarding Implementation of the Biologics Price Competition and Innovation Act of 2009 Guidance for Industry(Draft guidance) /p p   Considerations in Demonstrating Interchangeability With a Reference Product Guidance for Industry(Draft guidance) /p p  & nbsp & nbsp Statistical Approaches to Evaluate Analytical Similarity Guidance for Industry(核心指南,目前已撤销) /p p   EMA发布的指南有: /p p   Similar biological medicinal products /p p   Similar biological medicinal products containing biotechnology-derived proteins as active substance: non-clinical and clinical issues /p p   Similar biological medicinal products containing biotechnology-derived proteins as active substance: quality issues /p p  & nbsp & nbsp Guideline on the comparability of Medicinal Products Containing Biotechnology-Derived Proteins as Active Substance: Quality Issues /p p   Biosimilar medicinal products containing recombinant granulocyte-colony stimulating factor (Annex to guideline on similar biological medicinal products containing biotechnology-derived proteins as active substance: non-clinical and clinical issues) /p p   Non-clinical and clinical development of similar biological medicinal products containing low-molecular-weight heparins /p p   Non-clinical and clinical development of similar biological medicinal products containing recombinant human insulin and insulin analogues /p p   Similar biological medicinal products containing interferon beta /p p   Similar biological medicinal products containing monoclonal antibodies: non-clinical and clinical issues /p p   Similar biological medicinal products containing recombinant erythropoietins /p p   Similar biological medicinal products containing recombinant follicle-stimulating hormone /p p   Similar medicinal products containing somatropin (Annex to guideline on similar biological medicinal products containing biotechnology-derived proteins as active substance: non-clinical and clinical issues) /p p   FDA发布的指南都较为宽泛。而EMA针对生物类似物发布的指南既有较为宽泛的指导性文件,也有针对某款产品特异性的指南,同时EMA的部分指南同时适用于变更及类似物可比性研究,这一点也与FDA完全不同。 /p p   strong  分析相似性研究内容 /strong /p p   FDA于2017年发布的草案指南对分析相似性进行了详细的规定,虽然该指南目前已被撤销,但其部分思想仍可作为指导。结合目前FDA批准的类似物制品CMC审评报告,可以明显看出该指南的思想融合了已经批准的产品的开发思路,而目前在FDA获批的类似物也都是按照该指南的思路开展分析相似性研究。对该指南,并结合已经获批的类似物审评报告进行总结,分析相似性核心内容包括以下内容: /p p   对产品的质量属性进行分层(Tier),包括Tier 1,2,3。其中tier 3目测对比是风险较低或风险高但无法量化的质量属性 tier 2质量范围是风险程度中等的质量属性 tier 1等同检测则是风险高的质量属性 /p p   Tier 3一般为结构、工艺相关杂质(HCD、HCP等)、强降解趋势对比、理化属性、与机理无太大联系的活性项目 Tier 2质量属性一般包括产品相关杂质、糖型(与ADCC、PK等有关)、与机理有关的活性检测、蛋白浓度等 Tier 3则一般为临床机理对应的生物学活性 /p p   不同层级设立不同的相似性标准,tier 3主观对比相似即可 tier 2要求自研产品的范围应该在参比的mean± 3SD tier 1则要求更为严格,要求自研与参比的均值差的90%置信区间应在原研的[-1.5SD,1.5SD]范围内。值得注意的是于2017年获批的MASVI分析相似性研究中并按照上述要求对tier 2及3设立标准,而只是对实际的属性范围进行了对比 /p p    对多批次原研及自研进行分析研究,指南推荐至少10批次自研于10批次参比进行比较。2018年该指南撤销时特意提出批次数太多是该指南不合理的地方,但就目前批准的生物类似物来看,tier 1质量属性(与制品机理直接相关的生物学活性)基本都采用了20多批次参比进行对比,后续批次要求降低,有利于加快生物类似物获批上市 /p p   strong   在研究过程中应该考虑储存时间等对质量属性的影响 /strong /p p   从目前已经在FDA获批的类似物来看,没有类似物能在分析相似性方面做到于参比完全类似,而都是通过total of the evidence整体判断相似性。如糖型这一关键属性,几乎没有哪一款类似物做到与参比类似,因此出现不类似的质量属性很正常。由于生物制品本身较为复杂,而其生产工艺也同样复杂,生物类似物开发商对参比的了解难以深入,因此开发出的类似物质量属性难以做到完全与参比相似。即便知道某些质量属性不相似,也不一定能通过前期的工艺优化让该属性于参比相似。同时,这种优化也未必必要,指南中指出出现不相似的情况,给出合理的论述即可。 /p p   从已在FDA获批的类似物审评报告中可以知道,当出现不类似的情况时,可以用于论述的思路如: /p p   当杂质含量较低时,其风险相对较小,如依那西普类似物进行tier划分时,就规定当属性的量低于2%时,可以降低一个tier /p p   该属性虽然有差异,但临床数据显示自研于参比的pK等无明显差异 /p p   增加更多批次进行研究,参比批次变多时,其质量属性范围也更可能变宽 /p p   考虑储存时间对该属性的影响,加上时间因素重新计算数据 /p p   分离相应的组分,进行相应的活性等研究,证明与主成分无明显差异,等。 /p p   以下为部分已被FDA批准的类似物相关资料。 /p p    strong ABP501(biosimilar to Humira,Amgen)分析相似性层级制定及对比结果 /strong /p p style=" text-align: center " strong img width=" 600" height=" 392" title=" y.jpg" style=" width: 471px height: 269px " src=" https://img1.17img.cn/17img/images/201808/insimg/41be2c4e-9b64-40db-ae1d-a25fe9882a95.jpg" / /strong /p p style=" text-align: center " strong img width=" 599" height=" 395" title=" u.jpg" style=" width: 469px height: 298px " src=" https://img1.17img.cn/17img/images/201808/insimg/32fcdb2b-ab55-4c73-921b-74396608c771.jpg" / img width=" 600" height=" 395" title=" i.jpg" style=" width: 470px height: 306px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/4f464c07-86af-4545-8c7f-e7112d5a2b90.jpg" / /strong /p p style=" text-align: center " img width=" 600" height=" 396" title=" o.jpg" style=" width: 477px height: 285px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/cca82c99-86b6-4366-b832-6e3e99e27023.jpg" / /p p style=" text-align: center " img width=" 599" height=" 397" title=" p.jpg" style=" width: 481px height: 308px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/a64ec501-90ff-4e20-b06f-60c642d50a0e.jpg" / /p p style=" text-align: center " img width=" 599" height=" 238" title=" a.jpg" style=" width: 484px height: 205px " src=" https://img1.17img.cn/17img/images/201808/insimg/6bdffcaa-a01d-4be4-9f24-f88ca55ac83d.jpg" / /p p style=" text-align: center " strong br/ /strong /p p strong   GP2015(biosimilar to Enbrel,Sandoz)各层级相似性标准 /strong /p p style=" text-align: center " strong img width=" 599" height=" 403" title=" s.jpg" style=" width: 503px height: 332px " src=" https://img1.17img.cn/17img/images/201808/insimg/98dcf996-3539-46ef-a27e-255bf4ab3691.jpg" / /strong /p p br/ /p p strong   GP2015(biosimilar to Enbrel,Sandoz)分析相似性层级制定 /strong /p p style=" text-align: center " strong br/ /strong /p p style=" text-align: center " img width=" 600" height=" 315" title=" d.jpg" style=" width: 512px height: 267px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/86ee5d19-be4f-4d61-a45d-31ac4bcef104.jpg" / /p p style=" text-align: center " img width=" 600" height=" 333" title=" f.jpg" style=" width: 523px height: 305px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/1460d5df-eb35-4c4f-a59f-069b5e934158.jpg" / /p p style=" text-align: center " img width=" 601" height=" 202" title=" g.jpg" style=" width: 524px height: 180px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/2c7e5d6a-fa00-41bb-bf40-a0280e86ea4a.jpg" / /p p style=" text-align: center " strong br/ /strong /p p    span style=" color: rgb(0, 176, 240) " strong 三、已获批的类似物案例分析 /strong /span /p p   目前已经获FDA批准的类似物中,大部分可以获得FDA的审评报告,部分产品的审批报告在Drug@FDA数据库中未发布,但可在FDA网站搜索获得。下面将Amjevita(Adalimumab-atto)分析相似性研究为例,了解这些产品如何开展分析相似性研究,FDA提出了哪些关键缺陷,而申请人又是如何答复这些缺陷的,详细报告可见审评报告。 /p p    strong 1.Amjevita(Adalimumab-atto) /strong /p p   Amjevita是FDA药王Adalimumab在FDA获批的第一款类似物(目前已有两款,而EMA则有更多款已经获批),相信FDA在不久的将来也会批准更多Adalimumab类似物,谁让这款药这么火呢。该类似物生产商为Amgen,其分析相似性研究中研究的项目,质量属性分层级、各层级的标准、各研究项目的批次数以及研究结果(是否相似)均已在上一期已经给出,这里不再赘述,直接看看该类似物在分析相似性方面有哪些主要的缺陷吧。 /p p    strong a.糖基化不同(审评报告201-207页) /strong /p p   数据显示自研与参比的糖基化类型相同,但各糖型的比例稍有不同。其中非岩澡糖、高甘露糖、半乳糖、唾液酸均与参比不同。半乳糖及唾液酸如下图所示: /p p style=" text-align: center " br/ /p p style=" text-align: center " img width=" 598" height=" 283" title=" h.jpg" style=" width: 490px height: 230px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/3751fe61-6979-47f7-b717-e29c389a4de8.jpg" / /p p style=" text-align: center " img width=" 599" height=" 254" title=" j.jpg" style=" width: 497px height: 193px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/477ad59e-12af-4bb2-85ea-e999b17eb3f1.jpg" / /p p   而据报道非岩藻糖(afucosylated forms)可通过影响产品与FcγRIIIa的结合而最终影响ADCC活性,高甘露糖可影响PK及ADCC活性,唾液酸可影响PK,半乳糖可影响CDC活性。生产商将糖基化作为tier2属性,针对糖基化的差异,生产商进行了如下论述,并获得了FDA的认可: /p p   · 自研产品与参比相比,PK、FcγRIIIa的对比结果无明显差异,说明糖基化的不同不会产生显著影响 /p p   · 在中间产品/中控中控制岩藻糖基化,使得后续生产批次岩藻糖基化水平不超过分析相似性的水平 /p p   · 前期研发的批次糖基化相对较高,但后续工艺优化后,糖基化与参比更为接近了 /p p    strong b.FTIR鉴别(审评报告209-211页) /strong /p p   生产商Amgen对6批自研及参比进行了FTIR鉴别检测,并通过相应的计算按照tier 2层级对结果进行分析,结果显示两者类似。而FDA认为该质量属性只需要作为tier3属性,提供图谱对比即可。 /p p   同时对CD以及DSC检测,Amgen同样按照tier2标准进行分析,但FDA同样认为只需要按照tier3属性进行分析即可。 /p p style=" text-align: center " img width=" 598" height=" 405" title=" k.jpg" style=" width: 471px height: 310px " src=" https://img1.17img.cn/17img/images/201808/insimg/dfbdefae-c8e0-4f43-9f96-b48910fa5621.jpg" / /p p    strong c.SE-HPLC纯度不同(审评报告211-213页) /strong /p p   Amgen同时提供了自研放行结果与参比的对比(在IR回复中提供的)以及自研在24个月(与参比检测时具有相同的‘寿命’)与参比的SE-HPLC对比结果,结果显示虽然放行时自研的聚体比参比低,但在24个月时自研与参比的聚体类似,如下图: /p p style=" text-align: center " img width=" 598" height=" 340" title=" l.jpg" style=" width: 483px height: 272px " src=" https://img1.17img.cn/17img/images/201808/insimg/2dc93b5b-f59f-4edd-9d32-3cdbf2572c1c.jpg" / /p p style=" text-align: center "   span style=" font-size: 14px "   strong 自研24个月时的对比结果 /strong /span /p p style=" text-align: center " strong img width=" 599" height=" 336" title=" z.jpg" style=" width: 444px height: 271px " src=" https://img1.17img.cn/17img/images/201808/insimg/f245f195-dab3-4c6e-8d35-7b76527acd81.jpg" / /strong /p p style=" text-align: center " strong    span style=" font-size: 14px " 自研放行时的对比结果 /span /strong /p p   同时自研的SE-HPLC中低分子物质比参比更低(如下图),但考虑到低分子物质总量才0.2%,这个小峰预计低于0.1%,无法定量,因此其影响可忽略不计。 /p p style=" text-align: center " img width=" 600" height=" 371" title=" x.jpg" style=" width: 440px height: 276px " src=" https://img1.17img.cn/17img/images/201808/insimg/448f4126-6269-49d1-a738-4b93e4e43ee8.jpg" / /p p    strong d.nrCE-SDS纯度不同(审评报告217页) /strong /p p   80%的自研结果在参比的相似性范围内,但有两个数据不在范围内。给出的论述包括:1.不在范围内的批次是早期研发批次 2.nrCE-SDS纯度在98%-99%,已经很高了,检测到的不一致差距很小,可以忽略 3.结合生物学活性无明显差异,认为自研的nrCE-SDS与参比类似。 /p p style=" text-align: center " img width=" 599" height=" 252" title=" c.jpg" style=" width: 469px height: 198px " src=" https://img1.17img.cn/17img/images/201808/insimg/d804bc2b-dff6-42ac-9a86-ae5861013681.jpg" / /p p    strong e.CEX-HPLC不同(审评报告218-221页) /strong /p p   考虑储存时间影响时,检测数据显示自研与参比的主峰及碱性峰基本不在参比的相似性范围(如下图),FDA要求生产商提供合理解释。 /p p style=" text-align: center " img width=" 599" height=" 372" title=" v.jpg" style=" width: 470px height: 272px " src=" https://img1.17img.cn/17img/images/201808/insimg/8b9d2e4b-bb9d-411e-b512-8b574769b706.jpg" / /p p   Amgen回复包括: /p p   · 提供未调整储存时间的结果(如上图),显示酸性峰在范围内,但主峰与碱性峰不在范围内 /p p   · 收集各个峰进行活性检测,酸性、主峰及碱性峰均不改变活性 /p p   · 酸性峰的电荷改变位点不位于影像PK及活性的区域 /p p   · 自研与参比的PK及FcRn结合是一致的 /p p   · 自研与参比的结合能力、活性、功能检测结果无明显差异 /p p   · 使用羧肽酶处理可证明建兴区的不同是由于产品独特的C端赖氨酸引起,其不会对产品的性能产生影响 /p p   strong  f.高温及强降解(审评报告225-226页) /strong /p p   由于Amgen的产品与参比的处方不同(具体处方可见审评报告),因此与预期的一样两者在高温及强降解下降解率不同。而Amgen还将原液配置成与参比一致的处方体系中,与参比进行了对比,结果显示不一致是由于处方体系造成的,而非分子本身造成的。 /p p   strong  g.50° C高温强降解(审评报告226页) /strong /p p   降解后的SE-HPLC对比显示在分子大小纯度方面自研比参比更加稳定(如下图),而rCE-SDS则显示两者趋势相似 电荷异构体纯度自研与参比类似。 /p p style=" text-align: center " img width=" 599" height=" 181" title=" b.jpg" style=" width: 519px height: 139px " src=" https://img1.17img.cn/17img/images/201808/insimg/66117285-d8ef-4644-ba07-0aec7188510a.jpg" / /p p    strong h.生物学活性(审评报告239页起) /strong /p p   Amgen开展了大量活性方面的对比研究,如下图。检测结果基本都相似 /p p style=" text-align: center " img width=" 599" height=" 620" title=" n.jpg" style=" width: 538px height: 573px " src=" https://img1.17img.cn/17img/images/201808/insimg/2cd6da55-99b6-4cbf-bfa3-25217b4c451b.jpg" / /p p    strong 2.Zarxio(Filgrastim-Sndz) /strong /p p   其分析相似性研究按照3个tier对质量属性分层,各个tier相似性标准同上一期中列出的标准。研究的项目包括:结构、理化、杂质、活性。其杂质分析可以关注一下,包括如脱氨基、N端截短变体、乙酰化、琥珀酰亚胺等,具体如下图: /p p style=" text-align: center " img width=" 601" height=" 578" title=" m.jpg" style=" width: 546px height: 530px " src=" https://img1.17img.cn/17img/images/201808/insimg/13b4d351-4b70-49e8-a709-8b9ba0ead58c.jpg" / /p p style=" text-align: center " img width=" 599" height=" 356" title=" ,,,,.jpg" style=" width: 554px height: 329px " src=" https://img1.17img.cn/17img/images/201808/insimg/0c370ddb-4876-46b7-b3b5-22b788c3b876.jpg" / /p p   从审评报告中可以较为详细的了解铬各项目的结果以及批次数,如针对生物学活性项目,生产商采用了15批自研以及15批美国参比,蛋白质浓度采用了13批自研以及12批美国参比。 /p p   审评报告中需特意指出的包括: /p p   a.由于脱氨基为产品相关物质且关键性较低,因此被设置为tier3属性,只对比自研与参比的范围 /p p   b.正亮氨酸与参比稍有不同,但已有研究数据显示正亮氨酸变体与产品生物活性无差异,属于产品相关物质。且自研与参比的免疫原性无明显差异,以及毒理数据支持该水平的正亮氨酸变体,基于此FDA认为该差异无影响 /p p    strong 3.Inflectra(Infliximab) /strong /p p   在审评中主要的问题有: /p p   strong  a. 翻译后修饰 /strong /p p   发现有5个位点的脱氨基以及重链255号位点的氧化水平与参比不同,但给出论述其差异很小,翻译后不足以对产品的生物学活性产生影响。 /p p style=" text-align: center " img width=" 600" height=" 227" title=" ..............................jpg" style=" width: 561px height: 211px " src=" https://img1.17img.cn/17img/images/201808/insimg/2db2ebfe-6f44-4f39-913f-f2250640ee06.jpg" / /p p   氨基酸分析显示酪氨酸及甲硫氨酸处部分发生了一些变异,因此FDA发IR缺陷信,提出该问题,同时自研的变异性更大,要求生产商回复。 /p p   生产商回复总结: /p p   1、经调查为合同实验室的错误导致酪氨酸及甲硫氨酸数据变异,同时并不是所有样品都是在相同条件下处理。酪氨酸的变异可能源于检测时的水解操作。随后生产商优化方法,并进行更多批次的研究,数据未出现更多变异。 /p p   strong  b. 蛋白浓度不同 /strong /p p   数据显示自研蛋白浓度(9.6mg/ml)与参比(9.3mg/ml)相比,存在约3.2%的差距,而自研的蛋白浓度标准与参比不冲突,PK数据显示自研与参比无明显差异,因此生产上认为该差异无影响。FDA则认为4%的误差虽小,但可能并非由于巧合,而可能实际蛋白浓度确实存在差异,并要求生产商确认该差异,并且如果确实存在差异,生产上准备采取哪些措施来使得蛋白浓度一致。生产商检测多批次后发现,自研的蛋白浓度与参比确实存在4%的差异,因此生产商决定收窄蛋白浓度标准,且变更制剂工艺参数,重新生产3批次确认批,并通过增补递交数据。 /p p   strong   span style=" color: rgb(0, 176, 240) " 四、糖基化研究及计算方式 /span /strong /p p   糖基化包括N糖和O糖,而抗体中N糖普遍存在,抗体均具有一个固定的N糖基化位点,也可能存在额外的糖基化位点,目前对N糖基化的研究较为广泛。O糖则在部分产品中可能存在,研究的也相对少一些。对O糖的分析相似性研究可以研究自研与参比的主要糖基化类型(定性),而对N糖的研究则应更为详尽,除了糖型外,主要糖型的比例也应当进行研究(定量),这其中主要包括:高甘露糖、半乳糖、非岩藻糖、岩藻糖以及唾液酸。由于这些糖型可能影响ADCC、CDC、PK等关键质量,因此一般作为tier 2属性来研究。从目前批准的产品来看,糖基化与参比不同几乎是常态,此时提供合理的论述即可。 /p p   N糖中常见的包括甘露糖(M)、半乳糖(G)、岩藻糖(F)以及唾液酸(S)。在计算糖基化类型时,一般应将甘露糖(M)、半乳糖(G)、非岩藻糖(AF)岩藻糖(F)以及唾液酸(S)作为整体考虑。如: /p p   高甘露糖是指仅含甘露糖的糖型,包括M5、M6、M7等 /p p   半乳糖是指含半乳糖的糖型,如:G0、G1、G1F等,半乳糖为这些糖基化之和 /p p   非岩藻糖是指不含核心岩藻糖的糖型,包括高甘露糖、G0、G1等 /p p   span style=" color: rgb(0, 176, 240) " strong  五、相似性研究中应该注意的问题 /strong /span /p p   a.针对在储存期间会改变的质量属性,如:SEC-HPLC、活性等,应考虑自研及参比的‘年龄’,在相对年龄相同的时间对比,如果无法实现,则可以考虑使用稳定性数据外推其影响 /p p   b.当某质量属性较低时,其风险相对较小,可以考虑将其纳入更低的层级 /p p   c.同一质量属性有多个方法进行检测评估时,性能最好的方法应放在风险最高的层级,其他方法则放在风险较低的层级 /p p   d.某些属性或方法由于本身的特性被排除于数据统计,如定性检测及限度检测可能被层级1或2评估所排除,如氨基酸组成,该属性并非不重要,但其无法按照tier 1/2的标准进行数据统计,因此作为tier3属性 /p p   e.可以预见在研发中工艺会出现变更,只要证明其与最终工艺产品可比,则样品均可用于分析相似性研究 /p p   f.生物类似物研发时,参比购买是一个制约因素,参比在市场流通的批次相对较少,因此最好趁早多收集参比,为相似性研究积累更多批次样品。 /p p    span style=" color: rgb(0, 176, 240) " strong 六、FDA批准的类似物CMC审评报告 /strong /span /p p   下面为可以在FDA上查询到的类似物审评报告,供参考: /p p    strong a.Zarxio (Filgrastim-sndz) : /strong /p p strong   b.Inflectra(Infliximab-dyyb): /strong /p p strong   c.Erelzi(Etanercept-szzs): /strong /p p strong   d.Amjevita(Adalimumab -atto): /strong /p p   另外Retacrit(EPOETIN ALFA ) 以及Nivestym(Filgrastim-aafi)审评报告也可在FDA网站搜索到,有兴趣的可以关注一下。 /p p   从CMC审评报告中可以了解到产品主要信息、批准历程(首次递交、历次缺陷等)、分析相似性研究内容。如果你是生物类似物开发者,那建议你一定要学习一下这些报告,相信从中可以获取很多信息。 /p p   另外EMA也会针对各个产品发布审评报告,但其侧重点不同,EMA审评报告中会申报资料将各章节进行总结,但不会分析相似性研究。从EMA审评报告中可以获取的重要信息包括产品的详细信息、相似性研究总结、内外源因子控制等。而FDA审评报告中则重点突出分析相似性研究,其他内容大多被覆盖无法知晓确切信息,在审评报告突出分析相似性研究也是为了给后续的类似物开发商提供参考,有利于加快类似物的发展。 /p p   span style=" color: rgb(0, 176, 240) " strong  七、FDA撤销指南的背景及原因,以及后续指南的修订思路预测 /strong /span /p p   近几年美国虽然有一些生物类似物获批,但其获批远少于EMA。美国是医疗大国,每年用于医疗的费用高昂,生物类似物可以为政府及民众降低医疗费用。很显然,目前美国生物类似物获批的数量以及速度没有达到政府的预期,FDA局长Scott Gottlieb也是特意指出了该点。 /p p   行业对该指南也是有较大的担忧,指南要求至少十批参比及自研进行分析相似性研究。而事实上,参比的可获得性一直是困扰生物类似物开发商的一大难题,一段时间内在市场上流通的参比较少,要购买10批次参比进行研究将花费较长时间。 /p p   在此背景下,FDA于2018.6.21年撤消了该指南,撤销的通知中强调了该指南会提高生物类似物开发的效率及成本(通知原文如下),包括指南求所要求的参比批次数。 /p p   从通知中不难看出,FDA对于加快生物类似物开发及上市的殷切期望。后续分析相似性指南预计会考虑到下面几点: /p p   a.参比及自研的批次数要求。不再设立10批的要求 /p p   b.数据统计方法将重新确立,不再参考目前的标准 /p p   c.新的数据分析方法会考虑到参比的批间变异性 /p p   d.突出临床PK数据的对比,而稍微弱化分析相似性研究 /p p   通知原文: /p p   [6/21/2018] The Food and Drug Administration (FDA or Agency) is announcing the withdrawal of a draft guidance for industry entitled “Statistical Approaches to Evaluate Analytical Similarity,” issued in September 2017. The draft guidance, if finalized as written, was intended to provide advice for sponsors developing biosimilar products regarding the evaluation of analytical similarity between a proposed biosimilar product and the reference product. After considering public comments that the agency received about the draft guidance, the FDA determined it would withdraw the draft guidance as it gives further consideration to the scientific and regulatory issues involved. span style=" color: rgb(146, 208, 80) " Comments submitted to the docket addressed a range of issues that could impact the cost and efficiency of biosimilar development, including the number of reference product lots the draft guidance would recommend biosimilar developers sample in their evaluation of high similarity and the statistical methods for this evaluation. /span The FDA believes that in better addressing these issues in the future, the agency can advance principles that can promote a more efficient pathway for the development of biosimilar products. /p p   The agency intends to issue future draft guidance that will reflect state-of-the-art techniques in the evaluation of analytical data to support a demonstration that a proposed biosimilar product is highly similar to a reference product. The goal is for future draft guidance to address potential challenges faced by biosimilar sponsors in designing studies that are intended to demonstrate that a proposed biosimilar product is highly similar to a reference product, including consideration of appropriate methods to analyze analytical data to account for potential lot-to-lot variability of the reference product. Future draft guidance also will focus on providing appropriate flexibility for sponsors in order to help spur the efficient development of biosimilars without compromising the agency’s rigorous scientific standards for evaluating marketing applications for biosimilars. /p p   The FDA continues to encourage sponsors of proposed biosimilar products to discuss product development plans with the agency, including the evaluation of analytical data intended to support a demonstration that the proposed biosimilar product is highly similar to a reference product. The FDA will continue to provide development-stage advice to sponsors of proposed biosimilar products or proposed interchangeable products through several types of formal meetings, which are described in more detail in FDA’s guidance for industry,Formal Meetings Between the FDA and Sponsors or Applicants of BsUFA Products. More information about this and other FDA guidance documents related to biosimilar products and interchangeable products, as well as contact information for FDA, is available at /p p   The FDA will communicate publicly when new draft guidance is issued in relation to the evaluation of analytical data between a proposed biosimilar product and a reference product. /p p   span style=" color: rgb(0, 176, 240) " strong  八、FDA针对生物类似物实施的BAP(biosimilar action plan)计划 /strong /span /p p   为了平衡创新及市场竞争,FDA推出了生物类似物行动计划,以加快生物类似物上市,BAP主要关注4各方面,包括:加快生物类似物/可互换产品的开发及批准效率 最大消毒为生物类似物开发协会提供科学及法规澄清 为提供患者、临床医生等提高对生物类似物的理解建立有效沟通 通过减少不公平的竞争来支持市场竞争。该计划中包括的部分内容有: /p p   a.开发及实施新审评工具,如标准模板,以加快审评效率并给公众更多产品信息 /p p   b.为类似物开发商提供信息来源及开发工具,以加快类似物开发效率 /p p   c.加强橙皮书内容,在其中加入更多已批准产品的信息 /p p   d.探索与其他国家药政官方共享数据的可能,以促进在某些研究中使用非US参比 /p p   e.为生物类似物设立一个新的机构(OTBB),以协调及支持生物类似物使用者费用项目 /p p   f.发布生物类似物标签指南草案/终稿,以帮助生产上确定在标签上应提供哪些信息 /p p   g.就证明等效为生产商提供额外的澄清,如发布新的指南 /p p   h.为生物类似物分析相似性研究发布新的指南 /p p   i.为生物类似物开发过程中参比的可获得性提供保障 /p p & nbsp /p
  • 新品速递| 酚汀(酚丁)、酚酞及其酯类衍生物或类似物上架
    国家市场监督管理总局发布关于打击食品中非法添加酚汀(酚丁)、酚酞及其脂类衍生物或类似物违法行为的通知,加强了对食品中非法添加的监管。由于酚汀(酚丁)、酚酞及其酯类衍生物或类似物与酚酞具有相同/相似的核心药效团和临床功效,具有类似属性和危害性,因此,添加有上述物质的食品有对人体产生毒副作用的风险,影响人体健康,甚至可危害生命。根据《食品安全法》,食品不得添加药物,而该类原料也从未获得批准作为食品添加剂或新食品原料,以及保健食品原料,因此,在食品中检出酚汀(酚丁)、酚酞及其酯类衍生物或类似物(如4-氯双醋酚丁),均属于非法添加。部分相关产品:了解更多产品或需要定制服务,请联系我们关于我们天津阿尔塔科技有限公司成立于2011年,是国内领先的具有专业研发及生产能力的国产标准品企业,公司坚守“精于科技创新,保障人民健康安全生活”的企业愿景,秉持”致力于成为标准品第一品牌”的企业使命。是国家市场监督管理总局认可的标准物质/标准样品生产者(通过ISO 17034/CNAS-CL04认可),并通过了ISO9001:2015质量管理体系认证。公司于2022年获批筹建“天津市标准物质与稳定同位素标记技术研究重点实验室”,并被认定为国家高新技术企业、国家级专精特新小巨人企业、天津市专精特新中小企业、天津市瞪羚企业等,成立了博士后科研工作站和院士创新中心,建立了国家食品安全重大专项稳定同位素产业基地,主持完成和参加了多项天津市重大科研支撑项目和国家重点研发计划重大专项,处于我国标准品和稳定同位素标记内标行业的领先地位。经过10余年的努力,阿尔塔科技以其卓越的品质和全方位的技术支持与服务受到全球客户的广泛认可和良好赞誉,成长为行业内国产高端有机标准品的知名品牌。2022年底,阿尔塔成功携手杭州凯莱谱精准医疗检测技术有限公司(迪安诊断旗下子公司),进一步开拓医药和临床检测标准品,为多组学创新技术以及质谱标准化的解决方案提供技术保障,精于标准品科技创新,创造绿色健康品质生活,真正实现From Medicare to Healthcare。
  • 华盛顿大学研究人员利用“Serine Ligation”产生有效且稳定的GLP-1类似物
    大家好,今天为大家介绍一篇ACS Chemical Biology的文章,标题为“Generation of Potent and Stable GLP-1 Analogues Via ‘Serine Ligation’ ”,文章的通讯作者是来自美国华盛顿大学的David Baker教授。在这项工作中,作者受“Serine Ligation”方法的启发,介绍了一种具有位点特异性的生物偶联策略。该策略依赖于带有 1-氨基-2-羟基官能团的非天然氨基酸的多肽和水杨醛酯之间的偶联,实现多肽上的化学修饰。具体来说,作者利用这个技术对类似于索马鲁肽 (Semaglutide) 的胰高血糖素样肽-1 (GLP-1) 26位的赖氨酸以及18位的丝氨酸分别修饰,得到了GLP-1类似物G1和G2。结果显示,修饰后的G1和G2在基于细胞的激活试验中比GLP-1更有效,同时能提高其在人血清中的稳定性以及体内葡萄糖处理效率。这种方法展示了“Serine Ligation”在化学生物学中各种应用的潜力,特别是发展稳定的多肽治疗剂(图 1)。图 1 基于“Serine Ligation”的GLP-1位点特异性修饰胰高血糖素样肽-1 (GLP-1) 是一类多肽激素,源自于胰高血糖素原肽的组织特异性翻译后加工,具有通过增强胰岛素分泌从而降低血糖水平的能力。二肽基肽酶 (DPP-4)可以切割GLP-1 N端8位的丙氨酸,因此内源GLP-1的半衰期只有2 min左右。虽然有许多旨在于解决稳定性问题的方法,例如在降解位点引入“不可切割”的氨基酸,但这些方法通常以牺牲稳定性为代价来换取多肽的功能和效力。因此人们对开发既能维持效力,又能稳定多肽治疗剂的新技术产生了很大兴趣。另一方面,多肽和蛋白质的偶联彻底改变了人们对于引入各种官能团来扩展新应用的认识。其中便包括蛋白质组学和高分辨率成像技术。由于多肽或蛋白质中存在多个可反应的活性位点,利用传统的共轭策略,例如N-羟基琥珀酰亚胺 (NHS) 酯,会导致产物的异质性,进而引起分离提纯困难以及生物学活性下降等诸多问题。因而具有位点特异性的新修饰方法亟待开发。作者从“Ser/Thr Ligation”(STL) 中获取灵感,发现该偶联主要发生在C 端的水杨醛酯和 N 端含有丝氨酸或苏氨酸的残基之间。因此,作者通过合成和引入带有1-氨基-2羟基的非天然氨基酸,并将其与水杨醛酯的衍生物偶联,实现了多肽位点特异性的化学修饰(图 2)。图 2 “Serine Ligation”与引入非天然氨基酸的位点特异性生物偶联作者首先评估了该方法的普适性,合成了生物素、花青-3、一种棕榈酸类似物,以及单分散PEG 水杨醛酯。然后将这些探针特定地偶联到带有 1-氨基-2-羟基的非天然氨基酸的模型肽 1 上,生成产物 2-5(图 3)。为了代表性地评估产物的转化率和纯度,作者监测了多肽反应物1和生物素水杨醛之间的反应,发现几乎在30 min后实现了定量转换。图 3 对未保护模型肽的位点特异性修饰之后作者探究如何利用该生物偶联技术增强多肽的稳定性。最常用的方法包括聚乙二醇化和脂化。事实上,两种 GLP-1药物,索马鲁肽和利拉鲁肽都是脂化的,目前用于治疗 2 型糖尿病。基于此,作者利用STL合成了两种GLP-1类似物G1和G2。二者都含有一个类似索马鲁肽的杂合 PEG 和脂肪酸侧链。不同之处在于,G1的修饰在26位的赖氨酸上,与索马鲁肽的修饰位置相同。同时,为了增强稳定性,对G1多肽8号位的丙氨酸也进行了修饰,引入了2-氨基异丁酸 (Aib)。G2的修饰则在18位的丝氨酸上。借助于冷冻电镜,发现18位的丝氨酸在GLP-1与GLP-1受体的结合模型中是溶剂暴露的,因此不会干扰多肽激素的天然功能。在这种条件下,我们可以不对G2的8号位丙氨酸引入修饰,因为18号位丝氨酸引入的脂肪链离N端的距离近,可以保护8号位的丙氨酸不被蛋白水解(图 4)。图 4 GLP-1多肽类似物G1, G2的设计许多生化和结构研究表明GLP-1 内的一个扩展的两亲性 α-螺旋是负责与GLP 受体 (GLP-1R) 的细胞外结构域高亲和力结合的。为了去评估这些外加修饰是否会破坏多肽二级结构,作者使用圆二色谱 (CD) 来表征。相对于显示出特征性螺旋折叠的GLP-1,G1 和 G2 也都显示出螺旋结构;然而,它是低于天然GLP-1的。G1与G2的数据与在索马鲁肽上的脂质修饰相一致,说明了二级结构的丢失是脂质修饰引起的。GLP-1 与 GLP-1R 的内源性结合会导致募集G蛋白的细胞内重排,随后刺激cAMP的产生。cAMP来源于ATP并会导致葡萄糖刺激的胰岛素分泌。为了去评估GLP-1 类似物 G1 和 G2 去激活人源GLP-1R的能力,在过表达人 GLP-1R 的 CHO-K1 细胞中去监测cAMP的积累。细胞最初用天然 的GLP-1 和索马鲁肽进行处理。相比之下,G1 和G2 比未加修饰的GLP-1表现更好,并且与 Semaglutide 大致等效,EC50值为 0.97 ± 0.2 和 0.73 ± 0.2 nM(图 5A)。这些数据表明26位的赖氨酸和18位的丝氨酸的脂质修饰不会对其内源功能造成影响。为了补充体外的药理学分析,作者接下来用反向高效液相色谱 (RP-HPLC) 比较GLP-1类似物G1,G2,天然 GLP-1以及索马鲁肽在人血清中的稳定性。在这个测定中,每种肽在人血清中孵育最多48 小时,取出等分试样并通过 RP-HPLC 分析(图 5B)。相对于天然 GLP-1,G1 显示出显著的稳定性曲线,t1/2 ≈ 40 小时。同时G2也非常稳定,相对于天然 GLP-1 稳定性增幅超过了14倍,几乎与索马鲁肽相似。在得到理想的激活和稳定性数据之后,作者接下来使用标准葡萄糖耐量实验 (GTT) 在动物体内进行测试。更具体地说,在禁食 16 小时后,用 10 nmol/kg 剂量向小鼠注射多肽,其次是 2 g/kg 葡萄糖。血糖水平用血糖仪测量,然后在不同的时间长度之后进行定量(图 5C)。在这种急性 GTT 实验中,G1 和 G2 相比于天然的GLP-1显示出具有统计学意义的血糖控制能力,这与他们的体外数据相一致。这些数据表明脂质化修饰能够在不损害效力的前提下显著增加稳定性,从而改善急性高血糖小鼠模型的体内活性。图 5 脂化对细胞活性,蛋白水解的稳定性以及控制血糖能力的影响为了深入了解 G1 和 G2 是如何与GLP-1R相互作用,作者对相应的配体-受体复合物进行了计算建模。GLP-1R 肽结合模型是基于最近发表的GLP-1R 与未修饰的 GLP-1 复合物的Cryo-EM 结构。索马鲁肽、G1 和 G2 模型与 GLP-1R 的复合物表明脂质化18位的丝氨酸或26位的赖氨酸是溶剂暴露的,可能不会干扰与激活有关的相互结合作用(图 6)。图 6 GLP-1R-Semaglutide、GLP-1R-G1 和 GLP-1R-G2 复合物模型总结来看,作者介绍了一种强大的,基于“Serine Ligation”的位点特异性生物偶联策略。作者应用该方法合成了有效且稳定的GLP-1类似物。该类似物具有一个混合聚乙二醇和脂肪酸侧链,类似于广泛使用的糖尿病药物索马鲁肽。这两种化合物在激活GLP-1R的能力上与索马鲁肽等效;相比于天然的GLP-1,G1,G2在人血清中显示出显著改善的稳定性,并且在小鼠体内的改善血糖能力优于天然的GLP-1。在未来,该方法也显示出构建其他GPCRs稳定且有效的类似物潜力。原文:https://pubs.acs.org/doi/10.1021/acschembio.2c00075
  • 欧盟批准硒代蛋氨酸羟基类似物用作饲料添加剂
    5月15日,欧盟委员会发布(EU)No445/2013号条例,批准硒代蛋氨酸羟基类似物用作动物饲料添加剂。硒代蛋氨酸羟基类似物添加于饲料时,分属的添加剂类型为“营养添加剂”,功能组为“微量元素化合物”,需保证硒元素在12%含水量的饲料成品中的含量不超过0.5mg/kg,有机硒不超过0.2mg/kg。   硒代蛋氨酸羟基类似物用作饲料添加剂时,可作为蛋氨酸营养补充剂,促进动物生长发育。但该物对皮肤和眼睛有刺激作用,在使用该产品后,必须用水冲净皮肤。对此,检验检疫部门提醒相关企业:一是根据欧盟委员会发布的法规,严格按照相关要求来用作动物饲料添加剂。二是与相关部门合作,加大检测力度,确保出口产品符合欧盟标准。三是推进生产工序升级和优化,并建立自检自控体系,分析关键控制点并予以重点关注,确保其含量符合法规要求,避免退运或召回。
  • 核苷类似物可降低HBV相关肝癌切除术后复发风险
    《美国医学会杂志》11月14日发表的一篇论文研究调查了核苷类似物的使用和乙肝病毒(HBV)相关肝细胞癌肝切除后复发风险。   对HBV相关肝癌肝脏切除后的病人来说,肿瘤复发是主要问题。   中国台湾的Chun-Ying Wu医生和同事研究了核苷类似物的使用和HBV相关肝细胞癌根治性手术后肿瘤复发风险。   研究者对2003年和2010年之间台湾省内(病例)进行队列/群组研究。资料来自于台湾全民健康保险研究资料库。   在近期被诊断为肝细胞癌的100938例患者中,研究小组选取了2003至2010年之间4569例进行了根治性肝切除的HBV相关肝细胞癌患者。   小组研究成果主要比较了未使用和使用核苷类似物的病人第一次肿瘤复发风险。   研究小组发现与非治疗组相比,治疗组有更高的肝硬化的发病率。但其肝细胞癌复发风险和整体死亡(率)较低。   研究小组总结道:&ldquo 在HBV相关肝细胞癌病人肝切除后,使用核苷类似物与更低的肝细胞癌复发风险相关。&rdquo
  • 干货分享~卡巴氧、喹乙醇及代谢物前处理方法
    喹噁啉类药物的危害及检测目的喹噁啉类药物是一类化学合成类的抗菌促生长剂,它们的基本结构是喹噁啉-1,4-二氧化物,即喹噁啉环。主要包括喹乙醇、卡巴氧、喹喔啉、喹赛多、喹多辛、西诺喹多、德那资多(肼多司)、乙酰甲喹和喹烯酮等药物。研究表明,喹噁啉类药物对DNA致突变、致损伤,破坏细胞抗氧化作用系统,可以引起细胞自由基的产生,导致细胞DNA发生氧化性损伤,还会引起细胞周期阻滞和细胞凋亡。传统喹噁啉类药物喹乙醇和卡巴氧,由于其对人体危害最/大,世界各国和国际组织对这两种兽药制定了严格的残留限量规定。欧盟1998年发文禁止喹乙醇和卡巴氧在食品动物生产中作为促生长添加剂使用。2020年我国生效实施的GB 31650-2019《食品安全国家标准食品中兽药zui/大残留限量》中规定了猪肌肉和猪肝脏组织中喹乙醇残留标志物的zui/大残留限量。同年我国农业农村部公告第250号规定卡巴氧及其盐、酯为食品动物中禁止使用的药品。但是,这些药物在生产实践中被大量地非法使用或滥用,其残留对消费者健康造成了巨大的潜在威胁。喹乙醇和卡巴氧进入动物体内后,能够在短时间内代谢成十多种产物,研究表明,3-甲基-喹噁啉-2-羧酸(MQCA)是喹乙醇在动物体内代谢后的主要产物,喹噁啉-2-羧酸(QCA)是卡巴氧在动物体内代谢后的主要产物,且该产物在动物体内滞留时间较长,因其含量与总残留关系稳定,所以将MQCA定为喹乙醇在动物体内代谢的残留标示物,将QCA定为卡巴氧在动物体内代谢的残留标示物。本文阐述了如何将卡巴氧、喹乙醇及代谢物从样品基质中分离提取出来,并经过净化后,转化成液质联用仪可以检测的形式。以提取、净化为重点,依据国标GB/T 20746-2006,为检测人员和相关领域研究人员提供一定的参考。检测项目:卡巴氧、脱氧卡巴氧、喹噁啉-2-羧酸(QCA)、3-甲基-喹噁啉-2-羧酸(MQCA)应用范围:牛、猪肝脏和肌肉液相色谱-串联质谱法方法原理:卡巴氧:用乙腈+乙酸乙酯(1+1)溶液提取肌肉和肝脏组织中的卡巴氧,提取液经正己烷脱脂后,旋转蒸发至干,残渣用甲酸(0.1 %)+甲醇(19+1)溶液溶解。样液供液质测定,内标法定量。脱氧卡巴氧、QCA、MQCA:用甲酸溶液消化试样,使组织中天然存在的酶失活,然后加入蛋白酶水解,盐酸酸化,离心过滤后,过Oasis MAX固相萃取柱或相当者净化。先用二氯甲烷洗脱脱氧卡巴氧,再用2 %甲酸乙酸乙酯溶液洗脱QCA和MQCA,氮气吹干洗脱液,残渣用甲酸+甲醇(19+1)溶液溶解,样液供液质测定,内标法定量。 前处理仪器:固相萃取装置;氮气浓缩仪;液体混匀器;分析天平(感量0.1 mg和0.01 g);真空泵;均质器;移液器(10 μL~100 μL和100 μL~1000 μL);聚丙烯离心管(50 mL具塞);pH计(测量精度±0.02 pH单位);低温离心机(可制冷到4 ℃);玻璃离心管(15 mL)。检测仪器:HPLC-MS/MS+ESI源试样制备与保存将牛、猪肝脏和肌肉组织样品充分搅碎,均质,分出0.5 kg作为试样,置于清洁样品容器中,密封,并做上标记。将制备好的试样于-18 ℃以下保存。前处理方法1. 卡巴氧的前处理步骤称取5 g试样(精确至0.01 g),置于50 mL聚丙烯离心管中,加入5 g中性氧化铝,加入25 mL乙腈+乙酸乙酯(1+1)溶液,于液体混匀器上充分混合5 min,以5000 r/min离心5 min,将上清液移取至另一干净的50 mL离心管,加入10 mL正己烷到管中,振荡2 min,以5000 r/min离心5 min,弃去上层正己烷,将下层清液转移至150 mL鸡心瓶中。加入25 mL乙腈+乙酸乙酯(1+1)溶液,重复提取一次,正己烷除脂后合并两次提取液于同一鸡心瓶中,加入一定量的喹噁啉-2-羧酸-d4(QCA-d4)标准溶液,使其浓度为2.0 ng/g,40 ℃水浴减压旋转蒸发至干。准确加入1.0 mL 0.1 %甲酸-甲醇(19+1)溶液溶解残渣,过0.2 μm滤膜后,供液质测定。2. 脱氧卡巴氧、喹噁啉-2-羧酸、3-甲基-喹噁啉-2-羧酸的前处理步骤称取5 g试样(精确至0.01 g),置于50 mL聚丙烯离心管中,加入10 mL 0.6 %甲酸溶液,混匀后,置于(47±3)℃振荡水浴中振摇1 h;先加入3 mL1.0 mol/LTris溶液混匀,再加入0.3 mL 0.01 g/mL蛋白酶水溶液,充分混匀后,置于(47±3)℃振荡水浴中酶解16 h~18 h。加入20 mL 0.3 mol/L盐酸溶液,振荡5 min,在10 ℃以5000 r/min离心15 min,上清液过滤。将滤液移入Oasis MAX固相萃取柱(3 mL甲醇和3 mL水活化)中,待样液全部流出后,用30 mL 0.05 mol/L乙酸钠-甲醇(19+1)溶液淋洗固相萃取柱,真空抽干15 min。在一支干净的玻璃管内加入一定量的喹噁啉-2-羧酸-d4(QCA-d4)标准溶液,使其浓度为2.0 ng/g,再用4×3 mL二氯甲烷将脱氧卡巴氧洗脱至管内,在45 ℃用氮气浓缩仪吹干。固相萃取柱再用3×3 mL甲醇、3 mL水、3×3 mL 0.1 mol/L盐酸溶液和2×3 mL甲醇-水(1+4)溶液分别淋洗,真空抽干15 min,然后用2 mL乙酸乙酯再淋洗固相萃取柱,弃去全部淋出液,最后用3 mL 2 %甲酸乙酸乙酯溶液洗脱喹噁啉-2-羧酸(QCA)和3-甲基-喹噁啉-2-羧酸(MQCA)到上述吹干的试管中,在45 ℃用氮气浓缩仪吹干。准确加入1.0 mL 0.1 %甲酸-甲醇(1.标准物质分别用甲醇配制成100 m-d4)同位素内标进行回收率的校正,也可以配合使用各个化合物相对应的同位素内标。
  • 5种中国产品在美检出三聚氰胺或其类似物质
    3月17日,记者从美国FDA网站获悉,FDA发布了2011年2月拒绝进口食品情况,2月份共有56款来自中国的食品被拒绝进口,其中有4款食品、1款鱼饲料检出三聚氰胺。   根据通报信息,标称合肥“wor-biz trading co.,ltd”公司生产的一款糯玉米(GLUTINOUS CORN)、标称上海“Aipu Food Industry Co Ltd ”生产的水解植物蛋白(HYDROLYZED VEGETABLE PROTEIN)、标称福建“JINJIANG XIEXIANG”公司生产的马铃薯片(POTATO CHIPS),以及标称广东东莞“Sheng Fa Food Factory”生产的低筋粉蛋糕(SOFT FLOUR CAKE)查出三聚氰胺或其类似物质。   而标称来自福建“JINJIANG QIMEI GIFTS AND FAVOURITE”的一款鱼饲料也被检出三聚氰胺或其类似物质。
  • 肝素钠与其类似物杂质的高效分析
    由于肝素钠在分子量分布和电荷差异上的异质性,对其进行有效分析一直是一个挑战。而且,这些杂质通常具有与肝素钠相类似的特性,使得在使用分析方法时很难区分肝素钠与其杂质。为了有效将肝素钠从杂质中(包括生产过程产生的杂质如硫酸皮肤素和非法添加的杂质如多硫酸软骨素)分离出来,美国药典(USP)颁布了一种采用离子交换色谱鉴定肝素钠及其杂质的色谱方法(注:中国药典对肝素钠的检测方法和USP相同)。然而,目前市面上的离子交换色谱柱很少能够满足USP的分离度标准,因此,迫切需要有一种新型填料来对其进行改善。赛分科技近日开发了一种离子交换色谱柱&mdash &mdash Glycomix&trade SAX,可对如肝素钠这样的带多电荷聚糖样品实现高效分离。 图1肝素钠、硫酸皮肤素和多硫酸软骨素在Glycomix&trade SAX上的分离色谱图 色谱条件 Column: Glycomix&trade SAX, 4.6 x 250 mm Guard column: Glycomix, 4.6 x 50 mm Mobile phase: A: 0.04% NaH2PO4, pH 3.0 B: 0.04% NaH2PO4+14% NaClO4, pH 3.0 Flow rate: 0.22 mL/min Gradient: 20% - 90% B in 60 minutes Wavelength: 202 nm Column temp: 25 ℃Injection volume: 10 mL Pressures: 9.5 bar Sample: 20 mg/mL Heparin sodium 1 mg/mL Dermatan sulfate (DS) 1mg/mL Oversulfated chondroitin sulfate (OSCS) in H2O 在Glycomix&trade SAX柱上,肝素钠和硫酸皮肤素的分离度为3.8,肝素钠和多硫酸软骨素之间的分离度为5.8,远远超过USP所要求的1.0和1.5。 图2 肝素钠、硫酸皮肤素和多硫酸软骨素的标准曲线 图3 Glycomix&trade SAX的批次重现性 更多信息:http://www.sepax-tech.com.cn/products/tjpz1/lzjh/Glycomix/13.html 《Glycomix&trade SAX产品手册》 点击下载 关于赛分科技 赛分科技有限公司(Sepax Technologies, Inc)总部位于美国特拉华州高新技术开发区,致力于开发和生产药物与生物大分子分离和纯化领域的技术和产品。赛分科技是集研发、生产和全球销售为一体的实业型企业。公司主要产品为液相色谱柱及耗材、固相萃取柱(SPE)及耗材、液相色谱填料以及分离纯化仪器设备。在液相色谱领域里,赛分科技已开发出了100多种不同型号的液相色谱材料,涵盖了反相、正相、超临界(SFC)、手性(Chiral)、离子交换、体积排阻、亲和、HILIC等各种类别,为世界范围内液相色谱产品最为完善的企业之一。 赛分科技的创新技术使之生产出具有最高分辨率及最高效的生物分离产品,包括体积排阻、离子交换、抗体分离、和糖类化合物分离色谱填料和色谱柱,可广泛地应用于单克隆抗体、各种蛋白、DNA、RNA、多肽、多糖和疫苗等生物样品的分析、分离和纯化。赛分科技先进的技术和完善的产品线已使赛分成为全球生物分离的领航者。 公司网站:www.sepax-tech.com.cn www.sepax-tech.com
  • 盘点FDA批准上市的生物类似药
    p style=" text-align: justify "   生物药(Biological products)一般是指来源于有生命的生物体的产品,通常来源是疫苗、血液成分、基因治疗、组织和蛋白质。而生物类似药(Biosimilar)是指与已经批准的原研专利药具有生物类似性或者互相替代性的生物制品。 /p p style=" text-align: justify "   在过去十年左右,生物制药带来了一系列新疗法, 其中重磅药的每年销售额从十几到几十亿美金不等。随着时间推移许多生物药的专利将过期,根据Evaluate的统计,到2020年,已过专利保护期的生物药将拥有高达近874亿美金的市场规模。这极具吸引力的利润空间,引来各大制药公司的关注。 /p p style=" text-align: justify "   美国与生物类似药(Biosimilar)有关的里程碑法案是2010年3月开始实行的The Biologics PriceCompetition and Innovation Act of 2009 (BPCI Act)(生物制品价格竞争和创新法案2009),简称BPCI法案。这是奥马巴在任时推行的Affordable Care Act(ACA)平价医疗法案的一部分。其为生物类似药提供一个简化审批流程。2012年2月9日,美国FDA颁布了3项与生物类似药产品开发有关的指南草案,为生物类似药进入美国市场建立了一条快速审批通道。 /p p style=" text-align: center " img width=" 599" height=" 384" title=" timg.jpg" style=" width: 511px height: 321px " alt=" timg.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/1ffc9a54-6e65-491c-960b-731aa14755e0.jpg" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) font-size: 14px " strong 图片源于网络 /strong /span /p p style=" text-align: justify "   尽管如此,FDA对Biosimilar的审批相当慎重,直到2015年才批准首个生物类似药Zarxio上市。至近日Truxima获批,FDA批准的生物类似物共12个。下面我们将逐一盘点已经获批上市的药物。 /p p style=" text-align: justify "    strong 1、Zarxio /strong /p p style=" text-align: justify "   Zarxio(filgrastim -sndz),由诺华旗下山德士推出,于2015年3月6日获得FDA批准,这是FDA批准的首款生物类似药。 /p p style=" text-align: justify "   Zarxio的仿制对象(参考产品)是安进公司(Amgen Inc)的 Neupogen (filgrastim,非格司亭1991年获得批准) 。Zarxio此次获得批准的适应症与Neupogen完全相同,主要包括正在接受骨髓抑制化疗的癌症患者、在接受诱导或巩固性化疗的急性骨髓性白血病患者、在接受骨髓移植的癌症患者、正在进行自体外周血造血干细胞集治疗的患者、严重慢性嗜中性白血球减少症患者。 /p p style=" text-align: justify "   FDA批准Zarxio作为Neupogen的生物类似性药物,但并非后者的“可互换药”(interchangeableproduct) 。根据美国法律,如果一种生物制品被批准为某种参考药品的“可互换药”,则意味着无需医生干预可以直接替代参考药品用于临床。 /p p style=" text-align: justify "    strong 2、Inflectra /strong /p p style=" text-align: justify "   Inflectra (infliximab-dyyb,英夫利昔单抗)由辉瑞研发,于2016年4月5日获FDA批准。该药是强生和默沙东的重磅品牌药Remicade (类克,通用名:infliximab,英夫利昔单抗)的生物类似药。Remicade曾是全球最畅销的抗炎药,2014年全球销售额高达92.4亿美元,位列《2014年全球销售最好的25个药物》榜单第3名。 /p p style=" text-align: justify "   该药是FDA批准的第二个生物类似药,也是FDA批准的首个单克隆抗体生物类似药。用于治疗如下疾病:(1)对常规药物治疗反应不足的成人克罗恩病和儿童克罗恩病(6岁及以上) (2)对常规药物治疗反应不足的中度至重度活动性溃疡性结肠炎 (3)联合甲氨蝶呤用于治疗中度至重度活动性成人类风湿性关节炎 (4)活动性强直性脊柱炎 (5)活动性银屑病关节炎 (6)慢性重度斑块型银屑病。 /p p style=" text-align: justify "   strong  3、Erelzi /strong /p p style=" text-align: justify "   2016年8月30日,FDA批准山德士开发的Enbrel (etanercept)生物类似药Erelzi (etanercept-szzs)上市,用于治疗多种炎症疾病,成为FDA批准的第三个生物类似药。 /p p style=" text-align: justify "   原研药Enbrel (恩利,通用名:Etanercept,依那西普)是安进的一款超级重磅产品,2014年全球销售额高达90亿美元。目前,Enbrel在美国已获批的适应症包括:中度至重度类风湿性关节炎,中度至重度多关节型幼年特发性关节炎,银屑病关节炎,强直性脊柱炎,中度至重度斑块型银屑病。 /p p style=" text-align: justify "   值得注意的是,2016年1月底,由韩国生物制药公司三星Bioepis (Samsung Bioepis)开发的一款依那西普(etanercept)生物类似药Benepali已经获欧盟批准,用于中度至重度类风湿性关节炎、银屑病关节炎、非放射性中轴性脊柱关节炎、银屑病成人患者的治疗。Benepali是欧盟批准的首个依那西普(etanercept)生物类似药,同时也是欧洲市场首个皮下注射剂型抗肿瘤坏死因子(anti-TNF)生物类似药。在欧洲生物制剂市场中,抗肿瘤坏死因子产品是最大的组成部分,年销售额高达100亿美元。 /p p style=" text-align: justify "    strong 4、Amjevita /strong /p p style=" text-align: justify "   2016年9月23日, FDA宣布批准安进公司的新药Amjevita (adalimumab-atto)上市。Amjevita是艾伯维拳头产品Humira (修美乐,通用名:adalimumab,阿达木单抗)的生物类似药。 /p p style=" text-align: justify "   Amgevita的活性成分是一种抗TNF-α单克隆抗体,与adalimumab具有相同的氨基酸序列,并且具有adalimumab相同的药物剂型和剂量,用于多种炎症性疾病包括:中重度活动性类风湿关节炎 活动性银屑病性关节炎 活动性强直性脊柱炎 中重度活动性克罗恩病 中重度严重性活动性溃疡性结肠炎 中重度斑块状银屑病。 /p p style=" text-align: justify "    strong 5、Renflexis /strong /p p style=" text-align: justify "   Renflexis (infliximab-abda,英夫利昔单抗)由默沙东与合作伙伴三星集团旗下生物制药公司三星Bioepis(SamsungBioepis)合作开发的一款生物类似药,于2017年4月21日获FDA批准。 /p p style=" text-align: justify "   Renflexis适用于Remicade的全部适应症,包括:成人及儿科克罗恩病,成人溃疡性结肠炎、类风湿性关节炎、强直性脊柱炎、银屑病关节炎以及成人斑块型银屑病的治疗。 /p p style=" text-align: justify " strong   6、Cyltezo /strong /p p style=" text-align: justify "   Cyltezo是由德国制药巨头勃林格殷格翰(Boehringer Ingelheim)开发的阿达木单抗生物类似药。Cyltezo首先于2017年11月13日获得欧盟委员会批准,获批用于艾伯维原研药Humira所有已获批的适应症,后于2017年8月25日FDA批准。 /p p style=" text-align: justify "   strong  7、Mvasi /strong /p p style=" text-align: justify "   安进公司的Mvasi (bevacizumab-awwb,贝伐珠单抗)是罗氏旗下基因泰克(Genentech)公司Avastin (bevacizumab)的生物类似药,于2017年9月14日获得FDA批准,被批准用于治疗患有某种结直肠癌、肺癌、脑癌、肾癌及宫颈癌的成人患者。它获批后仍作为批准生物类似药,而非一种可互换的产品。 /p p style=" text-align: justify "   strong  8、Ogivri /strong /p p style=" text-align: justify "   FDA于2017年12月1日批准Mylan和Biocon公司两家公司共同开发的Ogivri (trastuzumab-dkst)上市。Ogivri是一款Herceptin (商品名赫赛汀,药物名trastuzumab,曲妥单抗)的生物类似药,被批准用于治疗赫赛汀标签中的所有适应症,包括过度表达HER2的乳腺癌和转移性胃癌(胃或食管胃交界部腺癌)。 /p p style=" text-align: justify "    strong 9、Ixifi /strong /p p style=" text-align: justify "   Ixifi(英夫利昔单抗-qbtx)由辉瑞研发的Remicade的生物类似药,于2017年12月13日获批,Ixifi仍作为一种生物类似性药物,而不是一种可互换的产品。 /p p style=" text-align: justify "   strong  10、Retacrit /strong /p p style=" text-align: justify "   辉瑞旗下Hospira 公司的Retacrit (epoetin alfa-epbx)作为Epogen/Procrit(epoetin alfa)的生物类似药,于2018年5月15日获FDA批准上市,用于治疗慢性肾病,化疗或使用齐多夫定治疗HIV感染患者的贫血症。Retacrit也被批准在手术前后使用,以降低因手术过程中失血而必须输注红细胞的可能性。 /p p style=" text-align: justify "   strong  11、Fulphila /strong /p p style=" text-align: justify "   FDA已于2018年6月批准Fulphila(pegfilgrastim-jmdb)上市。该药是安进Neulasta (pegfilgrastim,培非格司亭)的生物类似药。 /p p style=" text-align: justify "   Neulasta是一种“升白”药物,用于提升患者体内的白细胞数量,其活性药物为pegfilgrastim,这是一种重组的人粒细胞巨噬细胞集落刺激因子(G-CSF)。G-CSF临床主要用于预防和治疗肿瘤放疗或化疗后引起的白细胞减少症、治疗骨髓造血机能障碍及骨髓增生异常综合征、预防白细胞减少可能导致的感染并发症、以及让感染引起的中性粒细胞减少的恢复加快。肿瘤患者在放疗或化疗后,常会出现白细胞减少、抗感染能力降低等症状。因此,临床上常使用“升白药”提升患者体内的白细胞数量。 /p p style=" text-align: justify "   strong  12、Truxima /strong /p p style=" text-align: justify "   Truxima的参考药为罗氏旗下的Rituxan(rituximab,利妥昔单抗),被批准用于治疗非霍奇金淋巴瘤的生物类似药,由韩国药企CelltrionHealthcare推出,主要用于大B细胞淋巴瘤、滤泡性淋巴瘤、慢性淋巴细胞白血病、非霍奇金淋巴瘤、多血管炎及微小多血管炎型肉芽肿病等癌症的治疗。 /p p style=" text-align: justify "   此次,于2018年11月28日获FDA批准用于治疗以下成人患者:1)单药治疗复发或难治性、低度恶性或滤泡型、CD20阳性B细胞滤泡淋巴瘤 2)与一线化疗联合用于以前未经治疗的CD20阳性B细胞滤泡淋巴瘤 3)单药维持治疗用于对利妥昔单抗联合化疗发生完全或部分起效的患者以及在一线环磷酰胺,长春新碱和泼尼松(CVP)化疗后的单药治疗,用于非进展性、低级别CD20阳性B细胞淋巴瘤。 /p p style=" text-align: justify "    span style=" color: rgb(0, 112, 192) " strong 小结 /strong /span /p p style=" text-align: justify "   与常见的小分子不同,生物制剂通常具有高分子复杂性,且对生产过程的变化非常敏感,然而现有的技术尚不能充分表征生物药的结构和其他特性。同时药品生产过程中的细微差异可能对最终产品的质量、纯度、生物学特性及临床效果影响很大。这些因素决定生物类似药不可能与原研药完全一样。 /p p style=" text-align: justify "   在美国 ,对于小分子的化学仿制药,一般情况下药剂师可以在不经处方医生允许,直接将处方中的原研药品替换为仿制药。这种替换有利于降低药品费用。但生物类似药必须在FDA已经批准其具可互换性的前提下,药剂师才能在不经处方医生允许的情况进行替换(具体可以参见FDA紫皮书,各州法规还并不完全一致)。由此可见,FDA对生物类似药的获是非常谨慎的。 /p p style=" text-align: justify "   FDA对生物类似药提出两个层次的要求,首先是证明生物相似,这是基本要求,而可互换是更高要求。到目前为止,欧盟没有明确提出生物类似药的“可互换性”的概念,但多个国家如英国、法国、意大利,都有明令禁止药剂师对生物类似药直接进行互换。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(127, 127, 127) font-size: 14px " 参考与备注: /span /p p style=" text-align: justify " span style=" color: rgb(127, 127, 127) font-size: 14px "   [1] https://en.wikipedia.org/wiki/Biosimilar /span /p p style=" text-align: justify " span style=" color: rgb(127, 127, 127) font-size: 14px "   [2]2015年3月,CFDA在其发布的《生物类似药研发与评价技术指导原则(试行)》文件中首次将biosimilar称为“生物类似药” /span /p p style=" text-align: justify " span style=" color: rgb(127, 127, 127) font-size: 14px "   [3] 胰岛素、生长激素、促卵泡激素、甲状旁腺素未列入其中。 /span /p p style=" text-align: justify " span style=" color: rgb(127, 127, 127) font-size: 14px "   [4] 刘培英,黄文慧,田少雷.对美国食品和药物管理局生物类似药可互换性概念和要求的解读.中国新药与临床杂志,2018,37(2):95-98. /span /p
  • 大批生物制剂专利即将到期——国内生物类似药研发现状与思考
    p   国家对医药行业发展大力扶持,国内生物类似药的发展也跟着呈上升趋势。然而,同欧美发达国家相比,中国生物类似药的研发实力仍存在巨大差距。为了改变这种状况,国家也从政策上大力扶持,以促进国内生物类似药研发。2015年2月,CFDA发布了“生物类似药研发和评估技术指南(试行)”,旨在促进生物制药行业的健康发展。该文件详细说明了生物类似药的申请程序,注册要求和类别。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/4a09859f-5ca1-4ba5-b4f6-b0bcc9be9e8c.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p   生物类似药具有一些独特的特点。首先是他们的技术要求高,由于它们在细胞中生产,生物类似药的有效性和安全性可能因批次而异。因此,在开发过程中质量控制的关键技术至关重要。许多工艺步骤,包括细胞培养、产品加工和纯化、储存等,都会影响最终产品质量。因此,毫无疑问,监管机构,尤其是欧美的监管机构,在批准之前需要进行大量关于生物类似药的临床数据分析。这最终转化为到相对较高的生产成本。 /p p   生产成本的增加又带来新的问题,那就是投资风险。生物类似药的研制周期越长,成本越高,会带来较高的投资风险。一般来说,成功开发生物类似药需要8到10年甚至更长时间,投资或可高达2.5亿美元。相比之下,化学仿制药可能只需要3 - 5年,其投资成本可能在200万至300万美元之间。 /p p   目前,一大批生物制剂专利已经或即将到期,包括阿达木单抗,英夫利昔单抗,依那西普,利妥昔单抗,贝伐单抗,曲妥珠单抗等。本文中重点介绍上述品种的国内生物类似药的研发情况。 /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 1 国内生物类似药研发现状 /strong /span /p p    span style=" color: rgb(0, 112, 192) " strong Rituximab /strong /span /p p    strong span style=" color: rgb(0, 112, 192) " 利妥昔单抗 /span , span style=" color: rgb(0, 112, 192) " 原研为Rituxan /span /strong ,最初由罗氏公司开发。1997年和1998年,它已获得FDA和EMA的批准。其主要适应症是非霍奇金淋巴瘤,慢性淋巴细胞白血病和类风湿性关节炎。目前,利妥昔单抗是非霍奇金淋巴瘤最有效的CD20靶向治疗方法之一。临床结果表明,联合利妥昔单抗和CHOP联合化疗可使侵袭性NHL患者的总体缓解率提高到83%,完全缓解率分别提高到76%。 /p p   到目前为止,欧盟已经批准了两种利妥昔单抗生物类似药,包括Celltrion Healthcare的Truxima和Sandoz的Rixathon和Riximyo。 /p p   2008年4月21日,罗氏的Rituxan正式进入中国市场。与此同时,一大批中国生物制药公司正在加大竞争力度。最值得注意的是复星医药旗下的复宏汉霖。复宏汉霖的重组人鼠嵌合抗CD20单克隆抗体注射液,主要适用于非霍奇金淋巴瘤、类风湿性关节炎的治疗。在2018年1月29日被CDE纳入优先审查,有望成为国内首个生物类似药。 /p p   此外,信达生物与美国制药巨头Eli Lily共同开发IBI301。其临床前数据表明,在所有的主要特征,包括初级和更高级结构、异质性、生物活性和与工艺相关的杂质都与Rixutan高度相似。在其临床前药理学研究中,其药代动力学和毒性特征也显示出与Rituxan的药代动力学和毒性特征非常相似。11月13日信达生物宣布IBI-301获得国家药品监督管理局(NMPA)受理的新药上市申请。 /p p   神州细胞工程有限公司,海正药业,他们的产品也都已进入三期临床试验阶段。 /p p    strong span style=" color: rgb(0, 112, 192) " Adalimumab /span /strong /p p strong span style=" color: rgb(0, 112, 192) "   阿达木单抗,原研药为Humira /span /strong ,是Abbvie的明星产品。它连续几年成为畅销药品,于2002年12月31日获FDA批准,并于2003年9月8日获得EMA批准。目前,其主要适应症为类风湿性关节炎和强直性脊柱炎。 /p p   目前,美国FDA已经批准了两种阿达木单抗生物类似药,包括Amgen的Amjevita和Boehringer Ingelheim的Cyltezo。同时,有四个在欧盟获得批准,除了Amgevita和Cyltezo,Amgen的Solymbic和Samsung Bioepis的Imraldi也被接受。 /p p   2012年2月26日,Humira进入国内市场。目前,近20家中国制药公司在研发此品种。其中,信达生物、百奥泰和海正的已经进入上市申请阶段。 /p p   8月17日,百奥泰的阿达木单抗注射液(BAT1406)的上市申请获得CDE承办受理,海正药业于9月14日发出公告的阿达木单抗(HS016)上市申请以特殊审批程序获国家药品监督管理局受理。信达生物11月12日宣布,国家药品监督管理局(NMPA)已受理其在研药物IBI303的新药上市申请(NDA) /p p   复宏汉霖于2017年4月29日,它宣布其阿达木单抗生物类似药也被批准在国内进行临床试验。值得注意的是复宏汉霖并没有将目标定位在强直性脊柱炎的指征,相反,它适用于牛皮癣。君实生物的UBP1211、正大天晴的TQ-Z2301。通化东宝、百泰生物、康宁杰瑞、华海药业、齐鲁药业等20多家企业处于临床前到临床II期阶段 /p p   Humira在2017 年的全球销售额为 184.3 亿美元。但中国市场的总收入仅为3100万美元,不到全球市场的0.01%。这主要是因为其成本相对较高。然而,随着国内仿制者的出现,预计将会很快就会在看到阿达木单抗的使用量的激增。 /p p    strong span style=" color: rgb(0, 112, 192) " Infliximab /span /strong /p p strong span style=" color: rgb(0, 112, 192) "   英夫利昔单抗,原研药品牌为Remicade /span /strong ,由Janssen开发是另一种流行的抗TNF-α单克隆抗体。它分别于1998年8月和1999年8月由FDA和EMA批准。目前,它主要用于治疗炎症相关疾病,包括克罗恩病,溃疡性结肠炎,类风湿性关节炎,强直性脊柱炎,银屑病性关节炎和斑块状银屑病。 /p p   到目前为止,美国仅批准了两款英夫利昔单抗生物类似,分别是Pfizer的Inflectra和Samsung Bioepis的Renflexis。EMA已批准三款,包括Pfizer的Inflectra,Celltrion的Remsima和Samsung的Flixabi。 /p p   2017年5月17日,Remicade被CFDA正式批准上市。从那时起,国内该品种生物类似药的研发一直在追赶。上海百迈博制药CMAB-008已申报生产并拿到批件。海正药业的HS626处于三期临床,在这场比赛相对另领先,其余在临床早期阶段 /p p    strong span style=" color: rgb(0, 112, 192) " Etanercept /span /strong /p p strong span style=" color: rgb(0, 112, 192) "   依那西普,原研药是Enbrel /span /strong ,最初由Amgen开发,是重组人TNF-α受体和人IgG-Fc的融合蛋白,于1998年11月和2000年2月分别获FDA和EMA批准。它主要用于类风湿性关节炎,幼年型类风湿性关节炎,银屑病性关节炎,斑块状银屑病和强迫性脊椎炎。 /p p   目前,FDA已批准Sandoz的仿制药Erelzi,EMA已批准SamsungBioepis的Erelzi和Benepali。 /p p   Etanercept于2010年2月26日进入中国市场,与本文中的其他生物制剂相比,相对较晚。然而,它的中国模仿实际上很早就出现了。中信国健的益赛普在2005年上市,另外是上海赛金的强克和海正药业的安佰诺也先后获得批准。从这个角度来看,这些模仿者并不是真正意义上的生物类似药。 /p p    strong span style=" color: rgb(0, 112, 192) " Trastuzumab /span /strong /p p strong span style=" color: rgb(0, 112, 192) "   曲妥珠单抗,商品名赫赛汀 /span /strong ,最初由罗氏公司的Genentech开发。它分别于1998年9月和2000年8月首次获得FDA和EMA的批准。 /p p   它是抗HER2单克隆抗体,通过与HER2连接,可以阻断人表皮生长因子与HER2的结合,从而减少癌细胞的生长。目前,其主要适应症包括乳腺癌,转移性胃癌和过度表达HER2的转移性食管癌和胃癌。 /p p   到目前为止,只有两种曲妥珠单抗生物类似药已进入市场。Mylan和Biocon公司两家公司共同开发的Ogivri Samsung Bioepis的Ontruzant由EMA批准。 /p p   曲妥珠单抗于2002年9月5日获得CFDA批准。目前,一大批中国制药公司正争相成为第一个将国内版本推向市场的公司,9月份,国家食药监局受理了三生国健药业递交的注射用重组抗HER2人源化单克隆抗体(赛普汀)的上市申请。复星医药旗下复宏汉霖的HLX02处于国内三期领先地位,并且大举进军海外市场开展海外临床试验,嘉和生物药业有限公司和安科生物也都进入了三期临床研究。 /p p   赫赛汀在2017年的总销售额为74.41亿美元,去年在全球15大最畅销药品中排名第五。与此同时,它是中国最畅销的抗肿瘤药物,2016年收入为1.59亿美元,约占其全球市场的2.8%。 /p p    strong span style=" color: rgb(0, 112, 192) " Bevacizumab /span /strong /p p strong span style=" color: rgb(0, 112, 192) "   贝伐珠单抗,原研药品牌为Avastin /span /strong ,是由罗氏公司开发的抗人血管内皮生长因子(VEGF)的人源化单克隆抗体。它分别于2004年2月26日和2005年1月12日获得FDA和EMA的批准。通过抑制肿瘤血管生成,它干预肿瘤的营养供应,从而使肿瘤生长受到抑制。目前,该药主要用于治疗转移性结肠直肠癌、非小细胞肺癌以及其他转移性癌症。 /p p   到目前为止,该品种市场上只有一种生物类似药Mvasi(bevacizumab-awwb),由Amgen和Allergan共同开发,在美国和欧盟上市。 /p p   Avastin于2010年2月26日进入中国市场。目前,国内贝伐珠单抗生物类似药的研发,齐鲁制药和信达发展最快。齐鲁制药QL1101的上市申请已经获得受理,信达的IBI305在进行三期临床试验。复星医药、恒瑞、北京天实都有产品进入三期临床试验。 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 2 中国生物类似药发展中的思考 /span /strong /p p   越来越多的海外留学人才归国,促使国内生物制剂的研发迅速成熟。与此同时国家一系列的支持性政策进一步推动了国内生物类似药的发展。 /p p   道阻且长,行则将至。生物类似药的发展,国内药企必须解决一系列新的挑战才能有所突破。 /p p   第一个亟待讨论的问题,就是定价和销售策略。生物类似物与化学药仿制药不同,其降价幅度一般不会很大。因此,如何提高销量,定价就成为生物制药市场的一个关键问题 /p p   另一个重要的问题是如何与原研药竞争。因为生物类似药不同于化学药,可以进行一般的可互换。如何才能被纳入国家医保,将成为影响生物类似药发展的重要问题。 /p p   最后2018年4月12日,中国对进口抗癌药物实行零关税,可以预见的是,国外原研药在国内的价格将进一步下降。在这样情况下,国内药企对于生物类似药的投入热情能否延续,这点是值得观察的。 /p
  • 不得不察的生物类似药相关概念
    p    strong 总前言 /strong /p p   笔者曾在三年前写了多篇有关 a href=" http://www.instrument.com.cn/application/industry-S22.html" target=" _self" title=" " style=" text-decoration: underline " span style=" text-decoration: underline color: rgb(255, 0, 0) " strong 生物类似药 /strong /span /a 的系列文章,主要内容先后发表在《中国科学报》和《中国医药技术经济与管理》,在过去不到三年的时间里,生物类似药领域有了很大发展,尤其是中美两国在生物类似药的监管政策上都取得了很大的进展。笔者在这几年也一直关注生物类似药领域的发展,因此借美中药源和《医药经济报》联合推出“研发热点透视”专栏之际,笔者对此前的系列文章进行了全面更新和补充,以飭读者。 /p p    strong 何为生物类似药? /strong /p p   生物类似药近年来依然是国内外制药界的热点领域,尤其在中国更是炙手可热。面对专利保护已经或即将到期的许多生物药以及庞大的市场,中国许多制药公司(尤其是一些原来做化学仿制药的公司)也磨拳插掌,准备大举进军生物类似药市场。根据汤森路透的最新数据:全球在研生物类似药数量最多的国家不是美国,而是中国!另外国内外媒体也已经有过有关生物类似药的大量报道,一些国际大型生物公司和市场调研、咨询公司也发表了不少有关生物类似药的白皮书或者专业报告,比较著名的、在业内有广泛影响的有:全球最大的生物技术公司安进发表的“Biologics and biosimilars: an overview”(生物制品与生物类似药概述),汤森路透公司发表的An outlook on US biosimilar competition”(美国生物类似药竞争展望)等。 /p p   那么到底何为生物类似药? 在介绍什么是生物类似药之前,有必要先说说什么是生物药,什么是生物制药。尤其是生物制药(biopharm, biopharmaceutical),这是一个非常令人混淆、迷惑的概念。咋一看,或者狭义的说,生物制药是指采用生物技术生产的生物制品(生物药),它的对应词是小分子、通过化学合成的化学药(也包括采用化学合成方法得到的分子量相对较大的多肽等),所以两者的根本区别并非药品的分子量大小,比如现在的技术发展已经可以通过化学合成(自动化)的方式合成长达上百个氨基酸的多肽,分子量可达上万,但是这些药(无论是试验性还是临床用的)都算不上生物药,虽然多肽本身听起来是生物制品。所以,这个狭义的生物制药可以说大致等同于生物药。但是采用生物技术生产的药也并非一定是生物药,因为不少小分子化学药也可以采用现代生物工程技术在微生物体内合成出来。 /p p   但是,广义的生物制药的概念也包括化学药,这有多种原因导致生物制药概念的外延。一是由于有些药的特点决定的,比如基于ADC技术(Antibody-Drug Conjugates, 抗体药物偶联)的药,这类药尽管归类于抗体药,但是显然不是纯粹的抗体,而是抗体或者抗体片段与化学药通过特别的接头(linker)偶联而成,所以这类药更像生物药与化学药的结合体 (对ADC药感兴趣的读者,可以点击参阅美中药源的一篇力作:开发抗体药物偶联(ADC)药物的技术挑战(一):申报和监管的一些问题),因此,从这个意义上说,生物药与化学药并无严格的界限。另外,几乎没有大型国际药企(尤其是top20)只做化学药的,越来越多的原来只做化学药的传统制药公司开始进军生物药领域,其中百事美施贵宝(BMS)公司就是一个典型例子。另外,生物药的重要性和在药品市场中的份额也逐年增大,市场经济的特点也决定更多的制药公司开始研发生物药。 /p p   临床应用的生物药可谓是多种多样,至少包括:疫苗(包括预防性和治疗性)、血液及血液制品、基因治疗药(我国和欧洲均已有批准上市)、器官组织、细胞(如用于治疗的干细胞)以及重组治疗性蛋白。在生物药中,最为重要是治疗性蛋白。在欧盟和美国市场,已有上百种各种蛋白质类的生物药获准上市,每年有上千亿美元的市场销售额,其中包括全球第一个生物技术药、美国FDA在1982年批准的Humulin(即在大肠杆菌合成的人胰岛素,用于治疗糖尿病,转让自著名的基因泰克(Genentech)公司),更多的、至少数以百计的蛋白类药物正在进行临床实验,毫无疑问,以后会有更多的蛋白类药物获批上市。而对于蛋白药物而言,最重要的是抗体类药物,约占蛋白药一半的市场份额,所以,对于生物类似药企业而言,要仿制的首要目标就是抗体药,对于抗体类药物,在本系列文章以后还会专文详谈。 /p p   治疗性蛋白类药物又多种多样,根据其药理活性可分为5类:1)替换人体内缺失或者不正常的蛋白 2)增强人体内已经存在的信号通路 3)提供新的功能或者活性 4)干扰人体内的某种分子或者器官组织 5)输送其它化学药或者蛋白。而根据治疗性蛋白的分子类型又可分为:抗体药、Fc(抗体可结晶片段)融合蛋白(此类蛋白也常被归入广义的抗体药类别)、抗凝血因子、血液因子、骨增生蛋白、工程化骨架蛋白、酶、生长因子、激素(荷尔蒙)、干扰素、白细胞介素,溶栓剂等等。 /p p   而对于生物类似药(biosimilar)的定义,各国并无统一的、标准的定义和看法。在我国biosimilar至今仍有多种译法,除了生物类似药外,还有生物仿制药,生物类似物等。2015年3月,CFDA在其发布的《生物类似药研发与评价技术指导原则(试行)》文件中首次将biosimilar称为生物类似药,以后我国似乎有必要将biosimilar译名统一规范为生物类似药,笔者个人也认为生物类似药的译法最好。这是由于相比于化学仿制药(generics), 生物类似药和化学仿制药的核心区别是生物类似药只能和原研生物药类似,而不可能完全一样。另外,从国际上看,对生物类似药的定义主要来自如下三个最为重要和有影响力的机构组织。 /p p   第一:世卫组织(WHO): “A biotherapeutic product which is similar in terms of quality, safety and efficacy to an already licensed reference biotherapeutic product”。试译如下:和一种已经批准的参比生物治疗产品在质量、安全性和效力方面均相似的生物治疗产品。 /p p   第二:欧盟EMA: “A biological medicine that is developed to be similar to an existing biological medicine (the ‘reference medicine’). When approved, a biosimilar’s variability and any differences between it and its reference medicine will have been shown not to affect safety or effectiveness. ”。试译如下:与已经存在的生物药(即:参比药)类似的生物药。在批准时,该生物类似药自身的可变性以及与参考药的任何不同之处均应被证明不影响仿制药的安全性和有效性。 /p p   第三:美国FDA: “A biological product that is highly similar to a U.S. licensed reference biological product notwithstanding minor differences in clinically inactive components, and for which there are no clinically meaningful differences between the biological product and the reference product in terms of the safety, purity and potency of the product”. 试译如下:与一种美国批准的参考生物产品高度相似,尽管无活性组分有小的差异 在临床上和参考生物产品相比在安全性、纯度与效力方面没有显著差异。 /p p   尽管上述三种定义不尽相同,但是大同小异,并且都强调了生物类似药的安全性的重要性,而这个安全性主要是指病人或健康受试者身上的临床安全表现,这也决定了生物类似药必须要有临床实验来证明与参比原研生物药相比有相似的安全性(当然还必须包括有效性等)。这也是生物类似药和化学仿制药一大不同,对于两者的不同,以后笔者还会专文详谈。 /p p br/ /p
  • 浅谈广谱抗病毒药物研发的普适性策略(二)
    上一期,主要介绍了抗病毒药物研究的共同靶标相关内容,本文将继续从抗病毒药物研究的共性环节、 抗病毒药物研究的通用策略方面进行阐述与探讨。2 抗病毒药物研究的共性环节2.1 靶向病毒膜融合过程 在包膜病毒的复制周期中,需要病毒和细胞膜融合才能进入细胞。病毒通过受体识别以及膜融合或内吞等步骤进入靶细胞是首要环节。 在该过程中, 介导病毒与细胞受体识别的病毒表面蛋白(surface protein,SP)的 受体结合亚基、介导膜融合的病毒 SP 跨膜亚基、细胞上的受体、切割 SP 所需 的宿主细胞蛋白酶等均是常见的抗病毒靶点[30]。CoV 是 I 型包膜病毒,位于包膜表面的 S 蛋白介导病毒入侵宿主细胞过程,包括受体结合及膜融合等步骤。在膜融合的过程中,形成六螺旋束(six-helix bundle,6-HB)是一个非常保守且关键的机制。目前发现感染人的冠状病毒(HCoV) 中,其 HR1 (heptad repeat- 1)三聚体与 HR2 (heptad repeat-2)作用的表面氨基 酸大都为保守的疏水性氨基酸,因此 HR1 是 CoV S 蛋白上非常保守的药物靶点[30]。2018 年,姜世勃与刘克良团队发现靶向病毒融合蛋白的α-螺旋脂肽具有广 谱抗 MERS-CoV(EC50 = 0.11 μmol L-1 ,CC50 100 μmol L- 1 )及甲型流感病 毒(influenza A virus,IAV)活性(H1N1 EC50 = 1.73 μmol L- 1,CC50 100 μmol L-1)[31] 。近日,复旦大学姜世勃/陆路团队与上海科技大学杨贝/Wilson 团队合作, 通过系统地筛选与结构修饰,发现了能够广谱抑制多种 HCoV 感染的多肽类融 合抑制剂 EK1 及脂肽 EK1C4,并揭示了其作用靶点与分子机制[32,33] 。该研究同时证明了 CoV 刺突蛋白的 HR1 区域是一个重要且保守的药物靶点, 为后续广谱抗 HCoVs 药物研发提供了思路。2.2 核酸复制 病毒进入靶细胞后, 病毒基因组 DNA/RNA 被释放到细胞中, 作 为模板指导病毒蛋白的合成。 RNA 病毒的基因组复制需要 RNA 依赖的 RNA 或 DNA 聚合酶(RNA-dependent RNA polymerase ,RdRp ;RNA-dependent DNA polymerase,RdDp),这类酶在人体中不存在且相对保守,成为抗病毒药物研发 的重要靶点。不同病毒聚合酶的结构和功能有许多相似之处,因此针对某一种病 毒聚合酶设计的抑制剂往往对其他病毒也有较好的抑制作用[34,35]。自从 1962 年世界第一个抗病毒药物碘苷被批准上市以来,全球已有众多抗病毒核苷类似物药物获批上市。 在病毒疫情暴发时, 核苷类药物往往成为人们的首选。 早在 2014 年西非暴发的大规模 EBOV 疫情中,部分核苷类似物药物在临床阶段均表现出一定的抗病毒活性——例如日本富山化学的新型抗流感药物法匹拉韦(favipiravir)以及瑞德西韦(remdesivir,图 3),特别是瑞德西韦目前已经完成 EBOV 的试验药物 III 期临床试验。随着研究的深入, 瑞德西韦被发现具有广谱抗病毒活性, 涵盖丝状病毒科病毒(EBOV 和马尔堡病毒等) 、沙粒病毒科病毒(拉沙病毒和胡宁病毒等)、 CoV 科病毒(SARS 、MERS 和猫科冠状病 毒等)和黄病毒科病毒(ZIKV 等) 等,因此也成为了治疗 SARS-CoV-2 的首个 小分子药物[36]。阿兹夫定(azvudine ,FNC,图 3)具有抑制 HIV 、丙型肝炎病毒(hepatitis C virus ,HCV)、肠道病毒 71 型等 RNA 病毒复制的功能,2021 年 7 月, 已在 中国上市用于治疗高病毒载量的成年 HIV- 1 感染者。此外, 阿兹夫定在新冠肺炎 临床研究中也取得显著效果[37]。瑞德西韦进入临床研究后,其抗病毒效果与预期有一定差距,原因可能是: 疾病的病程及动物模型与人体药动学差异、药物之间的相互作用和个体差异。 此 外, CoV 特有的“复制矫正”(proofreading)机制,即将掺入 RNA 产物链的核 苷药物“剔除”,进而逃逸核苷类抗病毒药物的抑制, 可能是此类抗病毒药物效 果不佳的一个重要原因[38]。近日,美国乔治亚州立大学的研究人员报道了一种抑制呼吸道合胞病毒 (respiratory syncytial virus,RSV)、相关 RNA 病毒和 SARS-CoV-2 的广谱抗病 毒核苷分子——4' -氟尿啶(4' -FlU,EIDD-2749,图3),它在细胞和分化良好的 人气道上皮中具有高选择性指数。RSV 和 SARS-CoV-2 体外 RdRp 聚合酶抑制显 示掺入后 i 或 i+3/4 位出现转录暂停。每日一次的口服治疗对 RSV 感染的小鼠或SARS-CoV-2 感染的雪貂非常有效[39]。EIDD- 1931(即NHC,图3),是一种核苷酸类似物。 NHC 上的肟形式模仿 尿苷, 与腺苷匹配, 而另一个互变异构体模仿胞苷, 与鸟苷匹配。它的原理是通 过给病毒 RNA 引入大量的突变,“瘫痪”病毒的基因组,进而导致遗传信 息大量错误使病毒无法存活[40-45]。目前仅有 NHC 及其衍生物能够躲避病毒复制 矫正机制的干扰。 在体外模型中,NHC 对 RSV、流感病毒、CHIKF、EBOV、委内瑞拉马脑炎病毒、东部马脑炎病毒、MERS-CoV、SARS-CoV 以及 SARS-CoV- 2(多数变异毒株)等具有广谱抗病毒活性,无明显细胞毒性[46-48];但在食蟹猕 猴中口服生物利用度较差。 EIDD-2801(molnupiravir,图 3)是 NHC 的异丙 酯前体药物,旨在改善 NHC 体内药代动力学以及在人类和非人类灵长类动物的 口服生物利用度。Molnupiravir 在雪貂和非人类灵长类动物中具有较好的口服 生物利用度。对感染流感病毒的雪貂进行 molnupiravir 口服治疗,可将大流行 流感和季节性甲型流感的病毒载量降低数个数量级, 并可减轻发热、呼吸道上皮 组织病变和炎症[39,49] 。Molnupiravir 使轻 中度新冠肺炎患者的住院率或死亡风险降低了约 50% 。2021 年 11 月 4 日, 英国药品和保健产品监管局(MHRA)已在英国批准 molnupiravir 上市,用于治疗重症和住院风险较高的轻至中度新冠肺炎成人患者( http:// www.21jingji.com/article/20211104/herald/f0b15254b2fcc17b70b26b839e32b1c6.html)。除了 molnupiravir 之外,法匹拉韦也可以掺入到病毒 RNA 链,诱发病毒的基因组突变, 并通过累积这种突变,导致病毒失活或失去感染能力[50]。总之, 靶向病毒最为保守的 RdRp 是一种开发广谱抗病毒药物非常有前景的策略。 目前处于临床研究阶段的多个新冠病毒 RdRp 抑制剂类药物结构差异较大,靶向 RdRp 影响病毒复制的机制也不尽相同,特别需要从结构生物学角度解析抑制剂与 RdRp 复合物结构,明确作用机制,为精准开发高效特异的、以 RdRp 为靶标的广谱抗病毒药物提供理论基础。2.3 核糖体移码 (ribosomal frameshifting) 在正常细胞内,核糖体(ribosome) 以 3 个碱基为单位(即密码子codon)由 5 到 3 端单向、连续地读取 mRNA 中的 遗传信息, 合成蛋白质[51]。由于体积的限制, 病毒的基因组通常较小, 所携带的 遗传信息较少。 包括 SARS-CoV-2 在内的各种 RNA 病毒在复制过程中会利用一 些特殊的机制调控病毒基因表达,扩展其所携带遗传信息的利用率, 其中一种常 用的机制是称为程序性“移码”的蛋白质合成重编码机制(programmed ribosomal frameshifting,PRF)[52-54]。即核糖体不遵循常规读取 3 个字母的步骤, 而是会漏 掉一两个 RNA 字母。核糖体发生的这种错位被称为“移码”,会导致核糖体错误读取遗传密码。例如, SARS-CoV-2 严重依赖其 RNA 折叠引起的“移码”来 合成蛋白[52-54]。理论上, 任何通过靶向 RNA 折叠来抑制“移码”的化合物都可能作为一种 治疗感染的药物。 “移码”现象在人类自身基因的表达中极为罕见, 因此靶向读 码框“移码”是一个可行的抗病毒策略。研究者通过运用荧光蛋白报告基因系统联合高通量筛选技术, 鉴定出了一个可以高效抑制读码框“移码”的小分子化合物美拉沙星(merafloxacin,图 4),它能在细胞水平(Vero E6 细胞)显著抑制 SARS-CoV-2 复制[55] 。美拉沙星抑制读码框“移码”的机制尚不清楚,可能直接作用于核糖体与病毒 RNA 的结合,或者抑制内源性调控蛋白。近期, Ahn 等[56]从9689 个小分子中发现了一种新型的呋喃[2,3-b]喹啉类化合物 KCB261770(图 4),它能够抑制 MERS-CoV 的“移码”和细胞水平 MERS-CoV 的复制。此外,该化合物还能抑制 SARS-CoV 和 SARS-CoV-2 的“移码”,具有广谱抗病毒活性。3 抗病毒药物研究的通用策略3.1 细胞纳米“海绵” SARS-CoV-2 的细胞结合和进入是由其刺突糖蛋白(S 蛋 白)介导的, S 蛋白不仅与人类血管紧张素转换酶 2(angiotensin convertingenzyme II,ACE2)受体结合, 还与肝素等糖胺聚糖结合。 近期研究发现细胞膜包被的纳 米颗粒(细胞纳米“海绵”)模拟宿主细胞,通过自然的细胞受体吸引和中和 SARS-CoV-2 ,可作为一种广谱抗病毒策略,还发现增加细胞纳米海绵表面肝素密度可以提高抗 SARS-CoV-2 作用[57]。3.2 抗体募集/杀死细胞 2009 年, 研究者设计了一种新的小分子 ARM-H,有可 能通过两种机制抑制 HIV:①通过招募抗体到 gp120 表达病毒颗粒和受感染的人 类细胞, 从而增强其吸收和人类免疫系统的破坏; ②通过结合病毒糖蛋白 gp120, 抑制其与人 CD4 结合和防止病毒进入。研究人员通过实验证明了 ARM-H 能够 同时结合 gp120 和抗 2,4-二硝基苯抗体(DNP ,存在于人血液中) [58]。抗体、 ARM-H 和 gp120 之间形成的三元复合物具有免疫活性,导致补体介导的表达 env 细胞的破坏。此外, ARM-H 可以阻止病毒进入人类 T 细胞, 因此应该能够通过两种相互强化的机制(抑制病毒进入和抗体介导的杀伤) 来抑制病毒复制。这些研究表明, 通过抗体招募的小分子具有可行的抗艾滋病毒活性, 并有可能启动 HIV 治疗的新范式。2020 年,Low 团队通过将神经氨酸酶抑制剂扎那米韦与高免疫原性半抗原2,4-二硝基苯(DNP)结合, 设计并合成了一种双功能小分子, DNP 专门针对游离病毒和病毒感染细胞的表面。该类分子抑制病毒释放的同时, 通过免疫介导清除游离病毒和病毒感染的细胞,对感染 100 倍 MLD50 病毒的小鼠进行鼻内或腹腔注射单剂量药物,可以根除 A 型和 B 型流感毒株的晚期感染[59]。近期研究发现, 抗生素分子 concanamycin A 可让免疫系统杀死被 HIV 感染的人体细胞[60]。DDX3 抑制剂可以让 HIV- 1 感染的细胞选择性死亡,进而耗竭病毒潜伏库[61] ,为根治艾滋病提供了新思路。3.3 多价结合——靶向病毒表面的非特异作用 细胞表面的糖链是细菌、病毒、 免疫细胞的接触点。病毒进入宿主细胞的过程涉及与不同细胞表面受体稳定但短 暂的多价相互作用。几种病毒的最初接触始于在细胞表面附着硫酸肝素蛋白聚糖, 最终导致病毒进入。已经开发出的广谱抗病毒药物如肝素或类肝素材料模拟细胞 表面糖负责最初的病毒附着, 如硫酸乙酰肝素(heparan sulfate)。高磺化金纳米 粒子具有广谱杀病毒性能。然而, 由于未知的清除机制和潜在的长期毒性是金纳 米颗粒成药性的不利因素。环糊精(cyclodextrins,CDs)是天然的葡萄糖衍生物, 具有一种刚性的环状结构,由α(1-4)连接的吡喃葡萄糖组成。磺化环糊精对HIV 具有可逆及特异的抑制活性。最近,英国曼彻斯特大学研究小组对天然葡萄糖衍生物环糊精进行磺化修饰 开发出了一种能够破坏病毒的外壳且对耐药性病毒也有效的新的广谱抗病毒分 子,其有望治疗 HSV 、RSV 、HCV 、HIV 和 ZIKV 等多种病毒感染[62]。基于多价相互作用的抗病毒药物,如柔性纳米凝胶,通过干扰病毒颗粒和阻 断与细胞受体的初始相互作用已经成为广谱抗病毒药物研究的有效策略。负电荷多硫酸盐可以结合 SARS-CoV-2 受体结合区域( receptor binding domain,RBD)上的正电荷斑块(patches),阻止病毒与宿主细胞相互作用进而 抑制感染。 与肝素相比, 合成的线型聚甘油硫酸酯(linear polyglycerol sulfate , 图 5)的抗病毒活性更高,且抗凝血活性较低[63]。巨大球状多价糖富勒烯、糖基化碳纳米管能抑制 EBOV、ZIKV 和 DENV 的 感染, 活性可达皮摩尔水平[64-66]。多价唾液化(sialylated)聚甘油对甲型流感毒 株(含耐药株)具有广谱抑制活性[67]。3.4 基于拓扑匹配的药物设计 IAV 颗粒表面均匀分布血凝素和神经氨酸酶。近 期,Nie 等[68]运用拓扑匹配(topology-matching design)的药物设计理念, 设计了 一种纳米颗粒抑制剂(纳米抑制剂, 图 6A), 它与 IAV 病毒粒子的纳米拓扑结 构匹配,对血凝素和神经氨酸酶具有多价抑制作用, 可以在细胞外中和病毒颗粒, 阻断其附着和进入宿主细胞。病毒复制显著减少了 6 个数量级, 即使在感染24 h 后使用, 仍能达到 99.999%以上的抑制作用。 2020 年, 该团队用类似的思路, 发现了与 IAV 表面空间匹配的尖峰纳米抑制剂(spiky nanoinhibitor,图 6B),峰 值在 5~10 nm 之间的纳米结构与病毒粒子的结合明显优于平滑的纳米粒子,获 得的红细胞膜(erythrocytemembrane,EM)包覆的纳米结构可以有效地阻止 IAV 病毒粒子与细胞的结合, 并抑制随后的感染。 EM 包覆的纳米结构在细胞无毒剂 量下降低了99.9%的病毒复制[69]。2021 年,该课题组运用拓扑匹配设计理念,基于宿主红细胞膜设计了与病 毒状球面相匹配的碗状纳米结构(“纳米碗”,heteromultivalent nanobowl,Hetero- MNB,图 6C),可作为广谱病毒进入抑制剂。与传统的同多价抑制剂不同, 该 类异多价抑制剂由于协同多价效应和拓扑匹配的形状,其半最大抑制浓度为 32.4 ± 13.7 μg mL- 1 。在不引起细胞毒性的剂量下,可减少99.99%的病毒传播。由 于在 SARS-CoV-2 的 S 蛋白上也发现了多个结合位点, 因此, 异多价纳米结构有 望为开发一种有效的预防 CoV 感染提供新思路[70]。3.5 靶向病毒核酸 病毒 RNA 会折叠成复杂的 RNA 结构,在病毒的生命过程调 控中起重要作用,为开发抗病毒疗法的靶标提供了新的机会。很多研究已经发现 多种病毒的非编码区 RNA 结构可以调控病毒的翻译、复制以及稳定性,它们通常在相关病毒中高度保守[71-73] 。例如,黄病毒中 5' UTR 和 3' UTR 之间的分子内 RNA-RNA 相互作用促进基因组环化并帮助协调复制;HCV 5' UTR 内部核糖体 进入位点的结构对于翻译至关重要;并且 ZIKV 和其他黄病毒的 3' UTR 中的多 假性结构已显示出使 RNA 外切核酸酶 Xrn1 失速,从而产生了亚基因组黄病毒 RNA,有助于病毒逃避细胞抗病毒过程[74,75]。需要指出的是,与蛋白质类药物靶标相比, RNA 结构的动态性与复杂性为药物筛选增加了困难, 往往需要借助于高通量筛选。例如, SARS-CoV-2 的 RNA基因组含有 15 个独立的 RNA 调节元件。 研究者通过基于 NMR 的片段筛选, 从含有 768 个小分子的片段库中发现了 SARS-CoV-2 的 RNA 配体[76]。近日,新加坡科学家使用多种 RNA 分子结构探测方法以及 RNA-RNA 相互作用分析技术, 解析了 SARS-CoV-2 基因组 RNA 的二级结构信息和病毒-宿主之间的 RNA 相互作用;同时发现在 SARS-CoV-2 基因组 RNA 上广泛存在 2' -O- 甲基化修饰, 推测可能有助于新冠病毒逃避宿主免疫攻击,揭示病毒逃避宿主免疫的潜在机制[77]。G- 四链体是由 G-quartet 层叠而形成的 DNA 或 RNA 四链构象, 是最重要的非典型核酸二级结构之一, 因其独特的构象、重要的基因功能和生物学意义而备受关注,是很有前途的药物靶点[78]。中国科学院长春应用化学研究所曲晓刚团队使用多种生物物理技术和分子生物学技术,发现 SARS-CoV-2 基因组中存在 G-四链体结构 RNA ,证实 SARS-CoV-2 中的富 G 序列(位于 SARS-CoV-2 核衣壳 磷酸化蛋白 N 编码序列区域)可以在活细胞中折叠成稳定的单分子 RNA G- 四 链体结构。该 G- 四链体 RNA 可以被 G- 四链体特异结合配体 PDP(图 7)等识别 并稳定,进而影响 G- 四链体 RNA 的生物功能。因此,该 G- 四链体可能是抗 SARS- CoV-2 药物新靶点[79]3.6 超分子配位化学 病毒基因组的未翻译区域(the untranslatedregions,UTR) 包含多种保守和动态结构,这些功能性的 RNA 结构对病毒复制至关重要,为广 谱抗病毒研发提供了药物靶点。 然而, 计算机对接筛选对于具有内在柔性特征的 RNA 结构仍存在较大挑战。 研究者将体外 RNA 分析与分子动力学模拟相结合, 构建 SARS-CoV-2 基因组 5' UTR 关键区域结构和动力学的3D 模型,进而确定了 圆柱形金属超分子螺旋([Ni2L3]4+ 、[Fe2L3]4+)对这种 RNA 结构的约束。这些纳 米尺寸的金属超分子螺旋分子可以与核酸结合,并且在细胞水平具有抗 SARS- CoV-2 等病毒复制作用[80,81]。3.7 核糖核酸酶靶向嵌合体 核糖核酸酶靶向嵌合体( ribonuclease targeting chimeras,RIBOTACs)是降解 RNA 的新策略, RIBOTACs 基于小分子选择性结 合 RNA(特别是形成复杂的二级和三级结构的RNA), 进而激活核糖核酸酶 L(ribonuclease L,RNase L)。RNase L 是一种在脊椎动物细胞中广泛表达、具有单链 RNA 内切活性的蛋白质。该技术已被用于靶向 SARS-CoV-2 的 RNA 基因组,抑制 RNA 的移码,并且募集细胞核糖核酸酶彻底杀死 SARS-CoV-2。该策略有望用于抗其他病毒药物研发[82]。3.8 反义核酸技术 反义核酸(antisense oligonucleotides)可以序列特异性地与靶 标 RNA 结合,实现高效的寻靶和抑制活性。近期,北京大学的研究人员构建了 一类靶向 SARS-CoV-2 包膜蛋白 RNA(E-RNA)和刺突蛋白 RNA(S-RNA)的 单链嵌合反义寡聚核苷酸, 通过在 2' 甲氧基修饰的反义核酸序列 5' 端缀合 RNase L 招募基团 2-5A,可实现有效的病毒 RNA 降解并抑制病毒增殖[83]3.9 核酸适配体技术 核酸适配体(nucleic acid aptamers)是一小段经体外筛选 得到的寡核苷酸序列(单链 DNA 或 RNA 分子),能与相应的配体进行高亲和 力和强特异性的结合[84] 。适配体已经在抗病毒药物开发方面 (含 SARS-CoV-2) 展现出巨大的潜力[85-87]。3.10 基于蛋白自组装的配体发现 动态组合化学( dynamic combinatorial chemistry,DCC)融合了组合化学和分子自组装过程两个领域的特点, 开辟了使 用相对较小的库组装很多的物质的途径, 而不必单独合成每一个物质。早在 2003 年,研究者通过基于点击化学的蛋白模板诱导片段组装, 发现了高活性的 HIV 蛋 白酶抑制剂[88]。2008 年,研究者通过动态连接筛选(dynamic link screening,DLS) 开发了一种潜在的抗 SARS 药物,其亲核片段通过与醛抑制剂的可逆反应将亲核 片段指向蛋白质的活性位点。它们的抑制作用可以通过与荧光酶底物的竞争检测 到。有了这一概念, 与活性位点特异性结合的低亲和力片段在功能酶分析中迅速 被识别出来[89]。2021 年,基于 Knoevenagel 反应的蛋白模板诱导片段组装策略用 于 Enterovirus D68 蛋白酶抑制剂的发现[90]。总之,动态组合化学在抗病毒药物 发现领域仍具有广阔的前景。参考文献,点击查看《浅谈广谱抗病毒药物研发的普适性策略(一)》文末。
  • 鏖战美国法庭,Illumina、凯杰和哥伦比亚大学三国争霸基因测序
    p strong 仪器信息网讯 /strong 2017年7月25日,Illumina刚刚就下一代基因测序技术的一件专利侵权案与凯杰达成和解,但是面临着哥伦比亚大学的另一项诉讼,哥伦比亚大学认为Illumina侵犯了他们最近独家授权给凯杰的专利。 /p p   类似的专利诉讼案件在美国各地的法庭不断打响,在上个周美国加利福尼亚北区的地方法院判决中,凯杰被迫承诺未来不在美国销售GeneReader基因测序仪和试剂。然而,正如凯杰宣布去年它已经开发出了基于不同技术的化学方法,新方法不包括在被诉讼的方法中。目前给美国GeneReader基因测序仪客户提供升级的化学方法。 /p p   John Gilardi是凯杰副总裁兼企业通信及投资者关系主管,他认为对于凯杰来说这是满意的解决方案。但是,鉴于凯杰已经升级了化学方法,“这个判决并不会改变我们为客户提供新的化学解决方案和GeneReader 下一代基因测序系统带来的益处,我们继续相信我们有操控的自由。” /p p   他补充说,凯杰计划今年建立五个新的乳腺癌、卵巢癌和肺癌的专家小组,并将为其他国家的客户提供化学方法升级服务。 /p p   Gilardi拒绝评论哥伦比亚大学和凯杰对Illumina公司的新的专利侵权诉讼。这一诉讼在美国特拉华区地方法院提出,原告声称,Illumina的下一代基因测序系统和试剂侵犯美国9708358号专利“解码DNA和RNA的大规模并行的方法,”该专利是本月早些时候哥伦比亚获得的,并且凯杰公司有独家许可证。 /p p   具体而言,该专利涵盖核苷酸类似物,可用于合成反应的测序,包括使用可移动的盖和可检测标签的修饰核苷酸。 /p p   在诉讼中,对于侵权指控原告请求损害赔偿,包括特许权使用费以及禁制令,禁止Illumina仪器和试剂销售的侵权行为,并支付律师费。 /p p   Illumina公司,哥伦比亚大学,双方陷入了专利侵权诉讼。在过去的五年中,哥伦比亚2012年首先起诉Illumina,控诉Illumina侵犯了他们的五项专利,而这五项专利已授权给智能生物系统公司,凯杰公司随后也购买了。Illumina公司反诉称,2012年以后,哥伦比亚大学,智能生物系统公司和凯杰公司侵犯其三项专利。 /p p   2014,美国专利商标局和专利审判上诉委员会认为,任何一方的专利都是无效的。而且,凯杰在商业化推出了GeneReader基因测序仪,Illumina公司再次起诉。 /p p   然后,去年,联邦法院发布初步禁令,禁止凯杰公司在美国销售GeneReader基因测序仪。几个月后,凯杰公司说这是开发新的化学方法GeneReader基因测序仪,它于今年初已经在美国销售。 /p
  • 2018年上海药物所吴蓓丽连发3篇高水平文章(总影响因子90多)为靶向NPY受体的药物发现提供新思路
    p   2018年5月28日, strong span style=" color: rgb(31, 73, 125) " 中科院上海药物研究所吴蓓丽课题组与中科院生物物理研究所的研究人员合作在Nature Structural & amp Molecular Biology上在线发表了题为“Structural basis for signal recognition and transduction by platelet-activating-factor receptor”的研究论文。 /span /strong 这是继2018年1月5日吴蓓丽研究组在Nature报告与胰高血糖素类似物和部分激动剂NNC1702复合的全长人胰高血糖素受体(GCGR)的3.0Å 分辨率晶体结构和2018年4月19日在Nature发表题为“Structural basis of ligand binding modes at the neuropeptide Y Y1 receptor”的研究论文, strong span style=" color: rgb(31, 73, 125) " 报告了2.7和3.0Å 分辨率结合两种选择性拮抗剂UR-MK299和BMS-193885的人Y1R的晶体结构 /span /strong 。并且首次,确定其N端与受体相互作用。对Y1R的这些基于结构的见解,可以实现靶向NPY受体的药物发现的又一重磅研究成果。 /p p    strong span style=" color: rgb(31, 73, 125) " 1Nature子刊:血小板活化因子受体识别和转导信号的结构基础 /span /strong /p p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/bf8ea427-658e-4ba7-a8be-0ce3466f51d9.jpg" / /p p   血小板活化因子受体(PAFR)对血小板活化因子(PAF)有反应,PAF是细胞间通讯的磷脂介质,表现出不同的生理效应。 PAFR被认为是治疗哮喘,炎症和心血管疾病的重要药物靶标。在这里,研究人员报告了分别与拮抗剂SR 27417和反向活化剂ABT-491在2.8Å 和2.9Å 分辨率下复合的人PAFR的晶体结构。由PAF的分子对接支持的结构提供对PAFR的信号识别机制的见解。 PAFR-SR 27417结构揭示了一种不寻常的构象,显示螺旋II和IV的细胞内尖端分别向外移动13Å 和4Å ,螺旋VIII采用向内构象。 PAFR结构与单分子FRET和基于细胞的功能测定相结合,表明螺旋束中的构象变化是配体依赖性的,并且在PAFR激活中起关键作用,因此极大地扩展了G蛋白偶联信号的知识受体。 /p p   原文链接:https://www.nature.com/articles/s41594-018-0068-y /p p    strong span style=" color: rgb(31, 73, 125) " 2Nature:2018年第一弹,中科院药物所吴蓓丽等研究组揭示GPCR复合物结构(糖原受体) /span /strong /p p style=" text-align: center " img title=" 2.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/89bf1c1d-b8bb-4254-8306-136cbe73dc94.jpg" / /p p    strong span style=" color: rgb(31, 73, 125) " 吴蓓丽研究组报告与胰高血糖素类似物和部分激动剂NNC1702复合的全长人胰高血糖素受体(GCGR)的3.0Å 分辨率晶体结构。 /span /strong 该结构提供了GCGR与肽配体之间相互作用的分子细节。吴蓓丽研究组进一步提出了GCGR激活的双结合位点触发模型,其需要茎,第一细胞外环和TMD的构象变化,这扩展了我们对先前建立的B类GPCR的双结构域肽结合模型的理解。 /p p   近日,中国科学院上海药物研究所在B型G蛋白偶联受体(G protein-coupled receptor, GPCR)结构与功能研究方面取得又一项重要进展: strong span style=" color: rgb(31, 73, 125) " 首次测定了胰高血糖素受体(Glucagon receptor, GCGR)全长蛋白与多肽配体复合物的三维结构,揭示了该受体对细胞信号分子的特异性识别及其活化调控机制。 /span /strong 这项成果有助于深入理解B型GPCR发挥生理效应的结构生物学基础,加快2型糖尿病治疗新药的开发。相关研究论文于北京时间2018年1月4日在国际顶级学术期刊《自然》(Nature)上发表,通讯作者为吴蓓丽研究员和赵强研究员。 /p p   GPCR是人体内最大的膜受体蛋白家族,在细胞信号转导中发挥重要作用。GPCR与人体疾病关系密切,目前有40%以上的上市药物以GPCR为靶点。根据其相似性,GPCR可分为A、B、C和F等四种类型。B型GPCR包括GCGR等多种重要的受体蛋白,识别并结合多肽类激素,对于维持体内激素平衡至关重要。这类受体包含胞外结构域和跨膜结构域,两者共同参与识别细胞信号。由于获得稳定和完整的B型GPCR蛋白(尤其是B型GPCR与多肽配体结合的复合物)难度极大,其结构研究极具挑战性。 /p p   GCGR参与调节体内血糖稳态,是治疗2型糖尿病药物的重要靶点,其结构信息的缺失不仅严重制约了对该受体信号识别和转导机制的认识,也极大地影响了靶向GCGR的药物研发?目前尚无上市药物。2017年,由中国科学院上海药物研究所吴蓓丽、王明伟和蒋华良分别领衔的三个研究组合作解析了全长GCGR蛋白同时与一种小分子变构调节剂(NNC0640)和拮抗性抗体(mAb1)抗原结合片段结合的复合物晶体结构,首次在较高分辨率水平为人们呈现了全长B型GPCR蛋白的三维结构,并揭示该受体不同结构域对其活化的协作调控机制,迈出了阐明B型GPCR信号转导机制的关键一步。 /p p   尔后, strong span style=" color: rgb(31, 73, 125) " 中国科学院上海药物研究所的相关科研团队再次联合攻关,成功解析了全长GCGR与胰高血糖素类似物NNC1702结合的复合物晶体结构,从而揭示了B型GPCR与多肽配体结合的精细模式。 /span /strong 该项目负责人吴蓓丽研究员表示:“这项成果是我们针对B型GPCR开展结构与功能研究的又一重要进展。GCGR与多肽配体相互作用模式的阐明不仅有助于深入理解B型GPCR对细胞信号分子的识别机制,并且为靶向GCGR的药物设计提供了迄今为止精度最高的结构模版,将在很大程度上促进治疗2型糖尿病的新药的研发”。 /p p   该团队成员在以往的研究中发现,GCGR连接胞外结构域和跨膜结构域的肽段通过与受体蛋白其他区域的相互作用在受体活化调控中扮演关键角色。分析GCGR与多肽配体NNC1702结合的复合物结构,并与以往解析的全长GCGR结构进行比较,他们进一步发现该连接肽段在受体结合多肽配体时发生了显著的构象变化,其二级结构由β折叠转变为α螺旋,并伴随结构的迁移,使受体的两个结构域之间的相对取向发生了巨大变化,从而促进受体与多肽配体的紧密结合,导致受体激活。此外,该连接肽通过与多肽配体中段区域的相互作用对受体跨膜结构域的构象进行精细调节,进而调控受体活化。该论文的共同通讯作者赵强研究员说:“这一发现着实令人惊叹,虽然只含12个氨基酸,但这个连接肽却发挥着如此重要的作用,这在过去的GPCR结构研究中从未被发现过,使我们对B型GPCR的信号调控机制有了更为深入的认识”。 /p p   基于GCGR与NNC1702结合的复合物结构,该团队还运用受体?配体竞争结合、计算机模拟和双电子共振等多种技术手段开展了一系列功能性研究,阐明了GCGR在不同功能状态下构象的动态变化,并对受体活化的调控机制进行了深入的探究。这项研究得到上海药物研究所、复旦大学和上海科技大学等多个研究组的大力支持。项目的主要合作者之一、上海药物研究所所长蒋华良院士强调:“这不仅是上海药物所GPCR研究团队取得的又一项重大研究成果,也标志着一个GPCR研究高地已在上海科创中心建设的核心区——张江高科技园区崛起”。 /p p   研究论文的第一作者是研究生张浩楠,该项目的主要合作者还有中国科学院上海药物研究所王明伟研究员、杨德华研究员,上海科技大学iHuman研究所Raymond Stevens教授,丹麦诺和诺德公司Steffen Reedtz-Runge博士,加拿大多伦多大学Oliver Ernst教授,美国GPCR研究联盟Michael Hanson博士,郑州大学杨琳琳博士以及华东师范大学阳怀宇教授等。中国科学院、国家自然科学基金委员会、上海市科学与技术发展基金和上海市教育委员会等部门资助了这项研究。 /p p style=" text-align: center " img title=" 3.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/666c231c-94ff-404e-b55a-21bdda1b803e.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(31, 73, 125) " 全长GCGR结构示意图 /span /strong :GCGR参与调节体内血糖稳态,是治疗2型糖尿病药物的重要靶点。 /p p style=" text-align: center " 左图为全长GCGR蛋白与小分子变构调节剂NNC0640以及拮抗性抗体mAb1结合的复合物晶体结构 /p p style=" text-align: center " 右图为全长GCGR蛋白与多肽配体NNC1702结合的复合物晶体结构。 /p p style=" text-align: center " 两个结构以飘带图和表面图表示,GCGR的跨膜结构域为蓝色,胞外结构域为橙色,连接肽为绿色,第一个胞外环区为紫红色,NNC1702为红色(右图),NNC0640为黄色(左图),抗体mAb1为蓝绿色(左图)。细胞膜以灰色区域表示 /p p    strong span style=" color: rgb(31, 73, 125) " 3Nature:厉害了,2018年上海药物所吴蓓丽研究组再次发表重磅研究成果 /span /strong /p p style=" text-align: center " img title=" 4.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/b7ee28c2-3ed2-44b5-baa2-ac490b0f1a3f.jpg" / /p p   2018年4月19日,上海药物所吴蓓丽研究组,德国雷根斯堡大学Keller研究组,莱比锡大学Beck-Sickinger研究组合作在Nature发表题为 strong span style=" color: rgb(31, 73, 125) " “Structural basis of ligand binding modes at the neuropeptide Y Y1 receptor”的研究论文 /span /strong ,该论文报告 span style=" color: rgb(31, 73, 125) " strong 分别以2.7和3.0Å 分辨率结合两种选择性拮抗剂UR-MK299和BMS-193885的人Y1R的晶体结构 /strong /span 。结合诱变研究的结构揭示了Y1R与几种结构不同的拮抗剂的结合模式以及配体选择性的决定因素。 Y1R结构和内源性激动剂NPY的分子对接,以及核磁共振,光交联和功能研究,为激动剂的结合行为提供了深入的见解,并且首次,根据上海药物所吴蓓丽等研究组的知识,确定其N端与受体相互作用。 strong span style=" color: rgb(31, 73, 125) " 对Y1R的这些基于结构的见解,可以实现靶向NPY受体的药物发现。 /span /strong 这是继2018年1月5日吴蓓丽研究组在Nature报告与胰高血糖素类似物和部分激动剂NNC1702复合的全长人胰高血糖素受体(GCGR)的3.0Å 分辨率晶体结构的又一重磅研究成果。 /p p   神经肽Y(NPY)受体属于G蛋白偶联受体超家族,在食物摄入,焦虑和癌症生物学中具有重要作用。 NPY-Y受体系统已经成为具有三种肽配体(NPY,肽YY和胰多肽)与大多数哺乳动物中的四种受体结合的最复杂网络之一,即具有不同亲和力的Y1,Y2,Y4和Y5受体和选择性。 NPY是最强大的食物摄入兴奋剂,这种作用主要由Y1受体(Y1R)介导。许多肽和小分子化合物已被定性为Y1R拮抗剂,并且在治疗肥胖,肿瘤和骨丢失方面显示出临床潜力。然而,它们的临床使用受低效力和选择性,脑穿透能力差或口服生物利用度不足妨碍。 /p p   在这里,上海药物所吴蓓丽等研究组报告分别以2.7和3.0Å 分辨率结合两种选择性拮抗剂UR-MK299和BMS-193885的人Y1R的晶体结构。结合诱变研究的结构揭示了Y1R与几种结构不同的拮抗剂的结合模式以及配体选择性的决定因素。 Y1R结构和内源性激动剂NPY的分子对接,以及核磁共振,光交联和功能研究,为激动剂的结合行为提供了深入的见解,并且首次,根据上海药物所吴蓓丽等研究组的知识,确定其N端与受体相互作用。 strong span style=" color: rgb(31, 73, 125) " 对Y1R的这些基于结构的见解,可以实现靶向NPY受体的药物发现。 /span /strong /p
  • 人冠状病毒广谱抑制剂的研究进展(二)
    上期,展鹏教授团队分享并阐述了冠状病毒的基本结构、冠状病毒的生命周期、抗冠状病毒药物的主要靶点等内容,本期将分享靶向冠状病毒刺突蛋白、RdRp、蛋白酶及宿主靶标的一系列冠状病毒广谱抑制剂,以及其对抗击新冠肺炎疫情、预防未来的冠状病毒传播具有的重要意义。本文讨论的冠状病毒广谱抑制剂是针对冠状 病毒与宿主的关键靶点开发的抗病毒化合物。现 阶段,根据这类化合物靶向的生理过程不同,分别靶向冠状病毒的侵入过程、RNA复制过程、多聚 蛋白裂解过程以及宿主靶标。4.1靶向冠状病毒侵入过程的抑制剂在抗病毒药物中,侵入抑制剂可以使病毒的生命周期停止在第一步,使其对宿主的危害最小化。SARS-CoV和SARS-CoV-2是通过刺突蛋白与人类呼吸道上皮细胞的ACE2结合而侵入[16], 而MERS侵入所利用的胞外受体是CD26,也称 作二肽基肽酶(DPP4)。刺突蛋白是一种I型跨膜蛋白(图3),分子 表面高度糖基化,它组装成三聚体后,分布在病毒颗粒的最外层,形成了冠状病毒独特的外观。所有冠状病毒刺突蛋白的胞外部分都是由两个相同的结构域结合而成:氨基端的S1亚单位与受体结 合相关,含有受体结合域(receptor binding domain,RBD);羧基端的S2亚单位含有融合肽 (fusion peptide),与病毒融合相关。在S1完成结合后,S2被细胞表面的TMPRSS2蛋白酶裂解,该过程是病毒与宿主细胞膜融合所必需的[17]。因此,靶向S蛋白或TMPRSS2的分子可成为有效的冠状病毒侵入抑制剂。Figure 3 (A-B ) Structure of S protein trimer, from different angles of view ( PDB code :6XM5) ; ( C) Structure of S protein monomer and location of NTD and RBD; (D) Binding mode of S protein with ACE2 ( PDB code: 7KNY)4.1.1 靶向S蛋白的侵入抑制剂在S蛋白抑制剂中,肽类具有高效、低毒的优势[18]。基于ACE2胞外序列设计的水溶性肽 作为潜在的侵入抑制剂曾受到重视,但其体内半衰期短,难以转运到肺泡[19]。为提高成药性, Lei[20]将ACE2片段与人免疫球蛋白IgGl的Fc结构域结合,提高了血浆中稳定性并增强了结合力。目前,已设计并合成了一系列模拟ACE2的N端螺旋结构域的肽类化合物,如Barh[21]通过扫 描现有的抗菌、抗病毒肽类数据库,得到了10个可能有效阻断S蛋白RBD区域与人ACE2作用 的肽类,但其体内外活性有待进一步研究。在此 基础上,Larue[22]设计了一系列针对刺突蛋白的 ACE2多肽类似物(SAP1 ~SAP6,表1),并在编码荧光素酶并负载SARS-CoV-2刺突蛋白的慢病毒侵染HEK293T-ACE2细胞体系中测定各个多 肽对病毒侵入的抑制作用,各物质活性以半数抑 制浓度(IC50)计量,活性最好为SAP6[(1.90 ± 0. 14) mmol • L-1 ]。同时,上述多肽对SARS- CoV-2刺突蛋白RBD区域的亲和力(Kd)最高为 (0.53 ±0.01) mmol-L-1(SAPl)。Table 1 Amino acid sequence of ACE2 derivatives targeting S proteinCompd.SequenceLocationSAP127-TFLDKFNHEAEDLFYQ42Helix-1SAP237-EDLFYQSSLS5Helix-1SAP379-LAQMYPL-85Helix-3SAP4352-GKGDFRYL-359Helix-11SAP524-QAKTFLDKFNHEA-36Helix-1SAP637-EDLFYQ42Helix-1Curreli等[23]基于ACE2蛋白结合区中30个 氨基酸残基长度的螺旋结构,以8 ~11碳的不饱 和炷链连接肽链上一定跨度的邻近氨基酸,设计了 4个高度螺旋化的装订肽(stapled peptide) NYBSP-1~NYBSP-4,并在 HT1080/ACE2 细胞 与人肺A549/ACE2细胞系中使用基于假病毒的 单循环方法测定了上述多肽分子的EC50值。其中3 个多肽分子显示出了潜在的抗病毒活性:HT1080/ ACE2 中的 EC50值为(1. 9 ~ 4. 1 )μmol• L-1 , A549/ACE2 中 EC50值为(2. 2 ~ 2. 8) μmol • L-1,且在最高测试剂量时,未显示出任何细胞毒性。使用SARS-CoV-2病毒侵染Vero E6细胞时, NYBSP-1显示出了最高的抑制活性,在 17.2 μmol• L-1的浓度完全阻止了细胞病理效应。NYBSP-2和NYBSP-4活性稍低,EC100值为 33 μmol • L-1,NYBSP-4在血浆中的半衰期为289 min,代谢稳定性好。Glasgow 采用“受体陷阱”,(receptor trap)策略,合成出高亲和性、高溶解性的ACE2胞外部分结构域,阻止病毒刺突蛋白与人体细胞表面的 ACE2的结合与入侵[24]。基于此策略设计的肽类分子使冠状病毒难以产生抗药性,并可以抑制几乎所有通过ACE2侵入细胞的冠状病毒[25]。在进一步研究中,Glasgow[24]利用计算机/实验组合的蛋白质工程方法,重新设计了能与SARS- CoV-2刺突蛋白结合的ACE2胞外可溶性区域 (氨基酸18-614) 。最终得到的ACE2变体对于单体刺突蛋白RBD区域的KD app ( apparent binding affinity)值已接近100 pmol• L-1。同时,最理想的 “受体陷阱”分子抑制SARS-CoV-2假病毒和真正 SARS-CoV-2 病毒的 IC50值已达到(10~100) ng-mL-1的范围。这类多肽分子有望真正实现针对利用ACE2入侵宿主细胞的冠状病毒的广谱抑制。由于S蛋白分子高度糖基化,可与多糖衍生物产生多种相互作用,引导人们去探索针对S蛋 白的多糖类抑制物。早在2013年,Milewska就证实了N-(2-羟丙基)-3-三甲氨基甲壳素氯化物 (HTCC,1,图4)及其疏水性修饰的同系物(HM- HTCC)是HCOV-NL63的潜在抑制剂[26],并制备 了不同比例的氨基被甲壳素取代的HTCC衍生物, 各自具有对不同种类人冠状病毒的抑制作用[27]。近期,文献报道了在人呼吸道上皮细胞中,HTCC 具有抑制 SARS-CoV-2 和 MERS-CoV 的 活性。尽管HTCC中单个正电基团对于靶标的作用较弱,但冠状病毒连环化的特性和多聚物分 子中的多个位点协同作用使得HTCC可以稳定 结合S蛋白。目前,虽然HTCC仍未被批准用于 临床,但实验已经证明其在肺部局部给药的可行 性,且毒副作用极低口旳。综合考虑,上述各种甲 壳素衍生物联合使用,有望成为广谱抗人冠状病 毒感染的防治药物。Griffithsin(2,图4)是由海藻中分离得到的天 然血凝素,可利用糖基结构域结合病毒包膜糖蛋白中特定的寡糖[29]。已有研究表明,griffithsin可以与多种病毒表面的糖蛋白相互作用,包括HIV gpl20 以及 SARS-CoV 的 S 蛋白[30-31]。2016 年,Millet 等[32]报道了 griffithsin 对于 MERS-CoV 的抑制作用。在2μg • mL-1 浓度下,griffithsin抑制了 MERS 病毒对 Huh-7、MRC-5 和 Vero-81 细 胞系90%以上的感染性。针对迅速爆发的新冠 肺炎疫情,一系列针对griffithsin抗新冠病毒活性 的研究正在展开。Xia等[33]首先发现griffithsin 对SARS-CoV-2假病毒侵染呈现剂量依赖性地抑 制作用,EC50值为293 nmol• L-1 Cai等[34]网进一 步在体外试验中测定了 griffithsin对SARS-CoV- 2的抑制活性,结果表明,griffithsin对SARS-CoV- 2活病毒的EC50值达63 nmol• L-1,同时对S蛋白 介导的细胞间融合的EC50 值为323 nmol-L-1值得注意的是,该研究团队还报道了 griffithsin与肽 类冠状病毒侵入抑制剂EK1的协同作用。未来, griffithsin可以单独或与EK1联合制成鼻喷剂、吸入剂或凝胶,以预防或治疗新冠肺炎。4. 1.2 TMPRSS2 抑制剂在SARS-CoV或 MERS-CoV的刺突S蛋白 发挥作用之前,要依赖宿主细胞的跨膜蛋白酶 TMPRSS2将其裂解为S1和S2亚单位[35]。针对 这类蛋白酶的抑制剂也可用于阻断各种冠状病毒 的入侵过程。蔡莫司他(nafamostat,3,图5 )最初用于治疗胰腺炎,后发现也是TMPRSS2抑制剂,对MERS- CoV具有拮抗活性[36]。进一步研究发现,蔡莫司 他甲磺酸盐对SARS-CoV-2的EC50值达到了纳摩尔级[37]。同时,在日本批准用于治疗胰腺炎的 药物甲磺酸卡莫司他(camostat mesilate,4,图5) 同样具有抑制TMPRSS2的活性[17],在微摩尔浓度即可有效抑制MERS-CoV感染中合胞体的形成[38],EC50值达到 0.11 μmol• L-1[39]:对 SARS- CoV-2的EC50值为87 nmol• L-1[37]o现阶段仍无 法确定该化合物能否在肺部达到抑制病毒的有效浓度[40],但已有临床研究正在评估其对新冠肺炎的治疗作用。4. 1. 3 宿主细胞激酶抑制剂病毒在生命周期中利用了宿主细胞的若干信 号通路。冠状病毒以内吞方式入侵宿主细胞的过 程中,除S蛋白与ACE2的作用外,还需要Abel- son激酶(Abl)的介导。Abl是细胞中重要的管 家蛋白,参与正常细胞的多个生理过程,同时也与 病毒的入侵与复制密切联系,是开发广谱冠状病 毒抑制剂的有效靶点[41]。伊马替尼(imatinib ,5, 图5)是Abl的抑制剂,已被批准用于治疗慢性粒 细胞白血病。已有研究证实,伊马替尼通过阻断病毒颗粒与胞内体膜融合,从而抑制病毒以内吞 路径入胞,并在感染早期抑制SARS-CoV和 MERS-CoV的增殖關。据报道,伊马替尼抑制 SARS-CoV-2 增殖的 EC50值达到130 nmol-L-1 , 同时对SARS-CoV-2 S蛋白的RBD区域结合活 性高达2. 32 pimol-L-1,可通过双靶点作用有效 抑制SARS-CoV-2的侵入關。但在细胞实验中, 其毒性较为明显,用于治疗新冠肺炎或其他冠状 病毒感染前还要经过充分评估。目前,世界范围 内已有多项伊马替尼针对新冠肺炎的临床试验正 在进行(NCT04394416、EudraCT2020-001236-10、 NCT04357613)。4. 1. 4 组织蛋白酶L与Furin蛋白酶抑制剂组织蛋白酶L位于宿主细胞的胞内体,在无 TMPRSS2表达的细胞中,组织蛋白酶L发挥裂 解活性,介导病毒粒子与胞内体膜融合,从而完成侵入过程[44]。2003年,SARS-CoV疫情引起了人 们对组织蛋白酶L抑制剂研发的重视。随后的十几年内,已发现数种具有抗冠状病毒活性的组 织蛋白酶L抑制剂。其中,K11777(6,图5)是通 过筛选2 000余个人组织蛋白酶抑制剂发现的[45],其对人体或某些寄生虫的半胱氨酸蛋白酶具 有显著抑制作用。K11777抑制SARS-CoV和 MERS-CoV感染的EC50值分别达到0.68 nmol• L-1与46 nmol• L-1,但其不可逆的共价结合机制可能导致较强的毒副作用。目前,K11777仅作为锥虫 病治疗药物进行临床试验M ,其针对SARS- CoV-2的抑制作用有待于进一步确证。SARS-CoV-2 S蛋白的裂解过程也可依赖 Furin蛋白酶进行。Cheng[47]研究了以蔡基荧光 素(naphthofluorescein, 7,图5 )为代表 的数个 Furin蛋白酶抑制剂,证实了此类分子可抑制SARS-CoV-2的感染进程及细胞病理效应。但冠状病毒侵入细胞的不同路径中的关键酶具有互补作用,因此单一种类的蛋白酶抑制剂难以起效[48],而多种抑制剂联用的毒性可能大幅度增加。针对冠状病毒生命周期中宿主蛋白酶的药物应用尚存在一定的风险与挑战。4.2靶向冠状病毒RNA复制过程的抑制剂针对冠状病毒另一类极为重要的治疗靶标是 RNA依赖的RNA聚合酶(RdRp),由非结构蛋白 nspl2、nsp7与nsp8结合构成。其活性位点高度保守,包括在一个β转角中突出的两个连续的天 冬氨酸残基样[49],在不同的正链RNA病毒如冠状病毒和HCV中结构相似[50]。RdRp作为RNA复 制的工具,在病毒的复制中具有重要作用[51]。同 时该酶结构高度特异化,人体无同源酶,是药物开 发的优良靶点。4. 2. 1 RNA依赖的RNA聚合酶抑制剂瑞德西韦(remdesivir ,8,图6-A)是一种腺昔 酸类似物,作为RNA聚合酶的广谱抑制剂,能够抑制人与鼠冠状病毒[52]。更为重要的是,研究证明瑞德西韦在体外针对SARS-CoV-2具有抑制活性, 其抑制 SARS-CoV-2 的 EC50值为 0.77μmol• L-1, 且CC50值大于100 μmol• L-1[53]。基于“老药新用”的原则,2020年10月23日,瑞德西韦获得美 国FDA的正式使用批准,用于治疗12岁以上的新冠肺炎患者[54]。作为一种核昔类似物,瑞德西韦可以与 SARS-CoV、MERS-CoV 和 SARS-CoV-2 RdRp 的 NTP结合位点相互作用。其代谢后以核昔母体9 (GS-441524,图6-A)的形式掺入新生的子代 RNA链中,但允许子链RNA的进一步延长。瑞 德西韦在新生链中移动到-4位时,分子中1,-氰基 与RdRp侧链的Ser861残基发生空间上的碰撞,阻碍了 RdRp在RNA链上的进一步移动,进而导致RNA复制终止(图6-B)。由于终止作用是在瑞德西韦结合RdRp后发生的,该过程称为延迟链终止[54]。延迟链终止机制的RdRp抑制剂针对冠状病 毒具有一定的抗耐药性。包括SARS-CoV-2在内 的冠状病毒会编码具有核酸外切酶活性的nspl4,该酶可以在3,端切除掺入RNA链的异常 碱基,并重启正确的RNA合成[56]。在此机制下, 导致RNA合成即时终止的分子,如去除3,羟基 的核甘类似物,在插入后会被nspl4切除。相对地,在一定延迟后使RNA链合成终止的RdRp抑制剂可有效逃脱nspl4的校对。但研究证实,核酸外切酶仍会识别并切除部分含有瑞德西韦的子 链RNA,并重启RNA复制[57]。同时,病毒体外 传代实验中发现了针对瑞德西韦的耐药现象。与 SARS-CoV-2相似的鼠肝炎病毒(MHV)传代培 养至23代后,其RdRp中出现了不利于瑞德西韦 结合的氨基酸突变[58]。一系列瑞德西韦的临床试验也引起了研究人 员对其临床疗效的争议。2020年5月,原研公司 吉利德发布了适应性试验的“最终报告” (NCT04280705)[59],称瑞德西韦在临床中可缩短住院时间,改善呼吸系统症状。但WHO在2020 年12月2日发表的“团结实验” (NCT04315948) 结果显示,瑞德西韦无法显著改善总体死亡率、通气时间与住院时间,疗效仍待改进[60]。Spin-ner[61]在为期11天的周期内研究了瑞德西韦针 对新冠肺炎轻中症患者的疗效(NCT04292730), 结果表明,在治疗期间,虽然患者的某些临床数 据出现显著改变,但并不表示任何程度的病情改善。近H,Li[62]在一系列细胞实验中比较了瑞德 西韦与核昔母体GS-441524在体外细胞中的抗病毒能力。结果显示,GS-441524在Vero E6细胞 系中对SARS-CoV-2的抑制能力略强于瑞德西韦,但在Calu-3和Caco-2细胞系中活性稍弱。GS-441524亦可显著提高感染鼠肝炎病毒 (MHV)小鼠的生存率,初步展示出广谱抗病毒作用。由于GS-441524合成方便、成本低、可口服, 同样有望成为治疗SARS-CoV-2的候选药物。法匹拉韦(favipiravir, 10,图7)最早在日本上 市,用于治疗流感,其通过与RdRp活性位点结合 发挥抑制活性[63],对所有种类及亚型的流感病毒均有拮抗作用,具有治疗多种RNA病毒感染的 潜力。此外,法匹拉韦在抑制病毒RdRp的同时, 不对哺乳动物机体的RNA及DNA合成路径产生影响[64-65]。虽然法匹拉韦在体外试验中对 SARS-CoV-2的抗病毒活性较低(EC50 = 62μmol• L-1),但在两次临床试验中均显示出良 好的效果3项7]。利巴韦林(ribavirin, 11,图7)是已上市的广谱抗病毒药物,已被批准用于治疗丙型肝炎与呼吸道合胞病毒感染。其作用机制是通过靶向病毒 RdRp而使病毒基因组RNA中出现多位点突变, 最终导致病毒mRNA加帽终止,进而抑制病毒 RNA合成[68]。利巴韦林的疗效已经在SARS- CoV和MERS感染者中得到了证实,但严重的不 良反应限制了其临床应用[69]。且在体内外实验中,利巴韦林对SARS-CoV-2感染的疗效约为瑞德西韦的1 /100[53]。综合考虑,利巴韦林治疗 SARS-CoV-2感染的药效、安全性及潜在的毒性 作用有待在临床试验中进一步研究。Galidesivir( BCX4430,12,图 7 )也是腺昔酸 类似物,最初为病毒RNA聚合酶抑制剂,曾被用 来治疗丙型肝炎,且对多种RNA病毒如SARS- CoV,MERS-CoV, Ebola 病毒和 Marburg 病毒具 有广谱抑制活性。在生物体内,galidesivir首先被 转化成相应的三磷酸核昔,再以此形式插入病毒 新合成的RNA链中,导致RNA转录或复制的提 前终止[70]。因此,其有望成为治疗新冠肺炎的候 选药物[71]。阿兹夫定(azvudine,FNC,13,图7)是首个核 首类双靶点HIV抑制剂,针对多种HIV耐药毒株有良好的抑制活性[72]。新冠肺炎疫情爆发后,在我国进行的一项临床试验(CTR2000029853)显 示,阿兹夫定可以显著缩短新冠肺炎轻中症状患 者的核酸转阴时间,对重症患者也具有潜在的治 疗作用。同时临床上未观察到任何与药物有关的 不良反应,安全性有充分保障。目前针对阿兹μmol• L-1。特别是 S416的选择指数达到10 000以上,且无激酶抑制 活性,在治疗浓度下对宿主细胞毒性极小,基本克 服了脱靶效应,作为广谱抗冠状病毒抑制剂具有 极大的开发潜力。此外,DHODH抑制剂有望在 新冠肺炎的治疗中发挥免疫抑制作用,降低“细 胞因子风暴”产生的炎症损伤。参考文献见 中国药物化学杂志 第31卷 第9期,2021年9月总173期
  • 基因泰克DiCE联手寻找高难靶点小分子药物
    p style=" text-align: center " img title=" 001.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/c0290159-fbc4-4ab5-91e7-f62c88308bf5.jpg" / /p p   strong  新闻事件 /strong /p p   昨天基因泰克宣布将与DiCE Molecules合作开发小分子药物。DiCE的技术平台是DNA编码化合物库(DEL)合成、指导演化、组合化学的复合体,从几亿到上十亿的化合物开始、利用独特优化系统号称可以为任何靶点找到类药配体。这个合作主要研究现在公认的非成药靶点。根据协议,DiCE将获得一定首付和各种里程金,但具体金额都没有公开。 /p p    strong 药源解析 /strong /p p   DiCE 是斯坦福大学Pehr Harbury教授于2013年创建的新技术公司,主要利用DEL技术搜索化学空间,为困难靶点寻找小分子配体。去年已经与赛诺菲签订了5年、最多12个靶点的合作计划,获得5000万首付和潜在每个靶点1.8亿各种里程金(总额可达23亿)。昨天是第二次与大药厂合作。 /p p   第一代DEL只是用DNA作为一个条形码记录每个化合物的合成历史。这与其它条形码、如不同长度的烷烃没有本质区别,但因为DNA可以通过PCR放大所以反应可以用很少量反应物、因此DEL库可以非常大,上10亿的库并不困难。后来David Liu等人利用DNA的互补双链不仅标记反应物、还可以作为模板控制哪些反应物参加反应。Liu创建了Ensemble并与多家大药厂合作开发困难靶点药物,但今年宣布解散。DEL到目前为止最大的成功据我所知是葛兰素的RIP抑制剂。这个发现不仅利用了DEL,而且还有很多其它最前沿的药物化学技术,值得大家学习一下(这里)。找到的RIP抑制剂选择性和其它性质在激酶抑制剂里确实非常优秀。 /p p   DiCE的平台虽然细节很少,但号称是加上筛选压力和遗传变异机制。选择压力比较容易想象,所有筛选平台都要找到个别“适者”、多数情况下就是与靶标蛋白结合的化合物,然后淘汰绝大多数不合时宜的化合物。DiCE的平台是多轮DEL合成。所谓遗传大概是指保留苗头化合物的需要性质,变异则应该是改变分子的某个模块。和天然蛋白只有20个氨基酸不同,DEL的模块可以远远多于20个。这个过程也可能重复合成第一代化合物库里面已经包括的化合物,但更系统的SAR可以增加筛选准确性(去除假阳性、回收假阴性)。 /p p   DEL可以在更广阔化学空间更高效筛选先导物,但适合DEL的化学反应是有限的、每个化学反应可以买到的起始原料是有限的。DEL涵盖的空间很大、但对寻找新药不一定最重要。虽然很多技术号称可以合成天然产物类似物,但多数只能合成简单的分子类型,DiCE似乎还只能合成多肽类似物。当然更重要的障碍是筛选压力(即优化系统)。优化指标现在还基本是一本糊涂账,我们即不知道哪些性质候选药物需要有、也不知这些万里挑一的化合物有哪些致命隐私。对于抗体药物选择性可以比较可靠地假设已经合格,但小分子药物城府要深得多,经常在关键时刻才交代脱靶活性。虽然GSK的RIP1抑制剂说明DEL可能非常有用,但Ensemble的倒闭也说明DEL也只是诸多技术中的一个。 /p p /p
  • 贝瑞和康借壳连拉八个涨停,已停牌核查
    被称为“小华大”的基因测序公司贝瑞和康成功借壳天兴仪表(000710),受到资本市场热捧,连拉八个涨停版,股价从22.12元/股翻倍至47.41元/股。12月28日晚,天兴仪表公告称,股票交易价格连续两个交易日内收盘价格涨幅偏离值累计超过20%,根据《深圳证券交易所交易规则》的有关规定,属于股票交易异常波动情形,公司正在做必要核查,于12月29日起停牌。  12月5日,天兴仪表在停牌半年后披露重组方案。方案显示,公司将以发行股份购买资产与重大资产出售同步进行的方式,注入贝瑞和康100%股权,作价43亿元。其中,发行股份购买资产的价格为21.14元/股,合计2034.06万股,出售资产作价为29652.10万元。  交易完成后,上市公司控股股东将会由天兴集团变更为贝瑞和康控股股东、实际控制人高扬及其一致行动人侯颖,二人共持有上市公司21.27%股份。而贝瑞和康或将成为天兴仪表的全资子公司,天兴仪表的主营业务将变更为以测序为基础的基因检测服务与设备试剂销售相关业务。  12月19日,天兴仪表股票复牌,并接连录得八个涨停板。  对于“八个涨停板”现象,一位接近贝瑞和康的“华大系”人士对财新记者表示,“完全在预期内,一是贝瑞和康业绩很好,年增长连续在30%以上,是基因测序风口下非常好的标的。二是贝瑞和康为尽快上市大力压低了估值,少了一半,甚至三分之二,现在是合理的‘补涨效应’。”  12月28日,天兴仪表公告,公司股票交易价格连续两个交易日内(12月27日、12月28日)日收盘价格涨幅偏离值累计超过20%,特别是12月19日至12月28日期间股票交易价格累计涨幅异常。根据《深圳证券交易所交易规则》的有关规定,属于股票交易异常波动情形。 公司正在就股票交易异常波动情况进行必要的核查,公司股票将自12月29日开市起停牌,待公司完成相关核查工作并公告后复牌。   2010年,贝瑞和康成立。2011年,获得君联资本A轮融资1780万美元,2013年年中,获得启明创投领投的B轮融资2500万美元。2014年和2015年,贝瑞和康主攻无创产前基因检测商业化,成为与华大基因并驾齐驱的基因检测龙头企业。  据贝瑞和康方面公布的信息,2013年至2015年,贝瑞和康营收分别为2.58亿元、3.34亿元和4.46亿元,年化增长率达到31.4%。  自2014年以来,基因测序行业发展迅速,估值高企,尤其在无创产前筛查与诊断试点全面放开的政策红利之后,达瑞生物、华大基因等都受到资本追捧。相较而言,贝瑞和康是基因测序行业中业务最集中和成熟的公司之一,估值一度高达百亿元,但在此次“借壳”过程中,贝瑞和康调低估值,仅为43.06亿元。  在贝瑞和康管理层媒体说明会上,贝瑞和康实际控制人高扬表示,基因测序行业平均市盈率为226.26倍,市净率17.94倍,而贝瑞和康对应的2015年的市盈率为98.92倍,如按2017年承诺净利润计算,则动态市盈率仅有18.83倍 贝瑞和康市净率4.78倍,均低于行业水平。  调低估值,是为了尽快走上资本市场,布局“赛道”。  贝瑞和康董秘兼财务总监王冬表示,43亿元的估值可以说是贝瑞和康的股东让利上市公司。贝瑞和康和股东们进行磋商并最终达成一致,忍受比较大的估值折扣以及摊薄,是为了尽快登陆资本市场,抓住行业机会把公司做大。  登陆资本市场后,贝瑞和康的未来计划是围绕基因测序的全产业链布局完善产品线,覆盖出生缺陷三级预防体系,推进肿瘤分子检测与诊断领域的医学产品及服务。具体包括构建涵盖上游,例如研发与生产基因测序仪、试剂耗材,研发软件和构建基因数据库 中游中的遗传学、肿瘤学两个应用方向的基因检测项目 下游中面向基因测序应用机构及终端用户的整套产品及服务体系。  按照贝瑞和康的承诺,2017年、2018年、2019年,净利润分别不低于22840万元、30920万元、40450万元,对应交易市盈率分别为18.83倍、13.91倍、10.63倍。
  • 再谈二噁英——GC-MSMS方法篇
    二噁英(Dioxin)具有很强的致癌、致畸、致突变作用。它是工业生产的副产物,随着工业排放进入生态环境。该类物质不溶于水,但可溶于脂肪,且极难通过化学和生物降解消除,因此可长时间存在于环境中,并在食物链中通过生物富集作用积累;它还具有半挥发性,能够通过远距离传播,产生“全球蒸馏效应”。国际研究显示,人体暴露于二噁英及其类似物的主要途径是进食动物源性食物,约占总暴露量的80%-95%,肉类、奶类制品和鱼类是二噁英及其类似物的主要膳食来源。欧盟法规根据欧盟法规EU644/2017和EU771/2017,监测食品和饲料中二噁英的方法有2种,分别是:筛查方法和确证方法。●筛查方法用来筛选二噁英含量超过MLs(zui大限量)或ALs(行动水平)的样品,对可能超过MLs或ALs的样品提供“是”或“否”的判定。对于疑似不符合MLs的样品,必须通过确证方法对样品中二噁英含量进行确证。●确证方法可以准确定性和定量样品中存在的二噁英,并提供有关同类物的全部信息。除了被允许用来控制MLs和ALs;确证方法还可用于确定食品检测中的低背景水平、遵循时间趋势对人群进行暴露评估以及建立数据库,以便对ALs和MLs进行可能的重新评估。这些确证内容必须通过GC-HRMS进行。但是,为了确认符合或不符合MLs,也可以使用GC-MS/MS作为确证方法。 欧盟关于食品中二噁英zui新限量标准(EU 1259/2011)现阶段二噁英检测标准二噁英的检测方法有很多,但大多数参考EPA1613b方法,采用同位素稀释法GC/HRMS测定二噁英。2014年欧盟法规变更(法规EU 589/2014),首次允许使用GC-MS/MS仪器作为控制某些食品中二噁英MLs的确证方法。这项法规于2017年被EU644/2017取代,但依然允许GC-MS/MS仪器作为控制某些食品中zui大含量(MLs)的确证方法。同年欧盟还颁布了EU 771/2017,允许GC-MS/MS仪器作为控制饲料中zui大含量(MLs)的确证方法。 现阶段二噁英检测标准汇总(2019)GC-MS/MS成为二噁英检测确证方法在欧洲,采用基于性能的方法来分析二噁英。本质上,这意味着,只要所使用的方法能够满足法规要求的灵敏度及性能指标,该分析的结果就是有效的。食品和饲料中的二噁英的含量受到严格的管制和监测,并以zui大限量和行动水平(MLs和ALs)为控制标准。遵循欧盟方法的任何实验室现在都可以使用GC-MS/MS进行ML符合性控制。欧盟法规对GC-MS/MS作为确证方法控制二噁英MLs的要求如下图所示。Thermo Scientific™ TSQ 9000 AEI 二噁英分析仪基于欧盟法规的要求,赛默飞英国应用团队开发了TSQ 9000 AEI二噁英分析仪,助力您食品样品的二噁英分析。TSQ 9000二噁英分析仪具有以下特点:01.合规 COMPLIANCE符合欧盟对食品和饲料样品中二噁英的所有要求,使人们对低水平的定量结果充满信心;02.高效 PRODUCTIVITY操作简便,即装即用。全面的Thermo Scientific™ Chromeleon™ 色谱数据系统(CDS)软件,具有法规要求的预加载计算模板;03.稳健 ROBUSTNESS方法的稳健性已通过多种样品验证。 该二噁英分析仪分别由赛默飞美国应用团队、中国应用团队进行了验证。部分实验结果(中国地区)以下所有实验,都在Thermo Scientific™ TSQ™ 9000 GC-MS/MS AEI系统上进行。配备 Trace 1310气相色谱和AS1310自动进样器。方法学实验分别在SSL和PTV进样口上重复进行。01.GC分离度TG-Dioxin色谱柱以其强保留性对TCDD/F异构体有着卓越的分离效果,有效避免背景中无毒的TCDD/F对2378-TCDD/F积分结果干扰。在45 min内分离了17种PCDD/Fs及其同位素标记物,HxCDF(以及HxCDD)的分离度完全满足要求。02.SRM离子对每一种native及相应的labeled都具备2个不同的母离子和2个不同的子离子,且离子比率在整个校正范围内的偏差远远小于法规15%的要求。(另外,我们还开发了ion ratio calculator,可以计算出每种物质的SRM离子对以及理论离子比率)。03.LOQ浓度的RR/RF以及IRLOQ作为校正曲线zui低点,其RR/RF值以及离子比率完全符合要求。04.实际样品检测结果中国应用团队用TSQ 9000 AEI二噁英分析仪测试了一些能力认证样品,测试结果与GC-HRMS的测试结果一致,说明TSQ 9000 AEI二噁英分析仪可以为食品中二噁英的检测提供一种常规的确证方法。使用CS5标准溶液检查的异构体之间的峰底重叠筛选离子对时,应考虑母离子的强度和该母离子会生成什么样的子离子在序列的开始和结束分别测试zui小校准点 检查每种分析物的RR/RF和IR实际样品检测结果(北京)实际样品检测结果(UK)相关阅读赛默飞二噁英监测全方案来袭, 高分辨磁质谱"金标准"领衔!色谱质谱明星产品前处理气相色谱离子色谱液相色谱气质联用液质联用AA/ICP/ICPMS软件 更多仪器配置和方案推荐色谱质谱全流程食品安全固废专项临床检测RoHS检测中药分析化药分析代谢组学
  • 生物类似药研发 如何做一个“执牛耳者”
    目前,生物类似药一般定义为与生物专利药"高度相似"的生物制品,其活性成分与被仿药有微小差别,但在安全性、纯度和效力上几乎无临床差异。虽然同属于仿制药范畴,但是与化学仿制药不同的是,生物类似药的研发具有相当的技术门槛,高表达细胞株和细胞培养工艺开发、蛋白纯化工艺和过程控制、抗体药物的质量标准、更为复杂的专利壁垒以及不完善的生物类似药监管政策等等,这都限制着生物类似药研发,那么生物类似药如何能够真正撼动原研药的市场地位?笔者带你分析生物类似药研发中的关键点。  一、生物类似药研发企业技术上要有足够的"修炼"  生物类似药的研发不同于化学仿制药的研发,相比较而言,生物类似药具有更高的技术门槛,由于生物药的复杂性,相同原料、一样的工艺和制备方法,其蛋白产品的安全性和有效性也会有差异。一般说来,以下几点在生物类似药研发的技术层面上具有关键的作用。  1. 高表达细胞株和细胞发酵工艺的开发  高表达细胞株构建和高效的动物细胞发酵工艺开发是抗体药物生产的关键。选择什么样的细胞株,人源的还是非人源的,讨论细胞系的选择理由,慎重考虑通过细胞融合或转化获得的永生化人/非人B淋巴细胞作为单克隆细胞系 如何开发出高效的细胞发酵工艺,生产出安全、可靠且质量一致的产品。  2. 蛋白纯化工艺和过程控制  生物药物高达80%的制造成本来源于纯化过程,纯化过程的总指导原则是总生产步骤要尽量少,每步收率要尽量高,保证产品质量,降低成本。蛋白纯化工艺应该能够保证稳定性,能够去除杂质和病毒,保障可操作性。  3. 建立可靠的质量标准  生物药物开发过程中的生产工艺和质量控制具有很强的复杂性和挑战性,质量标准的建立和控制是至关重要的一部分。在生物药研发质量控制过程中,尤其需要强调表达构建研究,细胞基质研究,原料的选择,生产认证研究和设施控制等几个方面。  二、生物类似药研发企业必须 "吃透"生物类似药政策  生物类似药的审批各个国家和地区具有不小的差异,我们曾经说过,欧盟地区是生物类似药监管政策最为完备的地方。然而,生物类似药政策变化很快,依旧有着很多不完善的地方,还有较多的关键点没有合理的解决方法。生物类似药的标签、可替换性、命名原则等孩子一定程度上阻碍着生物类似药的市场化进程,期待世界重要国家和地区在以上方面的政策突破。  三、生物类似药的专利壁垒  相比于国内,国外对药物的专利保护是十分关注的,有些公司对于重磅药物除了专利以外,还通过商标、设备技术对药物进行多重保护。以美国地区为例,目前FDA已经批准了4个生物类似药,但仅有一个成功上市,生物类似药与原创药之间的专利纷争是阻碍生物类似药上市的主要因素,专利纠纷也是生物专利药阻碍生物类似药上市的一个工具,专利舞蹈的壁垒严重限制着生物类似药的上市,这也是未来改革的一个重要地方。
  • 继芬太尼后,新精物(NPS)再添列管物质,普识纳米SERS增强手持拉曼实现ppm识别
    前言:公安部、国家卫生健康委员会和国家药品监督管理局联合发布《关于将合成大麻素类物质和氟胺酮等18种物质列入的公告》,决定正式整类列管合成大麻素类新精神活性物质,并新增列管氟胺酮等18种新精神活性物质。公告自2021年7月1日施行。整类列管合成大麻素类物质是中国继芬太尼整类列管后再次整类列管一类新精神活性物质,中国成为全球首个整类列管大麻素的国家。  新精神活性物质(NPS),又称“策划药”或“实验室毒品”,是不法分子为逃避打击而对管制毒品进行化学结构修饰得到的毒品类似物,具有与管制毒品相似或更强的兴奋、致幻、麻醉等效果,已成为继传统毒品、合成毒品后全球流行的第三代毒品。由于新精神活性物质品种层出不穷,因此生物样品中新精神活性物质的分析面临很大挑战。其中大麻素类物质危害严重,在新疆等滥用严重地区,已引发毒驾、故意伤害等危害公共安全事件。  合成大麻素类物质的主要滥用方式是溶于电子烟油或喷涂于烟丝、花瓣等植物表面吸食,主要形态俗称为“小树枝”“电子烟油”“娜塔莎”等。吸毒人员吸食该类物质后,会出现头晕、呕吐、精神恍惚、致幻等反应,过量吸食会出现休克、窒息甚至猝死等情况,已引发数起毒驾、故意伤害等危害公共安全事件。该类物质既有国内非法制造,也有部分从国外走私而来。此外,本次新增列管的氟胺酮作为氯胺酮替代品在部分地区滥用问题突出。  普识纳米在拉曼光谱应用一直走在行业前列,新增列管氟胺酮等新精神物质能够实现ppm准确识别。  普识纳米HR650D手持式拉曼光谱仪采用激光拉曼光谱分析技术【获得公安部认证】,能对各种毒品、新精物(NPS)等物质进行快速检测和准确识别。仪器可在保证不损害被测样品完整性的情况下,检测液体和固体状态的样品,明确给出被测物质的具体名称、物质属性和谱图,并生成PDF报告,整个过程几秒内完成。相较于常规拉曼检测,普识纳米结合拉曼表面增强试剂或者芯片,可对痕量物质等进行快速检测(常规ppm,个别ppb级别 ),满足现场使用要求,仪器设计紧凑,结构简单,性价比高。
  • 划时代丨二噁英首个GC-MS/MS国家标准正式发布!
    导读2024年2月8日,国家卫健委最新公布47项食品安全国家标准,其中食品检验方法标准共计6项,将于2024年8月8日起实施。在6项食品检验方法标准中,GB 5009.205-2024《食品安全国家标准 食品中二噁英及其类似物毒性当量的测定》标准备受业界关注。与前一版“GB 5009.205-2013”相比较,在二噁英测定 “黄金标准”-气相色谱-磁式高分辨质谱法(GC-HRMS)的基础上,新增气相色谱-三重四极杆质谱法(GC-MS/MS),为国内首个使用GC-MS/MS仪器测定食品中二噁英含量的国家标准。岛津从GB 5009.205-2013标准修订开始,与制标单位及验标单位紧密合作,其三重四极杆气质联用仪GCMS-TQ8050 NX全程参与标准的制修订工作。随着GB 5009.205-2024标准的正式发布,快跟随小编一起看看标准及岛津的应用方案吧!标准目标物二噁英及其类似物知多少?二噁英及其类似物是一类含有苯环结构的特定有机化合物的总称,包括多氯代二苯并二噁英(PCDDs)和多氯代二苯并呋喃(PCDFs)和类二噁英多氯联苯(DL-PCBs)等,具有持久性、生物富集、长距离迁移和生物毒性等特点。其中以17种2,3,7,8位氯取代的PCDD/Fs和12种DL-PCBs同族体被认为对人类和生物危害最严重。有研究指出,普通人群暴露的二噁英90%以上来源于动物源性食物摄入。由于二噁英含量极低,且容易受其他结构类似物质干扰,因此二噁英的检测分析一直是业界的难点之一。二噁英检测法规变迁史长久以来,高分辨磁质谱(GC-HRMS)被誉为二噁英分析的“黄金标准”,国内外二噁英检测标准也主要以GC-HRMS为主。欧盟于2014年发布了EU 2014/589和EU 2014/709号法规,具有里程碑式意义,首次将气相色谱-三重四极杆质谱仪(GC-MS/MS)作为评判食品和饲料中二噁英及类二噁英多氯联苯是否符合欧盟最高限值要求的确认方法。为应对欧盟法规的变迁并提高二噁英检测的普适性,2018年,我国正式启动了对 GB 5009.205-2013的修订工作,并将GC-MS/MS法正式加入该标准中。GC-MS/MS法相比于GC-HRMS法,成本更经济,维护更便捷,通用性更强,更易推广。食品中的二噁英及其类似物含量低,对GC-MS/MS灵敏度提出更高的要求。岛津作为知名的仪器厂商,时刻关注并参与食品安全标准的更新,也快速推出相应的解决方案,协助用户快速应对新标准的实施。国内外二噁英检测法规变迁史岛津应对GB 5009.205-2024解决方案&bull 二噁英专用高效电离的BEIS离子源通过全新的离子源盒设计,使得分析的灵敏度有了显著的提高,同时稳定性也更优,专门用于应对食品中二噁英类物质的测定。2,3,7,8-Tetrachlorodibenzofuran (0.05 pg/μL)BEIS离子源示意图与效果图&bull 完善的一键式二噁英分析方法包方法包中包含:&bull 人性化的定制报告模板该报告模板参考欧盟法规及GB 5009.205-2024的要求,通过报告设置可应对标准中的“峰面积离子对加合”、“定量限使用符合RF要求的最低点标准品溶液浓度”等特殊要求。报告可给出样品以毒性当量(TEQ)计的最终结果低端(LB)、中等(MB)和高端值(UB)。PCDD/Fs和DL-PCBs报告范例&bull 食品基质标准验证案例对Norwegian Institute of Publich Health(NIPH)提供的动物源性食品中的17种PCDD/Fs进行了分析,将检测结果与官方提供的参考值(Consuses median)进行了比对,结果如图所示。无论对于浓度较高的herring和brownmeat,还是对浓度低的veal样品,GCMS-TQ8050 NX的结果均与官方的参考值有较好的一致性。更多内容,详见岛津二噁英测定解决方案。《GCMS-TQ8050应用于牛肉中二噁英(PCDD/Fs)的检测》《GCMSMS法测定动物源性食品中类二噁英-多氯联苯》结语二噁英因为超强的毒性和持久性被认为是“世纪之毒”。随着GB 5009.205-2024《食品安全国家标准 食品中二噁英及其类似物毒性当量的测定》标准的发布及实施,二噁英检测标准也与国际接轨,将GC-MS/MS法正式加入到标准中。岛津始终秉持着“为了人类和地球的健康”的宗旨,不断顺应法规的变迁,给客户提供优质的应对方案。本文内容非商业广告,仅供专业人士参考。
  • 奶制品中三聚氰胺、三聚氰酸二酰胺、三聚氰酸一酰胺及三聚氰酸的同时分析方法
    自奶粉污染事件发生以来,奶制品中三聚氰胺的分析方法已经公布了许多。但目前国内普遍采用的方法都专注于三聚氰胺单一化合物的分析。而根据2007年春季美国宠物食品检出三聚氰胺的研究结果,科学家们相信除了三聚氰胺,其类似物――三聚氰酸二酰胺、三聚氰酸一酰胺及三聚氰酸都有可能导致宠物生病。为完成对含蛋白质原材料的调查,需要测定包括三聚氰胺及其类似物的所有可以提高原料中含氮量的化合物。故此次对于奶粉的检测也应该注意不只分析三聚氰胺,同时对所有类似物进行同时分析。实验证明,在某些乳酸类样品中,没有检出三聚氰胺,但有可能检出其类似物。 珀金埃尔默公司的三聚氰胺分析仪做为目前市场上唯一的一台专门用于食品中三聚氰胺及其类似物的基于气质联用分析技术的分析仪,可以完全符合美国FDA有关快速消费品中筛查三聚氰胺及其类似物的方法要求。经过对样品前处理过程的优化,该分析仪适合于液体奶、奶粉、乳酪、雪糕及各种奶制品中三聚氰胺及其类似物的同时分析。该分析仪除了提供分析所要求的仪器、消耗品和标样、试剂,还包括标准的实验操作步骤,数据验证方法以及经过实验证明的数据。以下是奶粉实际样品加入四种标样后所得到的数据,以及实际样品中检测到的三聚氰酸一酰胺。该分析仪对奶制品类样品中三聚氰胺及其类似物有很好的检出能力。 奶粉实际样品加入四种标样的结果 实际酸性口味奶制品中测出三聚氰酸一酰胺 相关详细信息,请访问 http://www.perkinelmer.com/melamine
  • 用飞行时间质谱进行农药筛查过程中检测和鉴定非目标未知污染物
    目的 在使用飞行时间质谱对环境水源进行广泛的农药筛查的过程中,成功鉴定天然河水中发现的一种非目标未知污染物。 背景 TOF筛查常用于目标筛查工作;在这种情况下,一种全面的数据库用于在筛查采集过程中将关键的目标化合物作为目标。当分析环境水源时,农药污染筛查是最重要分析之一。然而,诸如兽药或人用药品及其代谢物等其他污染物种类可能也以和农药类似的超微量水平存在并能对水生生态系统造成同等危害。发现一种非目标化合物后,需要对其进行确认和鉴定。TOF仪器必须足够灵敏和准确,从而确保未知化合物能被正确检出和鉴定,同时又能保持极低浓度组分的质量准确性。关于低能量前体离子和MSE高能量碎片离子的精准质量数据以及较窄的色谱提取窗口都为非目标种类 的鉴定提供了更高的可信度。 解决方案 Waters® Xevo&trade G2 QTof连同ACQUITY UPLC® 和ChromaLynxTMXS数据处理软件用于快速筛查经Oasis® HLB柱萃取后的天 然河水。该方案使用一种总运行时间为五分钟的UPLC® 通用筛查梯度。所用的流动相为10 mM醋酸铵水溶液和10 mM的醋酸铵甲醇溶液。对河水空白基质进行了筛查,以研究可能存在的任何本底污染。经ChromaLynx XS软件去卷积后,在2.44分钟处发现了离子m/z 237.1031的一个明显色谱峰,如图1所示。 Xevo G2 QTof采集得到的精确而可重现的准确质量数据为分析师提供了一种非目标污染物筛查和研究的解决方案,这种解决方案结果具有较高可信度。 当这种准确质量离子使用MassLynxTM应用管理系统内的元素组成工具进行分析时,最大质量公差为2.0ppm的最有可能的建议分子式为C15H13N2O,并且通过使用i-FIT TM 而将该分子式选定为最佳拟合。该分子式与一种人用抗惊厥和情绪稳定药物质子化卡巴咪嗪相匹配。然后,在2.44分钟采集的低能量质谱和MSE高能量质谱使用MassFragmentTM 工具进行处理,并与卡巴咪嗪的母体分子及其初级碎片离子相匹配,如图2所示。 最后,通过与纯卡巴咪嗪的溶剂标准溶液比较而得到了明确确认。图3所示的溶剂标准品数据与非目标污染物数据建立了一个匹配,从而清晰地证明了这种非预期化合物就是卡巴咪嗪。 总结 由Oasis HLB SPE萃取、通过ACQUITY UPLC快速分离并由Xevo G2 Qtof进行检测、以及接下来的ChromaLynx MS软件进 行数据处理的一整套流程可成功用于天然河水的筛查。 使用一种非目标筛查方法实现了对非预期污染物&mdash 药物分子卡巴咪嗪&mdash 的检测和鉴定。 Xevo G2 QTof采集的精确而可重现的准确质量数据实现了母离子和碎片离子结构的明确分配。该方法为分析师提供了一种最终结果具有较高可信度的非目标化合物的筛查和研究解决方案。
  • 珀金埃尔默推出三聚氰胺分析仪
    珀金埃尔默三聚氰胺分析仪筛查奶制品中三聚氰胺、三聚氰酸二酰胺、三聚氰酸一酰胺及三聚氰酸   奶粉中检测出三聚氰胺事件引起人们普遍关注后,三聚氰胺这一名字很快被大众熟知。根据2007年春季美国宠物食品检出三聚氰胺的研究结果,科学家们相信除了三聚氰胺,其类似物――三聚氰酸二酰胺、三聚氰酸一酰胺及三聚氰酸都有可能导致宠物生病。为完成对含蛋白质原材料的调查,需要测定包括三聚氰胺及其类似物的所有可以提高原料中含氮量的化合物。故此次对于奶粉的检测也应该注意不至分析三聚氰胺,同时对所有类似物进行同时分析。   珀金埃尔默三聚氰胺分析仪做为目前市场上唯一的一台专门用于食品中三聚氰胺及其类似物的分析仪,可以完全符合美国FDA有关快速消费品中筛查三聚氰胺及其类似物的方法要求。该分析仪包括带有程序升温功能的分流不分流进样口和液体自动进样器的气质联用仪,分析所用的消耗品、色谱柱、仪器方法和目标化合物衍生后的质谱库、标准的实验操作步骤,以及经过实验证明的数据。以下是奶粉实际样品加入四种标样后所得到的数据,该分析仪对奶制品类样品中三聚氰胺及其类似物有很好的检出能力。 有关详细信息,请访问 http://www.perkinelmer.com/melamine
  • 《饲料行业国家标准汇编》免费领取!
    《饲料行业国家标准汇编》免费领取!饲料是人饲养动物的食物的总称。饲料是畜牧业的基础,在畜牧业的发展中发挥这重要的作用,是畜产品向农产品转变的重要环节。目前我国的饲料年总产值接近万亿元市场规模。针对这庞大的市场,仪器信息网特意整理了一份关于饲料的标准:《饲料行业国家标准汇编》。上期我们整理了一份《食品农残国标G B23200系列标准汇编 》 ,就有用户强烈要求整理一份饲料行业的标准汇编,为了满足大家的需求,小编网络资源,汇编成册,以飨读者。《饲料行业国家标准汇编》共收集了现行的304个最新的饲料行业国家标准,旨在提升饲料行业的质量水平,促进优质、高效、安全、健康、生态的产业链。为了方便查询,我们特意增加了书签,便于检索之用。扫描二维码免费下载收藏汇编包括标准如下:GBT 5915-2020 仔猪、生长育肥猪配合饲料 1GBT 5916-2020产蛋后备鸡、产蛋鸡、肉用仔鸡配合饲料 8GBT 5917.1-2008 饲料粉碎粒度测定 两层筛筛分法 18GBT 6432-2018 饲料中粗蛋白的测定 凯氏定氮法 22GBT 6433-2006 饲料粗脂肪测定方法 29GBT 6434-2006 饲料中粗纤维测定方法 38GBT 6435-2014 饲料中水分的测定 50GBT 6436-2018 饲料中钙的测定 61GBT 6437-2018 饲料中总磷的测定 分光光度法 68GB 6438-2007T 饲料中粗灰分的测定 74GBT 7292-1999 饲料添加剂 维生素A乙酸酯微粒 81GB 7293-2017 饲料添加剂 DL-α-生育酚乙酸酯(粉) 86GB 7294-2017 饲料添加剂 亚硫酸氢钠甲萘醌(维生素K3) 121GB 7295-2018饲料添加剂 盐酸硫胺-维生素B1 98GB 7296-2018 饲料添加剂 硝酸硫胺 (维生素B1) 109GBT 7297-2006 饲料添加剂 维生素B2(核黄素) 134GB 7298-2017 饲料添加剂 维生素B6(盐酸吡哆醇) 140GBT 7299-2006 饲料添加剂 D-泛酸钙 151GB 7300-2017 饲料添加剂 烟酸 161 GB 7300.101-2019 饲料添加剂 第1部分:氨基酸、氨基酸盐及其类似物 L-苏氨酸 174 GB 7300.102-2019 饲料添加剂 第1部分:氨基酸、氨基酸盐及其类似物 甘氨酸 183 GB 7300.103-2020 饲料添加剂 第1部分:氨基酸、氨基酸盐及其类似物 蛋氨酸羟基类似物 192 GB 7300.201-2019 饲料添加剂 第2部分:维生素及类维生素 L-抗坏血酸-2-磷酸酯盐 201 GB 7300.203-2020饲料添加剂 第2部分:维生素及类维生素 甜菜碱 211 GB 7300.204-2019 饲料添加剂 第2部分:维生素及类维生素 甜菜碱盐酸盐 226 GB 7300.301-2019 饲料添加剂 第3部分:矿物元素及其络(螯)合物 碘化钾 237 GB 7300.302-2019 饲料添加剂 第3部分:矿物元素及其络(螯)合物 亚硒酸钠 246 GB 7300.401-2019 饲料添加剂 第4部分:酶制剂 木聚糖酶 255 GB 7300.402-2020 饲料添加剂 第4部分:酶制剂植酸酶 262 GB 7300.601-2020 饲料添加剂 第6部分:非蛋白氮 尿素 269 GB 7300.801-2019 饲料添加剂 第8部分:防腐剂、防霉剂和酸度调节剂 碳酸氢钠 274 GB 7300.901-2019 饲料添加剂 第9部分:着色剂 β-胡萝卜素粉 281 GB 7300.1001-2020 饲料添加剂 第10部分:调味和诱食物质 谷氨酸钠 291GB 7301-2017 饲料添加剂 烟酰胺 300GB 7302-2018 饲料添加剂 叶酸 311GB 7303-2018饲料添加剂 L-抗坏血酸-维生素C 320GBT 8381-2008 饲料中黄曲霉毒素B1的测定 半定量薄层色谱法 327 GBT 8381.2-2005 饲料中志贺氏菌的检测方法 340 GBT 8381.3-2005 饲料中林可霉素的测定 353 GBT 8381.4-2005 配合饲料中T-2毒素的测定 薄层色谱法 361 GBT 8381.5-2005 饲料中北里霉素的测定 366 GBT 8381.6-2005配合饲料中脱氧雪腐镰刀菌烯醇的测定薄层色谱法 374 GBT 8381.7-2009 饲料中喹乙醇的测定 高效液相色谱法 379 GBT 8381.8-2005 饲料中多氯联苯的测定气相色谱法 384 GBT 8381.9-2005 饲料中氯霉素的测定 气相色谱法 389 GBT 8381.10-2005 饲料中磺胺喹(口恶)啉的测定高效液相色谱法 394 GBT 8381.11-2005 饲料中盐酸氨丙啉的测定高效液相色谱法 398GBT 8622-2006 饲料用大豆制品中尿素酶活性的测定 403GB 9454-2017 饲料添加剂 DL-α-生育酚乙酸酯 409GBT 9455-2009 饲料添加剂 维生素AD3微粒 424GB 9840-2017 饲料添加剂 维生素D3(微粒) 431GBT 9841-2006 饲料添加剂 维生素B12(氰钴胺)粉剂 444GBT 10647-2008 饲料工业术语 451GB 10648-2013 饲料标签 481GBT 10649-2008 微量元素预混合饲料混合均匀度的测定 489GB 13078-2017 饲料卫生标准 493GBT 13079-2006 饲料中总砷的测定 504GBT 13080-2018 饲料中铅的测定 原子吸收光谱法 513GBT 13081-2006饲料中汞的测定 520GB 13082-1991 饲料中镉的测定方法 528GBT 13083-2018 饲料中氟的测定 离子选择性电极法 531GBT 13084-2006 饲料中氰化物的测定 536GBT 13085-2018 饲料中亚硝酸盐的测定 比色法 542GBT 13086-2020 饲料中游离棉酚的测定方法 547GBT 13087-2020 饲料中异硫氰酸酯的测定方法 555GBT 13088-2006 饲料中铬的测定 562GBT 13089-2020 饲料中噁唑烷硫酮的测定方法 569GBT 13090-2006 饲料中六六六、滴滴涕的测定 574GBT 13091-2018 饲料中沙门氏菌的测定 581GBT 13092-2006 饲料中霉菌总数测定方法 597GBT 13093-2006 饲料中细菌总数的测定 604GBT 13882-2010 饲料中碘的测定 硫氰酸铁-亚硝酸催化动力学法 612GBT 13883-2008 饲料中硒的测定 617GBT 13884-2018 饲料中钴的测定 原子吸收光谱法 623GBT 13885-2017 饲料中钙、铜、铁、镁、锰、钾、钠和锌含量的测定 原子吸收光谱法 628GBT 14698-2017 饲料原料显微镜检查方法 645GBT 14699.1-1993 饲料采样方法 652GBT 14700-2018 饲料中维生素B1的测定 656GBT 14701-2019 饲料中维生素B2的测定 665GBT 14702-2018 添加剂预混合饲料中维生素B6的测定 高效液相色谱法 674GBT 14698-2017 饲料原料显微镜检查方法 628GB 14924.1-2001 实验动物 配合饲料通用质量标准 682GB 14924.2-2001 实验动物 配合饲料卫生标准 688GBT 15399-2018 饲料中含硫氨基酸的测定 离子交换色谱法 691GBT 15400-2018 饲料中色氨酸的测定 698GBT 17243-1998 饲料用螺旋藻粉 707GBT 17480-2008 饲料中黄曲霉毒素B1的测定酶联免疫吸附法 713GBT 17481-2008 预混料中氯化胆碱的测定 720GBT 17776-2016 饲料中硫的测定 硝酸镁 727GBT 17777-2009 饲料中钼的测定 分光光度法 732GBT 17778-2005 预混合饲料中d-生物素的测定 737GBT 17810-2009 饲料级DL-蛋氨酸 743GBT 17811-2008 动物性蛋白质饲料胃蛋白酶消化率的测定 过滤法 750GBT 17812-2008 饲料中维生素E的测定 高效液相色谱法 755GBT 17813-2018 添加剂预混合饲料中烟酸与叶酸的测定 高效液相色谱法 762GBT 17814-2011 饲料中丁基羟基茴香醚、二丁基羟基甲苯、乙氧喹和没食子酸丙酯的测定 769GBT 17815-2018 饲料中丙酸、丙酸盐的测定 781GBT 17816-1999饲料中总抗坏血酸的测定 邻苯二胺荧光法 789GBT 17817-2010 饲料中维生素A的测定 高效液相色谱法 793GBT 17818-2010 饲料中维生素D3的测定 高效液相色谱法 801GBT 17819-2017 添加剂预混合饲料中维生素B12的测定 高效液相色谱法 809GBT 17890-2008 饲料用玉米 816GBT 18246-2019 饲料中氨基酸的测定 820GBT 18397-2014 预混合饲料中泛酸的测定 高效液相色谱法 832GBT 18632-2010 饲料添加剂 80%核黄素(维生素B2)微粒 838GBT 18633-2018 饲料中钾的测定 火焰光度法 845GBT 18634-2009 饲用植酸酶活性的测定 分光光度法 850GBT 18823-2010 饲料检测结果判定的允许误差 857GBT 18868-2002饲料中水分、粗蛋白质、粗纤维、粗脂肪、赖氨酸、蛋氨酸快速 867GBT 18869-2019 饲料中大肠菌群的测定 875GBT 18872-2017 饲料中维生素K3的测定 高效液相色谱法 892GBT 18969-2003 饲料中有机磷农药残留量的测定 气相色谱法 899GBT 18970-2003 饲料添加剂 10%β,β-胡萝卜-4,4-二酮(10%斑蝥黄) 907GBT 19164-2003 912GBT 19370-2003 饲料添加剂1%β-胡萝卜素 923GBT 19371.1-2003 饲料添加剂 液态蛋氨酸羟基类似物 928GBT 19371.2-2003 饲料中液态蛋氨酸羟基类似物的测定 高效液相色谱法 934GBT 19372-2003 饲料中除虫菊酯类农药残留量测定 气相色谱法 939GBT 19373-2003 饲料中氨基甲酸酯类农药残留量测定-气相色谱法 944GBT 19422-2003 饲料添加剂 L-抗坏血酸-2-磷酸酯 949GBT 19423-2020 饲料中尼卡巴嗪的测定 956GBT 19424-2018 天然植物饲料原料通用要求 967GBT 19539-2004 饲料中赭曲霉毒素A的测定 976GBT 19540-2004 饲料中玉米赤霉烯酮的测定 983GBT 19541-2017 饲料原料 豆粕 990GBT 19542-2007 饲料中磺胺类药物的测定 高效液相色谱法 998GBT 19684-2005 饲料中金霉素的测定 高效液相色谱法 1003GBT 20189-2006 饲料中莱克多巴胺的测定 高效液相色谱法 1007GBT 20190-2006 饲料中牛羊源性成分的定性检测 定性聚合酶链式反应(PCR)法 1012GBT 20191-2006 饲料中嗜酸乳杆菌的微生物学检验 1021GBT 20192-2006 环模制粒机通用技术规范 1028GBT 20193-2006 饲料用骨粉及肉骨粉 1046GBT 20194-2018 动物饲料中淀粉含量的测定 旋光法 1051GBT 20195-2006 动物饲料 试样的制备 1063GBT 20196-2006 饲料中盐霉素的测定 1071GBT 20363-2006饲料中苯巴比妥的测定 1082GBT 20411-2006 饲料用大豆 1088GBT 20715-2006 犊牛代乳粉 1092GB 20802-2017 饲料添加剂 蛋氨酸铜络(螯)合物 1102GBT 20803-2006 饲料配料系统通用技术规范 1109GBT 20804-2006 奶牛复合微量元素维生素预混合饲料 1127GBT 20805-2006 饲料中酸性洗涤木质素(ADL)的测定 1134GBT 20806-2006 饲料中中性洗涤纤维(NDF)的测定 1140GBT 20807-2006 绵羊用精饲料 1146GBT 21033-2007 饲料中免疫球蛋白IgG的测定 高效液相色谱法 1153GBT 21034-2007饲料添加剂 羟基蛋氨酸钙 1157GBT 21035-2007 饲料安全性评价 喂养致畸试验 1162GBT 21036-2007 饲料中盐酸多巴胺的测定 高效液相色谱法 1168GBT 21037-2007 饲料中三甲氧苄胺嘧啶的测定 高效液相色谱法 1173GBT 21100-2007 动物源性饲料中骆驼源性成分定性检测方法 PCR方法 1178GBT 21102-2007 动物源性饲料中兔源性成分定性检测方法 实时荧光PCR方法 1184GBT 21103-2007 动物源性饲料中哺乳动物源性成分定性检测方法 实时荧光PCR方法 1190GBT 21104-2007 动物源性饲料中反刍动物源性成分(牛,羊,鹿)定性检测方法 PCR方法 1197GBT 21105-2007 动物源性饲料中狗源性成分定性检测方法 PCR方方法 1204GBT 21106-2007 动物源性饲料中鹿源性成分定性检测方法 PCR方法 1210GBT 21107-2007 动物源性饲料中马、驴源性成分定性检测方法 PCR方法 1216GBT 21108-2007 饲料中氯霉素的测定 高效液相色谱串联质谱法 1222GBT 21264-2007 饲料用棉籽粕 1230GBT 21514-2008 饲料中脂肪酸含量的测定 1235GBT 21515-2008 饲料添加剂 天然甜菜碱 1248GBT 21516-2008 饲料添加剂 10%β-阿朴-8 -胡萝卜素酸乙酯(粉剂) 1257GBT 21517-2008 饲料添加剂 叶黄素 1264GBT 21542-2008 饲料中恩拉霉素的测定 微生物学法 1272GBT 21543-2008 饲料添加剂 调味剂 通用要求 1279GB 21694-2017 饲料添加剂 蛋氨酸锌络(螯)合物 1285GB 21695-2008-T 饲料级 沸石粉 1292GBT 21696-2008 饲料添加剂 碱式氯化铜 1300GBT 21979-2008 饲料级L-苏氨酸 1307GBT 21995-2008 饲料中硝基咪唑类药物的测定 液相色谱串联质谱法 1313GB 21996-2008-T 饲料添加剂 甘氨酸铁络合物 1320GBT 22141-2008 饲料添加剂 复合酸化剂通用要求 1328GBT 22142-2008 饲料添加剂 有机酸通用要求 1334GBT 22143-2008 饲料添加剂 无机酸通用要求 1340GBT 22144-2008 天然矿物质饲料通则 1346GBT 22145-2008 饲料添加剂 丙酸 1352GBT 22146-2008 饲料中洛克沙胂的测定 高效液相色谱法 1360GBT 22147-2008 饲料中沙丁胺醇、莱克多巴胺和盐酸克仑特罗的测定 1365GBT 22259-2008 饲料中土霉素的测定 高效液相色谱法 1371GBT 22260-2008 饲料中甲基睾丸酮的测定 高效液相色谱串联质谱法 1376GBT 22261-2008 饲料中维吉尼亚霉素的测定 高效液相色谱法 1383GBT 22487-2008 水产饲料安全性评价 急性毒性试验规程 1389GBT 22488-2008 水产饲料安全性评价 亚急性毒性试验规程 1398GB 22489-2017 饲料添加剂 蛋氨酸锰络(螯)合物 1404GBT 22544-2008 蛋鸡复合预混合饲料 1412GBT 22545-2008 宠物干粮食品辐照杀菌技术规范 1420GBT 22546-2008 饲料添加剂 碱式氯化锌 1426GBT 22547-2008 饲料添加剂 饲用活性干酵母(酿酒酵母) 1435GB 22548-2017 饲料添加剂 磷酸二氢钙 1444GB 22549-2017 饲料添加剂 磷酸氢钙 1453GBT 22919.1-2008 水产饲料 第1部分:斑节对虾配合饲料 1463GBT 22919.2-2008 水产饲料 第2部分:军曹鱼配合饲料 1470GBT 22919.3-2008 水产饲料 第3部分:鲈鱼配合饲料 1475GBT 22919.4-2008 水产配合饲料 第4部分:美国红鱼配合饲料 1480GBT 22919.5-2008 水产配合饲料 第5部分:南美白对虾配合饲料 1486GBT 22919.6-2008 水产配合饲料 第6部分:石斑鱼配合饲料 1493GBT 22919.7-2008 水产配合饲料 第7部分:刺参配合饲料 1499GBT 23179-2008 饲料毒理学评价 亚急性毒性试验 1505GBT 23180-2008 饲料添加剂 2%d-生物素 1510GBT 23181-2008 微生物饲料添加剂通用要求 1516GBT 23182-2008 饲料中兽药及其他化学物检测试验规程 1520GBT 23184-2008 饲料企业HACCP安全管理体系指南 1527GBT 23185-2008 宠物食品 狗咬胶 1545GBT 23186-2009 水产饲料安全性评价 慢性毒性试验规程 1551GBT 23187-2008 饲料中叶黄素的测定 高效液相色谱法 1564GBT 23385-2009饲料中氨苄青霉素的测定 高效液相色谱法 1559GB 23386-2017 饲料添加剂 维生素A棕榈酸酯(粉) 1570GBT 23387-2009 饲草营养品质评定 GI法 1581GBT 23388-2009 水产饲料安全性评价 残留和蓄积试验规程 1588GBT 23389-2009 水产饲料安全性评价 繁殖试验规程 1596GBT 23390-2009 水产配合饲料环境安全性评价规程 1602GBT 23710-2009 饲料中甜菜碱的测定 离子色谱法 1610GBT 23735-2009 饲料添加剂 乳酸锌 1616GBT 23736-2009 饲料用菜籽粕 1623GBT 23737-2009 饲料中游离刀豆氨酸的测定 离子交换色谱法 1628GBT 23741-2009 饲料中4种巴比妥类药物的测定 1633GBT 23742-2009 饲料中盐酸不溶灰分的测定 1641GBT 23743-2009 饲料中凝固酶阳性葡萄球菌的微生物学检验 Bair 1649GBT 23745-2009 饲料添加剂 10%虾青素 1659GBT 23746-2009 饲料级糖精钠 1666GBT 23747-2009 饲料添加剂 低聚木糖 1672GBT 23873-2009 饲料中马杜霉素铵的测定
  • iCMS2017第八届质谱网络会议——食品、环境、药物分析
    p    strong 仪器信息网讯 /strong & nbsp 仪器信息网与中国化学会质谱分析专业委员会合作举办的第八届质谱网络会议(iConference on Mass Spectrometry,iCMS2017) 于2017年11月21日正式开幕。本届质谱网络会议为期四天(11月21日-24日),共设质谱新技术、生物医学及生命科学、食品分析、环境分析、药物分析共五个专场。 /p p   食品分析、环境分析、药物分析专场在11月23-24日举行,中国检验检疫科学研究院首席专家张峰、农业部环境保护科研监测所宋越、中国农业科学院北京畜牧兽医研究所副研究员文芳、中科院生态环境研究中心研究员刘倩、北京化工大学教授杜振霞、军科正源(北京)药物研究有限责任公司李黎、北京协和医院临床药理中心郑昕等专家在线上给大家分享了精彩的报告。 /p p style=" text-align: center " img title=" 张峰.png" src=" http://img1.17img.cn/17img/images/201711/insimg/34c333a6-adda-42a5-bd0a-99e4b556a019.jpg" / /p p style=" text-align: center " strong 报告人:中国检验检疫科学研究院首席专家 张峰 /strong /p p style=" text-align: center " strong 报告题目:基于质谱裂解规律的食品有害物筛查技术 /strong /p p   在报告中,张峰讲到食品中可能存在的化学性风险物质包括农药残留、兽药残留、生物毒素、持久性有机污染物及非法添加物等。目前已经有大量上述风险物质检测方法的报道。然而,为了逃避常规检测,使用风险物质的结构类似物来替代成为一种趋势,而且由于类似物种类繁多,检测成为一大难题。食品中有害物质的硬电离裂解规律已经非常清楚,通过标准谱库NIST库可以检索未知物质的结构信息,但是有害物质的软电离质谱裂解规律目前研究较少,带来有害物结构类似物的结构鉴定困难。张峰团队采用液相色谱-软电离高分辨质谱联用技术,对β-受体激动剂类、栀子黄类、头孢菌素类、杂环胺类等物质的软电离裂解行为进行了研究,提出了其裂解规律。通过裂解规律的应用,对同类结构的风险物质进行筛查及结构推断,从而为未知风险物质的筛查提供一个强有力的工具。 /p p style=" text-align: center " img title=" 耿岳.png" src=" http://img1.17img.cn/17img/images/201711/insimg/69b5be0e-ffab-4623-ac57-867661f2181c.jpg" / /p p style=" text-align: center " strong 报告人:农业部环境保护科研监测所 耿岳 /strong /p p style=" text-align: center " strong 报告题目:基于高分辨质谱的植物代谢组学研质谱在评价产地土壤残余农药对下茬作物食用安全风险中的应用研究 /strong /p p   近年来,随着种植方式的变化和农药的大量使用,农药对农田基础环境的安全性风险引起政府和公众的持续关注。农田土壤中农药屡有检出,不仅威胁农业生态环境,而且土壤残留农药可通过根吸收进入作物,影响农产品质量安全。产地土壤中残留农药的种类多样,尤以长残效、土壤处理类农药为主,包括土壤消毒剂、杀虫剂、杀菌剂、除草剂、杀线虫剂等。耿岳的研究围绕我国典型农产品产区,开展产地土壤农药残留对下茬作物质量安全的影响评价。通过模拟实验和田间监测取样,应用串联质谱技术对土壤和作物中农药残留进行精准定性定量分析,评价产地土壤残留农药对下茬作物的食用安全性,锁定敏感作物和高风险农药,为农药管控政策提供数据支持和科学建议。 /p p style=" text-align: center " img title=" 文芳.png" src=" http://img1.17img.cn/17img/images/201711/insimg/8073295c-c6c6-4576-9c5f-fc87879d77ff.jpg" / /p p style=" text-align: center " strong 报告人:中国农业科学院北京畜牧兽医研究所副研究员 文芳 /strong /p p style=" text-align: center " strong 报告题目:质谱在霉菌毒素从饲料到牛奶的转移转化规律研究中的应用 /strong /p p   由于天气潮湿等原因,部分牧场的饲料可能会因为储存不当发生霉变,奶牛食用被霉菌毒素污染的饲料,经牛体转移、转化到奶中。国内外均发生过霉菌毒素超标事件,引起公众的高度关注。文芳的报告将从饲料和牛奶中霉菌毒素的残留限量、转移转化规律、检测方法与质量控制、风险排序与防控规程等方面进行了介绍。 /p p style=" text-align: center " img title=" 刘倩.png" src=" http://img1.17img.cn/17img/images/201711/insimg/2e13c5a6-18a0-44a1-b021-f1157faec50d.jpg" / /p p style=" text-align: center " strong 报告人:中科院生态环境研究中心研究员 刘倩 /strong /p p style=" text-align: center " strong 报告题目:痕量环境污染物的碳纳米质谱探针 /strong /p p   现有的环境污染物分析主要依赖于色谱质谱串联技术,一般需要复杂的样品前处理步骤,分析通量低,且耗时耗力,在复杂环境样品中痕量污染物的快速筛查鉴定方面存在很大缺陷。刘倩研究团队开发了一系列基于碳纳米材料的质谱探针,能够实现多种复杂环境与生物样品中的痕量有毒有害物质的高通量快速质谱筛查。这些方法主要基于表面增强或基质辅助激光解吸电离飞行时间质谱(SELDI- 或MALDI-TOF MS),通过设计合成一系列新型的碳纳米基质材料,有效地抑制传统基质在低质量区域的干扰。在此基础上,利用这些材料具有的优异的污染物富集能力,提高检测灵敏度,可在单次分析中完成样品富集、干扰排除、分析物解吸电离等多个步骤,从而同时达到提高分析通量、增强灵敏度和排除基底干扰的目的。此外,还可以对探针进行功能化修饰可以进一步增强其检测特异性。这些方法被成功地应用到在不同的真实环境体系中,用于阐明新型污染物的环境浓度和人体暴露水平。这些方法为环境健康研究提供实用的分析工具,有望在环境健康研究及公共安全保障中得到广泛应用。 /p p style=" text-align: center " img title=" 杜振霞.png" src=" http://img1.17img.cn/17img/images/201711/insimg/6bf8c31b-5f79-4602-9307-ca117005fa4d.jpg" / /p p style=" text-align: center " strong 报告人:北京化工大学教授 杜振霞 /strong /p p style=" text-align: center " strong 报告题目:离子迁移谱在环境监测中的应用 /strong /p p   离子迁移谱(IMS)是通过测量气相离子在电场中的迁移率来对待测物质进行定性和定量分析的一种可达到分子水平的高灵敏性探测技术。IMS 在大气压力下工作,具有分析时间快、体积小、重量轻、功耗低、便携等特点, 因此可用于现场或过程检测,是一种高效的分析仪器。杜振霞的报告分为两部分,第一部分介绍离子迁移谱的原理及我们利用固相微萃取与离子迁移谱联用测定水中的多环芳烃的的工作。此工作为水中在线监测有机污染物提供了一种新思路。第二部分介绍气相色谱和离子迁移谱联用的原理,并介绍了们利用气相色谱与离子迁移谱联用测定涂料中VOCs的工作,她们把结果与国标方法测定结果进行了比较。由于色谱的引入,改善了离子迁移谱的分离性能,因此GC-IMS联用仪可用于VOCs源解析。 /p p style=" text-align: center " img title=" 李黎.png" src=" http://img1.17img.cn/17img/images/201711/insimg/c4135a1e-7f29-4ae0-a65a-7538ac63bbf8.jpg" / /p p style=" text-align: center " strong 报告人:军科正源(北京)公司液质部门总监 李黎 /strong /p p style=" text-align: center " strong 报告题目:LC-MS/MS技术在ADC 药物生物样品分析中的应用 /strong /p p   李黎介绍了ADC药物在国内外的研究现状及其药代动力学研究情况。ADC药物是靶向性抗体与细胞毒药物(payload)用特殊的连接子偶联而成一种新型药物,充分利用了前者靶向、选择性强, 后者活性高, 同时又消除了前者疗效偏低和后者副作用偏大等缺陷。现阶段国内外在研的已经到临床研究阶段的ADC有30个以上,国内先阶段也有一个ADC已经处于临床研究阶段,还有好多处于临床前研究或者更早期的开发中。由于ADC本身性质的复杂性,体内外需要测定和考察的指标也会远多于常规的新药。ADC药物药代动力学研究一般有:总抗,结合抗体,结合药物,游离药物这四大部分。其中游离药物及相关代谢物可直接采用LC-MS/MS 方法进行检测,结合药物部分一般采用hybrid LC-MS 方法。从可酶切和不可酶切的linker 两方面,探讨下hybrid LC-MS 技术在ADC药物生物样品分析中的应用和策略。 /p p style=" text-align: center " img title=" zhengixn.png" src=" http://img1.17img.cn/17img/images/201711/insimg/cb104037-eb29-49e9-8f6a-8eea3983da54.jpg" / /p p style=" text-align: center " strong 报告人:北京协和医院临床药理中心 郑昕 /strong /p p style=" text-align: center " strong 报告题目:HPLC-MS/MS药物定量方法中脑脊液替代基质的选择 /strong /p p   郑昕给大家带来了HPLC-MS/MS药物定量方法中脑脊液替代基质选择的研究报告。中枢神经系统中小分子化合物及内源性多肽的定量对于研究活性药物的分布、PK/PD特性具有重要意义。对于许多药物而言,通过测定其在脑脊液(cerebral spinal fluid, CSF)中的浓度能够替代药物在脑组织中的浓度。但由于脑脊液难以大量获得,通常使用替代基质配制标准曲线和质控样品。人工脑脊液(artificial cerebral spinal fluid, a CSF)是实验室常用的CSF替代基质,但存在多种不同配方。此外,有文献利用稀释血浆作为替代基质。探讨基于HPLC-MS/MS分析不同性质的小分子化合物在a CSF、稀释血浆及CSF中相对基质效应,为寻找更接近CSF替代基质提供参考。 /p p   至此,本届网络质谱会议五个主题会场的31个报告全部顺利进行完毕,iCMS2017第八届质谱网络会议圆满落下帷幕。 /p p iCMS2017第八届质谱网络会议开幕 质谱新技术专场强势首发 /p p a style=" color: rgb(0, 112, 192) text-decoration: underline " href=" http://www.instrument.com.cn/news/20171121/233975.shtml" span style=" color: rgb(0, 112, 192) " http://www.instrument.com.cn/news/20171121/233975.shtml /span /a /p p iCMS2017第八届质谱网络会议——生物医学及生命科学 /p p a style=" color: rgb(0, 112, 192) text-decoration: underline " href=" http://www.instrument.com.cn/news/20171122/234087.shtml" span style=" color: rgb(0, 112, 192) " http://www.instrument.com.cn/news/20171122/234087.shtml /span /a /p p & nbsp /p
  • 李克强:抗癌药品力争降到零关税
    p style=" text-indent: 2em " “一些市场热销的消费品,包括药品,特别是群众、患者急需的抗癌药品,我们要较大幅度地降低进口税率,力争降到零税率。”国务院总理李克强3月20日在回答中外记者提问时如是说,这引起了癌症患者、医生及药企等各方面的关注。 /p p style=" text-align: center " img width=" 600" height=" 351" title=" " style=" width: 600px height: 351px " alt=" " src=" http://img1.17img.cn/17img/images/201804/uepic/d9433174-a6de-4c47-a266-378f0ba9c52d.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-indent: 2em " 关税的进一步降低,国内患者有望继续减轻负担,也有可能促使更多的“明星”抗癌药加速进入国内市场。本文特此梳理已在国内上市的热销抗癌药与未上市的“明星”抗癌药,大胆预测一下这些药是否会迎来“零关税”利好? /p p style=" text-indent: 2em " strong span style=" color: rgb(204, 0, 0) " 国内已上市零关税获益 /span /strong /p p style=" text-indent: 2em " strong 来那度胺 /strong /p p style=" text-indent: 2em " 来那度胺是一种具有抗肿瘤活性的小分子化合物,临床主要用于治疗多发性骨髓瘤、套细胞淋巴瘤和有5q缺失的骨髓增生异常综合症。目前我国CFDA批准上市的来那度胺制剂只有原研Celgene的来那度胺胶囊(商品名瑞复美)以及双鹭药业生产的来那度胺胶囊。 /p p style=" text-indent: 2em " strong 利妥昔单抗 /strong /p p style=" text-indent: 2em " 利妥昔单抗是一种人鼠嵌合抗CD20单克隆抗体,临床主要用于治疗滤泡性非霍奇金淋巴瘤、弥漫大B细胞性非霍奇金淋巴瘤、慢性淋巴细胞白血病、类风湿样关节炎等疾病。我国CFDA批准上市的利妥昔单抗及其生物类似物制剂只有原研Roche的利妥昔单抗注射液(商品名美罗华),尚无国产生物类似物制剂上市。 /p p style=" text-indent: 2em " strong 曲妥珠单抗 /strong /p p style=" text-indent: 2em " 曲妥珠单抗是一种抗HER2人源化单克隆抗体,临床主要用于治疗HER2过表达的乳腺癌、转移性胃癌或食管胃交界腺癌等疾病。我国CFDA批准上市的曲妥珠单抗及其生物类似物制剂只有原研Roche的注射用曲妥珠单抗(商品名赫赛汀),尚无国产生物类似物制剂上市。 /p p style=" text-indent: 2em " strong 贝伐珠单抗 /strong /p p style=" text-indent: 2em " 贝伐珠单抗是一种抗血管内皮生长因子(VEGF)人源化单克隆抗体,临床上用于治疗转移性结直肠癌、非小细胞肺癌等癌症。与曲妥珠单抗类似,目前我国CFDA批准上市的贝伐珠单抗及其生物类似物制剂只有原研Roche的贝伐珠单抗注射液(商品名安维汀),尚无国产生物类似物制剂上市。 /p p style=" text-indent: 2em " strong 培非格司亭/ 非格司亭 /strong /p p style=" text-indent: 2em " 非格司亭即重组人粒细胞刺激因子,而培非格司亭是聚乙二醇化重组人粒细胞刺激因子,是非格司亭的长效制剂。培非格司亭/ 非格司亭临床上主要用于骨髓移植、癌症化疗等各种原因引起的中性粒细胞减少症。CFDA批准的国产重组人粒细胞刺激因子注射液品有两个进口品种,分别是KyowaHakko Kirin的重组人粒细胞刺激因子注射液以及ChugaiPharmaceutical的注射用重组人粒细胞刺激因子。 /p p style=" text-indent: 2em " strong 伊布替尼 /strong /p p style=" text-indent: 2em " 伊布替尼是一种选择性布鲁顿酪氨酸激酶(BTK)抑制剂类药物,临床主要用于治疗慢性淋巴细胞白血病、套细胞淋巴瘤等血液肿瘤等疾病。J& amp J和AbbVie(Pharmacyclics)共同开发的伊布替尼胶囊(商品名Imbruvica)于2013年在美国上市,2017年8月CFDA批准伊布替尼胶囊在我国上市(商品名亿珂),并由西安杨森制药负责中国大陆的市场销售。目前尚无国产伊布替尼制剂上市。 /p p style=" text-indent: 2em " strong 硼替佐米 /strong /p p style=" text-indent: 2em " 硼替佐米是哺乳动物细胞中26S蛋白酶体糜蛋白酶样活性的可逆抑制剂,临床主要用于治疗多发性骨髓瘤和套细胞淋巴瘤,适应症与来那度胺相似。目前我国CFDA批准上市的硼替佐米制剂只有Janssen-Cilag(J& amp J子公司)的进口注射用硼替佐米(商品名万珂)以及豪森药业生产的注射用硼替佐米。 /p p style=" text-indent: 2em " strong 奥希替尼 /strong /p p style=" text-indent: 2em " 奥希替尼临床用于既往经表皮生长因子受体酪氨酸激酶抑制剂治疗时或治疗后出现疾病进展,并且经检测确认存在EGFR T790M突变阳性的局部晚期或转移性非小细胞性肺癌成人患者的治疗。目前我国CFDA批准上市的奥希替尼是AstraZeneca AB公司的甲磺酸奥希替尼片。 /p p style=" text-indent: 2em " strong 瑞戈非尼 /strong /p p style=" text-indent: 2em " 瑞戈非尼是一款激酶抑制剂,能抑制促进肿瘤生长的多种酶,其中包括了那些参与血管内皮生长因子通路的酶。此前,瑞戈非尼已获批治疗那些对现有疗法治疗无响应的结直肠癌或胃肠道间质瘤患者。目前我国CFDA批准上市的瑞戈非尼来自于拜耳公司。 /p p style=" text-indent: 2em " strong 阿法替尼 /strong /p p style=" text-indent: 2em " 阿法替尼是表皮生长因子受体和人表皮生长因子受体2(HER2)酪氨酸激酶的强效、不可逆的双重抑制剂,用于EGFR突变的晚期非小细胞肺癌患者的一线治疗,以及肺鳞癌患者的二线治疗。对于一些携带少见型EGFR突变(除L858R和19外显子缺失突变之外的)或者HER2基因20号外显子插入突变的患者,阿法替尼有优势。目前我国CFDA批准上市的阿法替尼来自于勃林格殷格翰。 /p p style=" text-indent: 2em " strong span style=" color: rgb(204, 0, 0) " 国内未上市加速明星药 /span /strong /p p style=" text-indent: 2em " strong 纳武单抗 /strong /p p style=" text-indent: 2em " 纳武单抗是Bristol-MyersSquibb研发的一种PD-1单抗抑制剂类药物,商品名Opdivo。2014年7月,Opdivo率先在日本获批用于治疗晚期黑色素瘤,成为全球首个批准上市的PD-1抑制剂,2015年继而在美国上市。Opdivo最初主要用于治疗不能切除或转移性黑色素瘤以及转移鳞状非小细胞肺癌,但目前已广泛应用于肾细胞癌、霍奇金淋巴瘤、头颈部鳞癌、膀胱癌等多种癌症。2017年11月,Bristol-Myers Squibb提交的Opdivo(Nivolumab注射液)的上市销售申请获得CDE承办受理,是我国第一个提交上市申请的PD-1/PD-L1类药物。 /p p style=" text-indent: 2em " strong 派姆单抗 /strong /p p style=" text-indent: 2em " 派姆单抗是Merck的人源化PD-1单抗抑制剂,商品名Keytruda,于2014年9月获FDA批准,是FDA批准的第一个PD-1抗体药物。与另一种PD-1抗体药物纳武单抗类似,派姆单抗最初主要用于治疗黑色素瘤以及鳞状非小细胞肺癌,目前也已广泛应用于多种癌症的治疗。目前Merck的Pembrolizumab注射液(MK-3475注射液)在我国正处于临床III期试验阶段。 /p p style=" text-indent: 2em " strong 帕博西尼 /strong /p p style=" text-indent: 2em " 帕博西尼是Pfizer研发的一种高度选择性细胞周期蛋白依赖性激酶4/6(CDK4/6)抑制剂类药物,商品名Ibrance。2015年FDA批准Ibrance在美国上市,临床上主要用于与来曲唑联合应用作为治疗ER阳性/HER2阴性绝经后转移性乳腺癌的一线治疗, 是FDA批准的首个CDK4/6抑制剂类药物。 /p p style=" text-indent: 2em " strong 奥拉帕利 /strong /p p style=" text-indent: 2em " 奥拉帕利是基于DNA修复损伤机制在全球首个上市的PARP抑制剂,最早在2014年12月被FDA加速批准,用于四线治疗晚期BRCA+卵巢癌,去年7月17日又被FDA批准用于铂类药物治疗产生应答后疾病复发的成人卵巢上皮癌、输卵管癌和原发性腹膜癌患者的二线维持治疗。截至2017年12月,Lynparza已经治疗了超过30000例晚期癌症患者。奥拉帕利二线治疗卵巢癌的中国上市申请于2017年12月1日获得CDE承办受理。 /p p style=" text-indent: 2em " strong 仑伐替尼 /strong /p p style=" text-indent: 2em " 仑伐替尼是一种多靶点激酶抑制剂,可以阻滞肿瘤细胞内包括VEGFR1-3、FGFR1-4、PDGFRα、KIT、RET在内的一系列调节因子。2015年2月13日,仑伐替尼以优先审评和孤儿药身份获得FDA批准上市,用于治疗放射性碘难治的高风险分化型甲状腺癌。5月,FDA批准联合Afinitor治疗既往接受过anti-VEGF疗法的晚期肾细胞癌。 /p p style=" text-indent: 2em " 本文选取的药物多为国际畅销药物与国内热点药物,希望未来几年内,这些药物能实现关税下调或成功引进,为国内患者带来福音。 /p
  • “生物类似药物研发及评价技术”网络主题研讨会 成功召开
    生物类似药是指在质量、安全性和有效性方面与已获准注册的参照药具有相似性的治疗用生物制品。由于生物类似药可以更好地满足公众对生物治疗产品的需求,有助于提高生物药的可及性和降低价格,许多国家都十分重视生物类似药的研发和管理工作,全球已有20余个国家或组织制定了生物类似药相关指南。 仪器信息网网络讲堂于11月16日举办“生物类似药物研发及评价技术”网络主题研讨会,诚邀董立厚(军科正源(北京)药物研究有限责任公司)、刘冲(新疆维吾尔自治区药物研究所)、史俊霞 液相色谱应用开发工程师(东曹)、孙佳楠(赛默飞)、张歆媛(岛津)等5名老师从多方面普及生物类似药物研发等阶段的知识及技术。本期会议视频已上线,具体报告日程如下:视频地址:http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/2189近期会议推荐:“化妆品质量安全评价及检测技术”网络主题研讨会 http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/2191“RoHS相关政策及检测进展”网络主题研讨会 http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/2233“精准医疗与即时检验POCT技术的临床应用与发展”网络主题研讨会 http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/2241“大气/烟气挥发性有机物技术”网络主题研讨会 http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/2251“润滑油检测技术”网络主题研讨会 http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/2256
  • 第四届抗体药物开发暨生物工艺技术论坛即将召开
    会议背景:近年来, 抗体药物及基于抗体的治疗药物已经逐步成为最重要的生物制品并且进入到黄金发展时期. 截止至2021年4月, 美国药品监管单位批准上市的抗体药物数量已经达到100款. 2015年治疗性抗体药物的市场达到了854亿美元, 预计到2024年将达到1386亿美元. 与此同时, 中国生物制药产业在过去些年中得到了快速的发展, 工艺技术, 设备及生产能力也日趋成熟. 随着早些年针对于生物类似物的开发, 中国生物技术公司也逐渐专注于创新性抗体药物及生物制品的研究与开发. 随着抗体发现技术和方法的成熟, 抗体药物研发也呈现越来越多样性, 包括抗体偶联药物, 双特异性与多特异性抗体,纳米抗体等其他形式治疗药物正在不断增加。有鉴于此, 第四届抗体药物开发暨生物工艺技术论坛(ATBP2021), 旨在加强交流与合作, 深入探讨抗体及治疗性生物制品研究, 分析表征与工艺开发技术.会议信息:会议时间: 2021年10月26-27日会议地点: 中国上海筹办单位: 迪易咨询 Deliver Life Sciences会议网址: www.abbforum.com/cn合作媒体: 生物器材网, 生物探索, 仪器信息网, 生物药CMC会议主要专题:抗体药物开发论坛2021Antibody-based Therapeutics Forum 2021- 治疗性抗体与生物制品最新发展趋势- 抗体药物偶联物开发: 进展与前沿技术- 双特异性抗体开发与技术: 策略, 考量与难点- 抗体药物研发, 抗体工程与可开发性评估- 创新抗体与下一代抗体药物开发- 抗体药物临床前开发考量与策略- 生物制品分析与表征策略生物工艺论坛2021 BioProduction Forum 2021- 生物工艺前沿技术, 创新与生产策略- 质量控制, 临床与商业化生产策略- 细胞株开发技术: 速度, 滴度与产品质量策略- 上游与下游工艺技术进展, 病毒安全- 生物技术产品的连续工艺- 生物制剂, 蛋白聚集及稳定性试验- 生物制造数字化转型与新兴生产技术部分早期确认演讲/主持嘉宾: (右侧标注' +' 表明此发言人将进行远程演讲)议程概览:会议注册:-中国国内单位-单位类别早期注册 (8月15日前)标准价格 (8月15日后)学术及生物制药单位RMB 2,200RMB 2,800标准注册RMB 3,200RMB 3,800* 生物制药单位是指从事生物制品研究, 开发与制造的企业(需含内部产品开发管线)* 费用包含会议资料, 午宴, 茶歇及相关税金限量免费注册 [限特定单位类型与职位] :本次会议采用实名注册登记制, 并对来自生物制药研制单位 (需含内部产品开发管线), 法规单位, 从事抗体药物/治疗性生物制品研究, 产品开发与项目管理, 分析与表征科学, 生物工艺研究, 生产与质量控制, 等相关专业人士提供限量免费参会名额. 通过微信朋友圈分享此信息可获取. 请符合条件的, 请先扫描以下二维码填写相关报名信息 (请使用单位邮箱填写). 组委会将根据填报信息进行甄选与联系. (报名成功者将收到来自组委会的确认信息)填写须知:- 免费名额有限, 对符合条件的报名者, 将依据填报的顺序进行联系与确认, 额满即止。- 微信分享至朋友圈应至少保留一天- 免费名额包含会议资料, 但参会者需自行安排会议所产生的差旅与会议期间用餐.- 免费名额需实名签到- 组委会对此免费注册具有解释权, 并有权对此活动的适用条款进行适当调整.* 请留意组委会将根据填报的信息, 依据相关性与适用性进行核对, 并对您提交的免费注册申请保留接受或拒绝的权利. Please kindly note the committee reserves the rights to accept/decline your free registration after careful review on the submitted details in terms of relevance and eligibility.海报征集 (注册参会嘉宾免费享有此项权益):此次论坛将提供海报演讲机会来推广贵司最新产品, 技术及服务在抗体药物研发, 表征与分析技术, 以及工艺开发, 生产质控中的应用. 海报提交指南- 海报标准尺寸为A0- 海报发言人需提会议前1周将电子版海报发送组委会进行统一打印- 截止日期为: 2021年10月15日会议合作与联系:组委会致力于根据合作方的需求量身制作合适的参与方案。此次峰会提供多种形式的赞助方案以确保合作单位的成功参与。支持此次抗体药物开发暨生物工艺技术论坛2021将是一次难得及有效的机会,面向您的目标客户群体来推广和巩固贵司最新产品及技术服务, 从而提高抗体药物/生物制品研发与工艺研究效率。早期确认可以使您得到更好的宣传, 包括广告,电子邮件, 媒体宣传等, 使得您在会议前作为会议的主要合作方得到最大程度的推广。有关议程与更多信息,请联系:会议演讲, 内容及合作张经理 Wei Zhang项目经理邮箱: wzhang@deliver-consulting.com 电话: 021-6034-0229微信: wei_zhang_2016参会, 展览展示及支持机会(单位首字母 A-N)张经理 Wei Zhang项目经理邮箱: wzhang@deliver-consulting.com 电话: 021-6034-0229微信: wei_zhang_2016(单位首字母 O-Z)徐经理 David Xu邮箱: david.xu@deliver-consulting.com 电话:137-7629-3901 微信同媒体合作 Michelle Wang邮箱: michelle.wang@deliver-consulting.com 电话:86-21-6034-0229关于我们:迪易咨询是一家专注并服务于亚太生物制药及生命科学领域的信息咨询及品牌性会议运营单位. 我们着眼于最新的法规要求, 产业发展趋势, 科学发现及技术更新 通过与领先的国际行业协会, 政府监管单位, 学术及生物制药产业界的关键意见领袖及顾问, 建立长期及紧密的合作及联系, 我们策划并推广具有影响力及品牌性的国际会议, 论坛, 公共培训及相关咨询服务, 主要涵盖了药物的早期发现, 临床研究, 抗体药物, 疫苗制品,细胞与基因治疗产品,生物工艺开发等。
  • 欧盟修订三聚氰胺以及赭曲霉毒素A的最大残留限量
    据欧盟网站消息,7月6日欧盟委员会发布(EU)No594/2012号法规,修订三聚氰胺及其类似物在婴儿配方奶粉以及其他食品中的最大残留限量,同时修订赭曲霉毒素A在谷物产品、调味料等产品中的最大残留限量。   根据最新法规,欧盟将三聚氰胺在婴儿配方奶粉中的最大残留限量修订为1毫克/千克,在其他食品中的最大残留限量修订为2.5毫克/千克。   关于赭曲霉毒素A的残留限量,欧盟将其在谷物产品中的最大残留限量修订为3.0微克/千克 其在胡椒中的残留限量修订为15微克/千克 将其在辣椒中的残留限量自2015年1月1日起调整为15微克/千克,在此之前沿用30微克/千克的最大残留限量 将其在小麦蛋白中的残留限量修订为8.0微克/千克。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制