当前位置: 仪器信息网 > 行业主题 > >

人类降钙素基因相关肽

仪器信息网人类降钙素基因相关肽专题为您提供2024年最新人类降钙素基因相关肽价格报价、厂家品牌的相关信息, 包括人类降钙素基因相关肽参数、型号等,不管是国产,还是进口品牌的人类降钙素基因相关肽您都可以在这里找到。 除此之外,仪器信息网还免费为您整合人类降钙素基因相关肽相关的耗材配件、试剂标物,还有人类降钙素基因相关肽相关的最新资讯、资料,以及人类降钙素基因相关肽相关的解决方案。

人类降钙素基因相关肽相关的论坛

  • 【转帖】古老病毒通过入侵重塑人类基因组

    古老病毒通过入侵重塑人类基因组译者:Docofsoul《每日科学》2010年9月13日报道 —— 新加坡基因组研究院(GIS, 隶属于新加坡科技研究局(A*STAR)的生物医学研究院)的科学家以及来自新加坡国立大学、新加坡南洋理工大学、杜克-新加坡大学医学研究院与普林斯顿大学的同事们最近发现:数百万年前“入侵”人类基因组的病毒已经改变了人类胚胎干细胞(ES细胞)中的基因开启与关闭方式。科学家已经发现数百万年前“入侵”人类基因组的病毒已经改变了人类胚胎干细胞(ES细胞)中的基因开启与关闭方式。(照片来源:iStockphoto/Martin McCarthy)这一研究为生理学与医学诺贝尔奖获得者芭芭拉•麦克林托克(Barbara McClintock)于上世纪五十年代提出的理论提供了明确的证据。芭芭拉•麦克林托克的理论推测:转座因子,即可移动的遗传物质(DNA)片段(比如说病毒序列),一旦插入基因组,就能成为影响基因调节的“控制因子”。本发现对于推进干细胞研究进程、增强干细胞研究为再生医学效劳的潜力都算得上是重要贡献。 由新加坡基因组研究院精英小组负责人吉拉姆•布尔克(Guillaume Bourque)博士率队领导了本研究。本研究的论文发表于2010年6月6日的《Nature Genetics》(《自然•遗传学》)。通过运用新的测序技术,科学家们研究了人类与小鼠胚胎干细胞(ES细胞)中三种调节蛋白质(OCT4、NANOG 与 CTCF) 的染色体组定位(基因组定位)。令人感兴趣的是,在科学家发现大量的相似点的同时,他们也发现了在人类中受到调控的基因方式与基因类型的许多不同点。尤其是,他们发现:数百万年前自行插入人类基因组的特定类型病毒已经戏剧性地改变了人类干细胞基因调控网络。德克萨斯州大学阿灵顿分校副教授Cedric Feschotte 博士说:“本研究是计算与实验双管齐下的代表作,提供了无可置疑的全新的证据:一些经常被斥责为纯粹垃圾DNA的转座因子,恰恰正是人类发育调控密码的关键成分。”在基因调控网络的研究中,人类模型系统与小鼠模型系统之间的比较研究有助于增进对干细胞分化成体内不同细胞类型的具体过程的理解。布尔克博士说:“这种理解在促使再生医学的百尺竿头更进一步地发展 —— 从而解决诸如帕金森病与白血病等问题方面是至关重要的。除了在本研究中利用基因调控网络中的小鼠胚胎干细胞的优势外, 深入研究必须更加直接地集中于人类干细胞。这是因为将某一种类上完成的研究成果转向对另一种类的研究上时必然会遇上的挑战。为了让干细胞方面的发现能够用于临床实践,在人类与(非人类的)灵长类干细胞两个方面还有更多的研究工作需要完成。” 加利福尼亚州立大学神经学Rudi Schmid 特聘教授、哲学博士雷蒙德•怀特(Raymond L. White)教授说:“本论文报告了令人非常激动的新发现,证实了一个全新的、迥然不同的基因表达的调控机制。通过将小鼠的基因组与人类基因组的直接比较,科学家能够显示:在两种种类之间,基因调控因子的结合点经常不在同一位置。这本身就足够令人惊讶的了,但是研究者作了进一步的探索,证实许多位点都嵌合在称之为‘转位’因子的一类DNA序列中,这是因为他们具有在基因组中移动到新的位置的能力。存在很多这样的相信是病毒基因组进化残余部分的因子,但我们所了解到的(信息中)还有着非常出人意外的情形:它们到达新的(基因组)位置时,还携带着调控因子结合位点。这些在调控方面的变化估计可能在携带它们的有机体上产生重大变化。确实,许多学者相信调控方面的变化处于物种形成的核心,可能在人从其祖先的进化历程中扮演了一个重要角色。本论文可能成为这一研究领域的里程碑式的论文。”美国能源部联合基因组研究所所长、劳伦期•伯克利国家实验室伯克利实验分室基因组学部主任埃迪•拉宾(Eddy Rubin)博士补充说:“这个运用了比较基因组学策略的研究在人类胚胎干细胞(ES细胞)中发现了重要的人类特异性属性。该论文所提供的信息意义重大,应该有助于推进再生医学领域的发展,相信会有不俗的积极表现。”参考文献:Galih Kunarso, Na-Yu Chia, Justin Jeyakani, Catalina Hwang, Xinyi Lu, Yun-Shen Chan, Huck-Hui Ng, Guillaume Bourque. Transposable elements have rewired the core regulatory network of human embryonic stem cells.Nature Genetics, 2010; 42 (7): 631 DOI: 10.1038/ng.600(《转位因子重新连接人类胚胎干细胞的核心调控网络》)

  • 人类基因组单核苷酸多态性的研究进展与动态 【转贴】

    人类基因组单核苷酸多态性的研究进展与动态The research development of single nucleotide polymorphisms in human genome 摘要:第一张人类基因组序列草图已经公布,正式图预计也将于2003年4月完成。但序列图只基于少数个体,它反映了基因组稳定的一面,并未反映其变异或多态的一面,而正是这种多态性,即基因组序列的差异构成了不同个体与群体对疾病的易感性、对药物与环境因子不同反应的遗传学基础。人类基因组中存在广泛的多态性,最简单的多态形式是发生在基因组中的单个核苷酸的替代,即单核苷酸多态性(single nucleotide polymorphisms, SNPs)。SNP通常是一种二等位基因的(biallelic),即二态的遗传变异,在CG序列上出现最为频繁。在转录序列上的SNP称为cSNP。SNP的数量大、分布广。按照1%的频率估计,在人类基因组中每100~300个核苷酸就有一个SNP。因此,整个人类基因组(3.2 X 109bp)中至少有1,100万以上的SNPs,在任何已知或未知基因内和附近都可能找到数量不等的SNP 目前普遍认为,作为数量最多且易于批量检测的多态标记,SNP在连锁分析与基因定位,包括复杂疾病的基因定位、关联分析、个体和群体对环境致病因子与药物的易感性研究中将发挥愈来愈重要的作用。迄今,对多基因疾病候选基因的SNPs研究已积累了丰富的数据,基于这些SNPs的关联分析也正方兴未艾。本文阐述了SNP的特征、不同研究者对基于SNP进行关联分析的观点以及SNP的研究进展与动态。 关键词: SNP;遗传标记;关联研究 中图分类号:Q75 随着分子遗传学的进展,疾病遗传学研究从简单的单基因疾病转向于复杂的多基因疾病(如骨质疏松症、糖尿病、心血管疾病、精神性紊乱、各种肿瘤等)与药物基因组学的研究中。与前者相比,多基因性状或遗传病的形成,受许多对微效加性基因作用,即其中每种基因的作用相对较微弱。这些不同基因构成的遗传背景中,可能有易感性主基因(major gene)起着重要作用。它们同时还受环境因素的制约,彼此间相互作用错综复杂,所以任一基因的多态性对疾病发生仅起微弱的作用。鉴于此,需要在人类基因组中找到一种数目多、分布广泛且相对稳定的遗传标记,单核苷酸多态性(single nucleotide polymorphisms, SNPs)正是代表了这样一种标记,所以它成为继第一代限制性片段长度的多态性标记、第二代微卫星即简单的串联重复标记后,第三代基因遗传标记。 1. SNP作为遗传标记的优势 SNP自身的特性决定了它比其它两类多态标记更适合于对复杂性状与疾病的遗传解剖以及基于群体的基因识别等方面的研究。 (1)SNP数量多,分布广泛。据估计,人类基因组中每1000个核苷酸就有一个SNP,人类30亿碱基中共有300万以上的SNPs。SNP 遍布于整个人类基因组中,根据SNP在基因中的位置,可分为基因编码区SNPs(Coding-region SNPs,cSNPs)、基因周边SNPs(Perigenic SNPs,pSNPs)以及基因间SNPs(Intergenic SNPs,iSNPs)等三类。 (2)SNP适于快速、规模化筛查。组成DNA的碱基虽然有4种,但SNP一般只有两种碱基组成,所以它是一种二态的标记,即二等位基因(biallelic)。 由于SNP的二态性,非此即彼,在基因组筛选中SNPs往往只需+/-的分析,而不用分析片段的长度,这就利于发展自动化技术筛选或检测SNPs。主要的技术方法包括单链构象多态性(single strand conformation polymorphisms, SSCPs)法、异源双链分析(heteroduplex analysis, HA)、DNA直接测序分析、变异检测阵列(variant detector arrays, VDA)法以及基质辅助激光解吸附电离飞行时间(MALDI-TOF)质谱法等。 (3)SNP等位基因频率的容易估计。采用混和样本估算等位基因的频率是种高效快速的策略。该策略的原理是:首先选择参考样本制作标准曲线,然后将待测的混和样本与标准曲线进行比较,根据所得信号的比例确定混和样本中各种等位基因的频率。 (4)易于基因分型。SNPs 的二态性,也有利于对其进行基因分型。对SNP进行基因分型包括三方面的内容:(1)鉴别基因型所采用的化学反应,常用的技术手段包括:DNA分子杂交、引物延伸、等位基因特异的寡核苷酸连接反应、侧翼探针切割反应以及基于这些方法的变通技术;(2)完成这些化学反应所采用的模式,包括液相反应、固相支持物上进行的反应以及二者皆有的反应。(3)化学反应结束后,需要应用生物技术系统检测反应结果。目前许多生物技术公司发展出高通量检测SNP的技术系统,如荧光微阵列系统(Affymetrix)、荧光磁珠技术(Luminex,Illumina, Q-dot)、自动酶联免疫(ELISA)试验(Orchid Biocomputer)、焦磷酸的荧光检测(Pyrosequencing)、荧光共振能量转移(FRET)(Third Wave Technologies)以及质谱检测技术(Rapigene, Sequenom)。 2. 基于SNP的关联研究 如果某一因素可增加某种疾病的发生风险,即与正常对照人群相比,该因素在疾病人群中的频率较高,此时就认为该因素与疾病相关联。如非遗传因素吸烟与肺癌相关;在遗传因素中,如APOE4与Alzheimer`s相关。对疾病进行关联分析需要在年龄与种族相匹配的患者和对照人群中确定待测因素(环境的或遗传的)的频率分布,患者和对照人群的选择是否恰当直接影响结果的可靠性。对常见的由高频率、低风险等位基因导致的疾病,采用致病等位基因的关联分析比连锁分析更有效。 应用SNP进行关联研究,首先需明确多少SNPs才可满足在全基因组范围内的分析。Kruglyak应用计算机模拟法预测人类基因组中超过3Kb就不存在连锁不平衡,据此推出完成全基因组扫描将需要500,000个SNPs。而Collins等收集通过家系研究得到的常染色体单倍型的信息发现,在染色体上相距0.2cM到0.4cM(约200-400kb)之间的标记仍存在连锁不平衡,如按每100kb需要一个SNP计算,那么完成全基因组扫描仅需约30,000个SNPs,平均每3-4个基因用一个SNP就可识别出整个基因组内任何位置上的具表型活性的变异。最近发现SNP与SNP之间的连锁不平衡甚至可延伸到更远的区域(0.35cM-0.45cM),那么进行基因组扫描需要的SNP数量就更少。导致上述估算SNP 数量差异的主要原因是Kruglyak进行模拟计算时,假设现在的人群在5000年前起源于共同的祖先,且人群规模的有效大小保持在10,000左右,然后经过连续的指数扩增,直至达到现在的50亿左右。Collins认为这种假设是不现实的,在人类发展的历史过程中,人群数目的增长是迂回曲折的,经历扩张与萎缩的周期性变化。 Weiss等认为Collins及其同事的结果可能低估了问题的复杂性。因为他们的结果或是基于小样本资料推断出来的,就会使连锁不平衡(LD)程度的估算偏高;或是从理论上预测LD的水平,而忽略了基因组中大量的随机变异。如大多数位点的信息是来源于小样本中测序得到的资料,据此得到的单倍型结构不可靠。目前的研究集中于基因组中LD相对广泛存在的区域,在此区域内,基因相对容易作图。如基于这些经验来进行基因组其它区域的LD分析,就可能发生偏离。如两个相距较远的SNPs 之间具有强的LD性质,就认为它们之间的SNPs及该SNP侧翼的SNPs也存在强烈的LD,这种假设仅适合于其中一些多态位点,但它并不是通则。当然,在一些罕见人群中,如Saami,在较长的区域内广泛存在大量的LD,但对Fihland人群,则在较长区域内几乎不存在LD,对全球整个复杂人群而言,LD肯定变得更复杂一些。 Gray等认为随着人类基因组测序计划的进展,人类基因组的结构逐渐被阐明,因此就可在那些富含基因的区域选择SNP进行全基因组扫描,这样所需的SNP数量还会减少。Halushka等根据他们对75个基因检测的实验结果推测,SNPs在单个基因或整个基因组中的分布是不均匀的,在非转录序列中要多于转录序列,而且在转录区也是非同义突变的频率比其它方式突变的频率低得多。Templeton 等对LPL基因突变与重组热点的研究结果提示,SNP集中分布于基因组的CG二核苷酸处或单核苷酸重复区或αDNA聚合酶的识别位点(TGGA)处。将人类基因组不同区域物理图谱与遗传图谱的进行比较,发现遗传距离和物理距离的比值有很大的差异,提示基因组不同区域的重组水平存在差异。如Dunham等将22号染色体STR的物理位置与遗传位置进行了对比,发现该染色体的重组率差异很大,提示存在重组热点。根据基因组内不同区域重组频率的高低可进一步选择SNP的数量,重组热点需要的标记数量就多,相反就少。这种设计也可能会进一步减少基因组扫描所需的SNP标记。 使用SNP进行关联分析面临的另一个问题是如何选择SNP。如果对每一个SNP都进行独立研究,那么对几百万SNPs 的研究就会导致成千上万次的假关联,结果就掩盖真实的关联性,所以,进行关联分析前,一定要对所研究的SNP进行选

  • 【分享】英国研究揭示人类受孕的基因奥秘

    【分享】英国研究揭示人类受孕的基因奥秘

    据美国每日科学网站报道,英国科学家近日发现了人类精子独特的“基因签名”,对于开启卵子的生育能力和孕育新生命起到了关键作用。这一发现将对人们更好地了解受孕的奥秘有帮助。 在英国生物技术及生物科学研究理事会资助下,来自利兹大学的大卫米勒和大卫埃尔斯博士与来自布拉德福德大学的马丁布林克沃思博士合作研究,发现精子会写下一种“基因签名”,只能被同物种的卵子所识别。精子的“基因签名”好似钥匙,只有被同物种的卵子识别,才能开启受孕之锁。精子的“基因签名”会促进受精活动发生,也能解释一个物种如何发育出独特的基因特征。埃尔斯博士说,“我们发现哺乳动物精子有‘基因签名’,对卵子的受孕和胚胎的发育至关重要。此前人们并没有发现精子有‘基因签名’,我们认为‘基因签名’存在的时间很久远。” 科研人员认为,假如没有正确的“钥匙”来开启生育能力的“锁”,要么就不能成功受精,要么即使受精,也不会正常发育。人们已经知道人类精子DNA排列组合的紊乱会导致男性不育症和受孕失败。而且这种“锁钥”机制还有更深一层的意义。它不仅能解释为什么有些其他方面健康的男性产生的精子却是不育的,也能解释不同的物种是如何进化并保持其特性的。米勒博士说:“直到现在,医学家们还在努力探究先天性男性不育症。我们的最新研究提供了一种可能的解释,为什么有些精子会存在功能障碍或者不能正常授精。” 如果精子细胞携带的DNA没有受伤,而且伸展开的话,那么实际上它会有一米多长。为了适应精子细胞核的微小空间,精子DNA就必须要紧紧地卷到一起或排列在一起。利兹大学的研究显示,在人类和老鼠的精子中,并不是所有的DNA都按照同样的方式排列。大部分雄性方的DNA是非常紧凑的压缩在一起,同时有些DNA则排列得不那么紧密。 埃尔斯博士说:“精子细胞中有一种特定的DNA排列方式。而且我们发现,即使在不相关的有生育能力的男性中,这种排列方式也是一样的。这表明这种DNA排列方式与男性生育能力有着直接的关系。” 对精子DNA在空阔的、不太紧密的排列构造下的详细分析显示,这种DNA携带着很多关键信息,这些信息能够激活导致胚胎发育的重要基因。进一步的研究表明相同的构造存在于几个不相关的捐精者的精子中,更引人注目的是,相似的排列构造存在于老鼠的精子中。 相比于紧密排列的DNA, 空阔构造的DNA或许更容易受到诸如存在于香烟和有些抗癌药物中的破坏性毒素的伤害。正如布林克沃思博士所说:“这也许意味着,那些可能对精子产生基因损害的东西,对于胚胎发育也有着重大的影响。” 这些发现还能解释为什么近亲物种繁殖的成功例子会这么少。如果两个物种的“锁”和“钥匙”不相配,无论它们的DNA多么相似,都不会孕育后代。就象马和驴交配,有时候能够产生后代。但是因为精子和卵子无法相配,其胚胎的发育是不正常的,那么其后代几乎都是不育的。 研究小组相信相同的机制一定还在人类进化过程中发挥了重要作用。在人类早先的历史中,穴居人与现代人类共存了几千年。不排除曾发生过这两个相似物种间的交配行为,但在我们的DNA中没有发现这些行为遗留的痕迹。假如可能孕育了后代的话,那么或者他们没能存活太久,或者即使他们存活了,也不能再繁衍后代。[img]http://ng1.17img.cn/bbsfiles/images/2009/08/200908051539_164075_1607864_3.jpg[/img]

  • 【转帖】生命科学-“基因食物”为害人类?

    一位英国科学家的研究报告说,经过基因改造的马铃薯对实 验老鼠的肝、胃和免疫系统都会造成伤害。研究并显示以基因工程技术培植的农作物可能有损于人类的健康。  普斯台博士去年对老鼠做了实验,发现喂它们吃经基因改造过的马铃薯后,肝胃等器官确实受损,而受损原因与食物里所含的“外来基因”有关。  普斯台说,他发表这项研究成果后,不久就被迫退休,还受到警告,不准向传媒发表谈话。不过,他现在不怕警告,决定公开全部实验结果,并欢迎其他科学家检验他的实验报告。  有些基因工程专家说,如普斯台研究报告证实无误,会对基因改造食物的相关行业造成重大打击。不过,曼尼拖巴大学的弗礼斯田斯基教授说,即使普斯台研究属实,有关行业也不必反应过度。

  • 科学家发现人类400万基因开关

    人类基因研究再突破  这是“人类基因组计划”之后国际科学界在基因研究领域取得的又一重大进展。人类基因组计划让我们得到了人类基因组图谱,但其中许多基因过去都不知道有什么功能。研究者最常关注的是与编码蛋白质相关的基因,但它们只占整个基因组的约2%。一个聚集了422位科学家的国际团队,完成了解析基因组剩余部分(非编码区域)的工作,人类基因组中约80%的基因都有某种确定的功能。  参与这项计划的英国桑格研究所研究人员珍妮弗·哈罗说,如果说人类基因组计划提供了一张地图,那么ENCODE计划就在这张地图上标出了各个基因的功能信息。  这两个计划之间也有承上启下的关系,在人类基因组计划基本完成的2003年,国际科学界创建了ENCODE计划。这也是一个大型国际合作项目,来自美国、英国、西班牙、日本和新加坡五国32个研究机构的科学家参与了此次项目,耗资1.5亿美元。他们获得并分析了超过15万亿字节的原始数据,目前已经全部公布。研究对147个组织类型进行了分析,以确定哪些能打开和关闭特定的基因,以及不同类型细胞之间的“开关”存在什么差异。

  • 【讨论】食用转基因食品会给人类健康带来风险吗?

    美国延迟批准食用转基因鲑鱼2010年10月8日,美国食品药品安全局宣布,将延迟批准食用转基因鲑鱼的时间。原因是,虽然英国食品安全局(FSA)已经宣布转基因食品可安全食用,但该局认为,目前尚缺乏充分的证据证明该转基因食品无食用风险。美国民众表示,若政府批准可食用转基因鲑鱼,可能会给人类健康带来风险,同时,转基因鲑鱼进入市场后,可能会有更多的转基因食品涌入市场。据介绍,这些转基因鲑鱼是美国某公司研究出来的,该公司通过改变野生鲑鱼的基因,使其迅速生长。据估计,美国有望于2012年之前确定民众是否应食用转基因鲑鱼。

  • Nature:首次构建出人类大脑三维基因表达图谱

    一个国际研究小组利用来自两名男性捐献的全部大脑和来自第三名男性的单个脑半球构建出高分辨率的人类大脑三维基因表达图谱。相关研究结果于2012年9月19日在线刊登在《自然》期刊上。在美国西雅图市艾伦脑科学研究所(Allen Institute for Brain Science)研究员Michael Hawrylycz的领导下,研究人员将来自大约900个精确切割的大脑切片的转录数据---利用基因芯片技术收集到的---组装在一起,然后将转录数据与在切片之前对捐献的大脑的核磁共振成像扫描结果进行叠加,从而构建出人大脑三维基因表达图谱。这些图谱是免费向公众提供的,详情可参见网址:http://www.brain-map.org/,而且能够有助于科学家们测试关于大脑功能、疾病和进化方面的假设。艾伦脑科学研究所神经科学家Ed Lein说,“这些数据本身并不提供理解大脑如何工作方面的所有答案。然而,我们希望它们促进人类大脑研究以便理解大脑的复杂化学性质和细胞组成。”比如,研究特定疾病的科学家们能够利用成像技术,如功能性核磁共振成像,来评估相关的大脑区域,然后查询这些新的图谱来鉴定在这些区域表达的基因,而这可以通过一种简单的颜色编码的手册来显示基因表达的相对水平来实现。当前,研究人员还是依赖于对小鼠大脑的零碎研究。

  • 【转帖】转基因植物对人类影响或几代人后才显现

    作为主粮,水稻在全球范围内都未进行商业化种植。  “欧美科学家都不敢断定这项技术一定是安全的,中国科学家在如此短的时间内拿下安全证书似不稳妥”  《国际先驱导报》记者金微发自北京 “中国成为国外转基因粮的生死试验场”“民族的噩梦”……已经两个月了,有关转基因水稻商业化种植的各种担忧仍然在网络上持续发酵,并逐渐蔓延形成一种恐慌。有的论坛还发起“反转基因主粮”的签名活动。  2009年11月27日,农业部批准了两种转基因水稻、一种转基因玉米的安全证书,获得两个转基因水稻安全证书的是华中农业大学张启发教授及其同事。这是中国首次为转基因水稻颁发安全证书。  安全证书是转基因作物品种上市之前最难的一个关口,这意味着该品种的生产性试验结束并获得农业主管部门认可,技术方面的障碍基本扫除,接下来就可以申请生产许可证了。  作为全球最大的水稻生产和消费国,中国即将打开转基因水稻商业化种植的“闸门”,但这也引起了担忧。  “如果在全球还远未达到共识的情况下,我们贸然去进行转基因水稻大面积的商业化种植,这种‘敢为天下先’是不是也太超前了?”中国人民大学农业与农村发展学院副院长郑风田发出的疑问颇具代表性。  真没害处吗?  质疑主要是围绕着转基因水稻的安全性展开的。  “我并不反对转基因水稻的商业化种植,但是我担忧背后的风险。”环境保护部生物多样性研究首席专家薛达元告诉《国际先驱导报》,由于水稻是主粮,世界各国都比较慎重,“转基因的大豆、玉米、棉花有商业化种植的,但是转基因水稻,还没有哪个国家进行商业化种植。”  薛达元担忧的主要风险是转基因水稻对环境和健康的影响。实际上,这也是很多专家提出质疑的主要原因。  中国科学院植物研究所研究员蒋高明介绍,转基因水稻是在水稻中引入抗虫基因,使得水稻能分泌一种BT毒蛋白物质,虫子食用后会被毒死,因而能够产生防虫效果。“但水稻是人类的主粮,昆虫无法下口,人类长期食用难道就没有害处吗?”蒋高明质疑。  近年来,转基因食品的安全性引起很大的争议。2007年,法国科学家证实,世界最大的种子公司美国孟山都公司出产的一种转基因玉米对人体肝脏和肾脏具有毒性。2008年,美国科学家也证实了长时间喂食转基因玉米的小白鼠免疫系统会受到损害,该研究成果发表在同年《农业与食品化学》杂志上。2009年12月22日,法国生物技术委员会最终宣布,转基因玉米“弊大于利”。  蒋高明认为,转基因作物的安全性并没有从根本上得以保障,“欧美科学家都不敢断定这项技术一定是安全的,中国科学家在如此短的时间内拿下安全证书似不稳妥”。  一旦出问题……  此外,对于环境的污染也是很多科学家担忧的事情。因为如果转基因作物的基因通过授粉等途径向四周“漂移”,可能会引发生态危机。  国家环保部生物安全管理办公室官员曾发出警告:在生态系统中,转基因生物是一个具有竞争优势的外来物种,它可能破坏整个生态的平衡。  国际上类似的案例并不少见:2001年的“墨西哥玉米基因污染事件”、2002年的“转基因玉米混进美国大豆事件”,2006年还曾出现“转基因大马哈鱼逃逸事件”。  蒋高明认为,转基因至少存在三方面的不确定性:一是转基因对生命结构改变后的连锁反应不确定;二是转基因导致食物链“潜在风险”不确定;三是转基因污染、增殖、扩散及其清除途径不确定。  “在这种背景下,我们带头将转基因引入13亿人的主食,害莫大焉!转基因生物一旦出了问题,根本无法控制。”他说。  此外,薛达元认为,因为欧洲等国家对于转基因食品有比较严格的限制,一旦转基因水稻在中国进行商业化,还可能影响我们的粮食出口。  “前几年曾经在湖北进行过转基因水稻的实验性种植,当时管理没有跟上,像转基因种子就没有限制,什么人都可以买到。”薛达元担心,转基因水稻商业化后,也会出现管理跟不上的局面,转基因水稻“也许会出现在不适合种植的地方,污染当地农作物”。  “转基因水稻的潜在风险短期内可能看不出来,需要长期观察。”薛达元说。  “我个人认为,政府应该特别慎重批准转基因植物商业化。科学家不能完全预知对生物进行转基因改造有可能导致何种突变,而对环境和人造成危害。虽然实验非常成熟,但其对人类可能造成的影响,或许要在未来几代人后才显现。”水稻专家袁隆平说。

  • 【分享】《科学》评出2007年十大进展 人类基因组差异名列榜首

    2007年最令研究人员惊叹的是,从一个人到另一个人的基因组差异程度之大,科学家开始懂得这些差异在疾病和个体特性中的作用。《科学》杂志及其出版者美国科学促进会(AAAS) 将“人类基因组差异”评为2007年首要进展,并在12月21日出版的杂志上列出本年度其他9项最重要的科学成就。负责评选的《科学》杂志物理类科学新闻副主编Robert Coontz 说,“多年来,我们一直谈人与人如何相像,甚至人与猿如何类似。2007年的几项前沿研究第一次将人与人的DNA存在很大的不同讲透彻了。这是一个巨大的概念性跳跃,将会对所有的事情产生影响:从医生如何治病到我们如何看待自己以及保护我们的隐私。”2007年,几位个人的基因组被测序。随着技术的提高,我们中的许多人将会了解部分或全部的个人基因组,也将了解自己有患哪些疾病的风险。自人类基因组序列测出以来,生物学家一直在绘制基因组的一个碱基上的小差异,这种差异被称为单核苷酸多态性(SNPs)。这些差异是2007年十几个研究项目的关键,研究人员在这些被称为基因组范围关联的研究中比较了几千位患病或无病个体的DNA,从而确定哪些小的基因差异带来疾病风险。这种信息能帮助研究人员发现疾病基因,比如近年发现的几个2型糖尿病基因。今年的基因组范围关联研究为许多疾病提供了线索,包括心房颤动、自身免疫疾病、双相障碍、大肠癌、1型和2型糖尿病、心脏病、高血压、多发性硬化症以及风湿性关节炎。2007年,生物学家还了解到,在DNA上亿个碱基中,成千到上百万的碱基可能丢失、增加或以某种方式被拷贝,这些变化在几代人内就能改变基因的活性。这些被称为“拷贝数差异”的影响在高淀粉饮食的人群中有表现,这些人群比有狩猎采集传统的人群有更多的消化淀粉DNA的拷贝。研究儿童自闭症的遗传学家发现了导致患自闭症风险增加的一个新的DNA修饰。名列《科学》2007年十大进展第二位的是重新编程细胞的技术。日本和美国小组分别在6月宣布他们用小鼠皮肤制造了诱导性多能干(iPS)细胞,这些iPS细胞能产生身体的所有细胞,包括卵子和精子,从而显示iPS细胞具有胚胎干细胞的能力。11月份,两个小组分别报告了用人类皮肤细胞制造iPS细胞的研究。这项研究可能改变干细胞研究的科学与政策。Coontz说:“与首要进展一样,一旦科学家能清除几个障碍,重新编程细胞可能为生物医学研究开辟新方向。”《科学》评选出的其他8项进展包括:跟踪宇宙射线来自阿根廷Pierre Auger天文台的研究人员报告说,进入地球大气的宇宙线可能来自天空中存在着许多活跃星系核的区域。这些宇宙线可能是经过黑洞附近的磁场时获得加速度的。受体结构研究人员确定了人类Beta2-肾上腺素能受体的结构,这是一个重要的G蛋白偶联受体,它通过传递体内的激素、血清素以及其他分子的信息管理人体内部系统。从抗组胺剂到beta阻滞剂的一系列药物以这些受体为靶标。结构知识可能带来新的药物。超越硅电子器件过渡金属氧化物研究的进展也许预示了下一个材料革命,2007年,几个研究小组将两种氧化物结合在一起,制造了带有各种有用的电子和磁性性能潜力的界面。量子霍尔效应理论和实验物理学家制造了预测的量子霍尔效应,这是电子从某些材料中流过时在外加电场作用下的奇怪行为。如果这一效应在室温下工作,它可能导致新的低功率的“自旋电子学”计算的设备。分而治之研究揭示,与病毒和肿瘤作战的T细胞有立刻保护和长期保护的分工,改进的疫苗也许使这项研究成果得到应用。研究人员发现,当他们捕捉到刚刚分化的T细胞时,在T细胞相反的两极有两类蛋白质被生成,一边的蛋白带有“战士”的分子标记,另一边的显示“记忆细胞”的特征,记忆T细胞能潜伏多年以防备未来的入侵。以少胜多合成化学家研制了一个高效低成本的制造药物和电子化合物的技术。返回未来用人和大鼠作的研究提出,记忆和想象扎根于大脑的海马区,该区是记忆的一个关键中心。研究人员推测,大脑的记忆也许能通过重新整理过去的经历来产生未来的情景。游戏结束一个人工智能编程的精心杰作使双陆棋成为迄今为止计算机解决了的最复杂的游戏。研究人员发现,如果竞技双方不犯任何错误,双陆棋将以平局结束。2008年应该注意的领域包括microRNA、人工制造的微生物、新的计算机芯片材料、人类细菌以及尼安德特人的基因组、人类神经回路以及来自CERN的大型强子对撞机的数据。

  • 【简讯 】美国将种植含人类基因水稻 有助于治疗儿童腹泻

    【简讯 】美国将种植含人类基因水稻 有助于治疗儿童腹泻

    据俄罗斯有关媒体3月6日报道,美国农业部计划允许大规模生产转基因水稻。据The Daily Mail报道称,美国加里福尼亚州的“文特利亚生物科学公司”(Ventria Bioscience)已经获取1200多公顷农业用地以种植一种特殊的转基因水稻,其中所含的蛋白质将类似于人体唾液和乳汁中所含的某些蛋白质。  根据计划,这种转基因水稻将用来加工成能医治腹泻的药物。众所周知,腹泻是导致第三世界国家哺乳期儿童死亡的主要原因。每年约有200多万儿童死于这种疾病。[img]http://ng1.17img.cn/bbsfiles/images/2007/03/200703181526_45481_1603372_3.jpg[/img]美公司计划种植带人类基因的水稻

  • 【分享】《科学》杂志评出2007年十大科技突破:科学家发现人类基因组差异荣登榜首

    【分享】《科学》杂志评出2007年十大科技突破:科学家发现人类基因组差异荣登榜首

    北京时间12月21日消息,美国《科学》杂志12月21日公布了2007年度科学突破,“科学家发现人类基因组差异”荣登榜首,成为2007年度最大的科学突破。以下是《科学》杂志年度十大科学突破名单:[B][size=4]1.揭开人类基因组个体差异之谜[/size][/B][img]http://ng1.17img.cn/bbsfiles/images/2007/12/200712230429_74133_1622715_3.jpg[/img]揭开人类基因组个体差异之谜在更为先进的DNA排序技术和基因组个体差异评估技术的帮助下,研究人员正在逐步揭开人与人之间差异的谜底。7年前科学家成功破译人类基因组,为首次揭示人类完整的基因构成奠定了基础。到了2007年,研究人员逐步意识到人与人之间基因组差异到底有多大,以及这种差异对破译复杂疾病和个人性格的重要性。差不多一年前,科学家又获得重要发现,加深了对人类和灵长类动物之间基因差异的认识,对最终导致人类出现的进化过程的基因变化有了深入了解。如今,科学家的研究重点已从寻找DNA对群体影响的答案转向寻找DNA对个体影响的答案。曾用于寻找数十万基因差异的高科技现在正以一种前所未有的方式,将特定差异与疾病联系起来。科学家通过评估染色体在我们人类DNA突增和缺失,结果发现这些变化比他们预料的更为普遍,与人类基因组的运转密切相关。通过研究决定头发、皮肤颜色的基因以及“语言”基因差异,我们已经对人类与穴居人的不同和相同之处有了深入了解。随着个体基因差异谜团的逐步揭开,我们势必会在这个领域取得巨大飞跃。

  • 【原创大赛】【奥运检测卫士】基于h-ER基因的水体类雌激素效应测定

    【原创大赛】【奥运检测卫士】基于h-ER基因的水体类雌激素效应测定

    基于h-ER基因的水体类雌激素效应测定前言: 写这篇文章源于当时看的一篇《体育学刊》的论文《奥运会我们拿什么招待客人?——环境激素(EDCs)对生物的影响》(http://www.cnki.com.cn/Article/CJFDTotal-TYXK200708030.htm)。水和食物是奥运健儿每天都会接触到的。若水中的类雌激素效应较高,会对运动员内分泌系统造成影响,从而影响比赛成绩,严重者甚至产生长期健康风险(如生殖影响、致癌等)。 之前,环境激素类物质在奥运会水质检测中有涉及,但是仅以GC-MS定性定量,这样做可能会丢掉部分环境激素类物质,如某些重金属和某些大分子的环境激素效应物质。同时环境激素类物质非常之多,采用理化分析不足以将这些物质全覆盖。所以未来分析的导向一定是生物分析,以环境激素效应代替单个的环境激素物质理化测定。下面就为大家分享下我们最近做的一个基于h-ER基因的类雌激素效应测定。摘要:目的:对水样中的环境激素含量进行定量测定。方法:重组h-ER基因酵母特异性地结合水中类雌激素化合物,产生具有生物学活性的酶,通过定量检测酶活,间接测定环境激素含量。结果:10-11~10-9mol/L的17β-雌二醇暴露下,标准浓度与β-半乳糖苷酶活呈S型曲线,相关系数0.984;该方法最佳检测范围为5.88×10-11mol/L~1.44×10-10mol/L;加标回收率在74%~108%之间。结论:该方法灵敏度高,在最佳检测范围内重复性好,能适用于地表水和污水厂进出水等水样的测定。关键词:环境激素 h-ER基因 酵母 环境激素是指能通过干扰内分泌功能,引起个体、后代或人群可逆性或不可逆性生物学效应的化合物,又称内分泌干扰物。随着工业化的进展和环境污染的加剧,环境激素在环境中的存在日益增多。生活中大量使用的化肥、农药、防腐剂、添加剂、洗涤剂、激素类药物等,很多属于内分泌干扰物。环境激素可以模拟或干扰正常激素内分泌调节功能,从而对动物及人类的发育、生殖功能产生不良影响, 甚至与人类某些肿瘤( 如乳腺癌、 卵巢癌等) 的发生有关。目前环境激素的检测方法有基于仪器分析的气质联用法,HPLC法、ICP-MS法等和基于生物检测手段的酶联免疫测定法、个体形态学检测法、实时定量PCR法、重组基因酵母法等等。其中重组基因酵母法具有高反应性和低背景,其检测阈值较低等的优点。1.实验材料和仪器http://ng1.17img.cn/bbsfiles/images/2012/08/201208012036_381106_1653274_3.jpg分光光度计(cary50,瓦里安);http://ng1.17img.cn/bbsfiles/images/2012/08/201208012200_381136_1653274_3.jpg全温振荡培养箱(SHZ-22,常州若基);http://ng1.17img.cn/bbsfiles/images/2012/08/201208012200_381137_1653274_3.jpg恒温平板摇床(Titramax 1000,Heidolph,Germany);[font=Times New R

  • 【转帖】从基因角度揭秘让藏族人适应高原反应的原因

    青藏高原是世界上海拔最高、面积最大的高原,素有“世界屋脊”之称,极高海拔也使得青藏高原具有独特的地理气候环境、人文生活习惯和医疗卫生事业状况。高原环境对人体关键的影响因素是低压性低氧,大气压力随海拔增高而降低,氧分压也随之下降。当生活在低海拔地区的人来到高原环境时,由于氧分压的降低,会使人产生缺氧,因而引起“高原反应”,严重的“高原反应”会引起肺水肿和脑水肿,威胁到人的生命。而世居高原的人群在这样的环境下没有“高原反应”,将世居高原人群与低海拔人群的基因组进行对比分析,具有重要的启发意义。藏族人群是世界上居住高原时间最长,并对高原低氧环境适应能力最佳的民族,深圳华大[url=http://life.lifesci.cn/gene/default.htm]基因[/url]研究院发现青藏高原世居藏族人群高原适应的关键基因,有关这一科研成果的论文《50个全外显子测序揭示人类的高原适应机制》在最新一期美国权威学术刊物《科学》([i]Science[/i])上正式发表。该成果由深圳华大基因研究院发起和主导,得到了国家自然科学基金委员会、国家科技部、中国科学院、深圳市政府以及丹麦、美国、瑞士等国自然科学基金委员会的支持。这一成果揭示了青藏高原世居藏族人群高原适应的[url=http://life.lifesci.cn/molecular/default.htm]分子[/url]机制之谜,对预测、预防与治疗高原缺氧性疾病,促进我国高原地区社会和经济发展具有重大意义;该成果阐明了人类的[url=http://life.lifesci.cn/gene/default.htm]基因组[/url]在极端环境下发生了何种适应性变化,具有改写人类分子[url=http://life.lifesci.cn/paleontology/default.htm]进化[/url]教科书的意义。该研究使用比较基因组学的方法阐明了高原世居藏族人群的低氧适应机制。“应用先进的基因组学分析技术——全外显子测序技术,对青藏高原世居藏族人群和低海拔人群进行比较,我们发现了藏族人群适应高原环境的关键基因。”该研究负责人、深圳华大基因研究院汪建研究员说。利用第二代高通量测序技术对50个藏族人的全基因组外显子进行测序,并将结果与低海拔汉族人群以及高加索人群的外显子进行对比,通过一套新开发的寻找自然选择信号的算法,计算出在藏族人群中受到自然选择的基因。这些受到自然选择的基因,就可能是在藏族人群高原适应中起着重要作用的基因。结果显示,有一系列基因在藏族人群的高原适应中发挥作用,其中EPAS1基因可能起着关键作用。进一步通过对藏族人群中EPAS1基因的改变位点进行关联分析,发现EPAS1基因中受选择的基因型与藏族人群血红[url=http://life.lifesci.cn/gene/default.htm]蛋白[/url]的代谢有关。EPAS1基因是HIF通路(低氧诱导调节通路)中的重要基因,在人体面对低氧环境的调节通路中起到核心作用。藏族人群特有的“EPAS1”基因不同于汉族人群,正是这种[url=http://life.lifesci.cn/genetics/default.htm]遗传[/url]基因阻止了藏族人血红蛋白浓度的过度升高,降低了各种高原性疾病发生的可能性。由于EPAS1基因与缺氧及血红蛋白生成密切相关,对这一基因的研究还有可能对某些血液性疾病的治疗带来突破,并且还可应用于运动员的筛选等方面。同时,该成果发现了其它一些重要的高原适应相关基因,例如EGLN1基因、FANCA基因等共30个重要候选基因。这些基因可能在藏族人群的高原适应机制中发挥重要的作用,但是其明确的生理生化表型仍不是很确定,这为科学家们下一步对高原缺氧性疾病的研究指明了方向。这是我国在高原医学研究中的重要基础性突破,必将带动相关的基础研究和应用研究的发展。(生物谷Bioon.net)

  • 【转帖】Science:最“牛”基因组

    历时6年,300余研究者花费5300万美金,牛的基因组序列终于呈现在世人面前,相关的文章发表在Science杂志上。这是继2000年人类基因组破解以来,又一动物基因组序列被破译。负责人称,牛的基因组的破译不仅有助人们更深入了解牛的驯化过程,提高牛肉,牛奶的质量改善人类的生活质量,还有助了解人类的疾病。最新的一期Science杂志刊登了两篇独立研究牛基因组的文章,一篇Genome-Wide Survey of SNP Variation Uncovers the Genetic Structure of Cattle Breeds;一篇The Bovine Genome Sequencing and Analysis Consortium,该项目对牛的基因组进行了分辨率精细的测序。另外还有一篇评论性的文章,The Genome Sequence of Taurine Cattle: A Window to Ruminant Biology and Evolution,将研究焦点放在对牲畜进化和驯养历史的追踪工作上。研究人员发现,牛的基因组含有至少2万2000个基因,其中大约有14345个基因在7种其它的哺乳动物种系中具有对应的基因。 这些发现显示,在牛的进化和驯养过程中,基因的数量和构成的变化是如何改变牛的生物学系统并对它们的繁殖、免疫能力、乳汁分泌和消化造成了最为显著的影响的。 这些研究人员还对来自19个不同地理和在生物学上混杂繁殖的497头不同牛只DNA中的3万7470种差异进行了调查。他们发现,母牛的进化与我们人类本身的进化截然不同,它们从一个有着非常大的有效祖先群体到近期发生的快速的群体下降,而不是反过来的那种一种情形。 文章的作者将这种进化归因于与以往驯化活动、因农业专门化所作的选择以及与动物豢养的形成相关的遗传学瓶颈。 但是,牛品种中的多样性的现有水平看来至少与那些在人类群体中的水平一样地强健有力。 在一篇Perspective中,Harris Lewin对这些发现进行了更为详细的探讨,并重点介绍了其对人类健康和可持续性农业的意义。

  • 【讨论】毒素也有转基因的?

    关于转基因作物的安全性已出现新的疑虑,一份新的研究报告指出转基因作物广泛应用的Bt毒素,在人体血液中第一次被发现。 转基因作物含有从细菌中提取,使它们抵抗虫害的基因。 这些基因使作物对害虫曾毒性,但声称对环境和人体健康不构成危险。转基因茄子,其商业版本在一年前已经停止运作,它里面转入了一种称为苏云金杆菌(Bt)的土壤细菌毒素。 截至目前为止,推销转基因作物的科学家和跨国公司认为,Bt毒素对人类健康不会构成危险,它的蛋白质会在人体肠道中被分解。但是,人体血液中存在这种毒素推翻了这一说法。

  • 【转帖】基因芯片技术进展!

    基因芯片技术进展及应用 作者:刘炎 [关键词] 基因芯片;核酸探针序列;杂交 1 基因芯片概述  随着人类基因组计划( Human Genome Project)即全部核苷酸测序的即将完成,人类基因组研究的重心逐渐进入后基因组时代( Postgenome Era)向基因的功能及基因的多样性倾斜[1,2]。通过对个体在不同生长发育阶段或不同生理状态下大量基因表达的平行分析,研究相应基因在生物体内的功能,阐明不同层次多基因协同作用的机理,进而在人类重大疾病如癌症、心血管疾病的发病机理、诊断治疗、药物开发等方面的研究发挥巨大的作用。它将大大推动人类结构基因组及功能基因组的各项基因组研究计划。  基因芯片的工作原理与经典的核酸分子杂交方法(southern 、northern)是一致的,都是应用已知核酸序列作为探针与互补的靶核苷酸序列杂交,通过随后的信号检测进行定性与定量分析,基因芯片在一微小的基片(硅片、玻片、塑料片等)表面集成了大量的分子识别探针,能够在同一时间内平行分析大量的基因,进行大信息量的筛选与检测分析[3,4]。基因芯片主要技术流程包括:芯片的设计与制备;靶基因的标记;芯片杂交与杂交信号检测。  基因芯片的设计实际上是指芯片上核酸探针序列的选择以及排布,设计方法取决于其应用目的,目前的应用范围主要包括基因表达和转录图谱分析及靶序列中单碱基多态位点(single nucleotide polymorphism,SNP)或突变点的检测,表达型芯片的目的是在杂交实验中对多个不同状态样品(不同组织或不同发育阶段、不同药物刺激)中数千基因的表达差异进行定量检测,探针序列一般来自于已知基因的cDNA 或EST库,设计时序列的特异性应放在首要位置,以保证与待测目的基因的特异结合,对于同一目的基因可设计多个序列不相重复的探针,使最终的数据更为可靠。基因单碱基多态检测的芯片一般采用等长移位设计法[5],即按靶序列从头到尾依次取一定长度的互补的核苷酸序列形成一探针组合,这组探针是与靶序列完全匹配的野生型探针,然后对于每一野生型探针,将其中间位置的某一碱基分别用其它三种碱基替换,形成三种不同的单碱基变化的核苷酸探针,这种设计可以对某一段核酸序列所有可能的SNPs位点进行扫描。  芯片制备方法主要包括两种类型:(1)点样法:首先是探针库的制备, 根据基因芯片的分析目标从相关的基因数据库中选取特异的序列进行PCR扩增或直接人工合成寡核苷酸序列[6],然后通过计算机控制的三坐标工作平台用特殊的针头和微喷头分别把不同的探针溶液逐点分配在玻璃、尼龙以及其它固相基片表面的不同位点上,通过物理和化学的方法使之固定,该方法各技术环节均较成熟,且灵活性大,适合于研究单位根据需要自行制备点阵规模适中的基因芯片。(2)原位合成法[7~10]:该法是在玻璃等硬质表面上直接合成寡核苷酸探针阵列,目前应用的主要有光去保护并行合成法,压电打印合成法等,其关键是高空间分辨率的模板定位技术和高合成产率的DNA化学合成技术,适合制作大规模DNA探针芯片,实现高密度芯片的标准化和规模化生产。待分析样品的制备是基因芯片实验流程的一个重要环节, 靶基因在与芯片探针结合杂交之前必需进行分离、扩增及标记。标记方法根据样品来源、芯片类型和研究目的的不同而有所差异。通常是在待测样品的PCR扩增、逆转录或体外转录过程中实现对靶基因的标记。对于检测细胞内mRNA表达水平的芯片,一般需要从细胞和组织中提取RNA,进行逆转录,并加入偶联有标记物的dNTP,从而完成对靶基因的标记过程[11],对于阵列密度较小的芯片可以用同位素,所需仪器均为实验室常规使用设备,易于开展相关工作,但是在信号检测时,一些杂交信号强的点阵容易产生光晕,干扰周围信号的分析。高密度芯片的分析一般采用荧光素标记靶基因,通过适当内参的设置及对荧光信号强度的标化可对细胞内mRNA的表达进行定量检测。近年来运用的多色荧光标记技术可更直观地比较不同来源样品的基因表达差异,即把不同来源的靶基因用不同激发波长的荧光素标记,并使它们同时与基因芯片杂交,通过比较芯片上不同波长荧光的分布图获得不同样品间差异表达基因的图谱[12,13],常用的双色荧光试剂有Cy3- dNTP和Cy5- dNTP。对多态性和突变检测型基因芯片采用多色荧光技术可以大大提高芯片的准确性和检测范围,例如用不同的荧光素分别标记靶序列及单碱基失配的参考序列,使它们同时与芯片杂交,通过不同荧光强弱的比较得出靶序列中碱基失配的信息[14]。  基因芯片与靶基因的杂交过程与一般的分子杂交过程基本相同,杂交反应的条件要根据探针的长度、GC碱基含量及芯片的类型来优化,如用于基因表达检测,杂交的严格性较低,而用于突变检测的芯片的杂交温度高,杂交时间短,条件相对严格。如果是用同位素标记靶基因,其后的信号检测即是放射自显影,若用荧光标记,则需要一套荧光扫描及分析系统,对相应探针阵列上的荧光强度进行分析比较,从而得到待测样品的相应信息。由于基因芯片获取的信息量大,对于基因芯片杂交数据的分析、处理、查询、比较等需要一个标准的数据格式,目前,一个大型的基因芯片的数据库正在构建中,将各实验室获得的基因芯片的结果集中起来,以利于数据的交流及结果的评估与分析。

  • 【资料】基因表达平台构建方案(希望相关人士提供建议意见)

    我是做生物实验室仪器销售的,正在做各个实验室构建的方案,附件里面是基因表达平台的构建方案。里面分了基因表达的各个步骤,每个步骤所用的不同方法,每种方法所需要的仪器,每种仪器国内及国外的品牌,当然品牌是我比较熟悉的一些。希望相关人士能够提供一些建议,包括缺少的步骤,其他的方法,方法还需要的仪器,还有您觉得用的比较好的仪器的品牌,或者对附件中某些品牌评价,这些对我都有很大的帮助。欢迎批评指正。

  • 培育拥有人类基因奶牛 ,能够产出类似母乳奶制品?

    “7月10日消息,据媒体报道,阿根廷科学家培育出了世界上第一头携带有两个人类基因的牛,有望生产出和人类母乳极其类似的奶制品。 科技研究所称,这头奶牛是通过克隆技术培养出来的,在为婴儿提供营养方面是一大进步,科学家引入了两个人类基因,因此产出的牛奶会更接近母乳。”真的能够类似母乳制品吗?你怎么认为呢?

  • 硅谷聚集基因测序技术新产业

    美国加州的山景城是“硅谷”的重要组成部分。现在,一个与硅芯片相关的潜力大产业正在这里兴起,那就是基因组测序技术产业。这个产业的发展是随着多家大公司的激烈竞争开始的。不过,一家名为“整合基因”(Complete Genomics,CG)的公司不像别的公司一样研发和销售测序仪器,而是为科学家提供外包的测序服务,更绝的是,在这家公司里做测序的,并不是研究人员,而是一排排的机器人。近日,《新科学家》杂志探秘了这家充满科幻意味的公司。前台都是“机器人”走进CG公司,连前台都由计算机终端出任。它会主动向来客问好,询问姓名、身份和来访意图。旁边连接的一台打印机则自动打出访客挂牌。与此同时,一份电子邮件已经发送到内部接应人员的电脑上。这家公司的生产线更像科幻电影里的实验室,昏暗蓝色的房间里到处都是高级仪器,室内温度保持在28℃和相对较高的湿度,几名穿着实验服,带着发罩的工作人员在监视着电脑屏幕,查看着机器人的运作状态。这儿已经成为了世界上最大的人类基因组测序工厂。只是在这里工作的不是人类,而是机器人。在一个大约只有半个网球场大的房间里,“坐着”16台机器人,不间断地进行着人类基因组测序的工作。去年,它们完成800个人的DNA测序工作其中三分之一是后半年做出来的。到了今年,它们已经可以每个月生产出400个人的基因了。CG公司只是目前迅速形成产业的诸多基因组测序公司中的一家,但是它十分独特。公司市场总监图柯特(Jennifer Turcotte)对《新科学家》杂志解释说,通常而言,DNA测序是在一个密封的机器里进行的,但在这家公司的实验室里,机器人却是在一个开放暴露的环境下做基因组测序,这是为了便于维修。实验室特定的温度和湿度是为了符合测序中出现的生化反应,微弱的蓝光是为了避免荧光探测剂在探测基因代码符号时受到其他频率光波的破坏。这儿所进行的基因组测序,已是目前最新的第三代基因组测序技术,称为“DNA纳米球测序技术”。这种新方法是将DNA链放置在一小块硅芯片上进行调节,自我组装成所谓的“纳米球”。这样的测序所需要的试剂更少,得到的数据则更多。技术人员都穿着无尘室服装,因为任何一点灰尘都会干扰测序,除非哪儿出问题了,一般而言这些技术人员不会干预机器人的工作。机器人则会自动添加试剂,操作样本,每个DNA纳米球上携带着70个核苷酸,其排列顺序会通过光信号被拍摄记录下来。费用正在逐步降低这些机器人正在做的工作,是一个浩大庞杂的工程蓝图中的第一步,所有的人类基因组中有着30亿对碱基对,而CG计划将其全部组装出来。这需要非常大的计算量,公司为此也建了一个自动数据中心。不过,这个数据中心设在距离公司大约有20分钟车程的地方那儿的电费更便宜。目前CG公司只针对研究者和制药公司开放,个人还没法购买他们的服务。在这里,每对基因组测序要价9500美元,如果购买1000对以上,则每对价格降为5000美元。这个价格是随着基因组测序技术突飞猛进而急剧下降的,要知道,十年前,第一对人类基因组序列完成时,其价格是以十几亿美元计量的。而科学家现在已经预计几年后,基因组测序的价格可能会降到一般人都可能支付得起的程度。基因组测序的流水线完全是由机器人来做的,而职员做什么呢?公司共有185名职员,部分是科研人员,忙于改善公司的测序技术,另一部分则是做市场和联络,与各类客户打交道。基因组测序工程是一项既有非常光明的前途但又异常庞大的科学工程,而自动化则可能成为处理这项工作的最佳工具。基因学家们认为,通过一些基因扫描,是可以找到导致人类易感疾病的一些基因变异,人类基因谱上,有一些常见明显变异,但是就整个遗传问题来看,还有大量的混乱的遗传变异隐藏在DNA双螺旋体中,这些也导致了世界上千奇百怪的遗传疾病。如何去捕猎这些神秘莫测的错误基因代码呢?只剩下一个方法,那就是将整个人类基因谱测序,来捕捉一些可能和疾病有关的基因变异。这个方法虽然听上去如同“大海捞针”一样不靠谱,但目前一些迹象表明,今后或许基因组序列会成为医疗记录的一部分,或者科学家可以通过家庭的基因组测序来纠正基因错误。比如,去年西雅图系统生物学研究所的胡德(Leroy Hood)及其小组与CG公司进行了合作,在《科学》杂志上刊登了一篇论文。他们对一家四口的基因组进行了测序。这是个特殊的家庭,两个孩子都患有两种隐性遗传病米勒综合征和纤毛运动障碍,而父母则完全正常,在分别测出这家人的基因序列后,研究者将父母和子女基因组序列进行比较,验证了米勒综合征这种非常罕见遗传病的致病突变。提供测序外包的服务目前,站在基因组测序产业化起跑线上的企业包括了同样位于加州的生物科学公司Pacific Bio。这个公司创立了首次可以对单个DNA进行测序的仪器。和CG公司一样,目前,这家公司也只向研究者提供服务。有一些大型的、从事基因组测序产业的公司已经将基因组测序做到医院和个人普及的地步了,如研发制造大型测序分析仪器的Illumina公司。这个公司在2008年美国成长最快的科技公司评选中,风头甚至盖过了Google。它们提供的产品甚至可以直接给病人使用。而另一位基因创业企业家罗斯伯格(Jonathan Rothberg)甚至发明了可以放在桌子上的基因解码器,可以在2小时之内以很高的精度解读出1000万个基因代码符号。大部分的基因组测序企业都站在一个竞争线上,尽力提高DNA测序的速度,降低费用。而CG公司其实并非和它们是严格意义上的竞争对手他们计划组装出所有的人类基因序列,研发也是为此目的而进行。此外,他们并不如其他公司一样开发更高级更小巧的基因组测序仪,而是为科学家提供基因组测序的外包服务,也就是说,研究人员无需购买、安装、培训、运行和维修仪器,而只要将样品交给这家公司,等待结果到来就可以。虽然很多人不理解他们的做法,但这家公司始终坚持自己的观点,认为这样的服务最能让科学家将时间从捣腾仪器设备的工作中解放出来,专心放在生物学和假说验证上。从这几年CG公司取得的成绩来看,这种做法确实是有效的。2009年,CG公司宣布其测出了第一个人类基因序列,并移交给美国生物科技信息中心数据库。同一年,他们在《科学》上刊文,发布了三个完整人类基因组序列分析的结果,当时文章还宣布,测序的成本已经可以降到1726美元。这在生物界引起了轰动。到了那一年结束,他们已经做出了50个人的基因序列。此外,他们的名字也随着来自各地的科学家一起多次登上了权威学术杂志。除了去年帮助科学家解开了米勒综合征突变难题给科学界留下难忘的印象之外,美国的罗氏公司还曾经借助CG的基因组测序技术,完成了人类科学史上第一例肺癌患者的全基因组比较。相关研究结果刊登在《自然》杂志上。而美国癌症学会也开始和CG公司联手,希望通过其服务比较正常人和癌细胞基因组序列的差异。或许在不久的将来,解开癌症之谜的第一个贡献就属于这些蓝光照耀下的机器人。

  • 腾讯WE大会即将召开:基因技术&生物医药成热门看点

    作为中国连接世界的跨界创新平台,11月8日在北京举行的腾讯WE大会邀请了12位全球顶尖科学家、互联网思想家和技术专家,讲述对未来的畅想。从人工智能、脑机接口、基因科技、到外太空旅行探索等多领域的创新和行业趋势,腾讯公司希望通过WE大会,让中国互联网从业者们站在未来,连接一切,参与一场由新兴产业引导的全球“进化运动”。基因技术推动生物医药跨越发展当下的世界,各种与基因相关的出生缺陷、肿瘤、心脑血管病影响着80%人类的健康和生死,如果我们能以基因技术推进生物医药跨越发展,将能为人类的健康和生命质量带来翻天覆地的改变。本次WE大会特别邀请了我国基因科技领军人物、华大基因研究院院长王俊,他所领导的华大基因是世界上最大的基因测序公司,致力于用基因科技造福人类,推动个体化医疗和健康的新模式使更长寿、更健康的生活成为可能。2013年9月,王俊被美国商业杂志《财富》评为2013年度全球40位40岁以下精英,是该榜单首位上榜的中国科学家。2012年,王俊被英国《自然》杂志评选为年度十大科学人物,也是路透社2012年度最热门科学人物之一,获得科学研究领域“影响世界华人大奖”。

  • 挑战人类生殖: 用干细胞制造胚胎

    自去年10月开始,分子生物学家Katsuhiko Hayashi就陆陆续续收到了许多夫妻的邮件,这些夫妻大多人到中年,仍然在为了一件事情焦急:要一个孩子。其中有一位英国的更年期妇女,希望到他位于日本京都大学的实验室,在他的帮助下怀上孩子,她写道:“这是我唯一的愿望。”这些请求开始于Hayashi一篇文章的发表——他原以为只有发育生物学家才会对他的实验结果感兴趣。在体外条件下,利用小鼠的皮肤细胞创造可以发育成精子和卵子的原始生殖细胞(PGCs)。为了证明这些实验室培养的原始生殖细胞与自然发育而成的原始生殖细胞类似,他利用它们生成了卵子,进而创造小鼠生命。他表示,这个创造出来的小鼠生命仅仅是他研究的一个“副产品”,他的研究将意味着更多——利用不孕妇女的皮肤细胞为她们提供可受精的卵细胞。与此同时他还提出,男性的皮肤细胞也可以用来创造卵子,同样,女性的皮肤细胞也可以生成精子。(事实上,研究结果发表后,许多同性恋发邮件给Hayashi ,索要更多的信息。)尽管这是一项创新研究,但是公众的广泛关注还是令Hayashi和他的教授Mitinori Saitou感到非常惊讶。他们花了十多年不断挖掘哺乳动物配子产生的微妙细节,然后在体外条件下重新创建该过程——一切都是为了科研,而非医疗。现在他们的方法使研究人员能够创建无限的原始生殖细胞,这种在以前很难获得的珍贵细胞的正常供应有助于推动哺乳动物生殖研究。但是,当他们将这个科学挑战自小鼠到猴子,再到人类推进时,这一过程被公众定义为治疗不孕不育的过程,于是相关的道德争议随之出现。“毫无疑问,他们在小鼠身上给这一领域带来了重大的改变,” 洛杉矶加州大学的生育专家Amander Clark说,“但是,在这项技术展示它的实用性之前,我们必须讨论一下使用这种方式创造配子的伦理问题。”回到最初在小鼠体内,胚胎发育一周后,便出现约40个左右的原始生殖细胞。这个小小的细胞团进而在雌性小鼠体内形成成千上万的卵细胞,在雄性小鼠体内每天都能生成几百万个精细胞,并能够遗传小鼠的全套遗传信息。Saitou想要了解在这些细胞发育过程中受到了那些信号的控制。在过去的十年中,Saitou已经通过辛苦研究确定了几个基因——包括Stella, Blimp1 和Prdm14 ——这些基因的某种组合在某些时候对于PGCs的发育起到了至关重要的作用。利用这些基因作为标记,可以从其他细胞中筛选原始生殖细胞以观察这些细胞的变化。2009年,在日本神户的RIKEN发育生物学中心,他发现,当培养条件适当时,在精确的时间加入骨形态发生蛋白4(BMP4),可以胚胎干细胞转化为原始生殖细胞的。为了验证这一发现,他向胚胎干细胞提供高浓度的BMP4,结果显示,几乎所有的胚胎干细胞都变成了PGCs。他和科学家们都预计这一过程非常复杂。http://www.ibioo.com/data/attachment/portal/201308/25/095620gaqefeejnqejxuu3.jpg人造小鼠生殖细胞产生小鼠胚胎的过程(点击图片查看大图)Saitou的方法严格遵循了自然过程,这与其他从事类似研究的人形成了鲜明的对比,以色列魏茨曼科学研究所的干细胞专家Jacob Hanna说。许多科学家尝试通过信号分子轰击干细胞在体外创造特定类型的细胞,然后筛选细胞混合物得到他们想要的细胞。但是他们忽略了这些细胞的自然形成过程和这些人造细胞与自然形成细胞的相似程度。Saitou找出了形成生殖细胞所需的条件,去除多余的信号干扰并将每个过程的时间精确控制,给他的同事们留下了深刻的印象。英国谢菲尔德大学的干细胞生物学家Harry Moore将这种生殖细胞发育的精确重现视为一场“胜利”。到了2009年, Saitou在小鼠生殖细胞出现之前从外胚层取了一些细胞,这成了研究的起点。但是想要真正掌握这个过程中,Saitou希望从细胞培养开始。当时正值Hayashi从英国剑桥大学回到日本,和Saitou一样,Hayashi在该领域先驱Azim Surani英国的实验室里完成了4年的研究。Surani盛赞这两位科学家说,他们的“气质、风格和解决问题的方法能够相互补充”。 Saitou “处理事情时很有系统性、完成目标一心一意”,而Hayashi“工作时更有直觉、视角更广阔、处理问题方法相对更加宽松”,他说。“他们确实形成了一个非常强大的团队。”Hayashi加入了Saitou京都大学的团队,他很快就发现,那里不同于剑桥。在京都大学,Hayashi用在理论讨论上的时间比曾经少得多,而更多的时间都花在实验上。他说“在日本,我们只管‘做’,这有时是非常低效的,但有时又酝酿着巨大的成功”。Hayashi同样以外胚层细胞作为起点,但与Saitou不同的是,他试图培养一个能够产生原始生殖细胞的稳定细胞系。可惜这种方法没有奏效。Hayashi借鉴其他研究结果——一个关键调控分子(activin A)和生长因子(bFGF)可以将培养的早期胚胎干细胞转化成类似于外胚层细胞的细胞类型。这引发了Hayashi将这两个因素结合起来的想法,诱导胚胎干细胞分化为外胚层,然后采用Saitou之前的方法把这些细胞成为的PGCs。通过这种新的方法,他最终获得了成功。为了证明这些人造的原始生殖细胞是真实的拷贝,他们必须证明这些细胞可以进一步发育成精子和卵子。这一进程是非常复杂和难以理解的。所以研究小组将这一工作留给了自然——Hayashi将PGCs植入无法产生精子的小鼠的睾丸,观察这些细胞是否会发育。Saitou认为,这是可行的,但还是感到有些担忧。当实验进行到第3或4只小鼠时,他们发现小鼠的输精管里充满了精子。“这一切都发生得恰如其分,我知道他们会产生幼仔,”Hayashi说。研究小组将这些精子注入卵细胞中并植入雌性小鼠的胚胎,结果产生了大量的雌性和雄性后代。他们利用诱导多能干细胞(iPS)进行反复的实验,成熟的细胞被重新编程为胚胎状态。此外,精子被用于生产幼仔,证明它们具有基本功能——这是干细胞分化领域的罕见成就。Clark说:“这是整个多能性干细胞研究领域里在培养皿中生成全功能细胞类型少有的成功案例之一。”他们预计形成卵细胞更复杂,但是在去年,Hayashi在体外条件下制作有正常着色的原始生殖细胞并转入白化小鼠的卵巢,将产生的卵细胞体外受精后植入代孕。当透过幼崽半透明的眼睑看到黑色的眼睛时,他知道这一切又成功了。生殖细胞的回馈目前,许多研究人员已经能够复制验室培养原始生殖细胞的过程。人造原始生殖细胞特定用于表观遗传学研究:通过修饰DNA确定哪些基因表达。最常见的修饰就是为DNA碱基加上甲基,这些修饰在有些情况下,能够反映生物所经历的历史过程。与其它类型的细胞类似,表观遗传标记改变了原始生殖细胞在胚胎发育过程中的命运,但原始生殖细胞有个与众不同的特点,就是当它们发育成精子和卵子后,表观遗传标记被擦除。这就允许细胞创建能够形成任何类型细胞的受精卵。表观遗传微妙变化中出现错误将会导致不孕不育并出现器官故障,如如睾丸癌。Surani和Hanna的团队已经利用人造原始生殖细胞研究不同酶在表观遗传调控中的作用,也许有一天,能够解答表观遗传网络如何参与疾病调控。事实上,体外产生的原始生殖细胞可以为研究提供数百万个细胞,而不是供科学家研究了40个左右,这些细胞可以通过解剖早期胚胎获得。Hanna说:“这是一个大问题,因为我们这里有这些稀有的原始生殖细胞正在经历我们尚不了解的全基因组表观遗传变化。”“体外模型为科学家们提供了前所未有的方便,” Clark表示认同。临床意义但是Hayashi和Saitou没有办法向乞求帮助的不孕夫妻提供帮助。在这种方法被运用在临床之前,还有许多问题需要梳理。Saitou和Hayashi发现,虽然运用他们的技术所产生的后代通常似乎是健康和大量的,但这些后代产生的原始生殖细胞并生不完全“正常”。 第二代原始生殖细胞产生的卵细胞往往是脆弱、畸形的,并且从支持它们生长的组织上脱离。当受精时,卵细胞内部会分为三组染色体,而不是正常的两组,体外受精的成功率也只有正常原始生殖细胞的三分之一。哈佛医学院从事表观遗传学研究的Yi Zhang,使用Saitou的方法在研究中发现,体外受精过程中,人造的原始生殖细胞不能像自然状态下产生的原始生殖细胞一样,抹去它们的表观遗传标记。“我们必须要知道,这些都是PGCs的类似细胞,而不是真正的原始生殖细胞,”他说。此外,这项技术还存在两个大的挑战。首先是在不将PGCs放回睾丸或卵巢的前提下买入和使它们变成成熟的精子和卵子,Hayashi目前正在试图破解PGCs生成卵子或精子的生物信号,使人工培育条件下完成这一阶段成为可能。但最可怕的挑战是在人体重复上述所有的工作。该小组已经在利用Saitou找到的关键调控基因来调整人类的iPS细胞,但是Saitou 和Hayashi都知道,人类的信息调控网络不同于小鼠。此外,Saitou有无数的小鼠胚胎进行解剖,但无法在人类胚胎进行

  • 【原创】基因表达平台构建方案(欢迎各位相关人士提供建议)

    我是做生物实验室仪器销售的,正在做各个实验室构建的方案,附件里面是基因表达平台的构建方案。里面分了基因表达的各个步骤,每个步骤所用的不同方法,每种方法所需要的仪器,每种仪器国内及国外的品牌,当然品牌是我比较熟悉的一些。希望相关的认识能够提供一些建议,包括缺少的步骤,其他的方法,方法还需要的仪器,还有您觉得用的比较好的仪器的品牌,或者对附件中某些品牌评价,这些对我都有很大的帮助。欢迎批评指正。

  • 基因技术可实现链黑菌素类抗生素高效合成

    上海交大一项研究有望降低抗肿瘤良药成本2013年02月26日 来源: 中国科技网 作者: 王春 沈海燕 中国科技网 讯 (沈海燕 记者王春)上海交通大学微生物代谢国家重点实验室林双君研究小组通过对链黑菌素生物合成基因簇进行基因解析,阐明了链黑菌素复杂的生物合成途径。由此得到的链黑菌素类似物不仅抗癌活性高很多,其毒性上也比原始链黑菌素降低了约5倍。该研究成果近日发表在国际权威学术期刊《美国化学会会志》上。 链黑菌素是由一株绒毛链霉菌所产生的抗肿瘤抗生素,具广谱抗肿瘤活性。但在上世纪七八十年代进行二期临床实验时,因其毒性过强而被迫终止。 基因组测序技术为生物合成机制的研究提供了更多信息。林双君研究小组首先克隆了链黑菌素潜在的抗生素基因簇,定位出链黑菌素的生物合成的48个独立基因编码,再通过微生物遗传学、化学及生物化学技术和手段,获得了其中17个基因的突变菌株,从中分离鉴定了12个与链黑菌素生物合成相关化合物的化学结构,提出了链黑菌素生物合成途径的模型。 在这一过程中,还揭示了多个新颖或关键的酶催化反应的分子生物学机制。该项研究为抗生素药物新颖酶催化反应基因的挖掘,并利用合成生物学等前沿生物技术创造新的结构衍生物奠定了基础。林双君称,这是首次在基因水平实现链黑菌素的生物合成途径的解析。 课题组通过基因工程技术获得的一个链黑菌素类似物,在抗癌活性上比目前临床使用的抗癌药物高很多。这个类似物在临床应用方面,对治疗淋巴瘤、白血病、鼻咽癌等疾病将有更大的优势。林双君表示,只要将产量提高到可规模化生产,就可将链黑菌素或类似物转化为一个新型的抗癌药物,不仅有望降低药价,而且减少化疗时产生的毒副作用。 《科技日报》2013-2-26 一版

  • 基因组片断分析时间缩短到3分钟

    中国科技网讯 据物理学家组织网8月29日(北京时间)报道,美国能源部劳伦斯·利弗莫尔国家实验室(LLNL)研究人员最近开发出一种核酸(DNA和RNA)快速扩增技术,使聚合酶链式反应(PCR)的速度大大加快,可在3分钟内将基因组片段扩增10亿倍,迅速识别出病原菌。疾病快速诊断有望很快成为现实。相关论文发表在最近出版的《分析师》杂志上。 PCR技术能让研究人员把一段DNA或RNA复制上百万副本,然后用于基因组测序、基因分析、遗传病诊断、亲子鉴定、法庭鉴定、确定疾病感染等。该过程一般需要1小时到几天时间。然而,快速诊断、应急反应或传染病监控往往要求PCR技术缩短到几分钟。 领导这项研究的工程师雷金纳德·比尔和同事克服酶动力学和热动力学方面的限制,用多孔材料和绝热薄膜制造出一种设备,实现了极速热循环,能每秒钟加热或制冷45℃,一次热循环不超过2.5秒。比尔特别指出:“这种设备的独特之处还在于,它制冷的速度和加热一样快。” 开发出这种设备后,比尔和同事从10种商用酶中选出了2种,这2种酶的链式反应速度非常快,将一些参数略作调整,就能使反应更快。 他们用一种肠杆菌属的细菌测试了新的PCR设备迅速扩增DNA片段的能力,然后用一段严重急性呼吸道综合征(SARS)DNA片段演示了设备处理威胁公共健康病毒方面的效果。该设备完成对目标DNA30个周期(10亿倍)的PCR扩增,用时仅为2分18秒。 目前,研究小组正在开发一种实时探测设备。按照他们的设想,将来一台PCR仪器就能完成整个测试,从样本到结果只需10分钟。市场对这种设备的需求将是巨大的,除传统的公共卫生和医疗研究领域,一台简单实用的实时PCR设备在养殖、农业以及食品加工行业都非常有用,可用来保障食品安全。(记者 常丽君) 总编辑圈点 随着人类基因组逐渐被破译,一张生命之图将被绘就,我们对人类自身的了解也会迈上新的台阶,很多疾病的病因将被揭开,药物就会设计得更好,治疗方案也能“对因下药”,生活起居、饮食习惯有可能根据基因情况进行调整,人类的整体健康状况将会提高。然而,病来如山倒,为了尽快找到病因,疾病的快速诊断就显得异常重要。而文中提到的技术,可在三分钟内识别病原菌,无疑为很多急症患者的生存争取了宝贵的时间。 《科技日报》(2012-8-30 一版)

  • 什么是基因治疗

    在认识和熟练使用遗传生物学单位基因的新近进展后,它已经为科学家去改变病人的遗传物质,以达到治病防病的目的迈向新的一步。基因治疗的一个主要目标是用一种缺陷基因的健康复制去提供给细胞。这一方法是革命性的:医生试图通过改变病人细胞的遗传物质,来代替给病人治疗或控制遗传疾病的药物,最终达到医治病人疾病的根本目的。   几百个主要健康问题受到基因功能的影响。在将来,基因治疗能被用于医治许多这类疾病。理论上讲为了防止遗传缺陷传给下一代,还能用于改变胚胎细胞(蛋或种子)。然而,胚胎家系基因治疗的可能性受到困难的伦理道德、社会问题和技术障碍牵制。  基因治疗还作为药物输送系统使用,为了做到这点,产生有用物质的基因将被嵌进病人细胞的DNA中。例如,在血管外科中,产生抗凝血因子的基因能被嵌入血管细胞家系的DNA中,有助于防止血栓的形成。许多其它疾病可使用这一般方法治疗来提高本身的可靠性。  当医疗治疗提高到分子水平时,药物输送使用基因治疗能节约时间减低成本。为收集大量的基因蛋白产品、提纯产品、合成药物和对病人的管理缩短了时间减少了复杂的工艺加工。  然而,基因治疗仍是处于极端新的和高度的实验阶段。被批准的试验数量是小的,今天只有少量的病人曾得到过治疗。  目前基因治疗实验的基本步骤  在目前的某些实验中,从病人的血液或骨髓中取出细胞,并在加速繁殖的实验条件下生长。然后,把需要的基因借助于不起作用的病毒嵌进细胞。选择出获得成功改变的细胞再加速繁殖,再回到病人的体内。另一种情况,脂质体(脂肪颗粒)或不起作用的病毒可被用于把基因直接输进病人体内细胞。  基因治疗的基本要求  基因治疗的潜力  基因治疗为治愈人类疾病提供了新的范例。不是通过制剂与基因产品或自身基因产品相互作用来改变疾病的表现型,而是基因治疗理论上能修正特殊基因,导致沿着简单化的管理治愈疾病。开始基因治疗是针对治疗遗传性疾病,但目前对广泛性的疾病进行研究,包括癌症、外周血管疾病、关节炎、神经变性疾病和其它后天疾病。  基因确认和克隆  即使基因治疗战略性的范围是相当多样化,成功的基因治疗也需要一定的关键的基本要素。其中最重要的要素是必须确认和克隆有关的基因。直到人类基因组计划完成,基因的有效度才被利用。但仍然等到涉及疾病的相关基因被确认和克隆出来才开始实施基因治疗战略。  转基因和基因表达  一旦确认和克隆出基因,下一步必须表达出来。有关转基因和基因表达的效率属于基因治疗研究的前沿问题。最近基因治疗领域的许多争论围绕把所希望的基因转入合适的细胞中,然后为疾病治疗获得满意的表达水平。希望将来对转基因和特殊组织基因表达的研究将在主要基因治疗试验中解决这一课题。基因治疗战略的其它认识包括:充分掌握靶点疾病的发病机理,潜在的基因治疗副作用,理解接受基因治疗的靶细胞。  术语:  与大多数领域一样,基因治疗有专门的术语,下列提供的将阐明某些最普通术语的意思。  体外转基因:  把遗传物质转至寄主外部的细胞。经遗传物质移植后的细胞再回到寄主中。这个术语还被称为转基因的非直接方法。  体内转基因 :  遗传物质转入寄主体内的细胞。这还被称为转基因的直接方法。  基因治疗:  把选择过的基因转入具有改善或治愈疾病希望的寄主中。  细胞治疗(基因组治疗):  把未经遗传性修正的完整的细胞转入寄主中,使被转移的细胞将产生促进与寄主结合并改善寄主功能的希望。  体细胞转化:  把基因转入非种系组织中,它具有校正病人疾病状态的希望。  种系基因:  把基因转入种系组织中(蛋或胚胎),它有希望改变下一代的基因组。  转基因:  在转基因实验中,选择试验基因。例如,如果你给患苯并酮尿症病人治病,你可计划把一校正过的苯丙氨酸羟基酶基因译本移入肝细胞中。在这个例子中,苯丙氨酸羟基酶的校正译本就是转基因。  报告基因:  常用于试验基因转换效率的基因。例子是luceriferase, --半乳糖和氯氨素乙烯转化酶。  基因转化载体:  基因被转移进细胞的机理。  转化率:  正在表达所期望的转基因百分率。

  • 【转帖】第三张“基因变异图谱”与第二代基因组测序技术

    第三张“基因变异图谱”与第二代基因组测序技术——评“千人基因组计划”首期研究成果的医学意义世界上任意两个人的基因99%都是相同的,而恰是那1%不同,负责着个体间的表型差异。《自然》杂志近期披露,当人体内携带有250到300基因变异位点的时候,相关基因就就会“沉默”。甚至,一个人只携带了 50到100基因变异位点,就可能患上某种疾病。10年前,“人类基因组计划”这一耗资30亿美元、历时10余年的伟大科学工程完成之际,人们以为得到了揭开自身生命奥秘的天书,生命科学也划时代地进入了“后基因组时代”。如今看来,当时得到的仅仅是人类基因组的“参考图谱”,对于人群里个体间的基因差异,或是更具医学意义的“基因变异图谱”来说,人们知之甚少。第三张“基因变异图谱”为了探寻个体间的基因差异,科学界在2002年启动了HapMap(人类基因组单体型图谱)计划。Hapmap在2005年完成的“第一张基因变异图谱”含有一百万个“单核苷酸多态性”(SNPs)位点;HapMap在2008年完成的“第二张基因变异图谱”含有三百一十万个SNPs位点。而此次“千人基因组”所公布的一期结果——“第三张基因变异图谱”,已经包含了一千五百万个SNPs位点。今年10月28日,《自然》杂志为此刊出的文章题目为“基于群体规模的基因变异图谱”,鲜明的指出,“千人基因组计划”首期研究成果,其最大优势在于:“第三张基因变异图谱”所采用的样本,针对了“大规模人群”。 远超过此前两张“基因变异图谱”所测定的样本数。绘制“第三张基因变异图谱”的所有数据,是基于两个核心家庭,6个个体的精确基因组测序,179个个体的低覆盖率基因组测序,以及七百多人的蛋白编码区的基因测序。检测人群数目庞大,人种涉及中国人、日本人、西欧人等。因此,第三张“人类基因变异图谱”的问世,可以从更深的层次上了解,种族之间、个体之间的基因差异。更具医学意义的是,对于人群中发生频率在1%以上的基因变异,本次研究的覆盖率达到95%以上。这就意味着:此前Hapmap计划所绘制的两张“基因变异图谱”中,没能涉及的“罕见病”致病基因,可能在“第三张基因变异图谱”中已经被标出。“基因变异图谱”的医学应用随着,“人类基因变异图谱”绘制的日臻完善,和商业化全基因组SNP 分型芯片成本的不断降低,以及新的统计方法和软件的出现, “全基因组关联分析”( Genome-Wide Associat ion Study , GWAS) 越来越多的应用于复杂疾病“易感基因”的确定。今年6月6日,安徽医科大学的张学军教授领衔的团队,通过对中国汉族和维吾尔族人群近2万份样本进行分析,在人类基因组的3个区域内发现与白癜风发病密切相关的4个易感基因。今年8月2日,中***事医学院贺福初院士领衔的蛋白质组学国家重点实验室,通过对大陆5个肝癌高发区的4500多名肝癌病例和对照的研究,发现了肝癌易感基因新区域(1p36.22)今年8月23日,新乡医学院的王立东教授联合国内18家医院,建立了数十万份的食管癌标本资料库,并首次在人类第10号和20号染色体上,发现两个食管癌易感基因(PLCE1和C20orf54)。基因变异有着很强的人种差异,相比国外此领域的研究成果,以上研究成果的临床意义,在于其是针对我国的特有人群。也就是说,以上研究成果在我国的临床上更具医学价值。更为可喜的是,以上研究成果均发表在此领域最为权威的《自然 遗传学》杂志上。我国在利用GWAS需找复杂疾病易感基因领域的研究,已经得到了世界的公认。

  • 【分享】美发现高血压相关基因变异

    [center]美发现高血压相关基因变异[/center] 美国马里兰大学的一个科研小组29日报告说,他们发现了一个与高血压有关的常见基因变异,这将帮助医学研究人员按照个人基因差异为高血压患者提供“个性化治疗”。 研究小组在新一期美国《国家科学院学报》网络版上发表论文指出,这个基因名为STK39,位于2号染色体上。该基因能够编码产生一种特定蛋白质,参与调控肾脏排泄盐的过程。STK39基因如果出现变异,人体排泄盐的能力就会下降,患高血压的几率随之增加。 新研究采用了先进的“全基因组关联方法”,分析了542名研究对象的DNA(脱氧核糖核酸),最终成功发现STK39基因变异的影响。这一结果已经得到了几项独立研究的证实。 研究人员认为,这一成果将改善医学界对高血压的“个性化治疗”,另外也能根据基因更加有效地对高血压患者进行护理。他们还希望将来能在这个基因的基础上,进一步找到治疗高血压的新疗法。信息来源:中国医药123网

  • ENCODE相关30篇论文摘要 聚焦人基因组功能研究

    DNA元件百科全书(Encyclopedia of DNA Elements, ENCODE)项目旨在描述人类基因组中所编码的全部功能性序列元件。它于2003年9月正式启动。来自英国、美国、西班牙、新加坡和日本的32个实验室中442名科学家参与这个项目。9年后的今天,他们在Nature(6篇)、Genome Research(18篇)和Genome Biology(6篇)期刊上发表了30篇论文。(特别专题:ENCODE-人类基因组详图问世)1. 转录因子的足迹分析对41种不同的细胞和组织类型进行基因组DNase I足迹分析(genomic DNase I footprinting),研究人员在DNA调节区内鉴定出4500万个转录因子结合事件,从而代表着这些转录因子与840万个不同的短DNA序列元件存在差异性地结合。他们还发现影响等位基因染色质状态的基因变异体集中分布在这些足迹之中,并且这些序列元件优先得到DNA甲基化的保护。他们鉴定出一个固定不变的50个碱基对长的足迹,并且这种足迹精确地确定着上千个人启动子内的转录起始位点。最后,他们描述了一个新的调节因子识别基序集合,其中这些基序在序列和功能上是高度保守的。参见原文(10.1038/nature11212)2. 人基因组DNA元件集成百科全书ENCODE项目系统性地描绘出人基因组上的转录区域、转录因子结合、染色质结构和组蛋白修饰。根据这些数据,研究人员将生化功能分配到80%的人基因组,特别是在已得到很好研究的蛋白编码序列之外的区域。参见原文(10.1038/nature11247)

  • 【转帖】节食行为会导致压力相关基因表达的长期变化

    节食行为会导致压力相关基因表达的长期变化 忽胖忽瘦的老鼠:科学家可能找到了节食减肥失败的关键因素——至少是在啮齿动物身上。好好放松可能才是你减掉感恩节增加的体重的关键。一项新的研究表明,节食会使得大脑对压力和高脂肪、高卡路里的食物奖励更加敏感。大脑的这种变化一直会持续到节食结束,并刺激健康人在压力下暴饮暴食。大多数从事减肥研究的科学家都把注意力放在如何调整人的饮食规律上——比如帮助他们吃得更少,饱得更快,食欲减退等。但问题是,当我们的体重下降后,如何保持身材却变成了一个难题。就算是通过手术减肥,也无法百分之百保证人们能始终维持苗条的身材。美国宾夕法尼亚大学的神经科学家Tracy Bale认为,这种现象可能跟压力有关。压力会使得人体释放一种叫做皮质醇的激素,这种激素会以糖的形式向血液中提供能量,以保护人免受潜在威胁的侵害。如果人长期处于压力状态,体内的皮质醇水平就会一直处在一个比较高的状态,这就会使得人的胃口大开,体重增加。Bale和她的同事认为,节食使得人们更容易感知日常生活中的压力。在这种慢性压力的影响下,就算是意志最坚定的节食者,也会抵抗不住冰淇淋和比萨饼的诱惑。尽管偶尔吃一个香甜的圣代冰淇淋不会引起体重的增加,但如果长此以往,人们之前的减肥成效就会功亏一篑。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制