当前位置: 仪器信息网 > 行业主题 > >

左氧氟沙星去羧基杂质

仪器信息网左氧氟沙星去羧基杂质专题为您提供2024年最新左氧氟沙星去羧基杂质价格报价、厂家品牌的相关信息, 包括左氧氟沙星去羧基杂质参数、型号等,不管是国产,还是进口品牌的左氧氟沙星去羧基杂质您都可以在这里找到。 除此之外,仪器信息网还免费为您整合左氧氟沙星去羧基杂质相关的耗材配件、试剂标物,还有左氧氟沙星去羧基杂质相关的最新资讯、资料,以及左氧氟沙星去羧基杂质相关的解决方案。

左氧氟沙星去羧基杂质相关的资讯

  • 常见滴眼液-左氧氟沙星滴眼液抑菌剂测定
    左氧氟沙星滴眼液抑菌剂的含量测定#左氧氟沙星滴眼液简介左氧氟沙星滴眼液是抗生素药物,属于处方药。其主要成分为氧氟沙星的左旋体,抗菌活性约为氧氟沙星的两倍,通过抑制细菌DNA旋转酶(细菌拓扑异构酶耳)的活性,阻碍细菌DNA的复制而达到抗菌作用。左氧氟沙星具有抗菌谱广,抗菌作用强的特点,对大多数肠杆菌科细菌,如大肠埃希菌、克雷伯菌属、沙雷氏菌属、彩杆菌属、志贺菌属、沙门氏菌属、枸橼酸杆菌、不动杆菌属以及铜绿假单胞菌、流感嗜血杆菌、淋病菌等革兰阴性菌有较强的抗菌活性。左氧氟沙星的滴眼液,用于治疗敏感菌导致的眼脸炎、睑腺炎、泪囊炎、结膜炎、睑板腺炎、角膜炎以及用于眼科围手术期的无菌化疗法。# 色谱条件仪器:WiSys 5000;色谱柱:月旭Xtimate® C18 (4.6×250mm,5μm)。流动相:三乙胺磷酸溶液(每1000mL水中加入三乙胺4mL和磷酸7mL)/乙腈=35/65;检测波长:214nm;柱温:30 ℃;流速:1.0mL/min;进样量:20μL;参考方法:中国药典2020版第二部-左氧氟沙星滴眼液。#谱图和数据‍总结使用月旭Xtimate® C18 (4.6×250mm,5μm)色谱柱可以药典要求下满足左氧氟沙星滴眼液抑菌剂的含量测定要求。订货信息‍
  • 左氧氟沙星滴眼液中抑菌剂的含量测定
    左氧氟沙星滴眼液为微黄色至淡黄色或淡黄绿色的澄明液体。适用于葡萄球菌属、链球菌属、肺炎球菌、细球菌属、肠球菌属等所引起的眼睑炎、睑腺炎、泪囊炎、结膜炎、睑板腺炎、角膜炎等眼部疾病。为防止滴眼液在使用和保存过程中被微生物污染,往往会添加适量的抑菌剂,因此,抑菌剂的合理使用和质量控制已成为保障滴眼液安全性、有效性的关键问题之一。月旭科技为大家带来左氧氟沙星滴眼液中抑菌剂的含量测定方案。色谱条件色谱柱:月旭Xtimate® C18(4.6×250mm,5μm)。流动相:水相(每1000mL水中加入三乙胺4mL和磷酸7mL):乙腈=35:65;检测波长:214nm;柱温:30℃;流速:1.0mL/min;进样量:20μL。谱图和数据1. 空白溶剂2. 苯扎溴铵对照品溶液3. 供试品溶液满量程图局部放大图结论使用月旭Xtimate® C18(4.6×250mm,5μm)色谱柱,在此色谱条件下,可以满足检测要求。产品信息
  • 【知识分享】有关物质超标了,是不是杂质峰被误判了?
    结论分析工作者在药物的有关物质高效液相色谱法的方法开发和检查,应对检验过程中出现的杂质峰予以重视,以免出现误判。结果易被误认为是有关物质的峰包括溶剂峰、有机酸盐峰、无机酸盐峰和辅料峰,本次将举例说明并对这些峰的形成原因进行简单分析。根据药品注册的国际技术要求中杂质的含义,杂质分为有机杂质、无机杂质和残留溶剂。有关物质是杂质的一种,主要是指有机杂质,它可能是原料药合成过程中带入的原料药前体、中间体、试剂、分解物、副产物、聚合体、异构体以及不同晶型、旋光异构的物质,也可能是制剂过程或是在贮藏、运输、使用过程中产生的降解物。有关物质的检查方法很多,主要有薄层色谱法、高效液相色谱法(HPLC法)、气相色谱法和紫外分光光度法等。其中,HPLC法由于分离效果好、专属性强、灵敏度高,在有关物质检查中最为常用。在采用HPLC法对药物进行有关物质分析时,一般要求考察最大杂质峰面积或各杂质峰面积的和,将其与对照溶液的主峰面积(主成分自身对照品法)或总峰面积(面积归一化法)比较,规定应不超过某一特定的数值。但在实际检验过程中,排除配样引进或者是柱子没冲干净这些因素外,色谱图上仍然会出现保留时间较弱的峰,易被误认为是杂质峰,从而造成结果的误判。笔者结合日常检验工作和相关文献,选取了几个具有代表性的品种,将这些易被误认为是杂质峰的峰归纳为溶剂峰、有机酸盐峰、无机酸盐峰和辅料峰,并对这些峰的形成原因进行分析,以期对药物的有关物质HPLC方法的研究和常规检查提供参考。1. 溶剂峰在HPLC法中,由于溶解对照品或供试品的溶剂和流动相在某一波长的吸光值不一样,因此产生了吸光值的变化,表现为出现溶剂峰。溶剂峰可能是正常形状的峰,也可能是倒峰,还有可能是一组奇形怪状的峰。减小该类溶剂峰最有效的方法是使用流动相作为溶剂溶解样品,这样既可以避免样品溶剂和流动相之间任何强度或黏度的不匹配,也可以减少样品分析时基线的漂移。此外,值得注意的是,在进行有关物质分析时,要等基线平稳后,再进空白溶剂。一般进样2次,计算供试品溶液的杂质峰时,溶剂峰位置的峰是不参与计算的。2. 有机酸盐峰《中华人民共和国药典》(以下简称《中国药典》)2020年版(二部)采用HPLC法对苯磺酸氨氯地平的有关物质Ⅱ进行控制。以甲醇-乙腈-0.7%三乙胺溶液(取三乙胺7.0 mL,加水至1000 mL,用磷酸调节pH值至3.0±0.1)(35:15:50)为流动相,色谱柱为十八烷基硅烷键合硅胶柱,检测波长为237nm。标准规定:氨氯地平杂质I峰的峰面积乘以2与其他各杂质峰面积的和应不得大于对照溶液主峰面积的(0.3%)。实际检测时,氨氯地平的出峰时间为17.5min,但是在溶剂峰出峰的位置有响应较高的峰(保留时间3.0min),色谱图见下图。若将该峰判定为杂质峰,则会出现有关物质超标的情况。将苯磺酸配制成一定浓度进样后最终确定该峰为苯磺酸的峰。也有研究采用液相色谱-四级杆飞行时间质谱联用对苯磺酸的出峰予以确证。苯磺酸为一元有机酸,其pKa为0.7,在通常的流动相pH范围内,苯磺酸氨氯地平主要解离为氨氯地平阳离子(被质子化)和苯磺酸阴离子(C6H5SO3-),因此,苯磺酸氨氯地平会出现两个峰,一个是苯磺酸(保留时间较短),一个是氨氯地平。同时,研究表明,采用反相HPLC法同时测定复方感冒药中的多种成分时,对马来酸氯苯那敏色谱峰的识别易出现判断错误,将马来酸的峰误认为是马来酸氯苯那敏。马来酸为二元有机酸,其pKa分别为2.00和6.26,在通常的流动相pH范围内,马来酸氯苯那敏主要解离为氯苯那敏阳离子(被质子化)和马来酸阴离子(HOOCCH=CHCOO-),因此,马来酸氯苯那敏也会出现两个峰。在色谱系统开发过程中,一般会调节流动相pH,与目标化合物pKa相差2个单位以上,使药物全部解离或结合,这样才能准确定量。对于带有机酸根的化合物的液相检测,比如马来酸氯苯那敏、富马酸喹硫平、苯磺酸氨氯地平,在选择的流动相pH条件下,若目标化合物以离子型存在,则马来酸、苯磺酸和富马酸等有机酸也会以盐的形式存在,这些有机酸因含有共轭结构均有紫外吸收,从而在液相条件下也会出现一个色谱峰。因此,做此类物质的有关物质和含量测定时就应注意,不应将有机酸的峰误认为是杂质峰,或者是将有机酸的峰误认为是目标化合物的峰,造成结果的误判。3.无机酸盐峰《中国药品标准》采用HPLC法检测盐酸左氧氟沙星氯化钠注射液的有关物质。以硫酸铜D-苯丙氨酸溶液(取D-苯丙氨酸1.32g与硫酸铜1g,加水1000mL溶解后,用氢氧化钠试液调节pH值至3.5)-甲醇(82:18)为流动相,检测波长为293nm。标准规定,供试品溶液色谱图中如有杂质峰,各杂质峰面积的和不得大于对照溶液主峰面积。实际分析时,在3.3min出现一个很大的峰,色谱图见下图 。经过分析,认为与盐酸稀释后进样的峰位相同,因而在计算有关物质时不应将该峰误认为是杂质峰。笔者在参与针对新版药典用的氢溴酸右美沙芬化学对照品的标化工作中,参照《中国药典》 中氢溴酸右美沙芬胶囊含量测定的方法,对氢溴酸右美沙芬进行有关物质检查,流动相为乙腈-磷酸盐缓冲液(取磷酸和三乙胺各5mL,加水至1000mL)(28:72),检测波长220nm,实际检测时发现在2.5min出了一个很大的色谱峰。为了验证该峰,用溴水稀释后直接进样分析,结果在同样位置出峰。见下图。因此,在结果判定时,应注意不要误将该峰归纳入杂质峰。类似于含有有机酸的药物,含有无机酸的药物在通常的流动相pH条件下也均会发生解离,以盐形式存在的化合物进入液相系统后会以游离碱的形式存在,盐酸和氢溴酸是强酸,也在流动相里解离形成氯离子和溴离子。在对不同水中氯离子含量的比对分析中,用1cm的石英比色皿,取一定浓度的氯化钠标准溶液作为待测液,采用紫外-可见分光光度计,扫描范围280~350nm,确定了氯离子在波长为308.7nm左右处有最大吸收。研究也验证了溴离子在200~220nm波长范围内有较强的紫外吸收。分析原因,可能是氯离子和溴离子有8电子的稳定结构而导致紫外吸收,具体原因还有待进一步分析。
  • 上海市畜牧兽医学会批准发布《猪粪中氧氟沙星残留量的测定 酶联免疫吸附法与液相色谱-串联质谱法》团体标准
    各有关单位:根据《上海市畜牧兽医学会团体标准管理办法》(沪牧医学[2022]第17号)规定,上海市畜牧兽医学会现批准发布《猪粪中氧氟沙星残留量的测定 酶联免疫吸附法与液相色谱-串联质谱法》团体标准。标准于2023年12月21日发布,自2023年12月21日起实施。现予以公告。附件:团体标准编号、名称一览表。上海市畜牧兽医学会2023年12月21日标准发布公告.pdf
  • 应用速递:药物安全—缬沙坦制剂中亚硝胺杂质的测定
    背景介绍缬沙坦是血管紧张素II受体阻滞剂(ARB)、联苯四氮唑结构的沙坦类化合物,用于各类轻中度高血压的治疗,尤其适用于ACE抑制剂不耐受的患者。2018年7月,药品监管部门首次在含有缬沙坦的产品中发现亚硝胺杂质——N二甲基亚硝胺(NDMA)。随后在沙坦类其他药物和雷尼替丁中都检测到各类亚硝胺杂质,例如N-二乙基亚硝胺(NDEA)、N-二异丙基亚硝胺(NDIPA)、N-乙基异丙基亚硝胺(NEIPA)和N-亚硝基二丁胺 (NDBA)。因此,对使用缬沙坦原料药的药品进行了全球召回,导致缬沙坦药品暂时短缺。 图1 N-亚硝胺的分子结构 根据世界卫生组织 (WHO) 的国际癌症研究机构 (IARC)的研究,大多数亚硝胺会对动物和人类具有致癌和遗传毒性。沙坦类药物大多含有四唑环,四唑环的形成需要亚硝酸钠;药物的生产设备、生产用试剂和溶剂(例如普通溶剂DMF中的二甲胺)也可能会带来污染,都有可能形成亚硝胺。欧洲药典 (Ph. Eur.) 委员会将 API 中亚硝胺的临时限值设定为低于 1 ppm,且于2020年底降至30 ppb。 低限值设定就需要使用灵敏度高和选择性好的分析方法。本应用参照美国FDA指南的方法进行优化,通过GC/MS/MS在EI源 MRM模式下痕量检测缬沙坦药品中的5种亚硝胺杂质 (NDMA、NDEA、NEIPA、NDIPA 和 NDBA),并根据USP要求进行方法学验证。 实验条件GC-MS/MS 方法检测不同的亚硝胺化合物,使用液体直接进样方式。与FDA方法相比,选择了膜厚更薄(0.5µm而不是1µm)的Supelcowax® 柱,符合USP通则中色谱法的规定。色谱条件以及质谱条件见表1-3。 表1 色谱条件色谱柱SUPELCOWAX® 10, 30 m x 0.25 mm I.D., 0.5µm (24284)检测器MS/MS进样口温度250℃柱温箱程序40℃保持0.5min,20℃/min至200℃, 60℃/min 至250℃保持3min载气及流速氦气,1.0mL/min衬管4 mm单径锥衬管带玻璃棉进样量2 µL进样模式脉冲不分流样品稀释剂二氯甲烷样品制备使用切片工具,取药片的四分之一放入15mL离心管,加入5mL二氯甲烷。将样品涡旋1分钟,并置于离心机中以4000 rpm离心2.5min。取二氯甲烷层上清液2mL,用0.45µm PVDF膜过滤。取续滤液0.5mL到2mL样品小瓶中并加盖。标准溶液二氯甲烷作为溶剂,配制得到浓度分别2.5、5.0、10、20、40、80、100ng/mL的5种亚硝胺(NDMA/NDEA/NEIPA/NDIPA/NDBA)校准溶液。 表2 质谱条件调谐自动调谐离子源及采集模式EI源,MRM碰撞气体氮气 @ 1.5mL/min淬灭气体氦气@ 4.0mL/min 溶剂延迟7 min离子源温度230°C四极杆温度150°C电离电压70 eV驻留时间50 ms 表3 MRM 离子对参数列表峰化合物Transition保留时间1N二甲基亚硝胺MRM274→426.952N二甲基亚硝胺MRM174→446.9522N-二乙基亚硝胺MRM 1102→857.533N-二乙基亚硝胺MRM2102→567.5283N-乙基异丙基亚硝胺MRM1116→997.784N-乙基异丙基亚硝胺MRM271→567.7874N-二异丙基亚硝胺MRM1130→427.971N-二异丙基亚硝胺MRM2130→887.9765N-亚硝基二丁胺MRM1158→999.497N-亚硝基二丁胺MRM284→569.494 五种亚硝胺化合物在10分钟内完全分离,且目标峰与溶剂和基质杂质得到了很好的分离(图 2)。由于使用了0.5µm膜厚的色谱柱,与 FDA 方法相比,分离时间更短。图2:40 ng/mL系统适用性溶液色谱图,峰表见表3.实验得出:N-二乙基亚硝胺(NDEA)和N-二异丙基亚硝胺(NDIPA)的多反应监测MRM Transition最低检测限浓度为2.5ppb,如图3所示。图3 NDEA(上图)和 NDIPA(下图)最低检测限谱图 方法适用性经验证的 FDA-OTR 方法要求 40 ng/mL 标准品六次重复进样的 RSD%≤ 5%。 使用我们的方法,连续6次进样 40 ng/mL 的5种亚硝胺杂质,在两种 MRM 下的 RSD%远小于 5,如表4所示。化合物MRM1 RSD%MRM2 RSD% N二甲基亚硝胺1.81.3N-二乙基亚硝胺1.11.1N-乙基异丙基亚硝胺4.21.5N-二异丙基亚硝胺0.92.2N-亚硝基二丁胺4.33.0表4 40ng/mL 亚硝胺标准品连续六次进样的精密度此外,线性校准曲线的相关系数R2应≥ 0.998。本方法中五种亚硝胺杂质的两个 MRM都超过了这一标准(表 5)。杂质MRM 1MRM 2N二甲基亚硝胺0.99940.9995N-二乙基亚硝胺0.99910.9995N-乙基异丙基亚硝胺0.99950.9995N-二异丙基亚硝胺0.99960.9994N-亚硝基二丁胺0.99830.9981表5 两种MRM定量中两种亚硝胺的相关系数 (R2)缬沙坦制剂中亚硝酸胺的检测在药店购买的缬沙坦药品中加入亚硝胺杂质,浓度为10 ppb(NDBA为40 ppb),5种亚硝胺的回收率在94.5%~105.7%之间。(表6)。杂质10ppb回收率NDMA99 %NDEA103.5 %NEIPA94.5 %NDIPA103.9 %NDBA105.7 %表6缬沙坦药品中5种亚硝胺的加标回收率对于缬沙坦药品中5种亚硝胺的检测,OTR 方法的定量限 (LOQ) 范围是 8 – 40 ppb,本实验方法的 LOQ见表 7。 LOQ 是根据每种化合物校准曲线信噪比 (S/N) 为 10 浓度计算得出的,并且通过缬沙坦片剂的标准添加实验进行了验证。 检出限LOD是信噪比 (S/N) 为 3 的浓度计算得到 。杂质FDA方法 LOQ [ppb]本实验方法LOQ [ppb]NDMA133NDEA85NEIPA83NDIPA85NDBA4032表7 OTR和实验方法LOQ结果结论综上,参考FDA 建议方法,使用 SUPELCOWAX® 色谱柱通过 GC-MS/MS在 MRM 模式下可以轻松实现亚硝胺杂质的测定。所有亚硝胺化合物之间以及与溶剂和基质峰的分离良好,满足所有系统适用性要求。 该方法已成功应用于缬沙坦药物中亚硝胺类杂质的分析。 相关产品描述货号链接SUPELCOWAX® 10 气相毛细管柱30 m × 0.25 mm,0.50 μm24284 https://www.sigmaaldrich.cn/CN/zh/product/supelco/24284 SupraSolv® GC-MS二氯甲烷 1.00668 https://www.sigmaaldrich.cn/CN/zh/product/mm/100668 N二甲基亚硝胺NDMA认证参考物质 5000 µg/mL甲醇溶液CRM40059 https://www.sigmaaldrich.cn/CN/zh/product/supelco/crm40059N-二乙基亚硝胺NDEA 认证参考物质 5000 µg/mL甲醇溶液40334 https://www.sigmaaldrich.cn/CN/zh/product/supelco/40334N-亚硝基二丁胺NDBA 分析标准品442685 https://www.sigmaaldrich.cn/CN/zh/product/supelco/442685 N-乙基异丙基亚硝胺NEIPA EP标准品Y0002262 https://www.sigmaaldrich.cn/CN/zh/product/supelco/y0002262N-二异丙基亚硝胺NDIPA EP 标准品Y0002263 https://www.sigmaaldrich.cn/CN/zh/product/supelco/y0002263
  • 又出遗传毒性杂质?莫慌,岛津叠氮杂质分析方案来帮忙
    导读2021年欧洲药品质量管理局(EDQM)发布:四氮唑环的沙坦活性物质中存在致突变性叠氮杂质的风险,并根据ICH M7的要求对数据进行审核,确保叠氮杂质的水平低于毒理学关注阈值(TTC)。其后某国际医药公司因叠氮杂质而被召回多批厄贝沙坦药物。沙坦中叠氮类杂质,是继亚硝胺类杂质后又一类需重点关注的基因毒性杂质。 叠氮杂质的由来叠氮化合物是医药行业中常见的化工原料,通常作为起始物料、反应试剂或中间体存在于药物合成过程中,在厄贝沙坦的合成中,通常需要使用三丁基叠氮化锡或叠氮化钠以形成药物结构中的四唑环,如厄贝沙坦原料药中的4’-(叠氮甲基)[1,1-联苯]-2-氰基(AZBC)、5-[4’-(叠氮甲基)[1,1-联苯]-2-基]-2H-四氮唑(MB-X),见下图。 分析方案l 两种叠氮化合物分析采用岛津超高速LC-MS/MS技术,可分别建立快速、稳定、高灵敏度的叠氮化合物AZBC、MB-X的分析方法。 超高效液相色谱-质谱联用仪 AZBC和MB-X的线性范围分别为0.25ng/mL-25 ng/mL和1 ng/mL-75 ng/mL,且线性回归系数R20.999,各标准点校准误差均在±5%以内。 空白厄贝沙坦样品分别加入低、中、高三种不同浓度的标准溶液,AZBC的回收率在95.97%~100.55%之间,MB-X的回收率在103.53%~111.82%之间。 AZBC和MB-X加标回收率 l 岛津遗传毒性杂质解决方案近年来,随着药物杂质分析研究的不断深入,新遗传毒性杂质不断发现,已上市药品中因痕量遗传毒性杂质残留而发生大范围的召回事故,如N-亚硝胺类、磺酸酯类等基因毒性杂质给制药企业带来巨大经济损失。岛津紧跟法规动态,在相关遗传毒性杂质分析检测方面积累了丰富的经验,目前已发布多份关于遗传毒性杂质的解决方案,具体内容可关注“岛津应用云”—方案下载—应用文集,敬请下载。 结语在化学药物研发和生产过程中,杂质分析一直是重要而关键的检测领域,岛津一直积极响应和应对行业最新动态,积极参与新化合物、新药物杂质、新法规指南等分析方法的开发和研究,及时为客户提供完整、准确的应对解决方案,助力客户掌握行业最新的检测技术。 撰稿人:孟海涛 本文内容非商业广告,仅供专业人士参考。
  • 前沿应用∣岛津高分辨质谱助力合成多肽药物杂质结构鉴定
    截至2020年,全球共有76个多肽类药物被批准上市,7000多个活性多肽被发现,约150个多肽药物进入临床试验,在过去20多年中,平均每年被批准的多肽药物约3个。微球、脂质体、聚乙二醇(PEG)修饰等方法的深入应用解决了多肽药物稳定性差、体内易降解、半衰期短等成药性差的问题,促进了多肽药物的开发利用。多肽药物药效广泛,临床上以慢性病治疗为主,例如罕见病、肿瘤、糖尿病、胃肠道、骨科、免疫、心血管疾病等。国内外药典将合成多肽类药物列入化药的范畴进行杂质的控制。欧洲药典规定合成多肽含量在0.5%以上的相关杂质需进行定性分析,对含量在1%以上的相关杂质进行定量分析并考察其毒副作用。2007年国家食品药品监督管理局发布了《合成多肽药物药学研究技术指导原则》,指出合成多肽原料药中工艺杂质的来源和一般化学药物有所不同,其可能的工艺杂质如:缺失肽、断裂肽、去酰胺多肽、氨基酸侧链的不完全脱保护所形成的副产物、氧化肽、二硫键交换的产物、非对映异构的多肽、低聚物和/或聚合物及合成中所用的毒性试剂和溶剂等。 多肽含有二硫键、裸露的氨基和羧基,容易因分子间二硫键或氨基羧基间脱水形成共价聚合物。共价键形成的聚合物杂质可能存在较大免疫原性风险,在多肽类药物制剂质量研究和新药申报中应予以重点关注。质谱分析、氨基酸组成分析和氨基酸序列测定是合成多肽药物及杂质结构确证最常用的技术手段。 岛津解决方案 ● 分析仪器岛津液相系统Nexera LC-40 +高分辨质谱仪LCMS-9030 ● 分析条件流动相为水:乙腈:TFA=60:40:0.2流速:0.5 mL/min等度洗脱柱温:25℃质谱:离子源:ESI(+)扫描范围:m/z 100 ~5000 多肽药物应用案例一STN聚合物杂质结构鉴定图1. 注射用STN破坏样品HPLC色谱图(UV 210 nm)图2. STN聚合物杂质可能的聚合方式 通过STN聚合物杂质精确质量数预测其分子式,结合多肽的质谱峰归属对STN聚合物杂质进行结构推测(如图2)。STN结构中含有一对二硫键,综合判断其聚合位点为分子间二硫键。 多肽药物应用案例二TJN聚合物杂质结构鉴定图3. 注射用TJN破坏样品HPLC色谱图(UV 214 nm) 图4. TJN聚合物杂质MS2质谱图 使用岛津精确分子式预测工具Formula Predictor对TJN聚合物杂质进行分子式预测,其分子式预测结果恰好相当于两分子TJN脱水,因此推测其聚合位点为两分子TJN的氨基端和羧基端缩合生成肽键。TJN为20肽,其游离氨基端为苯丙氨酸,游离羧基端为亮氨酸。结合TJN二聚体的推定氨基酸序列进行二级质谱碎片归属,TJN聚合物MS2质谱图中识别出多种特征碎片。特别是y19和b21碎片的存在证明聚合位点为亮氨酸(L)和苯丙氨酸(F)缩合而成的肽键。 结论随着我国成为国际人用药品注册技术协调会(ICH)成员国,药品的技术标准逐步与国际接轨。同时随着我国药品一致性评价工作的全面开展,合成多肽药物杂质结构鉴定将面临巨大的技术挑战。岛津公司采用尺寸排阻色谱法建立合成多肽药物的聚合物分析方法,并通过高分辨质谱LCMS-9030测定聚合物的准确质量数推测其分子式,同时结合MS/MS特征碎片推测聚合物杂质的结构。本文展示LCMS-9030在多肽药物的两种主要聚合方式(二硫键和肽键)鉴定中的应用。岛津液相色谱四极杆飞行时间串联质谱LCMS-9030具有高质量准确度,高分辨率的性能优势,是合成多肽药物杂质一级结构鉴定的强有力工具。 本文内容非商业广告,仅供专业人士参考。
  • 又是杂质?岛津药物杂质综合分析方案来了!
    导读NDMA杂质超标下架雷尼替丁?因叠氮杂质召回厄贝沙坦?包材有溶剂残留导致生产企业被监管部门处罚数万元?药用辅料不当导致患者死亡?近几年连续发生多起因药物含有不合规杂质,而被要求市场召回的案例。因药物杂质超标而导致不合格问题,时刻触碰着分析行业老师们的神经:又是杂质?不同杂质参照哪种法规进行检测?杂质如何控制限度?使用哪种仪器进行检测?有没有成熟的方案可参考?药物杂质种类多:包括有机杂质、无机杂质、残留溶剂,涉及到仪器种类广、分析方法和前处理技术复杂多样。今天,我们带来了岛津药物杂质综合分析方案《药物杂质分析综合应用文集》,涵盖色谱、质谱、光谱产品仪器方面的杂质分析案例,快来一起随小编看看吧。药物杂质分析法规指南药物杂质一直是药品研发生产中风险控制的重要内容,药物杂质影响到药物的质量和临床疗效。人用药品注册技术要求国际协调会(ICH)按照杂质理化性质将其分为三大类:有机杂质、无机杂质及残留溶剂。不同杂质参考法规不同,具体如下表所示。杂质类型及法规参考依据《药物杂质分析综合应用文集》密切关注相关药典、法规、标准的更新和发布,聚焦时事热点,如沙坦类物质中亚硝胺类基因毒性杂质事件、溶剂残留检测要求、元素杂质分析国际标准等。针对药物杂质不同理化性质,开发契合标准和法规的药物杂质分析应用报告。形成一份包含多种类型杂质分析的综合应用文集,为相关科研和分析工作人员提供一定的参考。更多应用详情,请关注岛津官网,下载《药物杂质分析综合应用文集 》。典型案例分享案例分享1在线体积排阻反相液相色谱-飞行时间质谱鉴定注射用头孢哌酮钠舒巴坦钠中聚合物杂质建立在线体积排阻-反相液相色谱-飞行时间质谱法(SEC-RPLC-QTOFMS)用于注射用头孢哌酮钠舒巴坦钠中的聚合物杂质的鉴定。一维采用SEC分离条件,将头孢哌酮和聚合物杂质进行分离,分离所得聚合物杂质通过中心切割技术收集到二维RPLC中脱盐和进一步分离,采用Q-TOF为检测器,采集分离所得杂质一级和二级质谱信息后对其进行结构鉴定。推测出9个杂质的结构,其中有4个为闭环二聚物。二维SEC-RPLC-QTOFMS杂质鉴定系统流路图头孢哌酮聚合物峰液相色谱图及空白溶剂二维色谱图案例分享2超临界流体色谱系统在原料药杂质分析中的应用二乙酰鸟嘌呤是重要的医药中间体,杂质检测是其质量控制的关键。该化合物在常用溶剂中溶解性差,并且遇水分解,使得常规的RP-HPLC分析不能实现。使用的岛津Nexera UC SFC-UV系统,对药物中间体二乙酰鸟嘌呤中的杂质进行分析,有效避免使用反相色谱分析中该药物不稳定遇水分解的可能,并且SFC系统分析速度快、重现性好、灵敏度高。甲醇和乙醇作为改性剂时分离效果对比(检测波长:264 nm)1.OD-H-甲醇,2.OD-H-乙醇,3.SFC-A-甲醇,4.SFC-A-乙醇案例分享3电感耦合等离子体质谱法测定喷雾剂中的元素杂质含量参考美国药典USP对元素杂质的限量要求及USP对元素杂质的测定方法,利用电感耦合等离子体质谱法(ICP-MS)测定了吸附给药样品中的重金属元素和其它元素杂质的含量。结果全符合USP规定每种目标元素的线性、加标回收率的要求,该方法操作简便、快速,样品前处理简单,可以满足美国药典对口服药中杂质元素限量值的测定要求。样品分析结果及加标回收率《药物杂质分析综合应用文集》目录有机杂质分析1、工艺及降解杂质高效液相色谱法分析盐酸多西环素中的有关物质高效液相色谱法结合Co-injection功能测定双氯芬酸钠肠溶片有关物质采用加校正因子主成分自身对照法测定马来酸依那普利片有关物质二维液相色谱法用于碘帕醇对映异构体杂质的定量分析液相色谱-四极杆飞行时间质谱联用分析头孢替唑钠及其杂质在线体积排阻反相液相色谱-飞行时间质谱鉴定注射用头孢哌酮钠舒巴坦钠中2、聚合物杂质在线二维液相色谱-四极杆飞行时间质谱法鉴定盐酸氟西汀的杂质超临界流体色谱系统在原料药杂质分析中的应用3、遗传毒性杂质三重四极杆气质联用法同时测定药品中八种磺酸酯类基因毒性杂质三重四极杆气质联用法测定沙坦类药物中六种N-亚硝胺含量高效液相色谱应用于沙坦类原料药中NDMA和NDEA的检测三重四极杆液质联用法检测缬沙坦原料药中六种亚硝胺类杂质厄贝沙坦原料中叠氮类遗传毒性杂质AZBC的分析厄贝沙坦原料中叠氮基遗传毒性杂质MB-X的分析三重四极杆气质联用法测定丁酸氯维地平中基因毒性杂质丁酸氯甲酯和2,3-二氯苯甲醛含量三重四极杆液质联用系统测定甲磺酸伊马替尼中芳香胺类遗传毒性杂质含量药品中无机(元素)杂质分析ICH Q3D X-射线荧光光谱法分析原料药的元素杂质电感耦合等离子体光谱法测定原料药样品中的元素杂质含量利用电感耦合等离子体质谱测定药物中间体中Pd催化剂残留量电感耦合等离子体质谱法测定喷雾剂中的元素杂质含量利用电感耦合等离子体质谱测定葡萄糖注射液中重金属元素含量残留溶剂检测气相色谱结合顶空进样器测定药品中微量环氧氯丙烷残留顶空-气相色谱法测定化学药品中三种溶剂残留气相色谱法测定药用辅料聚山梨酯80中六种杂质含量气质联用仪结合顶空进样器测定药品中溶剂残留顶空-气质联用法测定药物中水合肼含量了解更多应用,敬请下载《药物杂质分析综合应用文集》撰稿人:孟海涛本文内容非商业广告,仅供专业人士参考。
  • 全自动固相萃取-高效液相色谱法串联质谱测定 水中沙星类抗生素药物残留
    1.介绍沙星类(Quinones,QNs)抗生素(图-1)是一类人工合成的新型杀菌性抗菌药物,具有抗菌谱广、抗菌活性强、与其他抗菌药物无交叉耐药性以及毒副作用小、价格低廉等特点,被大量用于治疗和预防水生动物疾病及促生长。但研究表明,所使用的抗生素仅20%~30%被鱼类吸收,大部分进入环境中,而这部分抗生素再次进入食物链,可能导致养殖环境中病菌耐药性的产生,导致二次污染。这不仅影响到水产养殖业的健康发展,而且还威胁着生态环境的安全。水样中残留喹诺酮类抗生素,通过饮用进入人体,可能对人体肝脏功能造成严重损伤。因此,建立水环境中这类药物的检测方法尤为重要。目前,喹诺酮类药物残留检测方法,主要包括HPLC-UV、HPLC-FD、HPLC-DVD、LC-MS/MS、LC-ESI-MS/MS,另外还有荧光光谱法、毛细管电泳法和酶联免疫法等。图-1. 16种沙星类抗生素的结构式本实验选择MCX阳离子交换柱进行富集、净化,超高压液相色谱-串联质谱(HPLC-MS/MS)联用技术检测,建立了环境水样中高灵敏的分析方法,该方法有望应用于水产养殖中。关键字:全自动固相萃取;高效液相色谱-串联质谱;抗生素2.仪器、试剂以及耗材Reeko Fotector Plus全自动固相萃取仪(睿科)MCX 固相萃取柱(Oasis,200 mg/6 mL)高效液相色谱:(HPLC)Agilent 1260,质谱检测器(MS)Agilent 6410氮气吹干装置:Reeko AutoEVA-60全自动平行浓缩仪甲醇,乙腈(TEDIA 色谱纯);甲酸,氨水(优级纯)3.样品制备与净化3.1 固相萃取净化条件全自动固相萃取仪睿科Fotector Plus 60位固相萃取柱MCX(Waters,200 mg/6 mL)活化甲醇淋洗pH=4.0 的甲酸水溶液洗脱5%的氨水甲醇溶液3.2 富集净化依次用甲醇(10mL)和水(10mL)以5.0mL/min的速率活化/平衡和淋洗固相萃取柱,备用。取纯净水样200mL,如为加标样品,请加入标准品(100 μL,100 ppb),加入EDTA-MCIlvaine缓冲溶剂(50mL,0.1 mol/L)调节水环境的pH为4,以5mL/min的速率经固相萃取小柱富集后;用甲酸水溶液(pH=4.0)10 mL以10 mL/min速率淋洗;气推后用10 mL的5%氨水甲醇以1.0mL/min的速率洗脱。收集的样品在25 ℃,5 psi条件下浓缩至近干,流动相乙腈-水溶液(10:90,v/v,0.1 %甲酸)定容至1.0mL,供LC/MS-MS分析。全自动固相萃取方法见图-2。图-2. Fotector Plus水中沙星抗生素固相萃取方法4.液质检测条件4.1 色谱柱条件4.2 MRM参数表-1. 16种抗生素的串联质谱检测参数4.3 16种沙星类抗生素的保留时间谱图5.样品测试5.1基质效应验证取纯净水样,按照上述的样品处理步骤后,氮吹至近干,加入标准使用液(1ppm,20 μL),定容成1mL,供LC/MS-MS检测。如果基质加标浓度准确,则可以直接用标准曲线对样品进行定量;如果不准确,请使用含有基质的工作曲线进行定量。选择定量离子的峰面积作为纵坐标,浓度作为横坐标,做相关曲线,曲线为线性回归,各点权重相等,拟合出工作曲线,要求R20.99;此曲线两周需要重新配置一次。5.2 样品基质加标测试对桶装纯净水和生活废水进行加标实验,加标浓度为低浓度(25 ng/L)、中浓度(50 ng/L)和高浓度(100 ng/L),结果如表-2所示:除了恩诺沙星和司帕沙星在76.9%~79.4%外,大部分的加标回收率在82.5%~114.2 %之间,RSD 1.5%~16.6%。该方法能够实现对水样中16种喹诺酮抗生素进行检测。表-2 不同水样的加标回收率5.3 不同类型固相萃取柱对沙星类化合物的富集效果取纯净水为样品,加标的质量浓度分别为50 ng/L,按照上述方法,进行4平行样测定,考察该方法的不同固相萃取柱的回收率和重现性,分析结果如图-4所示:纯净水中抗生素的平均回收率分布在65.00%-91.38%(HLB),71.21%-152.28%(MAX)和77.41 % -123.21 %(MCX)。HLB回收率普遍偏低,MAX柱中沙星的回收率偏高,培氟沙星和氧氟沙星的回收率均超过了140 %,而且MAX柱需要在水样中加入氢氧化钠,容易造成水样中金属离子的水解沉淀,容易造成管路的堵塞。相比之下MCX柱的平行性比HLB柱和MAX好,回收率大部分在90 %-110%之间,除了恩诺沙星回收率偏低,只有77.41 %。图-4. 三种柱子的回收率对比6.结果与讨论6.1 对于16种沙星类化合物在水中的富集方法,应考虑实验过程中基质对化合物检测的干扰。此步的干扰不仅来自于水样中杂质干扰,同时商业化的固相萃取小柱,使用的色谱级溶液等等都存在干扰杂质,因此需要进行基质效应确认,以避免前处理富集过程中存在基质效应。6.2 氮吹浓缩过程中应控制吹干程度,不可过分干燥。6.3 对于沙星类的两性化合物,在pH=7.0左右时,主要以带负电荷的形式存在水溶液中,此时进行富集,固相小柱无法对目标物进行吸附。因此需要进行pH调节至4.0左右,使其成为带铵根的正离子,利于下一步进行阳离子交换柱富集。6.4 淋洗时采用甲酸酸化的水溶液,利于将固相萃取小柱中残留的EDTA除去,避免其在后续的洗脱液中干扰沙星类化合物的检测。
  • 利用XP色谱柱改进美国药典(USP)噻康唑有机杂质分析方法
    利用eXtended Performance(XP)色谱柱改进美国药典(USP)噻康唑有机杂质分析方法 Kenneth D.Berthelette、Mia Summers和Kenneth J.Fountain 沃特世公司,美国马萨诸塞州米尔福德 方案优势 ■ 使用XP色谱柱改进耗时的USP美国药典有机杂质分析方法,实现更快速的分析并减少溶剂的使用量,同时仍符合美国药典章指南的规定。 ■ 将样品运行时间缩短80%,从而提高了生产能力。 ■ 将溶剂用量减少90%,降低了运行成本。 沃特世提供的解决方案 ACQUITY UPLC® H-Class系统 Alliance® HPLC系统 XSelect&trade CSH&trade C18色谱柱 Empower® 3软件 eXtended Performance [XP] 2.5 &mu m色谱柱 TruView&trade LCMS认证最大回收样品瓶 关键词 美国药典方法、噻康唑、ACQUITY UPLC色谱柱计算器、沃特世反相色谱柱选择表、仿制药 引言 全世界的制药企业在日常工作中都需要对仿制药中的有机杂质进行分析。使用较为陈旧的仪器和色谱柱技术进行有机杂质分析,因为需要长时间使用大量的溶剂,所以既耗时又费钱。然而通过使用显著改进的仪器和色谱柱技术有机杂质分析会变得更高效。2.5&mu m 粒径的eXtended Performance(XP)色谱柱设计用于高效液相色谱和超高效液相色谱。该色谱柱是改进美国药典方法的理想选择,因为其能够使色谱分析工作者实现更小粒径和低扩散系统带来的利益,同时能够符合美国药典章色谱分析指南的规定。章列出了允许的方法变化幅度。 噻康唑是一种用于治疗酵母菌感染的咪唑类抗真菌化合物。被转换的方法是噻康唑有机杂质的分析方法2。有机杂质分析方法用于测定样品中是否存在杂质及其含量。该XP色谱柱方法是从最初在HPLC系统上的色谱柱规模的美国药典方法缩放至HPLC和UPLC仪器上的。在HPLC仪器上使用XP色谱柱对现行美国药典方法进行改进能够缩短运行时间,从而提高了常规分析实验室的样品通量。而在UPLC系统上使用XP色谱柱则可以比HPLC进一步缩短运行时间并减少溶剂的使用,从而节约了总成本。 实验条件 Alliance 2695 HPLC色谱条件 流动相: 44:40:28乙腈/甲醇/水加2 mL氢氧化铵 分离模式: 等度洗脱 检测波长: 219 nm 色谱柱(L1): XSelect CSH C18,4.6 x 250 mm,5 &mu m, 部件号:186005291;XSelect CSH C18 XP,4.6 x 150 mm,2.5 &mu m, 部件号:186006729;XSelect CSH C18 XP,4.6 x 100 mm,2.5 &mu m, 部件号:186006111 柱温: 25 ℃ 洗针液: 95:5乙腈/水 样品清洗液: 95:5水/乙腈 密封垫冲洗液: 50:50甲醇/水 流速: 根据方法调整 进样量: 根据方法调整 ACQUITY UPLC H-Class色谱条件 流动相: 44:40:28 乙腈/甲醇/水加2 mL氢氧化铵 分离模式: 等度洗脱 检测波长: 219 nm 色谱柱(L1): XSelect CSH C18 XP,4.6 x 150 mm,2.5 &mu m, 部件号:186006729;XSelect CSH C18 XP,4.6 x 100 mm,2.5 &mu m, 部件号:186006111;XSelect CSH C18 XP,2.1 x 150 mm,2.5 &mu m, 部件号:186006727 柱温: 25℃ 洗针液: 95:5乙腈/水 样品清洗液: 95:5水/乙腈 密封垫冲洗液: 50:50甲醇/水 流速: 根据方法调整 进样量: 根据方法调整 数据管理: Empower 3软件 样品描述 用100%的甲醇将噻康唑样品制备成表1所述的浓度。将样品转移至一个进样用的TruView最大回收样品瓶中(部件号:186005662CV)。 结果与讨论 全世界制药企业都需要对常规方法制备的噻康唑进行日常分析。本应用纪要使用美国药典专论中规定的有机杂质分析方法,在几种不同规格的色谱柱上对噻康唑及其有关物质A、B、C的分离进行了比较。因为噻康唑许多杂质缺乏实际可用性,所以将噻康唑有关物质A、B、C用作低浓度杂质标准品。美国药典所列的有机杂质分析方法用于分析复杂的样品处方。样品中多种成分的有效分离通常需要使用更长的色谱柱。使用较大填料粒径(&ge 3.5 &mu m)的长色谱柱会使运行时间加长,溶剂使用量增大。例如,最初的美国药典中的噻康唑有机杂质分析需要使用4.6 x 250 mm,5 &mu m的色谱柱,分离时间长达30分钟,每分析一个样品需要耗费30 mL溶剂。但是,使用2.5&mu m粒径的eXtended Performance(XP)色谱柱,可以在缩短运行时间的同时仍然符合考核的要求。由于运行时间缩短,样品通量得到了提高,每次分析所需溶剂减少,从而降低了总成本。现行的美国药典章色谱分析指南规定了允许的方法变化幅度。这些允许的变化包括± 70%的色谱柱长度变化,-50%的粒径变化,± 50%的流速变化。1美国药典要求有关物质B和C之间的分离度要达到1.5,本应用纪要证明:在不同的色谱柱和不同的色谱系统之间进行的方法转换完全满足对这两个难分离化合物的苛刻要求。 在HPLC仪器上使用XP色谱柱进行有机杂质分析 噻康唑的有机杂质分析方法需要使用L1专用色谱柱,为该分离而列出的色谱柱是LiChrosorb RP-182。参照沃特世反相液相色谱柱选择表,本文选用更先进的XSelect CSH C18固定相色谱柱。之所以选择XSelect CSH C18色谱柱是由于其与所列出的色谱柱相类似,并且能提供适用于HPLC UPLC仪器的各种规格和粒径。本文首先使用一根XSelect CSH C18,4.6x250mm,5&mu m色谱柱在Alliance HPLC系统上运行美国药典方法,流速1.0mL/min。如表2所示,本次分离符合考核标准。本次分离的总运行时间为30分钟,在连续批量分析样品时,将面临着时间和成本管理的双重挑战。如果使用原始的美国药典方法, 8小时的一个工作日仅能分析16个样品,要消耗480mL溶剂。通过使用XP色谱柱,在同样的8小时工作日内可分析80个样品,且仅需使用240mL溶剂,显著地提高了样品通量并降低了运行成本。 在不同的系统上使用2.5&mu m XP色谱柱改进的标准方法具有通用性,同时仍符合美国药典章指南的要求,如图1所示。XP色谱柱是一款2.5-&mu m颗粒的HPLC和UPLC色谱柱,经高效填装并能够承受UHPLC系统的高压,使XP色谱柱在HPLC和UPLC仪器上均能使用。 本纪要的标准方法首先从最初的4.6 x 250 mm,5 &mu m色谱柱转换至4.6 x 150 mm,2.5 &mu mXP色谱柱,用以说明使用更小粒径的色谱柱可以缩短运行时间。使用更小的粒径还可以提高分离能力,用色谱柱长度与粒径的比值(L/dp)即可预测。在本例中,L/dp从50,000(初始条件)提高到60,000(4.6 x 150 mm XP色谱柱)。根据ACQUITY UPLC色谱柱计算器的计算,用于该XP色谱柱的最佳流速为2.0 mL/min3。但是,这个流速超出了美国药典章指南规定的变化范围。故采用1.0 mL/min的流速以保证符合美国药典指南的规定,同时也适应HPLC系统反压的限制。噻康唑及其有关物质在原始色谱柱上与在4.6 x 150 mm XP色谱柱上的分离进行了对比,如图2A-B所示。4.6 x 150 mm XP色谱柱将运行时间缩短43%,分离度提高5%,如图2所示。 接着使用一根更短的4.6 x 100 mm,2.5 &mu m XP色谱柱进行分离,用以说明在实现更快速分离的同时,仍保持着合格的分离度。运行时间的缩短对于有机杂质分析尤其有用归因于附加的分离复杂性,这些方法一般比其他方法具有较长的运行时间。需要注意的一个重要问题是,不一定任何时候都会选用具有较低分离能力(L/dp 40,000)的较短色谱柱。例如在辅料和杂质洗脱时间很接近的情况下可能需要保持原始的分离能力。图2C显示了使用4.6 x 100 mm,2.5&mu m XP色谱柱进行分离时,与初始条件相比,运行时间缩短57%,并且仍然符合所有的考核标准,如图2所示。在这种情况下,L/dp从50,000(初始条件)降低至40,000导致有关物质B与C之间的分离度降低15%;但分离度仍然符合要求,这取决于原始分离的复杂程度。 在UPLC仪器上使用XP色谱柱进行有机杂质分析 如图1所示,通过同时使用XP色谱柱和ACQUITY UPLC色谱柱计算器,该方法可以从Alliance HPLC系统转换至ACQUITY UPLC H-Class系统上。更新的仪器,例如ACQUITY UPLC H-Class系统,可以实现更快速、更高效的分离,归因于其高反压耐受能力、进样之间更快速的平衡以及显著降低的系统体积和扩散。为了对比HPLC和UPLC系统之间的分离能力,将图2B中所示的使用4.6 x 150 mm,2.5 &mu m颗粒的 XP色谱柱进行的有机杂质分析方法在ACQUITY UPLC H-Class系统上重新运行,如图3A所示。仅仪器本身的变化&mdash &mdash 从HPLC变到UPLC,会使B与C色谱峰之间的分离度增加5%,使运行时间缩短12%,如表2和表3所示。分离度的增大归因于UPLC系统的低系统体积和低扩散,因为这两个属性都可以改善峰形。 为进一步说明UPLC仪器的优点,如图3B所示在UPLC系统上使用4.6 x 100 mm XP色谱柱进行分离。此分离操作使B与C色谱峰之间的分离度从使用HPLC系统时的1.6(参见表2)提高到使用UPLC系统时的1.8(参见表3)。在UPLC系统上使用4.6 x 100 mm XP色谱柱,得到与在HPLC系统上用原始方法分离相同的分离度,但是比原始方法快57%。 最后,将标准方法转换至一根2.1 x 150 mm 2.5 &mu m XP色谱柱上。这根色谱柱的测试结果说明通过减小色谱柱的内径,在保留相同分离度的同时,还能进一步缩短运行时间,并且大大减少溶剂用量。根据ACQUITY UPLC色谱柱计算器的计算,适合这根色谱柱的流速为0.42 mL/min。但这个流速超出了美国药典章指南的要求,因此实验使用符合规定的0.5 mL/min流速。分析得到的色谱图(如图3C所示)显示,如表3所示与原始条件相比运行时间缩短80%,而适用性要求仍很容易达到。此外,仅仅通过减小色谱柱的内径分析就比使用4.6 x 150 mm XP色谱柱快63%,如图3A所示。最后,通过使用2.1 x 150 mm XP色谱柱,与原始的标准方法相比,溶剂用量减少90%,显著地节约了成本。当对流速进行调整,以保持在美国药典章指南规定的范围内时,B和C色谱峰的分离度从1.9下降至1.8,但仍符合考核标准。 结论 在进行既耗时又费钱的有机杂质分析时,在现有HPLC系统上使用eXtended Performance [XP] 2.5 &mu m色谱柱,与原始的美国药典方法相比,可以缩短运行时间和减少溶剂用量57%。通过将XP色谱柱与UPLC仪器相结合,运行时间可减少80%,溶剂用量可减少90%。既能在HPLC仪器上运行又能在UPLC仪器上运行的XP色谱柱的实用性可以用于在遵循现行美国药典章指南的同时,改进美国药典方法。在常规分析实验室中,使用经更小粒径色谱柱改进的美国药典方法,可以节约大量的时间和运行成本。 参考文献 1. USP General Chapter , USP35-NF30, 258. The United States Pharmacopeial Convention, official from August 1, 2012. 2. USP Monograph. Tioconazole, USP35-NF30, 4875. The United States Pharmacopeial Convention, official from August 1, 2012. 3. Jones MD, Alden P, Fountain KJ, Aubin A. Implementation of Methods Translation between Liquid Chromatography Instrumentation. Waters Application Note 720003721en. 2010 Sept.
  • 岛津二维液相色谱新应用|流动相含离子对试剂的化药杂质质谱鉴定方法
    离子对试剂:极性药物分析绕不开的话题 液相色谱是药物杂质含量测定和有关物质分离分析最常用的技术手段。对一个陌生的化合物,ODS反相色谱柱通常方法开发条件会选择酸性pH流动相。然而,总有些化合物,它们或含氨基、或含羧基、磺酸基团、磷酸基团,极性较强在反相色谱柱上没有保留。打开2020版《中国药典》第二部,不难发现这些品种,名称中常含有“马拉酸”、“盐酸”、“碱”、“酸”等关键词。对于这类强极性化合物的分析,药典给出的答案是:流动相中添加离子对试剂。例如丁溴东莨菪碱、贝敏伪麻的有关物质流动相条件中含有十二烷基硫酸钠;马来酸曲美布汀的流动相含有戊烷磺酸钠;盐酸头孢吡肟的流动相含有辛烷磺酸钠;叶酸、头孢美唑和对氨基水杨酸钠的流动相含有四丁基氢氧化铵。离子对试剂的添加,增强了极性化合物的保留,改善了药物与杂质的分离,是极性药物分析的杀手锏。 离子对试剂:“质谱不能承受之重” 辛烷磺酸钠和四丁基硫酸氢铵等常用离子对试剂,属于不挥发盐类,质谱响应强且信号经久不衰,持续抑制目标化合物的电离。一旦误操作进入质谱端,需要清洗整个离子通路才能恢复质谱的正常状态。常规二维液相在线除盐系统仅能去除无机盐,无法去除离子对试剂。这是因为无机盐(如磷酸盐)在二维反相色谱柱上无保留,在死时间将其切至废液从而实现在线除盐。然而离子对试剂具有较强的疏水性,在常规ODS色谱柱上强烈吸附显著拖尾,因此不能被常规二维液相系统去除。 上图是辛烷磺酸钠在ESI离子源上的响应。可生成簇离子,质谱响应强且持久,对ESI正负模式均可产生抑制。 上图是四丁基硫酸氢铵在ESI离子源正模式的响应,质谱响应强且持久。四丁基硫酸氢铵与固定相强烈作用,色谱上呈现显著拖尾。 ReDual:一款可以同时分离无机、有机、阴、阳离子的“神柱” ReDual系列色谱柱,是岛津公司最新推出的离子交换反相混合键合相色谱柱,共分为三款: ReDual™ SCX-C18 强阳离子交换+反相ReDual™ CX-C18 弱阳离子交换+反相ReDual™ AX-C18 强阴离子交换+反相 下图是采用ReDual AX-C18 (4.6 mm I. D. × 150 mm L., 5 µm,货号426-45415)分析磷酸二氢钠、四丁基硫酸氢铵和卡络磺钠混合样品的色谱图。该款色谱柱表面键合叔胺基团,在pH 2-7范围内色谱柱表面带阳离子。除疏水作用外,其对阴离子具有离子交换作用,对阳离子具有离子排斥作用。为分离极性类似的阳离子和阴离子型化合物提供了条件。下图中四丁基氨根离子峰型对称,不拖尾无残留,可以通过阀切换导入废液实现在线去除。 ReDual AX-C18色谱柱NQAD检测器同时分离无机有机阴阳离子(1:Na+ 2:四丁基氨根离子;3:H2PO3- 4:卡络磺酸根离子) 应用案例:卡络磺钠参比制剂中杂质结构鉴定 本应用采用常规中心切割二维液相系统,无需改造仪器;馏分转移过程配有紫外检测器监控,不存在检测盲区;离子对试剂的去除未使用强酸或强碱性试剂;方法耐用性好。一维使用C18反相色谱柱,流动相添加磷酸二氢钠(含四丁基硫酸氢铵,pH 3.0);二维使用ReDual AX-C18色谱柱,在线去除四丁基硫酸氢铵和磷酸二氢钠,实现目标化合物的质谱鉴定。 卡络磺钠杂质2的质谱鉴定结果 总结岛津中国创新中心搭载的特色中心切割二维色谱杂质鉴定系统,二维使用岛津公司最新推出的ReDual™ AX-C18强阴离子交换反相混合键合相色谱柱,成功实现一维流动相中离子对试剂和无机盐的在线去除,并对卡络磺钠参比制剂中未知杂质进行了质谱鉴定。
  • “双碳”目标下再看太阳能光伏电池—硅料、硅片杂质元素分析技术
    材料是社会进步的重要物质条件,半导体产业近年来已成为材料产业中备受瞩目的焦点。从沙子到晶片直至元器件的制造和创新,都需要应用不同的表征与检测方法去了解其特殊的物理化学性能,从而为生产工艺的改进提供科学依据。仪器信息网策划了“半导体检测”专题,特别邀请到布鲁克光谱中国区总经理赵跃就此专题发表看法。布鲁克光谱中国区总经理 赵跃赵跃先生拥有超过20年科学分析仪器领域丰富的从业经历,先后服务于四家跨国企业,对于科学分析仪器以及材料研发行业具有深刻理解,促进了快速引进国外先进技术服务于中国的科研创新和产业升级。2020年9月,习近平主席在第75届联合国大会上,明确提出中国力争在2030年前实现“碳达峰”,2060年前实现“碳中和”的目标。“双碳”目标的直接指向是改变能源结构,即从主要依靠化石能源的能源体系,向零碳的风力、光伏和水电转换。加快能源结构调整,大力发展光伏等新能源是实现“碳达峰、碳中和”目标的必然选择。目前,光伏产业已成为我国少有的形成国际竞争优势、并有望率先成为高质量发展典范的战略性新兴产业,也是推动我国能源变革的重要引擎。太阳能光伏是通过光生伏特效应直接利用太阳能的绿色能源技术。2021年,全球晶硅光伏电池产能达到423.5GW,同比增长69.8%;总产量达到223.9GW,同比增长37%。中国大陆电池产能继续领跑全球,达到360.6GW,占全球产能的85.1%;总产量达到197.9GW,占全球总产量的88.4%。截止到2021年底,我国光伏装机量为3.1亿千瓦时。据全球能源互联网发展合作组织预测,到2030、2050、2060年我国光伏装机量将分别达到10、32.7、35.51亿千瓦时,到2060年光伏的装机量将是今天的10倍以上。从发电量来看,虽然其发电容量仍只占人类用电总量的很小一部分,不过,从2004年开始,接入电网的光伏发电量以年均60%的速度增长,是当前发展速度最快的能源。2021年我国光伏发电量3259亿千瓦时,同比增长25.1%,全年光伏发电量占总发电量比重达4%。预计到2030年,我国火力发电将从目前的49%下降至28%,光伏发电将上升至27%。预计2030年之后,光伏将超越火电成为所有能源发电中最重要的能源,光伏新能源作为一种可持续能源替代方式,经过几十年发展已经形成相对成熟且有竞争力的产业链。在整个光伏产业链中,上游以晶体硅原料的采集和硅棒、硅锭、硅片的加工制作为主;产业链中游是光伏电池和光伏组件的制作,包括电池片、封装EVA胶膜、玻璃、背板、接线盒、逆变器、太阳能边框及其组合而成的太阳能电池组件、安装系统支架;产业链下游则是光伏电站系统的集成和运营。硅料是光伏行业中最上游的产业,是光伏电池组件所使用硅片的原材料,其市场占有率在90%以上,而且在今后相当长一段时期也依然是光伏电池的主流材料。在2011年以前,多晶硅料制备技术一直掌握在美、德、日、韩等国外厂商手中,国内企业主要依赖进口。近几年随着国内多晶硅料厂商在技术及工艺上取得突破,国外厂商对多晶硅料的垄断局面被打破。我国多晶硅料生产能力不断提高,综合能耗不断下降,生产管理和成本控制已达全球领先水平。2021年,全球多晶硅总产量64.2万吨,其中中国多晶硅产量50.5万吨,约占全球总产品的79%。全球前十硅料生产企业中中国有7家,世界多晶硅料生产中心已移至中国,我国多晶硅料自给率大幅提升。与此同时,在多晶硅直接下游硅片生产中,因单晶硅片纯度更高,转化效率更高, 消费占比也不断走高,至 2020 年,单晶硅片占比已达 90%的水平。用于光伏生产的太阳能级多晶硅料一般纯度在6N~9N之间。无论对于上游的硅料生产,还是单晶硅片、多晶硅片生产,硅中氧含量、碳含量、III族、V族施主、受主元素含量、氮含量测量是硅材料界非常重要的课题,直接影响硅片电学性能。故准确测试上游硅料、单晶硅片中相应杂质元素含量显得尤为必要、重要。在过去的十几年中,ASTM International(前身为美国材料与试验协会)已经对上述杂质元素的定量分析方法提出了国际普遍通行的标准,其中,分子振动光谱学方法因其相对低廉的设备成本、快速、无损、高灵敏度的测试过程,以及较低的检测下限,倍受业内从事品质控制的机构和组织的青睐。值得一提的是,我国也在近几年陆续制定和出台了多个以分子振动光谱学为品控方法的相关行业标准 (见附录)。这标志着我国硅料生产与品控规范进入了更成熟、更完善、更科学、更自主的新阶段。德国布鲁克集团,作为分子振动光谱仪器领域的领军企业,几十年来坚持为工业生产和科学研究提供先进方法学的助力。由布鲁克光谱(Bruker Optics)研发制造的CryoSAS全自动、高灵敏度低温硅分析系统,基于傅立叶变换红外光谱技术,专为工业环境使用而设计。顺应ASTM及我国相关标准中的测试要求,此系统可以室温和低温下(<15K)工作,通过测试中/远红外波段(1250-250cm-1)硅单晶红外吸收光谱(此波段红外吸光光谱涵盖了硅晶体中间隙氧,代位碳,III-V族施主、受主元素以及氮氧复合体吸收谱带。),可以直接或间接计算出相应杂质元素含量值。检测下限可低至ppta(施主,受主杂质)和ppba量级(代位碳,间隙氧),很好地满足了上游硅料品控的要求,为中游光伏电池和光伏组件的制作打下了扎实的原料品质基础。随着硅晶原料产能的逐年提高,布鲁克公司的 CryoSAS仪器作为光伏产业链上游的重要品控工具之一,已在全球硅料制造业中达到了极高的保有量。随着需求的提升,电子级硅的生产需求也在持续增加。布鲁克公司红外光谱技术也有成熟的方案和设备,目前国内已有多个用户采用并取得了良好的效果。低温下(~12 K),硅中碳测试结果(上图),硅中硼、磷测试结果(下图)附录:产品国家标准:《GB/T 25074 太阳能级多晶硅》《GB/T 25076 太阳能电池用硅单晶》测试方法国家标准:《GB/T 1557 硅晶体中间隙氧含量的红外吸收测量方法》《GB/T 1558 硅中代位碳原子含量红外吸收测量方法》《GB/T 35306 硅单晶中碳、氧含量的测定 低温傅立叶变换红外光谱法》《GB/T 24581 硅单晶中III、V族杂质含量的测定 低温傅立叶变换红外光谱法》(布鲁克光谱 供稿)
  • 解密“N-二甲基亚硝胺”,浅谈基因毒性杂质
    2018年中旬,长春长生的疫苗案还未彻底了结,缬沙坦原料药事件让N-二甲基亚硝胺(NDMA)又一次上了热搜。 时至今日,风波犹存,欧盟范围内对所有沙坦类药物进行审查。之后EMA通报,分别在印度药企Hetero Labs和Aurobindo Pharma生产的氯沙坦及厄贝沙坦原料药中,同样发现了含量极低的亚硝胺类化合物。美国FDA 仍在继续评估含缬沙坦的药物,并将获得的新信息持续更新「召回范围内的药物清单」和「不在召回范围内的药物清单」。 “治病”?“致病”!众所周知,药品是特殊的商品,它可以预防、治疗、诊断人的疾病。近年来,多种新药例如PD1/PD-L1免疫抑制剂的问世,让攻克癌症不再是梦想。 同时,药品的副作用及其安全性很大程度上决定其使用效果,有时不仅不能“治病”,还可能“致病”,甚至危及生命安全,所以药品生产商和监管部门对药品追溯和管理承担着不可或缺的责任。 揭开“基因毒性杂质”真面目NDMA是亚硝胺化合物的一种,而亚硝胺化合物、甲基磺酸酯、烷基-氧化偶氮等又均为常见的基因毒性杂质。基因毒性杂质(或遗传毒性杂质, Genotoxic Impurity, GTI)一般指能直接或间接损伤细胞DNA,产生致突变和致癌作用的物质,具有致癌可能或者倾向。 基因毒性杂质向来受到了严格的监控,2006年爆发甲磺酸奈非那非(维拉赛特锭)事件后,欧洲药品管理局( EMA)随即颁布了《基因毒性杂质限度指南》,人用药品注册技术要求国际协调会议(ICH)与美国食品与药品监督管理局( FDA)出台了相应的法规,中国国家食品药品监督管理总局也密切跟踪国际药品质量控制技术要求,不断完善现有药典收载技术指南,包括方法学验证、药品稳定性评价指导原则以及药品基因毒性杂质评价技术指南等。 药物合成、纯化和储存运输(与包装物接触)等过程中,多个环节均有产生或有可能产生基因毒性杂质。在工艺研究中采用“避免-控制-清除(ACP)”的策略能够最大限度减少基因毒性杂质对原料药物的影响,从而快速灵敏的监测分析手段变得尤为重要。 这时候,飞飞在此!今天赛默飞借助全新一代LC-QQQ技术,让我们一起助力“解密N-二甲基亚硝胺”。 赛默飞针对药品中基因毒性杂质液质检测解决方案 飞飞芳基磺酸酯类基因毒性解决方案Thermo Scientific™ 全新液相色谱三重四极杆质谱TSQ Fortis™ 平台建立了检测8种磺酸酯类的方法(苯磺酸酯类3个、对甲苯磺酸酯类3个、1,5-戊二醇单苯磺酸酯、 1,5-戊二醇二苯磺酸酯)。本方法灵敏度高、专属性强、稳定性好,可以满足各药企对此类基因毒性杂质的检测要求,可为基因毒性杂质风险监控提供有效的技术支持。结果如下:图1. 8种芳基磺酸酯提取离子流图(点击查看大图) 图2. 部分化合物标准曲线图(点击查看大图) 可以看出实验建立了三重四极杆液质联用仪(TSQ Fortis)分析8种芳基磺酸酯类的检测方法。实验结果表明,基于Thermo Scientific™ TSQ Fortis™ 建立的检测方法不仅具有优异的灵敏度和线性范围,同时具备良好的重现性。本方法可用于芳基磺酸酯类基因毒性化合物的日常分析检测。 飞飞N-亚硝基类基因毒性解决方案Thermo Scientific™ TSQ Fortis™ 针对基因毒性物质10个N-亚硝基化合物建立了稳定灵敏的分析方法。该方法在电喷雾离子化(ESI)条件下即可进行有效检测分析,试验结果优异,该方法稳定,快速,满足日常微量基因毒性物质N-亚硝胺类化合物的分析要求。图3. 10个N-亚硝基化合物的色谱图(5ng/mL)(点击查看大图) 图4. 部分化合物标准曲线图(点击查看大图) 从上图中可以看出建立的方法灵敏,快速和稳定性,色谱峰形良好,同时具备优异的重现性,可以满足药品中日常分析N-亚硝基类基因毒性杂质的检测要求。 飞飞总结语此次的应用案例就分享到这里了,不过难道只有这些?不!后续赛默飞更会带来应对基因毒性杂质的多平台解决方案,令“NDMA们” 无所遁形,敬请期待!扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯
  • 蓄能|2020版药典系列-当新版药典遇上基因毒性杂质
    药品中的杂质被定义为无任何疗效、影响药物纯度且可能引起副作用的物质。对药物杂质的分析与控制是国内外药品生产企业共同关注的话题。 2020版药典二部“化学药”在安全性方面要求:进一步完善杂质和有关物质的分析方法,推广先进检测技术的应用,强化对有毒有害杂质的控制;四部通则增修订内容(第四批)中新增《遗传毒性杂质控制指导原则审核稿》。 近年来,一系列基因毒性杂质风波事件加之国内外法规的严格规定,此类杂质的风险评估和分析检测到了紧迫的位置。基因毒性杂质分析面临的挑战是什么呢? 01 样品基质复杂,需要合适的前处理方法进行分离,纯化,富集;02 杂质结构多样和差异大,含量很低,选择性要求高,需要多种分析手段和高灵敏度的分析方法。那么如何应对新版药典及分析挑战?针对缬沙坦及雷尼替丁事件的罪魁祸首--N-亚硝基二甲胺(NDMA),小编给您推荐以下几种方法。一 Q Exactive™ 高分辨质谱方法利用Q Exactive静电场轨道阱高分辨质谱保持高分辨的情况下不损失定量灵敏度的特点,运用PRM(平行反应监测)及SIM(选择离子监测)同时扫描来实现定量;再根据Q Exactive能够实现快速正负切换的特点,方法采用正负切换进行扫描,从而达到一针同时分析6个基因毒性杂质。从混标样品特征图谱可以看出:NDEA标准溶液2ng/mL连续进样7针,峰面积RSD值为1.51%,方法稳定性极好。此外,Q Exactive提供精确质量数可以有效的避免假阳性或者假阴性,特别是检定结果在检出限附近时。并且高分辨质谱具有未知物定性能力,可以一机多用,满足未来的拓展应用需求。 二 TSQ Fortis LC-MS/MS方法该方法稳定灵敏,在电喷雾离子化(ESI)条件下即可进行有效检测分析,试验结果优异,从下图中可以看出建立的方法灵敏、快速和稳定,色谱峰形良好,同时具备优异的重现性,可以满足药品中日常分析N-亚硝基类基因毒性杂质的检测要求。混标样品特征图谱三ISQ7000气质联用仪+TriPlus500 方法采用ISQ 7000气质联用仪,结合新一代TriPlus 500顶空自动进样器方法。连续6针进样0.050μg/mL标准样品的结果,NDMA和NDEA的RSD分别为2.38%和2.14%;远优于一般方法学要求的5%的要求。0.050μg/mL亚硝胺标准溶液连续进样色谱图叠加四 TSQ 9000气质联用仪+液体直接进样本方案采用赛默飞AEI源配置的TSQ 9000气质联用仪+液体直接进样法,建立了一种选择性强,灵敏度高的检测十二种亚硝胺的方法。验证结果表明该方法线性良好,重复性好,灵敏度高,在5 ng/mL浓度下,各亚硝胺类化合物的信噪比均远大于10,连续6针进样十二种亚硝胺标准样品的RSD均小于5%,满足FDA的要求,可将其应用于制药领域中痕量亚硝胺的控制。 T-SRM模式下十二种亚硝胺以及两种内标的重叠谱图是否意犹未尽?接下来,赛默飞将继续开展“2020版药典系列”系列讨论,与您一起蓄能,迎接史上“最严”药典标准,助您从容应对药典变化。
  • 2020药典 |《9306 遗传毒性杂质控制指导原则》解读与对策
    p style=" text-indent: 2em " 不同的药物的生产工艺决定了来源各异、种类众多的杂质类型。杂质的成份复杂且含量较低,难以检测。然而,药品的安全关系到千千万万人的生命安全,必须制定严格的要求来控制药品的质量。 /p p style=" text-indent: 2em margin-top: 15px " span style=" color: rgb(0, 112, 192) " strong 相关政策 /strong /span br/ /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 为控制药物中遗传毒性杂质潜在的致癌风险, span style=" color: rgb(255, 0, 0) " strong 2020版中国药典 /strong /span 四部通则部分,添加了 span style=" color: rgb(255, 192, 0) " strong 《9306 遗传毒性杂质控制指导原则》 /strong /span 。这个新的指导原则为药品标准制修订、上市药品安全性再评估提供参考。 br/ /p p style=" text-indent: 2em " 药物杂质包括有机杂质、无机杂质以及残留溶剂等等。其中,2006年提出的基因毒性杂质是近两年关注的热门。该杂质又叫遗传毒性杂质(genotoxic impurities, GTIs),是指能引起遗传毒性的杂质。包括直接或间接损伤细胞DNA产生致突变和致癌作用的物质,也包括其他类型无致突变性杂质。 /p p style=" text-align: justify text-indent: 2em " EMEA和FDA发布了相应的指南。2007年欧洲药品局EMEA实施了关于基因毒性杂质的解决方案。2008美国FDA发布了《Guidance for industry—Genotoxic and Carcinogenic Impurities in Drug Substances and Products: Recommended Approaches》 /p p style=" text-indent: 2em text-align: justify " 对于未知数据的基因毒性杂质,制定了 span style=" color: rgb(255, 0, 0) " strong 相关摄入阈值TCC /strong /span ( span style=" color: rgb(255, 192, 0) " strong Threshold of Toxicological Concern,毒性物质限量 /strong /span ),也叫做毒理学关注阈值。其意义在于最大程度上保证服药的安全,使致突变的风险低于相关限度。 span style=" color: rgb(255, 0, 0) " strong TTC的限度为1.5 μg/d /strong /span 。 /p p style=" text-indent: 2em text-align: justify margin-top: 20px " span style=" color: rgb(0, 112, 192) " strong 基因毒性杂质来源与分类 /strong /span /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 基因毒性杂质可能产生的环节包括:1)新药合成;2)原料纯化;3)存储运输(与包装物接触)等。其主要来源有:原料药合成过程中的起始物料、中间体、试剂、反应副产物;药物在合成、储存或者制剂过程中的降解产物;部分药物通过激活正常细胞而产生基因毒性物质。常见类型有卤代烷烃、磺酸酯/烷基磺酸酯/芳基磺酸酯、氮亚硝胺类化合物、硫酸二甲酯和硫酸二乙酯、双烷基硫酸酯、氨基甲酸乙酯、环氧化合物、四甲基哌啶氧化物、肼类、芳香胺、硼酸以及乙酰胺等,在列表中的种类有1,574种。这些结构在药物中就是“警示结构”。(如下图) /p p style=" text-align: center margin-top: 15px " img style=" max-width: 100% max-height: 100% width: 505px height: 423px " src=" https://img1.17img.cn/17img/images/202007/uepic/8020e615-ec50-477a-954a-243f7067ac87.jpg" title=" 种类.jpg" alt=" 种类.jpg" width=" 505" height=" 423" / /p p style=" text-align: justify text-indent: 2em margin-top: 15px " 化药中基因毒性杂质的案例有很多报道,比如沙坦类药物中的叠氮化物、亚硝胺类化合物,美罗培南中的318BP、M9、S5,抗艾滋药物Viracept (nelfinavir mesylate)中的甲基磺酸乙酯,以及阿瑞匹坦中的对甲苯磺酸甲酯、对甲苯磺酸异丙酯等等。 /p p style=" text-align: justify text-indent: 2em margin-top: 20px " span style=" color: rgb(0, 112, 192) " strong 基因毒性作用原理 /strong /span /p p style=" text-align: justify text-indent: 2em margin-top: 15px " 根据Miller理论,基因毒性试剂是亲电试剂或者可以代谢成亲电试剂,与DNA上的亲核基团反应生造成基因毒性。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 酰基卤化物: /strong /span 由于卤原子电负性较大,吸引电子,导致羰基碳非常缺电子,一旦和DNA接触,会和腺嘌呤的羰基氧发生酯化反应。二甲氨基甲酰氯和二乙氨基甲酰氯被IARC归为致癌物2A类。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 甲醛: /strong /span 高活性致癌物,与DNA发生多种反应。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 卤代脂肪族类: /strong /span 毒性取决于卤素的性质、数量和位置以及化合物的分子大小。 /p p style=" text-align: justify text-indent: 2em " 一卤甲烷的肝脏代谢的第一步是与谷胱甘肽(GSH)结合,导致S-甲基谷胱甘肽的形成。最终可能转化为甲硫醇(有毒的代谢物)。甲醛产生也可能导致细胞损伤。甲醛来源于细胞色素P450直接氧化母体化合物或甲硫醇的代谢。 /p p style=" text-align: justify text-indent: 2em " 二卤代烷烃通常通过谷胱甘肽或者细胞色素P450代谢后活化,产生遗传毒性。 /p p style=" text-align: justify text-indent: 2em " 三卤代烷烃容易被P450氧化活化,产生光气,光气是一种高活性的亲电中间体。完全卤代烷烃倾向于自由基机理反应。 /p p style=" text-align: justify text-indent: 2em " 四氯化碳在P450中被还原成三氯甲基自由基,该自由基和DNA之间的加合物是导致肝癌的主要原因。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 亚硝酸烷基酯亚硝酸酯: /strong /span 亚硝酸酯和DNA上的氮发生酯交换反应。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong α,β-不饱和羰基: /strong /span 活泼的迈克尔受体,容易被亲核试剂进攻β碳或者羰基碳。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 醌: /strong /span 亲核剂的烷基化。易于被亲核试剂进攻,可以和蛋白质上GSH、半胱氨酸烷基化。氧化还原反应。它们可以与相应的半醌自由基进行酶促(即细胞色素P450/P450还原酶)和非酶氧化还原循环,导致ROS的形成,包括超氧阴离子,过氧化氢,并最终形成羟基自由基。ROS是造成衰老和癌变的主要元凶。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 烷基化间接作用试剂: /strong /span 单卤代烯烃卤代烯烃经过P450代谢后会被氧化成环氧化合物,然和和DNA反应诱导癌变。多卤代烯烃的反应更为复杂,三氯代乙烯进过P450代谢可以生成酰氯、环氧、氯代醛,这些物质均会诱导癌变。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 肼类: /strong /span 该类物质通过P450中氧化酶的催化,肼被氧化成偶氮类化合物。然后反应生成一系列碳正离子、自由基等活性物质,最终导致DNA烷基化,诱导癌变。脂肪族偶氮化合物该系列化合物是肼的氧化中间体。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong N-亚硝胺化合物: /strong /span 一类非常稳定的化学致癌物。代谢得到活性烷基和大分子(DNA或者蛋白质)烷基化是产生遗传毒性和致癌性的主要原因。得到的小分子醛会进一步和DNA结合造成额外的损伤。NDMA在缬沙坦中的限度被要求限制到<0.3 ppm。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 芳香胺: /strong /span 必须代谢为反应性亲电试剂,才发挥致癌作用。对于芳香胺和酰胺,这通常涉及N-羟基芳胺和N-羟基芳酰胺的初始N-氧化。这是由细胞色素P450介导的。在通过酶的酯化作用进一步活化,形成活性亲电物种。最终造成DNA损伤。 /p p style=" text-align: justify text-indent: 2em margin-top: 20px " span style=" color: rgb(0, 112, 192) " strong 检测方案 /strong /span /p p style=" text-align: justify text-indent: 2em margin-top: 15px " 对于基因毒性杂质,只有高灵敏度、高选择性的分析方法才能为更好地选择和建立基因毒性杂质的检测方法提供重要参考。分析方法包括 span style=" color: rgb(255, 0, 0) " strong GC、LC、GC-MS和LC-MS法 /strong /span 等,还有相关的前处理技术包括 span style=" color: rgb(255, 0, 0) " strong 顶空分析法、固相萃取法和衍生化法 /strong /span 等。下图所示为,不同的基因毒性杂质的检测策略。 /p p style=" text-align: center " span style=" font-size: 14px " strong 表1 /strong 不同类型杂质的检测方法和前处理办法 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 443px height: 475px " src=" https://img1.17img.cn/17img/images/202007/uepic/09a28c14-95da-4f42-8d1f-76fe5f0190fc.jpg" title=" 不同杂质的解决方案.png" alt=" 不同杂质的解决方案.png" width=" 443" vspace=" 0" height=" 475" border=" 0" / /p p style=" text-align: center margin-top: 20px " span style=" font-size: 14px " strong 表2 /strong 常用分析方法的特点 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 461px height: 303px " src=" https://img1.17img.cn/17img/images/202007/noimg/7c9ec587-73dc-4805-9637-bff9c8d74d87.gif" title=" 分析方法特点.gif" alt=" 分析方法特点.gif" width=" 461" height=" 303" / /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 525px height: 428px " src=" https://img1.17img.cn/17img/images/202007/uepic/3c20ff8e-079b-469e-ba13-e1236aea38f9.jpg" title=" 决策树.png" alt=" 决策树.png" width=" 525" height=" 428" / br/ /p p style=" text-align: justify text-indent: 2em margin-top: 15px " span style=" color: rgb(0, 112, 192) " strong 具体解决方案【附连接】 /strong /span /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:卤代烷) /span /p p style=" text-align: justify text-indent: 2em " 【Agilent GC-MS】N,N-二甲基-3-氯丙胺盐酸盐(1,3-溴氯丙烷) br/ & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp Intuvo 9000 气相色谱系统+5977B单四极杆质谱检测器 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:N-亚硝基二甲胺,NDMA) /span /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-928363.html#advant" target=" _blank" 【Thermo】缬沙坦及雷尼替丁 /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-924963.html" target=" _blank" 【岛津】氯沙坦: LCMS-8050 高效液相色谱-三重四极杆质谱 /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-912288.html" target=" _blank" 【WATERS】缬沙坦——UPLC I-Class,Xevo TQ-S micro /a /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:环氧化物/醚) /span /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-911034.html" target=" _blank" 【Thermo】盐酸普萘洛尔:高分辨液质Q Exactive Focus+ESI和APCI /a /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:磺酸类、磺酸酯、氨基酯类) /span /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-871218.html" target=" _blank" 【Thermo】Triplus 300 顶空自动进样器+1300GC+ISQ-MS /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-912519.html" target=" _blank" 【SHIMADZU】维格列汀:GCMS-TQ8050 NX /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-926017.html" target=" _blank" 【SHIMADZU】酸肌酸钠 /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-532949.html" target=" _blank" 【WATERS】——Waters Xevo TQD 三重四极杆质谱:快速正负切换的模式 /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-813258.html" target=" _blank" 【Gs-Tek】(毛细管柱)气相柱GSBP-INOWAX 30m-0.25mm-0.25um液体直接进样法 /a br/ /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:4-硝基卞醇) /span /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-912413.html" target=" _blank" 【Thermo】 TSQ 8000 Evo+Unknown Screening 插件 /a br/ /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:氯苯胺) /span /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-822564.html" target=" _self" 【SHIMADZU】 /a span style=" color: rgb(255, 0, 0) " br/ /span /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:丁酸氯甲酯和2,3-二氯苯甲醛) /span br/ /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-910495.html" target=" _blank" 【SHIMADZU】丁酸氯维地平 /a /p p br/ /p p (文中图片来自文献:汪生, 杭太俊. 药物中基因毒性杂质检测策略的研究[J]. 中国新药杂志, 2019(23).) /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 151px height: 46px " src=" https://img1.17img.cn/17img/images/202007/noimg/857572b4-04e8-4c23-8b52-b8b57dd8fb2c.gif" title=" 箭头分割线.gif" alt=" 箭头分割线.gif" width=" 151" height=" 46" / /p p style=" text-align: center" a href=" https://www.instrument.com.cn/zt/chemmed-impurity" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/e377c5b6-1a94-40a2-b0ba-868cd2c52f62.jpg" title=" w640h110impurity.jpg" alt=" w640h110impurity.jpg" / /a /p p span style=" color: rgb(255, 0, 0) " strong & nbsp span style=" color: rgb(0, 0, 0) " 欲了解更多”药典与化药杂质“相关内容,请点击 span style=" background-color: rgb(255, 192, 0) color: rgb(255, 0, 0) " 图片 /span 进入以上专题~ /span /strong /span /p p style=" text-align: center margin-top: 10px " a href=" https://www.instrument.com.cn/webinar/meetings/yoloChemDrug2020/" target=" _blank" img style=" max-width: 100% max-height: 100% width: 640px height: 110px " src=" https://img1.17img.cn/17img/images/202007/uepic/ab578eb9-cc5b-4578-a6d9-26c3d27e426d.jpg" title=" 2020 banner.jpg" alt=" 2020 banner.jpg" width=" 640" vspace=" 0" height=" 110" border=" 0" / /a /p p & nbsp strong 2020年“化药杂质研究与技术”WEBINAR【戳链接,看回放】 /strong span style=" color: rgb(255, 0, 0) " strong /strong /span br/ /p
  • 沃特世快速分析对苯二甲酸(PTA)中有机杂质的解决方案
    对苯二甲酸(PTA)是一种重要的有机化工原料,以对二甲苯(PX)为原料加工而成,主要用于生产聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丙二醇酯(PTT)和聚对苯二甲酸丁二醇酯(PBT),被广泛用于聚酯切片,化纤、涤纶和汽车等行业。杂质,尤其是对羧基苯甲醛(4-CBA) 和对甲基苯甲酸(p&ndash TOL) 的含量将大大降低聚合反应的速度,影响聚合物的颜色。因此,4-CBA和pTol是PTA生产企业必须检测的重要指标。 目前,PTA产品分析均采用离子交换、毛细管电泳或者HPLC的方法。其中毛细管电泳和离子交换能够实现各组分较好的分离,但是方法重现性差,色谱柱耐受性不好,使用寿命短。而HPLC由于分离度不能满足要求,4-CBA和PTA主产物不能完全分离,检测灵敏度不高。 应用Waters ACQUITY UPLC H-Class/TUV系统,结合BEH C18 色谱柱优良的分离性能,可实现PTA样品中各组分,尤其是PTA与4-CBA、pTol的完全快速分离。对PTA中的杂质有效进行分离鉴定,提高产品纯度和生产效率。 图1 ACQUITY UPLC H-Class 分析PTA样品的分离效果图(240nm) 图2 ACQUITY UPLC H-Class 分析PTA样品放大图(254nm) 图3 ACQUITY UPLC H-Class 分析PTA样品放大图(240nm) 了解更多沃特世解决方案: http://www.waters.com 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。
  • 【安捷伦】方法目录免费下载 | 应对基因毒性杂质,我们有妙招!
    基因毒性杂质,又称遗传毒性杂质,是指能直接或间接损伤细胞 DNA,产生致突变和致癌作用的物质。其主要来源有:- 原料药合成过程中的起始物料、中间体、试剂、反应副产物;- 药物在合成、储存或者制剂过程中的降解产物;- 部分药物通过激活正常细胞而产生基因毒性物质,如化疗药物顺铂等。有关基因毒性杂质的英文文献报道出现于 2006 年。近年来,对于药物研发而言,基因毒性杂质已经不再是新闻:从沙坦类药物中的叠氮化物、亚硝胺类化合物,到美罗培南中的 318BP、M9、S5,再到阿瑞匹坦中的对甲苯磺酸甲酯、对甲苯磺酸异丙酯等,人们对于特定药物品种中基因毒性杂质的研究不断深入。同时,随着 EMA,FDA 及 CFDA 对于原料药和制剂中的基因毒性杂质监管和控制法规的不断强化,目前对于基因毒性杂质的评估要求无疑正在朝着更为严格的趋势发展。安捷伦作为药物杂质分析领域全面解决方案的领导者,可提供涵盖液相、气相、液质、气质、色谱柱与方案包、计算机认证与合规软件在内的完整基因毒性杂质检测技术。在当前市场背景和法规驱动下,继 2018 年发布《安捷伦基因毒性杂质检测解决方案》后,我们持续对市场动态和用户需求以及法规升级保持高度关注,并针对常见药物基因毒性杂质分析方法进行了系统的更新与梳理,适时推出《安捷伦基因毒性杂质检测简报》。简报对于常见的基因毒性杂质类型如卤代烷烃、磺酸酯/烷基磺酸酯/芳基磺酸酯、氮亚硝胺类化合物、硫酸二甲酯和硫酸二乙酯、氨基甲酸乙酯、肼类及其他近二十几类典型基因毒性杂质的分析进行了系统的方法开发,并对方案特点进行了客观详细的说明和总结,对于从事相关研究的用户来说,将是非常有助益的研究工具。访问 www.agilent.com/zh-cn/technology/yaodian,阅读安捷伦药典系列文章。[本文转自“安捷伦视界”公众号,作者为安捷伦 MKT 和 SDT 团队]关注“安捷伦视界”公众号,获取更多资讯。
  • 原料药中杂质分离和特征描述战略性方法
    原料药中杂质的分离和特征描述的战略性方法 迈克尔 道. 琼斯, 玛丽安 特渥辛, 罗布 Plumb,宋相晋, 约翰 Shockcor, 乔斯 卡斯特罗 佩雷斯 和 安德鲁 奥宾 沃特世公司, 米尔福德市, 马萨诸塞州, 美国, 01757 简介 监测化合物中的杂质对于生产制剂和原料药的公司来说是有既得利益的,除了法规要求外,还有其它很多原因。杂质的鉴定可以帮助发现潜在未知的降解途径,虚假的过程/专利保护侵害,和/或遗传毒性影响。杂质的分析是劳动密集型的工作,包括方法开发,杂质分离技术和各种各样的分析方法,以得出所感兴趣杂质的真实结构。 这篇文章介绍了一种战略性的方法,该方法应用了高分离液相色谱理论和强制降解研究,以最大化生产原料药喹硫平中的杂质。高分离液质联用和核磁被用来解释结构。 方法学 分析 仪器: ACQUITY 超高效液相 色谱柱: ACQUITY UPLC™ BEH C18 规格: 100 x 2.1mm, 1.7µ m 流动相: A: 20mM Ammonium 碳酸氢铵, pH10 B: 乙腈 梯度: 见图 1 和 2 柱温: 650C 进样量: 3 µ L 检测器: ACQUITY PDA @ 250 nm ACQUITY SQD 扫描范围 100-1000amu 质谱条件 仪器: Waters® SYNAPT™ 软件: Masslynx™ 4.1 离子源: ES+ 毛细管电压 (kV): 3.2 提取电压 (V): 4.0 脱溶剂气温度 (0C): 350.0 源温度 (0C): 120.0 脱溶剂气流速 (L/Hr): 650.0 锁定质量: 300pg/µ L白氨酸/脑啡肽@ 50µ L/min 质谱/质谱参数设置 飞行时间 椎孔电压 (V): 15 碰撞能 (V): 变化从15到30 采集范围: 质谱 100 - 1000Da 质谱/质谱 50—600 Da 制备 沃特世质谱引导的纯化系统 泵 2454二元溶剂管理器 进样/收集器 2767 检测器 2998 光电二极管阵列 质谱 3100 色谱柱 100X19mm XBridge, 5 um 溶剂 A = 10 mm 碳酸氢铵 pH 10 溶剂 B = 乙腈 流速 25/mL/min 梯度 B 经过10分钟 从5% 到60% 95% 有机相保持5分钟 核磁 仪器参数见图9 观察,制备和分离 喹硫平的酸解 该杂质鉴定方法(以前建立的)被用来鉴定喹硫平原料药在0.1mol/L盐酸中降解的主要杂质。 图1: pH 9 的碳酸氢铵, ACQUITY BEH C18 2.1x100 mm 1.7um, 乙腈, 0.8mL/min. 650C, 20 分钟, 15-39%B到10.5分钟, 39-43%B到14.4分钟, 43-95%B到18分钟, 保持95%B到20分钟. 制备分离的准备 此方法为了更快的速度、更低的温度和更短的色谱柱,而进行了再优化,同时又能保持主要杂质和喹硫平间足够的分辨率 . 为什么呢? 在从超高效液相方法转换到制备型高效液相时,有些因素必须要考虑: 保持分离效率: L/dP (柱长度/颗粒度) 例如: 50 mm、1.7 um色谱柱的L/Dp为29,411,和具有30,000 L/Dp 值的150mm、5um制备柱等效 能使用更短的制备柱吗?在杂质402的分离中,100 mm的制备柱仍能提供足够的柱效以完全分离杂质。 在放大制备梯度中,对于制备流速,柱体积数必须保持合适的数值。如果这些因素都被考虑到,从超高效液相方法转换到制备型高效液相是能保证相似的选择性的。 从超高效液相放大到制备色谱 传统上, 从分析型高效液相放大到制备型高效液相使用同样的色谱柱长度和颗粒度,并运用下面的公式: Fp= Fa [(Dp)2]/[Da2] 注: Fp=制备柱的流速 Fa=分析柱的流速 Dp=制备柱的内径 Da=分析柱的内径 其它工具: Waters 制备放大计算器可以计算每个梯度段的时间,柱长度的变化和进样量。 聚焦梯度 *克利里等. 纯化过程中聚焦梯度的影响, Waters 应用文献 720002284EN 质谱引导的自动纯化 主要杂质m/z =402的分离在分析和化学上都很容易。 最大化产出: 8g/mL 喹硫平的储备液在 600C、0.1mol/L的盐酸中加热回流8小时, 以增加m/z=402 杂质的 产量 制备上样研究允许色谱柱进样20uL。 图3: 强制降解样品的制备色谱 仪器优势: 分离是通过Masslynx™ Fractionlynx™ 软件中的自动质量触发进行的。 ACQUITY BEH C18的方法可以无缝转换到XBridge C18 制备柱 通过超高效液相对感兴趣杂质的再优化可提供快速方法,以通过UPLC-SQD, UPLC-oaTof, 和/或UPLC MS/MS进一步确认分析 鉴定,确认和特征描述 分离的确认 通过质谱引导的纯化系统收集的m/z = 402的馏分被收集并挥干。该分离步骤得到了28.6mg m/z = 402的杂质。用甲醇稀释得到浓度为286µ g/mL和2.86µ g/mL的溶液,并用3分钟的UPLC-SQD方法进样以确认分离的质量 . 图4: 被分离杂质m/z=402的UPLC UV/SQD 确认 质量精度的重要性 杂质的质荷比为402,等于喹硫平(m/z = 384)加合了18 amu。样品进样到Waters SYNAPT™ MS可得到精确质量数以确认元素组成 . 图5: m/z = 402杂质的元素组成. 双键等价值(DBE) 、低的同位素匹配度(low i-Fit)、毫道(mDa)和结果都支持第一个分子式 加合可以在喹硫平结构中氧化一个点,同时减少一个双键 . 图6: 建议的结构. A.) 硫代氧化物 或 B.氮代氧化物 )? 氮代氧化物为基础的结构的确认 通常, 在低PH流动相的反相液相中,含有氮代氧化物杂质的化合物在原料药后被洗脱出来。超高效液相是在pH=9.0下进行的,所以使用pH=3.0的甲酸铵和乙腈的梯度检测速度变快 。 图7: 酸性流动相条件下进样时,酸降解喹硫平的洗脱顺序。因为感兴趣的峰在喹硫平原料药前被洗脱出来,所以氮代氧化物的可能性不大 . 质谱/质谱分析 精确质量数质谱/质谱分析是为了确认任何碎片数据的存在已进一步支持喹硫平的硫代氧化物降解形式。指示性的碎片最有可能是分子量很低的碎片,在那里所发生的裂解可以区分硫代氧化物和氮代氧化物。 图 8: 裂解分析显示了硫代氧化物/裂解为基础的结构。 通过分析m/z = 137.0063的碎片可得出: -元素组成是 C7 H5 O S -质量精度为 0.2毫道尔顿 -双键等价值(DBE) = 5.5, 对于环结构转换为4.5,而对于硫代氧化物为1.0。 如果N=C是完整的,由于四价碳缺少质子,所以不可能得到228.0480和175.1428的碎片 NMR 支持的数据 核磁数据和建议的结构是一致的 图 9: 被分离的喹硫平中m/z = 402杂质的C13-NMR and H-NMR 结论 从超高效液相转换到制备色谱 -保持L/Dp不变被证明是放大可能性的关键因素 -相容的化学性质可最小化分离度差异 -利用强制降解研究可增加最大化产出的潜能 -质谱引导的馏分收集可保证正确的杂质收集 杂质确认和说明 -ACQUITY UV/SQD 为很多的馏分组成提供快速确认 -高分辨率 SYNAPT MS为母离子和产物离子的元素组成确认提供很好的质量精度 -对于有显著不同色谱行为的结构,高/低PH值流动相测试可以帮助确定建议的结构 -尽管采集了核磁数据(不是决定性的),但它的精确质量质谱/质谱数据证明了杂质是硫代氧 化物而不是遗传毒性结构。
  • 前沿合作 | 2D-LCMS-QTOF法对注射用头孢美唑钠的未知杂质进行结构解析
    岛津中国创新中心与北京阳光诺和药物研究股份有限公司和中国食品药品检验研究院合作,采用岛津二维高效液相色谱串联四极杆飞行时间质谱法(2D-LC-QTOF),对头孢美唑钠热降解的未知杂质进行了定性鉴定。 背景介绍β-内酰胺类抗生素,主要包括头孢菌素类、青霉素类和碳青霉烯类。头孢美唑是第二代半合成的头孢类抗生素。2020版《中国药典》,美国药典(USP43)和日本药典(JP17)都收录了注射用头孢美唑钠。在注射用头孢美唑钠的质量研究中,发现其对热比较敏感,头孢美唑内酯(cefmetazole lactone)和1-甲基-5-巯基四氮唑(1-methyl-5-mercaptotetrazolium)在高温条件下均有明显增加,主峰后出现3个明显的未知杂质。 某仿制药和参比制剂样品中实际检出的未知杂质含量超过了ICH Q3B规定的鉴定阈值(头孢美唑日用最大剂量为4g,对应的杂质鉴定阈值为0.10%;部分样品中如图1所示杂质3的量超过0.10%),故尝试对注射用头孢美唑钠检出的未知杂质进行结构分析。图1给出了注射用头孢美唑钠热解样品的一维(图1A)和3种目标杂质(杂质1-3)的二维(图1B)紫外色谱图。图1 注射用头孢美唑钠热解样品的一维(1A)和3种目标杂质(杂质1-3)的二维(1B)色谱图 解决方案岛津液相系统Nexera LC-40 +高分辨质谱仪LCMS-9030 基于二维液相色谱-高分辨质谱系统,采用中心切割技术将在一维中采用含非挥发性盐的流动相中分离得到的目标未知物导入二维色谱,在二维色谱中采用质谱兼容的挥发性流动相,进而采用高分辨质谱对未知物进行定性鉴定。一维色谱采用《中国药典》中注射用头孢美唑钠的有关物质检查方法,流动相中含不挥发的磷酸盐和离子对试剂(四丁基氢氧化铵,TBAH)。二维色谱采用C18色谱柱,利用磷酸盐在色谱柱上不保留,TBAH在高比例水相下不易洗脱等性质,通过阀切换技术和改变流动向比例等方法洗脱导入废液,避免质谱污染。 表1 头孢美唑钠中杂质的分子式、加和离子和误差 在结构解析中,通过比较头孢美唑钠和未知降解杂质的母离子及特征碎片离子的相关性,结合文献报道的头孢类抗生素及杂质的裂解规律,对头孢美唑钠中的三种未知杂质进行科学合理的定性分析。表1列出了三种未知杂质的分子结构和误差。以杂质2为例,在正模式下的一级质谱图(见图2A):主要离子为m/z 488.0320,m/z 372.0160,m/z 505.0586。m/z 488.0320与m/z 505.0586相差17,可推断m/z 505.0586为m/z 488.0320的[M+NH4]+峰。m/z 488.0320的二级产物离子质谱图(见图2B)。推测杂质2的结构和裂解规律(见图3),杂质2可能为7-甲巯基头孢美唑。同时,7-甲巯基头孢美唑也是一种常见的头孢美唑杂质。 图2 杂质2在正模式下的扫描离子(2A)和m/z 488.0320的产物离子质谱图(2B) 图3 杂质2可能的结构和质谱裂解规律 结论本研究对头孢美唑中的3种未知杂质进行了科学合理的定性分析,对于头孢美唑的质量控制及安全性评价具有重要意义。本分析方法适用于β-内酰胺类抗生素中未知杂质的分离和定性,具有很强的通用性,同时可对化学药物、天然产物、多组分生化药等复杂组成体系进行定性鉴别,从而提供可靠的质量控制分析方法。 本工作基于创新中心搭建的专属性中心切割二维反相色质谱联用分析平台(2D-LC-QTOF)和开发的《抗生素杂质数字化标准品数据库》,该数据库收录了β-内酰胺类抗生素的一般杂质和聚合物杂质的色谱和高分辨质谱数据,还登录了抗生素相关杂质的液相色谱-三重四极杆质谱分析方法。该分析平台不仅为企业客户大大降低了企业研发成本,同时也为企业的工艺改进、剂型研发、品质提升等方面提供技术参考。 参考文献:《采用二维高效色谱-串联四级杆飞行时间质谱法对注射用头孢美唑钠的未知杂质进行结构解析》《中国药学杂志》中图分类号:R917 文献标识码:A 文章编号:1001-2494(2022) 08-0645-06 doi: 10.11669/cpj.2022.08.009
  • 岛津推出二维液质杂质鉴定系统
    制药企业QA/QC 部门的液相检测方法中会经常使用非挥发性缓冲盐流动相(如磷酸盐缓冲溶液),但当进行液质联用分析时,流动相必须转换为适合于ESI(APCI)的挥发性流动相。而改变流动相很多时候会使得杂质峰的保留时间发生变化,甚至湮没在主峰中,因此,需要耗时耗力摸索新的分析方法。 为解决上述问题,近日,岛津公司在中国市场推出了岛津独有的LCMS-IT-TOF 的新应用系统&mdash &mdash 二维液质杂质鉴定系统。通过使用岛津二维液质杂质鉴定系统,无需改变原先的流动相分离条件,就可以将目标杂质从一维色谱中收集下来,在二维色谱中直接使用挥发性流动相进行MS 分析。如果同时配备IT-TOF,则可以通过多级高分辨质谱进行精确定性分析。 2D LC/MS 杂质鉴定系统流路图 二维液质杂质鉴定系统是基于Prominence 设计、用于LCMS-IT-TOF 前端的应用系统,配置包括LCMS-IT-TOF,Prominence 系列液相单元以及 &ldquo 二维液质杂质鉴定系统启动包&rdquo 。启动包中包括二维液相色谱质谱联用的控制软件及整套连接管路。 本系统特长 1)无需改变分析方法 无需改变原有分析方法,系统就可以通过一维色谱分离,将目标杂质组分导入样品环;然后,二维色谱分离目标杂质,并通过提供准确和多级(n³ 2)的质谱数据来达到鉴别杂质的目的。 2) 二维方式实现全自动切换 当液相色谱分析使用非挥发性盐流动相(如磷酸盐缓冲液),转换为液质联用分析时,需将流动相转换为挥发性流动相(不使用缓冲盐或使用挥发性缓冲盐)以适应大气压离子源。而本系统允许在一维分析中使用非挥发性盐流动相,在二维液质分析中使用挥发性流动相,自动实现流动相的在线改变。 3)可通过专用软件轻松使用该系统 二维色谱分析通常需要复杂的指令程序来控制切换阀以收集目标杂质。在此系统中,通过简单的输入杂质保留时间,即可以自动创建时间程序来实现阀的切换等动作。当杂质的保留时间未知或者因为分析条件变化而改变时,也可手动控制阀来实现切换。 有关详情,敬请咨询岛津公司 · 北京分公司 (010) 8525-2310/2312 · 浦西分公司 (021) 2201-3888 · 广州分公司 (020) 8710-8661 · 四川分公司 (028) 8619-8421 · 沈阳分公司(024) 2341-4778 · 西安分公司(029) 8838-6350 · 乌鲁木齐分公司(0991) 230-6271 · 昆明分公司(0871) 315-2986 · 南京分公司(025) 8689-0258 · 重庆分公司(023) 6380-6068 · 深圳分公司(0755) 8287-7677 · 武汉分公司(027) 8555-7910 · 河南分公司(0371) 8663-2981 岛津用户服务热线电话:800-8100439 400-6500439 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 赛默飞发布药物杂质鉴定新流程
    2015年8月18日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布基于Thermo ScientificTM Q ExactiveTM Focus串联四极杆高分辨质谱仪(产品详情:www.thermoscientific.cn/product/q-exactive-focus-hybrid-quadrupole-orbitrap-mass-spectrometer.html)和新一代的智能小分子化合物鉴定软件Thermo ScientificTM Compound DiscovererTM的药物杂质鉴定的新流程,实现了对泮托拉唑杂质谱的分析。无论是优质数据的有效获取,还是获取后对已知和未知杂质的分析鉴定,该工作流程都可以完美实现。药物杂质是药物活性成分(原料药)或药物制剂中不希望存在的化学成分,会对用药的安全性和有效性带来隐患,因此杂质的检测是保证药物质量至关重要的部分,FDA、EMEA、PMDA、CFDA等各国药品监管部门均制定了相应的指导原则对其进行严格管控。赛默飞独有的四极杆静电场轨道阱高分辨液质联用技术,凭其高灵敏度、高专属性和高准确性的分析能力,可对样品中药物杂质进行全面的信息采集。结合小分子化合物鉴定软件Compound Discoverer以高度灵活的自定义方式制定分析工作流程,对数据中的目标和非目标杂质进行提取、比对及鉴定,工作流程如下:通过软件对样品数据的分析和提取,在Compound Discoverer中可以直观、便捷的查看和筛选预期和未知的杂质分析结果,从结果界面中可获得不同条件下样品杂质的变化情况,获得所有杂质保留时间、一级质谱、同位素和二级质谱等丰富信息。在获得母药和杂质的一级和二级质谱信息后,软件将调用碎裂数据库(Fragmentation Library)快速的对泮托拉唑的碎片结构进行归属,该数据库几乎涵盖了所有已发表的文献,保证了碎片解析的准确性。在此研究结果之上,通过软件对杂质与母药二级质谱信息之间的比对,进一步对杂质变化位点进行推测。在本例中,共鉴定到泮托拉唑杂质15个,其中可能的降解杂质9个,可能的工艺杂质6个,为药物杂质的质量控制、安全性评估提供了富有价值的信息。相关资料下载地址:www.thermoscientific.cn/content/dam/tfs/Country%20Specific%20Assets/zh-ch/CMD/MS/LSMS/documents/analysis%20drug%20impurity%20in%20pantoprazole.pdf -------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国已超过30年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数约3700名。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了9个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000 名工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn
  • 机械杂质测定仪|石油产品机械杂质测定的作用及意义
    得利特(北京)科技有限公司专注油品分析仪器领域的开发研制销售,致力于为国内企业提供高性能的自动化油品分析仪器。公司推出系列精品润滑油分析检测仪器、燃料油分析检测仪器、润滑脂分析检测仪器等。垂询电话:010-80764046,807640561、什么叫做试油的机械杂质?答:试油中的机械杂质是指存在于油品中所有不溶于溶剂(汽油,苯)的沉淀状或悬浮状物质。这些杂质多由砂子,粘土、铁屑粒子等组成。现行方法测出的杂质也包括了一些不溶于溶剂的有机成份,如碳青质和碳化物等。2、油品中机械杂质对机组运行以下危害:(1)可引起调速系统卡涩和机组的转动部分磨损等潜在故障。(2)引起绝缘油的绝缘强度、介质损耗因数及体积电阻率等电气性 能下降。(3)影响汽轮机油的乳化性能和分离空气的性能。(4)堵塞滤油器和滤网,影响油箱油位的显示,磨损油泵齿轮。(5)影响变压器散热,引起局部过热故障。相关仪器ENDENDA1280机械杂质测定仪符合GB/T511标准,适用于测定石油产品中的各类轻、重质油、润滑油及添加剂的机械杂质的含量。可广泛应用于电力、石油、化工、商检及科研等部门。仪器特点1.数码显示,智能温控表控温2.外观美观,测试方便,性能稳定可靠3.实现按标准要求的升温速率4.仪器主要由玻璃器皿、恒温水浴、真空 泵、电子控温箱组成技术参数• 工作电源: AC 220V±10%,50Hz• 水浴加热功率: 1000W• 水浴控温范围: 室温~90℃内可调• 水浴温度显示: LED数字显示• 水浴控温精度: ±1℃• 漏斗控温范围: 室温∼90℃内可调• 漏斗控温显示: LED数字显示• 漏斗控温精度: ±2℃• 环境温度: 5℃∼45℃• 相对湿度: ≤85%• 整机功耗: ≤1200W• 外形尺寸: 400*380*600• 重 量: 7.5KG
  • 检测药物杂质,保障药品安全——“化学药物杂质研究及检测技术”网络会议,7月27日开播!
    众所周知,青霉素类注射剂使用前需要进行皮试。由于批次不同,使用前需要严格进行确认时候过敏。否则会导致严重的超敏反应,重则危及生命。资料表明,青霉素过敏中有90%都是由于其中的杂质过敏。由于药物化学和提纯工艺的发展完善,制剂的质量也在不断提高,因此过敏反应发生的概率降低。那么危及生命安全的杂质究竟是何物呢?在药品中都有哪些类型的“杂质”呢?药物杂质的分类和相关政策 药物杂质是指无治疗作用或影响药物的稳定性以及疗效的物质。由于杂质检测和含量控制对药品质量控制以及安全用药密切相关,国家药品监督管理局(NMPA)对药物临床前研究中的杂质分析越来越重视。因此,在已经实施的2020年版《中国药典》中对于药品安全性的监管更加严格。尤其是在化学药品杂质检测方面,相对2015版有较大程度的增修。在二部化学药部分,直接指出需要加强杂质检测的力度:“进一步完善杂质和有关物质的分析方法,推广先进检测技术的应用,强化对有毒有害杂质的控制;加强对药品安全性相关控制项目和限度标准的研究制定”。四部通则中新增《遗传毒性杂质控制指导原则审核稿》,对药物遗传毒性杂质的危害评估、分类、定性和限值制定进行了指导。我国早在2017年6月14日正式加入ICH (人用药品注册技术要求国际协调会),成为全球第8个监管机构成员,此次,化学药部分对元素杂质的控制要求引入了ICH(Q3D)部分,与ICH的规定几乎一致。可见,2020 年版《中国药典》编制大纲要求化学药基本达到国际标准。因此,从“杂质限量”这个维度来看,药物的规格只有两种,即“合格”与“不合格”。药物的杂质有哪些类型呢?应用什么样的分析方法可以进行检测呢?化学药物杂质的分类与检测方法化药中的杂质可分为有机杂质、无机杂质、残留溶剂。对于新药及其制剂来说分为:有活性组分的降解产物、活性组分与赋形剂和(或)内包装/密封系统的反应产物、遗传毒性杂质以及药包材杂质。关于杂质的分析方法,对于有机杂质的分析(起始物、副产物、中间体、降解产物等),使用色谱法分析居多;对于无机杂质(重金属,无机盐等),通常采用ICP/AA/ICPMS等仪器分析;对于残留溶剂杂质,则以GC分析为主。贯穿于药品研发的整个过程的理念就是保证安全。选择合适的分析方法,准确地测定杂质的含量,综合毒理及临床研究的结果可以更好地研究药物杂质。基于此,7月27日,仪器信息网(instrument.com.cn)与天津市分析测试协会共同举办“化学药物杂质研究及检测技术”网络主题研讨会,以期为广大生命科学、制药工作者们提供交流平台,促进相关技术的发展。本次会议特邀报告嘉宾:天津医科大学刘照胜教授、天津大学药学院陈磊副教授、天津市药品检验研究院抗生素室杨倩药师以及河北省药品医疗器械检验研究院化学药品室副主任徐艳梅工程师。同时邀请到来自赛默飞世尔科技的刘钊工程师、岛津企业管理(中国)有限公司的孟海涛工程师以及沃特世科技的陆金金工程师为我们解读药典相关的政策变化和最新的仪器应用案例。(会议详情请您报名或点击阅读原文获取)【报名二维码】小惊喜:成功报名会议+转发会议页面至朋友圈或专业群+截图后—可加专业交流群、会议预告、资料获取、会议回看… … 关注微服务,参会不迷路微信搜索“仪器信息网微服务”,获取百场会议信息,做仪器行业学习的领航者。
  • 药品研发注册杂质研究与控制专题研讨会会议通知
    关于举办“药品研发注册杂质研究与控制专题研讨会”的通知   各有关单位:   随着《国家药品安全规划(2011—2015年)》的出台,对全面提高药品安全保障能力,降低药品安全风险提出了更高的要求 而在药品安全研究中,杂质问题一直是国内注册和国际注册的难点和重点,控制药物中杂质已成为控制药品质量的关键因素之一,也是困扰着广大药物分析工作者的难题之一。由于药物杂质的来源广泛,已知的杂质可以通过现有的分析手段进行定性定量,未知的杂质则成为分析的难题,为了让广大药物分析工作者能实现有效地药品杂质控制,更深刻的理解安全性对于药品的关键影响,经研究,全国医药技术市场协会定于2013年3月15日-17日在北京市举办“药品研发注册杂质研究与控制专题研讨会”。请各有关单位积极选派人员参加。现将有关事项通知如下:   一、会议时间地点:   时间:2013年3月15日-17日(15日全天报到)   地点: 北京市 (地点确定直接通知报名者)   二、会议主要内容   详见课程安排(附件一)   三、参会对象   制药企业和新药研究机构的研发人员,各级药品检验所(院)和口岸药品检验所人员,药品生产企业研发技术与质量管理负责人,新药研发CRO实验室人员及高管。各药品分析仪器设备研发生产、代理商 各高等院校、科研院所、医疗机构等相关专业人员。   四、会议说明   1、理论讲解,实例分析,模拟审计,互动答疑.   2、主讲嘉宾均为药典委委员和行业内资深专家、欢迎来电咨询   3、本次会议将征集与会议主题和研讨内容有关的论文。来稿应具有科学性、实用性,且论点鲜明、数据可靠、文字精练通顺。截稿日期:2013年3月9日。   五、会议费用   会务费:1980元/人。会务费包括:培训、研讨、证书、资料及论文集。食宿统一安排,费用自理。   六、联系方式   电 话:13121666780   传 真:010-52226401   联 系 人:陈海涛   邮 箱:yyxhpx2012@126.com   会议质量监督电话:010-51606480 张 岚   附件一 日 程 安 排 表 3月16日 (星期六) 09:00-12:00 14:00-17:00 药品杂质分析指导原则   1、创新药物杂质研究的思路、仿制药物杂质研究的思路、原料药物杂质研究的思路   2、仿制药与原研有关物质的对比研究   3、.新药注册申请资料的质量要求、药物杂质研究案例分析(对注册批件中生产工艺内容要求的思考)   4、针对质量标准中已规定的已知杂质和未知杂质的研究思路   5、药物研发中杂质分离、分析、控制策略与去除策略   6、有关物质研究中的液相使用技巧与注意事项   7、起始原料质量对终产品的重要影响:杂质超标等问题   8、原料药杂质控制的相关法规:Q3A, Q3B, Q3C   9、原料药申报中采用HPLC方法测定有关物质存在的问题   10、原料药与成品药中的残留溶剂   11、主药与辅料相容性研究时出现的杂质问题   12、案例分析   主讲人:谢沐风 资深专家、上海市食品药品检验所及国家药典委中检所相关专家等。 3月17日 (星期日) 09:00-12:00 14:00-17:00 FDA对药物杂质的控制要求   1、原料药与成品药中的有机杂质   2、有机杂质来源和控制   3、有机杂质控制限度的论证   4、案例分析:有机杂质控制限度的设置和论证   5、原料药与成品药中的残留溶剂   6、残留溶剂的指导原则和控制限额的建立   7、案例分析:如何建立残留溶剂的控制限额   8、具有基因毒性杂质的控制   9、多晶型药物质量控制、异构体杂质控制等。   主讲人:沈新华博士 上海安必生技术有限公司研发副总裁,首席科学家,主要负责药物分析研发。曾在国外工作20 多年,具有药物研发、药物合成、药物分析的丰富实践经验及其深厚的理论知识,以及国际仿制药公司工作的经验。曾在TEVA 药业(全球著名的跨国仿制药集团)加拿大分公司任高级研发科学家,以及在加拿大最大的制药公司Apotex 任研发部门经理,负责和参与了数十种非专利药ANDA 的分析研发、药物申报和质量监控等工作。曾获中国药科大学有机合成硕士学位和瑞典皇家理工大学 化学博士学位 兼任北京大学药物信息与工程研究中心授课教师。 备注 每天除专家报告外,还安排了约1小时的代表发言和提问时间。   附件二: 药品研发注册杂质研究与控制专题研讨会回执表   (此表复制有效) 单位名称 联系人 地 址 邮 编 姓 名 性别 职务 电 话 传真/E-mail 手 机住宿是否需要单间:是○ 否○ 是否参加企业推广: 是○ 否○ 是否参加会议发言:是○ 否○ 是否提交论文: 想学习的内容: 论文题目: 联系人: 陈海涛 电话/传真:010-52226401 邮箱:yyxhpx2012@126.com
  • 新药典观察 | 9306遗传毒性杂质控制指导原则解读
    截图来源:2020版《中国药典》 2020版《中国药典》已正式发布,在四部中新增“9306遗传毒性杂质控制指导原则”(以下简称9306指导原则),以适应当前国外内法规(如ICH M7)和化学药品遗传毒性杂质控制的实际需要。 概述遗传毒性杂质(genotoxic impurities, GTIs),又称基因毒性杂质。9306指导原则主要关注致突变机制的遗传毒性杂质。致突变性杂质(mutagenic impurities)指在较低水平也可直接引起DNA损伤,导致DNA突变,从而可能引发癌症的遗传毒性杂质。遗传毒性杂质和致突变性杂质的关系 9306指导原则包括危害评估方法、可接受摄入量(acceptable intake,AI)计算方法和限值制定方法。 9306指导原则不适用于:生物制品、中药和天然产物、已上市使用的辅料和包材等,但可参考其风险评估方式。 危害评估致突变性杂质的危害评估方法通过监管机构要求、数据库、文献、定量构效关系评估和遗传毒性试验等评估方法,参考ICH M7等相关分类方法,根据致突变和致癌风险危害程度将杂质分为5类。 遗传毒性杂质分类、控制方式和限度依据 可接受摄入量计算对于可接受摄入量的计算方法,有以下几种情况:1、基于化合物特异性风险评估的可接受摄入量适用于已知可接受摄入量或每日允许暴露量(permitted daily exposure,PDE),这几年热点关注的N-二甲基亚硝胺(NDMA),其AI值约为96 ng/d。2、基于毒理学关注阈值的可接受摄入量对于无毒理学研究数据的杂质,可根据毒理学关注阈值(threshold of toxicological concern,TTC)计算可接受摄入量,TTC为1.5μg/d。3、与给药周期相关的和多个致突变杂质的可接受摄入量。 杂质的可接受摄入量(μg/d)限值制定有了上述过程得到的可接受摄入量,就可根据药物的每日最大用量计算杂质限度,公式如下:在药品生产和药品标准提高及上市药品再评估过程中发现潜在遗传毒性杂质后,根据危害评估方法将杂质进行分类,然后计算杂质的可接受摄入量,结合生产工艺、检测方法、临床使用情况等制定合适的限值,也可采用公认的限值。 岛津 解决方案 岛津为药检机构、制药企业、研发机构、CRO/CDMO等提供完善的遗传毒性杂质检测方案,不限于沙坦类药物、替丁类药物、二甲双胍、磺酸盐类药物等。 遗传毒性杂质样本下载
  • 知名专家聚姑苏,热议药物杂质研究新动向
    杂质控制是药品质量控制的核心内容之一,杂质研究及控制是药品安全保证的关键要素。我国药物杂质研究水平仍处于起步阶段,与国际前沿杂质研究相比呈现相对滞后的态势。国际上杂质研究不断吸纳分析科学成熟的新成就,分析仪器越来越专业化,联用技术越来越成熟,各类数据库越来越丰富,联机智能化解析系统越来越普及,为杂质研究提供了更为完善的利器。为助力我国药物杂质研究水平的快速提升,为期两天的“2017药物杂质研讨会苏州论坛”于11月2日在苏州市吴宫泛太平洋酒店开幕,多位业界权威专家与超过百位的与会者就药物杂质的研究方法与策略、申报和案例展开了深入探讨。本论坛由中国药学会制药工程专委会、美中药协中国分会 (SAPA - China)联合主办。岛津公司倾情赞助并承办了此次论坛。“2017药物杂质研讨会苏州论坛” 于11月2日在苏州市吴宫泛太平洋酒店开幕 论坛现场传真在论坛开幕上,中国药学会制药工程专委会主任委员俞雄先生首先发表致辞为论坛的召开送上祝福。他在致辞中详细介绍并解读了近期国家重磅出台的一系列医药领域相关新政,指出这些新政的推出令我国医药领域迎来了创新发展的大好局面。他在致辞中强调为进一步提升药物杂质分析水平,先进的分析方法与分析工具必不可少,期待通过此次论坛的举办能够促进药物分析技术的发展。在致辞的最后,他特别感谢岛津公司对会议举办的赞助支持。 随后,岛津公司分析仪器事业部吴彤彬事业部长发表致辞。他在致辞中谈到,岛津公司与医药行业专家用户密切沟通,倾听用户声音,开发出一系列具有世界领先水平、独具特色的药物分析工具与应用方法。当今,药物杂质分析重要性日益增加,好的分析工具与方法已成为推进医药行业发展的重要因素。在致辞的最后他预祝论坛获得圆满成功。华海药业副总裁、中国药学会制药工程专委会委员李敏博士介绍了美中药协创建发展的历程和近年来为促进医药和生物技术的发展、促进美中生物医药科技和商业领域的合作与交流以及协助会员事业发展而开展的卓有成效的活动。他特别感谢岛津公司为美中药协举办的多个活动所给予的大力度支持。 中国药学会制药工程专委会主任委员俞雄先生发表致辞岛津公司分析仪器事业部吴彤彬事业部长发表致辞华海药业副总裁、中国药学会制药工程专委会委员李敏博士介绍美中药协简短的开幕式结束后,论坛进入大会报告环节。首先由浙江大学求是特聘教授、博士生导师潘远江先生做了题为《现代分离分析技术在药物研究中的应用》的演讲。潘教授在演讲中首先介绍了现代质谱技术的发展与应用成果,其中涉及到了诺贝尔化学奖获得者岛津公司职员田中耕一先生的研究成就以及岛津公司先进的高端质谱仪的优异性能。潘教授在演讲中基于其长期从事有机分析、药物分析与质谱分析等领域的研究所获得的丰富科研成果为与会者详尽介绍了液质联用技术、现代逆流色谱技术等在药物杂质研究中的最新应用和发展趋势。潘教授的演讲引起与会者的热烈反响,双方召开了深入探讨。浙江大学求是特聘教授、博士生导师潘远江先生做演讲潘教授的演讲引起与会者的热烈反响大会报告环节,岛津分析应用支持中心姚劲挺经理做了题为《现代色谱及其联用技术在药物杂质分析中的应用》的演讲。他在演讲中详细介绍了岛津多种先进的药物杂质分析技术与应用。演讲内容包括:LC/LCMS在药物杂质分析领域的新技术:方法开发系统,用于SFC/LC杂质分析方法快速开发,兼容超临界色谱和液相色谱;高效能制备纯化系统,提高杂质制备效率;鬼峰捕集柱,解决流动相本底干扰,确保得到准确的杂质定量分析结果;二维杂质鉴定系统,用于实现不挥发性缓冲液流动相条件下直接进样进行杂质液质联用分析;三重四极杆液质联用仪进行基因毒性杂质定量分析技术等。岛津分析应用支持中心姚劲挺经理做演讲 与会者和姚劲挺经理探讨技术细节问题随后,华海药业副总裁、中国药学会制药工程专委会委员李敏博士做了题为《药物杂质结构快速解析的策略:运用LC-MSn分子指纹谱技术与合理的药物强降解研究的组合策略得到高可信度的杂质结构》的演讲。他在演讲中指出,当前各国药政部门对药物杂质研究的要求越来越高,如何开展好这项研究尤其是降解杂质的研究是本讲座的重点所在。如何将强降解研究做好还存在很多误区,对此,他结合其丰富的研究成果详尽讲述了运用LC-MSn分子指纹谱技术与合理的药物强降解研究的组合策略,快速得到高可信度的杂质结构和杂质的形成机理。华海药业副总裁、中国药学会制药工程专委会委员李敏博士做演讲在论坛首日的最后一个演讲是华海药业高等分析技术中心副主任、公司原料药分析总监助理朱文泉先生做的题为《药物杂质研究的申报要求与基本思路》的演讲。在演讲中,他剖析了当前药物申报在杂质研究中遇到的一些常见问题以及结合丰富的案例说明了如何满足注册申报的要求。他指出有效、全面、系统的开展药物的杂质研究变的尤为重要,为保证药品质量安全性,杂质研究也正发挥着越来越重要的作用。华海药业高等分析技术中心副主任、公司原料药分析总监助理朱文泉先生做演讲 论坛报告环节结束后,组委会特别安排了与参会者互动时间。演讲嘉宾和与会者就药物杂质的研究方法与策略、申报和案例展开了深入探讨。现场气氛非常热烈。演讲嘉宾和与会者展开了深入探讨,现场气氛非常热烈李敏博士和岛津公司分析仪器事业部刘兵经理(左)主持了今天的论坛论坛次日将有如下演讲,敬请继续关注后续报道。 王玉博士,江苏省药检院原副院长, 国家药典委员会理化专业委员会委员 演讲题目:有关物质分析方法建立和验证 李敏博士,华海药业副总裁, 中国药学会制药工程专委会委员 演讲题目:药物降解化学与药物降解杂质的研究 黄伟新博士,资深药物分析专家, CMC和CGMP法规独立顾问 演讲题目:如何确保分析实验室的数据完整性 张袁超博士,前FDA临床药理高级审评员 演讲题目:从新药临床试验申请(IND)到新药报批(NDA):美国新药申报中FDA对药物有关物质的要求 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 张新荣教授成为美国分析化学杂志首位来自中国的副主编
    仪器信息网讯 2013年4月1日,由中国化学会色谱专业委员会、中国分析测试协会色谱专业委员会、中国色谱学会主办,福州大学承办,中科院大连化物所、福建化学会、福建测试协会协办的“第19届全国色谱学术报告会及仪器展览会(以下简称为:全国色谱会)”在美丽的榕城福州开幕。 国家自然科学基金委员会化学部分析化学学科主任庄乾坤教授   在4月1号的大会特邀报告上,笔者从国家自然科学基金委员会化学部分析化学学科主任庄乾坤教授处获悉,清华大学张新荣教授从2013年3月起担任美国分析化学杂志(Analytical Chemistry,以下简称为AC)副主编,张新荣教授也是AC杂志有史以来的首位来自中国的副主编。此外,北京大学刘虎威教授、中科院大连化物所邹汉法研究员、厦门大学田中群院士从2013年1月起开始担任AC编委 湖南大学蒋健晖教授、复旦大学刘宝红教授从2013年1月起担任A-Page编委,此前,中科院大连化物所张丽华研究员从2011年1月起就担任了A-Page编委。 清华大学张新荣教授,从2013年3月起任AC副主编   庄乾坤教授表示,“我国分析化学十年发展已经取得了长足进步,2011年论文产量首次超过美国,达到3572篇,SCI论文数量目前位居第二位。而从2013年开始,AC杂志首次聘用中国科学家担任副主编和编委也是中国分析化学发展与进步的体现。”   “但是,我国分析化学发展还面临诸多问题与挑战,如队伍的发展与壮大问题、研究工作的趋同性及创新性不足、重大科学问题的提出等。”庄乾坤教授认为,“我们的分析科学家要思考:(1)如何坚持每个人科学研究的特色?(2)如何进行有效的学术交流?(3)如何帮助基层单位提高研究水平?(4)导师们,尤其是青年导师要不要亲自下实验室?(5)青年人到新单位后如何尽快开展工作?(6)继续发扬“相互合作、相互支持、相互欣赏、共同发展”的学科氛围。中国分析化学研究若想再上一个新台阶,应着重创新研究,应引入物理学新概念与新技术、创建分析仪器与装置、瞄准有影响的重大科学问题。”   “目前,国家自然科学基金几类项目支持的重点各不相同:(1)面上项目,全面协调可持续强调创新,支持力度80万元/项 (2)重点项目,支持学科前沿发展方向,支持力度200-400万元/项 (3)重大项目,强调集成,力争出重大结果,支持力度2000万元/项 (4)杰青,培养学科带头人,支持力度200万元/项 (5)优青,培养有发展潜力的青年人才,支持力度100万元/项 (6)国际合作项目,强强合作,以我为主,强调以我为主。”   “此外,从2011年开始,国家开始设立了重大仪器专项,为分析化学创新提供机会。除了1998年设立的每年2亿元的仪器专项继续外,新增了重大仪器专项每年5亿元的支持力度。经费喜人,就等着有能力有想法的科学家来申请。”(撰稿:杨娟)
  • 使用ACQUITY UPSFC系统分析微量的对映体杂质
    目标 使用沃特世ACQUITY UPSFC™ 系统证明杏仁酸苄酯的快速手性分离和0.02%杂质水平下的对映体过量测定。 背景 根据2005年9月的一期《化学和工程新闻》,销售额排名前10位的药品中有9种包含手性活性成分,而其中的5种又包含单对映体活性成分。单对映体型手性药物被认为是改善了的化学实体,可提供更高的药效、更好的药理学数据和更为有用的不良反应数据。对于单对映体药物的生产商而言,不需要的立体异构体应等同为其他有机杂质。国际协调会议(ICH)已对关于鉴定、定量和控制药用物质及其制剂产品中杂质的监管要求作出了明确规定。根据ICH的要求,有机杂质的鉴定和定量阈值为主要化合物的0.1%。 ACQUITY UPSFC系统的高灵敏度实现了对药用物质中对映体杂质的鉴定和定量。 解决方案 图1所示的杏仁酸苄酯是一种重要的药物合成中间体。R-和S-杏仁酸苄酯的外消旋混合物(每种对映体溶于甲醇后的浓度均为0.20 mg/mL)使用ACQUITY UPSFC系统进行分离,其色谱图如图2所示。主要试验参数在表1中列出。 总分析时间不到1.5分钟。平均基峰宽小于6秒。根据峰面积得出的R-和S-杏仁酸苄酯之比是0.997。保留时间和峰面积的重复性测定基于五次重复进样,结果汇总于表2。在0.20 mg/mL的浓度下,保留时间的重复性RSD小于0.23%,峰面积响应RSD优于0.5%。 图3显示了2 mg/mL R-杏仁酸苄酯的UPSFC色谱图。经紫外光谱确认(结果未显示),1.30分钟处的次要峰对应于S-杏仁酸苄酯。S-杏仁酸苄酯杂质峰的信噪比约为3(检出限),根据峰面积判断相当于主要峰的0.02%。检测灵敏度的提高得益于这款整体设计的ACQUITY UPSFC系统,其中包括改进的泵系统和优化设计的检测器。本例中对映体过量(e.e.)百分比为99.96%。总结 使用ACQUITY UPSFC系统在不到1.5分钟成功完成R-和S-杏仁酸苄酯的UPSFC手性分离。当每种对映体浓度均为0.20 mg/mL时,所得到的重复性极佳(保留时间的可重复性RSD小于0.23%,峰面积RSD小于0.5%)。新型泵系统和优化设计的检测器所带来的更高检测灵敏度使测定0.02%对映体杂质和对映体过量成为可能。ACQUITY UPSFC系统适用于低浓度对映体杂质的分析、对映体过量测定和QA/QC分析。关于沃特世公司 (www.waters.com)50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2010年沃特世拥有16.4亿美元的收入和5,400名员工,它将继续带领全世界的客户探索科学并取得卓越成就。
  • 药品中基因毒性杂质的痕量分析,非得用MS吗?
    目前对于药品中含有的极少量物质(如基因毒性杂质等),在对其进行痕量分析时,通常采用的检测手段是:利用先进的液质联用(如LC-MS或LC-MS/MS等)、气质联用(如GC-MS或GC-MS/MS等)设备,对其微量物质进行检测时所需液相色谱系统可能为更高级的超高效液相色谱仪。如检测药物中含有亚硝胺类基因毒性杂质NDMA,根据不同原料药的性质不同,目前国际上公布的方法主要有:GC-MS法、GC-MS/MS法、UPLC-APCI-MS/MS法,HPLC-UV法(EDQM公布)。国内官fang公布的方法主要有GC-MS法、GC-MS/MS法、UPLC-APCI-MS/MS法,如中国药典2015年版二部推荐使用GC-MS法(详见《缬沙坦》原料中N-ya硝基二甲胺的含量测定方法),不推荐使用HPLC-UV法,因为HPLC-UV法灵敏度比质谱仪的灵敏度差很多,而且专属性差些,容易受到检测干扰,故HPLC-UV法具有很大的局限性,只能准确测定那些含量相对较高的物质。然而现有检测技术中:● 质谱仪价格昂贵,运行成本高,所需的试剂要求高,抗干扰能力差,维护保养费用很高,同时对质谱仪操作人员的水平要求非常高,需要高层次的人才方能准确操控。故质谱仪普及率非常低,一般企业较少购置,对于需要使用质谱仪进行痕量分析时只能委托特定的机构使用质谱仪进行检测。● 气相色谱/质谱法操作过程繁琐,经过前处理后样品损失严重。● 高效液相色谱仪价格便宜,操作容易,覆盖面广,一般企业均很常见。但是单纯使用HPLC-UV法进行检测含量极少的物质时,其灵敏度差,不能准确定量检测出复杂原料药中含量极低的物质,且检测过程中目标化合物所受干扰亦较大,目标化合物与其它杂峰之间的分离难度较大。在缺少质谱仪的情况下,中国药企如何走出杂质痕量检测的困境呢? /Father's day/ 基于以上痕量检测的难点,没有质谱仪的帮助,实验人员是否可以通过长期大量的研究,不断尝试各项色谱条件的调试,诸如:流动相试剂的组成、梯度程序设置、柱温、流速的改变等。特别是色谱柱的筛选,如虽然同样都是十八烷基硅烷键合色谱柱,可以尝试不同品牌、不同系列的C18柱,色谱柱间填料的差异会呈现出对样品的不同选择性。另外,色谱柱规格的差异也会带来不同的检测效果,如色谱柱的内径越细灵敏度越高、色谱柱越长柱效越高、填料的粒径越小分离效率越高……光是色谱柱就有多达7项以上的可调节参数。最近就有一家药企尝试走了这样一条路,对尼扎替丁中所含痕量杂质N-ya硝基二甲胺(NDMA)检测方法进行了长期研究,最终探索出一种采用HPLC法测定样品中NDMA的方法,该方法简便快速,且测定结果准确。这就是湖南威特制药股份有限公司。在他们的开发报告中记录到:“我们首先尝试解决了色谱分离的问题,因供试品溶液浓度很大,其他峰对目标物质NDMA的干扰较多,在摸索优化检测方法的过程中,对色谱柱的选择做了大量的工作,既要不被干扰,又要保证峰形正常,且需能够增加该峰的检出能力,最后选择了特定的月旭Ultimate® ODS-3 4.0×250mm,3μm色谱柱,且此型号的色谱柱批间差异较小。保证了该方法成功通过了方法学验证,并最终获得了发明专li授权。”湖南威特测试了来自至少4个色谱柱厂家的十几种C18柱,最终月旭Ultimate® ODS-3 4.0×250mm,3μm这款柱子展现了其du特的分离和检测特性,4.0mm内径具有更高的灵敏度,3μm粒径也提供了更高的柱效。在这款色谱柱的基础上,客户继续配合优化其他的色谱条件,最终确定了这个简便快捷,且测定结果准确的HPLC方法。艰辛的付出,终于获得了回报。感谢湖南威特为我们示范了超高的液相方法开发水平,展示了不同色谱条件配合玩转色谱柱,为方法开发带来的无限可能!参考文献:一种HPLC法检测尼扎替丁中N-ya硝基二甲胺的方法(专li号:ZL202110045224.4;授权公告日:2023.07.28)附:Ultimate® ODS-3色谱柱技术参数
  • 岛津携手超越未来举办药物杂质分析研讨维护保养培训
    2019年5月14日,岛津公司携手代理商北京超越未来公司在北京亦庄生物医药园成功举办了岛津液相新品发布及药物杂质分析研讨维护保养培训会。本次会议面向北京地区的医药行业用户,发布了岛津全新Nexera LC-40液相色谱产品,并对用户关注的药物杂质分析、药包材相容性分析、色谱柱选型以及LC/GC仪器的日常维护维修等方面进行了全面的讲解,意在能够帮助用户更加了解岛津仪器,顺利开展分析工作,轻松应对问题出现。 会议由岛津公司曹禹经理主持,对于参会用户一直以来给予岛津的信赖和支持表示了由衷感谢。岛津公司分析测试仪器市场部邓力经理介绍了岛津旗舰级全新Nexera LC-40系列液相色谱仪,通过与分析智能和物联网的完美结合,切实实现了真正意义的分析智能化、高效化和自动化。岛津公司分析测试仪器市场部吴国华经理介绍了岛津在遗传毒性杂质分析与药包材相容性分析领域的全面解决方案。岛津上海实验器材有限公司市场部徐露莎经理对于化药杂质分离的常见问题进行了解析,并讲解了通过色谱柱选型高效开发液相方法的策略。北京超越未来科技发展有限公司技术部王磊经理、岛津公司分析技术部资深工程师郭党威先生分别对岛津HPLC与GC仪器的日常维护保养与常见故障排除进行了全面细致的培训。岛津公司曹禹经理主持会议邓力作报告:岛津全新Nexera LC-40系列液相色谱仪讲解吴国华作报告:岛津遗传毒性杂质分析解决方案与岛津药包材相容性分析解决方案徐露莎作报告:化药杂质分离常见问题解析及通过色谱柱选型高效开发液相方法策略王磊作报告:岛津高效液相色谱日常维修维护郭党威作报告:岛津气相色谱维护培训本次会议吸引了多家来自药品生产、研发领域企业的技术骨干,共计150余人参会。与会者一致认为本次会议的内容丰富实用、可操作性强,对于会议内容给予高度评价,认为可有效解决实际工作中遇到的困惑与问题。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制