当前位置: 仪器信息网 > 行业主题 > >

亚磷酸氢二钠五水合物

仪器信息网亚磷酸氢二钠五水合物专题为您提供2024年最新亚磷酸氢二钠五水合物价格报价、厂家品牌的相关信息, 包括亚磷酸氢二钠五水合物参数、型号等,不管是国产,还是进口品牌的亚磷酸氢二钠五水合物您都可以在这里找到。 除此之外,仪器信息网还免费为您整合亚磷酸氢二钠五水合物相关的耗材配件、试剂标物,还有亚磷酸氢二钠五水合物相关的最新资讯、资料,以及亚磷酸氢二钠五水合物相关的解决方案。

亚磷酸氢二钠五水合物相关的资讯

  • 中科院水合物中心与美国家实验室合作研究
    中科院网站报道:应美国Lawrence Berkeley国家实验室的邀请,中科院可再生能源与天然气水合物重点实验室博士李刚和苏正于8月2日起程到美国Lawrence Berkeley国家实验室地球科学部开展为期三个月的合作研究,并于11月1日顺利返回广州。   在美期间,李刚和苏正与该实验室George Moridis教授和Keni Zhang博士合作开展了南海北部陆坡天然气水合物开采潜力数值模拟研究,同时进行了深入的学术交流活动。此次合作研究是前期双方达成共识的基础上开展合作研究和交流的第一步。李刚和苏正采用美国Lawrence Berkeley国家实验室开发的TOUGH+Hydrate数值模拟软件分别对2007年成功取样的南海北部神狐海域SH2站位和SH7站位海底天然气水合物藏进行了开采潜力的数值模拟研究。数值模拟过程中主要采用降压法和注热法相结合的开采方法,对垂直井和水平井开采海底天然气水合物的异同进行了比较,根据现有的海底水合物实地数据对井口产气产水速率进行了评价,并对海底沉积物的渗透率、水合物饱和度、海底温压条件以及盖层情况进行了参数敏感性分析,比较全面地评价了神狐海域天然气水合物藏的开采前景。合作研究期间,两人分别完成了题为Evaluation of Gas Production Potential from Marine Gas Hydrate Deposits in the Shenhu Area of the South China Sea: Depressurization and Thermal Stimulation Methods和Numerical Investigation of Gas Production Strategy for the Hydrate Deposits in the Shenhu area的学术论文。   合作结束后,重点实验室副主任吴能友和George Moridis教授就未来双方进一步合作的方式、方向和内容进行深入讨论。
  • 泰安市纺织服装产业链商会(协会)下达《氢水合物 氢气含量的测定 气相色谱法》等7项团体标准计划项目
    各单位:经有关单位申报,泰安市纺织服装产业链商会(协会)标准化技术委员会通过初审、立项评审等程序,对《氢水合物水溶液 氢气含量的测定 气相色谱法》等7项TGIC团体标准计划项目予以立项。请各项目牵头单位按照《泰安市纺织服装产业链商会(协会)团体标准管理办法》的有关规定认真组织落实,并做好以下工作:一、成立标准起草工作组,制定工作计划,确保项目按期完成。二、加强调查研究和试验验证,试验方法要至少3家实验室比对,确保方法科学合理。征求意见稿送秘书处前,应先征求业内专家意见,并将专家意见汇总后一并报秘书处。三、请各项目牵头单位指定一名联系人(姓名、单位、手机、微信)报秘书处邮箱:zkgcbwh@163.com,并与秘书处保持密切沟通。欢迎与此批团标计划项目相关的企事业单位或个人参与标准编制工作。如有意向请联系秘书处,秘书处将根据填报情况进行协调和确定。关于下达《氢水合物 氢气含量的测定 气相色谱法》等 7项团体标准计划项目的通知.pdf
  • 广州能源所用原位拉曼测量技术揭示气体水合物中气体分子特性 | 前沿用户报道
    供稿:周雪冰成果简介中国科学院广州能源研究所天然气水合物重点实验室近期发布最新研究成果,利用高压原位拉曼测量技术成功获得了多种水合物形成/分解过程的原位拉曼图,揭示了气体水合物中气体分子的吸附和扩散特性。相关成果已在Energy Fuels, J. Phys. Chem. C, Chemical Engineering Journal, scientific reports等期刊上发表。背景介绍气体水合物是在一定压力和温度条件下在气-水混合物中自然形成的冰状固体化合物。在气体水合物晶体中,水分子依靠氢键相互结合在一起形成笼状晶格,而气体分子作为客体分子分布在晶格中并对水其稳定作用。例如,天然气水合物是人们在自然环境中发现的一类常见的笼状水合物,在科学和工业领域有着广泛的创新应用,有研究者就利用在海洋下形成的气体水合物来封存烟气中的二氧化碳。图1 气体水合物的三种主要的晶体结构。结构I(sI),通常由较小的客体分子(0.4–0.55nm)形成,是地球上最丰富的天然气水合物结构;结构II(sII),通常由较大的客体分子(0.6–0.7nm)和结构H(sH)形成,通常需要小分子和大客体分子形成。气体水合物的水合物热力学和动力学特性会直接受两种因素的影响:水合物中的气体种类、气体对水合物笼型结构的占有率。这也是气体水合物表征的重点。然而,由于晶体生长的环境条件比较苛刻,常规测量手段难以对上述表征重点直接观测。拉曼光谱能够根据气体水合物中客体分子的拉曼光谱特征峰和特征峰的峰面积来确定气体水合物的晶体结构,以及定量计算不同笼型结构中气体的孔穴占有率。近年来,耐低温高压的拉曼辅助测量装置的研发成功,水合物原位测量技术得以应用,这为研究气体水合物的形成/分解/置换等晶体结构的动力学行为提供了重要的研究途径。图文导读广州能源所天然气水合物重点实验室采用共聚焦拉曼光谱仪和原位拉曼光谱测量装置对甲烷、二氧化碳及其混合气体水合物的形成、分解和置换过程进行了测量和分析。实验中使用HORIBA LabRAM HR拉曼光谱仪,配备有开放式显微镜系统和高精度三维自动平台及Linkam BSC型冷热台,冷热台采用液氮冷却。图2 原位拉曼光谱测量装置1. 纯CO2、烟气和沼气中水合物的形成过程在271.6K温度下,以2800~3800cm-1的水分子拉曼特征峰为参考,对水合物相中气体的拉曼峰进行了表征和归一化。结果表明,水合物的形成过程首先是不饱和水合物核的形成,然后是气体持续吸附。在三种水合物形成过程中均发现,水合物核中的CO2浓度仅为对应饱和状态时的23-33%。在烟气合成水合物过程中,N2水合物相中的浓度在晶核形成时就达到饱和状态。在沼气合成水合物过程中,CH4和CO2分子会发生竞争吸附,而N2分子在水合物形成过程中几乎不发生演化。研究认为N2和CO2等小分子在水合物晶核形成过程中更为活跃,而CO2分子则在随后的气体吸附过程中发生优先吸附。[1]图3 271.6K下通过原位拉曼测量方法观察到的CO2、N2和CH4的特征峰图4 纯CO2水合物生长过程中的原位拉曼光谱。(a)CO2分子在水合物和气相中的拉曼特征峰 (b)水分子的拉曼特征峰2. CO2-CH4置换过程在273.2~281.2 K温度范围内对气态CO2置换CH4的过程进行了多尺度研究,并根据测量结果对基于气体扩散理论的水合物置换动力学模型进行了修正。原位拉曼测量发现,水合物大笼和小笼中的CH4连续下降,没有显著波动,这表明CH4的置换反应并非先分解再生成的过程。800小时的测量结果表明,置换过程首先是快速表面反应,随后是缓慢的气体扩散。温度的升高能有效提高水合物相的气体交换速率,增强水合物相的气体扩散。修正后的水合物置换反应动力学模型揭示了水分子的迁移率是限制了置换反应速率的主要因素。[2]图5 置换过程中CH4在水合物大笼和小笼中的比例变化图6 CO2置换水合物中CH4的原位拉曼光谱图7 水合物CO2-CH4置换反应机理示意图3. CH4-CO2混合气体水合物的分解过程对CH4-CO2混合气体水合物的分解过程进行了原位拉曼光谱测量并与纯CH4和纯CO2水合物的熔融过程进行了对比分析。研究结果发现,混合CH4-CO2水合物的晶体结构为Ⅰ型结构,且不随气体浓度的改变而发生变化。分解过程中,气体在水合物大笼和小笼中的特征峰强均会下降,同时峰面积之比始终保持稳定,表明水合物晶体以晶胞为单位解离。水合物晶体的分解时间具有随机性,与水合物粒子的多晶性质一致。有趣的是,在含有CH4的水合物中,水合物相中CH4和CO2的拉曼特征峰在水合物分解过程中出现了短暂的连续上升,表明位于样品颗粒内部的水合物发生了气体迁移扩散,这种现象的产生可以归因于水合物在样品颗粒内部的部分分解和“自保护”效应。[3]图8 CH4-CO2混合气体水合物在253K常压环境下分解过程的原位拉曼光谱图9 CH4(大笼: 2906cm-1)和CO2的在水合物中的特征峰(1383cm-1)随水合物分解的变化曲线。根据时间零点拉曼峰的强度,峰被归一化。总结展望拉曼光谱与表面增强拉曼光谱都是是非常强大的分析手段,凭借快速获取样品表面光谱信息的能力,拉曼测量技术在天然气水合物等矿物学领域颇受青睐。据了解,在接下来的研究中,天然气水合物重点实验室将应用原位拉曼测量技术对天然气水合物在多孔介质和添加剂等复杂环境中的反应动力学过程展开研究,以进一步揭示它的形成/分解/置换过程的动力学机理。中国科学院天然气水合物重点实验室简介中国科学院天然气水合物重点实验室是国内天然气水合物研究的重要基地。重点研究天然气水合物的物理化学性质、生长动力学、生成/分解过程等相关基础问题以及水合物开采、天然气固态储运、天然气水合物管道抑制、二氧化碳捕集与封存。联系作者周雪冰 Phone: 15002016003仪器推荐工欲善其事,必先利其器。本实验中全程使用了HORIBA LabRAM HR拉曼光谱仪进行原位拉曼光谱测量。作为升级版,LabRAM HR Evolution 高分辨拉曼光谱仪在保留了LabRAM HR所有性能的同时,实现了高度自动化。配备科研级正置/ 倒置显微镜,可实现UV-VIS-NIR 全光谱范围拉曼检测。焦长达到800mm,具有超高的光谱分辨率和空间分辨率。LabRAM HR Evolution 高分辨拉曼光谱仪如果您对上述产品感兴趣,欢迎扫描二维码留言,我们的工程师将会及时为您答疑解惑。文献信息[1] Zhou, X., Zang, X., Long, Z. et al. Multiscale analysis of the hydrate based carbon capture from gas mixtures containing carbon dioxide. Sci Rep 11, 9197 (2021). 文章链接:https://doi.org/10.1038/s41598-021-88531-x[2] Xuebing Zhou, Fuhua Lin, and Deqing Liang. Multiscale Analysis on CH4–CO2 Swapping Phenomenon Occurred in Hydrates. The Journal of Physical Chemistry C 2016 120 (45), 25668-25677. 文章链接:https://pubs.acs.org/doi/10.1021/acs.jpcc.6b07444[3] Xuebing Zhou, Zhen Long, Shuai Liang et al. 1. In Situ Raman Analysis on the Dissociation Behavior of Mixed CH4–CO2 Hydrates. Energy & Fuels 2016 30 (2), 1279-1286. 文章链接:https://pubs.acs.org/doi/abs/10.1021/acs.energyfuels.5b02119[4] Xuebing Zhou, Deqing Liang, Enhanced performance on CO2 adsorption and release induced by structural transition that occurred in TBAB26H2O hydrates, Chemical Engineering Journal, Volume 378, 2019, 122128, ISSN 1385-8947,文章链接:https://www.sciencedirect.com/science/article/pii/S1385894719315220?via%3Dihub
  • 科技部批准建设天然气水合物等企业国家重点实验室
    p style=" text-align: center " strong 科技部关于批准建设天然气水合物、认知智能2个企业国家重点实验室的通知 /strong /p p style=" text-align: center " 国科发基〔2017〕386号 /p p   国务院国有资产监督管理委员会、安徽省科技厅: /p p   企业国家重点实验室是国家创新体系的重要组成部分,主要任务是面向战略性新兴产业和行业发展需求,以提升企业自主创新能力和核心竞争力为目标,开展基础和应用基础研究及共性关键技术研发,研究制定国际标准、国家和行业标准,聚集和培养优秀人才,引领和带动行业技术进步。 /p p   为进一步完善企业国家重点实验室布局,科技部启动天然气水合物、认知智能企业国家重点实验室的建设工作。根据专家评审结果,经研究,现决定批准建设“天然气水合物国家重点实验室”、“认知智能国家重点实验室”2个实验室(名单见附件)。 /p p   请你们抓紧组织实验室依托单位编制《企业国家重点实验室建设与运行实施方案(2018 2022年)》 按照《依托企业建设国家重点实验室管理暂行办法》(国科发基〔2012〕716号)的规定和要求,落实有关政策和建设经费,组织相关单位凝练实验室发展目标、明确主要研究方向和重点、组织科研队伍、引进和培养优秀人才、完善和提升实验研究条件、建立“开放、流动、联合、竞争”的运行机制,做好企业国家重点实验室建设与运行管理工作。 /p p   特此通知。 /p p   附件:批准建设的企业国家重点实验室名单 /p p style=" text-align: right " 科 技 部 /p p   附件 /p p style=" text-align: center " strong 批准建设的企业国家重点实验室名单 /strong /p p style=" text-align: center " img title=" 001.png" src=" http://img1.17img.cn/17img/images/201712/insimg/e5e38231-dfe9-46f0-838b-820c434027ca.jpg" / /p p & nbsp /p
  • Picarro | 基于Picarro G2201-i碳同位素分析仪研究天然气水合物释放对青藏高原永
    青藏高原是地球上海拔最高的高原,被称为“世界屋脊”、“第三极”。青藏高原光照和地热资源充足。高原上冻土广布,植被多为天然草原。它扮演着重要的生态角色,影响着全球气候变化。这个区域的碳循环系统尤其引人注目。图片来源于网络,如有侵权请联系删除随着全球气候变暖,青藏高原的永冻层正在消融,导致大量的甲烷和其他温室气体被释放到大气中,从而影响了全球气候变化的速度。这种现象对人类社会和生态系统都产生了深远的影响,今天想向大家介绍的文章,正好与此相关。基于Picarro G2201-i碳同位素分析仪研究天然气水合物释放对青藏高原永冻层湿地甲烷排放的影响湿地甲烷排放是全球收支中最大的自然来源,在推动21世纪气候变化方面发挥着日益重要的作用。多年冻土区碳库是受气候变化影响的大型储层,对气候变暖具有正反馈作用。在与气候相关的时间尺度上,融化的永久冻土中的甲烷排放是温室气体收支的关键。因此,多年冻土区湿地甲烷排放过程与湿地碳循环密切相关,对理解气候反馈、减缓全球变暖具有重要意义。青藏高原是地球上最大的高海拔永久冻土区,储存了大量的土壤有机碳和天然气水合物中的热生烃。湿地甲烷排放源识别是了解青藏高原湿地甲烷排放和碳循环过程与机制的重要问题。基于此,来自中国地质调查局的研究团队于2017年测量青藏高原木里永冻层近地表和天然气水合层钻井(DK-8)的CH4和CO2排放量及其碳同位素组成(Picarro G2201-i碳同位素分析仪)。并计算CH4和CO2碳同位素分馏( Ԑ C:δ13CCO2- δ13CCH4)。旨在为木里多年冻土湿地甲烷排放的重要来源-天然气水合物释放提供新的证据,揭示天然气水合物释放对湿地甲烷季节性排放的影响,进一步揭示钻井等人为活动对青藏高原多年冻土湿地甲烷排放的影响。研究区域位置【结果】DK-8中CH4含量、δ13CCH4 及Ԑ C土壤层中CH4含量、δ13CCH4 及Ԑ C【结论】热成因天然气水合物分解是湿地甲烷排放重要的源季节性湿地甲烷排放受人类钻井活动的影响天然气水合物释放的甲烷特征:【δ13CCH4】 -25.9±1.4‰~-26.5±0.5‰,【Ԑ C】-25.3‰~ -32.1‰δ13CCH4和Ԑ C值可以区分复杂环境中的热成因和微生物成因甲烷秋冬季节以热成因甲烷为主导,春夏季节微生物成因甲烷贡献较大随着天然气水合物资源的进一步探索和开采,天然气水合物分解对永冻层湿地甲烷排放的影响会更显著
  • 中国科学家利用自主显微镜首次揭示水合离子微观结构
    center img style=" width: 285px height: 300px " title=" " alt=" " src=" http://upload.jxntv.cn/2018/0515/1526343227397.jpg" height=" 300" hspace=" 0" border=" 0" vspace=" 0" width=" 285" / /center p   钠离子水合物的亚分子级分辨成像。从左至右,依次为五种离子水合物的原子结构图、扫描隧道显微镜图、原子力显微镜图和原子力成像模拟图。图像尺寸:1.5 nm × 1.5 nm。 /p center img style=" width: 402px height: 300px " title=" " alt=" 中国科学家首次揭示水合离子的微观结构" src=" http://img002.21cnimg.com/photos/album/20180515/m600/35DDA1DE9EDE6FF980557BE1E5589178.jpeg" height=" 300" hspace=" 0" border=" 0" vspace=" 0" width=" 402" / /center p   5月14日,在中科院物理研究所会议室举行的发布会上,北京大学物理学院教授江颖(左)和中科院院士、北京大学讲席教授王恩哥(右)在回答记者提问。新华社记者 金立旺 摄 /p p   5月14日电,北京大学和中国科学院的一支联合研究团队日前利用自主研发的高精度显微镜,首次获得水合离子的原子级图像,并发现其输运的“幻数效应”,未来在离子电池、海水淡化以及生命科学相关领域等将有重要应用前景。该成果于北京时间14日由国际顶级学术期刊《自然》在线发表。 /p p   水是人类熟悉但并不真正了解的一种物质。水与溶解其中的离子结合在一起形成团簇,称为水合离子,盐的溶解、大气污染、生命体内的离子转移等都与水合离子有关。19世纪末科学家就开始相关研究,但由于缺乏原子尺度的实验手段以及精准可靠的计算模拟方法,水合离子的微观结构和动力学一直是学术界争论的焦点。 /p p   中科院院士、北京大学讲席教授王恩哥与北京大学物理学院教授江颖带领课题组,在实验中首次获得了单个的水合离子,随后通过高精度扫描探针显微镜,得到其原子级分辨图像。这是一百多年来人类首次直接“看到”水合离子的原子级图像。 /p p   “观测到了最小的原子——氢原子,几乎已经达到极限,可以对原子核与电子的量子效应同时进行精确描述。”王恩哥说。 /p p   经过高精度观测,中国科学家还发现了水合离子的“幻数效应”,即包含3个水分子的钠离子水合物在表面上具有异常高的扩散能力。江颖介绍,该研究结果意味着,可以选择性增强或减弱某种离子的输运能力,在离子电池、防腐蚀、电化学反应、海水淡化、生物离子通道等应用领域具有重要的潜在意义。 /p p   “比如,可以通过对离子电池的电极材料进行界面调控,借助‘幻数效应’提高离子的传输速率,从而缩短充电时间和增大电池功率。”江颖说。 /p p   strong  1.研发显微镜核心部件和方法,达到原子水平观测的极限 /strong /p p   这项工作的突破之一,是在国际上首次得到了水合钠离子的原子级分辨图像。中国科学院院士、北京大学讲席教授王恩哥说:“这可能就是原子水平观测的极限了。” /p p   为了得到这幅图像,科学家们面临着两个挑战:第一步,如何人工制备单个离子水合物?制作离子水合物非常容易——把盐倒入水中溶解就可以了——但它们相互聚集、相互影响,水合结构也在不断变化,要得到适合扫描探针显微镜研究的单个离子水合物是一件非常困难的事。 /p p   第二步,如何给离子水合物拍个原子级照片?实验制备出单个离子水合物团簇后,接下来需要通过高分辨成像弄清楚其几何吸附构型,也就是给它们拍个“原子照片”——由于离子水合物属于弱键合体系,比水分子团簇更加脆弱,因此针尖很容易扰动离子水合物,从而无法得到稳定的图像。 /p p   科学家们在之前研究的基础上,对扫描探针显微镜做了改造,自主研制了关键核心设备。这一研究的主要完成人、北京大学物理学院教授江颖介绍,为了制备单个离子水合物,他们基于扫描隧道显微镜发展了一套独特的离子操控技术,以制备单个离子水合物。江颖说:“首先用非常尖锐的金属针尖在氯化钠薄膜表面吸取一个氯离子,这样便得到氯离子修饰的针尖和氯离子缺陷。然后用氯离子针尖将一个水分子拉入到氯离子缺陷中,再将针尖靠近缺陷最近邻的钠离子,水平拉动钠离子,将钠离子拔出吸附在针尖上。最后用带有钠离子的针尖扫描水分子,从而使钠离子脱离针尖,与水分子形成含有一个水分子的钠离子水合物。通过拖动其他水分子与此水合物结合,即可依次制备含有不同水分子数目的钠离子水合物。” /p p   为得到离子水合物的“原子照片”,并保证不对其产生扰动,研究人员发展了基于一氧化碳针尖修饰的非侵扰式原子力显微镜成像技术,可依靠极其微弱的高阶静电力扫描成像。江颖给记者展示了图片:“这是国际上首次在实空间得到离子水合物的原子层次图像,从图中可以看到,不仅水分子和离子的吸附位置可以精确确定,就连水分子取向的微小变化都可以直接识别。” /p p    strong 2.离子水合物的幻数效应有什么用 /strong /p p   江颖介绍,为了进一步研究离子水合物的动力学输运性质,研究人员利用带电的针尖作为电极,通过非弹性电子激发控制单个水合离子在氯化钠表面上的定向输运,发现了一种有趣的幻数效应:包含有特定数目水分子的钠离子水合物具有异常高的扩散能力,迁移率比其他水合物要高1~2个量级,甚至远高于体相离子的迁移率。 /p p   结合第一性原理计算和经典分子动力学模拟,他们发现这种幻数效应来源于离子水合物与表面晶格的对称性匹配程度。具体来说,包含1、2、4、5个水分子的离子水合物总能通过调整找到与氯化钠衬底的四方对称性晶格匹配的结构,因此与衬底束缚很紧,不容易运动 而含有3个水分子的离子水合物,却很难与之匹配,因此会在表面形成很多亚稳态结构,再加上水分子很容易围绕钠离子集体旋转,使得离子水合物的扩散势垒大大降低,迁移率显著提高。 /p p   江颖说:“我们可能都给孩子玩过按照空洞填积木的游戏,这个实验有点类似。氯化钠衬底就是预留好不同几何形状空洞的底板,而离子水合物就是这些积木,它周围结合的水分子数目决定了积木的几何形状。我们发现,包含1、2、4、5个水分子的水合物总能在底板上找到对应的空洞稳定下来,但含有3个水分子的离子水合物却没有合适的地方,只能浮在表面不停运动。” /p p   有评论认为,这一发现会在很多领域得到应用,“会马上引起理论和应用表面科学领域的广泛兴趣”“为在纳米尺度控制表面上的水合离子输运提供了新的途径,并可以拓展到其他水合体系”。 /p p   江颖举了几个例子。比如生物离子通道的研究,“我们知道,人类的嗅觉、味觉、触觉等是靠生物离子通道来实现的。离子在这些通道中的输运速度非常高,而且在离子的筛选上有很强的特定性,从来不会乱套。过去我们认为这种高速度和特定性主要是由离子通道的大小决定的,但我们的研究结果对这个认知提出了挑战。生物离子通道的内壁结构有很多微观细节,或许是因为细节的不同,导致了不同的幻数效应,才出现了离子输运的选择性和高效性。”再比如离子电池的研究,“我们可以通过对电极材料表面的调控和裁剪,提高离子的传输速度,实现缩短充电时间、提升电池功率等目标。” /p p   王恩哥表示,这一研究是理论与实验相结合的范例,是科学家们在一个方向上持续不断研究的结果,“我们将在这个方向上持续努力下去,也希望其他学者参与进来,让我们对水、对水合物体系有更深入的了解”。 /p p   strong  3.水合离子变得可以操控,能为我们带来什么? /strong /p p   据了解,这项研究工作得到了《自然》杂志三个不同领域审稿人的一致好评和欣赏。他们认为,该工作“会马上引起理论和应用表面科学领域的广泛兴趣”,“为在纳米尺度控制表面上的水合离子输运提供了新的途径并可以拓展到其他水合体系”。 /p p   王恩哥院士介绍,“该项研究的结果表明,我们可以通过改变材料表面的对称性和周期性,来实现选择性增强或减弱某种离子输运能力的目的。这对很多相关的应用领域都具有重要的潜在意义。” /p p   比如可以研发出新型的离子电池。江颖告诉记者,现在我们所使用的锂离子电池,其电解液一般是由大分子聚合物组成,而基于这项最新的研究,将有可能开发出一种基于水合锂离子的新型电池。“这种电池将大大提高离子的传输速率,从而缩短充电时间和增大电池功率,更加环保、成本也将大幅降低。” /p p   另外,这项成果还为防腐蚀、电化学反应、海水淡化、生物离子通道等前沿领域的研究开辟了一条新的途径。同时,由该工作发展出的高精度实验技术未来还有望应用到更多更广泛的水合物体系。 /p center img style=" width: 450px height: 292px " title=" " alt=" 中国科学家首次揭示水合离子的微观结构" src=" http://img001.21cnimg.com/photos/album/20180515/m600/54A9FE512CB7D9448952615F391BE431.jpeg" height=" 292" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /center p   5月14日,在中科院物理研究所会议室举行的发布会上,中科院院士、北京大学讲席教授王恩哥在介绍研究成果。新华社记者 金立旺 摄 /p center img style=" width: 450px height: 338px " title=" " alt=" 中国科学家首次揭示水合离子的微观结构" src=" http://img003.21cnimg.com/photos/album/20180515/m600/EAAEBB34B6CC5E08C49B2CBB7DE0F7A0.jpeg" height=" 338" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /center p   5月14日,在中科院物理研究所会议室举行的发布会上,北京大学物理学院教授江颖(左)和中科院院士、北京大学讲席教授王恩哥在回答记者提问。新华社记者 金立旺 摄 /p center img alt=" 中国科学家首次揭示水合离子的微观结构" src=" http://img003.21cnimg.com/photos/album/20180515/m600/A35A5DB342D4F1E05F79EE99F887BD42.jpeg" height=" 600" width=" 439" / /center p   5月14日,在中科院物理研究所会议室举行的发布会上,北京大学物理学院教授江颖在介绍研究成果。新华社记者 金立旺 摄 /p
  • MFI专注蛋白聚集分析,助力药物稳定性研究
    近日,美国明尼苏达大学药学院药理学科学家,利用MFI,在权威杂志Journal of ControlledRelease(IF:7.901)发表文章:Freezing-induced ProteinAggregation - Role of pH Shift and Potential Mitigation Strategies, J Control Release. 2020 Jul 10 323:591-599. --研究背景--在设计用于肠胃外给药的蛋白质药物产品中,聚集体的产生,除了在外观上引起不适之外,最重要的是它们具有细胞毒性作用,或是引起机体免疫原性应答。美国和欧洲药典对肠胃外药物产品中的不溶性聚集物有规定:对于小剂量的肠胃外药物,通过光阻法测量的小颗粒(≥10μm)和大颗粒(≥25μm)的推荐药典规范分别为≤6000/container和≤600/container。因此,预防和减轻蛋白质聚集对于维持蛋白质药物产品的安全性,功效和质量至关重要。药品加工步骤中,如纯化,搅动,冻融,填充,冻干,制剂成分,运输压力,都有可能将天然蛋白质转化为聚集体。而蛋白质溶液在配制为药物产品之前,通常以冷冻状态保存很长一段时间,所以,因反复冻融而产生的蛋白聚集体更应引起关注。蛋白质制剂如缓冲液可确保制剂的pH值在整个保质期内都保持在所需范围内。但在低温过程中,某些缓冲区的有效性可能会受到影响。例如,当冷冻含有磷酸二氢钠和磷酸二钠的水溶液(即磷酸钠缓冲液)时,磷酸氢二钠的选择性结晶导致冷冻浓缩液的pH降低,从而引起蛋白聚集体的产生。因此,本文旨在研究,在不同缓冲溶液的冻融循环过程中,两种模型蛋白质(牛血清白蛋白(BSA)和β-半乳糖苷酶(β-gal))聚集体的产生,以及这两种蛋白对缓冲液pH值变化的影响。同时,评价了添加的非结晶溶质对pH值变化的影响,以及pH改变对蛋白质聚集行为的影响。--研究结果--使用MFI表征冷冻和解冻后蛋白颗粒的形成利用MFI检测发现,无论何种缓冲液,BSA(10mg/mL)在制备和立即分析时均显示出较低的颗粒数。当这些溶液经受五个冻融循环时,在许多系统中颗粒数量都有小幅增加。但冻融循环在磷酸钠缓冲液(100mM)中导致的颗粒计数增加显著。加入纤维二糖(纤维二糖(一种还原糖)被用作模型非结晶溶质,一种冷冻保护剂)后,在磷酸钠缓冲液(100mM)中导致的颗粒数有明显缓解。利用MFI检测发现,β-gal(10mg/mL)在水中冻融后的颗粒数(?100,000)急剧增加,表明该蛋白质对PH值的极端敏感性。同样,β-gal在磷酸钠缓冲液(100mM)中导致的颗粒计数增加显著。加入纤维二糖后,在磷酸钠缓冲液(100mM)中导致的颗粒数有明显缓解。低温pH测定将PBS和磷酸钠(100mM)冷却后,发现pH值变化幅度相似。当磷酸钠浓度为10mM时,冷却时的pH值变化不明显。而蛋白质的添加(10mg/mL)可以降低了PBS和磷酸钠(10mM)中pH值变化的幅度。当磷酸钠浓度很高(100mM)时,蛋白质的作用就不那么明显了,这表明,低蛋白浓度(10mg/mL)似乎不足以抑制缓冲盐的结晶和随之而来的pH偏移。低温XRD测定研究结果发现,当将磷酸钠缓冲溶液(10和100mM)冷却时,在-15°C时Na2HPO4• 12H2O结晶明显(分别参见图4B和4C)。而BSA的添加,可以使Na2HPO4• 12H2O的峰强度降低,特别是在较低的缓冲液浓度(10mM)下更为明显。这与观察到的BSA对缓冲溶液pH值变化幅度的影响密切相关。此外,纤维二糖的添加完全抑制了缓冲盐的结晶(图4D),以及冰峰的强度也受到了抑制。这些结果揭示了非结晶溶质在蛋白质制剂中的附加作用。通过抑制缓冲盐的结晶和随之而来的pH值变化,这些赋形剂可防止蛋白质不稳定性。热分析结果显示,当将BSA添加到PBS中时,在-54.4℃出现玻璃化转变温度(Tg′),随后在-22.4和0.1℃出现两个吸热峰。玻璃化转变温度反映了冷冻浓缩物组成发生了改变。BSA仅对100mM缓冲液的热行为有明显影响,导致Tg’(-47°C)和结晶温度(-30°C)降低。同时,纤维二糖的添加有望改变冷冻浓缩物的成分,这在Tg’(-34°C)中有所体现。结论:磷酸盐缓冲液被广泛用于肠胃外蛋白质制剂中。但在冷冻过程中,磷酸氢二钠(十二水合物)的选择性结晶会降低冷冻浓缩液的pH值,从而导致蛋白质聚集。可以通过降低缓冲液浓度来减小pH偏移。同时,BSA和β-gal可以通过对缓冲液结晶的抑制,减少pH的变化,但其作用程度要取决于缓冲液浓度。其它非结晶性赋形剂(纤维二糖)的添加,可通过抑制缓冲盐结晶,来提高蛋白质的稳定性。
  • 华嘉公司将与晶云药物合作举办药物晶型研究与药物固态表征专题技术培训
    瑞士华嘉公司与晶云药物科技有限公司于3月24-25日在苏州联合举办的&ldquo 药物晶型研究与药物固态表征专题培训&rdquo 。 药物晶型研究和药物固态表征在制药业具有举足轻重的意义。一方面,不同晶型的同一药物,在稳定性,溶解度,和生物利用度等生物化学性质方面可能会有显著差异,从而影响药物的疗效。如果没有很好的评估选择最佳的药物晶型进行研发,可能会在临床后期产生晶型的变化,从而导致药物上市的延期而产生巨大的经济损失。由于药物晶型研究的重要性,美国药监局(FDA)对该领域的研发提出了明确要求,在IND和NDA中都要求对药物多晶型现象提供相应的研究数据。对于仿制药公司来说,如何研发出药物的新晶型从而能够打破原创药公司对晶型的专利保护,提早将仿制药推向市场,是近年来一个至关重要的问题,将直接影响到仿制药和原料药公司的市场和国际竞争力。另一方面,能否对药物进行正确的固态表征从而理解药物的固态性质(包括晶型稳定型,晶体表象,粒径分布,比表面积,无定形药物分散剂的稳定型,制剂溶出曲线,原料药和辅料的相容性,手性化合物的纯度等),将直接影响到原料药和制剂的研发和生产工艺,从而影响到药品的质量和销售价格。 药物晶型研究与药物的固态表征在欧美制药界已经是比较成熟并深受重视的领域,但在国内制药界尚属起步阶段。 晶云药物核心技术团队在药物晶型研究和药物固态表征领域拥有数十年的丰富经验,曾被邀请为许多全球和国内的制药公司提供该领域的专业技术咨询和培训。为了满足更多药物公司在该领域的技术需求,让更多的研发人员理解药物晶型研究和药物固态表征的原理和应用,并和同行沟通,更好的了解该领域的研发进展和发展趋势,晶云药物特决定在苏州举办此次为期2天的技术培训。培训的所有费用由晶云承担(除交通住宿外)。 培训课程: l 课程一 题目: 多晶型的控制和认知在原料药的工艺研发中的作用(3小时) 内容:  Ø 多晶型的控制和认知的重要性 Ø 无水多晶型体 i. 构建相图和解析相图 ii. 如何寻找最佳晶型(稳定和亚稳态晶型) iii. 如何有效的确定多晶型混合物中各种晶型的含量或比例 iv. 亚稳态晶型在制药业中的应用条件 v. 多晶型体在原料药上应用 Ø 水合物和溶剂合物 i. 识别和表征水合物及溶剂合物 ii. 水合物和溶剂合物在原料药中的应用及如何保存 iii. 针对水合物和溶剂合物的干燥工艺 Ø 药物多晶型的基本筛选流程 Ø 药物多晶型的稳定性及其热动力学研究 Ø 怎样生产并保持你所需要的晶型 Ø 实例分析 i. 混合晶型系统 ii. 在药品保存中形成了新的水合物/溶剂合物 iii. 如何放大不稳定的晶型的生产工艺 iv. 如何应对临床后期出现的晶型转化 主讲人: 陈敏华博士 l 课程二 题目: 药物多晶型的知识产权和法规(1小时) 内容: Ø 何时和为何要保护多晶型的知识产权 Ø 多晶型体的新药申批(NDA)需要什么信息及怎样填写新药申批 Ø 食品和药物管理局(以美国为例)对多晶型的要求及标准 Ø 如何开发仿制药的多晶型 主讲人:陈敏华博士 l 课程三 题目: 盐类药物的研究(45分钟) 内容:  Ø 什么是盐类药物 Ø 为什么要开发盐类药物 Ø 如何形成盐类药物 主讲人: 张炎锋博士 l 课程四 题目: 药物共晶体(45分钟) 内容: Ø 什么是共晶体 Ø 共晶体药物在制药中的基本应用 Ø 共晶体的稳定性 Ø 如何筛选药物共晶体及其放大工艺 Ø 在制药产业中形成共晶体的现象及其产生的影响 主讲人: 张炎锋博士 l 课程五 题目: 原料药的主要表征手段及对药物研发的重要性(2.5小时) 内容:  Ø 粉末衍射(XRPD) Ø 拉曼光谱 Ø 动态气相吸附(DVS) Ø 比表面积分析 (SA) Ø 表观密度 Ø pKa值的确定 Ø 测量LogD/LogP Ø 差示扫描量热仪及调制差示扫描量热仪 (DSC and MDSC) Ø 热重量分析仪(TGA) Ø 单晶衍射仪(SCXRD) Ø 偏振光显微镜 Ø 固态核磁共振(SSNMR) 主讲人: 陈敏华博士,张炎锋博士和张海禄博士 l 课程六题目: 手性药物的结晶拆分(1小时) 内容: Ø 手性药物结晶拆分的原理及工艺研发的流程和策略 Ø 手性药物结晶拆分在原料药生长中的重要性 Ø 实例分析: 对于不同种类的对映异构体系统(Conglomerate, Racemic compound, Solid solution)和非对映异构体(Diastereomer)进行手性拆分的不同策略的成功应用 Ø 手性分子结晶拆分的发展近况 主讲人: 陈敏华博士 培训安排: 时间:2011年3月24日-25日 地点:苏州工业园区仁爱路158号中国人民大学国际学院(苏州研究院)敬斋 注册报到地点:中国人民大学国际学院(苏州研究院)敬斋 学员人数:20-50人 日程安排: 日 期 时 间 活动内容 3月24号上午 8:00-9:00 注册报到 (含早餐) 9:00-9:20 欢迎致词 9:20-11:00 课程一 11:00-11:15 茶点休息 11:15-12:30 继续课程一 12:30-13:30 午餐 3月24号下午 13:30-15:00 课程二+课程三 15:00-15:20 茶点休息 15:20-16:20 课程三+课程四 16:20-17:30 讨论 17:30---- 自由社交和招待宴会3月25号上午 8:30-10:00 课程五 10:00-10:20 茶点休息 10:20-11:20 继续课程五 11:20-12:20 课程六 12:20-12:30 合影 12:30-13:30 午餐及自由活动 3月25号下午 13:30-17:30 参观晶云技术平台,了解各种仪器的实际操作和应用-理论结合实际 天气:苏州3月底天气凉爽,气候宜人,是一年中旅游的最佳时节,平均最低气温 12.2 ℃,平均最高气温 21.0 ℃。 华嘉客户报名方式(附回执): 电话:4008210778 传真:021-33678466 邮件:helen.jiang@dksh.com 回执单 姓名 性别 人数 单位名称 详细地址 邮政编码 电话 传真 E-mail 留言: 备注:请尽快E-mail 或传真(021-33678466)确认 联系人: 姜丹 公司地址:上海市虹梅路1801号A区凯科国际大厦2208室 邮政编码:200233 电话:4008210778 ;传真:021-33678466 电子邮箱:helen.jiang@dksh.com
  • 冻干配方深度解析:不同组分的相互作用及对功能的影响
    随着生物制药的迅猛发展,冻干已经成为一种有效的技术来解决制药过程中存在的化学,物理,生物的不稳定性问题。结合冻干本身的技术特点,冻干产品开发的*目的是要保证产品质量的同时利用最短的生产时间来节约成本。产品的质量包括安全,高效,稳定,较短的复水时间,优雅的蛋糕外观等。众所周知,冻干是一个复杂的传热传质的过程,如果处理不当,在冷冻以及干燥过程中,样品中的活性成分以及赋形剂会发生一些物理或化学变化,从而破坏了各自原有的功能特性,因此需要进行采取合理的方法来加以解决,从而达到冻干制剂开发的*目的。 预冻阶段 样品溶液随着温度的降低,含有的水先冻结成冰晶析出,剩余的溶液的浓度越来越大,形成*浓缩冻结液,溶质和溶剂分离,在这个阶段,水分的结晶会导致蛋白浓度增加,赋形剂浓度增加,离子强度增加,粘度增加,赋形剂结晶或相分离,pH改变等,这些可能会影响到蛋白的稳定性。 干燥 结晶的冰通过升华去除,未结晶的冰通过解吸附去除,样品中的水分含量是一个动态变化的过程,样品会面临水分去除产生的应力,即干燥应力,导致配方中成分发生一定的变化。 储存 较低的水分含量,温度的偏差,赋形剂的相分离。常用赋形剂的功能性及物理状态赋形剂期望的物理状态常用成分保护剂/稳定剂无定形蔗糖,海藻糖填充剂晶体甘露醇缓冲液无定形磷酸盐缓冲液,组氨酸缓冲液,柠檬酸盐缓冲液等表1:常用赋形剂的功能性及期望的物理状态然而在冻干过程中,活性成分以及赋形剂之间具有复杂的相互影响,不同的浓度,不同的比例,不同的种类等都会引起一些结构状态的变化,从而导致其原本的功能丧失,比如:若海藻糖结晶会导致保护功能的丧失;若甘露醇变为无定形结构,会降低产品的关键温度,并且无定形态具有较差的稳定性,丧失了其作为填充剂的功能;若缓冲液成分结晶,会导致pH值的变化,缓冲功能丧失,蛋白稳定性受到影响。因此研究各个配方组分之间的相互影响作用对确保*产品的质量具有较大的作用。 01.糖类和填充剂功能性之间的相互影响 双糖是最常用的冻干保护剂,如蔗糖,海藻糖,双糖与蛋白的最小质量比通常为3:1到5:1,但是糖类通常会降低样品的玻璃态转化温度,使得冻干通常会花费较长的时间,因此会将糖类跟具有较高共晶融化温度的填充剂结合使用,如甘露醇,甘氨酸,这样可以让样品在较高的温度下进行干燥,形成良好的外观结构,节约干燥时间(Tang and Pikal, Pharm Res. 2004 Johnson, Kirchhoff and Gaud, J Pharm Sci. 2001)。市面上有一些药品就是以这种方式开发的,如阿必鲁泰(Tanzeum),是一种融合蛋白,糖尿病患者用药,配方中含海藻糖以及甘露醇成分;沙格司亭冻干粉注射剂(Leukine)是一种源于酵母的重组人粒细胞-巨噬细胞集落刺激因子(rhGM-CSF),能够刺激各种免疫细胞的生长和活化,已用于白血病患者降低感染风险,配方中含蔗糖和甘露醇成分;鲁磨西替(Lumoxiti)是一种单抗抗癌制剂,配方中含蔗糖和甘氨酸成分。 图1:阿必鲁泰(Tanzeum)这种结合的有效性取决于:在冻干和储存过程中两种赋形剂的物理形态;正确的比例以及冻干条件。理想状态下,整个过程中糖类应当处于无定形状态,起到稳定剂的作用;填充剂在干燥之前应当充分结晶,使得样品具有良好的结构强度,提高关键产品温度,缩短冻干时间。 Part.1 蔗糖对甘氨酸填充剂结晶的抑制影响实验通过将蔗糖和甘氨酸以不同比例(从1:9到9:1)溶解于水中,分别在15℃退火1h 和不进行退火,冻干后样品通过近红外光谱测定甘氨酸的结晶度。观察到当蔗糖:甘氨酸>4时,甘氨酸失去了其填充剂的功能(Bai et al., J Pharm. Sci. 2004)。 图2:蔗糖对甘氨酸填充剂功能的影响Figure plotted from data given in Bai et al., J PHarm. Sci. 2004 Part.2 海藻糖+甘露醇功能性的相互影响不同比例的海藻糖+甘露醇溶液进行冻干,二者的比例决定了各自的物理形态以及其发挥的功能性(Jena, Suryanarayanan and Aksan, Pharm Res. 2016)。海藻糖:甘露醇甘露醇的物理形态海藻糖物理形态3:1无定形无定形2:1晶体晶体1:1晶体晶体1:3晶体无定形表2:海藻糖和甘露醇比例对其物理形态及功能性影响海藻糖在酸性条件下不会水解,具有较高的玻璃态转变温度,但是具有结晶倾向性。当冻干的条件利于海藻糖无定形形态存在时,会抑制甘露醇的结晶,相反,当冻干的条件利于甘露醇结晶形态存在时,会促进海藻糖二水合物的产生,失去其无定形结构,二者相互抑制,因此需要确定*的一个比例条件,确保各自能发挥本身应起的作用。从实验结果来看,当海藻糖和甘露醇比例为1:3时,甘露醇保持其原有的晶体形态,海藻糖保持其原有的无定形态,在配方中分别起填充剂和稳定剂的功能(Sundaramurthi and Suryanarayanan, J. Phys. Chem. Letters 2010 Sundaramurthiet. al., Pharm. Res. 2010 Sundaramurthi and Suryanarayanan, Pharm. Res. 2010 )。 Part.3 海藻糖、API(BSA)和甘露醇的相互影响海藻糖—BSA---甘露醇冻干混合液,海藻糖和BSA的不同比例对海藻糖物理形态的影响,甘露醇浓度固定在10%W/W,总的固形物含量22%W/W(Jena et al., Int J. Pharm.2019)。BSA:海藻糖甘露醇物理形态海藻糖物理形态 _ _冻结过程中干燥产品中10:1δ-甘露醇无定形无定形2:1MHH, δ-& β-mannitol海藻糖二水合物部分结晶1:1海藻糖二水合物部分结晶1:2海藻糖二水合物无定形表3:BSA和海藻糖比例对海藻糖物理形态影响实验结果表明当BSA与海藻糖比例为10:1时,海藻糖能起到良好的稳定剂作用。 Part.4 蔗糖和甘露醇的相互影响除了抑制作用外,糖可能会改变甘露醇的存在形式,甘露醇有几种形态存在,无水甘露醇(α-,β-,δ-)和半水合物-MHH。研究发现当蔗糖:甘露醇为1:4时,蔗糖会保留无定形态,甘露醇为结晶态(部分以MHH形式存在),MHH甘露醇在*的干燥产品中是不希望存在的,在储存的过程中,MHH会脱水,释放水分,水分可能会跟产品中的其他组分进行反应,无定形状态的蔗糖吸收水分后会发生结晶,从而失去了对活性成分的保护功能(Thakral, Sonjeand Suryanarayanan, Int J. Pharm. 2020)。因此,综上所述,开发稳定的冻干产品配方,并达到期望的产品质量属性,需要正确地选择赋形剂的浓度,包括糖与填充剂的比例,蛋白与糖的比例,并且需要对冻干条件进行优化。 02.API/赋形剂对缓冲液功能性的影响 缓冲液需要加入到溶液中进行pH的控制。常见的缓冲液包括磷酸钠缓冲液,磷酸钾缓冲液,组氨酸缓冲液,tris 缓冲液,柠檬酸盐缓冲液,琥珀酸盐缓冲液等。冻干产品缓冲液的选择需要考虑蛋白的pKa以及缓冲液组分的结晶倾向,如磷酸钠缓冲液中,酸性的磷酸二氢一钠是无定形态;碱性的磷酸氢二钠在冻结过程中会结晶成Na₂ HPO₄ 12H₂ O,导致冻结浓缩液的pH降低,失去了缓冲液的功能,因此缓冲液成分的结晶往往是不期望的。 Part.1 缓冲液,蛋白,糖之间的相互影响有实验研究了10mM 磷酸钠缓冲液,100mM 磷酸钠缓冲液,含5% w/w的纤维二糖,纤维二糖,在低pH下不会水解,不会结晶(通过在冻结过程中测定其pH值以及使用原位X射线衍射仪对结晶组分进行鉴定)以及100mM 磷酸钾缓冲液三种缓冲液与纤维二糖,蛋白之间的相互影响,如下表所示(Thorat, Munjal, Geders and Suryanarayanan, J. Control Rel.2020)——缓冲液糖蛋白pH变化Na₂ HPO₄ 12H₂ O结晶100mM磷酸钠--- _4.1YES5%W/W纤维二糖 _1.1NO---10mg/ml BSA3.1YES5%W/W纤维二糖10mg/ml BSA1.0NO10mM磷酸钠 _ _2.8YES _10mg/ml BSA0.6NO100mM磷酸钾 _ _-0.2---_10mg/ml BSA-0.2---表4:缓冲液、糖及蛋白成分对pH变化的影响样品中活性成分蛋白、糖与缓冲液之间具有协同作用,蛋白可以抑制缓冲液结晶,使其保持无定形状态,缓冲液反过来可以维持特定的pH值,增加蛋白的稳定性;一定浓度的糖可以抑制缓冲液的结晶,保持其无定形态,从而维持特定的pH值,提高蛋白稳定性。 Part.2 甘氨酸对磷酸钠缓冲液结晶以及pH变化的影响磷酸钠缓冲液浓度甘氨酸浓度(%W/V)pH改变10mM无定形~1.50.4~0.50.8~2.5>0.8~2.7100mM--~3.20.4~2.70.8~2.4>0.8活动时间:12月1日-12月31日本轮活动奖品:兔年定制日历/挂历(奖品见下图)活动参与方式:1. 在德祥Tegent公众号12月中,发布的任意一篇文章后评论,评论越精彩,中奖几率越大;2. 我们将会在每篇文章后评论的粉丝中抽取一名幸运粉丝,送出奖品;3. 中奖名单将会在下一期推文公布!记得要关注德祥不要错过哦!4. 中奖的粉丝请将收件信息发送到德祥Tegent公众号后台,包含:姓名、联系方式、收件地址;5. 12月1日-12月31日内,每周每篇的推文文后进行评论,都有机会获得不同的奖品。 *图片来源于网络,旨在分享,如有侵权请联系删除
  • FJA-2型自动滴定仪测定食品添加剂磷酸氢二钠
    FJA-2型微机控制自动滴定系统测定食品添加剂磷酸氢二钠 方建安 张振兴 (南京传滴仪器设备有限公司、徐州天嘉食用化工有限公司) 徐州天嘉食用化工有限公司携带样品与有关分析试剂前来我公司,利用FJA-2 型微机控制自动滴定系统对磷酸氢二钠含量的测定,对多个样品的测试结果表明,电位滴定法测定磷酸氢二钠含量,具有较高的灵敏度与好的测定精度,滴定图谱清晰。现将测试结果报告如下,供能考。 (一)磷酸氢二钠测定方法与结果 用天平称取样品溶液零点几克,精确到0.001g(视样品含量不同而不同)于100ml烧杯中,加c1mol/L盐酸10ml,加50 ml蒸馏水,待样品溶解后,以PH复合电极为指示电极,用NaOH[C(NaOH)=0.9795mol/L]为滴定剂,在FJA-2微机控制自动滴定系统上进行自动滴定,叁个样品测量结果如下表。滴定曲线如图所示。 测量次数 样品号 样重(克) 滴定剂体积 终点1 (ml) 滴定剂体积 终点2(ml) 磷酸氢二钠含量 (%) NaN2 0.516 6.265 9.894 97.82 NaN2 0.526 6.047 9.750 97.92 NaN2 0.652 5.405 9.987 97.75 计算 磷酸氢二钠%=[C (V2-V1) 0.1420 100]/m 式中: C&mdash &mdash NaOH滴定剂的摩尔浓度; V&mdash &mdash 滴定剂NaOH的耗用量(ml); m&mdash &mdash 试样重量; 0.1420&mdash &mdash 为磷酸氢二钠的毫摩尔质量。 (二)讨论 1、上述是连续3次测定结果,可以看出,几次测定结果的最大值减最小值的绝对差值都在于0.2% 以内。最后一个图谱为体积对pH滴定曲线。 2、为了保证测定的精度要注意下面几个重要环节: (1)、正确配置NaOH溶液也是控制滴定的精度的一个重要因素。要点是要用饱和NaOH溶液来配制滴定剂,不要固体称重来配制;要用新的去离子水(电导值小于5µ S)来配制滴定剂;滴定剂瓶上要装吸收二氧化碳的过滤器等。 (2)、pH复合电极要靠滴定池边,磁力搅拌要平稳,不要太剧烈,以防样液的损失。 参考文献 【1】 斯维拉。G著,高立译。自动电位滴定。北京。原子能出版社。1985 【2】 方建安,夏 权编著。电化学分析仪器。南京,东南大学出版社,1992 【3】 方建安,影响电位滴定精度的几个问题,分析仪器,(4),1993 【4】 方建安,方 晖等,一种微机控制的自动光度滴定系统,分析化学,(10)24,1233,1996
  • TMstandard——坛墨质检新品牌
    TMstandard品牌介绍TMstandard专业致力于研发生产食品、环境检测领域标准品。TMstandard的技术负责人来自美国印第安纳州大学科学家Dr. zhiqunxie,产品形态包含固标和液标,检测范围涵盖食品、保健品、化妆品检测、水质、土壤、大气等领域。 Dr. zhiqunxie简介:化学博士,曾就职日本东京fujirebio inc.中央实验室先端研究部、中国科学院上海研究所,现任美国印第安纳州大学学者、科学家。TMstandard新品固标第一期编号名称规格纯度70076辛酸甲酯0.1g99.5%70095十八碳三烯酸甲酯0.1g99.5%70091二十烷酸甲酯0.1g99.5%70089十八碳烯酸甲酯0.1g99.5%70085十七烷酸甲酯0.1g99.5%70081十五酸甲酯0.1g99.5%70062二十碳二烯酸0.1g99.5%70050十七烷酸0.1g99.5%70100二十碳五烯酸甲酯0.05g99.5%70094二十一烷酸甲脂0.1g99.5%70048十六酸/棕榈酸0.1g99.5% 706756-苄氨基嘌呤0.1g99.4%70488脱氢乙酸0.05g98.3%70487山梨酸标准品0.25g99.5%70352纽甜0.1g98%70177腺苷5' -单磷酸一水合物0.25g99.9%70166腺苷0.1g99.9%70165尿苷5' -单磷酸二钠盐0.1g99.7%70164尿嘧啶核苷0.1g99.2%70162肌苷5' -单磷酸二钠盐水合物0.1g99.9%70161胞嘧啶5' -磷酸盐0.1g98.0%70160胞嘧啶核苷0.1g99.9%70159半胱氨酸0.1g98.6%70154d-异抗坏血酸0.1g99%70153维生素c0.1g99% 70500维生素b50.1g99.9%70077癸酸甲酯1ml99.5%70040癸酸0.1g99%70038丁酸1ml99%70016赤藓红b0.25g80.0%70014溶剂黄560.1g96.2%70029孟加拉红0.25g91.0%70353亮蓝0.25g99.5%70013酸性红0.1g99.5%70360l-(+)-酒石酸0.25g99.9%TMstandard在北京拥有1200㎡专业研发和生产基地,国际水平的研发、检测和包装设备,专业的生产和检测人员,保证生产标准物质的全部过程都按照规定流程进行。TMstandard 按照标准物质生产各环节检测标准,配置有高级别超净间(万级超净间以及百级超净台)、恒湿天平室,按照标准物质生产规范要求,实验室购置有岛津液相、安捷伦气相、安捷伦气质、斯派克icp、梅特勒差示扫描量热仪、梅特勒卡尔费休水分测定仪等分析仪器共计37台套;2-8°c冷库二个,共计180㎡,-18°c冷柜8个,常温库房800㎡。专业的生产和检测技术人员经过相应的技术和法规培训,并考核合格。按iso27034要求撰写的管理体系文件,保证生产标准物质的全部过程都按照规定流程进行。 TMstandard标准物质符合国际国内检测法规和满足用户使用习惯,是TMstandard追求的目标。产品和规格的设计都参考国际国内检测标准要求和方法流程需要,能够更高效地完成认证和日常检测工作。同时,产品从研发到生产过程中积累的大量数据,能协助公司的销售人员做好售前和售后工作。
  • 第二轮通知|第五届“新能源材料检测技术发展与应用”网络会议
    新能源材料是解决能源危机的根本途径,是国家关注的重点领域,也是《中国制造2025》重要部分。新能源材料作为新能源开发利用的关键,目前仍处于发展阶段,还存在转换效率低、能量密度低以及成本高等诸多问题。进一步拓展新能源材料的种类,深入研究其结构、组成、性能之间的关系,对新能源材料的发展与广泛应用都具有重要意义。2022年11月30日-12月2日,仪器信息网与广州能源检测研究院、广东省动力电池安全重点实验室、国家化学储能材料及产品质量检验检测中心(广东)、国家烃基清洁能源产品质量检验检测中心(广东)将联合举办第五届“新能源材料检测技术发展与应用”网络会议,分设四个专场。邀请新能源材料领域研究应用专家、相关检测技术专家,以网络在线报告形式,针对当下新能源材料研究热点、相关检测新技术及难点、新能源市场展望等进行探讨,为同行搭建学习互动平台,增进学术交流,促进我国新能源材料产业高质量发展。一、主办单位仪器信息网,广州能源检测研究院,广东省动力电池安全重点实验室,国家化学储能材料及产品质量检验检测中心(广东),国家烃基清洁能源产品质量检验检测中心(广东)二、会议时间2022年11月30日-12月1日三、会议形式线上直播,直播平台:仪器信息网网络讲堂平台本次会议免费参会,参会报名请点击会议官网:https://www.instrument.com.cn/webinar/meetings/xny2022/ (内容更新中)或扫描二维码报名四、会议日程1.专场安排第五届“新能源材料检测技术发展与应用”网络会议时间专场名称11月30日全天新能源电池检测技术专场12月1日上午储能材料检测技术专场12月1日下午清洁能源之氢能源材料检测技术专场12月2日上午其他清洁能源材料检测技术专场2.详细日程(以会议官网最终日程为准)时间报告题目演讲嘉宾专场1:新能源电池检测技术专场(11月30日)09:00锂离子电池失效分析及回收再利用李丽(北京理工大学 教授)09:30待定赛默飞世尔科技分子光谱10:00岛津光谱技术在新能源新材料测试中的应用曹亚南(岛津企业管理(中国)有限公司 光谱产品专员)10:30待定王愿习(天目湖先进储能技术研究院 技术经理)11:30待定沈 越(华中科技大学 教授)12:00午休14:00锂离子电池的失效分析解析整体解决方案韩广帅(同济大学 上海智能新能源汽车科创功能平台有限公司 副总经理)14:30Fischione真空互联可控环境离子束切割技术在锂电行业中的应用葛小敏(上海微纳国际贸易有限公司 应用工程师)15:00岛津XPS在新能源材料领域的解决方案蔡斯琪(岛津企业管理(中国)有限公司 产品专员)15:30主流动力电池热-电特性检测及本质原因分析张江云(广东工业大学 副教授)16:00待定周永超(中国机械科学研究总院集团有限公司/中机寰宇认证检验股份有限公司 新能源事业部 副部长)专场2:储能材料检测技术专场(12月1日上午)09:00关键储能材料检测技术与案例分享邵丹(广州能源检测研究院 主任工程师 / 高级工程师)10:00球差电镜在新能源材料研发中的应用林岳(中国科学技术大学 特任教授)10:30待定弗尔德11:00待定高标(武汉科技大学 教授)专场3:清洁能源之氢能源材料检测技术专场(12月1日下午)13:30新能源氢能市场发展和展望宋中林(广州市氢能和综合智慧能源产业发展联合会 副会长兼常务副秘书长)14:00加氢站承压设备安全风险与检测技术探讨段志祥(中国特种设备检测研究院 氢能室主任)14:30待定何广利(北京低碳清洁能源研究院 氢能技术总监/高工)15:00氢燃料电池系统及测试技术发展叶长流(佛山市清极能源科技有限公司 副总经理)15:30待定邓凡锋(中国测试技术研究院化学研究所 副研究员)16:00氢能源及其在交通运输领域中的应用潜力与发展趋势周飞鲲(佛山仙湖实验室 特聘研究员)16:30绿电电解制氢电极材料评价及测试技术唐阳(北京化工大学化学学院 副教授)专场4:其他清洁能源材料检测技术专场(12月2日上午)09:00海域天然气水合物资源开发现状与展望张郁(中国科学院广州能源研究所 研究员)09:30Cu系甲醇合成催化剂之原位电镜表征蒋复国(北京低碳清洁能源研究院 分析表征中心经理)10:00待定朱俊杰(南京大学 教授)10:30中国核能利用现状及展望王海鹏(生态环境部核与辐射安全中心 高级工程师)五、参会方式1. 本次会议免费参会,参会报名请点击会议官网:会议官网:https://www.instrument.com.cn/webinar/meetings/xny2022/ (内容更新中)或扫描二维码报名2. 温馨提示1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。六、会议联系1. 会议内容杨编辑:15311451191,yanglz@instrument.com.cn2. 会议赞助刘经理,15718850776,liuyw@instrument.com.cn仪器信息网广州能源检测研究院广东省动力电池安全重点实验室国家化学储能材料及产品质量检验检测中心(广东)国家烃基清洁能源产品质量检验检测中心(广东)2022年10月26日附:往届会议回顾1)第四届“新能源材料检测技术发展与应用”网络会议https://www.instrument.com.cn/webinar/meetings/xny2021/ 2)第三届“新能源材料检测技术发展与应用”网络会议https://www.instrument.com.cn/webinar/meetings/xny2020 3)第二届“新能源材料检测技术发展与应用”网络会议https://www.instrument.com.cn/webinar/meetings/xny/4)第一届“新能源材料检测技术发展与应用”网络会议https://www.instrument.com.cn/webinar/meetings/iESM
  • 1023万!北京食品检验所试剂及耗材采购大单曝光 多项拒绝进口
    5月29日,北京市食品安全监控和风险评估中心(北京市食品检验所)公布2019年第一批食品安全抽检监测试剂耗材采购项目,共包含9包817类化学试剂、实验和仪器耗材、生物培养基等品类的采购需求,这其中包含色谱柱34类(13类拒接进口)、前处理柱26类(16类拒绝进口)、163类实验和仪器耗材(48类拒绝进口)。本次招标文件发售的时间为即日起至2019年6月5日16:30(双休日及法定节假日除外),投标截至时间和开标时间为2019年6月19日09:00。详情汇总如下:项目名称:2019年第一批食品安全抽检监测试剂耗材采购项目化学试剂和助剂采购项目项目编号:SJHC-JY-201901-JH001-XM001采购单位联系方式:采购单位:北京市食品安全监控和风险评估中心(北京市食品检验所)地址:北京市海淀区丰德东路17号联系方式:孙婷,010-82479315代理机构联系方式:代理机构:中经国际招标集团有限公司代理机构联系人:王晓庆,010-68372937代理机构地址:中经国际招标集团有限公司,北京市东城区滨河路1号,航天信息大楼10层招标十五部需求详情:第一包化学试剂序号名称数量单位是否可以采购进口产品1弗罗里硅土3瓶是2氢氧化钡(八水)1瓶是3蔗糖酶(麦芽糖酶)(酵母)5瓶是4QuEChERS盐包1盒是5QuEChERS分散试剂盒4盒是6邻苯二甲醛(OPA)5瓶是7脂肪酶4盒是8分析纯甲醇100箱否9分析纯乙腈80箱否10甲醇10箱是11乙腈10箱是12分析纯乙酸乙酯40箱否13分析纯正丁醇2箱否14石油醚120箱否15分析纯无水乙醇10箱否16分析纯正己烷40箱否17分析纯丙酮2箱否18分析纯二氯甲烷5箱否19无水乙醚70箱否20色谱级甲醇100箱是21色谱级乙腈80箱是22色谱级无水乙醇2箱是23色谱级环己烷5箱是24色谱级正己烷10箱是25色谱级丙酮2箱是26色谱级甲苯2箱是27色谱级异丙醇1箱是28色谱级乙酸乙酯4箱是29色谱级二氯甲烷4箱是30α-淀粉酶10瓶否31乙酸锌5瓶否32亚铁氰化钾60瓶否33抗坏血酸VC20瓶否34氯化钠40瓶否35无水碳酸钠10瓶否36无水硫酸钠25箱否37硫酸锌5瓶否38碘化钾30瓶否39丁酮3瓶否40溴化钠2瓶否41溴化钾1瓶否42双氧水1瓶否43硫酸5瓶否44七氟丁酰基咪唑10瓶否4514%三氟化硼-甲醇溶液1瓶否46磷酸5瓶否47冰乙酸20瓶否48甲酸10瓶否49盐酸10瓶否50硝酸2瓶否51色谱纯乙酸铵5瓶否52柠檬酸5瓶否53β-葡糖醛苷酶20瓶否54甲酸铵5瓶否55氢氧化钾6箱否56盐酸二苯胺1瓶否57氯乙酰10瓶否58三甲基氯硅烷2瓶否59六甲基二硅胺烷1瓶否604-二甲基氨基吡啶1瓶否611-蒽腈1瓶否62二巯基乙醇10瓶是63四氢呋喃2箱是64乙酰辅酶A60瓶是65胆碱氧化酶20瓶是66过氧化物酶20瓶是67α淀粉酶10瓶是68葡萄糖苷酶10瓶是69乙醇酸1瓶是70碘1瓶否71苯酚3瓶否72硝酸银10瓶否73磺胺1瓶否74对氨基苯磺酸2瓶否75N-(1-萘基)乙二胺二盐酸盐3瓶否76异丙醇12箱否77三氯甲烷20箱否78冰醋酸20箱否79二甲苯2箱否80二水合乙酸锌3箱否81海砂1箱否82四硼酸钠50袋否83混合磷酸盐50袋否84邻苯二甲酸氢钾50袋否85磷酸氢二钠5瓶否86磷酸二氢钾5瓶否8795%乙醇10箱否88无水乙醇10箱否89硫代硫酸钠5瓶否90酒石酸10瓶否91环己烷1箱否92丙酮1箱否93甲酸1箱否94高氯酸1箱否95甲醛1箱否96盐酸10箱否97三水合乙酸铅3瓶否98α-萘酚苯基甲醇1瓶是99氢氧化钾1箱否100铬酸钾1箱否101乙酸丁酯2瓶否102浓硫酸10箱否103氢氧化钠15箱否104乙酸镁2瓶否105H酸一钠盐2瓶否第二包实验用气体序号名称数量单位是否可以采购进口产品1高纯氩气1200瓶否2高纯氮气200瓶否3高纯氧气30瓶否4高纯氦气130瓶否5高纯氦气212瓶否6高纯乙炔4瓶否7高纯氢气5瓶否8氩甲烷2瓶否9液氮5000升否10二氧化碳2瓶否11合成空气5瓶否第三包标准物质序号名称数量单位是否可以采购进口产品1安赛蜜5支否24-氨基间甲酚1支否3灭瘟素1支否4角黄素(斑蝥黄)2支否5甜蜜素5支否6乙基麦芽酚1支否7PABA乙基己酯1支否8格列波脲1支否96-羟基吲哚1支否10微囊藻毒素LR1支否11苯乙双胍1支否12水苏糖1支否13维生素A酸1支否14三氯甲烷(氯仿)1支否15三甲胺盐酸盐1支否16佐匹克隆1支否17脱羟基洛伐他丁1支否18洛伐他汀羟酸钠盐1支否19盐酸二氧丙嗪1支否202-氨基苯酚(邻氨基苯酚)1支是213-氨基苯酚(间氨基苯酚)1支是22L-阿拉伯糖1支是23盐酸金霉素1支是24甜蜜素1支是252.4-滴2支是262-硝基-1.4-苯二胺1支是273.4-二氨基甲苯1支是282.5-二氨基甲苯硫酸盐1支是292.4-二溴苯酚1支是30二氯乙酸(二氯醋酸)1支是311.1-二氯乙烷1支是32N.N-二乙基对苯二胺硫酸盐1支是33直接红281支是34盐酸强力霉素1支是35敌磺钠(敌克松)1支是36氟苯虫酰胺1支是37正庚烷1支是38氢醌1支是39隐性孔雀石绿1支是40孔雀石绿草酸盐1支是41D(+)甘露糖1支是421-萘酚1支是431.4-苯二胺(对苯二胺)1支是44邻苯二甲酸二烯丙酯1支是45间苯二酚1支是46盐酸四环素1支是47D(+)海藻糖1支是48三氯乙酸2支是49D(+)-木糖1支是502.6-二氨基吡啶1支是51N,N-二乙基甲苯-2,5-二胺1支是52缩水甘油(环氧丙醇)1支是53邻苯二胺1支是541.3-苯二胺(间苯二胺)1支是55PCB1981支是56盐酸芬氟拉明1支是57氟虫腈(非泼罗尼、锐劲特)1支是58氟甲腈1支是59氟虫腈硫化物(氟虫腈硫醚)1支是60氟虫腈砜1支是61奶粉9种元素基质标准物质2支是62左旋肉碱-D31支是63美金刚-d6盐酸盐1支是64芦丁2瓶否65甲磺酸酚妥拉明1瓶否66达那唑1瓶否67盐酸妥拉唑林1瓶否68盐酸特拉唑嗪1瓶否69富马酸福莫特罗1瓶否70美雄诺龙1瓶否71替勃龙1瓶否72十一酸甘油三酯1瓶否73棕榈酸缩水甘油酯1瓶是74酒石酸氢胆碱1瓶是754-氨基丁酸1瓶是76利血平1瓶否77盐酸可乐定1瓶否78香草醛/香兰素1瓶否79盐酸吡哆醇/维生素B61瓶否80阿替洛尔1瓶否81维生素D21瓶否82盐酸哌唑嗪1瓶否83尼莫地平1瓶否84格列喹酮2瓶否85格列吡嗪1瓶否86氢氯噻嗪1瓶否87盐酸吗啉胍1瓶否88盐酸文拉法辛1瓶否89尼索地平1瓶否90尼群地平1瓶否91洛伐他汀1瓶否92辛伐他汀1瓶否93那格列奈1瓶否94咪喹莫特1瓶否95盐酸吡格列酮2瓶否96盐酸二甲双胍2瓶否97格列美脲2瓶否98非洛地平1瓶否99瑞格列奈2瓶否100醋氯芬酸1瓶否101伏格列波糖1瓶否102盐酸苯乙双胍2瓶否103盐酸金刚乙胺1瓶否104大黄素1瓶否105大黄酚1瓶否106番泻苷A1瓶否107番泻苷B1瓶否108乙基香兰素1瓶否109阿昔洛韦1瓶否110呋虫胺1瓶是111甲苯磺丁脲1瓶是112(± )-α-生育酚1瓶是113青藤碱1瓶否114盐酸丁双胍2瓶否115美金刚1瓶否116维生素A(视黄醇)1瓶是117格列齐特1瓶否118阿昔洛韦-D41瓶是119藜芦醛/甲基香兰素1瓶是120氨氯地平1瓶否121醋磺己脲1瓶是1224-(氨甲基)环己甲酸1瓶是123盐酸苯氟雷司1瓶是124氯磺丙脲1瓶是125氯美扎酮1瓶是126格列苯脲2瓶是127对羟基苯甲酸乙酯1瓶是128褪黑素1瓶是129奥司他韦1瓶是130卡托普利1瓶是131维生素D3(胆骨化醇)1瓶是1321,3-二油酸-2-棕榈酸甘油三酯1瓶是133格列齐特1瓶是134格列吡嗪1瓶是135食用合成色素苋菜红标液3瓶否136食用合成色素亮蓝标液3瓶否137劳拉西泮1瓶是138美伐他汀1瓶是139妥拉磺脲1瓶是140硝苯地平1瓶是141硝西泮1瓶是142奥沙西泮1瓶是143盐酸吡哆醛1瓶是144吡哆胺二盐酸盐1瓶是145邻苯二甲酸二异壬酯1瓶是146罗格列酮1瓶是14716组分邻苯二甲酸酯混标1瓶是148磺胺间二甲氧基嘧啶-D61瓶是149磺胺邻二甲氧基嘧啶-D31瓶是150三唑仑溶液1瓶是151雷纳克铵盐一水合物1瓶是152灭瘟素S盐酸盐1瓶否1532,4-二氨基苯氧乙醇硫酸盐1瓶否154己二酸二乙酯1瓶是1552-羟基-4-甲氧基二苯甲酮2瓶是156D-(-)-核糖1瓶是157十四烷基二甲基苄基氯化铵水合物1瓶是158盐酸去甲乌头碱1瓶是159十六烷基苄基二甲基氯化铵水合物1瓶是160十二烷基二甲基苄基氯化铵二水合物1瓶是161阿托品1瓶是1625-胞苷酸1瓶是163二乙氨基羟苯甲酰基苯甲酸己酯1瓶是1642,3,5-混杀威1瓶是165盐酸妥布特罗1瓶是166维生素E醋酸酯1瓶是167二苯酮-32瓶是168乳铁蛋白1瓶是1692,3-二溴丙酰胺1瓶是170乙酸甲酯6瓶是171巯基乙酸1瓶是172盐酸奈比洛尔1瓶是173异麦芽酮糖水合物1瓶是174拉贝洛尔盐酸盐1瓶是175异维A酸1瓶是176九种ICP-MS混标2瓶是177亚油酸甘油三酯1瓶是178铬同位素标液1瓶是179五氯酚1瓶是180氯酸钠1支是181高氯酸钠1支是182氯酸盐-18O31支是183高氯酸盐-18O41支是1844-壬基酚1支是185双酚A1支是186双酚A-d41支是1873,5,3-壬基酚-13C61支是188对硫磷3支否189甲胺磷3支否190硫线磷3支否191特丁硫磷2支否192溴氰菊酯2支否193甲拌磷3支否194福美双2支否195灭线磷2支否196甲基毒死蜱2支否197马拉硫磷3支否198乙烯利2支否199苯醚甲环唑2支否200敌敌畏2支否201百菌清1支否202丙溴磷2支否203甲拌磷砜2支否204乙拌磷2支否205氧化乐果2支否206久效磷2支否207毒死蜱3支否208杀扑磷2支否209硫环磷2支否210倍硫磷2支否211甲基嘧啶磷2支否2123-氯-1,2-丙二醇3-MCPD1支是2132-氯-1,3-丙二醇2-MCPD1支是214D5-3-氯-1,2-丙二醇1支是215D5-2-氯-1,3-丙二醇1支是2162-氯-1,3-丙二醇二硬脂酸酯1支是217D5-2-氯-1,3-丙二醇二硬脂酸酯1支是2181,3-二氯-2-丙醇1,3-DCP1支是2192,3-二氯-1-丙醇2,3-DCP1支是220D5-1,3-二氯-2-丙醇1支是221D5-2,3-二氯-1-丙醇1支是222视黄醇2支是223α-生育酚2支是224β-生育酚2支是225δ-生育酚2支是226γ-生育酚2支是227维生素D22支是228维生素D32支是229维生素K13支是230β-胡萝卜素1支是231免疫球蛋白IgG1支是232盐酸吡哆醇1支是233盐酸吡哆醛1支是234双盐酸吡哆胺1支是235柠檬黄3支否236新红1支是237苋菜红3支否238胭脂红3支否239日落黄3支否240亮蓝3支否241赤藓红1支是242酸性红1支是243诱惑红1支是244靛蓝1支是245甲醛2支否246曲酸1支是247噻二唑1支是248苄青霉素1支是249苯咪青霉素1支是250甲氧苯青霉素1支是251苯氧乙基青霉素1支是252醋酸氟氢可的松1支是25316种多环芳烃混标1支是254三氯杀螨醇1支否255七氯1支否256艾氏剂1支否257狄氏剂1支否258草甘膦2支是259草甘膦同位素2支是260甜蜜素20支否2613-氨基-2-恶唑酮1支是2625-吗啉甲基-3-氨基-2-恶唑烷基酮1支是2631-氨基-乙内酰脲1支是264氨基脲1支是2653-氨基-2-恶唑酮的内标物(D4-AOZ)3支是2665-吗啉甲基-3-氨基-2-恶唑烷基酮的内标物(D5-AMOZ)3支是2671-氨基-乙内酰脲的内标物(13C-AHD)2支是268氨基脲的内标物(13C15N-SEM)2支是269丙烯酰胺1支是270丙烯酰胺内标(13C3丙烯酰胺)1支是271脱氢乙酸2支是272纽甜1支是2734-甲基咪唑1支是274涕灭威3支否275涕灭威砜3支否276涕灭威亚砜3支否277克百威8支否278三羟基克百威8支否279速灭威2支否280灭多威7支否281甲萘威3支否282异丙威2支否283仲丁威2支否284残杀威2支否285多菌灵7支否286吡虫啉7支否287啶虫脒7支否288烯酰吗啉7支否289氯唑磷3支否290邻苯二甲酸二异壬酯DINP1支是29116种邻苯二甲酸酯混标1支是292叶黄素2支是293阿维菌素2支否294氟甲腈1支否295内吸磷1支否296辛硫磷1支否297甲氨基阿维菌素苯甲酸盐1支否298哒螨灵1支否299噻虫啉1支否300霜霉威2支否301吡唑醚菌酯2支否302噁唑菌酮1支否303乙霉威1支否304嘧菌酯1支否305啶酰菌胺1支否306氟吡甲禾灵1支否307氟吡氯禾灵1支是308茚虫威1支否309氯吡脲1支否310戊唑醇1支否311多效唑1支否312天然辣椒素1支是313合成辣椒素1支是314二氢辣椒素1支是315α-硫丹1支否316β-硫丹1支否317硫丹硫酸盐1支否318顺-氯丹1支否319反-氯丹1支否320氧氯丹1支否3211,3-二油酸-2-棕榈酸甘油三酯1支是322BHA1支是323BHT1支是324TBHQ1支是325PG1支是326牛磺酸1支是327碘化钾1支是328三唑醇1支否329戊菌唑1支否330苯霜灵1支否331苯酰菌胺2支否332杀虫双1支否333甲霜灵1支否334嘧霉胺1支否335喹硫磷1支否336啶氧菌酯1支否337噻螨酮1支否338乙酰甲胺磷1支否339甲拌磷亚砜1支否340氟胺氰菊酯1支否341三氯乙酸1支否342氯氟氰菊酯(三氟氯氰菊酯)1支否343氯氰菊酯1支否344氟氰戊菊酯1支否345联苯菊酯1支否346邻苯基苯酚1支是347甲基异柳磷1支否348乐果1支否349甲基硫环磷1支否350甲氰菊酯1支否351腺嘌呤核苷酸(AMP)1支是352尿嘧啶核苷酸(UMP)1支是353次黄嘌呤核苷酸(IMP)1支是354三氯甲烷2支否355四氯化碳2支否356六号溶剂3支否357抗蚜威1支否358谷硫磷1支否359敌百虫1支否360三唑酮1支否361甲基立枯磷1支否362丁草胺1支否363氟酰胺1支否3648种有机氯混标1支否36537种脂肪酸甲酯3支是366月桂酸甘油三酯1支是367肉豆蔻酸甘油三酯1支是368a-亚麻酸甘油三酯1支是369花生四烯酸甘油三酯1支是370二十碳五烯酸甘油三酯1支是371二十二碳六烯酸甘油三酯1支是372反-9-十八碳一烯酸甲酯1支是373反,反-9,12-十八碳二烯酸甲酯1支是374氯霉素-D51支是375氟苯尼考胺1支是376左旋咪唑1支是377沙丁胺醇-D31支是378克伦特罗-D91支是379莱克多巴胺-D31支是380特布他林1支是381恩诺沙星-D51支是382诺氟沙星-D51支是383环丙沙星-D81支是384氯丙嗪-D61支是385氯丙嗪1支是386地塞米松-D41支是387地西泮1支是3883-甲基喹噁啉-2-羧酸1支是389氟甲喹1支是390喹噁啉-2-羧酸-D41支是391恩诺沙星1支是392环丙沙星1支是393土霉素2支是394丁硫克百威1支否395磺胺1支是396磺胺二甲异嘧啶钠1支是397磺胺对甲氧嘧啶1支是398磺胺甲基异恶唑内标-13C61支是399磷酸三苯酯2瓶是400磷脂酰胆碱1瓶否401磷脂酰乙醇胺1瓶是402磷脂酰肌醇1瓶是403鞘磷脂1瓶是第四包色谱柱序号名称数量单位是否可以采购进口产品1阴离子色谱柱SH-AC-3(含保护柱SH-G-1)2套否2阴离子色谱柱SH-AC-4(含保护柱SH-G-1)2套否3阴离子色谱柱SH-AC-5(含保护柱SH-G-1)2套否4阴离子色谱柱SH-AC-9(含保护柱SH-G-1)2套否5阴离子色谱柱SH-AC-11(含保护柱SH-G-1)2套否6阴离子色谱柱SH-AC-14(含保护柱SH-G-1)2套否7阴离子色谱柱SH-AC-15(含保护柱SH-G-1)2套否8阴离子色谱柱SH-AC-16(含保护柱SH-G-1)2套否9阴离子色谱柱SH-AC-17(含保护柱SH-G-1)2套否10阴离子色谱柱SH-AC-18(含保护柱SH-G-1)2套否11阳离子色谱柱SH-CC-1(含保护柱SH-G-1)2套否12阳离子色谱柱SH-CC-3(含保护柱SH-G-1)2套否13阳离子色谱柱SH-CC-4(含保护柱SH-G-1)2套否14液相色谱色谱柱1支是15SB-C18色谱柱1支是16CORTECSC18色谱柱2支是17CORTECSC18色谱柱2支是18BEHAmide色谱柱1支是19CORTECSUPLCC182支是20CORTECSUPLCC18+2支是21CORTECSC18+2支是22XbridgeBEHC181支是23XbridgeC181支是24XbridgeC181支是25XbridgeC181支是26CORTECSC18色谱柱2支是27色谱柱(染发剂用)4支是28BEHC18色谱柱1根是29BEH-C18色谱柱2支是30BEH-C18色谱柱2支是31SunfireC18色谱柱2支是32CAPCELLPAKCR色谱柱2支是33CAPCELLPAKCR色谱柱2支是34HILIC柱ObeliscR2支是第五包前处理柱序号名称数量单位是否可以采购进口产品1C18前处理柱5盒否2RP前处理柱5盒否3H前处理柱5盒否4Na前处理柱5盒否5HCO3前处理柱5盒否6Ba前处理柱5盒否7Ag前处理柱5盒否8BondElut-Accucat10盒是9ChemElut硅藻土柱5包是10AccellPlusQMA固相萃取柱2盒是11PRIMEHLB固相萃取柱10盒是12CORTECSUPLCC18保护住2盒是13固相萃取柱150盒是14固相萃取柱75盒是15混合填料净化柱3盒是16黄曲霉毒素总量免疫亲和柱(B1、B2、G1、G2)10盒否17玉米赤霉烯酮免疫亲和柱12盒否18黄曲霉毒素M1免疫亲和柱75盒否19双酚A亲和柱,2盒否204合1瘦肉精亲和柱(克伦特罗、沙丁胺醇、特布他林、莱克多巴胺)2盒否2116合1磺胺亲和柱2盒否22维生素B12亲和柱2盒否23喹乙醇亲和柱2盒否24固相萃取柱20盒是25GEHealthcare,HiTrapTMHeparinHP柱50盒是26锌粉还原柱5支否第六包实验和仪器耗材序号名称数量单位是否可以采购进口产品1坩埚钳(圆钢镀铬)300mm12英寸5把否2苦味酸试纸2盒否3白头塑料洗瓶20个否4高压消解罐20套否5阴离子抑制器2个否6阳离子抑制器2个否7密封塞40个否8融样杯40个否9泵模块1个是10六通阀1个是11进样针1个是12定量环1个是13石英舟10套是14双铂网雾化器3个是15水基同心雾化器3个是16同心雾化器适配器3个是17高盐旋流雾室(水平/双观测)3个是18水基中心管3个是19高效去湿管2个是20催化管2个是21金汞齐管2个是22防污外壳1个是23自动进样器进样针2根是24汞齐化器2个是25催化管2个是26石墨炉清洁棉棒5包是27自动进样器进样针2根是28THGA石墨管5盒是29Cr元素灯1个是30Cd元素灯1个是31进样泵管5包是32内标泵管5包是33调谐优化液1瓶是34ICP中心管1根是35超级截取锥1个是36超锥固定螺钉2个是37pp样品瓶100包是38PP样品盖100包是39高盐雾化器2个是40镍采样锥2个是41镍截取锥2个是42雾化室废液套管,FPM1套是43PTFE接头,用于雾化器*气体管线1套是44带接头的样品管线,PTFE1套是45端盖气体管线的接头1套是46用于提取透镜的螺钉工具包1套是47用于omega透镜的螺钉工具包1套是48FPMO形圈,用于端盖1套是49螺钉和垫片工具包,用于反应池1套是50Omega透镜的螺钉和垫片工具包1套是51螺纹口锥形灭菌离心管(架装)5箱是52高透明聚丙烯锥形离心管5箱是53高透明聚丙烯锥形离心管10箱是54一次性使用医用丁腈检查手套80盒否55一次性使用医用丁腈检查手套60盒否56绿色芦荟乳胶手套50盒否57绿色芦荟乳胶手套50盒否58一次性使用医用橡胶检查手套50盒否59一次性使用医用橡胶检查手套50盒否60一次性使用医用橡胶检查手套50盒否61预纯化柱3根是62紫外灯4个是63纯水柱2根是64空气过滤器2个是65预处理柱2根是66ICP超纯化柱3根是67终端过滤器3个是68终端过滤器4个是69紫外灯2个是70进样瓶瓶盖2包是71在线过滤器卡套和替换筛板2套是72柱塞杆4套是73柱塞杆密封垫2套是74高性能单向阀阀芯2套是75I-CLASS二元溶剂管理器性能维护包2套是76I-ClassSM-FTN性能维护备件包2套是77柱塞杆2套是78柱塞杆密封垫3套是79智能型主动是阀阀芯2套是80ACQUITY进样阀芯2套是81ACQUITY针密封圈1套是82AcquityH-ClassSM-FTN性能维护备件包2套是83在线过滤器滤芯5袋是84低压电源2套是85真空泵油2套是86在线过滤器滤芯2套是87高性能脱气包1套是88电路板,在线脱气机控制1套是89在线脱气机真空泵1套是90自动进样器密封垫组件3套是91取样针组件1套是92泵头基座1套是93柱塞清洗密封垫基座1套是94过滤头(柱后衍生)10个是95Millipore超滤离心管5盒是96NORELL核磁管10盒是97QuEChERS整合管10盒否98活性炭口罩10包否99GL14牙螺纹20个否100分液漏斗20个否101螺纹拧盖离心管10包否102氘代甲醇5瓶是103氘代丙酮110瓶是104氘代丙酮25盒是105坩埚式耐酸玻璃滤器10盒是106口罩150盒是107口罩2100盒是108手套150盒是109手套250盒是110手套350盒是111强力高效擦拭布-白色10箱是112pH三复合电极10支否113瓶口分配器5个是114充电支架3个是115枪头110包是116枪头210包是117枪头310包是118密封垫6个是119培养瓶1包是120单口烧瓶15个否121鸡心瓶200个否122移液器16盒否123注射器1盒否124具塞三角瓶180个否125具塞比色管1300支否126具塞比色管2302支否127三角瓶聚碳酸酯16个是128蜂蜜色值专用比色皿50支否129具塞比色管3100支否130玻璃漏斗50支否131磨口锥形瓶50个是132玻璃层析柱10个否133分液漏斗10个否134改良链接层析柱10个否135鸡心瓶10个否136标口筒锥滴液漏斗5个否137圆底烧瓶10个否138分液漏斗1个否139具塞三角瓶2100个否140具塞三角瓶3100个否141鸡心瓶100个否142塑料漏斗100个否143塑料滴管5箱否144圆底摁盖离心管10包否145尖底螺纹拧盖离心管10包否146定性滤纸5箱否147称量纸14包否148塑料洗瓶20个是149容量瓶茶色150个否150容量瓶茶色250个否151刻度吸量管124根是152刻度吸量管224根是153刻度吸量管324根是154刻度吸量管424根是155刻度吸量管524根是156大肚移液管124根是157大肚移液管224根是158大肚移液管324根是159大肚移液管424根是160大肚移液管524根是161玻璃量筒10个是162滴定管6根是163磨口锥形瓶50个是第七包分型血清和生物试剂盒序号名称数量单位是否可以采购进口产品1YersiniaenterocoliticaantiserumO:31瓶是2YersiniaenterocoliticaantiserumO:51瓶是3YersiniaenterocoliticaantiserumO:81瓶是4YersiniaenterocoliticaantiserumO:91瓶是5肠炎弧菌检测用诊断血清(K型套装)1套是6肠炎弧菌检测用诊断血清O群套装1套是7弯曲菌诊断血清1套是8诺如病毒核酸(GⅠ/GⅡ)检测试剂盒(RT-PCR探针法)10盒否9维生素B12检测试剂盒110盒否10生物素检测试剂盒15盒否11叶酸检测试剂盒15盒否12泛酸检测试剂盒15盒否13黄曲霉毒素M1酶联免疫法试剂盒40盒是14黄曲霉毒素B1酶联免疫法试剂盒20盒是15黄曲霉毒素B1酶联免疫法试剂盒20盒是16黄曲霉毒素B1酶联免疫法灵敏检测试剂盒10盒是17泛酸检测试剂盒210盒是18叶酸检测试剂盒210盒是19维生素B12检测试剂盒210盒是20生物素检测试剂盒210盒是21B6检测试剂盒2盒是22烟酸检测试剂盒2盒是23肌醇检测试剂盒2盒是24金黄色葡萄球菌肠毒素总量5盒是25金黄色葡萄球菌肠毒素分型2盒是26无内毒素质粒小提中量试剂盒(DP118)5盒否27universalDNA纯化回收试剂盒5盒否28RNA纯化试剂盒5盒否29体外转录试剂盒3盒是30PCR产物纯化试剂盒3盒是31磁珠法DNA/RNA提取试剂盒2盒是32病毒DNA/RNA提取试剂盒2盒否33磁珠法病毒DNA/RNA提取试剂盒50盒否34酵母基因组DNA提取试剂盒5盒否第八包生物培养基序号名称数量单位是否可以采购进口产品1一次性培养皿400箱否2Baird-Parker琼脂平板3500盒否3缓冲蛋白胨水(BPW)300袋否4叶酸测定培养基150瓶否5生物素测定培养基100瓶否6维生素B12测定培养基100瓶否7泛酸测定培养基100瓶否8月桂基硫酸盐蛋白胨肉汤(LST)-单料150盒否9李氏菌增菌肉汤-LB2100盒否10亚硒酸盐胱氨酸增菌液(SC)100盒否11四硫磺酸盐煌绿增菌液(TTB)100盒否12生物素测试肉汤100瓶是13B12测试肉汤100瓶是14泛酸测试肉汤100瓶是15缓冲蛋白胨水培养基20桶是16平板计数琼脂100瓶是17牛心浸粉5瓶否第九包生物试剂耗材序号名称数量单位是否可以采购进口产品1萘啶酮酸(C2)20盒否2丫啶黄素(C2)20盒否3木糖b30盒否4鼠李糖30盒否5耐高温高压分注管10包是63M压力灭菌指示胶带30卷是7灭菌取样袋20箱是8一次性采样拭子10箱是9一次性防护服10箱否10滤膜30盒是11革兰氏染色质控玻片2盒是12革兰氏染色液2盒是13厌氧产气袋30盒是14厌氧指示剂2盒是15接种环50箱是16TRNzolUniversal总RNA提取试剂4瓶否17Pgm-simple-TFast克隆试剂盒-VT3084盒否18T-fast感受态细胞(CB109)15盒否19柠檬酸钠(无水)5瓶是20丙酮酸钠10瓶是21多粘菌素B4盒是22亚硫酸钠2瓶是23亚碲酸钾4瓶否24氯化锂4瓶是25几丁质(甲壳素)50瓶是26壳聚糖5瓶是27无水海藻糖1瓶否28氯化铵1瓶是29乙酸钠6瓶是30硫酸铵6瓶是31牛胆粉1瓶否32柠檬酸铁1瓶否33胆酸钠10瓶是34硫代硫酸钠(无水)10瓶是35PCR八联排管20箱是36PCR八联排盖荧光定量专用20箱是37PCR薄壁管10箱是38光学96孔板30盒是39PrimeScriptOneStepRT-PCRKit5盒是40碱性磷酸酶CIAP2盒是41XbaI限制性内切酶2盒是42吸头15箱是43吸头25箱是44吸头短白5箱是45离心管15箱是46带滤芯吸头150盒是47带滤芯吸头250盒是48带滤芯吸头350盒是49吸头33箱是50吸头43箱是51离心管220包是52深孔板(圆底)10箱是53吸头510盒是54吸头65盒是55研磨钢珠20瓶否56电动分样器吸头5盒是57自封袋10包否58灭菌自封袋10包否59离心管320盒否60离心管410盒是61离心管55盒是6296孔快速反应板,半裙边,带条码40盒是63荧光定量PCR96孔板50盒是64耗材研磨钢珠10瓶否65PBS10瓶否66透明平顶无裙边96孔PCR板5箱是67平盖八联管(含盖)5箱是68管MicroAmpFast8-TubeStrip5盒是69盖MicroAmpOptical8-CapStrip5盒是70VetMAXXenoDNA内部阳性对照2支是71CHARGESWITCHPROPCR2盒是72微孔板迷你离心机配件1件否73CONDITIONINGREAGENT3盒是74溶壁酶5支否具体招标需求详见招标文件
  • 【瑞士步琦】喷雾干燥技术制备利福平可吸入干粉制剂的研究
    喷雾干燥技术制备利福平可吸入干粉制剂结核是一种全球性健康问题,由结核分枝杆菌从感染者通过气溶胶形式传播到健康人肺部,随后发展为主要局限于肺部的坏死性肉芽肿性炎症,同时也影响人体的任何肺外部位。结核主要影响低收入国家,2018 年造成 1000 多万例新发感染和 150 多万人死亡。治疗药物敏感性结核病的推荐方法是口服多药治疗方案,包括异烟肼、利福平、吡嗪酰胺、乙胺丁醇和链霉素作为抗结核分枝杆菌的一线药物。目前的治疗方法面临着挑战,因为治疗方案冗长,药物在位于肺部干酪化病变内的细菌靶点的浓度低,导致细菌杀灭效率低,治疗失败,并出现耐药菌株。通过吸入途径直接给药到肺部局部感染部位可以治疗局部和全身性疾病。抗结核药物肺部给药可以在肺部实现高浓度,从而有效治疗结核病,使用比口服剂量更低的总剂量,同时避免口服途径的全身副作用。利福平是一种非常有效的一线抗结核药物,目前通过口服途径给药,剂量为每日 10mg/kg 体重,推荐的最大剂量为每日 600mg。利福平由于其对结核分枝杆菌的高效杀菌活性,在结核病治疗中发挥着重要作用,多年来一直是抗结核病方案的核心。利福平在人类中的长期使用历史以及有充分记录的安全性和有效性使其成为一种很有前途的肺部给药候选药物,因此,吸入型利福平剂型以前曾被探索用于结核病治疗,涉及:自组装纳米颗粒、脂质体干粉、聚合纳米和微粒到利福平负载胶束等。所有这些制剂都采用喷雾干燥或冷冻干燥来获得可吸入的干粉。这些技术产生的粉末通常是无定型的或含有无定型部分。干粉制剂中的无定型颗粒可以实现难溶性药物的更高溶解度和生物利用度,并且还以其在深肺给药的快速吸收而闻名。在这项研究中,我们报道了使用喷雾干燥技术,改良的溶剂-抗溶剂沉淀结合超声结晶,以制备用于结核病治疗的高剂量利福平无定型和不同晶型干粉可吸入制剂;同时又比较了晶体剂型与非晶形利福平剂型的粉体性能、体外雾化性和雾化稳定性等性质差异。 1实验材料和方法材料:利福平(英国药典,BP 级)、磷酸二氢钠(试剂级)、正磷酸(HPLC 电化学级)、六水硝酸镁、硅油、3 号 HPMC 胶囊、甲醇、乙醇、丙酮、乙腈、制水系统(Millipore miller-q)本实验使用结晶技术和喷雾干燥技术制备了 3 个批次的 4 种不同的可吸入利福平干粉制剂,如表 2。并将获得的粉末制剂收集在螺旋盖玻璃小瓶中,在室温(22±3℃)下存储在干燥器中,然后进行药物含量、粒径、粒径分布、粉末密度和流动性、颗粒形态、颗粒溶解度、XRPD、DSC、TGA 等的粉体表征研究。结晶方法:将利福平添加到玻璃瓶中的结晶溶剂中,并使用磁力搅拌器搅拌 30min,以避免形成团块并使利福平均匀分散。然后将药物悬浮液转移至浴式超声波仪中 30min,温度保持在 25℃ 到 30℃ 之间,使利福平的固态转变来实现结晶。经肉眼观察证实,结晶发生在超声 30min 内。然后,将悬浮液在 25℃ 下以 200rpm 离心 5min 以从溶液(上清液)中分离颗粒(沉淀物)。分离上清液,将沉淀物重新悬浮于去离子水中,涡旋混合 30s,在 25℃ 下以 2000rpm 再次离心 5min。获得的上清液与沉淀物分离,将沉淀物进行干燥得到结晶粉末。喷雾干燥方法采用 BUCHI Mini Spray Dry B-290 以高性能气旋闭合模式连接到 B-295 惰性回路进行工艺研究,具体操作:干燥 90% 乙醇溶液,进口温度 90℃,吸气率为 90%(约35m3/h),进料速率 2.0ml/min,0.7mm 不锈钢喷嘴。出口温度在 67-70℃。▲ BUCHI Mini Spray Dryer B-290 & 295 2结果与讨论工艺回收率和粉体颜色分析:由表 2 可知四种不同工艺制备的粉剂制剂中,每种配方在 3-4g 的批量下,利福平粉末的百分比产率均超过 74.8%,所有配方的百分比产率的标准偏差均<5.0,表明批次间变化较小。RIF C2、RIF C3 的工艺成品率显著高于 RIF A,说明结晶法的活性原料损耗量低于喷雾干燥法, RIF C1 的工艺成品率高于 RIF A,但差异不显著。干燥的粉末有其特有的颜色,其中 RIF C1 和 RIF C2 在目测上似乎相似,如图 1 所示。干粉颗粒尺寸分布和药物含量分析:表3中列出了不同配方在工艺条件下获得的粒径和药物回收率。喷雾干燥法和结晶法制备的粉末粒径D50都小于5 μm。粉末制备后,立即通过HPLC法分析利福平的平均药物含量值,所有配方中平均药物含量值在99.5%至100.7%之间,完全满足药典规定要求。粉体粒子形态分析:如图2所示,与喷雾干燥的颗粒在形状上呈褶皱,类似于文献中报道的非晶形喷雾干燥利福平颗粒的形态。在喷雾干燥过程中,来自喷嘴尖端的液滴在其表面含有高浓度的溶质,这增加了局部粘度,并有助于形成一定厚度的壳层,溶剂通过该壳层快速蒸发,导致中空颗粒坍塌,最终形成褶皱颗粒。结晶法制备的颗粒 SEM 图像显示出与喷雾干燥颗粒不同的形貌。在结晶法制备的颗粒中,RIF C1 和 RIF C2 呈长方体形状,具有结晶性。通过对两种配方的 SEM 图像的进一步比较,RIF C2 颗粒被拉长,而 RIF C2 颗粒被拓宽。然而,两种制剂中的粒子均呈立方体形状。在另一种通过结晶制备的粉末制剂 RIF C3 的情况下,观察到颗粒呈片状,类似于 Son 和 McConville 在其研究中报道的利福平二水合物结晶颗粒。粉体密度和流动性:通过喷雾干燥和结晶后获得的粉末配方,堆密度和振实密度与供应商的利福平相比显著降低,见表 4。对于相同尺寸的颗粒,较高的流动性可能对应较好的气溶胶性能。因此,在制备粉末制剂中,具有最低振实密度的 RIF A 有望显示出最佳的雾化性能。粉体溶解性:溶解性是可吸入粉末的一个重要特性,可调节吸入后药物的溶出度,肺内停留时间和生物利用度,因此也被用于不同剂型的比较。因此,评估可吸入药物粉末的水溶性是很重要的。在制备的利福平制剂中,与无定型利福平制剂 RIF A 相比,RIF C1 和 RIF C2 在水中的溶解度较低,如表 5 所示。这符合理论概念,即与结晶形式相比,无定型形式以更高的自由能状态存在,因此是一种具有更高水分的亚稳定形式,溶解度比结晶形式更稳定。利福平干粉体外沉积或气溶胶雾化分析:通过喷雾干燥和结晶制备的利福平粉剂在 NGI 不同阶段的体外沉积模式研究如下图 Fig. 7A,计算得到的体外雾化参数如图 Fig. 7B 所示。与结晶粉末相比,无定型粉末在吸入器装置中的滞留较高,这导致结晶粉末与无定型配方相比具有显著较高的发射剂量。无定型与晶形粉末配方之间发射剂量的这些差异支持无定型粒子往往具有较低的发射剂量,这是由于这些粒子中较高的表面静电荷增加了粉末的聚集性和内聚性。然而,一旦颗粒从吸入器装置中释放出来,我们发现无定型颗粒在 NGI 阶段 1 中的滞留量较低,而结晶粉末在阶段 1 中的沉积量较高。所有制剂的细颗粒部分-直径≤5 μm差异无统计学意义。但 RIF A 的 MMAD 值显著低于 RIF C1、RIF C2 和 RIF C3,表明通过喷雾干燥制备的利福平无定型剂型的体外雾化能力总体优于结晶剂型。 3结论在这项研究中,来自新西兰奥塔哥大学的科学家们使用喷雾干燥和结晶技术制备了可吸入的利福平粉末制剂,以分别获得无定型和结晶剂型的利福平,用于大剂量输送到肺部。本研究制备的利福平粉剂有希望用于进一步的体外和体内研究,以研究它们的溶出性能;与肺细胞系的相互作用;以及吸入后的安全性和药代动力学。本研究中报告的用于生产利福平粉末的喷雾干燥技术和结晶方法是新颖和有前景的,为利福平口服制剂的开发提供一些思路。综上,使用瑞士步琦喷雾干燥技术,可以轻松获得 5μm 粒径以内的可吸入粉体,同时步琦具有高功率、强制冷、全回收、平台式的有机溶剂处理惰性循环装置系统,确保安全性,同时具有出口温度和样品温度双重监控设计,保护您的珍贵样品,如需喷雾干燥设备,请联系我们! 4文献来源A study on polymorphic forms of rifampicin for inhaled high dose delivery in tuberculosis treatment
  • 江桂斌院士团队ES&T | 口罩中细颗粒物/有机污染物的识别与风险评估
    在新冠肺炎(COVID-19) 疫情爆发期间,一次性聚丙烯口罩为我们提供了有效保护。据相关统计及估计,疫情大流行期间欧美有超过60%的人在公共场所佩戴口罩,在我国这一比例达到了90%;2020年全球每月消耗约1290亿个口罩。考虑到口罩中的添加剂及副产物,以及大量微纳米级的颗粒物,大量废弃口罩导致的污染物的环境释放以及长期佩戴口罩可能造成的健康影响引起了广泛关注。中国科学院生态环境研究中心环境分析与毒理研究组在口罩中污染物分析与识别方面开展了系统工作,取得重要进展。研究成果以“Disposable Polypropylene Face Masks: A Potential Source of Micro/Nanoparticles and Organic Contaminates in Humans"为题,发表于环境领域顶级期刊Environ Sci & Technol (2023, 57, 5739-5750)上(文末阅读原文可查看)。选取一次性医用口罩(DMM)、外科口罩(MSM)和 (K)N95 口罩为研究对象 表征了口罩中微纳米颗粒的形状、尺寸、数量以及化学组成;使用GC-Orbitrap/MS,通过非靶向分析技术,在口罩中鉴定出了79种有机化合物,在口罩纺粘无纺布和熔喷布脱落的微纳米颗粒上鉴定出了18种化合物; 开展了初步健康风险评估。△ 研究内容示意图(点击查看大图)01口罩中有机化合物的筛查 针对佩戴口罩中的有机化合物,研究者首先提取了完整口罩中的有机化学物质。同时,收集口罩生产原材料(散装纺粘无纺布和熔喷无纺布)中的微纳米颗粒,提取颗粒上的有机化学物质。利用GC-Orbitrap/MS,在60,000分辨率下全扫描获得高分辨数据。基于TraceFinder 5.0和Deconvolution软件,结合保留指数进行非靶向分析,在整体口罩中初步检测到79种化合物,包括苯衍生物16种、烷烃20种、酚类10种、卤化物11种、萘类5种、酯类5种、联苯类2种、酮类3种、醚类3种。在颗粒物检出的18种化合物中,有 10种与口罩中检出物重合。 TraceFinder软件非靶向分析中,数据过滤条件包括精确质量偏差、信噪比、峰强度、离子重叠窗口、谱匹配参数、保留指数差值、标准品确认等。图1以随机样品为例,展示了筛选过程中化合物数量的变化情况。△图1. 随机抽取DMM、MSM 和 (K)N95 口罩中化合物数量随过滤条件的变化(点击查看大图)△图 2.口罩中二丁基羟基甲苯(BHT)、2,4-二叔丁基苯酚(DTBP)和三(2,4-二叔丁基苯基)亚磷酸酯(TMS)在Tracefinder 数据处理软件的光谱解卷积结果 (上图)与其分析标准品的 EI质谱图匹配(下图)(点击查看大图)02去除背景 从采样到测试整个过程都可能引入分析伪影。由于完全物理去除污染物无法实现,尤其是当背景和伪影峰重叠时。有效解决办法是在分析过程始终正确采用程序空白。基于程序空白,数据处理过程中出现的任何背景可有效去除。 本文所有分析数据均附有程序空白。其中,从口罩原材料的颗粒中提取有机化合物的程序空白是对铝箔进行清洗、提取的提取液。GC-Orbitrap/MS配套的数据处理软件可自动扣除背景空白,当样品中色谱峰的响应比空白中峰响应高一定倍数时,便计入特征。 03定性识别的置信度 在非靶向和疑似靶向分析中,即使是 HRMS,仍存在假阳性率高的问题。因此,定义报告化学注释置信度的框架尤为重要。本研究基于Koelmel等人提出的置信框架(图3)对所识别化合物结构的可信度进行注释。口罩中共筛选出79种化合物,其中置信度为1的化合物4种,置信度为2的化合物70种,置信度为3的化合5种。置信度1有标准品。且在实验室内部用相同方法测试,对比保留时间、EI 质谱和参考质量一致。置信度2没有标准品,通过外部质谱库检索匹配到的唯一可能结构或母核相同的异构体,△RI、分子离子、EI谱图匹配。置信度3没有标准品,通过外部质谱库检索匹配到的暂定侯选物,△RI或分子离子或EI谱图匹配。置信度4没有标准品,外部谱库无匹配结果,可得到唯一化学式或化学系列类别。置信度5没有标准品。不能识别,但具有可重现的质谱图。△图3. GC-HRMS非靶向分析的置信度框架 04稳定性 在整个仪器分析过程中,每间隔 6-7 个样品注入质控混标溶液(含10个浓度均为10 ng/mL的目标物和1个内标)对 GC-HRMS 仪器的稳定性进行监测,总共测试 11 次质控样。计算每种化学品的绝对峰面积和内标校正峰面积的标准偏差,绝对峰面积RSD小于10% ,IS 校正峰面积RSD小于 4%,表明仪器的稳定性满足分析要求。△图 4. 质控混标10 种化学品的绝对峰面积 (a) 和 IS 校正峰面积 (b)(点击查看大图)05检出率 鉴定出的79种化合物中,18 种化合物的检出频率≥80%,44 种化合物的检测率低于20%,该特征在三类口罩中类似。低检出频率的化学品可能与个性化设计、制造、包装和储存条件有关,例如,在仅有的2个印刷口罩样本中检测到了5种着色剂。高检出频率的化合物反映了口罩生产中原材料和标准工艺流程相关的风险。例如,香兰素和二苯甲酮在口罩中的检出率较高,它们分别被用作塑料生产中的光引发剂,这表明口罩中存在有意添加的化学物质(IASs);此外,萘的高检出频率也说明非有意添加物(NIASs)的存在。这些有害物质或与工艺相关的未知化合物显然不属于常规检测的清单化合物,其发现依赖于非靶向分析。GC-Orbitrap/MS具备高灵敏度、高选择性、宽线性范围、完善的工作流,非常适用于此类分析。 06健康风险评估 以3种置信度为1的酚类为例进行初步的健康风险评估,发现计算出的暴露水平处于总允许暴露限值的1%以下,提示戴口罩造成的这些化合物相关的健康风险较低。当然,有些化学品即使在低暴露水平下也可能毒性很大,并且可能会发生复合暴露,因此需要进行详细的健康风险评估。GC-Orbitrap/MS实力非凡,对口罩这类重要的日用品开展非靶向分析,鉴定出79种置信度较高的化合物,发现了与原材料和生产工艺相关的添加剂和副产物。结语中科院生态环境研究中心江桂斌课题组主要开展新污染物的环境转化过程、毒理与健康效应研究,发展分析新技术、新仪器与新方法。研究成果发表在Nat Nanotechnol、Nat Commun、Chem Rev、Chem Soc Rev、Angew Chem Int Ed、Environ Health Perspect、 Environ Sci Technol等期刊。2021年课题组研制成功国际首台高通量多功能成组毒理学分析系统,为环境中未知有毒污染物的筛查及复合效应等的研究提供了全新的技术手段和通用平台。课题组成员包括多名杰青、优青,曾获得国家自然科学奖、美国化学会ES&T杰出成就奖、长江学者成就奖、科学探索奖、中国分析测试协会科学技术奖、 国家环保总局科学技术奖、中国科学院杰出科技成就奖等。
  • Nat Metab|上交大童雪梅团队揭示非氧化磷酸戊糖途径调控Treg细胞功能及其分子机制
    点评 | 朱锦芳(NIH)2022年5月23日,上海交通大学基础医学院生化与分子细胞生物学系童雪梅教授课题组及其合作团队,上海市免疫学研究所李斌研究员课题组和复旦大学附属华山医院/脑科学转化研究院杨辉研究员,在Nature Metabolism杂志在线发表题为 Non-oxidative pentose phosphate pathway controls regulatory T cell function by integrating metabolism and epigenetics 的研究论文,揭示非氧化磷酸戊糖途径(非氧化PPP)对调节性T(Treg)细胞代谢模式及细胞功能的调控机制。Nature Metabolism同期发表伦敦帝国理工学院Margarita Dominguez-Villar博士为该研究撰写的News & Views特评,认为该文章发现非氧化PPP在Treg细胞活化和功能调控中的中心地位(a central regulator)。表达特征转录因子Foxp3的Treg细胞是一类具有免疫抑制功能的CD4+ T细胞亚群,维持机体免疫系统稳态,防止免疫过激诱发自身免疫病。已知葡萄糖酵解、脂肪酸氧化和氨基酸分解代谢等都参与 Treg 细胞功能调控。PPP是一条不产生ATP的葡萄糖分解代谢途径,由生成NADPH的氧化PPP和产生5-磷酸核糖的非氧化PPP组成。非氧化PPP包括4个代谢酶催化的5步可逆反应,可以通过改变代谢物流向来满足细胞的功能需求。非氧化PPP是否参与免疫细胞如Treg细胞的代谢与功能调控尚不清楚。转酮醇酶TKT是非氧化PPP中催化两步可逆反应的代谢酶。童雪梅团队已发现TKT在肝脏、脂肪和肠道中调控糖脂代谢平衡的重要作用(Li M et al, Cancer Research, 2019 Tian N et al, Diabetes, 2020 Tian N et al, Cell Death & Disease, 2021)。在本研究中,研究人员通过构建Treg细胞特异性敲除TKT的小鼠模型,深入探究非氧化PPP是否和如何调控Treg细胞代谢及功能。他们研究发现,Treg细胞特异性敲除TKT的小鼠出生3周后发生严重自身免疫性疾病,并且在断奶之后相继死亡,其表型与缺失Foxp3基因的小鼠相似。进一步研究发现,敲除TKT在不影响Treg数目和转录因子Foxp3 水平的情况下,阻断Treg细胞的免疫抑制功能。为了排除炎症反应的影响,研究者根据Foxp3基因位于X染色体和雌鼠X染色体选择性失活的特点,构建了在同一只鼠中既有TKT缺失又有TKT正常表达的Treg细胞嵌合小鼠模型。该小鼠Treg细胞的转录组和表观遗传组分析表明,TKT缺失导致Treg细胞中87.9%的差异表达基因被下调,染色质可及性降低。这些被下调的基因几乎全部为效应性Treg特征性基因,表明非氧化PPP对调控Treg细胞免疫抑制功能是必需的。研究者进一步发现,TKT缺失导致Treg 细胞NADPH 减少和氧化应激增加,葡萄糖进入线粒体氧化减少,脂肪酸氧化增加,氨基酸分解代谢显著增强,分解代谢重构使线粒体功能受损。同时,被氧化应激和线粒体损伤诱发的还原性TCA循环使α-酮戊二酸/琥珀酸及α-酮戊二酸/富马酸比率降低,DNA甲基化增加,抑制Treg细胞特征性功能基因表达,导致其免疫抑制性功能丧失。文章也发现非氧化PPP中的另外一个代谢酶——转醛醇酶(TAL),对维持效应性Treg特征性功能基因表达也不可或缺。此外,在自身免疫性病人外周血 Treg细胞中,TKT水平显著降低。综上所述,此研究首次揭示非氧化PPP对于调控Treg细胞中糖、脂和蛋白质分解代谢稳态、维持代谢物依赖的表观遗传修饰和功能基因表达有关键作用,即非氧化PPP可以通过整合三大营养物质代谢和表观遗传修饰控制Treg细胞功能。这项研究将为通过调控Treg功能防治自身免疫性疾病和其它免疫相关疾病提供新策略新手段。非氧化 PPP 通过整合代谢组和表观遗传组调控Treg细胞功能上海交通大学医学院博士生刘琪、阿拉巴马大学伯明翰分校博士生朱方明和上海市免疫学研究所博士生刘鑫男是该研究论文的共同第一作者。此项研究得到复旦大学生物医学研究院叶丹研究员、海军军医大学附属长征医院风湿免疫科徐沪济主任、上海交通大学附属仁济医院沈南主任、上海交通大学基础医学院徐天乐教授、清华大学药学院胡泽平研究员、阿拉巴马大学伯明翰分校胡晖教授等合作实验室的大力协助。通讯作者为童雪梅教授、李斌研究员和杨辉研究员。专家点评朱锦芳Jeff Zhu (Chief, Molecular and Cellular Immunoregulation Section, NIH)调节性T细胞(Tregs)在维持免疫耐受和免疫稳态中发挥关键作用,并且参与调节感染和癌症中的各种免疫反应。一方面,Treg功能的丧失通常与自身免疫和过度炎症有关;另一方面,肿瘤微环境中激活的Treg往往会抑制肿瘤免疫。因此,了解Treg的产生、激活及其获得抑制性功能的机制不仅将拓展基础免疫学认知,而且将为各种免疫相关疾病提供新颖有效的临床疗法。不同的代谢途径在控制Treg和效应性辅助型CD4+ T(Th)细胞的发育和分化中作用不同。经典观点认为,Tregs更倾向于脂肪酸氧化,而效应Th细胞主要利用葡萄糖作为能量来源。在本项工作中,童雪梅团队及其合作实验室共同发现,非氧化磷酸戊糖途径(非氧化PPP)在控制Treg细胞激活和抑制功能中起着关键作用。非氧化PPP是葡萄糖分解代谢的一个分支,它在Treg和效应性Th细胞中的功能尚不清楚。令人惊奇的是,在Treg中敲除非氧化性PPP中的重要酶—转酮醇酶(TKT),小鼠会产生致死性自身免疫病。Treg细胞特异性 TKT 缺失导致其失去免疫抑制功能,却不影响其发育和Foxp3蛋白表达。机制上,童雪梅及其合作团队发现TKT缺失诱导线粒体氧化应激和还原性TCA循环,导致α-酮戊二酸(α-KG)水平降低。α-KG作为重要的表观遗传辅助因子,能调控组蛋白和DNA去甲基化酶的功能。TKT缺失时,Treg中众多基因的DNA甲基化增加,染色质可及性下降。并且,α-KG补充能够改善由Treg特异性TKT 缺失引起的自身免疫反应。此外,在临床自身免疫性疾病患者外周血Treg中,TKT水平被下调。Treg获得抑制功能需要被激活,TKT缺失诱发的自身免疫反应是由活化Treg特征性基因表达减少所导致的。由于Treg细胞群体的异质性,单细胞分析可以为TKT如何调节Treg激活和表观修饰提供一个更清晰的解释。然而,该研究发现在大约1000个激活态Treg特征基因中,只有124个受到TKT缺失的影响,却诱发了显著的小鼠自身免疫病表型,表明这个小的基因群体包含对Treg功能至关重要的效应分子,例如IL-10和TIGIT等。因此,本项研究发现令人印象非常深刻。本项工作不仅促进我们全面认识Treg细胞激活和功能的机理,而且在未来治疗人类疾病方面具有潜在重要转化价值。原文和特评链接:https://www.nature.com/articles/s42255-022-00575-z,https://www.nature.com/articles/s42255-022-00574-0
  • 海洋科技“划重点”:未来五年可燃冰开采、深海探测“大有可为”
    p   时隔两年,参与《“十三五”海洋领域科技创新专项规划》(以下简称《规划》)制定的上海交通大学任平研究员终于盼来了“十三五”海洋科技发展顶层设计正式面世。日前,《规划》由科技部、国土资源部、国家海洋局联合印发。 /p p   “海洋科技创新是提高海洋实力的战略支撑,是海洋强国建设的核心任务。”任平告诉科技日报记者,“十三五”是落实建设海洋强国重大部署,实施创新驱动发展战略的关键时期,《规划》在深入分析世界海洋科技发展新趋势的基础上,查找制约我国海洋科技创新的主要因素,在若干领域布局基础研究和应用技术研究,进一步建设完善国家海洋科技创新体系,提升我国海洋科技创新能力。 /p p    strong “十三五”有望实现万米下潜 /strong /p p   海洋强国战略的实现依赖于深海关键技术与装备能力的提升,而由于高压、低温、高温等极端环境条件的限制,深海技术与装备一直是国际海洋工程技术研究的难点和最前沿,也是制约我国实施深海战略的关键技术瓶颈。 /p p   任平告诉记者,深海潜水器是发展深海技术的引擎和集成平台,也是开展深海科学研究、资源开发的重要支撑,相关技术的进步将促进深海装备配套技术和新兴产业发展。 /p p   开展潜水器谱系化工程,这是《规划》提出的重要目标。“十三五”,我国将通过《深海技术与装备》专项的实施,形成3—5个国际前沿优势技术方向、10个以上核心装备系列产品,满足我国在深海领域的重大需求、为形成我国自主的深海产业提供技术和人才支撑。 /p p   具体来说,包括开展深海空间站研制 全海深(最大工作深度11000米)潜水器研制及深海前沿关键技术研究,争取在“十三五”实现万米下潜 深海通用配套技术及1000—7000米级潜水器作业及应用能力示范 深远海核动力平台关键技术研发。 /p p   科技部相关负责人介绍,“十三五”我国将形成深海运载、探测装备谱系化和配套能力,提升深海作业支持能力以及深水油气和矿产资源开发方面的自主技术能力,最终目的是希望通过技术装备研发,带动整个国家装备制造能力的进步。 /p p    strong 形成可燃冰开采试验能力 /strong /p p   “海洋高技术已成为国家竞争力的重要标志。”任平说,本世纪以来,在国家连续3个五年计划的支持下,我国的海洋科学和技术取得了巨大的进步,然而,在日趋激烈的海洋资源的争夺中,我国海洋资源开发能力亟待提高,特别是深海资源开发能力。 /p p   比如,在海洋油气开发方面,我国仍以300米以浅的海洋油气开发为主,尚未系统掌握深水油气勘探开发技术,大量深水油气勘探开发核心技术与设备不得不依赖进口,核心技术不足已成为我国进军海外深水油气的重要瓶颈。在南极磷虾资源调查、捕捞、深度加工等诸多技术方面,我国与挪威、日本等国仍有至少20—30年的差距。目前国际海底矿产资源活动重点逐步由资源勘探向开发过渡,而我国尚不具备海底资源规模化开采技术。此外,生物基因资源利用、生物多样性保护、公海保护区建设等与资源有关的热点问题都需要有力的科技支撑。 /p p   为此,《规划》提出实施深水能源、矿产资源精细勘探与试采技术工程示范,实现核心技术和装备国产化,全面提升海洋资源自主开发能力,为海洋强国建设提供支撑。 /p p   比如,开展海洋油气工程新概念、新技术研究,开发深水油气勘探核心技术和工程装备,结合“大型油气田及煤层气开发”重大专项,形成1500米到3000米深水油气资源自主开发能力 开展海洋天然气水合物成藏、成矿机理以及安全开采等基础问题研究,开发精确勘探和钻采试验技术与装备,形成海底天然气水合物(又称可燃冰)开采试验能力 开展大洋矿产成矿机理与分布规律等科学问题研究,开发高效勘探核心技术研究及深海采矿系统设计,研制集矿与输送装备,完成1000米海深集矿、输送等技术海上试验。 /p p    strong 实现大型深海探测装备共享 /strong /p p   该人士认为,《规划》一大亮点是,提出重点建设国家重大基础设施和海洋技术创新平台,优化海洋科技创新基地布局。 /p p   如今我国深海探测与作业技术实现重大进展,在深海耐压舱、深海浮力材料、深海推进器、深海液压控制、深海通信与定位技术、深海机械手等方面均取得了突破,取得了“蛟龙”号载人潜水器、“海马”号4500米级遥控潜水器、“海燕”号深海滑翔机等一批重大成果。预计到“十三五”末,我国将是国际上拥有最多大深度载人潜水器的国家。 /p p   在上述人士看来,这给管理者提出的新命题是如何通过共享机制实现资源最优化及高效应用,实现大型深海探测装备共享。 /p p   《规划》同时提出,要建立资源共享的机制,建立海洋科学观测数据、海洋微生物菌种/基因等资源的共享制度,推动科学观测、技术研发、产业培育、海洋管理等环节的相互融合,建立强有力海洋科技任务的一体化实施体系,建立与中央财政科技计划管理改革方案相适应、与海洋事业发展的重大工程紧密结合的协同创新机制,提高科研产出效率。 /p p   该人士表示,与陆地相比,海洋相关数据获取更难、成本更高,正因为如此,共享才显得更为必要。“比如美国的海洋科技创新之所以领先,其中很重要的一点是建立了有效的共享机制。” /p
  • 食品中元素形态分析解决方案
    元素的不同存在形态下具有不同的物理化学性质和生物活性,决定了其在环境中表现出不同的毒性和生物效应,如:无机砷化合物的毒性比较大,有机砷化合物的毒性较小或者基本没有毒性。痕(微)量元素的化学形态信息在环境科学、生物医学、中医医学、食品科学、营养学、微量元素医学以及商品中有毒元素限量新标准等研究领域中起着非常重要的作用。 国家新近实施了两个国标GB 5009.11-2014(食品中总砷及无机砷的测定)和GB 5009.17-2014(食品中总汞及有机汞的测定)分别规定了食品中无机砷和有机汞的检测方法。针对两个标准,安谱推出食品中形态分析解决方案,分别采用安谱的阴离子交换色谱柱和C18色谱柱检测食品中的无机砷和有机汞,各组分峰型完美、分离度良好、稳定性高,完全符合国标的检测要求。一、砷形态分析(对应标准GB 5009.11-2014) 样品前处理:可参考国标GB 5009.11-2014 分析方法:(1) LC-AFS法: 仪器:液相色谱-原子荧光联用仪(SA-20,吉天仪器) 色谱柱:CNWSep AX 阴离子交换色谱柱,250mm x 4.0mm,10μ m(LAEQ-4025G7) 保护柱:CNWSep AX 保护柱,5.0×4.0mm,10μ m LBEQ-4005G7K) 流动相:15mmol/L磷酸二氢铵; 流速:1mL/min; 柱温:30℃; 进样量:100ul(100ppb) 谱图: 实验数据:峰号组分名保留时间(min)峰高(mV)面积(mV*s)含量(%)分离度1As(III)2.6321067.742593038.592DMA3.971356.2217407.119.71.00593MMA5.339552.2253954.823.010.92564As(V)12.604286.1206314.718.694.0549(2) LC-ICP-MS法 色谱柱:CNWSep AX 阴离子交换色谱柱,250mm x 4.0mm,10μ m(LAEQ-4025G7) 保护柱:CNWSep AX 保护柱,5.0×4.0mm,10μ m(LBEQ-4005G7K) 流动相:(含10mmol/L无水乙酸钠、3mmol/L硝酸钾、10mmol/L磷酸二氢钠、0.2mmol/L乙二胺四乙酸二钠的缓冲溶液,氨水调节 pH=10):无水乙醇 99:1 流速:1ml/min 柱温:30℃ 进样量:50 ul 实验数据:序号组分名样品测定值 (青口贝)加标值)加标测得值回收率1As(III)12.110ppb21.698%2DMAND9.797%3MMAND9.595%4As(V)ND10.1101%二、汞形态分析(对应标准GB 5009.17-2014) 样品前处理:可参考国标GB 5009.17-2014 分析条件: 仪器:液相色谱-原子荧光联用仪(SA-20,吉天仪器) 分析柱:C18分析柱 250mm x 4.6mm,5μ m(LAEQ-462571) 保护柱:C18保护柱4×20mm,5μ m(LBEQ-400271K) 流动相:5%甲醇+0.06mol/L乙酸铵+0.1%L-半胱氨酸 流速:1ml/min 进样量:100ul 谱图: 实验数据:序号组分名样品测定值 (鱼)加标值)加标测得值回收率1Hg2+0.16ppb5.285%2MeHg311102.6%3EtHgND5.378.8% ND:未检出 相关耗材:货号名称规格价格(元)LAEQ-4025G7CNWSep AX 阴离子交换色谱柱250mm x 4.0mm,10um,100A6990LBEQ-4005G7KCNWSep AX 保护柱套装1个柱套+2个柱芯,5.0×4.0mm,10μm1990LAEQ-462571Athena C18液相色谱柱250mm x 4.6mm,5um2247LBEQ-400271KAthena C18保护柱套装1个柱套+1个柱芯,4×20mm,5μm1100 SGEQ-C40055微波消解内罐适配CEM Mars6 Xpress,55mL微波消解罐,TFM罐体,PFA盖子,TFM垫片3000SGEQ-C24110微波消解内罐适配CEM Mars6 Xpress,110mL微波消解罐,TFM罐体,PFA盖子,TFM垫片4000SGEQ-C12100-V微波消解内罐适配CEM Mars5 OMNI Mars5 EasyPrep Mars6 EasyPrep,100mL微波消解罐,TFM罐体3000CFGG-060033-26-01砷(As5+)ICP-MS标准溶液1000mg/L溶于H2O,100mL750CFGG-060033-34-01砷(As5+)ICP-MS标准溶液100mg/L溶于H2O,100mL675CFGG-060033-08-01 砷(As3+)ICP-MS标准溶液1000mg/L溶于2% HCl,100mL650CFGG-060033-31-01 砷(As3+)ICP-MS标准溶液1000mg/L溶于2% NaOH,100mL700CFGG-060080-02-01 汞(Hg)ICP-MS标准溶液1000mg/L±0.3%溶于2% HNO3,100mL450CDGG-030355-02 氯化甲基汞标准品 1000 mg/L于丙酮, 1 ml666CDGG-130413-01-1ml 氯化甲基汞和氯化乙基汞混标1000 mg/l于甲苯,1ml1050CFEQ-4-430525-0100L-半胱氨酸≥98.0%,100g850CFEQ-4-120022-0100 (易制爆)硼氢化钾,98%,还原剂,for AAS100g640SBEQ-CA0854CNWBOND HC-C18 SPE 小柱500mg, 6mL/30 个/盒520CFEQ-4-120123-0250 优级纯磷酸二氢铵, ≥98.0%250g400CFEQ-4-110040-2501优级纯硝酸,≥65% ,金属元素杂质ppm级别2.5L380CAEQ-4-013456-0250 HPLC级氨水,氢氧化铵,≥25%(NH3)250ml380CFEQ-4-198528-0500优级纯无水乙酸钠,≥99.0%500g420CAEQ-4-012929-0100 HPLC级磷酸二氢钠二水化合物,≥99.0%100g335CFEQ-4-120095-0100 优级纯乙二胺四乙酸二钠盐二水合物,EDTA二钠盐(ACS),99.0-101.0%100g210CAEQ-4-011518-4000 HPLC级正己烷, 95%4L490CAEQ-4-016362-4000 HPLC级乙醇,ethanol absolut4L525特别推荐: 吉天仪器-SA系列液相色谱-原子荧光联用仪(原子荧光形态分析仪)仪器特点: 独创的紫外消解技术,无需氧化剂 多功能的数据工作站,简单易学 先进的气液分离技术(专利),高效的除水率 可配置自动进样器可检测元素形态元素定性定量检测定性半定量检测定性检测砷砷酸盐[As(V)]、亚砷酸盐[As(III)]、一甲基砷酸[MMA(V)]、二甲基砷酸[DMA(V)]、砷甜菜碱(AsB)、砷胆碱(AsC)、饲料中的有机砷制剂(阿散酸p-ASA和洛克沙胂Roxarsone)一甲基亚砷酸[MMA(III)]、二甲基亚砷酸[DMA(III)]、二甲基砷酸的硫代物砷糖(AsS)汞无机汞(Hg2+)、甲基汞(MetHg)、乙基汞(EtHg)、苯机汞(PhHg)硒亚硒酸盐[Se(IV)]、硒酸盐[Se(VI)]、硒代胱氨酸(SeCys)、硒甲基硒代半胱氨酸(SeMeCys)和硒代蛋氨酸(SeMet)锑锑酸盐[Sb(V)],三价锑[Sb(III)]应用领域 食品卫生检验、环境样品检测、水样品检测、农产品检测、地质冶金检测、临床医学样品检测、药品检测、化妆品检测、土壤饲料肥料检测、纺织纤维样品检测、教育及科研。
  • 五院士支招破解我国能源困境
    “‘我国石油还能开采40年’的说法不科学,该数据是拿探明的存储量除以每年的消费量简单得出的,而实际上每年都有新的石油、天然气等资源被勘探出来。”   近日,五位中科院院士——地质学家李德生、物理化学家田昭武、无机化学家徐如人、真菌学家庄文颖、电工学家严陆光,与20位青年科学家在天津大学畅谈能源和资源的可持续发展。   李德生等在会上建议,解决我国未来能源安全问题,应在开源节流的基础上,从加强科学研究和人才培养等方面入手。   开源节流 突围困局   李德生介绍说,我国实际石油的存储量为332亿吨,目前已探明84亿吨 天然气资源量为22万亿立方米,2010年年底探明5.71万亿立方米,尚有五分之四未被探明 煤层气资源量为11万亿立方米,目前探明量仅占1%。   研究结果表明,照目前的开采速度,常规矿物能源可以一直持续到22世纪。   尽管如此,李德生表示,我国能源发展仍面临着不小的压力,未来除保证一定的化石能源产量外,我国也应重视发展如页岩气、页岩油等非常规油气资源。   虽然页岩气与页岩油开发存在高成本、高消耗、高污染以及低产出的问题,但李德生表示,“这些非常规资源一定会为我国的能源资源发展作出贡献” 。   田昭武、严陆光也指出,未来能源资源“开源”仍须在太阳能、风能、生物质能等新能源技术领域多做功课。   而要使能源资源实现可持续发展,要“开源”,更须“节流”。   李德生指出,我国已提前10年打破了2020年能源消耗量的红线——去年,国内原油消费量已达4.5亿吨,超过2020年消耗量达4.2亿吨的红线 目前汽车保有量也远超预计,达2亿多辆,远超2020年达到1亿辆的红线。   “这么多的汽车等于是把化工厂搬到城市里,这对于城市环境的损害非常大。因此,解决这个问题是我们降低交通能耗、减少环境污染的重点。”田昭武表示。   技术为基 加强应用   “在能源科学研究方面,产学研一体化是研究的前提。”田昭武表示。   他认为,我国当前在太阳能等能源开发技术方面已掌握较高技术,但科研与应用之间还存在很多隔阂,难以缓解能源紧缺的现状。   以电动汽车为例,由于未能很好地解决电池在能量、成本、寿命等方面的问题,电动车尚不能被广大用户接受。   在可再生能源开发方面,我国的风能、太阳能虽然产能较强,但由于与电网的输电能力不匹配,很多时候,生产出来的电力无法进入电网,被白白浪费。   严陆光指出,除新能源以外,核聚变能、天然气水合物、深层地热能、海洋能等4类能源的未来可利用空间也十分巨大。   然而,按照目前相关研究的进展情况,核聚变能预计下个世纪才能使用 位于海洋深处的天然气水合物,属于新型化石能源,存储量比化石能源还高,但当前面临的最大难题是如何开采。   以人为本 重在创新   “我国生物质能源研究和其他国家处于同一起步阶段,因此,科研人员不应一味地跟风作研究,要结合当前的国家重大需求独立创新。”庄文颖表示,青年科学家应尽力寻找有较大研究潜力和良好应用前景的研究方向。   她同时指出,优秀的人才是关系到实现能源资源开发利用与促进可持续发展的重要因素。她希望青年科学家和高校教师提高对青少年科普教育的重视程度。   徐如人指出,当前的很多基础问题在我国学术界没有得到充分的重视,这将严重制约我国今后的科研创新工作。   他举例说,我国稀土资源虽然很丰富,但主要用于出口,很少被科研单位利用。   他建议相关领域的青年学者要对诸如稀土材料功能与结构关系等基础问题进行更加深入的研究。   “这些问题都是制约能源研究进一步发展的障碍,希望年轻人仔细研究需求与市场,通过技术创新解决我国能源资源发展的困境。”徐如人说。
  • 记海洋三所科学仪器共享平台建设
    推动科技资源向社会开放共享,是我国近年来的重要科技政策之一。2012年,自然资源部第三海洋研究所筹建科学仪器共享平台(以下简称共享平台),旨在打破大型仪器设备的部门化、单位化、个人化现象,提高大型仪器设备使用效率,充分发挥其科研价值和社会价值。  此前,大型仪器设备普遍存在重复购置、管理分散、使用封闭、利用率不高等情况。同时,专职实验技术人员配备不足,使仪器设备功能无法充分开发,导致“高档低用”现象。  共享平台自成立以来,建立了基于物联网的大型仪器设备监控管理与服务网络,实现了科学仪器资源的有效集中和开放共享,共享仪器管理系统已成为海洋三所科研仪器资源信息发布与展示的权威窗口,也是用户查询和共享仪器委托测试服务的有效渠道。  目前,共享平台已成为以稳定同位素检测、放射核素监测、海洋油气及水合物化探、环境生态样品分析为显著特色的综合性仪器共享平台。通过组建专业化的分析技术团队,有效提高了仪器的使用率和共享率,使共享仪器在国家重大科技支撑计划、国家科技攻关计划、近海海洋综合调查、南北极考查、大洋考察等科研项目中发挥作用,有力地保障了科研项目的顺利实施,并服务地方经济、支撑高技术产业发展。  至此,海洋三所逐步实现了科学仪器有效集中、开放共享,助力科研的高效管理,实现了科学仪器和科研资源从“相加”到“相乘”的进阶发展。  强化归类统筹,主攻特色优势  面对数额巨大、重复购置和分散放置的大型仪器,共享平台归类统筹管理。依照应用领域、功能原理和学科优势,将247台/套共享仪器,划分为电子光学仪器、质谱仪器、色谱仪器、核辐射探测、X射线仪器、制药工艺仪器等18大类。对于数量较多和具有学科优势的仪器,再按仪器功能和应用领域化分细类。  为切实促进平台整体技术水平提升,满足一线科研人员实际检测需求,共享平台在充分考量自身优势方向的基础上,确立了稳定同位素分析测试、海洋油气及水合物化探分析测试、有机地球化学分析测试、环境地质生态分析测试等多个重点发展方向,实现以点带面,重点突破的发展模式。  在稳定同位素分析测试方向,共享平台开发了固体样品微量氮和硫同位素,水中硝酸盐、亚硝酸盐、铵盐氮氧同位素,无机盐(磷酸银和硫酸盐等)氧同位素等多种分析测试方法,测试和仪器改装技术处于国内领先地位。共享平台与国内多家科研单位和高校合作,客户遍布82个城市、172家企事业单位,分析技术和服务能力得到广泛认可。  在海洋油气及水合物化探分析测试方向,共享平台承担了青岛海洋地质研究所、广州海洋地质调查局、中石化无锡石油地质所关于东海特征区域甲烷勘探、先导区沉积物同位素分析、南海重点区水合物资源调查等项目,完成了约10个航次、上万份水合物区沉积物及孔隙水的分析测试工作。  在有机地球化学分析测试方向,共享平台通过增配有机测试人员,建立分析检测方法,开放共享相关色谱质谱仪器。截至目前,年均使用机时超过3000小时,测试样品超过10000件,在海洋三所海洋活性化合物资源挖掘、海洋天然产物标准物质研制、海洋环境有机污染物及生物标志物监测等方面发挥了重要作用。同时,共享平台结合市场需求,为多个高新企业发展提供有机分析测试服务,产生了良好的社会效益。  环境地质生态分析测试方向,除承接大量常规性调查类分析测试任务外,共享平台在元素原位无损微区分布特征、海水稀土富集检测技术等业内难点或热点技术领域实现突破。例如,通过能谱检测技术在铁锰结核、富钴结壳和多金属热液硫化物等多种矿产中的应用,进行高分辨的多元素空间分布检测、可视化展示,对比分析不同元素在矿物的空间分布,对了解矿物成因、品位以及评估其经济价值有重要指示作用。  加强制度建设,明确奖惩机制  共享平台作为海洋三所技术支撑部门,独立运行管理,全面负责海洋三所大型科学仪器的集约化管理。  购置管理方面,共享平台协助海洋三所资产处及所采购审核小组,按照“大型仪器设备申购审查管理流程”和“采购审核小组审核规则”对大型仪器的采购进行审核评议,规范仪器设备采购流程,从源头上避免仪器重复购置。新购仪器验收后,按照申购论证时制定的共享方案,及时在所级共享平台网站进行信息公开,将符合条件的仪器推送到国家网络管理平台和省市各级仪器平台进行开放共享。共享后的仪器设备,根据海洋三所《大型科研仪器设备开放共享管理办法》进行运行管理和考核。  共享平台通过一系列统筹管理及激励制度的执行,切实盘活资源。对于仪器共享做出突出成绩的个人和部门,给予共享运行经费补助;同时在海洋三所职工年度考核评价办法中,将仪器共享工作与年度考核结果和追加绩效额度分配挂钩。对于不履行共享义务或共享情况差的个人和部门,根据情节严重性,核减部门修缮购置资金或限制购置仪器设备。  加强人才培养,建设学科梯队  大型仪器设备通常是集物理、化学、电子信息、光学等于一体的综合性高科技产品,设计精密、操作复杂,要求实验技术人员具备扎实的理论知识、良好实操技能和丰富应用经验。海洋三所建立了由27人组成的大型仪器操作管理队伍,是一支结构合理、高效精干的学科梯队。  仪器管理员和专业测试人员是保证实验室正常运转的关键因素。共享平台定期组织学术报告、专项技术交流与培训,鼓励实验人员对负责的仪器设备和所从事的学科领域进行深入研究,不断积累经验,提高专业知识水平。目前已组织技术培训30余批次,总培训人数超过1000人次。  目前,一套成熟的人才优化制度已经形成。共享平台以自主培训、好中选优为主,适时、适当引进成熟人才,设立实验人员专业能力晋级方向,从系统掌握相关理论知识、独立完成测试工作到仪器方法的优化开发,新测试理论的创新等环节,落实人才培养。注重对研究生和专业技术人才的培养,鼓励研究生积极参加测试方法研究,培养能独当一面的应用型复合人才。共享平台作为厦门海洋职业技术学院毕业生实习基地,对毕业生进行分析测试技能的公益系统培训,为社会培养仪器分析专业技术人才贡献力量。  总结共享方法,形成特色经验  多年来,共享平台形成了一套提升共享方法和成果的特色经验。  ——及时了解科研需要,加强新测试技术开发,有效促进科研业务发展。  共享平台建设应秉持“技术优先,服务科研”导向,根据科研人员的实际需求确定发展方向,加强重点领域的新测试方法开发。目前,共享平台致力于全流程的把控,从提供上游样品前处理方案的优化,到下游数据的分析处理乃至按科研人员要求进行图形化展示,一步到位实现了从样品到可直接应用测试结果的过程。  ——归纳总结测试方法,及时发表相关的技术成果。稳定同位素分析测试方向经过多年积累,建立了碳、氮、氢、氧、硫同位素等多种在国内外技术领先的检测方案,相关成果形成论文及专利共十余篇(项),充分表明共享平台在该测试方向处于国内技术领先地位。支持主、微量元素分析及有机分析等测试方向开发。仅2020年,共整理各测试方向方法论文和专利共20篇(项)。  ——建立国内行业标准方法和标准物质的研制。共享平台积极参与国内行业标准方法的制定和标样的定值工作,于2021年发布地方标准《水中硝酸盐氮同位素测定化学转化法》(DB35/T 20062021),主要适用于地表水、地下水和海水中硝酸盐氮同位素组成的测定。该标准对于生态环境损害鉴定评估和污染溯源方面有重要价值。  ——升级改造现有仪器,研发制造更好仪器。共享平台致力于仪器设备的升级改造,以提升检测能力范围,并为未来国产设备或部件替代进口设备打下基础做好准备。设备升级改造主要集中在平台优势项目稳定同位素技术相关设备,主要包括:通过设备改造提高设备检出限,提升检测能力,以解决业内检测难点问题;提升设备耐用性,或减少检测过程废气等因素对环境的危害,确保安全生产等。  ——定期举办培训,交流前沿进展。共享平台积极参与和推动行业内技术交流,定期牵头举办业内人员培训及学术研讨活动,促进国内相关行业科研水平的整体提高。先后举办了全国稳定同位素质谱新技术开发与应用暨南极水样定值交流研讨会、天然气水合物地球化学探测与分析技术培训研讨班等,交流科研前沿领域最新发展方向和研究进展。  ——加强国际合作,引进设备技术。近年来,海洋三所与新西兰政府下设专业农业检测机构林肯研究中心签署合作协议,初步确定了双方在科研、技术领域的合作方向;全面配合国际原子能机构(IAEA)主导的稳定同位素技术开发和新的行业标准的建立,筹备成立IAEA放射性和稳定同位素技术协作中心;与国际知名仪器公司合作,组建培训实验室,引进最新的设备和测试技术… …   优化质量管理,发挥示范作用  今后,共享平台将持续进行质量管理体系优化和信息化网络平台建设,在仪器共享方面继续发挥先锋带头示范作用。坚持“技术引领,质量为先,服务至上,合作共赢”理念,在现有服务全国200多家科研、高校院所的基础上,争取三年内实现测试用户数量增加一倍。  通过海洋三所总体规划,建立翔安基地测试中心,着眼引领国家海洋实验测试方向;立足资源、环境和生物领域对分析测试的需求;服务行业管理和标准制定;提高测试服务能力,加强国际合作,关注测定方法的开发和仪器设备的研制工作。争取5~10年将海洋三所翔安基地测试中心建成海洋领域国内领先和国际知名的仪器共享平台。  通过互相学习和共享经验传递,形成自然资源部内部良性循环,各单位充分发挥自身学科优势,建立别具特色的仪器共享平台,整体提升测试技术的学科化、专业化和高效化。积极响应全国各科学仪器共享平台的建设,实现仪器资源的全国共用共享,让其发挥更大科研价值和社会经济价值。
  • 《Water Research》:黑磷纳米片与水中黄腐酸机理研究新进展,便携式原子力显微镜揭秘形貌变
    【论文信息】Enhanced degradation of few-layer black phosphorus by fulvic acid: Processes and mechanisms期刊: Water Research IF 13.4DOI: https://doi.org/10.1016/j.watres.2023.120014 【背景概述】黑磷纳米片是一种与石墨烯相似的具有类似层状结构的二维纳米材料。由于其具有优秀的导电特性与可调控的能带结构,黑磷纳米片已被广泛应用于电池储能、癌症治疗、电催化和光催化固氮等领域。但是,由于第五主族的磷原子上存在孤对电子,导致黑磷纳米片很容易被氧化,尤其当黑磷纳米片被排放到水中时,该材料很容易被水中所溶解的氧气分解,形成磷氧阴离子,如果大量的黑磷纳米片被排放到自然水体中,其分解物质将会给水生生物带来氧化应激和发育毒性,严重制约了黑磷的应用。此外,磷氧阴离子还会刺激小球藻的过量繁殖,导致水体的过营养化。之前关于黑磷纳米片在水中氧化分解的研究,主要集中在氧气含量,PH值对黑磷纳米片氧化分解速度的影响,对于黑磷纳米片与自然水体中广泛存在的黄腐酸之间的作用尚未充分研究。 近日,中国地质大学何伟教授课题组与德国达姆施塔特工业大学强强联合,对不同黄腐酸浓度条件下的黑磷纳米片的分解进行了系统性研究。在研究中,通过利用便携式原子力显微镜(AFM)对黑磷纳米片和黄腐酸的二维、三维形貌进行了系统的微观表征。根据相关AFM表征结果,提出了在黄腐酸的参与下,黑磷纳米片的分解机理。相关研究成果已发表在水科学高水平期刊《Water Research》上。 【图文导读】图1. 在氧化-光照条件下,黑磷纳米片在不同浓度的黄腐酸(0,2.5,5 mgC/L)中的降解动力学过程,(a)总磷-氧阴离子(Δ[O-P]),(b)次磷酸盐(H2PO2-),(c)亚磷酸盐(HPO32-),和(d)磷酸盐(PO43-)。图2. 在氧化-光照条件下,黑磷纳米片在不同浓度的黄腐酸中降解前(a,b和c)和降解后(d,e和f)的透射电镜表征。黄腐酸在图中用红色圆圈圈出。图3. 在原液中的黑磷纳米片微观表征。(a)用nGauge对样品进行AFM三维形貌表征,(b)透射电镜表征,(c)nGauge对样品的AFM二维表征结果,(d)nGauge AFM对(c)中划线部分,黑磷样品的高度测量数据,和(e)经AFM测量样品厚度的直方图统计图。图4. 在原液中的黄腐酸微观表征。(a)用nGauge对样品进行AFM三维形貌表征,(b)透射电镜表征,(c)nGauge对样品的AFM二维表征结果,(d)nGauge AFM对(c)中划线部分,黄腐酸的高度测量数据,和(e)经AFM测量样品高度的直方图统计图。图5. nGauge AFM表征黑磷纳米片在降解前(a)和在氧化-光照条件下降解43天后的形貌结果。((b)黄腐酸浓度0 mgC/L,(C)2.5 mgC/L,和(d)5 mgC/L)图6. 在降解反应前和反应后黑磷纳米片的XPS光谱中C1s峰(a)和P2p峰(b)的表征结果。图7. 黄腐酸存在或不存在的条件下,黑磷纳米片的降解机制。本研究中是按照(3)的路径对黑磷纳米片进行降解。 【结论】何伟教授课题组利用便携式原子力显微镜(AFM),大量测量黑鳞纳米片和黄腐酸在反应过程中二维和三维形貌的表面变化,同时借助XPS等其他技术手段,研究了黑鳞纳米颗粒在不同浓度黄腐酸条件下的分解过程与机理。实验结果表明,黄腐酸的存在,在无氧和有氧条件下均可加快黑鳞纳米片在水中的分解,在光照条件下可以产生更多的次磷酸盐,在无光的条件下主要提高磷酸盐的产生。 本文中研究人员使用的便携式原子力显微镜(AFM)是加拿大ICSPI公司设计和研发的,其基于特有的芯片式自感应探针技术,摆脱了传统AFM对激光的依赖,给AFM带来了里程碑式的变化!同时,设备具有小巧、灵活、方便携带、操作简单、扫描速度快、可扫描大尺寸样品、无需后续维护、无需减震超级稳定等优点,非常适合科研研究、高等教育、工业检测等领域的客户,尤其对于需要在户外和非实验室获得原子力显微镜(AFM)表征的用户来说,是一款不可或缺的设备!ICSPI公司便携式原子力显微镜(AFM),左)Redux AFM 右)nGauge
  • 青海“可燃冰”如何发现?意义媲美大庆油田
    可燃冰   近日,青藏高原发现“可燃冰”的消息备受各方关注。这种“冰与火”奇妙结合的新型能源,是如何被发现的?为何在海拔高、自然环境严酷的青藏高原得以发现?它的发现经历了怎样的艰辛和曲折?又将带给人们怎样的希望和梦想?记者对此进行了深入的采访。   能源危机下的“新希望”   2009年6月,在海拔4000多米的祁连山南缘,一簇火苗的燃烧,成为一个足以令亿万国人为之沸腾的消息:地质工作者在此成功钻获“可燃冰”样品,我国成为世界上第一个在中低纬度冻土区发现“可燃冰”的国家。   “可燃冰”,又叫“可燃水”、“气冰”、“固体瓦斯”,学名叫天然气水合物。它外表像冰,却遇火即燃,比人们平时使用的天然气更为纯净,使用方便、清洁无污染,是一种名副其实的绿色能源,全球公认的尚未开发的最大新型能源。   “可燃冰”在世界范围内分布广,资源量大。据科学家预测,“可燃冰”储量是现有天然气、煤炭、石油全球储量的两倍,是常规天然气的50倍。有科学家估计,海底“可燃冰”的储量够人类使用1000年。   据推算,目前已经发现的石油储备量还可用40年,天然气还可用70年,煤炭还可用190年,也正是如此,“后石油时代”用什么作为能源成了各国致力研究和勘探的问题。“可燃冰”的发现让陷入能源危机的人类看到了希望。   早在19世纪30年代,“可燃冰”即进入人类视野。1965年,苏联首次在西西伯利亚永久冻土带发现“可燃冰”矿藏,并引起多国科学家关注。率先开始勘测研究的是日本,如今,已拥有7口钻井,属于领先水平。美国则从2000年起将“可燃冰”作为政府项目,与各大学和私营公司合作,进行勘测和实地研究。据称到目前为止,美国政府已花费超过1500万美元。另外,加拿大、印度、韩国、挪威等国也纷纷开始投入勘探项目。   目前,世界上已经有30多个国家和地区开展“可燃冰”的研究勘探。我国于2002年同时启动海域和陆域“可燃冰”的研究和勘探,于2007年在南海发现了“可燃冰”。   据介绍,我国“可燃冰”的资源潜力为803.44亿吨油当量,仅占全球资源量的0.4%。接近于我国常规石油资源量,约是我国常规天然气的2倍。   “不放过任何一个地质信息”   事实上,“可燃冰”在我国陆域的“现身”可以追溯到40多年前,但由于种种原因,这种神奇能源在过去很长时间里与人们擦肩而过。   青海省木里地区地势高耸,群山连绵。这里海拔4100米左右,高寒缺氧、气候恶劣,然而却蕴藏着丰富的煤炭资源。据了解,有多家地勘单位自上世纪60年代以来在这一带冻土区从事勘查时,就多次发现不明气体,但均未做进一步研究。   据“可燃冰”项目负责人之一——中国煤炭地质总局青海煤炭地质105队队长、总工程师、教授级高工文怀军介绍,这一带“可燃冰”的发现最早可以追溯到2004年。这年11月,105队在这里进行煤炭勘查时,钻孔内开始涌出不明气体,点火燃烧,由于气体涌出量很大,影响到钻探施工,迫使这个钻孔因未见到可采煤层而报废。   但是地质人员并没有放过这一现象,那一瞬间,“可燃冰”这一名词在他们脑海中如灵光闪过。他们采集了这种气体进行分析,对涌气的孔段做了详实的记录,积累了可靠的原始地质资料。   地质工作者思考的是:这种气体和过去多次遇到的煤层气是否一样?抑或,它是一种新的尚不了解的物质?或者,它就是传说中的“可燃冰”?!他们期待着再次与这种神秘气体的相遇。   2006年5月,105队再次在这一地区进行煤炭勘查,又发现类似不明气体。地质人员细心观察发现,这种气体的涌出孔段不在煤层中,可以确定不是煤层气。那么它是什么呢?他们采样化验发现,这次发现气体的成分与前次大致接近。   之后,105队请中国地质科学院勘探技术研究所张永勤、中国科学院矿产资源研究所祝有海等权威专家就上述情况进行了交流、探讨,大家一致认为,该地区可能存在“可燃冰”。   2008年开始,105队与中国地质科学院资源所、勘探所共同合作开展《青藏高原冻土带天然气水合物调查评价》项目。11月5日,首次发现含天然气水合物岩心段,这一成果得到了国内外专家的学术认定。   在此基础上,国土资源部2009年又部署了一批钻探实验井,6月再次钻获“可燃冰”实物样品,经当今世界上最先进的激光拉曼光谱仪检测,显示出标准的“可燃冰”特征光谱曲线。此后施工中均发现“可燃冰”。   从2004年发现疑似“可燃冰”,到2006年基本确定“可燃冰”的存在,再通过2008—2009年的工作,经钻探取得样品,通过测试证实了在高海拔冻土区存在“可燃冰”的事实。   文怀军分析说:木里地区“可燃冰”是煤层气的水合物。其成矿机理大致是:煤层气向上溢散,而上面有冻土层的覆盖,在高压、低温的条件下二者形成“可燃冰”。它的成分除了甲烷,还有少量乙烷、丙烷等气体,是一种“新型可燃冰”,非常值得研究。   “可燃冰”在青海的发现,为我国增加了一个重要的新矿种,对我国战略能源意义重大。更有专家认为,“可燃冰”的发现可媲美当年发现大庆油田。   国土资源部总工程师张洪涛初略估算,我国陆域“可燃冰”远景资源量至少有350亿吨油当量,可供中国使用近90年,而青海省的储量约占其中的1/4。   克服高原极端天气条件   “在一定意义上,正是每一个地质工作人员在每一次的勘查中都坚持了‘对任何地质信息不放过’的认真工作态度,为‘可燃冰’发现奠定了基础。这一点来说,‘105队’木里项目组全体地质工作人员功不可没。”   文怀军感慨地说:“‘可燃冰’项目之所以能取得重大突破,不仅是各级领导、各个部门关心支持的结果,更是项目组成员及各协作单位团结拼搏、共同努力的结果,是集体智慧的结晶。”   自2003年以来,105队一直奋战在木里地区,克服了高寒缺氧、气候条件极端恶劣且装备落后、缺少后勤保障、生产条件差的不利因素。白天在风雪交加中紧张的卸车、立塔,晚间围着火炉卧雪观天,苦等黎明,头痛、胸闷、气短、腿肿各种高山反应对他们已成家常便饭……   凭着战胜一切困难的信心和勇气,这些高原地勘人不仅战胜了自然,也战胜了自我,被誉为“特别能吃苦、特别能战斗,特别能团结、特别能忍耐、特别能奉献”的“高原铁军”。   说起这个,105队的当家人——队长文怀军有一肚子的苦水:“七八月都下雪,把帐篷都压塌了。”但就是在这样艰苦的生产、生活条件下,来自各地的科学家、专业技术人员和施工人员,齐心协力、不辱使命,用“小米加步枪”的干法,仅用较少的资金投入,成功实现了我国陆域“可燃冰”的重大发现,是一个典型的投入少、产出大的项目。   据了解,105队1950年建队,1965年从吉林省成建制调入青海。他们提交的各类煤炭资源储量高达38亿吨,占青海已探明储量的74%。长期的地质工作,使他们积累了大量的基础地质资料,掌握了该地区的地层沉积和构造规律,同时培养了一批具有专业水平的各类技术人员,为“可燃冰”的重大发现提供了技术资料和队伍等多方面的保障。   青藏高原蕴藏神奇宝藏   青海之所以成为我国陆域“可燃冰”的首个“现身地”,与这里独特的地理地貌环境有密切关系。   首先,青海有着面积广、厚度较大的冻土带资源,为“可燃冰”的存在提供了地质条件。   其次,青海木里有着丰富的煤炭资源,为“可燃冰”的形成提供了可能的资源条件。   第三,青海木里的交通条件和后勤保障措施是我国大面积冻土带地区中条件较好的,这为“可燃冰”发现提供了有力支持。   文怀军说,青海木里煤田含“可燃冰”岩层段埋藏浅,只有130-300多米,这为“可燃冰”开采带来很大有利条件。并且这里的冻土层较薄,只有80-120米,也为将来的工程和科研带来极大便利。“‘可燃冰’的开发有望在这里取得突破。”   “不过,这将是一个比较漫长的过程。”文怀军说,因为“可燃冰”开采面临的环保问题较为严峻,需要研究探索如何既能开发利用,又不伤害环境。特别是在生态脆弱的青藏高原。   神奇的大自然,蕴藏着奥秘无限,等待着人类的科学探索。探索无限,人类的希望也无限。
  • 【药物一致性评价热潮】10种热门品种!
    参比制剂是指用于仿制药质量和疗效一致性评价的对照药品,通常为被仿制的对象,如原研药品或国际公认的同种药物。参比制剂应为处方工艺合理、质量稳定、疗效确切的药品。 随着药物一致性趋势不断的越演越烈,一些热门的药物也开始被各大医疗企业争相进行检测审核,cato归纳了近期一致性参比制剂备案前10品种的杂质列表 。 第一种:通用名:克拉霉素英文名:Clarithromycin主成分化学名:6-O-甲基红霉素主成分结构式:(CHP2015)主成分分子式:C38H69NO13主成分分子量:747.96主成分cas登记号:81103-11-9 品种简介:克拉霉素是红霉素的衍生物,为半合成抗生素。20世纪80年代初由日本大正公司开发成功,并以商品名Clarith注册。尔后,大正公司首先将其技术转让给美国雅培公司生产 1990年在爱尔兰、意大利上市。1991年在日本获批上市。1991年10月获FDA批准上市,商品名Biaxin,1993年以Klacid在中国香港上市,在欧洲和亚洲的商品名为克拉仙,已在全球50多个国家上市,市场用量稳步增长,并在临床中发挥了重要作用。克拉霉素剂型主要为片剂、颗粒剂或混悬剂,目前生产的剂型还有分散片、缓释片、注射剂和复方制剂。目前为WHO和多个国家的基本药物。第二种:通用名:阿莫西林英文名:amoxicillin主成分化学名:(2S,5R,6R)-3,3-二甲基-6-[(R)-(-)-2-氨基-2-(4-羟基苯基)乙酰氨基]-7-氧代-4-硫杂-1-氮杂双环[3. 2. 0]庚烷-2-甲酸三水合物 主成分分子式:C16H19N3O5S?3H2O主成分分子量:419.46主成分cas登记号:61336-70-7 品种简介:阿莫西林是青霉素类半合成抗生素,原研公司为葛兰素史克公司,最早于1972年上市,商品名为AMOXIL。 第三种:通用名:头孢拉定英文名:Cefradine主成分化学名:先锋瑞丁、头孢拉丁、头孢握定、头孢雷定、己环胺菌素、头孢环己烯、环己烯胺头孢菌素、环烯头孢菌素。主成分分子式:C16H19N3O4S主成分分子量:349.40主成分cas登记号:38821-53-3 品种简介:头孢拉定属于头孢菌素类抗菌药物,且为第一代头孢菌素,对不产青霉素酶和产青霉素酶金葡菌、凝固酶阴性葡萄球菌、A组溶血性链球菌、肺炎链球菌和草绿色链球菌等革兰阳性球菌的部分菌株具良好抗菌作用。厌氧革兰阳性菌对本品多敏感,脆弱拟杆菌对本品呈现耐药。耐甲氧西林葡萄球菌属、肠球菌属对本品耐药。本品对革兰阳性菌与革兰阴性菌的作用与头孢氨苄相似。本品对淋球菌有一定作用,对产酶淋球菌也具活性;对流感嗜血杆菌的活性较差。第四种:通用名:头孢氨苄英文名:Cephalexin主成分化学名:头孢菌素Ⅳ、先锋霉素Ⅳ、头孢力新、苯甘孢霉素、西保力、头孢立新主成分分子式:C16H17N3O4S主成分分子量:347.39主成分cas登记号:15686-71-2 品种简介:头孢氨苄,抗生素\β-内酰胺类\头孢菌素类。它能抑制细胞壁的合成,使细胞内容物膨胀至破裂溶解,杀死细菌。 第五种:通用名:氨氯地平英文名:Amlodipine主成分化学名:3-乙基-5-甲基-2-(2-氨乙氧甲基)-4-(2-氯苯基)-1,4-二氢-6-甲基-3,5-吡啶二羧酸酯苯磺酸盐主成分分子式:C20H25N2O5ClC6H6O3S主成分分子量:567.1主成分cas登记号:111470-99-6 品种简介:氨氯地平,钙离子拮抗药,可用于治疗各种类型高血压(单独或与其他药物合并使用)和心绞痛,尤其自发性心绞痛(单独或与其他药物合并使用)。氨氯地平的作用是通过松弛在动脉壁的平滑肌,降低总外周阻力从而降低血压;在心绞痛时,氨氯地平增加血液流向心肌。本品对肾脏有一定的保护作用。其制剂有苯磺酸氨氯地平片、甲磺酸氨氯地平片、马来酸左旋氨氯地平片等。 第六种:通用名:二甲双胍英文名:METFORMIN HYDROCHLORIDE TABLETS主成分分子式:C4H11N5?HCL主成分分子量:165.63主成分CAS号:1115-70-4 品种简介:二甲双胍为目前应用最广泛的糖尿病一线用药。该化合物最早于1922年开发,后期由Jean Sterne医师重新开发并于1957年在法国上市用于治疗2型糖尿病,1958年在英国上市,1972年在加拿大上市,并最终于1994年获得FDA批准,1995年上市。申请机构为施贵宝。二甲双胍口服制剂有速释片、缓释片、口服溶液,其中速释片有250mg、500mg、850mg、1g。缓释片规格为500mg、750mg、1g。我国国产上市的二甲双胍片以250mg为主。原研本地化的产品有中美上海施贵宝公司的格华止片,规格有500mg、850mg。国内有山德士(中国)制药有限公司的二甲双胍片上市,规格为250mg。进口二甲双胍片有 Alphapharm Pty Limited的迪化唐锭片上市,规格为250mg。 第七种:通用名:布洛芬英文名:Ibuprofen主成分化学名:2-(-4-异丁基苯基)丙酸;异丁苯丙酸,异丁洛芬,芬必得,α-甲基-4-(2-甲基丙基)苯乙酸主成分分子式:C13H18O2主成分cas登记号:15687-27-1 品种简介:布洛芬是世界卫生组织、美国FDA唯一共同推荐的儿童退烧药,是公认的儿童首选抗炎药。布洛芬具有抗炎、镇痛、解热作用。治疗风湿和类风湿关节炎的疗效稍逊于乙酰水杨酸和保泰松。适用于治疗风湿性关节炎、类风湿性关节炎、骨关节炎、强直性脊椎炎和神经炎等。 第八种:通用名:奥美拉唑
  • 紧急采购:HM5 血液分析仪及VS2 生化分析仪试剂
    国外某企业委托湖南某机构寻找中国优质厂家,采购,HM5 血液分析仪和 VS2 生化分析仪的试剂,具体明细如下:生化分析仪:试剂,与 Abaxis VetScan VS2 分析仪完全兼容描述:内部装有冻干试剂珠的塑料盘用于在 VetScan VS2 兽医分析仪中分析动物的肝素化血液、血清或血浆。该盘用于量化丙氨酸氨基转移酶(ALT)、白蛋白(ALB)、磷酸酶(ALP)、淀粉酶(AMY)、总钙(CA)、肌酐(CRE)、球蛋白(GLOB)、葡萄糖(GLU)、磷( PHOS)、钾 (K)、钠 (NA)、总胆红素 (TBIL)、总蛋白 (TP) 和尿素 (BUN)。光盘是单独的,不能重复使用。组成:该圆盘由封闭的比色皿和装有固体球形试剂珠的容器组成。试剂以冻干形式处于稳定且低危害的状态。珠子中的试剂浓度是无毒的,不会对人类和环境产生不利影响。包括酶、防腐剂和稳定剂在内的活性物质浓度小于1%;该圆盘包含一个容器,其中的稀释剂含有少于 0.5% 的水和浓度低于 1% 的防腐剂。面板中存在的化学物质:D-manit - 不超过 16.5%聚乙二醇 8000 - 不超过 8.8%聚乙二醇 2000 - 不超过 6.1%三氰酸钠 - 不超过 5.8%三(羟甲基)氨基甲烷 - 不超过 5.7%聚乙二醇 3400 - 不超过 5.6%葡聚糖 70 不超过 4.9%氯化钠 - 不超过 3.7%氢氧化锂,一水合物 - 不超过 2%五水硫酸铜 - 不超过 1.1%肌醇浓度 - 不超过 1%。血液分析仪试剂:用于血液分析仪试剂描述容量溶剂,稀释剂一种等渗盐溶液,用于稀释全血样本并在测试之间冲洗分析仪流体系统。9 升洗涤,清洗剂用于对某些物种和某些清洁程序进行分析。500 毫升清洁剂、净化剂用于液体系统清洁过程300 毫升溶解、裂解剂它用于获得三组分白细胞形式的溶血物并确定白细胞和血红蛋白的总数。300 毫升溶解、裂解剂 2用于全血稀释和白细胞差异溶血,以按体积将嗜酸性粒细胞与其他白细胞分离。 用于测定嗜酸性粒细胞、%嗜酸性粒细胞、嗜碱性粒细胞和%嗜碱性粒细胞。800 毫升相关图片:委托中方洽谈机构:公司名称:湖南中星科技有限公司姓名:樊占财 联系方式:15388055177
  • 制药界晶型专家共襄盛举,赛默飞世尔科技赞助晶云药物第二届晶型专题培训
    由苏州晶云药物科技有限公司主办的第二届药物晶型专题技术培训于2011年9月16日在上海张江药谷圆满闭幕,本次培训共吸引了来自全国各地80多家制药企业近200名科研和管理人员参加。 药物晶型一直是国际制药业关注和致力研究的重点问题。近年来,随着我国药品审评机构对药品注册管理的进一步完善,国内制药业逐渐认识到药物晶型研究的重要性和我们与国际制药界之间的差距。为了进一步提高国内制药业对药物晶型研究的认识,解决当前药物研发过程中出现的困难和问题,共同推进国内制药行业整体水平的提高及促进行业内深入广泛的交流,晶云药物今年3月成功举办了国内首届药物晶型专题培训,收到业界同仁一致好评。应广大药界客户的要求,经过一段时间的精心筹备,晶云药物9月在上海张江药谷再次举办培训。 晶云药物为此次培训精心设计了一系列适合制药界晶型药物研究者学习和讨论的课程。本次培训的内容涵盖了药物多晶型研究,药品质量研究工作中晶型问题,水合物晶型,无定形药物,药物共晶,药物结晶工艺的开发和优化,结晶工艺应用于手性药物分子的提纯和优化,固态核磁共振在药物晶型研究中的应用等一系列关于药物晶型研发方面的精彩报告。 作为此次会议的赞助商,赛默飞世尔科技分子光谱拉曼产品经理张衍亮博士应邀做了DXR显微拉曼光谱仪在药物晶型研究方面的技术与应用。凭借不断创新傅立叶红外与拉曼光谱仪发展名闻于世的基础,赛默飞世尔推出的最新一代 DXR激光拉曼光谱仪用于高速筛选多晶形物和重结晶研究。其优异光机电自动化设计使拉曼光谱仪具有高度智能自动化,并且仪器设计超级稳定,彻底解决了拉曼光谱使用难问题。任何人都可以自行更换激光器及光栅, 并且任何人都可以非常容易进行激光光路与拉曼信号的准直,而无需打开光谱仪。 本次培训也特别邀请到了国家药检所,上海市、浙江省和苏州市药检所以及国内知名科研院校的十几位晶型研究领域的专家和领导。在大家的共同参与和互动下,培训效果显著,两天的培训还安排了专家讨论,由药监所,研究院,高校和制药企业的晶型研究和结晶工艺开发专家共同参与讨论,和学员一起对中国药物晶型研究的现状和未来,挑战和前景展开了热烈的讨论。专家们就学员们关心的热点问题,包括如何提高中国仿制药质量,缩小与国外原研药之间的差别,如何培养中国药物晶型研究的后备人才等发表了自己的看法。专家们一致认为,培养药物固态研发和药物结晶工艺专业人才任重而道远,需要通过药监所,研究院,高校和制药企业的各种形式的紧密合作来共同推动。晶云首席执行官陈敏华博士表示,晶云正考虑在一些高校设立药物晶型研究和药物结晶工艺开发的奖学金,以鼓励更多的优秀学生参与药物晶型的研究工作,不断提高中国制药界固态药物研发的整体实力。晶云将会为这些优秀学生提供实习和工作机会,并为这些学生开放其处于世界先进水平的的药物晶型研究和结晶工艺开发技术平台。 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们致力于帮助我们的客户使世界更健康、更清洁、更安全。公司年销售额接近 110 亿美元,拥有员工约37000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与工业过程控制行业。借助于Thermo Scientific 和 Fisher Scientific 两个首要品牌,我们将持续技术创新与最便捷的采购方案相结合,为我们的客户、股东和员工创造价值。我们的产品和服务有助于加速科学探索的步伐,帮助客户解决在分析领域所遇到的各种挑战,无论是复杂的研究项目还是常规检测或工业现场应用。欲了解更多信息,请浏览公司网站: www.thermofisher.com。 关于晶云药物(www.crystalpharmatech.com) 晶云药物科技有限公司是中国首家专注于药物晶型研究的公司,为全球各制药公司提供药物晶型研究和药物固态研发领域的专业技术服务。公司总部设立在苏州工业园区生物纳米园,在美国新泽西州设有分部。领导团队由中美科学家及管理人员共同组成,用国际化的先进理念领导和管理公司。核心团队成员过去在美国默克,美国百时美施贵宝以及罗氏等全球领先的制药公司直接负责和从事药物晶型研究和药物固态研发,共积累了在该领域40多年的研发和管理经验,曾共同负责和管理过超过200个药物分子的晶型研究,拥有40多项药物晶型专利,在各类国际学术期刊发表过100多篇论文。研发团队成员晶型研究经验丰富,技术力量雄厚,其中海外博士约占30%,硕士占50%,学士占20%。团队利用掌握的核心技术开发出中国在药物晶型研究及药物固态研发领域的首个高新技术平台,并通过该平台为全球各制药公司提供该领域的高级技术研发服务。公司拥有享有自主知识产权的高新技术和高新仪器,不仅保证技术平台填补了国内在该领域的空白,而且使其处于国际领先地位。公司的业务集中在以药物的固态信息为中心的专业领域,包括原料药及其中间体的盐类,共晶和多晶的筛选和评估,原料药和制剂的专业表征和评估,药物结晶工艺的优化和放大,临床前药物制剂的研发,以及上述相关领域内自主知识产权技术和产品的开发,高级技术咨询及其培训等。凭借晶云团队丰富的经验,高质量和高效率的专业服务,自2010年成立以来已经与全球四十多家制药企业建立合作关系,成为其在药物晶型研究和药物固态研发领域的紧密合作伙伴。随着晶云的不断发展,晶云将会一如既往秉持客户至上的服务理念,力求为越来越多的客户提供始终领先于科技前沿的高级技术服务。
  • 191个项目!新疆第二批自治区重大科技专项、重点研发任务专项、自然科学基金拟立项项目公示
    关于对2022年第二批自治区重大科技专项、重点研发任务专项、自然科学基金拟立项项目进行公示的通知各有关单位:2022年第二批自治区重大科技专项、重点研发任务专项、自然科学基金已完成项目受理、形式审查、项目初评、自治区科技计划管理委员会审议、项目实施方案论证等立项环节。现根据《新疆维吾尔自治区科技计划项目管理办法》(新科规〔2019〕1号)的要求,将拟立项项目进行公示。公示时间自2022年9月16日至22日(公示期为5个工作日)。在此期间,任何单位或者个人对公示拟立项项目的承担(依托)单位、项目负责人等内容存在异议的,均可向自治区科技厅资源配置与管理处提出书面意见,并提供必要的证明材料。以单位名义提出异议的,应当加盖本单位公章;个人提出异议的,应当在异议材料上签署真实姓名和联系方式。超出期限的异议不予受理。自治区重大科技专项、重点研发任务专项联系人及联系电话:高新处:魏迪雅3836818农村处:吴林蔚3828086社基处:米热尼沙3838787自治区自然科学基金项目联系人及联系电话:社基处:麦尔哈巴马木提、米热尼沙3838787资源配置与管理处:陈龙忠3836149诚信监督电话:0991-3652231、3839835通讯地址:乌鲁木齐市北京南路科学一街353号邮政编码:830011附件:1. 2022年度第二批自治区创新环境(人才、基地)建设专项—自然科学基金项目拟立项项目表 2. 2022年度第二批自治区重大科技专项拟立项项目表 3. 2022年度第二批自治区重点研发任务专项拟立项项目表 自治区科技厅2022年9月16日2022年第二批自治区创新环境(人才、基地)建设专项—自然科学基金地州科学基金项目拟立项项目表序号项目名称申报单位申报人1青少年抑郁症伴自我伤害的团体辩证行为治疗对照研究阿克苏地区第四人民医院朱军2基于分子流行病学调查阿克苏地区牛梨形虫病及其治疗效果评价阿克苏地区动物疫病控制诊断中心李佳3石榴花活性多糖治疗奶牛乳房炎作用研究阿克苏地区动物疫病控制诊断中心努尔艾力麦提尼亚孜4新疆库拜煤田深部煤层气、煤系气、砂岩气资源潜力评价及开发技术研究拜城县非常规能源科技开发有限责任公司李祥5衰老-炎症-主动脉瓣膜钙化的分子网络机制研究博尔塔拉蒙古自治州人民医院冯俊6长链非编码RNA-LincIN/miR325轴调控磷酸化应激蛋白-STIP1诱导肾癌细胞向骨转移细胞分化的机制研究博尔塔拉蒙古自治州人民医院王江7左房应变自动定量成像技术评价无心血管疾病症状早期高血压患者左房功能的研究昌吉回族自治州人民医院马丽8基于肌骨超声和血清细胞因子技术探讨金牛芪斛远痹汤治疗湿热痹阻型类风湿关节炎的作用昌吉回族自治州中医医院黄勇9铁调素与慢性心力衰竭的相关性分析哈密市中心医院马丽娟10人胚胎干细胞微泡中m6A甲基化酶METTL3诱导视网膜 Müller细胞分化对视网膜变性疾病治疗的研究和田地区人民医院冯强11基于转录组学整合蛋白质组学的罗补甫克比日丸治疗更年期综合征作用机制研究和田维吾尔药业股份有限公司吴乐和12高血压达标中心管理模式在医共体中的应用与研究吉木萨尔县人民医院张瑞红13西北戈壁地区急性缺血性脑小血管病的责任血管类型及机制吉木萨尔县人民医院朱仁敬14喀什地区代谢相关脂肪性肝病患者与健康对照肠道菌群差异性研究喀什地区第一人民医院木也赛尔麦麦提依明15BRMS1通过PI3K/AKT/mTOR信号通路(自噬)影响多发性骨髓瘤进展的机制研究喀什地区第一人民医院努尔阿米娜依明尼亚孜16亳火针点刺结合拔罐放血治疗急性痛风性关节炎的疗效研究喀什地区第一人民医院杨霞17经阴道三维超声自由解剖成像联合容积对比成像技术诊断宫腔粘连患者应用价值的研究喀什地区第一人民医院高晶18乳腺动态增强磁共振(DCE-MRI)影像组学特征与乳腺癌分子分型相关性研究喀什地区第一人民医院阿迪力阿布来提19床旁超声快速判断鼻空肠营养管置管成功的临床研究喀什地区第一人民医院易绍龙20基于Kim分型的脑白质病变合并认知功能障碍患者 神经影像结合血液生物标记物纵向变化在南疆地区多民族比较的初步研究喀什地区第一人民医院胡瑞红21南疆地区首发抑郁症患者肠道菌群结构及抗抑郁治疗对肠道菌群的影响喀什地区第一人民医院热孜亚• 阿不来孜22小儿肾结石术前、术后检测生物标记物尿NGAL水平对诊断和评估AKI的作用和早期预警研究喀什地区第一人民医院哈日热依丁23振幅整合脑电图对窒息早产儿的远期神经行为的预测作用研究喀什地区第一人民医院布伟麦尔也木玉苏甫24GDF15对Erastin诱导的宫颈癌铁死亡的作用及机制研究喀什地区第一人民医院夏木西卡玛尔• 阿布都克热木25ESAT-6通过NEAT1/miRNA-125b/TNF-α通路诱导巨噬细胞凋亡的机制研究喀什地区第一人民医院祖力皮喀尔阿卜杜热合曼26miR-370-3p通过靶向调控TLR4-NLRP3-caspase-1细胞焦亡途径参与肺结核进展的作用和机制研究喀什地区第一人民医院刘雯27基于4D-Lab-free技术探讨结核性胸腔积液与恶性、炎性胸腔积液患者差异蛋白的研究喀什地区第一人民医院排尔达• 艾呢28基于行为转变理论的延续性护理对慢性心力衰竭患者的干预效果喀什地区第一人民医院张译友29慢性痛风降尿酸药物的综合评价研究克拉玛依市中心医院赵江林30下调miR183在米托蒽醌诱导HepG2发生免疫原性死亡中的价值研究克拉玛依市中心医院菅辉玲31果园生草对库尔勒香梨园生态环境和果实品质的影响研究库尔勒市香梨研究中心张峰32新疆地区二级医院医疗质量安全管理指标体系建设与实证研究皮山县人民医院郭阿娟33新疆荒漠肉苁蓉复方咀嚼片的制备及抗疲劳药效学研究沙雅县人民医院王郑园34天山不同海拔高度雪岭云杉树冠对降雨分配的比较研究天池博格达生态环境监测站徐柱35血浆蛋白Z、蛋白Z依赖蛋白酶抑制剂检测在预测妊娠期高血压疾病的可行性研究乌鲁木齐市妇幼保健院冯凯娣36企业科研诚信行为规范工作指引的研制乌鲁木齐市技术创新研发与科技成果转化中心文洪江37采用宏基因技术对新疆地区人群不同饮食结构间慢性萎缩性胃炎胃内菌群的构成变化及应用研究乌鲁木齐市友谊医院傅海燕38PTPRF介导FYN促进甲状腺乳头状癌颈部淋巴结转移的机制研究乌鲁木齐市友谊医院张亮39肥大细胞上IgE高亲和力受体交联糖基化N-甘氨酸化NPC2介导过敏性哮喘的机制研究乌鲁木齐市友谊医院刘甚红40MRI联合经直肠腔内超声在肛瘘术前诊断中的应用价值乌鲁木齐市中医医院蔡玉新41C-MYC 在特发性肺纤维化疾病进展中的作用和机制研究乌恰县人民医院秦辉42miR-324-3p/PGAM1信号轴通过糖代谢重编程调控骨肉瘤发展的机制研究乌恰县人民医院蒋羽清43单侧双通道内镜技术与后路椎间盘镜技术在治疗腰椎管狭窄症的前瞻性随机对照研究新疆阿克苏地区第一人民医院杨晨44宛氏拟青霉提取物对氯化钠胁迫下加工辣椒幼苗生长及生理影响的研究新疆巴音郭楞蒙古自治州农业科学研究院叶远荣45低温胁迫对海岛棉种子萌发期的影响新疆巴音郭楞蒙古自治州农业科学研究院范阿棋46普惠金融约束下的新疆中小企业信贷决策方法新疆昌吉职业技术学院陈佳佳47马铃薯黑痣病病原菌分离鉴定及防治机理研究新疆国亮农业科技有限公司曹洪梅48没食子提取物对金黄色葡萄球菌生物膜的影响及分子机制研究新疆奇沐医药研究院(有限公司)魏玉洁49基于生态气象指数的阿克苏地区生态旅游舒适度评价指标研究新疆维吾尔自治区阿克苏地区气象局陈丹50内毒素蓄积引起肠道菌群和黏液屏障改变致慢性低度炎症的研究新疆维吾尔自治区阿克苏职业技术学院严杜建51哈密市短时强降水预报预警指标研究新疆维吾尔自治区哈密市气象局白松竹52急性心肌梗死患者急诊PCI术前血清miR-21及VCAM-1表达水平与预后相关性研究新疆维吾尔自治区喀什地区第二人民医院吐地海尼木阿布都热依木53喀什地区老年脑卒中患者衰弱的行动研究新疆维吾尔自治区喀什地区第二人民医院邹燕萍54西昆仑山北坡高山降水梯度变化特征及水汽来源研究新疆维吾尔自治区喀什地区气象局玛依热艾海提55掺风积沙水泥稳定土工程性能研究新疆应用职业技术学院王海56文化润疆背景下融入花文化元素的植物压花旅游文创作品设计与制作新疆应用职业技术学院杨逢玉57二代测序技术用于单基因糖尿病的筛查及家系研究。叶城县人民医院吾哈力吐鲁甫58伊犁州犊牛腹泻病快速诊断技术的研究应用伊犁哈萨克自治州动物疾病控制与诊断中心王楠59伊犁地区类风湿关节炎诊疗现况调查及研究伊犁哈萨克自治州中医医院田孟江60皮山多胎红羊在伊犁州直不同饲养方式下的适应性和生产性能研究伊犁职业技术学院王骁61基于水热调控方法的新疆阿魏优质种苗繁育技术研究伊犁职业技术学院刘忠权62碱性成岩环境下富火山碎屑砂砾岩中次生孔隙的形成机理研究中国石油大学(北京)克拉玛依校区牛君63基于沉淀/溶解原理的油田阻垢纳米缓释剂的研制中国石油大学(北京)克拉玛依校区明惠64非均相电芬顿污水处理技术中功能化阴极的制备及催化性能研究中国石油大学(北京)克拉玛依校区马金贵65水合物法提浓LNG尾气中氦气研究中国石油大学(北京)克拉玛依校区李璟明
  • 欧盟发布首批CORAP物质评估结果
    20日消息,欧洲化学品管理局(ECHA)公布首批欧盟滚动行动计划(CoRAP)物质评估结果,各成员国共完成36个物质的评估。根据评估结果,有环氧乙烷、磷酸三丁酯、甲苯二异氰酸酯、甲苯等4个物质不需要额外提供信息,而对于另外的32个物质评估成员国都已提交决议草案,要求注册人进一步提供危害、暴露等方面的信息以供评估。注册人可以对成员国的要求提出自己的意见。32个需提供进一步信息的物质是四氯化碳、甲醇、氯甲烷、双酚A、铃兰醛、1-萘氨基苯、萘烷、二苯胍、对甲苯甲醚、正己烷、二乙醇胺、1-癸醇、三溴苯酚、1,4-苯二酚、橡胶硫化促进剂PZ、异辛酸、咪唑、亚磷酸二甲酯、N-(1,4-二甲基戊基-N’-苯基对苯二胺、N,N’ (1,4-二甲基戊基)对苯二胺、偏苯三酸三辛酯、三氯生、奥克立林、水杨酸己酯、二氧化硅、异辛烷、苯酚(甲基苯乙烯)、十溴二苯乙烷、C14-17氯代烃、4-甲基-2-(2-甲基丙基-2H-四氢吡喃-4-醇、2-萘酚苄基醚、2,3,3,3-四氟-1-丙烯等。   相关注册人有30天的时间对决议草案中的信息要求给出评议,同一个物质的多个注册人则需要自行协调各方意见并将统一的意见提交给ECHA。   物质的CAS号、EC号、评估成员国等详细资料请登陆http://www.echa.europa.eu/view-article/-/journal_content/title/first-substance-evaluation-results-further-information-needed-on-32-substances查询。
  • 2019万元仪器均“单一采购” 高校拒绝国产为哪般?
    p span style=" font-family: 楷体, 楷体_GB2312, SimKai "    strong 仪器信息网讯 /strong 11月至今,大连理工大学在中国政府采购网上连续发布了7篇采购公告,预算2019万元采购高分辨拉曼光谱仪、X射线光电子能谱仪、气相色谱-四极杆飞行时间高分辨质谱联用仪、流式细胞仪等多台仪器设备。仪器信息网编辑发现,以上项目均为“单一来源”采购,且无一国产入选。 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   高校为何青睐单一品牌?来看看大连理工大学给出的原因及相关说明: /span /p p    strong 大连理工大学流式细胞仪单一来源公告 /strong /p p strong   span style=" color: rgb(255, 0, 0) "  预算金额:134.62万元(人民币) /span /strong /p p   大连理工大学精细化工国家重点实验室拟开展用于细胞中的荧光探针方面的研究,主要工作是研发具有特异性好,串色少,样品损伤小的新一代高效荧光探针,使其可以应用于细胞的标记表达,在癌症治疗方面发挥重要作用。 /p p   基于该项目研究内容,流式细胞仪购置需求如下: /p p   1. 声波和流体动力学双重聚焦 /p p   2. 4个激光器能检测14个荧光通道以上 /p p   3. 正位移式注射进样 /p p   4. 单一软件具有多种荧光补偿功能 /p p   5. 一键开关机,清洗消毒程序自动进行。 /p p   经调研,国内无此类实验设备。国际上可以提供同类产品的主要有Life,BD,Beckman等几家公司。Life公司的Attune NxT采用声波和流体动力学双重聚焦技术,其分析速度是传统流式仪器的10倍,并且在最高流速下仍能保证最佳的灵敏度 配置4根大功率固态平顶激光器,保证最佳的激发效率,配置16个独立光学检测器,能检测14个荧光通道 正位移式注射泵定量进样,无需辅助微球直接进行绝对计数 软件与硬件完美兼容,软件除了可以操控仪器内部各个硬件,还具有强大的分析功能,支持线上补偿、线下补偿、单管补偿、样本补偿、自动补偿等多种补偿方式 内置清洗液和关机液,一键式开关机,清洗消毒程序自动进行。能够满足采购需求。BD 公司的LSRFortessa非常局限的流体动力学聚焦技术,在做肿瘤细胞的凋亡等实验中,非常容易造成机器堵塞 4根高斯分布的激光器,激光光斑能量分布较散,荧光的激发效率较差 正压式进样设计,造成样品测试时噪音巨大,设备体积也大 单一软件只能提供在线,离线补偿两种补偿模式 无自动关机清洗程序。不能满足采购需求。Beckman公司的CytoFLEX S采用流体动力学聚焦和蠕动泵式上样的组合,极其容易造成样品堵塞的情况 非常规的激光器仪器造成设备光学灵敏度和分辨率均低于业界标准。不能满足采购需求。 /p p    span style=" color: rgb(255, 0, 0) " 因此,只有Life的Attune NxT流式细胞仪能够满足本项目的技术需要,只能采用单一来源采购方式进行采购。 /span /p p    strong 大连理工大学气相色谱-四极杆飞行时间高分辨质谱联用仪单一来源公告 /strong /p p span style=" color: rgb(255, 0, 0) " strong   预算金额:188万元(人民币) /strong /span /p p   环境暴露组学成为近年来国际环境健康研究的前沿,其在筛选环境污染的生物标志物,识别污染物的代谢路径和毒性通路上具有优势,有助于全面剖析化学品环境暴露产生的有害效应。从我校环境学科建设的系统性和先进性角度,拟建设环境暴露组和代谢组学研究的基础平台,发展环境暴露组和代谢组学研究的相关技术,建设研究团队,为我校环境学科培育一个新的研究方向。 /p p   目前,在环境污染物暴露分析中,挥发性有机物、半挥发性有机物、持久性污染物众多,且大气、水、土壤和生物等环境基质复杂,未知组分众多(& gt 1000种),不仅需要正确定性,还需要准确定量,以评估环境污染物的环境风险。在实际检测过程中经常遇到基质干扰大、共流出严重、灵敏度不够、未知组分难以准确确认等分析难题。目前主流的分析仪器气相色谱-单四极杆质谱系统(GC-MS)对环境样品中复杂组分的分析能力有限,质量分辨率低,非常容易出现因结构性质相近(如苯类同系物),保留时间和定量离子相同导致错误的物质定性,定性错误也就意味着后续的定量都会存在重大错误。 /p p   为了有效提高环境样品分析中定性和定量的正确率和准确率,需要采用质量高分辨,数据采集速率快,质量精度高,检测灵敏的质谱系统才能保证对未知化合物的准确定性和定量。此外,单级质谱仪在对未知化合物进行定性分析后,无法再进一步提供对结构确证的分析手段,而二级质谱模式的质谱仪可以进一步对特征离子进行定性,也可以有效降低定性的错误,并提高定量的精度。因此,环境暴露分析需要具备以下性能指标的质谱系统: /p p   1、气相色谱-质谱系统,且具有二级串联质谱功能,如MS-MS或QTOF /p p   2、高质量分辨率:& gt 20000 FWHM@271.9867 m/z /p p   3、具有高分辨的环境污染物和农药的数据库。 /p p   通过系统调查整个色谱质谱分析仪器市场,目前只有气相色谱-四级杆串联飞行时间质谱仪(GC-QTOF)可以同时满足以上性能指标,该类仪器也是目前进行挥发性有机物、半挥发性有机物分析最有力的技术和设备。但我国国内尚无该类设备生产,也无法采用其他国产设备可以替代,需要购买进口设备。在进口产品中,市场上有串联质谱功能的质谱仪公司有安捷伦公司,热电公司,岛津公司和布鲁克公司。 span style=" color: rgb(255, 0, 0) " 但目前同时满足(1)具有飞行时间高分辨的能力,(2)具有串联质谱的功能,(3)具有高分辨的环境污染物和农药的数据库的只有安捷伦公司一家,只能采用单一来源采购方式进行采购。 /span /p p    strong 大连理工大学活体和组织快速多光子荧光成像系统采购项目单一来源公告 /strong /p p span style=" color: rgb(255, 0, 0) " strong   预算金额:360万元(人民币) /strong /span /p p   大连理工大学精细化工国家重点实验室拟开展活体及在体和组织以及细胞等多光子荧光探针方面的研究,主要工作是研发具有特异性好,串色少,样品损伤小的新一代高效荧光探针,使其可以应用于活体、在体、组织、细胞等多生命体结构的标记表达,在癌症治疗方面发挥重要作用。 /p p   对于生命体的荧光探针成像,尤其是活体及在体成像,由于研究对象处于成活状态,需要将活体或在体按照日常状态正立固定观察,这就需要采用正置性显微成像系统。需要快速在极短时间内完成成像,成像速度要求512× 512时常规扫描速度在15幅/秒以上,高速扫描512× 512时在30幅/秒以上,512× 32时在430幅/秒以上,并且需要所有扫描速度的扫描视野数相同。需要高效率的可以深层次成像的脉冲激光器等光源,要求所有激发光激光器全部是固体激光器,保证长使用寿命,要求激发光强度控制等级在0.1%级,且要有激发光强度反馈控制装置保证激发光强度的准确性和实验的可重复性。需要长工作距离的水介质物镜,并同时保证分辨率。生命体涵盖细胞,组织,在体,活体等形态,需要从宏观到微观,不同倍率的成像。需要高速度,高灵敏度,高分辨率的成像。 /p p   经调研,国内无法生产此类实验设备。国际上可以提供同类产品几家公司中,奥林巴斯公司此类设备的参数是常规扫描速度512× 512时在16幅/秒,高速扫描速度512× 512时在30幅/秒,512× 32时在438幅/秒,并且所有扫描速度的扫描视野数相同,均为18 配备高效率的可以深层次成像的MaiTai DeepSee固体脉冲激光器,激发光强度控制等级在0.1%级,并且有激发光强度反馈控制装置 25× 水介质物镜,工作距离是2.0 mm,NA值为1.05,同时保证水介质物镜的长工作距离和高分辨率。能够满足采购需求。其他公司提供的此类产品的常规扫描速度512× 512 时是7幅/秒,两种高速扫描模式,一种高速扫描速度512× 512时是28幅/秒,另一种高速扫描速度512× 512时是40幅/秒,但是不同扫描速度的扫描视野数不同,分别是20、13、7,无512× 32时参数(但512× 16时最高仅是428幅/秒) 激光器控制等级1%,无激发光强度反馈 有25× 水介质物镜,虽然工作距离是2.5 mm,但NA值只有0.95,分辨率不够。不能满足采购需求。另有其他公司同类产品常规扫描速度512× 512 时是13幅/秒,高速扫描速度512× 512 时是19幅/秒,无512× 32时参数(但512× 16时最高仅是430幅/秒) 激光器大部分是气体激光器,激光器控制等级1% 没有25× 水介质物镜,只有20× 水介质物镜,工作距离是1.7 mm,NA值为1.0,工作距离和分辨率均不够。不能满足采购需求。 /p p    span style=" color: rgb(255, 0, 0) " 因此,只有奥林巴斯公司的活体和组织快速多光子荧光成像系统产品能够满足本项目对扫描速度,激光器类型及控制精度,水介质物镜的工作距离和分辨率等技术要求的需要,只能采用单一来源采购方式进行采购。 /span /p p    strong 大连理工大学X射线光电子能谱仪项目单一来源公告 /strong /p p span style=" color: rgb(255, 0, 0) " strong   预算金额:620万元(人民币) /strong /span /p p   大连理工大学精细化工国家重点实验室拟采购一台X射线光电子能谱仪设备。该项目拟从事催化剂材料(高温、高压下催化剂的性能)、太阳能转换材料(研究钙钛矿材料、有机太阳能电池材料等组分及能带信息)、光电功能材料(OLED材料等)、碳素材料以及纳米材料(金属、金属氧化物、半导体材料)等研究工作对材料的结构、成分及各组成的化学状态进行深入解析,对有效利用清洁太阳能资源以及环境保护等方面具有重大意义。 /p p   该项目要求实验设备达到超高真空条件下(真空度优于5× 10-8 Pa)或者高温、高压条件下(1200K@7ba)实现材料表面(& lt 10nm)的元素组成(包含H元素)尤其是元素价态的定性及半定量的分析。这对于催化剂相关样品确定催化剂活性中心、半导体界面处的载流子复合中心及实现相应的缺陷钝化具有不可替代的作用。要求配套的紫外光电子能谱(UPS)和反射电子能量损失谱(REELS)附件能够对半导体的能带位置进行确定,从而指导高效光电转换器件的构建。多数样品表面成分与体相差异造成材料性能的差异,设备中所带的原位X射线荧光光谱仪(EDXRF)功能可对此类样品原位的进行表面和体相成分分析,可以解决此类样品的分析问题。 /p p   国内目前无厂家生产此设备,国际上目前主要有三家生产商:赛默飞世尔科技有限公司,日本岛津公司,日本Ulvac-Phi公司,其型号分别为EscalabXi+,Axis Supra,Versa Probe III。日本岛津公司、日本Ulvac-Phi公司两家生产的设备均无法实现EDXRF原位X射线荧光光谱仪功能,也无法实现同轴的REELS反射电子能量损失谱功能。无法满足大连理工精细化工国家重点实验室各种储氢能源材料、有机材料H元素测试,无法实现表面体相存在差异的材料的原位EDXRF测试实现精细解析。 /p p    span style=" color: rgb(255, 0, 0) " 因此,只有赛默飞世尔科技有限公司的ESCALAB Xi+型X射线光电子能谱仪产品能够满足本项目原位X射线荧光光谱和同轴REELS反射电子能量损失谱技术要求的需要,只能采用单一来源采购方式进行采购。 /span /p p    strong 大连理工大学超低温时间分辨电子顺磁共振波谱仪采购项目单一来源公告 /strong /p p span style=" color: rgb(255, 0, 0) " strong   预算金额:385万元(人民币) /strong /span /p p   大连理工大学精细化工国家重点实验室开展人工光合作用,染料敏化太阳能电池,有机光电转化,分子荧光探针,光催化材料,燃料电池和锂电池等方面的研究,对绿色能源和疾病诊断有重大意义。需要购买一台超低温时间分辨电子顺磁共振波谱仪(EPR)设备。鉴于该项目中涉及的研究对象中分子激发态自由电子的浓度含量非常低,存在的寿命也很短,要求EPR波谱仪具备超低温、高灵敏度和时间分辨等功能。性能指标要求液氦温度(3.8k),信噪比达到3000:1以上,时间分辨率达到ns级别。国内没有厂商能生产该类型的仪器。国外其他厂商提供的同类产品灵敏度约为420:1(信噪比),时间分辨是约1 ms,因此在灵敏度和时间分辨率这两项重要指标都达不到实验要求。而Bruker公司该两项指标:灵敏度是3000:1(信噪比),时间分辨是80 ns,达到我校科研测试要求。 span style=" color: rgb(255, 0, 0) " 因此只有布鲁克公司的E500电子顺磁共振波谱仪设备能够满足科研工作需求,特申请以单一来源方式采购该设备。 /span /p p    strong 大连理工大学体三维测速系统采购项目单一来源公告 /strong /p p   span style=" color: rgb(255, 0, 0) " strong  预算金额:187万元(人民币) /strong /span /p p   大连理工大学化工机械与安全学院拥有国家安监总局“石油化工爆炸机理和安全泄放技术科技研发平台”(全国仅15个),承担了国家科技重大专项、国家科技重点支撑计划等科研项目。为拓展研究领域,加强在工业介质爆炸与抑爆技术及装备、高效流体热功转换技术及装备、多相流热固耦合作用机理等方向上的科研实力,提升理论研究成果水平,提出购买此套实验设备。 /p p   鉴于此套设备需要应对的复杂特殊测试要求,以及使用目的和意义的重要性,购置的实验设备需要满足特定的技术指标要求。经过大量的国内外调研和用户走访,提出采用单一来源采购方式的主要原因有: /p p   (1)必须保证能够实现气体和液体的冷态流场、带有火焰的反应流场的测量与诊断,并保证在以后较长年限内仍具有一定的先进性和延续性。经过对体三维测速系统的调研,只有德国LaVision公司具备在气、液相冷态流场和带有火焰的反应流场实现空间诊断的能力。 /p p   (2)研究内容和研究目标要求火焰OH-自发光(OH- Chemiluminescence)形态和3D空间流场能够并行同步测量,且流场和火焰测量能够集成至统一平台,具备对两种测量过程进行时序控制功能。经调研,只有德国LaVision公司能够基于Tomo PIV系统平台,整合升级成火焰OH-自发光测量分析系统,能够在DaVis软件平台上对流场和火焰实现同步测量与分析。 /p p   (3)在空间流场测量过程中,为提高空间分辨率和流场重构质量,要求采用PIV技术(自相关和互相关算法)而非PTV技术(粒子直接追踪)确定速度矢量,允许较宽泛的示踪粒子布撒密度范围,粒子密度不低于0.15PPP。德国LaVision公司采用PIV技术,示踪粒子密度能够达到0.17PPP以上,高浓度的重构粒子能够保证获得速度场高空间分辨率,能够最充分地提取流场的速度信息。 (4)为了更准确的描述流场空间形态,特别是获得如孔洞、褶皱、拉伸与扭转等三维信息,要求体三维测速系统配置3台以上的CCD相机,且相机之间能够实现0° -180° 任意阵列角,能够按照测量场地实际情况进行灵活布置。只有德国LaVision公司能够实现多台相机的联合工作,相机位置摆放灵活,可升级到12台相机配置,进一步提高空间分辨率。 /p p   (5)空间诊断的重要一环是利用靶板对空间坐标进行标定,德国LaVision公司拥有自标定专利技术,可以通过软件算法修正用标定板标定产生的误差(最大允许硬件误差达12个像素)。对应靶板拍摄一次,即可完成空间标定过程。经调研,其他厂家提供的同类产品标定过程复杂,需要多次拍摄校正,标定精度低,直接影响了流场重构质量和可靠性,不满足使用需求。 /p p    span style=" color: rgb(255, 0, 0) " 综上所述,经多方调研和论证,只有德国LaVision公司提供的Tomographic PIV产品能够全面满足使用要求,故只能从唯一供应商处采购。 /span /p p    strong 大连理工大学高分辨拉曼光谱仪采购项目单一来源公告 /strong /p p span style=" color: rgb(255, 0, 0) " strong   预算金额:145万元(人民币) /strong /span /p p   大连理工大学海洋能利用与节能教育部重点实验室拟开展利用置换法开采天然气水合物的相关研究。研究内容主要包括在分子水平研究二氧化碳对天然气水合物的置换作用,二氧化碳以及多孔介质对水合物结构类型、填充度、置换效率的影响。分子水平的研究有助于深入探明水合物生成、分解动力学,对水合物资源开发利用,以及水合物技术开发具有重要的理论指导意义。拉曼光谱能够表征物质的组成和结构的微小变化,是水合物相关研究工作不可或缺的重要设备,因此提出了高分辨拉曼光谱仪的购置需求。 /p p   拟采购的高分辨拉曼光谱仪将用于低温、高压条件下的原位水合物生成,拟开展的研究需要进行原位实验,即拉曼光谱仪需与原位反应池联用,有别于常规的常温常压下容易操作的拉曼光谱研究 拟开展的研究需要仪器具备共焦光路设计,采集反应池中的拉曼信号,屏蔽反应池窗片及周围环境中的杂散光干扰,共焦针孔大小需连续可调,以保证最优的共焦性能和通光量。堀场(中国)贸易有限公司是法国HORIBA公司在国内的直属贸易公司,提供的法国HORIBA公司生产的LabRAM HR Evolution型高分辨拉曼光谱仪采用了真共焦光路设计,共焦针孔10-1000um连续可调,是唯一能够满足我们实验需求的供应商。 /p p   对比市场上其他拉曼光谱仪供应商,国内厂家提供的型号不具备共焦设计,国外厂家所提供的拉曼光谱仪共焦针孔大小固定,不能调节。以上均不满足需求。 /p p    span style=" color: rgb(255, 0, 0) " 因此,只有堀场(中国)贸易有限公司的LabRAM HR Evolution型拉曼光谱仪能够满足本项目“采用真共焦光路设计,共焦针孔连续可调”的技术要求的需要,只能采用单一来源采购方式进行采购。 /span /p
  • 第五届科学仪器原创大赛11月获奖作品
    第五届科学仪器网络原创大赛(后简称:大赛,活动网址:http://2012yc.instrument.com.cn)自8月1日开赛以来,已经进行140天,来自全国各地的网友积极响应,征集到近800篇参赛作品。12月大赛正在最后冲刺中,大赛设有12个分赛区,分别为:色谱、质谱、光谱、X射线仪器、材料表征、食品检测、药品检测、环境监测、样品前处理、生命科学、实验室建设与采购、综合类;征文类型将涉及行业综述、分析方法开发与应用、新技术发展、仪器维护维修、仪器操作使用经验、实验室管理方法与建设、仪器选型、采购交流等多个方面。大赛征文已经进入倒计时,在此感谢各位坛友对活动的积极支持与关注,感谢各专区的负责人、专家评审团成员及论坛版主和专家对活动的积极响应,欢迎更多的网友们加入进来,分享您的经验与心得。 参赛方法:进入活动专题网站点击 按照提示操作即可,或者直接将参赛内容以帖子形式发表在相应版面,标题格式采用:【第五届原创】+ 标题内容;即可参赛。 为了鼓励更多一线用户分享工作心得、经验,大赛在原有奖励基础上对参赛作者给与积分奖励,参赛同时如果加入团队还可获得纪念品与额外奖励。大赛每月各个赛区会评选出月度获奖作品,大赛结束后将对所有参赛作品评选出年度优秀作品,并发放证书与礼品进行奖励。 11月参赛作品获奖名单: 色谱赛区 参赛作品 作者 名次 自己动手DIY一套凝胶色谱净化系统 emoc98311 一等奖 顶空和气相色谱进样口压力差的来源 byron1111 一等奖 HPLC测定注射用帕米膦酸二钠中的亚磷酸含量 tangtang 二等奖 用Ultimate Sugar-Ca色谱柱检测5种糖的体会 emoc98311 二等奖 我的变形金刚 lii33 三等奖 小议线性范围问题 byron1111 三等奖 液相色谱柱表面碳含量和极性对分离的影响 yigaozizi 三等奖 岛津GC2010自动进样器故障排除记录 coffee8 三等奖 气相键盘失灵的维护(有图有真相) lpr20 三等奖 液相色谱进样量和进样体积的对柱效影响 houcai 三等奖 光谱赛区 关于火焰法测钠的考证 anping 一等奖 饲料中重金属元素检测方法验证操作规程 fengxueyixiao 一等奖 FACT 校正-标准加入法联用在ROHS检测中测试铁基质样品中Pb, Cd的应用 yechen1984 二等奖 ICP点火失败的解决与炬管的清洗 czcht 二等奖 解剖岛津RF-530 荧光分光光度计,掌握光电固件知识。 sc360xp 三等奖 大米中镉的检测 jieqian1211 三等奖 VIS7200可见分光光度计维修记 wangjianhua1102 三等奖 关于水浴法测定土壤砷的可行性研究 fjh26 三等奖 不锈钢食具容器中重金属迁出量的测定与分析 ljhciq 三等奖 使用AAS与ICP-OES进行 锌粉中的“重金属铅(Pb)元素”含量检测结果对比 zygchina 三等奖 看“图”学“做”钼铁中钼的测定——原来试验可以如此的EASY! denx5201314 三等奖 质谱赛区 进口玉米酒糟粕中多种真菌毒素的检测和含量分布研究 yzyxq 一等奖 三聚氰胺质控样的考核小记 zpf20031212 二等奖 气相色谱-质谱法分析红桔油成分 jimzhu 二等奖 教你如何在WIN7系统下安装安捷伦老版本的化学工作站 yechen1984 三等奖 ICP-MS测定大米粉中的铁铜锌以及与AAS对比测镉 jieqian1211 三等奖 浅谈麦氏重排在质谱解析中的应用 wy19871124 三等奖 X射线衍射仪器赛区 X荧光光谱法测定煤与焦炭中的磷 yonglinxu 一等奖 Axios荧光仪日常故障及处理办法 li0chang 二等奖 药物分析赛区 中药大黄化学成分提取分离经验心得 junqiwudi 一等奖 中药材重金属及有害元素概况 kandengren 二等奖 食品检测赛区 香菇中镉含量的调查研究 yzyxq 一等奖 电感耦合等离子体质谱仪半定量方法在食品盲样元素分析中的应用 nphfm2009 二等奖 土豆再战豆角——有毒豆角速测试剂再探 土老冒豆豆 三等奖 【第五届原创】坑爹的食物中毒样检测 langhuashang 三等奖 检测食品中山梨酸钾含量 subo01 三等奖 环境监测赛区 比色法测定水中总磷漫谈 54943110 一等奖 高级氧化技术在水处理中的应用 jshbhh 二等奖 挥发性有机物对费氏弧菌(Vibrio fischeri)的毒性抑制作用 54943110 二等奖 及时改正错误,使信息网论坛的功能更新更准确 jshbhh 三等奖 解决水中石油类空白值高的秘方(图文并茂) zyl3367898 三等奖100金币 懒人专用第二弹——t检验计算器 blackmagician 三等奖100金币 材料表征赛区 和工程师一起安装FEI F50场发射扫描电镜 doxw0323 一等奖 激光粒度分析仪中折射率问题 yaofei 二等奖 一次金相试验的偷懒和误导。。。 lylsg555 三等奖 Zetasizer Nano系列纳米粒度仪如何看粒度结果 jiangg67 三等奖 生命科学赛区 高温热胁对Achnanthes sp.光系统的影响 54943110 一等奖 利用GC-MS检测两种植物叶片脂肪酸种类及含量 nkwinter 二等奖 实验室小故事-自制氮气吹干设备 nkwinter 三等奖 铜铅对费氏弧菌的联合毒性初探 54943110 三等奖 发酵控制器之后续报道 gl19860312 三等奖 样品前处理赛区 超声波技术在环境监测中的应用之预处理技术 54943110 一等奖 鸟枪真的能当炮使 coffee8 二等奖 实验室建设赛区 应用Excel-VBA编制检验报告 icetrob 一等奖 本检测中心首次定期监督评审+扩项评审之网上直播 cyp710527 一等奖 陆水空天决胜水华质应急监测——浅析多层次水华监测体系构建 54943110 二等奖 谈谈玻璃容量仪器的校准 gpwrx 二等奖 危险废物鉴别生物实验室建设可行性报告(完结篇) 54943110 二等奖 这些够建一个快检实验室了吗? 土老冒豆豆 三等奖 一次纯水机的成功改造 baby073125 三等奖 一日记,第一年实验室工作 wangjianhua1102 三等奖 实验室建设——我的实验室成长经历 wangjianhua1102 三等奖 测量不确定度理论已经到了能指导实际工作的阶段 pxsjlslyg 三等奖 仪器采购之——中压制备色谱 sally0326 三等奖 路在何方 fjh26 三等奖 综合赛区 分析人生第一次:重读一份十年前的工作进展报告 flysky97 一等奖 动动手,自己维修总有机碳分析仪 llintao 一等奖 我拿什么拯救你---铂金皿 lilongfei14 一等奖 巧用廋身吸耳球吸0.1mL移液管 sgxy 二等奖 工作日志:AE40-2显示值异常及处理报告 chengjingbao 二等奖 想建“电化学指纹图谱数据库”,元芳,你怎么看? flysky97 二等奖 低合金钢Si的快速分析~~~ lylsg555 三等奖 洗瓶乎?新购乎? mcds 三等奖 动力煤的工业分析与发热量关系 yanghualv 三等奖 仪器使用:从外行到熟悉的过程感触 chengxiaojun 三等奖 小小处理方法--黑色背景及棕色试剂瓶 yuxiaofeng86 三等奖 维纶基牛奶蛋白纤维和维纶基大豆蛋白纤维定性分析的研究 wulin321 三等奖 记一次“菜鸟”维修恒定湿热试验箱的过程 chengxiaojun 三等奖 大赛举办过程中也受到行业各厂商的关注与支持,同期举办各类活动,为大赛奖励加码,为参赛助力。12月正在进行的同期活动有: 活动一:原创大赛即将告别5周岁,逢“5” 送纪念品 活动二:分享样品前处理经验心得,获得双倍奖励,IKA奖金助阵 活动三:海洋光学产品试用,分享心得,有机会前往美国佛州之旅 活动四:分享博艾产品得奖金奖励,参赛加入“博纳艾杰尔梦之队”获精美礼品 活动五:昊诺斯全自动核酸分析系统免费体验 此外更有赛区积分奖励:质谱赛区参赛均给予168积分/篇奖励 直读光谱原创作品参赛获额外积分奖励 仪器信息网第五届科学仪器网络原创文章大奖赛活动介绍:   为促进分析人员的技术交流,提高行业的仪器应用水平,自2008年仪器信息网开始举办“科学仪器网络原创文章大奖赛”,至今已成功举办四届。2012年8月1日,仪器信息网“第五届科学仪器网络原创作品大奖赛” 正式拉开帷幕,此次大赛将征集参赛作品4个月,年度评审2个月,设有12个分赛区,分别为:色谱、质谱、光谱、X射线仪器、材料表征、食品检测、药品检测、环境监测、生命科学、样品前处理、实验室建设及采购和综合类,征集作品将涉及分析方法开发与应用、新技术发展、仪器维护维修、实验室管理与建设、仪器选型等用户关注的多个方面。本次大赛礼品总价值超过100000元,是仪器信息网论坛2012年度最重要的网上活动!   活动网址:http://2012yc.instrument.com.cn   第五届科学仪器网络原创大赛大赛由以下公司赞助举办,特此感谢(排名不分先后):   色谱赛区、综合赛区由安捷伦科技有限公司独家赞助   光谱、生命科学赛区由赛默飞世尔科技(中国)有限公司独家赞助   质谱赛区由AB SCIEX公司独家赞助   X射线衍射仪器赛区由荷兰帕纳科公司独家赞助   样品前处理赛区由广州仪科实验室技术有限公司独家赞助   材料表征赛区由英国马尔文仪器有限公司独家赞助   海洋光学公司赞助“原创1+1”同期活动   大赛期间组建原创团队的公司有:
  • 材料科研∣ XPS助力锂离子电池研究,中科院化学所郭玉国团队连发Angew、AEM两篇顶刊!
    随着锂离子电池(LIBs)需求的迅速增长,废旧LIBs的数量随着规模的增加而增加,使用后的锂离子电池有价值的金属元素回收成为重要课题,但由于其中化合物的复杂性,导致回收多种具有相似物理化学特性的过渡金属具有很大的挑战。 3月19日和3月20日,中科院化学所郭玉国教授团队分别在Angew和AEM接连发表两篇文章,分别就三元正极材料和磷酸铁锂(LFP)材料的回收和再利用进行了充分的讨论和研究。第一次在LIBs回收过程中使用低共熔溶剂(DES)来实现镍、钴、锰的选择性分离,并验证了具体的回收机理。同时提出了一种绿色回收方法,通过具有功能化预锂化隔膜(FPS)的原位电化学过程直接再生老化的LFP电极。 中科院化学所郭玉国教授和孟庆海助理研究员等人基于过渡金属化合物在低共熔溶剂(DESs)中的不同行为,通过使用精心设计的基于配位环境调节的串联浸出和分离体系,从不同成分的废旧LiNixCoyMn1-x-yO2(NCM)正极中选择性和高效的回收了镍、钴、锰。 基于文章的方法中不同的固液比(HBD组分每质量的溶质质量、RS/L=mspent cathode:mHBD)和不同的温度,在RS/L=20的120℃的优化条件下,NCM811中的镍、钴和锰回收产物的纯度分别为99.1%、95.5%和94.5%。同时,对整个过程中的浸出动力学和工作过程机理进行了深入的分析,通过巧妙地引入DMSO和水作为稀释剂,揭示了配位化学的复杂过程。此外,进一步证实了不同的过渡金属与设计良好的配体的结合是实现优异选择性的关键,微调金属离子的协调环境在电池回收行业的可持续发展中具有广阔的前景。相关论文以“Selective Extraction of Transition Metals from Spent LiNixCoyMn1-x-yO2 Cathode via Regulation of Coordination Environment”为题发表在Angew. Chem. Int. Ed.。 图1 基于用氯化胆碱(ChCl):草酸二水合物(OxA)DES回收镍 中科院化学所万立骏院士,郭玉国教授和孟庆海助理研究员等人,首先通过综合分析验证了老化LFP(D-LFP)电极电化学再生的可行性。在此基础上,提出了一种基于新的功能化预锂化隔膜(FPS)的原位再生策略,以实现D-LFP电极在新电池中的直接再利用。成功制备了分解电位降低的Li2C2O4/CMK-3复合材料,并将该复合材料作为制备FPS的牺牲剂。使用FPS取代了商业化隔膜,废旧的LFP电极用新鲜的石墨负极重新组装成一个新的电池,经过一个循环的活化后,实现再生电池在循环292次后的容量保留率高达90.7%,而未使用FPS的全电池仅为18.7%,表现出相当大的容量恢复和良好的长循环稳定性, 其具体的机理为:Li2C2O4在FPS上的不可逆电化学分解提供了额外的Li+来弥补初始循环中缺乏锂的LFP。从这个意义上说,废旧LFP电极可以通过原位电化学缓解过程直接再生。与目前的废旧LIBs回收方法,特别是低成本的LFP正极回收方法相比,本文基于FPS的策略将废旧LFP电极的再生与新电池的组装相结合,节省了将活性材料分离和再制造正极电极的步骤。这种新颖、简单、成本效益高的策略为直接再生废旧的LFP电池开辟了一条新的途径,并拓宽了整个LIBs回收的视野。相关论文以“In Situ Electrochemical Regeneration of Degraded LiFePO4 Electrode with Functionalized Prelithiation Separator”为题发表在Adv. Energy Mater.。图2 D-LFP电极的形貌、组成和结构图3 再生电池性能测试 刻研究采用了岛津的XPS进行相关元素的化学态分析。 AXIS SUPRA+岛津全自动、多技术成像型X射线光电子能谱仪 ★ 高自动化技术★ 高能量分辨、高灵敏度、高空间分辨★ 智能化软件系统★ 丰富的附件和联用技术 本文内容非商业广告,仅供专业人士参考。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制