当前位置: 仪器信息网 > 行业主题 > >

硼十氢十二双乙基硫醚

仪器信息网硼十氢十二双乙基硫醚专题为您提供2024年最新硼十氢十二双乙基硫醚价格报价、厂家品牌的相关信息, 包括硼十氢十二双乙基硫醚参数、型号等,不管是国产,还是进口品牌的硼十氢十二双乙基硫醚您都可以在这里找到。 除此之外,仪器信息网还免费为您整合硼十氢十二双乙基硫醚相关的耗材配件、试剂标物,还有硼十氢十二双乙基硫醚相关的最新资讯、资料,以及硼十氢十二双乙基硫醚相关的解决方案。

硼十氢十二双乙基硫醚相关的资讯

  • 十二五减排初定“双八双十”目标
    据悉,《国家环境保护 “十二五”规划(初稿)》已经完成,“十二五”减排最受关注的化学需氧量 (COD)、二氧化硫、氨氮和氮氧化物四项约束性指标的总量控制目标初定为降低8%、8%、10%和10%。   知情人士透露,该“双八双十”目标虽然拟定,但环保部内仍有争议,下一步将上报国务院,规划有望在两会期间发布。   从“双十”到“双八双十”   相比环保“十一五”规划,“十二五”减排不仅在化学需氧量和二氧化硫两项约束性指标的基础上增加了氨氮和氮氧化物,还对两项新指标同样提出绝对量减排。   上述知情人士透露,完成初稿的《国家环境保护“十二五”规划》拟定化学需氧量、二氧化硫、氨氮和氮氧化物四项约束性指标的总量控制目标分别相比2010年降低8%、8%、10%和10%。   此前,“十一五”规划化学需氧量和二氧化硫排放量的总量控制目标为相比2005年分别下降10%,即全国化学需氧量由 2005年的 1414.2万吨减少到1272.8万吨,二氧化硫排放量由2549.4万吨减少到2294.4万吨。   “由于‘十一五’的总量控制,废水的COD和废气中的二氧化硫排放量下降较快,但生活废水中的氨氮和废气中的氮氧化物却上升很快,所以新的五年规划在继续降低COD和二氧化硫排放量的基础上将氨氮和氮氧化物也加入约束性指标进行总量控制。”上述知情人士表示,“由于COD和二氧化硫 ‘十一五’控制得比较好,所以在‘十二五’期间有所调低”。   根据环保部最新公布的数据,二氧化硫在2009年以下降13.14%提前完成“十一五”规划目标,COD减排目标今年完成也几无悬念。   在新增的两项约束性指标中,氨氮主要来源于生活污水和化工、冶金、化肥等工业废水中,氮氧化物则主要由汽车尾气和工业窑炉的燃料燃烧产生。   其中,氮氧化物是造成机动车污染和形成酸雨的重要原因。根据今年中国首次公布的《中国机动车污染防治年报》,机动车尾气排放成为大中城市空气污染的主要来源,去年全国机动车氮氧化物排放高达583.3万吨,全国113个环保重点城市中三分之一的城市空气质量不达标,部分地区甚至出现了每年200多天的灰霾天气,这些问题的产生与机动车排放的氮氧化物直接相关。   据记者了解,初稿将由编写组根据日前环保部相关会议的讨论意见进行修改完善,在与中央有关部门进行衔接后,再提请环保部常务会议审议公布。   “下一步规划将上报国务院,有望在两会期间发布。”上述知情人士表示。   “两上两下”突出结构减排   “由于目标的制定取决于下一步经济增长的控制,所以对于‘双八双十’的目标,环保部门内部还有争议。”上述知情人士称。   而这也是今年以来一些地方拉闸限电的原因,即由GDP目标变动导致节能减排任务难以完成。   国际气候组织总裁吴昌华日前接受记者采访时表示,由于地方政府的减排任务是年初按照GDP的增长预期进行的减排量分配,所以到年中或年末时由于经济增长过快,计算基数变化了,所以减排量需要重新换算并加大力度,因此为了达到既定减排目标导致了拉闸限电现象的产生。   对此,记者了解到,“十二五”规划将改变减排方式,由“十一五”以建污水处理厂和脱硫设施为主的工程减排转变为继续推进工程和管理减排的同时,以结构减排为主推进发展方式的转变。   此前,环保部部长周生贤撰文称,“十二五”环保发展的主要目标为主要污染物排放总量显著减少,生态环境质量明显改善,积极探索代价小、效益好、排放低、可持续的中国环境保护新路子。   “‘十二五’污染减排很大程度上取决于产业结构调整和落后产能淘汰力度。”环境保护部总量司司长赵华林日前在接受记者采访时表示,他表示,“十二五”期间将把结构减排放在首位,强化工程减排和管理减排,坚持全防全控、重点攻坚、高效治理。“进一步提高造纸、纺织、皮革、化工等行业的主要污染物排放标准,全面启动县县建设污水处理厂工程,开展农业源污染减排工程建设 继续加强燃煤电厂脱硫,切实加强电厂脱硝,严格控制机动车尾气排放。”   其中,在减排任务分解上将采取“两上两下”的方式。即环保部制定一份“十二五”减排的指南给各个省区,然后省区根据这个指南上报该省“十二五”减排计划的初稿,此为“一上” 随后环保部组织专家进行审查,再发给省区称为“一下” 地方根据该稿再进行修改,此为“二上” 最后经过中央同意,最终确定下发“十二五”的减排计划,称为“二下”。   “由于减排的污染物控制种类增加,农业源、机动车减排等新领域的拓展,‘十二五’减排将强化减排设施的升级改造,完善污水处理收费、脱硝电价、排污权交易等环境经济政策。”赵华林表示,“十二五”将把农业源,主要是畜禽养殖、COD和氨氮,还有机动车的污染控制纳入总量控制约束性指标的控制范围。
  • 加拿大发布十溴联苯醚和六溴环十二烷限制提案
    据CHEMICAL WATCH网站消息,近日,加拿大环境部公布了一份对多溴联苯醚(PBDEs)的限制提案。该提案认为十溴联苯醚可在有机体内大量累积,并可能转化成生物蓄积毒性或潜在生物蓄积毒性物质,对有机体高度有害。但溴化阻燃剂行业协会(BSEF)对此结论并不认同,特别是在十溴联苯醚的脱溴相关问题上,两者分歧十分严重。   加拿大政府于今年3月公布的多溴联苯醚风险管理修正策略在经过60天的公众评议后,现在做出最终决策论断:   按照加拿大环境保护法(CEPA)要求,需立即正式禁止制造、使用、销售和进口产品中的四溴、五溴、六溴二苯醚及所有多溴联苯醚。使用、销售和进口领域的禁令扩大到七溴、八溴、九溴和十溴联苯醚同类及所有树脂类或含有这些物质的聚合物。   禁止使用、销售和进口含四溴到十溴联苯醚超过0.1%的所有新产品。   加强联邦环境质量手册对多溴联苯醚的检测。   对包括含有多溴联苯醚及相关成分的堆填区、焚化炉和回收设施制定风险管理战略措施。   检测加拿大民众对于多溴联苯醚的暴露情况和空气中的多溴联苯醚浓度。   此外,加拿大环境部还针对六溴环十二烷(HBCD)发布了一份评估筛选报告草案和一份风险管理范围文件,两份文件的公众评议日期皆为60天,截至日期为10月27日。   BSEF协会还补充说,加拿大现在发布的六溴环十二烷筛选评估和风险控制范围报告即表示支持聚苯乙烯保温泡沫在联合国和欧盟整体过渡阶段授权使用六溴环十二烷。
  • 国科大杭州高等研究院陈效双团队:基于六方氮化硼封装技术的钽镍硒非制冷红外光电探测器
    近日,国科大杭州高等研究院物理与光电工程学院陈效双研究员团队提出了一种通过六方氮化硼封装技术,实现从520 nm到4.6 μm工作波长的钽镍硒(Ta2NiSe5)非制冷红外光电探测器(PD)。该探测器在室温空气环境条件下具有较低的等效噪声功率(4.5 × 10−13W Hz−1/2)和较高的归一化探测率(3.5× 1010cm Hz1/2W−1),而且通过表征时间、偏置、功率和温度依赖等多方面因素,研究其不同波长辐射产生光电流的多重机制。此外,还展示了器件的偏振灵敏度和在不同的可见光、近红外、中波红外波长范围内的多功能成像应用。这些结果揭示了多功能的探测模式,为设计新型的纳米光电器件提供了一种新的思路。该成果以“H-BN-Encapsulated Uncooled Infrared Photodetectors Based on Tantalum Nickel Selenide”为题发表在期刊Advanced Functional Materials上(IF=19)。本工作也得到了国家自然科学基金委、上海市科委、中国科学院和浙江省自然科学基金委等项目的资助。本文利用干法转移堆叠,采用平面h-BN封装的金属-Ta2NiSe5-金属(源极和漏极)结构设计了Ta2NiSe5基PDs,如图1a所示。图1b的左侧面板显示了横截面透射电子显微镜图像,并证明原子堆中没有污染或无定形氧化物。图1d显示了在黑暗条件下和不同功率强度的激光照射(1550nm)下的I-V特性的比较,显示了近线性行为,表明Ta2NiSe5薄片和Cr/Au电极之间具有良好的欧姆接触。如图1e所示,对于窄带隙半导体Ta2NiSe5,光激发载流子的短瞬态寿命减少了电荷分离时间。Ta2NiSe5的高迁移率可以实现电场驱动的光生载流子的快速传输,降低复合的概率。520 nm至2 µm范围内的光响应机制被认为是光电导效应(PDE)。由于PDE,带间跃迁产生的电子-空穴对被施加的电场分离,并被图1h左侧面板中的电极收集。在可见光和近红外光谱中吸收光子,只要它们具有超过带隙的能量,就会触发电子-空穴(e-h)对的产生,从而调节材料的电导率。随后,这些产生的e-h对在外部电场的诱导下分离,产生光电流。基于Ta2NiSe5的PD在1550 nm处0 V和±1 V的扫描光电流映射(图1h)很好地验证了上述光电流起源的推测。图1. Ta2NiSe5基PD在大气环境中不同激光波长和功率下的光电特性。(a)基于Ta2NiSe5的PD的示意图。(b)Ta2NiSe5基PD的横截面TEM图像和相应的元素映射。(c)剥离的Ta2NiSe5纳米片的SEM图像和EDS元素图谱。(d)在1550 nm激光照射下,不同功率下的Iph-Vds曲线。(e)基于Ta2NiSe5的PD的单个响应过程,Vds为1V。(f)从具有绝对值的I-t曲线中提取的Vds和Plight相关光电流。(g)在1V偏压下基于Ta2NiSe5的PD下的光电流的线性功率和亚线性功率依赖性。(h)1550 nm激光照射下典型Ta2NiSe5基PD的扫描光电流图,以及−1、0和1 V偏压照射下从Ta2NiSe5到电极的光生载流子传输过程的说明。泡利阻塞抑制了在4.6 μm(0.27 eV)处产生电子-空穴对的直接光学跃迁。热效应机制被认为是控制MWIR区域光探测过程的潜在物理机制,如光热电效应和辐射热效应。对于辐射热效应的贡献,不需要外部偏置来产生光电流,如图2a所示,而不是依赖于自供电的工作模式。辐射热效应是指沟道材料由于吸收均匀的红外辐射而引起温度升高,从而导致电导率或光吸收等电学或光学性质变化。值得注意的是,辐射热效应需要外加电场。为了确定控制MWIR探测过程的主要机制,光响应被记录为功率和Vds的关系。光电流呈现负极性、零极性和正极性三个特征区域,分别对应图2a中的区域I、II和III。通过测量Ta2NiSe5基PDs电阻的温度依赖性(4-400 K),器件电阻的温度依赖性表现出典型的半导体热激发输运性质,表明热效应可以有效地增强器件电导(图2b)。电阻的温度系数(TCR)是辐射热效应的一个关键指标,在Vds=1 V时,Ta2NiSe5基PDs的TCR为-1.9% K-1。与快速的可见光-近红外光响应相反,在关闭光后漏极电流缓慢恢复,响应时间≈24 ms(图2c)。辐射热效应可以解释明显的光响应与缓慢的下降和上升时间,而不是光电导效应。该值是典型的辐射热特性(1-100 ms),因为吸收MWIR光子后热电子的能量转移到晶格,进一步改变沟道电导。此外,在传热和耗散过程中,h-BN利用极高的导热系数有效地消散探测器产生的热量。光电流的产生分为两种状态。首先,沟道材料在吸收MWIR光子后改变自身电导率,其次,通过驱动外电场产生光电流(图2d)。与PTE中取决于塞贝克系数的光电流符号不同,辐射热光电流的符号取决于外部电场。为了直观地揭示Ta2NiSe5基PDs的光响应机制,本文利用扫描光电流成像技术对光电流分布进行成像(图2e)。在0 V偏置照射下,几乎没有观察到光电流,而在±1 V的外偏置照射下,整个沟道的光电流相当均匀。诱导的电导变化可能是入射光下温度升高期间产生电流的载流子数量变化的结果。Ta2NiSe5基PDs具有独特的性能,它们可以在室温下工作而不会性能下降,这使得它们有希望用于辐射热探测应用。此外,该器件无需p-n结即可工作,简化了制造过程。图2. 基于Ta2NiSe5的PD在4.6 µm光照下的光响应。(a)从I-t曲线中提取的Vds和Plight相关光电流。(b)Ta2NiSe5纳米片电阻的温度依赖性。(c)Vds为1V的基于Ta2NiSe5的PD的单个响应过程。(d)基于Ta2NiSe5的器件在4.6 µm激光照射下的晶格加热的典型示意图。(e)4.6 µm激光照射下典型Ta2NiSe5基PD的扫描光电流图,以及−1、0和1 V偏压照射下测辐射热机制器件的能带对准。接下来,520nm-4.6 µm波长范围内的光的光谱响应度如图3a(左纵轴)所示,在4.6 µm处峰值为0.86 A W−1。在图3a(右纵轴)中,在不同激发波长上进行的EQE测量表明,随着波长的增加,EQE逐渐下降。由入射光子和晶格振动之间的相互作用产生的有限的能量转换效率,以及两端电极的有限收集,通过阻碍入射光子到光生载流子的有效转换,降低了材料的量子效率。重要的是,从可见光到MWIR光谱范围(520 nm-4.6 µm)实现了0.23至82.22的EQE值。与许多传统报道的基于低维材料的PD相比,基于Ta2NiSe5的PD的EQE显著更高,如图3b所示。从1 Hz到10 kHz测量的电流噪声功率谱如图3c所示,然后将NEP计算为NEP=in/RI(图3d),其中在520 nm处获得的最小NEP≈0.45 pW Hz−1/2,在4.6 µm处获得的最低NEP≈18 pW Hz−1/2。基于Ta2NiSe5的PD的较低NEP证明了它们区分信号和噪声的优异能力。图3e显示了与传统大块材料和基于2D材料的PD相比,基于Ta2NiSe5的PD在不同偏压下的波长依赖性特异性检测。对于光电导和测辐射热计响应,D*显示出3.5×1010至8.75×108cm Hz1/2W−1的轻微波动。我们的PD的D*与最先进的商业PD相当,并且高于基于可见光到中红外区域的2D材料的PD。图3. 基于Ta2NiSe5的PD的可见光至MWIR区域的宽带光响应。(a)Vds=1时RI(蓝色实心正方形)和EQE(红色实心圆)的波长依赖性。(b)基于Ta2NiSe5的PD与2D和块体材料PD的EQE的比较。(c)从1 Hz到10 kHz测量的电流噪声功率谱。(d)基于Ta2NiSe5的PD与以前的PD的NEP性能比较,插图显示了NEP的波长依赖性。(e)不同波长下的比探测率(D*)与基于2D材料的最先进的其他PD以及商用红外PD的比较。为了确定基于Ta2NiSe5的PD的偏振依赖性,我们进行了如图4a所示的实验。垂直入射光使用格兰泰勒棱镜进行偏振,通过旋转半波片同时保持恒定的激光功率来改变样品的激光偏振方向和b轴之间的关系。对最具代表性的638 nm激光偏振特性进行研究,图4b,c显示,随着极化角的变化,光电流表现出显著的周期性变化,最大值和最小值分别沿Ta2NiSe5纳米片的b轴和a轴方向获得。值得注意的是,图4c中的偏振依赖性光响应图显示了由于Ta2NiSe5晶体的[TaSe6]2链的潜在1D排列而导致的两片叶子的形状。最终结果显示,各向异性比(Iph-max/Iph-min)达到约1.47,表明基于Ta2NiSe5的PD的整体性能优于大多数其他报道的PD,如图4f所示,并为设计未来的多功能、空气稳定的光电子器件提供了广阔的前景。图4. 基于Ta2NiSe5的PD的偏振敏感光电检测。(a)利用Ta2NiSe5材料的基于纳米片的偏振敏感光电探测器的示意图。(b)在638 nm激光源下记录的光偏振方向为0°至360°的时间分辨光响应。(c)在638 nm偏振激光下,Vds为−1至0V的光电流中各向异性响应的各向异性响应图。(d)通过在638 nm激光下扫描Ta2NiSe5基PD获得的光电流图,偏振角从0°到180°不等。(e)创建极坐标图以显示在638 nm线性偏振激光照射下在40、36和17 nm厚度下产生的角度分辨光电流。(f)与其他常用的2D和1D材料相比,光电流各向异性比和光响应范围。为了充分探索基于Ta2NiSe5单元的PD在多应用成像中的潜力,如图5a所示构建了一个成像系统。采用逐点或逐像素覆盖整个物体区域,用聚焦的可检测光束照射物体,PD检测到的光电流信号由锁定放大器、前置放大器和计算机收集,计算机记录位置坐标生成高质量图像。为了测试基于Ta2NiSe5的PD的成像能力,将具有“HIAS”图案(15 cm×5 cm)的中空金属板放置在520 nm激光器前面,并以优于0.5 mm的高分辨率成功捕获了所产生的成像,如图5b所示。通过控制外部偏置,可以改变PD在638 nm照明下的响应,并成功实现物体成像清晰度,如图5c所示。在NIR范围内,在基于Ta2NiSe5的PD中获得了覆盖载玻片的钥匙锯齿状边缘的高对比度图像(图5d)。此外,基于Ta2NiSe5的设备在近红外和MWIR区域都表现出高度稳定的响应,确保了高对比度成像以智能识别宏观物体。为了证明这一特性,在1550 nm和3.2 μm处实现了复合物体(硅片和长尾夹)的双通道成像。如图5e所示,近红外光只能检测到一半的长尾夹,而MWIR辐射可以显示整个长尾夹。结果证明了基于Ta2NiSe5的PD在军事和民用应用中检测隐藏物体的潜力。图5. Ta2NiSe5基PD的光电成像应用。(a)使用PD作为成像像素的成像系统的示意图。(b)520 nm处的“HIAS”物体(上图)和相应的高分辨率成像图(下图)。(c)在638 nm处,Vds为0.05、0.1、0.5和1 V的“H”对象。(d)1550 nm覆盖载玻片的钥匙成像。(e)在1550 nm和3.2 µm处被硅片部分隐藏的长尾夹的成像。本文揭示了h-BN封装的Ta2NiSe5基PD在环境条件下在520 nm至4.6 µm的宽光谱范围内工作的特殊光电特性,受光电导和测辐射热效应的控制。光电探测器同时表现出宽带和快速的光电探测能力,具有显著的响应性,超过了现有商业室温探测器的性能。基于Ta2NiSe5的PD的室温响应度达到了34.44 AW−1(520 nm)、32.14 AW−1(638 nm)、29.81 AW−1(830 nm)、20.92 AW−1(1550 nm),16.58 AW−1(2 µm)和0.86 AW−1(4.6 µm)。基于Ta2NiSe5的PD的独特光学特性使其适合于各种应用,包括传感、成像和通信,并且它们与其它2D材料的集成可以进一步增强它们的性能和功能。因此,这项工作的研究为利用2D材料设计稳定的光电探测器铺平了道路,为推进下一代红外光电子研究的发展做出了贡献。论文链接:https://onlinelibrary.wiley.com/doi/10.1002/adfm.202305380
  • 《"十二五"节能减排综合性工作方案》解读 减排量远超“双八双十”
    9月27日,国务院召开全国节能减排工作电视电话会议,此前,国务院印发了《“十二五”节能减排综合性工作方案》,对“十二五”节能减排工作作了全面部署。   10月25日,受国务院委托,环境保护部部长周生贤向全国人大常委会报告环境保护工作情况时指出,要实现主要污染物较“十一五”末减排 8%~10%的目标,既要消化污染增量,又要削减污染存量。经测算,化学需氧量、二氧化硫、氨氮、氮氧化物排放量分别削减601万吨、654万吨、69万吨、794万吨,占2010年排放基数的24%、29%、26%、35%。   “十一五”实际削减比例远远大于12.45%、14.29%   “十一五”期间,我国各种经济参数远远超过预期值,“两高一资”产品产能大幅度扩张,产量大幅度增加,带来的新增污染物排放量始料未及。   具体来说,GDP增幅和能源消费总量远超预期,城镇化、工业化快速推进,为应对金融危机增加了4万亿元的投资。所有这些,都给污染减排工作带来了巨大的压力。   “十一五”时期,GDP预期增长7.5%,实际年均增长11.2%,不仅远高于同期世界经济年均增速,而且比“十五”时期年平均增速快1.4个百分点,是改革开放以来最快的时期之一。   《能源发展“十一五”规划》提出,到2010年,我国一次能源消费总量控制目标为27亿吨标准煤左右,年均增长4%。实际上,“十一五”期间,能源消耗总量增长达到了32.5亿吨标准煤,超出控制目标5.5亿吨。其中,煤炭消费量由23.4亿吨增加到33.9亿吨,净增了10亿多吨。   我国二氧化硫排放量的90%、氮氧化物排放量的67%、烟尘排放量的70%、人为源大气汞排放量的40%,以及二氧化碳排放量的70%都来自于燃煤。能源消费总量的快速增长,给节能减排带来了巨大压力。   “十一五”期间,我国城镇化率从43%提高到47.5%,城镇化的边际资源环境压力处于上升时期。根据中国环境规划院的测算结果,近15年来,在能耗方面,我国城镇化率每增加1个百分点平均需多消耗能源4940万吨标准煤,其中包括煤炭、石油、天然气等 在工业制成品方面,我国城镇化率每增加1 个百分点,平均需多消耗钢材645万吨,水泥2190万吨。   为应对国际金融危机,国家实施了两年新增4万亿元的投资计划。国务院发展研究中心与世界自然基金会联合发布的《中国经济刺激计划对气候和能源的影响》报告称,由于4万亿元的81%都投向了新建住宅和基础建设设施,带动了大量的钢铁、有色金属和水泥等高耗能产业的增长,从短期来看,对节能减排以负面影响为主。   《报告》显示,在基础设施投资中,6000亿元的铁路投资带动了2830万吨钢铁和1.2亿吨的水泥消费,折算成能耗量为3060万吨标准煤 6000亿元的公路投资带动了1500万吨钢铁、1.34亿吨水泥和2835万吨沥青的消费,折算成能耗量为2925.7万吨标准煤 3000亿元的地铁和机场投资带动了555万吨钢铁、1120万吨水泥和3220万方混凝土的消费,折算成能耗量为810万吨标准煤。   考虑到消化新增量的基础上再削减10%,“十一五”初期,环境保护部把10%的减排目标量化为削减二氧化硫673万吨、化学需氧量571万吨,分解落实到各省级政府和6家电力集团公司。   因此,考虑到要消化新增加的污染物排放量,“十一五”削减比例远远大于12.45%、14.29%。中国环境规划院副院长吴舜泽告诉记者,削减比例在30%~40%。   以类似的参数和方法来测算,考虑到新增排放量,以2010年为基数,化学需氧量、氨氮、氮氧化物的绝对削减比例分别为24%、26%和35%。   8%背后的削减量大于10%   “十二五”时期,我国发展仍处于可以大有作为的重要战略机遇期。随着工业化、城镇化进程加快和消费结构持续升级,我国能源需求呈刚性增长,受国内资源保障能力和环境容量制约以及全球性能源安全和应对气候变化影响,资源环境约束日趋强化,节能减排形势仍然十分严峻,任务十分艰巨。年初发布的中国环境宏观战略研究成果把我国环境状况总结为“局部有所改善、总体尚未遏制、形势依然严峻、压力继续加大”。   “十二五”规划纲要提出,化学需氧量、二氧化硫排放分别减少8%。简单对比“十一五”规划,我们发现,似乎两项指标的减排比例降低了。   然而,环境保护部关于《“十二五”节能减排综合性工作方案》的政策解读指出,绝对削减量比“十一五”要求的10%还大,完成4项污染物减排指标,实际上要在2010年基数上每种污染物排放量要下降30%左右,任务相当艰巨。   考察绝对削减量的大小,主要考虑的参数有两个:基数和速度。   “十二五”时期,我国经济增长预期目标是年均增长7%。然而,从最近几个五年规划的执行情况和今年上半年数据来看,GDP增幅超过7%,几乎是板上钉钉。   一些地方发展冲动依旧强劲。今年初,多个省区明确提出GDP总量或人均GDP等主要经济指标达到10%、12%、13%甚至5年翻番的目标。从今年上半年的情况来看,除京、沪外,29个省份上半年GDP增速均超过全国9.6%的水平。   再来看基数。2005年国内生产总值只有18.23万亿元,而2010年国内生产总值达到39.8万亿元。权且按照GDP年均增长7%来计算,2015年国内生产总值也将超过55万亿元。可见,与“十一五”相比较,“十二五”的基数更大。   在能源消费总量方面,虽然正式的控制规模还没有出来,但是有消息说,国家能源局拟定的控制目标在41亿吨标准煤左右,而各地上报的能源消费预期总量则超过了50亿吨标准煤。   再来看速度。在10月20日召开的今年前三季度煤炭经济运行分析座谈会上,中国煤炭工业协会相关负责人指出,前三季度煤炭产量和销量同比增速,与同期国内生产总值增速相比,已超出1个百分点。   能源结构方面,“十二五”时期,我国以煤炭消费为主的能源供应格局很难根本改变,发展清洁能源毕竟只能替代很小一部分能源供应。   基于这些参数,相关部门测算得出结论,由于经济总量和能源消费总量基数变大,“十二五”期间,新增污染物排放量将更大,绝对削减量比“十一五”更大,任务更为艰巨。   8%背后的难度比10%还要大   决定完成减排指标难度的因素主要包括:新增排放量、减排潜力、新增指标和领域。   吴舜泽告诉记者,“十二五”期间,抵消污染物新增排放量是最大的难点所在。对此,刘炳江持有相似的观点。他指出,控制新增排污量某种程度上比削减排放量更重要,新增量和减排量就像“两架马车”,关键是看谁跑得快。由于经济基数大、速度高,新增排放量增加,上文已做阐述。   从减排潜力看,“十一五”期间,全国累计建成5.78亿千瓦燃煤脱硫机组,脱硫机组比例从14%提高到86% 累计新增城市污水日处理能力超过 6500万立方米,城市污水日处理能力达到1.25亿吨,处理率由52%提高到77%。“十二五”期间,化学需氧量和二氧化硫工程减排的空间和潜力收窄,通过新建治污工程的减排潜力变小。   从减排指标看,国家新增氮氧化物和氨氮两个约束性指标。相比二氧化硫和化学需氧量,氨氮、氮氧化物的控制局面将更为复杂,难度很大。今年上半年的减排数据印证了这一判断。在化学需氧量、二氧化硫排放量分别下降1.63%、1.74%的情况下,氨氮排放量仅下降0.73%,而氮氧化物排放总量则增长了6.17%。   从控制区域看,“十二五”期间,国家首次把农业源和机动车等纳入约束性指标管理范围。在这些领域,基础能力还比较弱,统计、监测和管理手段有待加强,机动车污染排放和农业源总量减排监管体系有待建立和完善。以化学需氧量为例,农业源占排放量基数的一半左右,而其中畜禽养殖又是主要的污染来源。   从污染类型来看,除了传统污染类型,“十二五”期间,重金属、持久性有机污染物、土壤污染、危险废物和化学品污染问题日益凸显。在这些领域,技术规范有待完善,政策措施有待细化。
  • 发力医学!这所双一流高校正式成立生命科学与医学部
    近年来,双一流高校建设医学院(部)的消息一直受到广泛关注。在国家双一流建设启动的背景下,发力医学已经成为促进学校发展的重要途径。 今天,又有一所双一流高校成立生命科学与医学部。 今天(5月22日)下午,西北大学生命科学与医学部成立大会在西北大学长安校区举行。中国科学院院士杨焕明、顾东风,中国工程院院士李佩成、陈志南、张生勇,陕西省委高教工委书记董小龙,西安市副市长强晓安,陕西省人民政府学位委员会秘书长袁宁,陕西省卫计委副主任陈昭,西安市卫计委党委书记、主任刘顺智,华大基因集团执行副总裁杨爽,西安交通大学医学部副主任王子明,空军军医大学口腔医院院长邓中荣、西京医院副院长赵文彬、唐都医院副院长孙飙,西北大学校长郭立宏,校党委副书记、副校长贾明德,校党委副书记雷忠鹏、赵作纽,校党委常委、纪委书记李邦邦,校党委常委、副校长王正斌,校党委常委李鹏、吕建荣等出席。省市有关部门、部分三甲医院负责人,兄弟院校、科研院所、生物医药企业和师生干部代表600余人参会。大会由西北大学党委常委、副校长常江主持。 西北大学生命科学与医学部的成立,是西北大学落实健康中国战略、推进科教深度融合、实现创新驱动发展的重要举措,标志着西北大学医学学科建设取得了实质性进展,翻开了崭新篇章。同时,这也是西北大学学部制改革的首例试点。生命科学与医学部将下设生命科学学院和医学院,在生命科学学院框架下,积极推进生态学院、药学院、华大学院建设。 西北大学医学院将立足“小规模、高起点、有特色”的办学定位,充分发挥西北大学综合性大学的优势,借助生物基础理论、基因测序技术、生物医学分析工具和生物医学大数据平台,聚焦“精准医学”研究,开启具有“未来医学”视野的医学研究和临床治疗范式,使医学学科成为学校推进“学科+”计划、提升学科集群发展实力的重要引擎,以医学大发展全面助力“双一流”建设,服务“大西安”发展,为陕西“五新”战略实施和地方经济社会发展作出新的更大贡献。 成立大会上,刘顺智、贾明德分别代表西安市卫计委和西北大学签署合作协议。双方将在直属附属医院建设、医学教育人才培养、科学研究、人才队伍建设和临床诊疗等方面深化合作,促进医教研融合发展。 杨爽、贾明德分别代表华大基因有限公司和西北大学签订《共建西北大学华大学院暨秦岭基因库协议》。双方将致力于为生物产业领域培养国际一流高端人才,培育重大科研成果,助推生物产业健康发展。 杨焕明、董小龙、强晓安、郭立宏、袁宁、陈昭、刘顺智共同推动启动杆,宣布西北大学生命科学与医学部正式成立。 与会嘉宾分别为 “西北大学医学院”“西北大学药学院” “西北大学生态学院”和“西北大学华大学院”揭牌 刘顺智、郭立宏分别为“西北大学附属医院”“西北大学附属第一医院”授牌。两所附属医院由西安市卫计委与西北大学共建共管,其中,西安市第一医院命名“西北大学附属第一医院”,西安市第三医院命名“西北大学附属医院”。 郭立宏为杨焕明颁发了西北大学生命科学与医学部筹委会主任、西北大学华大学院院长聘书。杨焕明为徐勇勇、谭庆荣颁发西北大学特聘教授聘书,为田晔、赵朝等16人颁发西北大学研究生导师聘书。王子明代表兄弟院校对西北大学生命科学与医学部的成立表示祝贺,他介绍了西安交通大学医学部与西北大学的渊源,表示将传承历史情谊,与西大医学学科携手共进。陈富林对西北大学生命科学与医学部组织架构、运行机制、建设发展愿景等方面进行介绍。 王正斌宣读了学校关于相关机构成立和研究生导师、教授的聘任文件,常江主持大会。 董小龙在讲话中指出,西北大学立足新时代新任务新要求创建生命科学与医学部,是学校认真学习贯彻习近平新时代中国特色社会主义思想,聚焦“双一流”建设,推动内涵式发展,助力追赶超越的重大举措,将为推动陕西高等教育和医疗事业发展注入新的活力,也将为加快实施“健康陕西”战略,满足三秦百姓日益增长的美好生活需要发挥新的更大作用。他希望学校坚持办学正确政治方向,精准把握新时代高等教育和改革发展的战略机遇与历史使命,立足陕西、面向西部、服务全国,打造西部新的医学中心。 强晓安在致辞中指出,此次签约和授牌是西安支持西北大学复办医学学科、打造高水平区域医学中心的一项重要举措。随着市校合作共建的广泛开展,市校间各类优质资源将得以更好结合,合作交流内容将更加丰富深入,合作模式将不断创新。西安市将会大力支持并认真做好市校合作共建协调服务工作,不断推动、落实、拓展、深化合作,实现共同发展、共同进步。 郭立宏在致辞中对省市各级领导和相关部门对学校的关心和支持表示感谢。他深情回顾了西北大学医学学科的办学历史,介绍了学校近年来为复办医学学科所做出的努力。他强调,西北大学将以复办医学学科为契机,积极落实“健康中国”战略,在人才引育、学科建设、科学研究、平台共享等方面持续发力,切实增强服务地方经济社会发展能力,为落实“五新”战略任务,助力“大西安”建设发展提供“西大方案”、汇聚“西大智慧”、贡献“西大力量”。 西北大学医学学科历史与复办 西北大学肇始于1902年的陕西大学堂和京师大学堂速成科仕学馆,是一所有着116年历史和文化积淀的综合性大学。西北大学医学学科起源于上世纪早期的北平大学医学院。抗战全面爆发后,北平大学医学院改为西北联大医学院。1939年,西北联大改为西北大学,并将原西北联大医学院独立设置,改称西北医学院。抗战胜利后,1946年,西北医学院并入西北大学,成为西北大学医学院,直到1950年再次独立出来,复名西北医学院,后并入西安交通大学。 西北大学学科门类中一直有医学药学类的学科专业。从“十二五”开始,学校针对筹建医学院事宜陆续开展相关调研论证,并将其作为学校重点工作予以推进。“十三五”以来,学校围绕“双一流”建设目标,梳理各种办学资源,积极报请省市领导支持医学学科复办工作。在各级领导、省市各部门的关心和支持下,学校吸纳附属医院、承接医学学科人才等工作取得了重大突破,与秦汉新城等政府部门和企业签订了医学领域科学研究的合作协议,为复办工作打下了坚实基础。2018年4月23日,西北大学与西安市签署战略合作协议,作为主要内容之一,双方将按照“资源共享、优势互补、共建共管、医教协同”的原则,共建“西北大学(西安)医学院”,翻开了西北大学医学复办的新篇章。
  • 大动作!12所“双一流”高校党政领导密集调整
    p style=" text-align: center " img title=" 001.jpg" src=" http://img1.17img.cn/17img/images/201801/insimg/841a04f3-35a9-4c65-ab4f-c01b83184eda.jpg" / /p p style=" text-align: center " strong 近期履新“双一流”高校党委书记或校长名单(按任职时间先后排序) /strong /p p   近日,教育部网站发布消息,曹雪涛任南开大学校长,张宗益任重庆大学校长,蒋传海任上海财经大学校长。2018年1月份刚过去不到一周时间,已有三所“双一流”高校迎来了新校长。 /p p   在此之前不久,兰州大学、中南大学、华中农业大学、北京航空航天大学、北京理工大学、四川大学、华中科技大学、西北农林科技大学、东南大学等9所“双一流”高校迎来了新任党委书记或校长。严纯华任兰州大学校长,易红任中南大学党委书记,高翅任华中农业大学党委书记,曹淑敏任北京航空航天大学党委书记,张军任北京理工大学校长,李言荣任四川大学校长,邵新宇任华中科技大学党委书记,吴普特任西北农林科技大学校长,左惟任东南大学党委书记。 /p p strong   6名党委书记或校长为本校擢升 5名为外校调任 /strong /p p   在这批履新的12名党委书记或校长中,有6人为本校晋升。他们分别是华中农业大学副校长高翅任华中农业大学党委书记,华中科技大学常务副校长邵新宇任华中科技大学党委书记,西北农林科技大学常务副校长吴普特任西北农林科技大学校长,东南大学党委常务副书记左惟任东南大学党委书记,重庆大学党委常务副书记张宗益任重庆大学校长,上海财经大学副校长蒋传海任上海财经大学校长。 /p p   另有5人为外校调任。他们分别是兰州大学校长严纯华(此前担任南开大学副校长),中南大学党委书记易红(此前担任东南大学党委书记),北京理工大学张军(此前担任北京航空航天大学党委书记),四川大学校长李言荣(此前担任电子科技大学校长),曹雪涛任南开大学校长(此前担任中国医学科学院院长、北京协和医学院校长)。 /p p   此外,新任北京航空航天大学党委书记曹淑敏为跨界任职,她此前担任江西省鹰潭市委书记。 /p p strong   此轮履新均为“60后” 四人为“两院院士” /strong /p p   履新的12人中,有5人为新任高校党委书记,7人为高校校长。其中时任东南大学党委书记易红出任中南大学党委书记之后,东南大学党委常务副书记左惟补缺东南大学党委书记。 /p p   从年龄上来看,此轮履新的12人均为1960年以后出生。其中最年轻的是出生于1970年的上海财经大学校长蒋传海。 /p p   兰州大学校长严纯华、北京理工大学校长张军、四川大学校长李言荣、南开大学校长曹雪涛四人为“两院院士”。严纯华于2011年当选为中国科学院院士。张军、李言荣、曹雪涛三人为中国工程院院士。 /p
  • 中国半导体十大研究进展候选推荐(2022-015)——超高热导率半导体-砷化硼的载流子扩散动力学研究
    以下文章来源于国家纳米科学中心 ,作者刘新风课题组1 工作简介——超高热导率半导体-砷化硼的载流子扩散动力学研究国家纳米科学中心刘新风研究员团队联合休斯顿大学包吉明团队和任志锋团队在超高热导率半导体-立方砷化硼(c-BAs)单晶的载流子扩散动力学研究方面取得重要进展,为其在集成电路领域的应用提供重要基础数据指导和帮助。相关研究成果发表在Science杂志上。随着芯片集成规模的进一步增大,热量管理成为制约芯片性能越来越重要的因素。受散热问题的困扰,人们不得不牺牲处理器的运算速度。从2004年后,CPU的主频便止步在了4 GHz,只能通过增加核数来进一步提高整体的运算速度,然而这一策略对于单线程的算法却是无效的。2018年,具有超高热导率的半导体c-BAs的成功制备引起了人们极大兴趣,其样品实测最高室温热导率超过1000 Wm-1K-1,约为Si的十倍。c-BAs不仅具有高的热导率,由于其超弱的电声耦合系数和带间散射,理论预测c-BAs还同时具有非常高的电子迁移率(1400 cm2V-1s-1)和空穴迁移率(2110 cm2V-1s-1),这在半导体材料系统中是非常罕见的,有望将其应用在集成电路领域来缓解散热的困难并且能够实现更高的运算速度,因而通过实验来确认这种高热导率的半导体材料的载流子迁移率具有非常重要的意义。虽然c-BAs被制备出来,但样品中广泛分布着不均匀的杂质与缺陷,为其迁移率的测量带来极大的困难。一般可以通过霍尔效应,测定样品的载流子的迁移率,然而电极的大小制约着其空间分辨能力,并直接影响到测试的结果。2021年,利用霍尔效应测试的c-BAs单晶的迁移率报道结果仅为22 cm2V-1s-1,与理论预测结果相差甚远。具有更高的空间分辨能力的原位表征方法是确认c-BAs本征迁移率的关键。通过大量的样品反复比较,研究团队确定了综合应用XRD、拉曼和带边荧光信号来判断样品纯度的方法,并挑选出了具有锐利XRD衍射(0.02度)窄拉曼线宽(0.6波数),接近0的拉曼本底,极微弱带边发光的高纯样品。进一步,研究团队自主搭建了超快载流子扩散显微成像系统。通过聚焦的泵浦光激发,广场的探测光探测,实时观测载流子的分布情况并追踪其传输过程,探测灵敏度达到了10-5量级, 空间分辨能力达23 nm。利用该测量系统,详细比较了具有不同杂质浓度的c-BAs的载流子扩散速度,首次在高纯样品区域检测到其双极性迁移率约 1550 cm2V-1s-1, 这一测量结果与理论预测值(1680 cm2V-1s-1)非常接近。通过高能量(3.1 eV,400 nm)光子激发,研究团队还发现了长达20ps的热载流子扩散过程,其迁移率大于3000 cm2V-1s-1。立方砷化硼高的载流子和热载流子迁移速率,以及其超高的热导率,表明其可以广泛应用在光电器件、电子元件中。该研究工作厘清了理论和实验之间存在的巨大差异的具体原因,为该材料的应用指明了方向。图1. 瞬态反射显微成像和在c-BAs中的载流子扩散。(A)实验装置示意图,激发波长为600 nm探测波长为800 nm (B)不同时刻的瞬态反射显微成像(标尺1微米) (C)典型的载流子动力学 (D)0.5 ps的二维高斯拟合 (E)不同时刻的载流子分布方差随时间的演化及载流子迁移率,误差标尺代表95%置信拟合区间。国家纳米科学中心副研究员岳帅为文章第一作者,刘新风研究员为通讯作者。文章的共同第一作者为休斯顿大学田非博士(现中山大学教授),共同通讯作者为休斯顿大学包吉明教授和任志锋教授。该研究工作得到了中国科学院战略性先导科技专项(B类)、国家自然科学基金委项目、万人计划青年拔尖人才计划、科技部重点研发计划、科学院仪器研制项目等项目的大力支持。2作者简介通讯作者刘新风,国家纳米科学中心研究员,博士生导师。2004年获东北师范大学学士学位。2007年获东北师范大学硕士学位。2011年获中科院大学博士学位。2015年中科院海外人才计划加入国家纳米科学中心。2021年获中组部人才计划支持。目前担任中国科学院纳米标准与检测重点实验室副主任。研究方向为半导体材料微纳尺度光与物质相互作用光谱和物性研究。近年来在Science, Nat. Mater., Adv. Mater., Nano Lett.等期刊上发表论文210余篇,总引用15000余次,H因子61。担任Nat. Nanotech., Sci. Adv., Nano Lett., Adv. Mater. 等国际学术期刊审稿人。任Journal of Physics: Photonics, Nano Materials编委会委员,InfoMat, Materials Today Physics, Materials Today Sustainability, Frontiers of Physics青年编委。通讯作者包吉明,美国休斯顿大学电子与计算机工程系教授,博士生导师。美国物理学会会士,美国光学学会会士。2003年于密歇根大学获得博士学位,导师Roberto Merlin,2003年-2008年在哈佛大学做博士后研究,合作导师为Federico Capasso。2008年加入美国休斯顿大学电子与计算机工程系。主要研究方向为新型纳米材料的制备与纳米光电子学研究。发表文章250余篇,引用量19000,H因子62。通讯作者任志锋,教授,博士生导师。现为美国休斯顿大学物理系M.D. Anderson讲席教授,德克萨斯州超导研究中心主任。1984年在西华大学获得本科学位,1987年在华中科技大学获得硕士学位,1990年在中科院物理所获得博士学位。他的研究集中在具有高ZT值和高功率系数的热电材料、极高热导及载流子迁移率的砷化硼单晶、用于提高石油采收率的纳米材料、电解水产制氢催化剂、用于捕获和消灭SARS-CoV-2冠状病毒的加热过滤器、碳纳米管、太阳能转换材料、柔性透明电子器件和超导材料及其应用等。第一作者岳帅,国家纳米科学中心副研究员。2016年于中科院物理所获理学博士学位,导师翁羽翔研究员。2017年-2020年在电子科技大学-美国休斯顿大学从事博士后研究,合作导师王志明教授和包吉明教授。2020年加入国家纳米科学中心。长期从事超快光谱研究。在Science, PNAS, Nature Materials 等期刊上发表论文20余篇,申请专利5项。第一作者田非,中山大学材料科学与工程学院教授,博士生导师。2012年本科毕业于南开大学物理科学学院,2013年进入美国休斯顿大学物理系攻读博士学位,导师是任志锋教授。2018年获得博士学位后,继续在任志锋教授课题组从事博士后研究。2020年起加入中山大学材料科学与工程学院。长期从事新型散热材料的合成和制备,基本性质的表征和分析,以及相关应用的设计和开发。目前已在国际主流学术期刊发表论文三十余篇。
  • 关于举办第十二届中国颗粒大会的通知 (第五轮)
    关于举办第十二届中国颗粒大会的通知(第五轮)各有关单位和科技工作者:为促进颗粒与粉体相关领域学术交流、推动学科发展和技术创新及助力人才成长,由中国科学技术协会指导,中国颗粒学会主办,中国颗粒学会能源颗粒材料专业委员会、海南大学承办,由广州大学、华南理工大学、北京海岸鸿蒙标准物质技术有限责任公司等共同协办的第十二届中国颗粒大会(The 12th China Congress on Particle Technology(CCPT12))将于2023年4月21-24日在海南省海口市举办。第十二届中国颗粒大会会议主题为“创新助力双碳,绿色赋能发展”。本届大会是应我会发展需要、继承我会历届学术年会的全国性高层次的颗粒学领域大型综合性学术会议。大会围绕颗粒学相关领域的科研进展、产业发展和人才成长等展开交流,面向广大颗粒学与粉体行业及其化工、能源、材料、医药和环境等相关领域科技工作者征集科技论文(摘要)。2022年度中国颗粒学会奖励将在大会上组织颁奖。大会还将评选青年报告奖及优秀墙报奖,欢迎投稿参会。中国颗粒大会同期将举办颗粒/粉体仪器、设备、产品和应用展,包括颗粒/粉体测试分析仪器、制备设备、产品及其在化工、能源、材料、医药和环境等中的应用等内容,欢迎相关单位积极报名参展。中国颗粒学会颗粒学奖的相关信息也将在大会期间展出,敬请关注。一、学术委员会(*为中国台湾代表)(1)学术委员会主席:李静海(2)学术委员会执行主席:朱庆山 陈运法 林鴻明* 彭 峰 (3)学术委员会顾问:李 灿 孙世刚 马光辉 陈建峰 陈晓东 郭 雷 郭烈锦 何鸣元 胡 英 李洪钟 刘中民 彭 峰 王静康 谢在库 徐春明 余艾冰 袁 权 张锁江 Jesse Zhu(4)学术委员会委员(按音序排列)艾德生 安太成 安希忠 白博峰 蔡 挺 蔡小舒 曹军骥 曹少文 曹学武 常 津 陈 诚 陈嘉媚 陈建峰 陈建新 陈 岚 陈明君 陈 鹏 陈前进 陈巧艳 陈胜利 陈填烽 陈晓东 陈学元 陈永奇 陈 煜 陈运法 程国安 程义云 程振民 楚锡华 褚良银 崔福德 邓德会 邓茂华* 董青云 费广涛 冯 春 冯立纲 冯 胜 付信涛 付 艳 傅晓伟 傅彦培* 高思田 高 峡 高 原 戈 钧 葛宝臻 葛广路 葛 蔚 宫厚军 龚湘君 谷海峰 顾卫国 顾兆林 顾 臻 桂 南 郭 雷 郭烈锦 郭庆杰 郭少军 韩 鹏 韩永生 韩 召 郝红勋 郝新友 何鸣元 何 勤 何羽薇 何玉荣 侯曙光 胡富强 胡 钧 胡小晔 胡晓林 胡 英 胡宇光* 胡子平 胡宗定 皇凡生 黄 挺 黄肇瑞* 纪红兵 季顺迎 季松涛 贾春满 江燕斌 姜晓斌 金一政 靳海波 康毅力 库晓珂 李朝升 李 春 李春忠 李 泓 李江涛 李 力 李 攀 李 旗 李顺诚 李铁军 李 霞 李相臣 李星国 李亚平 李亚伟 李映伟 李永旺 李增和 李兆军 梁海伟 廖永红 林 冲 林鸿明 林中魁* 刘宝丹 刘道银 刘福胜 刘 刚 刘俊杰 刘明言 刘潜峰 刘如熹* 刘 涛 刘 伟 刘亚男 刘 宇 刘岳峰 刘兆清 刘 铮 刘中民 刘忠文 刘钟馨 卢春喜 卢寿慈 陆 杰 陆 明 罗 坤 罗 勇 罗正鸿 骆广生 吕且妮 吕万良 吕友军 马光辉 马建民 马学虎 毛世瑞 梅其良 倪木一 聂广军 潘良明 潘勤鹤 彭 峰 彭 威 平 渊 秦和义 秦明礼邱郁菁* 任 飞 任国宾 邵刚勤 佘继平 沈建琪 沈少华 沈义俊 沈志刚 宋宏伟 宋少先 宋锡滨 宋兴福 蘇程裕* 苏 敏 苏明旭 孙世刚 孙学军 孙 逊 孙 彦 孙中宁 谈玲华 谭援强 陶东平 陶绪堂 田庆国 佟立丽 王 丹 王德忠 王等明 王海龙 王 昊 王 辉 王静康 王利民 王 亮 王勤辉 王铁峰 王 伟 王孝平 王辛龙 王新明 王兴亚 王学重 王彦飞 王燕民 王 勇 王玉金 王玉军 王远航 王兆霖 王震宇 韦文诚* 魏 飞 魏进家 魏 炜 魏严凇 魏永杰 文利雄 吴传斌 吴汉平 吴立敏 吴 伟 毋 伟 伍志鲲 席广成 夏宝玉 向中华 解荣军 谢在库 谢志鹏 徐春明 徐 林 徐 强 徐维林 徐文杰 徐锡金 徐喜庆 许成元 许传龙 许人良 许文祥 薛冬峰 薛 琨 颜富士 杨 柏 杨 斌 杨 超 杨多兴 杨 芳 杨 军 杨 宁 杨世亮 杨为佑 杨 文 杨晓钢 杨艳辉 杨 毅 杨正红 杨志义 杨治华 杨组金 要茂盛 叶 茂 尹大川 尹秋响 尹诗斌 游利军 于明州 于秋硕 于溯源 于新民 余 方 余 皓 元一单 袁 权 袁友珠 臧双全 曾海波 曾宇平 占昌友 张炳森 张 灿 张春桃 张福根 张国诚 张国军 张 浩 张 洁 张立娟 张 强 张仁健 张铁锐 张伟儒 张文阁 张香平 张现仁 张幸红 张亚培 张永民 张振杰 张志炳 赵吉东 赵晓宁 赵永志 郑耿锋 郑水林 郑宪清* 钟 超 周 强 周素红 周 涛 周文刚 周已欣 周长灵 周志伟 朱华旭 朱 亮 朱庆山 朱晓阳 朱子新 邹晓新 Cheng Lixin Zhao Qi二、 组织委员会(1)组织委员会主席:朱庆山 彭 峰(2)组织委员会执行主席:王体壮(3)组织委员会委员(按音序排列)安太成 白红存 蔡楚江 蔡 建 曹永海 陈常祝 陈 诚 陈 磊 陈鲁海 陈 琦 陈 杨 程新兵 程 源 褚良银 邓培林 邓意达 丁良鑫 董 顺 杜 斌 杜 磊 段洁雯 冯广波 高 原 古霖蛟 管小平 郭 昆 韩秀芝 韩 召 洪长青 黄 巧 黄 玮 黄 欣 贾春满 贾菲菲 江宏亮 经浩然 康振烨 兰清泉 雷小文 李 琛 李 华 李嘉诚 李江涛 李 杰 李 静 李京红 李 攀 李晓明 李鑫磊 李宇航 李兆军 刘宝丹 刘丹彤 刘吉轩 刘俊杰 刘潜峰 刘瑞祥 刘 涛 刘晓雯 刘永卓 刘雨昊 刘兆清 刘钟馨 楼宏铭 卢思宇 罗俊明 吕岩霖 吕页清 马晶晶 马永丽 毛世瑞 穆华仑 聂保杰 欧阳婷 潘勤鹤 彭 峰 彭新文 朴洪宇 乔明曦 任小平 邵 奇 申芳霞 沈丹蕾 石 凯 史晓磊 苏明旭 孙 臣 孙 婧 孙 伟 孙晓晖 唐 星 田红景田庆国 田新龙 汪 伟 王 标 王春明 王崇太 王东凯 王浩帆 王 欢 王 辉 王军武 王利民 王林桂 王 娜 王 双 王 霆 王晓飞 王兴亚 王艺钧 魏严凇 魏永杰 武云飞 夏芸洁 夏志国 向茂乔 谢智超 熊德华 熊勤钢 徐 骥 徐锡金 徐 政 许传龙 杨光星 杨 丽 杨 柳 杨 宁 杨增朝 要茂盛 叶 茂 尹俊连 余 皓 于明锐 于明州 喻 鹏 岳 华 张 浩 张慧如 张立娟 张 巧 张晓静 张 宇 钟胜奎 周 兰 周丽娜 周 玲 周素红 周 骛 朱晓阳 三、 学术分会场第1分会场:颗粒计算组织单位:大连理工大学、中国科学院过程工程研究所、浙江大学、东北大学、东南大学、华南理工大学分会主席:季顺迎、王利民、罗坤、安希忠、刘道银学术秘书:刘晓雯,华南理工大学,liuxw2021@scut.edu.cn会场简介:聚焦颗粒力学理论及模型、计算分析方法、软件开发和工程应用中的关键问题和难点问题,开展广泛的学术交流和讨论。分会场为力学、化工、能源、冶金、海洋、岩土及土木工程等领域中从事颗粒计算方面专家学者提供一个开放的交流平台,促进多学科的交叉融合,推动颗粒计算在基础理论、数值方法和工程应用中的发展。征文范围:(1)颗粒计算基本理论及数值方法; (2)颗粒计算软件开发及算例验证; (3)颗粒计算在化工、能源、冶金等领域的应用。第2分会场:氢能与燃料电池组织单位:海南大学分会主席:孙世刚学术秘书:田新龙,海南大学,tianxl@hainanu.edu.cn,康振烨,海南大学,zkang@hainanu.edu.cn会场简介:氢能和燃料电池是我国清洁能源发展和研究的重要方向,实现我国“碳减排”和“碳中和”的宏大目标,氢能和燃料电池将发挥着举足轻重的作用。今年初,我国又把氢能技术列为国家未来六大产业之一,氢能和燃料电池都将迎来更好的发展机遇。本次会议将邀请协会(学会)领导、院士、行业知名专家学者及企业代表,就国家相关政策和技术发展、行业科技发展目标和任务进行全面深入的探讨,总结国内外近期开发的氢能与燃料电池先进生产工艺和关键技术,指导我国氢能与燃料电池产业升级,推动我国能源结构调整和可持续发展,期待专家老师和技术人员踊跃参加。征文范围:电催化、电解水、质子交换膜燃料电池、固体氧化物燃料电池、氢能制备及产业化装置等关键科学与技术。第3分会场:工业结晶与粒子过程组织单位:天津大学国家工业结晶工程技术研究中心、中国科学院过程工程研究所、海南大学化学工程与技术学院、大连理工大学分会主席:郝红勋、杨超、姜晓滨、潘勤鹤学术秘书:黄欣,天津大学,022-27403200,x_huang@tju.edu.cn会场简介:分会场聚焦医药、食品、精细化工品、新材料等领域的工业结晶基础理论、结晶过程模型与模拟、结晶工艺开发与放大、工业结晶过程强化与连续化等方向最新研究进展,旨在完善我国工业结晶领域整体理论基础,提升相关方向原始创新能力,促进产学研的合作创新,加速相关行业企业的转型升级。分论坛拟邀请高等院校、科研院所、企业研发部门等领域内知名专家学者,围绕分会场主题从理论、方法、技术、产品等方面分享研究成果与经验。征文范围:(1)工业结晶基础理论; (2)晶体产品形态调控、多晶型预测、筛选与精准制备; (3)结晶工艺开发与放大; (4)工业结晶过程强化及连续化; (5)结晶过程计算流体力学及多相混合过程研究等。第4分会场:多相反应过程中的介科学组织单位:中国科学院过程工程研究所、中国科学院大连化学物理研究所、四川大学分会主席:杨宁、叶茂、褚良银学术秘书:管小平,中国科学院过程工程研究所,xpguan@ipe.ac.cn;汪伟,四川大学,wangwei512@scu.edu.cn;李华,中国科学院大连化学物理研究所,lihua@dicp.ac.cn会场简介:介尺度行为是由大量单元组成的系统在全局与个体之间的尺度上形成的复杂时空结构。介科学是研究介于时空“微尺度”和“宏尺度”之间的介尺度非均匀结构演化规律的科学,在自然、工程和社会科学中具有普遍的理论研究价值和广阔的应用前景,有望开辟新的科学研究范式,探索认识传统学科的共性规律,孕育新的科学前沿;有助于综合整体论和还原论,探索不同知识体系中的共性原理,变革科研范式,揭示科学问题复杂性的根源,解决一系列从基础研究到工程应用的关键科学和技术问题。国际期刊《科学》指出,介科学是科学上的无人区,是科学史上的一个重大事件。多相反应过程的介尺度主要表现在分子到颗粒(包括气泡、液滴等)间的材料表界面时空尺度、以及颗粒到反应器整体间的颗粒聚团时空尺度。征文范围:能源、材料、化工、生物等涉及多相反应过程中材料表界面和反应器/设备等不同层次上的介尺度问题。第5分会场:双碳背景下的流态化技术及应用组织单位:中国颗粒学会流态化专业委员会分会主席:葛蔚、王勤辉学术秘书:王军武,中国科学院过程工程研究所,jwwang@ipe.ac.cn;熊勤钢,华南理工大学,qingangxiong@scut.edu.cn会场简介:流态化技术广泛应用于石油化工、循环流化床锅炉、煤化工、矿物加工等工业过程,在我国工业生产中占有极其重要的地位。国家“双碳”重大战略不但要求我国能源结构的重大调整,而且要求实现产业结构和工业过程的转型升级,这为流态化技术提供历史性发展机遇的同时也提出了重大挑战。本分会场将探讨“双碳”背景下流态化技术的新发展、新应用,为国内外高校、科研院所、企事业单位的同行提供交流平台,共同推动流态化技术的跨越式发展,为国家“双碳”目标的实现做出重要贡献。征文范围:(1)流化床中的流动、传热、传质和化学反应; (2)计算机数值模拟与放大; (3)流化床过程强化技术; (4)流态化及相关技术的工业应用。第6分会场:颗粒助力“双碳”:CO2捕集与催化转化新途径组织单位:宁夏大学、青岛科技大学分会主席:郭庆杰学术秘书:刘永卓,青岛科技大学,0532-84022506,yzliu@qust.edu.cn;马晶晶,宁夏大学,mjj_1022@163.com会场简介:“碳达峰、碳中和”是我国应对全球变暖提出的重大战略目标,而二氧化碳的捕集和利用是实现双碳目标的最直接方式。作为二氧化碳最大排放源,煤炭等化石能源燃烧CO2捕集技术有燃烧前捕集、燃烧中捕集和燃烧后捕集,它们的应用前景主要受制于其捕集成本,化学链、CO2吸附、膜分离等技术具有潜在优势。捕集的二氧化碳主要有封存和利用两种形式,而催化转化制备大宗化学品更具有应用前景。本分会场聚焦面向烟气源、工业源、空气源等不同来源二氧化碳的捕集和催化转化技术,追踪CO2吸附颗粒、催化颗粒、载体颗粒等捕集和转化颗粒最新进展,为我国双碳目标的实现贡献新技术、新思想和新模式。征文范围:(1)CO2吸附材料; (2)化学链技术; (3)CO2其他分离方法; (4)CO2活化技术; (5)CO2-FT合成; (6)CO2捕集-转化耦合技术; (7)多污染物联合脱除技术。第7分会场:微纳气泡特性及其应用组织单位:中国科学院过程工程研究所、中国科学院上海高等研究院、同济大学、北京化工大学、东南大学分会主席:胡钧、李兆军、李攀、张立娟学术秘书:张立娟,中国科学院上海高等研究院,zhanglijuan@sari.ac.cn会议秘书:王兴亚,中国科学院上海高等研究院,wangxingya@zjlab.org.cn;周兰,中国科学院过程工程研究所,010-62521688,lzhou19@ipe.ac.cn会场简介:微纳气泡基础研究和应用是近二十年来发展非常迅速的新兴领域。微纳米气泡技术在环境治理、农业生产、水产养殖、清洗、化工矿产业、消毒杀菌、医学成像以及医疗健康等领域的应用独树一帜、效果出色。微纳气泡专业委员会于2018年10月18日在苏州成立,旨在加强微纳气泡基础研究和应用的科学家和企业家的深入交流和合作,推动相关技术的高效研发和推广。专委会目前会员已经近300人,在国内汇集了一批兴趣浓厚、勇于钻研、乐于分享的科学家、工程师和企业家,共同为微纳气泡技术更好造福人类不懈奋斗!本次分会拟邀请相关领域专家、学者、技术人员、企业界代表围绕分会场主题从理论、方法、技术、产品等方面分享研究成果与成功经验。征文范围:(1)微纳气泡基本性质; (2)微纳米气泡产生技术; (3)微纳气泡检测技术; (4)微纳气泡在各个领域的重要应用; (5)企业家论坛。第8分会场:生物气溶胶组织单位:北京大学、广东工业大学分会主席:要茂盛、安太成学术秘书:申芳霞,北京航空航天大学,fxshen@buaa.edu.cn会场简介:新冠肺炎疫情爆发以来,新冠病毒经气溶胶传播的作用在国内外已形成共识,对其进行持续有效的快速监测和控制对于当前疫情防控有重要意义。空气中除了可能有新冠病毒,还悬浮着大量的其他类型的微生物和生物来源的物质,统称为生物气溶胶,在室外和室内环境空气中无处不在,对人体和环境健康的重要性也逐渐受到关注。对生物气溶胶开展全面深入的基础研究和应用研究,对于改善室内外环境空气质量和保护人体健康至关重要。征文范围:生物气溶胶(包括新冠病毒)采集、检测、灭活、分析及其在大气科学、室内环境和环境健康等方面的基础和应用研究。第9分会场:绿色低碳过程中的气液固多相流科学及应用组织单位:天津大学、中国科学院过程工程研究所、University of Nottingham Ningbo、清华大学分会主席:刘明言、杨宁、杨晓钢、王铁峰学术秘书:马永丽,天津大学,022-27404614,mayl@tju.edu.cn会场简介:气-液、液-固和气-液-固流动系统具有重要的工业应用。例如,气-液鼓泡塔、气-液(固)浆态床、液-固和气-液-固多相流反应装置系统等,可用作多相反应器;汽-液沸腾、汽-液冷凝、泥状颗粒污垢沉积和微纳材料功能表面等涉及到化工等过程工业;对于软物质颗粒,例如:乳状液、泡沫、液滴流等涉及食品、生物和医药等行业领域等。这些多相流的共同特征之一是都存在连续或离散的液相以及真实的相界面,从而形成了易变形、易聚并和易破碎的真实气泡和液滴等软物质颗粒流,使其在流动、混合、传递以及反应等方面表现出特有的规律性,涉及的科学及应用问题可加以详细探讨。征文范围:包括以绿色低碳过程工业为目标的气液固多相流基础及应用内容。具体涉及: (1)气液鼓泡流及浆态床; (2)液固和气液固多相流; (3)池沸腾和流动沸腾; (4)蒸汽冷凝; (5)泥状颗粒污垢表面上的沉积及微纳功能表面抑制; (6)乳状液、泡沫、液滴流等软物质颗粒流; (7)其他含液多相颗粒流。第10分会场:药物制剂与粒子设计组织单位:中国颗粒学会药物制剂与粒子设计专业委员会分会主席:崔福德学术秘书:石凯,pharmparticle@126.com会场简介:本会场交流主题以工业药剂学及高端制剂的研究为中心,广泛征集相关领域的国内外专家学者、企业技术工作者以及在校学生的学术论文,展示其研究成果及新进展、新动态和新成果等。非常欢迎粉体加工技术及设备、药用辅料、以及粉体表征仪器(晶形、粒子形状大小、流动性、压缩成形性等)方面的专家们及企业针对粉体技术在药物制剂中的应用进行广泛交流,以期提高药物制剂技术的科学性、实用性及可生产性。本次分会将是药物制剂领域与粉体技术沟通的盛会,企业与高校、科研院所广泛交流的盛会,理论联系实际的盛会,中国工业药剂学产业化交流的盛会。征文范围:(1)粉体技术在固体药物制剂中的应用; (2)粉体性质的测试技术与研究进展; (3)药用辅料的粉体性质对产品质量的影响; (4)新型制剂设备的应用与研究进展; (5)制剂颗粒质量表征与控制; (6)在固体制剂生产过程中粉体性质的在线测定与控制策略; (7)从实验室研究到产业化过渡的难点与关键问题; (8)药物制剂的新剂型与新技术的产业化前景与难点; (9)基于功能性粒子设计的高端制剂。第11分会场:能源存储颗粒创造美好未来组织单位:中国颗粒学会能源颗粒材料专业委员会分会主席:魏飞、张强学术秘书:程新兵,东南大学,chengxb@seu.edu.cn会场简介:能源存储颗粒分会场结合颗粒与能源存储领域中急需解决的关键科学问题和难点m "31海口站3242海口东站1630十三、 联系我们中国颗粒学会地址:北京海淀
  • 第二十二届中国专利奖公布,多个仪器项目上榜
    2021年5月10日,国家知识产权局公布第二十二届中国专利奖评审结果。第二十二届中国专利奖共评选出中国专利金奖预获奖项目30项,中国外观设计金奖预获奖项目10项,中国专利银奖预获奖项目60项,中国外观设计银奖预获奖项目15项,中国专利优秀奖预获奖项目826项,中国外观设计优秀奖预获奖项目56项,多个仪器相关专利在列。其中获得第二十二届中国专利金奖预获奖项目的有:清华大学,北京盈德清大科技有限责任公司“气化炉”;江苏鱼跃医疗设备股份有限公司,苏州鱼跃医疗科技有限公司,苏州医疗用品厂有限公司,江苏鱼跃信息系统有限公司,南京鱼跃软件技术有限公司“一种呼吸机”等。获得第二十二届中国外观设计金奖预获奖项目的有:飞依诺科技(苏州)有限公司 “彩色超声诊断仪”;合肥中科离子医学技术装备有限公司的“质子治疗装置”等。获得第二十二届中国专利银奖预获奖项目的有:深圳迈瑞生物医疗电子股份有限公司,深圳迈瑞科技有限公司“一种超声成像的方法和装置”;中天科技精密材料有限公司,江苏中天科技股份有限公司“一种连续高温延伸 和不间断切割玻璃棒的方法及其设备”等。获得第二十二届中国外观设计银奖预获奖项目的有:圣湘生物科技股份有限公司“核酸检测分析仪”等。获得第二十二届中国专利优秀奖预获奖项目的有:上海华爱色谱分析技术有限公司“脉冲氦离子化气相色谱仪”;山东博科生物产业有限公司“多试剂针生化分析仪”;中国原子能科学研究院“一种核燃料组件高能X射线无损检测装置”;烟台睿创微纳技术股份有限公司“一种非制冷红外探测器及其制备方法”;深圳市时代高科技设备股份有限公司“一种全自动真空预热炉”;中国科学院深圳先进技术研究院“一种磁共振化学位移编码成像方法、装置及设备”;湖南宇晶机器股份有限公司“一种流体抛光机”等。获得第二十二届中国外观设计优秀奖预获奖项目的有:济南金威刻科技发展有限公司“激光切割机”等。(一)第二十二届中国专利金奖预获奖项目(30 项)序号专利号专利名称专利权人发明人1ZL201010155563.X一种测量参考信号的信令配置系统及方法中兴通讯股份有限公司王瑜新,戴博,郝鹏,梁春丽,喻斌,朱鹏,杨维维2ZL201110021494.8一种关节软骨修复再生用支架及其制备方法北京万洁天元医疗器械股份有限公司敖英芳,张辛,何震明,马勇,周春燕3ZL201110044695.X气化炉清华大学,北京盈德清大科技有限责任公司张建胜,马宏波,顾大地4ZL201110146287.5左心耳封堵器先健科技(深圳)有限公司李安宁,张德元5ZL201210019996.1制造永磁电机转子的方法浙江大学方攸同,马子魁,黄晓艳,卢琴芬,马吉恩,张建承,陈威6ZL201210073412.9语音识别方法及系统科大讯飞股份有限公司潘青华,鹿晓亮,何婷婷,王智国,胡国平,胡郁,刘庆峰7ZL201210367974.4一种桥梁用Q345qDNH 耐候钢的焊接方法中铁山桥集团有限公司徐向军,贝玉成,范军旗,单亚廷,刘壮,刘振刚,曹磊,刘洪柱,陈英杰,马立鹏8ZL201210378282.X等离子体处理装置及调节基片边缘区域制程速率的方法中微半导体设备(上海)股份有限公司叶如彬,尹志尧,倪图强,周宁9ZL201310258289.2抗 PD-1 抗体及其应用上海君实生物医药科技股份有限公司,上海君实生物工程有限公司陈博,武海10ZL201310642578.2臂架振动控制方法、控制装置、控制系统以及工程机械中联重科股份有限公司曾光,付玲11ZL201410005804.0一种抑制骨传导扬声器漏音的方法及骨传导扬声器深圳市韶音科技有限公司齐心,廖风云12ZL201410105700.7基于 177 堆芯的能动加非能动核蒸汽供应系统及其核电站中国核动力研究设计院吴琳,张森如,罗琦,刘昌文,李海颖,曹锐,冷贵君,蒲小芬,张富源,王华金,曾忠秀,钟元章,李庆,康志彬,卢毅力,李兰,汤华鹏13ZL201410175831.2一种城市污水改良2A /O 强化脱氮除磷处理装置及工艺华南理工大学,贵州科学院周少奇,周晓,黎强,周娟14ZL201410827891.8一种倒装焊耐潮湿防护工艺方法北京时代民芯科技有限公司,北京微电子技术研究所赵元富,姚全斌,李京苑,练滨浩,熊盛阳,黄颖卓,姜学明,田玲娟,林鹏荣15ZL201510003057.1一种闪烁脉冲的数字化方法苏州瑞派宁科技有限公司谢庆国,张求德,龙岸文,熊章靖16ZL201510061590.3一种高速轨道车辆转向架中车青岛四方机车车辆股份有限公司,中国铁路总公司张振先,周平宇,马利军,丁叁叁,崔志国,张国平17ZL201510197266.4液晶组合物及液晶显示器件江苏和成显示科技有限公司戴慧娟,韩文明,丁文全,李鹏飞,徐海彬,贺笛,刘云云,姚利芳,马文阳,马定福,张鹤鸣18ZL201510245651.1一种仿生钻井液及其制备方法中国石油大学(北京)蒋官澄,宣扬,张县民,伍贤柱,陈俊斌,欧阳伟,罗陶涛19ZL201510354808.4一种制备氢化 C9 石油树脂的方法大连理工大学梁长海,李闯,张淼,靳少华,汪镭20ZL201510482896.6一种部分支化部分交联聚合物驱油剂及其制备方法中国石油化工股份有限公司胜利油田分公司勘探开发研究院,四川大学孙焕泉,曹绪龙,黄光速,宋新旺,郑静,刘坤,姜祖明,陈晓彦,李江波21ZL201510543206.3一种数据传输方法、系统及相关设备腾讯科技(深圳)有限公司薛笛22ZL201510563338.2基于人工智能的人机交互方法和系统百度在线网络技术(北京)有限公司王海峰,吴华,田浩,赵世奇,孙雯玉,吴甜,忻舟,马艳军,吕雅娟23ZL201511027492.4金属构筑成形方法中国科学院金属研究所李殿中,孙明月,徐斌,刘宏伟,李依依24ZL201610133889.X一种深部矿电磁探测方法与装置中国科学院地质与地球物理研究所底青云,王中兴,付长民,安志国,王若,张文秀,杨永友,陈彬彬,薛国强25ZL201610784961.5敞开式掘进机中国铁建重工集团股份有限公司刘飞香,程永亮,郑大桥,何其平,梁海斌,李深远26ZL201611092558.2风电臂翻转方法及起重机徐州重型机械有限公司单增海,赵瑞学,陈志灿,贾体锋,王守伟,张正得,于敬利,张平海27ZL201680040482.0PD-1 抗体信达生物制药(苏州)有限公司H. 巴鲁亚,陈乘,刘晓林,曾竣玮,俞德超28ZL201810141010.5空调机组控制方法和装置珠海格力电器股份有限公司卓明胜,程琦,陈培生,刘华29ZL201820240430.4一种呼吸机江苏鱼跃医疗设备股份有限公司,苏州鱼跃医疗科技有限公司,苏州医疗用品厂有限公司,江苏鱼跃信息系统有限公司,南京鱼跃软件技术有限公司赵帅,尤景良,潘能御,郑燿明,杜文芝,郭建明,朱晶,张宏圣,乐志超,张佳30ZL201910220358.8提高玉米浸泡效果的复合菌剂及其应用中粮集团有限公司,吉林中粮生化有限公司佟毅,李义,陶进,潘忠,张媛,焦琳(二)第二十二届中国外观设计金奖预获奖项目(10 项)序号专利号专利名称专利权人设计人1ZL201230168771.3彩色超声诊断仪飞依诺科技(苏州)有限公司尼克,周夏君,奚水2ZL201530461954.8插座(GN-U303U)公牛集团股份有限公司高诗博,杨涛3ZL201630332527.4汽车比亚迪股份有限公司廉玉波,唐文全,范吉晗,侯晓光,余舒鹏,宿伟,杨静4ZL201730117501.2客车(Q)郑州宇通客车股份有限公司于伟,姬冰,李正平,邵杨,辛冰,朱卉甫,陈东洋5ZL201730438354.9充电桩上海蔚来汽车有限公司克里斯托马森,徐周虎,吉姆巴斯特,夏丽建,杨潮,赵志凌,罗瑞斌,邵洁,郝天磊,侯文洁,帕特里克尼尔麦戈德里克,克里斯托夫普罗塞,马修加伍德,迈克尔崔普尔6ZL201730527939.8质子治疗装置合肥中科离子医学技术装备有限公司宋云涛,魏江华,毕延芳,常佩,冯汉升,陈永华,陈根,杨庆喜,丁开忠,李君君7ZL201730635075.1汽车广州小鹏汽车科技有限公司张利华,杨效东,马万兵,赵里,何涛,何春娟8ZL201830122705.X空调器柜机青岛海高设计制造有限公司,青岛海尔空调器有限总公司王丽,李剑波,刘为,黄泽平,张鹏,江云香,谭普兆,李雄威9ZL201930060651.3汽车重庆长安汽车股份有限公司陈政,邓鑫,胡健,胡旺,韩文一10ZL201930063921.6轨道车辆车头(2018-02)中车青岛四方机车车辆股份有限公司丁叁叁,张冶,王学亮,梁君海(三)第二十二届中国专利银奖预获奖项目(60 项)序号专利号专利名称专利权人发明人1ZL200410026366.2陶瓷基复合材料的连接方法西安鑫垚陶瓷复合材料有限公司成来飞,张立同,徐永东,刘小瀛,童巧英2ZL200710078430.5人工肝肾支持系统重庆山外山血液净化技术股份有限公司高光勇,任应祥3ZL200910025721.7直流融冰的主回路设置方法南方电网科学研究院有限责任公司,南京南瑞继保电气有限公司傅闯,田杰,康鹏,陈赤汉,晁剑,陈松林,赵杰,赵立进,张迅4ZL201010102928.2一种利用核磁共振测井资料连续定量评价储集层孔隙结构的方法中国石油天然气股份有限公司,中国石油大学(北京)匡立春,毛志强,孙仲春,肖亮,罗兴平5ZL201010129014.5一种自动变速器电控系统失效时的液压控制系统盛瑞传动股份有限公司刘祥伍,周立亭,于新涛,宋延彬,梁健,郭明忠,李卫强6ZL201010222155.1一种加氢裂化催化剂及其制备方法中国石油化工股份有限公司,中国石油化工股份有限公司抚顺石油化工研究院杜艳泽,关明华,王凤来,刘昶7ZL201010569722.0一种上报信道状态的方法及装置大唐移动通信设备有限公司苏昕,高秋彬,拉盖施,沈祖康8ZL201110393379.3一种超声成像的方法和装置深圳迈瑞生物医疗电子股份有限公司,深圳迈瑞科技有限公司桑茂栋,冒祖华,吉挺澜9ZL201110437098.3一种测井方法中国石油化工股份有限公司,中石化胜利石油工程有限公司随钻测控技术中心杨锦舟,李作会,林楠,魏宝君,刘庆龙,隋旭强,肖红兵10ZL201210082553.7黄蜀葵花总黄酮提取物及其制备方法江苏苏中药业集团股份有限公司唐仁茂,徐柏颐,唐海涛,欧阳强,闵文林,周九兰11ZL201220387259.2可隐藏送风口的空调器邯郸美的制冷设备有限公司,广东美的制冷设备有限公司毛先友,刘志强,万明,刘期伟,李向阳,李强,张浩,陈良锐,李雯,汪海路12ZL201220632953.6硬开顶集装箱及顶盖吊具南通中集特种运输设备制造有限公司,中国国际海运集装箱(集团)股份有限公司吕国权,陆新林,王爱军,李爱华13ZL201280073663.5一种加工性能改善的交联聚乙烯组合物国家能源投资集团有限责任公司,北京低碳清洁能源研究院陈学连,梁文斌,牛艳华,赖世燿14ZL201310010944.2双智能水下机器人相互对接装置及对接方法哈尔滨工程大学李晔,庞永杰,李一鸣,吴琪,苏清磊,陈鹏云,姜言清15ZL201310011055.8一种实现分段温度补偿的无热阵列波导光栅武汉光迅科技股份有限公司徐来,赵小博,胡家艳,马卫东16ZL201310036767.5一种基于手性四面体构象改变对目标DNA 浓度进行检测的方法江南大学胥传来,严文静,匡华,王利兵,徐丽广,马伟17ZL201310208594.0星敏感器和有效载荷的姿态基准偏差估计与修正方法北京控制工程研究所刘一武,汤亮,陈守磊,朱莲枝,丁嘉茹,严欣颖,刘端,胡少春,郭廷荣18ZL201310248660.7氮化物荧光粉、其制备方法及包括其的发光装置北京有色金属研究总院,有研稀土新材料股份有限公司刘荣辉,刘元红,徐会兵,何华强附件:第二十二届中国专利奖预获奖项目.pdf
  • 中科院研发出基于二硫化钼/碳纳米复合材料的钠型双离子电池
    p   近日,中国科学院深圳先进技术研究院集成所功能薄膜材料研究中心研究员唐永炳及其研究团队,成功研发出一种基于二硫化钼/碳纳米复合负极材料的钠型双离子电池。相关研究成果以Penne-Like MoS2/Carbon Nanocomposite as Anode for Sodium-Ion-Based Dual-Ion Battery为题,在线发表在Small上。 br/ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201803/insimg/6177974b-2ba4-49ab-b8d7-66db7c701632.jpg" title=" 1.jpg" / /p p   锂离子电池已广泛应用于便携式电子设备、电动汽车、储能设备等领域。但由于锂离子电池的大规模应用加之锂资源的匮乏和分布不均,使锂离子电池成本日益攀升,难以满足未来能源存储的低成本、长循环寿命、安全可靠等要求。钠与锂有相似的物理化学性质,且储量丰富、成本较低,使得基于钠离子的二次电池体系的研究近年来受到广泛关注。然而钠离子半径较大,导致Na+在电极材料中扩散缓慢,从而影响电池的倍率性能和循环性能。 /p p   为改善钠离子电池的倍率性能和循环性能,唐永炳研究团队成员朱海莉、张帆等成功研发出一种基于二硫化钼/碳纳米复合负极材料的钠型双离子电池。该电池采用膨胀石墨作为正极材料,具有分级结构的MoS2/C纳米复合材料作为负极材料。由于这种具有分级结构的MoS2/C具有更宽的晶体片层间距,有利于提高Na+在其中的离子扩散速率,且碳层的引入提高了材料的电导率,使基于该MoS2/C纳米复合材料的钠型双离子电池具有良好的倍率性能和循环性能。结果表明,该电池在1.0-4.0V的电压区间,2C的电流密度下循环200圈后容量保持率为85%。这种新型钠离子电池在低成本、环保大规模储能领域,如清洁能源、智能电网等具有潜在的应用前景。 /p p    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 研究工作得到了国家自然科学基金、广东省科技计划项目、深圳市科技计划项目等的资助。 /span /p p br/ /p
  • Nature Communications:低温AFM助力六方氮化硼气泡中的氢分离研究进展
    在原子尺寸容积内存储微量气体是科研中一项十分有意义的研究。其中,阻隔材料的选择是影响气体存储的重要因素:该材料必须形成气泡来包覆存储的气体,且必须在端环境下保持稳定,更重要的是材料本身不能与存储气体有任何的化学或者物理的相互作用。近期,中国科学院上海微系统与信息技术研究所的王浩敏研究员课题组就这项研究在《自然-通讯》杂志上发表了通过等离子体处理实现六方氮化硼气泡中的氢分离的工作。单层六方氮化硼(h-BN)是一种由硼氮原子相互交错组成的sp2轨道杂化六边形网格二维晶体材料。在所有现已发现的范德瓦尔斯(van der Waals )单原子层二维材料(2D Materials)中,h-BN是的缘体,因此其被认为是纳米电子器件中理想的超薄衬底或缘层材料。此外,h-BN还拥有高的热稳定性及化学稳定性,使得它被广泛研究并应用于超薄抗氧化涂层。研究表明,h-BN在1100 ℃以下都能很好地发挥其稳定的抗氧化功效。图1. 通过等离子体技术从烷中提取氢气到h-BN夹层中形成气泡同石墨烯类似,h-BN的六边形网格在结构不被破坏的情况下可以阻止任何一种气体分子或原子穿透其平面,却对直径远小于原子的质子无能为力。这一有趣的特性使之能够被很好地应用于“选择性薄膜”、“质子交换膜”等能源领域。而在本文报道的研究中, 王浩敏研究员团队则巧妙地利用h-BN这一特性,结合等离子体技术,对碳氢化合物气体(烷、乙炔)、氩氢混合气进行了“氢提取”,并将其稳定地存储在h-BN表面的微纳气泡中(图1)。图2. a: 六方氮化硼光学显微镜照片;b: 六方氮化硼34K与33K温度下的低温原子力显微镜形貌图,当温度34K时存在气泡(图中亮色部分);c: 六方氮化硼气泡不同温度下的高度,当温度33K时气泡消失低温原子力显微镜的测量结果(图2)证实了被六方氮化硼气泡包覆的气体确实是氢气。文章中,作者使用了一套attoAFM I低温原子力显微镜,显微镜可以在闭循环低温恒温器attoDRY1100(attoDRY2100系列)内被冷却到低的液氦温度。在特定的测量温度下,原子力显微成像结果可以帮助研究者证实在33.2 K ± 3.9 K温度的时候气泡消失,证实了被包覆气体的消失。由于该转变温度与氢气的冷凝温度(33.18K)接近,该实验结果可以证明氢气气体存在与六方氮化硼气泡内。该工作成功地在六方氮化硼内存储了氢气,为未来氢气的存储提供了全新的方法。图3. 低温强磁场原子力磁力显微镜以及attoDRY2100低温恒温器 低温强磁场原子力磁力显微镜attoAFM/MFM I主要技术特点:-温度范围:1.8K ..300 K-磁场范围:0...9T (取决于磁体, 可选12T,9T-3T矢量磁体等)-工作模式:AFM(接触式与非接触式), MFM-样品定位范围:5×5×5 mm3-扫描范围: 50×50 mm2@300 K, 30×30 mm2@4 K -商业化探针-可升PFM, ct-AFM, SHPM, CFM,atto3DR等功能 参考文献:Haomin Wang et al, Isolating hydrogen in hexagonal boron nitride bubbles by a plasma treatment, Nat. Commun., 2019, 10, 2815.
  • Science:科学家测定超高热导率半导体-砷化硼的载流子迁移率
    中国科学院国家纳米科学中心研究员刘新风团队联合美国休斯顿大学包吉明团队、任志锋团队,在超高热导率半导体-立方砷化硼(c-BAs)单晶的载流子扩散动力学研究方面取得进展,为其在集成电路领域的应用提供重要的基础数据指导和帮助。相关研究成果发表在《科学》(Science)上。 随着芯片集成规模的进一步增大,热量管理成为制约芯片性能的重要因素。受到散热问题的困扰,不得不牺牲处理器的运算速度。2004年后,CPU的主频便止步于4GHz,只能通过增加核数来进一步提高整体的运算速度,而这一策略对于单线程的算法无效。2018年,具有超高热导率的半导体c-BAs的成功制备引起了科学家的兴趣,其样品实测最高室温热导率超过1000 Wm-1K-1,约为Si的十倍。c-BAs具有高的热导率以及超弱的电声耦合系数和带间散射,理论预测c-BAs同时具有颇高的电子迁移率(1400 cm2V-1s-1)和空穴迁移率(2110 cm2V-1s-1),这在半导体材料系统中颇为罕见,有望将其应用在集成电路领域来缓解散热困难并可实现更高的运算速度,因而通过实验来确认这种高热导率的半导体材料的载流子迁移率具有重要意义。 虽然c-BAs已被制备,但样品中广泛分布着不均匀的杂质与缺陷,对其迁移率的测量带来困难。一般可以通过霍尔效应,测定样品的载流子的迁移率,而电极的大小制约其空间分辨能力,并直接影响测试结果。2021年,利用霍尔效应测试的c-BAs单晶的迁移率报道结果仅为22 cm2V-1s-1,与理论预测结果相差甚远。具有更高的空间分辨能力的原位表征方法是确认c-BAs本征迁移率的关键。 通过大量的样品反复比较,科研团队确定了综合应用XRD、拉曼和带边荧光信号来判断样品纯度的方法,并挑选出具有锐利XRD衍射(0.02度)窄拉曼线宽(0.6波数)、接近0的拉曼本底、极微弱带边发光的高纯样品。进一步,科研团队自主搭建了超快载流子扩散显微成像系统。通过聚焦的泵浦光激发,广场的探测光探测,实时观测载流子的分布情况并追踪其传输过程,探测灵敏度达到10-5量级,空间分辨能力达23 nm。利用该测量系统,研究比较了具有不同杂质浓度的c-BAs的载流子扩散速度,首次在高纯样品区域检测到其双极性迁移率约1550 cm2V-1s-1,这一测量结果与理论预测值(1680 cm2V-1s-1)非常接近。通过高能量(3.1 eV,400 nm)光子激发,研究还发现长达20ps的热载流子扩散过程,其迁移率大于3000 cm2V-1s-1。 立方砷化硼高的载流子和热载流子迁移速率以及超高的热导率,表明可广泛应用于光电器件、电子元件。该研究厘清了理论和实验之间存在的差异的具体原因,并为该材料的应用指明了方向。 研究工作得到中科院战略性先导科技专项(B类)、国家自然科学基金、国家重点研发计划与中科院仪器设备研制项目等的支持。  图1.c-BAs单晶的表征。(A)c-BAs单晶的扫描电镜照片;(B)111面的X射线衍射;(C)拉曼散射(激发波长532 nm);(D)极微弱的带边发光(激发波长593 nm)及荧光成像(插图,标尺为10微米)。 图2.瞬态反射显微成像和在c-BAs中的载流子扩散。(A)实验装置示意图,激发波长为600 nm探测波长为800 nm;(B)不同时刻的瞬态反射显微成像(标尺1微米);(C)典型的载流子动力学;(D)0.5 ps的二维高斯拟合(E)不同时刻的载流子分布方差随时间的演化及载流子迁移率,误差标尺代表95%置信拟合区间。
  • 首批“双一流”名单尚未公布,近20所高校低调披露已入选!
    p   继新疆大学、云南大学、哈尔滨工业大学各自通过官方渠道披露本校已经进入国家“双一流”建设战略布局中的“世界一流大学”建设之列后,上海交通大学党委书记姜斯宪也于近日透露该校已入选第一批一流大学建设名单。 /p p   此外,来自军队高校系统的国防科技大学则于9月13日通过官方微信公众号表示,新调整组建的国防科技大学已作为“军队唯一纳入国家‘双一流’建设支持的院校”进入国家“双一流”建设战略布局中的42所“世界一流大学”建设之列。 /p p   而9月13日下午,在中国人民大学2017级新生开学典礼上,中国人民大学党委书记靳诺表示,近期,国务院将公布首批“世界一流大学和世界一流学科”拟建设名单,中国人民大学正以昂扬进取的姿态,向着“人民满意、世界一流”的目标奋斗。 /p p strong   迟迟未能公布的首批“双一流”名单 /strong /p p   “双一流”建设是中国高等教育领域继“211工程”、“985工程”之后的又一国家战略。据教育部部长陈宝生介绍,“双一流”建设不是“211工程”、“985工程”的翻版,也不是升级版,更不是山寨版,它是一个全新的计划。 /p p   2015年10月,国务院公布的《统筹推进世界一流大学和一流学科建设总体方案》提出加快建成一批世界一流大学和一流学科,国家“双一流”建设由此拉开大幕。 /p p   随后,2016年2月,教育部印发的《教育部2016年工作要点》明确要求加快“双一流”建设。2017年1月,教育部、财政部、国家发改委联合印发的《统筹推进世界一流大学和一流学科建设实施办法(暂行)》明确指出,“双一流”建设“每五年一个建设周期,2016年开始新一轮建设。建设高校实行总量控制、开放竞争、动态调整。” /p p   2017年全国两会期间,教育部部长陈宝生在回答“双一流”相关问题时表示,“到此为止,‘双一流’建设顶层设计、配套制度、工作方案、遴选标准、遴选机构、工作程序都具备了……我们最近正在组建专家委员会,在专家委员会基础上,确定标准进行遴选,争取上半年完成这个程序,公布第一批建设学校和学科的名单。” /p p   其实,早在今年6月,教育部回应网上传言时透露,拟在8月底左右公布国家世界一流大学最终名单。 /p p   不过,在舆论的关注声中,这一名单至9月13日尚未宣布。 /p p strong   上海交大、川大、电子科大进入一流大学建设名单 /strong /p p style=" text-align: center " img width=" 400" height=" 465" title=" 微信图片_20170915084145.jpg" style=" width: 400px height: 465px " src=" http://img1.17img.cn/17img/images/201709/noimg/6f3ec5dc-4c28-4f82-89cd-2eb02ede1a7d.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong 网传42所一流大学名单 /strong /p p   在教育部拟公布官方名单前夕,郑州大学、新疆大学、云南大学等“211工程”大学进入国家“双一流”建设42所“世界一流大学”建设之列的消息通过云南、新疆等当地相关媒体或学校的报道进入公众视野。 /p p   据河南本地媒体大河报报道,今年7月24日,在河南省第十二届人大常委会第三十次会议上,河南省人民政府省长陈润儿作了《关于河南省2017年上半年国民经济和社会发展计划执行情况的报告》,公布了上半年河南经济社会发展“成绩单”。其中明确提到郑州大学进入国家世界一流大学建设行列,河南大学进入国家世界一流学科建设行列。 /p p   进入8月份,《新疆日报》报道称,新疆自治区主席雪克来提· 扎克尔今年8月13日到新疆大学新校区迁址用地调研时透露,“今年6月,新疆大学已被教育部列入国家‘双一流’建设战略布局中42所‘世界一流大学’建设之列。” /p p   据云南大学法学院官网报道,8月24日,云南大学法学院举办了法学院2017级新生、家长见面会,该校法学院院长高巍在见面会上“和大家分享了一则喜讯,云南大学已经列入国家培养世界双一流大学的名单中,2017级的新生将见证云南大学开启新的篇章”。 /p p   值得一提的是,云南大学、新疆大学均为“211工程”高校,而非“985工程”高校。而“985工程”高校中,哈尔滨工业大学、上海交通大学、四川大学、电子科技大学等高校也已通过官方渠道披露本校进入国家“双一流”建设战略布局中的42所“世界一流大学”建设之列的消息。 /p p   哈工大副校长、哈工大(威海)校长徐晓飞在2017级新生开学典礼上表示,“最近,经国家批准,我们又成为‘双一流’建设中‘世界一流大学建设A类高校’。” /p p   同样面对2017级新生,上海交通大学党委书记姜斯宪9月10日晚在“开学第一课”上说:“今年,‘双一流’建设全面启动。这是继实施211工程、985工程之后,党中央、国务院对高等教育发展做出的重大战略决策部署,上海交大已入选第一批一流大学建设名单,形成了建设方案,绘就新一轮战略发展蓝图。” /p p   另据四川新闻网9月13日报道,四川大学与电子科技大学双双入围教育部双一流大学最终名单。 /p p strong   多所院校以一流学科身份进入“双一流”行列 /strong /p p   除了上述通过官方渠道宣布入选国家“双一流”建设42所“世界一流大学”建设之列的高校外,还有多所高校近期发布了以一流学科身份进入到“双一流”建设之列的消息。 /p p   譬如,中国音乐学院官网在9月8日发布消息,学院党委书记、院长王黎光在“全球音乐院校校长交流季”志愿者动员大会上表示学校以一流学科身份进入到“双一流”行列。 /p p   另据中央财经大学沙河校区网9月12日消息,中央财经大学校党委书记傅绍林在校教师节表彰大会上通报了学校在招生、“双一流”建设、一级学科点申报的可喜成绩。他表示,编制的“双一流”建设方案得到了评估专家和教育部的充分肯定,目前已经上报国务院,正等待批准。 /p p   9月12日出版的《重庆日报》报道,西南大学副校长崔延强介绍,西南大学将以生物学学科群为基础,建设居于国内前列或国际前沿的高水平学科。此外他表示教育部已将西南大学列为一流学科建设高校,目前确定了重点建设生物学学科群,已先期投入3亿元建设经费。 /p p   海南大学官方微信公众号9月12号发布消息,海南大学校长李建保在海南大学2017级本科生开学典礼暨军训动员大会宣布,海南大学被教育部列入国内一流学科建设高校建议名单,迎来了新的重大发展机遇。 /p p   此前,四川当地媒体四川在线8月15日曾报道,西南交通大学、西南财经大学、西南石油大学、成都理工大学、四川农业大学、成都中医药大学入选一流学科拟建设高校名单。 /p p   在入选一流学科建设名单的高校中,西南大学、西南财经大学、中央财经大学、海南大学、四川农业大学、西南交通大学系“211工程”高校 西南石油大学、成都理工大学、中国音乐学院、成都中医药大学既非“985工程”高校,也非“211工程”高校。 /p p strong   国防科大成军队唯一纳入国家“双一流”建设支持院校 /strong /p p   作为首批进入国家“211工程”建设计划的院校,也是军队唯一进入国家“985工程”建设行列的院校,国防科技大学入围国家“双一流”建设战略布局中的42所“世界一流大学”建设之列也在意料之中。 /p p   国防科技大学官方微信9月13日发布题为“国防科技大学2018年硕士研究生招生简章发布!”的文章称,“国防科技大学是一所直属中央军委领导的军队综合性大学,是国务院首批批准有权授予硕士、博士学位的院校,是全国首批设立研究生院的22 所高校之一,是首批进入国家‘211 工程’建设计划的院校,是军队唯一进入国家‘985工程’建设行列的院校,也是军队唯一纳入国家‘双一流’建设支持的院校。” /p p   国防科技大学的前身是1953年创建于哈尔滨的中国人民解放军军事工程学院,即著名的“哈军工”。1970年,学院主体南迁长沙,改名为长沙工学院,1978年改建为国防科学技术大学,1999年组建新的国防科学技术大学。 /p p   今年7月19日,新调整组建的军事科学院、国防大学、国防科技大学成立大会暨军队院校、科研机构、训练机构主要领导座谈会在京举行。新调整组建的国防科技大学以国防科学技术大学、国际关系学院、国防信息学院、西安通信学院、电子工程学院,以及解放军理工大学气象海洋学院为基础重建,校本部设在长沙,内设学院位于长沙、南京、武汉、合肥等地。 /p p strong   中国人大披露:国务院近期将公布首批“双一流”拟建设名单 /strong /p p   9月13日下午,中国人民大学2017-2018学年开学典礼在世纪馆举行。中国人民大学党委书记靳诺发表《珍惜学缘,做一名合格的人大人》的讲话。 /p p   靳诺书记表示,在教育部2013年公布的全国最新一轮一级学科评估结果中,中国人大排名第一的一级学科数量达到9个,在人文社会科学领域位居全国高校首位,学科总数排名位居全国高校第三位。近期,国务院将公布首批“世界一流大学和世界一流学科”拟建设名单,中国人民大学正以昂扬进取的姿态,向着“人民满意、世界一流”的目标奋斗。 /p p style=" text-align: right "   (主要来源:澎湃新闻,有修改) /p p /p p /p p /p
  • 携手建设双一流 中国农大理学院与岛津合作实验室成立
    6月29日,正值荷风送香的初夏时节,中国农业大学理学院与岛津企业管理(中国)有限公司“合作实验室”成立揭牌仪式在中国农业大学理学院隆重举行。出席仪式的主要领导和嘉宾有:中国农业大学理学院院长周志强教授、中国农业大学理学院副院长王鹏教授;岛津分析测试仪器市场部胡家祥部长、分析仪器事业部营业部李颖经理等20余人。 揭牌仪式现场 中国农业大学理学院副院长王鹏教授主持了揭牌仪式。在介绍了参会嘉宾后,首先代表学院对岛津公司各位到来表示了欢迎。岛津分析测试仪器市场部胡家祥部长首先发表致辞,他谈到:岛津公司做为世界顶级分析仪器供应商之一,自1875年创立以来始终坚持“以科学技术为社会做贡献”的创业宗旨,为实现“为了人类和地球的健康”这一经营理念不断努力,开拓创新。在过去的一年里,岛津公司继续强化技术创新,并结出累累硕果,推出了一系列领先业界的先进分析测试技术与产品。今年在ASMS上更是推出了重量级的三重四级杆飞行时间质谱LCMS-9030。岛津公司希望加强与中国农业大学等国内知名高等学府的合作,更好地服务于优质人才培养和创新成果研发。 随后,中国农业大学理学院院长周志强教授发表致辞,他谈到:很高兴见证这一重要时刻——与岛津合作实验室的成立。中国农业大学理学院与岛津公司从很早以前就开始了合作,特别是近几年随着岛津的不断发展,联系愈加密切。岛津公司的产品在多个学科的研究工作中发挥了重要的作用。学院第三方的发展更是希望今后得到岛津公司更大助力,希望双方能够借助合作实验室这一平台,加强实质合作,实现优势互补,创造机遇,共同发展,为中国农业大学理学院的双一流建设做出贡献。 在仪式的高潮,双方领导签署合作实验室协议并为合作实验室揭牌,这一时刻开启了双方强强联手共同推动双一流事业的征程。合作实验室的建立将力求为中国农业大学理学院双一流建设提供助力,岛津公司亦将凭借北中国农业大学理学院雄厚的科研实力,与前沿科学工作者碰撞产生技术成果,研发出更加先进的分析仪器产品。 中国农业大学理学院院长周志强教授(左)与岛津分析测试仪器市场部胡家祥部长为合作实验室签订协议并揭牌揭牌仪式参加人员在中国农业大学理学院合影留念 揭牌仪式后,双方开展了学术分享,这位双方相互深入了解提供了良好的机会。农业部环境检测所贺泽英博士带来题为《QuEChERS前处理技术用于污染物残留分析》的报告 岛津公司分析测试仪器市场部王子君带来题为《融合创新科技,畅享科研分析—岛津GC/GCMS前沿科技分享》的报告 岛津公司分析仪器事业部宋爽带来题为《岛津—您可信赖的合作伙伴》的报告关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 数十载筑基,聚势打造划时代的中国试验机——访鲲鹏仪器创始人刘东升、李捷
    中国市场,被认为是世界上最大的试验机市场。巨大的市场必然会培育出众多的试验机厂家。遗憾的是,中国市场长期被进口试验机品牌垄断,而国产试验机企业只能在中低端市场打价格战。近年来,随着国外高端设备陆续对国内禁售,我国政府对仪器设备的支持政策持续发力,国内试验机企业开始聚焦到高端试验机的研制与开发上,中国市场也逐渐出现了一批可以代表国产试验机水平、能够参与国际竞争的厂家和团队。广州鲲鹏仪器有限公司(以下简称“鲲鹏”),便在此背景下诞生。提及鲲鹏,或许会有人觉得陌生,因为这是一家成立还不足三年的“新”公司,但鲲鹏的几位创始人,想必大家都很熟悉,因为他们是拥有几十年从业经验的“老”试验机人,同时吸纳了国际上具有先进控制技术研发能力的顶尖人才加入。这样的团队推出的第一代产品——BOYI 2025系列电子万能材料试验机,先后获得了2023年度iF设计奖和2024年度红点设计奖两个国际大奖,为国内试验机行业首次获此殊荣。基于此,仪器信息网于近日特别采访了鲲鹏创始团队中的两位创始人——刘东升先生和李捷先生,请他们详细聊一聊鲲鹏的创立和发展、理念与追求、产品和技术。采访合影:刘东升先生(中);李捷先生(右)见证试验机行业发展数十年,鲲鹏载梦再出发众所周知,中国的试验机厂家众多,品牌也多,特别是2000年后的新世纪,进入了中国试验机厂家数量增长最快的十几年,同时也进入了中国试验机行业技术人员大分散和大稀释的过程。那时候,某个试验机厂家里的一位技术骨干或者管理人员都有可能出来成立一个新公司、创建一个新品牌,大家生产着相似的产品且各自为战,对产品性能的要求不高,能用就行。多年来,国内试验机厂家的数量看似波澜壮阔般增加,但分散的人才、分散的资金以及为了生存而进行的恶性竞争和内卷,使得绝大多数公司根本没有能力开发新产品。国内巨大的市场虽为试验机厂家提供了一定的发展空间,却也培养了这些企业在技术创新上的惰性。想要开发出一款升级换代的好产品,需要汇集各个专业领域的人才,他们要具备多年的经验和专业的知识,还要进行多方协作。此外,较为充足的预算、数年的研发时间等也都缺一不可。现实却是,鲜有厂家能够具备这些必要条件。为了生存,大多数企业只能生产同质化的产品和进行价格竞争,创新根本无从谈起。反观国际市场,几家大型试验机制造商如美国INSTRON、日本SHIMADZU、德国Zwick、美国MTS等,集中了全球最顶尖的试验机专业人才,有底蕴、有资金,占据了全球80~90%的高端市场。以岛津为例,其拥有近110年的材料试验机生产历史,在日本市场的占有率高达60%。同样,INSTRON、Zwick、MTS等也在全球不同行业中占据了垄断地位。相较之下,虽然中国试验机厂家的数量远超这些国际制造商的总和,但我国试验机产品的技术水平却要弱于他们,至今没有哪个国产试验机厂家能够与这些国际制造商进行正面较量。其实,国产试验机在八九十年代也曾努力过,尝试进行技术引进和合作,并取得了阶段性成功。例如,济南试验机厂引进岛津UH-50T液压万能材料试验机技术,获得了机械工业部的表彰。然而,二期AG-10TE电子万能材料试验机的本地化合资生产,由于各种原因被搁浅,使得国产电子万能试验机在追赶国际先进水平的道路上失去了一次难得的跨越机会。再后来,国内最具规模的试验机厂家——深圳新三思被美国MTS收购,原本聚集起来的技术力量再一次被拆散,被迫出走的技术和营销人员又派生出一大批与原厂家有各种关联的“三思系”新厂家,使得国产试验机企业在做大做强的道路上再受打击。现阶段,国内试验机距离国际先进水平起码落后二十年,这一状况导致国产试验机企业在高端产品研发上难以吸引和留住顶尖人才。鲲鹏的创始团队大部分成员,从事试验机行业数十载,是中国试验机行业发展的亲历者和见证者。作为试验机人,他们虽供职于外国公司,但看到国内试验机行业的现状,也时常感到痛心和忧虑。数十载的打拼,已经让他们拥有了舒适的生活、高薪的工作,却因为一个想法——“把中国的材料试验机做起来,能够和国际知名厂家竞争”,让他们选择了创业,召集了一群拥有同等经历和梦想的伙伴,组建了一支高水平的研发团队,踏上了“新征程”。三句话,诠释鲲鹏的理念和追求“新产品:诞生即经典,划时代的中国试验机”鲲鹏团队的核心成员都来源于国际大公司,拥有丰富的试验机设计、制造、销售及服务经验,平均在试验机市场工作长达19年,想必这在全球试验机厂家中也是绝无仅有。凭借对国际知名品牌试验机产品的深层次了解,以及对中国试验机市场的认知和对试验机行业的热爱,鲲鹏团队耗时多年精心打磨,终于推出了BOYI 2025系列产品。从设计到制造,再到推向市场,每一个环节都采取了业内最严苛的要求,一个部件一个部件的反复推敲,一张图纸一张图纸的反复修正,大量的打样再打样,直到满意才最后定型,就是要努力让它成为“中国划时代水准的新一代试验机产品”。经过国家相关权威计量部门的检测及相关专家的评价,BOYI 2025系列产品完全达到了鲲鹏设计之初的目标。鲲鹏的理想是“让中国用户以国产试验机的价格享受到与进口品牌相媲美的品质和服务,实现产品性价比的最优化”。“诞生即经典”,这不是随便说说。BOYI 2025系列是经过鲲鹏团队集二三十年间在试验机行业的耕耘、知识积累,以及对国内外试验机从设计制造到技术服务等各个环节的深度参与,由多方面专业人士的合作才诞生出来的好产品;是对市场做了大量研究,再结合国际上通用高端仪器产品的设计理念,以及在一线获取大量客户真实需求后而研制出的创新性产品。它经得住市场的考验,经得住产品之间的较量,具备与国际大厂、大品牌同台竞技的能力和底气。自BOYl 2025系列产品推出以来,迅速得到了国内一些高端客户的认可和非常积极的评价。如清华大学、华南理工大学、四川大学、中国科学院等离子体物理研究所、中国科学院金属研究所、美的工业技术研究院、贵州省林科院、甘肃海亮新能源材料、深圳劲嘉聚能科技、湖南东映碳材料、广州联茂电子科技、钟化(佛山)高性能材料有限公司等,都已成为B0Yl 2025系列产品的首批用户。“新舞台:面向世界,开创高端试验机新格局”前面提到,鲲鹏BOYl 2025系列先后获得了iF设计奖和红点设计奖。这个过程中,是同一台试验机经过两次空运前往德国、两次海运返回中国,每一次海运要在海上漂泊三个月,两次就是六个月,期间还要面临“集装箱雨”等现象。而鲲鹏的产品,完全经受住了海上的高湿度、高温差以及盐雾环境的多重考验。电子万能试验机的可靠性主要取决于两大部分,一是主机,二是附件。鲲鹏BOYl 2025系列在主机部分的设计制造、工艺过程、品质检验等环节都釆取了高标准和高要求,比如生产组装环节就有近160道工艺流程,各个工位都有专门的工作台保障装配质量,结合使用高性能检测标定仪进行检验等措施,对主机进行全方面品质保证。鲲鹏对各类附件也从设计生产、选择配套等各环节严格把控,并从公司层面杜绝现在较普遍的由销售人员随意搭配行为。另外,鲲鹏产品还要经过震动试验等,来评价包装、运输等环节对产品的影响。两位创始人表示,鲲鹏并不想与众多国产试验机厂家抢市场、争占有率,鲲鹏的目标是高端试验机市场、是进口试验机市场。鲲鹏申请iF设计奖和红点设计奖,就是想从侧面证明鲲鹏的产品质量过硬且可靠;同时也向业内证明,鲲鹏是一个高标准、高要求、重承诺、敢于亮剑、敢于登台、敢于和国际最知名的试验机产品较量的中国厂家。所以,鲲鹏的“舞台”是让广大客户更好的认识鲲鹏公司、认识鲲鹏的产品,从而打破外国某些势力对中国高端仪器市场的打压和对高端客户的使用限制。鲲鹏广州总部应用中心和苏州工厂一种、两种仪器产品取得突破容易,但整个高端仪器行业的全面突破任重道远。令人欣慰的是,许多中国企业都已有此意识并付诸行动。另外,国家相继出台了许多鼓励和支持国产高端仪器发展的政策,这不仅极大增强了鲲鹏团队的信心,也让鲲鹏团队更加坚信当初选择的道路是正确且及时的。“新目标:选型零成本,使用零风险,创造新价值”鲲鹏针对“新目标”提出了三个核心要点。一是“选型零成本”。客户想要在众多产品中选出一个适合自己的好产品,这个过程繁琐而漫长,涉及反复的调研和对比,到多个厂家去实际测试样品等,非常耗时耗力。即便如此,最终的结果也未必完全如意。鲲鹏希望能够通过产品品质和服务的多重保障,以及多项新技术的导入和应用(如AI技术),把客户的选型成本降到最低。可以说,“零成本”是鲲鹏所追求的一个终极目标。二是“使用零风险”。在产品的使用过程中,客户可能会面临各种潜在风险,如设备故障、操作不当、维护保养不足,以及临时增加新样品造成的配套问题等,都可能产生很高的追加成本,甚至影响正常的试验工作。鲲鹏希望凭借过硬的品质以及独特的技术和服务,力求将客户的使用成本也降到最低。“零风险”,也是鲲鹏追求的终极目标之一。三是“创造新价值”,这是鲲鹏给客户做出的庄严承诺。选择使用鲲鹏试验机,力争做到“选型零成本、使用零风险”,其实就是鲲鹏带给客户的“价值”。鲲鹏希望通过推出高端试验机产品,能够切实助力客户的科研开发、品质管理等日常工作,使客户享受到超值的服务体验。两位创始人表示,打消客户的各种担心,在各个环节的零成本追求,绝不是一件简单的事,鲲鹏会通过严苛的品质要求、充分的保障措施,为客户安心使用鲲鹏的产品来保驾护航。倾听市场声音,与客户产生共鸣鲲鹏BOYI 2025系列产品已启动销售,客户或市场的初期反馈有哪些?首先,外观很漂亮。在外观设计上,鲲鹏花费了较大的人力、物力和时间,从数百个设计草案里优中选优,最后定型。产品一经推出就接连获得了国际设计界最有份量的两个大奖。BOYI 2025系列的设计理念充分体现了中国传统美学元素的特征。色彩方面,红色代表红红火火、也代表奋进向上,是中国人特别喜欢的颜色;黑色代表稳重、结实、可靠;金属银色则代表着现代和未来。三种颜色恰到好处的融合,就形成了鲲鹏试验机的色彩特点。结构与色彩的协调性方面,三种颜色的占比以及与各部分的协调,体现出了高端大气不落俗套的设计理念。特别是在一些细节的设计上集思广益,精艺求精。结构部件的加工尽量多开模,突出主机整体的曲线美。总之,力争在细节上展现出大国工匠的底蕴及精神。其次,价格比较高。因为价格与价值直接相关,价值才是鲲鹏的追求。做高品质的高端产品,替代进口并能站在世界试验机行业的最前列,能直接与国际大品牌较量和竞争是鲲鹏创立的初心。在设计制造、工艺流程及品质管控等诸方面都釆取了当前国际试验机行业最先进的理念和方法,如超前设计、精密制造、严苛品质管理等,较高成本的措施无疑会反映到产品的定价上。当然,大批量投放市场后的成本优化会是鲲鹏今后的课题之一。还有“新”。鲲鹏公司新、产品也新,甚至有些客户都没有听说过,所以难免会有各种担心的声音传出来。但随着鲲鹏产品的客户数量快速增加,认识鲲鹏并接受鲲鹏应该就是一件顺理成章的事。鲲鹏的试验机产品,是一代老试验机人和拥有自动控制领域顶尖知识的新生代人才共同的成果,也是代表中国试验机行业的新一代产品。两位创始人表示,鲲鹏现在要做的是与客户交心,一定要取得共鸣。所以,鲲鹏给客户推荐的一定是最具性价比的产品,是能够替代进口的高品质产品,物有所值的产品。经过市场的进一步下沉,再结合批量增加后降低成本的措施,鲲鹏品牌知名度的提升将指日可待。编者后记:一家新公司,想要赢得客户和行业的认可,并不是一件容易的事情。两位创始人却在采访过程中一直表现的自信且从容。我想,这份自信与从容应当是来源于鲲鹏公司的理念和追求、过硬的产品品质和具体可行的保障措施。尽管BOYI 2025系列刚刚问世,但鲲鹏已将电子万能材料试验机BOYI 2035系列、液压疲劳试验机系列等已提上日程,还计划向市场介绍未来试验机的概念机模型以及设计理念。虽然鲲鹏现在还是一家新公司,或许三、五年后就是一个拥有朝气和实力的知名品牌。让我们且行且看,静待花开。
  • 双氰胺检测推荐色谱柱TSKgel Amide-80
    近日,新西兰乳业出口的奶粉被曝检出含有类似三聚氰胺的化合物&ldquo 双氰胺&rdquo ,引起了众多消费者对乳品安全的担忧。 双氰胺(缩写DICY或DCD,氰胺的二聚体)是一种硝化抑制剂,用作三聚氰胺的生产原料及医药和染料中间体。有食品专家表示,虽然国际标准没有对食品中双氰胺可接受的残留量作出规定,但高剂量双氰胺还是对人体有毒害。 TOSOH公司的HILIC色谱柱TSKgel Amide-80在针对双氰胺的分析上极具优势。在此次事件中,新西兰国家质检机构 AsureQuality 及大型乳制品企业恒天然,均参考国际标准ISO/TS 15495,使用了TSKgel Amide-80色谱柱进行双氰胺的检测。 产品:TSKgel Amide-80(货号:21865) 【相关资料】 1.《TSKgel Amide-80色谱柱在分析奶粉中三聚氰胺三聚氢酸的应用》 2.《TSKgel Amide-80色谱柱分析肥料中的双氰胺》 3.《TSKgel NH2-100 色谱柱分析肥料中的双氰胺》 更多关于TSKgel® Amide-80色谱柱的信息请访问:www.separations.asia.tosohbioscience.com
  • 关于举办第十二届中国颗粒大会的通知(第二轮)
    各有关单位和科技工作者:为促进颗粒与粉体相关领域学术交流、推动学科发展和技术创新及助力人才成长,由中国颗粒学会主办,中国颗粒学会能源颗粒材料专业委员会、海南大学承办,由广州大学、华南理工大学共同协办的第十二届中国颗粒大会将于2022年8月19-22日在海南省海口市举办。大会围绕颗粒学相关领域的科研进展、产业发展和人才成长等展开交流,面向广大颗粒学与粉体行业及其化工、能源、材料、医药和环境等相关领域科技工作者征集科技论文(摘要),大会还将评选青年报告奖及优秀墙报奖,欢迎投稿参会。中国颗粒大会是应我会发展需要、继承我会历届学术年会的全国性高层次的颗粒学领域大型综合性学术会议。大会同期将举办颗粒/粉体仪器、设备、产品和应用展,包括颗粒/粉体测试分析仪器、制备设备、产品及其在化工、能源、材料、医药和环境等中的应用等内容,欢迎相关单位积极报名参展。一、学术委员会(1)学术委员会主席:李静海(2)学术委员会执行主席:朱庆山 陈运法 林鴻明*(3)学术委员会顾问:李 灿 孙世刚 马光辉 陈建峰 陈晓东 郭 雷 何鸣元 胡 英 李洪钟 李永旺 刘中民 彭 峰 王静康 谢在库 徐春明 余艾冰 袁 权 张锁江(4)学术委员会委员(按音序排列,*为台湾代表)安希忠 蔡 挺 蔡小舒 曹达鹏 曹军骥 曹少文 曹学武 常 津 陈 诚 陈建峰 陈建新 陈 岚 陈 鹏 陈前进 陈巧艳 陈胜利 陈晓东 陈学元陈永奇 陈 煜 陈运法 程国安 楚锡华 邓德会 邓茂华* 冯 春 冯立纲 冯 胜 付信涛 付 艳 傅晓伟 傅彦培* 高思田 高 峡 高 原 葛广路 宫厚军 龚湘君 谷海峰 顾卫国 顾兆林 桂 南 郭 雷 郭庆杰 郭少军 韩永生 韩 召 郝红勋 郝新友 何鸣元 何 勤 何羽薇 何玉荣 侯曙光 胡富强 胡 钧 胡小烨 胡晓林 胡 英 胡宇光* 胡子平 黄 挺 黄肇瑞* 季顺迎 季松涛 贾春满 江燕斌 姜晓斌 金一政 库晓珂 李 春 李朝升 李春忠 李 泓 李江涛 李 力 李 攀 李 旗 李顺诚 李铁军 李 霞 李星国 李亚伟 李映伟 李永旺 李增和 李兆军 梁海伟 廖永红 林中魁* 刘宝丹 刘道银 刘福胜 刘俊杰 刘潜峰 刘如熹* 刘 伟 刘亚男 刘 宇 刘岳峰 刘兆清 刘中民 刘钟馨 刘忠文 陆 杰 陆 明 罗 坤 吕且妮 吕万良 吕友军 马建民 毛世瑞 梅其良 倪木一 牛风雷 潘良明 彭 峰 彭 威 秦和义 秦明礼 邱郁菁* 任 飞 邵刚勤 沈少华 沈义俊 宋锡滨 宋兴福 蘇程裕* 苏 敏 苏明旭 孙世刚 孙学军 孙中宁 谈玲华 谭援强 陶东平 陶绪堂 田庆国 佟立丽 王德忠 王等明 王海龙 王 昊 王 辉 王静康 王利民 王 亮 王 伟 王孝平 王辛龙 王新明 王学重 王彦飞 王玉金 王远航 王 勇 王兆霖 王震宇 韦文诚* 魏 飞 魏严淞 魏永杰 吴传斌 吴汉平 吴立敏 吴 伟 伍志鲲 席广成 夏宝玉 向中华 解荣军 谢在库 谢志鹏 徐春明 徐 林 徐 强 徐维林 徐文杰 徐锡金 徐喜庆 许传龙 许人良 许文祥 薛 琨 杨 柏 杨 超 杨 芳 杨 军 杨世亮 杨为佑 杨 文 杨艳辉 杨 毅 杨正红杨志义 杨治华 尹大川 尹秋响 尹诗斌 于明州 于溯源 于新民 余 方 余 皓 元一单 袁 权 袁友珠 臧双全 曾海波 曾宇平 张炳森 张春桃 张国诚 张国军 张 洁 张立娟 张 强 张仁健 张铁锐 张伟儒 张现仁 张幸红 张亚培 张振杰 赵吉东 赵晓宁 赵永志 郑耿锋 郑宪清* 周 强 周 涛 周文刚 周已欣 周长灵 周志伟 朱庆山 朱晓阳 朱子新 邹晓新二、组织委员会(1)组织委员会主席:朱庆山 彭 峰(2)组织委员会执行主席:王体壮(3)组织委员会委员白红存 蔡 建 曹永海 陈常祝 陈 诚 陈 磊 陈鲁海 陈 琦 程新兵 褚良银 丁良鑫 邓培林 邓意达 杜 斌 冯广波 高 原 管小平 韩 召 洪长青 黄 玮 黄 欣 贾春满 康振烨 兰清泉 李 华 李嘉诚 李江涛 李 杰 李 静 李 攀 李晓明 李兆军 刘宝丹 刘丹彤 刘吉轩 刘俊杰 刘潜峰 刘瑞祥 刘晓雯 刘永卓 刘雨昊 刘兆清 刘钟馨 楼宏铭 卢思宇 罗俊明 吕页清 马晶晶 毛世瑞 穆华仑 聂保杰 欧阳婷 潘勤鹤 彭 峰 彭新文 朴洪宇 乔明曦 邵 奇 沈丹蕾 史晓磊 苏明旭 孙 臣 孙 婧 孙 伟 孙晓晖 唐 星 田红景 田庆国 田新龙 汪 伟 王 标 王春明 王东凯 王 辉 王利民 王林桂 王 娜 王 霆 王晓飞 王兴亚 魏严淞 武云飞 夏芸洁 夏志国 向茂乔 熊德华 徐 骥 徐锡金 许传龙 杨光星 杨 丽 杨 宁 杨增朝 叶 茂 尹俊连 余 皓 于明锐 于明州 喻 鹏 张 浩 张立娟 张 巧 张 宇 周 兰 周丽娜 周 玲 周素红 朱晓阳 三、学术分会场第1分会场:颗粒计算组织单位:大连理工大学、中国科学院过程工程研究所、浙江大学、东北大学、东南大学、华南理工大学分会主席:季顺迎、王利民、罗坤、安希忠、刘道银学术秘书:刘晓雯,华南理工大学,liuxw2021@scut.edu.cn会场简介:聚焦颗粒力学理论及模型、计算分析方法、软件开发和工程应用中的关键问题和难点问题,开展广泛的学术交流和讨论。分会场为力学、化工、能源、冶金、海洋、岩土及土木工程等领域中从事颗粒计算方面专家学者提供一个开放的交流平台,促进多学科的交叉融合,推动颗粒计算在基础理论、数值方法和工程应用中的发展。征文范围:(1)颗粒计算基本理论及数值方法;(2)颗粒计算软件开发及算例验证;(3)颗粒计算在化工、能源、冶金等领域的应用。第2分会场:氢能与燃料电池组织单位:海南大学分会主席:孙世刚学术秘书:田新龙,海南大学,tianxl@hainanu.edu.cn,康振烨,海南大学,zkang@hainanu.edu.cn会场简介:氢能和燃料电池是我国清洁能源发展和研究的重要方向,实现我国“碳减排”和“碳中和”的宏大目标,氢能和燃料电池将发挥着举足轻重的作用。今年初,我国又把氢能技术列为国家未来六大产业之一,氢能和燃料电池都将迎来更好的发展机遇。本次会议将邀请协会(学会)领导、院士、行业知名专家学者及企业代表,就国家相关政策和技术发展、行业科技发展目标和任务进行全面深入的探讨,总结国内外近期开发的氢能与燃料电池先进生产工艺和关键技术,指导我国氢能与燃料电池产业升级,推动我国能源结构调整和可持续发展,期待专家老师和技术人员踊跃参加。征文范围:电催化、电解水、质子交换膜燃料电池、固体氧化物燃料电池、氢能制备及产业化装置等关键科学与技术。第3分会场:工业结晶与粒子过程组织单位:天津大学国家工业结晶工程技术研究中心、 海南大学化学工程与技术学院分会主席:郝红勋学术秘书:黄欣,天津大学,022-27403200,x_huang@tju.edu.cn会场简介:分会场聚焦医药、食品、精细化工品、新材料等领域的工业结晶基础理论、结晶过程模型与模拟、结晶工艺开发与放大、工业结晶过程强化与连续化等方向最新研究进展,旨在完善我国工业结晶领域整体理论基础,提升相关方向原始创新能力,促进产学研的合作创新,加速相关行业企业的转型升级。分论坛拟邀请高等院校、科研院所、企业研发部门等领域内知名专家学者,围绕分会场主题从理论、方法、技术、产品等方面分享研究成果与经验。征文范围:(1)工业结晶基础理论;(2)晶体产品形态调控、多晶型预测、筛选与精准制备;(3)结晶工艺开发与放大;(4)工业结晶过程强化及连续化;(5)结晶过程计算流体力学及多相混合过程研究等。第4分会场:多相反应过程中的介科学组织单位:中国科学院过程工程研究所、中国科学院大连化学物理研究所、四川大学分会主席:杨宁、叶茂、褚良银学术秘书:管小平,中国科学院过程工程研究所,xpguan@ipe.ac.cn会场简介:介尺度行为是由大量单元组成的系统在全局与个体之间的尺度上形成的复杂时空结构。介科学是研究介于时空“微尺度”和“宏尺度”之间的介尺度非均匀结构演化规律的科学,在自然、工程和社会科学中具有普遍的理论研究价值和广阔的应用前景,有望开辟新的科学研究范式,探索认识传统学科的共性规律,孕育新的科学前沿;有助于综合整体论和还原论,探索不同知识体系中的共性原理,变革科研范式,揭示科学问题复杂性的根源,解决一系列从基础研究到工程应用的关键科学和技术问题。国际期刊《科学》指出,介科学是科学上的无人区,是科学史上的一个重大事件。多相反应过程的介尺度主要表现在分子到颗粒(包括气泡、液滴等)间的材料表界面时空尺度、以及颗粒到反应器整体间的颗粒聚团时空尺度。征文范围:能源、材料、化工、生物等涉及多相反应过程中材料表界面和反应器/设备等不同层次上的介尺度问题。会议专刊:化工学报, Chemical Engineering Journal, Current Opinion of Chemical Engineering第5分会场:双碳背景下的流态化技术及应用组织单位:中国颗粒学会流态化专业委员会分会主席:葛蔚、王勤辉学术秘书:王军武,中国科学院过程工程研究所,jwwang@ipe.ac.cn;熊勤刚,华南理工大学,qingangxiong@scut.edu.cn会场简介:流态化技术广泛应用于石油化工、循环流化床锅炉、煤化工、矿物加工等工业过程,在我国工业生产中占有极其重要的地位。国家“双碳”重大战略不但要求我国能源结构的重大调整,而且要求实现产业结构和工业过程的转型升级,这为流态化技术提供历史性发展机遇的同时也提出了重大挑战。本分会场将探讨“双碳”背景下流态化技术的新发展、新应用,为国内外高校、科研院所、企事业单位的同行提供交流平台,共同推动流态化技术的跨越式发展,为国家“双碳”目标的实现做出重要贡献。征文范围:(1)流化床中的流动、传热、传质和化学反应;(2)计算机数值模拟与放大;(3)流化床过程强化技术;(4)流态化及相关技术的工业应用。第6分会场:颗粒助力“双碳”:CO2捕集与催化转化新途径组织单位:宁夏大学、青岛科技大学分会主席:郭庆杰学术秘书:刘永卓,青岛科技大学,0532-84022506,yzliu@qust.edu.cn;马晶晶,宁夏大学,mjj_1022@163.com会场简介:“碳达峰、碳中和”是我国应对全球变暖提出的重大战略目标,而二氧化碳的捕集和利用是实现双碳目标的最直接方式。作为二氧化碳最大排放源,煤炭等化石能源燃烧CO2捕集技术有燃烧前捕集、燃烧中捕集和燃烧后捕集,它们的应用前景主要受制于其捕集成本,化学链、CO2吸附、膜分离等技术具有潜在优势。捕集的二氧化碳主要有封存和利用两种形式,而催化转化制备大宗化学品更具有应用前景。本分会场聚焦面向烟气源、工业源、空气源等不同来源二氧化碳的捕集和催化转化技术,追踪CO2吸附颗粒、催化颗粒、载体颗粒等捕集和转化颗粒最新进展,为我国双碳目标的实现贡献新技术、新思想和新模式。征文范围:(1)CO2吸附材料;(2)化学链技术;(3)CO2其他分离方法;(4)CO2活化技术;(5)CO2-FT合成;(6)CO2捕集-转化耦合技术;(7)多污染物联合脱除技术。第7分会场:微纳气泡特性及其应用组织单位:中国科学院过程工程研究所、中国科学院上海高等研究院、同济大学、北京化工大学、东南大学分会主席:胡钧、李兆军、李攀、张立娟学术秘书:张立娟,中国科学院上海高等研究院,zhanglijuan@sari.ac.cn会议秘书:王兴亚,中国科学院上海高等研究院,wangxingya@zjlab.org.cn;周兰,中国科学院过程工程研究所,01062521688,lzhou19@ipe.ac.cn会场简介:专委会于2018年10月18日在苏州成立,目前会员已经近300人。微纳米气泡基础研究和应用在近二十年来发展非常迅速,已成为一新兴领域。在我国微纳米气泡技术已经在环境治理、农业生产、水产养殖、工业清洗、消毒杀菌、医学成像以及医疗健康等领域的应用独树一帜、效果出色。专委会的成立旨在加强微纳气泡基础研究和应用的科学家和企业家的深入交流和合作,推动相关技术的高效研发和推广。目前专委会已批准成立7个示范性基地,在国内汇集了一批兴趣浓厚、勇于钻研、乐于分享的科学家、工程师和企业家,为微纳米气泡事业更好的造福人类不懈奋斗!本次分会拟邀请相关领域专家、学者、技术人员、企业界代表围绕分会场主题从理论、方法、技术、产品等方面分享研究成果与成功经验。征文范围:(1)微纳气泡基本性质;(2)微纳米气泡产生技术;(3)微纳气泡检测技术;(4)微纳气泡在各个领域的重要应用;(5)企业家论坛。第8分会场:生物气溶胶组织单位:北京大学、广东工业大学分会主席:要茂盛、安太成学术秘书:申芳霞,北京航空航天大学,fxshen@buaa.edu.cn会场简介:新冠肺炎疫情爆发以来,新冠病毒经气溶胶传播的作用在国内外已形成共识,对其进行持续有效的快速监测和控制对于当前疫情防控有重要意义。空气中除了可能有新冠病毒,还悬浮着大量的其他类型的微生物和生物来源的物质,统称为生物气溶胶,在室外和室内环境空气中无处不在,对人体和环境健康的重要性也逐渐受到关注。对生物气溶胶开展全面深入的基础研究和应用研究,对于改善室内外环境空气质量和保护人体健康至关重要。征文范围:生物气溶胶(包括新冠病毒)采集、检测、灭活、分析及其在大气科学、室内环境和环境健康等方面的基础和应用研究。第9分会场:绿色低碳过程中的气液固多相流科学及应用组织单位:天津大学、中国科学院过程工程研究所、宁波诺丁汉大学、清华大学分会主席:刘明言、杨宁、杨晓钢、王铁峰学术秘书:马永丽,天津大学,022-27404614,mayl@tju.edu.cn会场简介:气-液、液-固和气-液-固流动系统具有重要的工业应用。例如,气-液鼓泡塔、气-液(固)浆态床、液-固和气-液-固多相流反应装置系统等,可用作多相反应器;汽-液沸腾、汽-液冷凝、泥状颗粒污垢沉积和微纳材料功能表面等涉及到化工等过程工业;对于软物质颗粒,例如:乳状液、泡沫、液滴流等涉及食品、生物和医药等行业领域等。这些多相流的共同特征之一是都存在连续或离散的液相以及真实的相界面,从而形成了易变形、易聚并和易破碎的真实气泡和液滴等软物质颗粒流,使其在流动、混合、传递以及反应等方面表现出特有的规律性,涉及的科学及应用问题可加以详细探讨。征文范围:包括以绿色低碳过程工业为目标的气液固多相流基础及应用内容。具体涉及:(1)气液鼓泡流及浆态床;(2)液固和气液固多相流;(3)池沸腾和流动沸腾;(4)蒸汽冷凝;(5)泥状颗粒污垢表面上的沉积及微纳功能表面抑制;(6)乳状液、泡沫、液滴流等软物质颗粒流;(7)其他含液多相颗粒流。第10分会场:药物制剂与粒子设计组织单位:中国颗粒学会药物制剂与粒子设计专业委员会分会主席:崔福德学术秘书:石凯,南开大学,pharmparticle@126.com会场简介:本会场交流主题以工业药剂学及高端制剂的研究为中心,广泛征集相关领域的国内外专家学者、企业技术工作者以及在校学生的学术论文,展示其研究成果及新进展、新动态和新成果等。非常欢迎粉体加工技术及设备、药用辅料、以及粉体表征仪器(晶形、粒子形状大小、流动性、压缩成形性等)方面的专家们及企业针对粉体技术在药物制剂中的应用进行广泛交流,以期提高药物制剂技术的科学性、实用性及可生产性。本次分会将是药物制剂领域与粉体技术沟通的盛会,企业与高校、科研院所广泛交流的盛会,理论联系实际的盛会,中国工业药剂学产业化交流的盛会。征文范围:(1)粉体技术在固体药物制剂中的应用;(2)粉体性质的测试技术与研究进展;(3)药用辅料的粉体性质对产品质量的影响;(4)新型制剂设备的应用与研究进展;(5)制剂颗粒质量表征与控制;(6)在固体制剂生产过程中粉体性质的在线测定与控制策略;(7)从实验室研究到产业化过渡的难点与关键问题;(8)药物制剂的新剂型与新技术的产业化前景与难点;(9)基于功能性粒子设计的高端制剂。第11分会场:能源存储颗粒创造美好未来组织单位:中国颗粒学会能源颗粒材料专业委员会分会主席:魏飞、张强学术秘书:程新兵,东南大学,chengxb@seu.edu.cn会场简介:能源存储颗粒分会场结合颗粒与能源存储领域中急需解决的关键科学问题和难点技术问题,开展广泛的学术交流和讨论。通过对当前颗粒与能源存储研究现状和发展趋势的交流,凝练颗粒与能源存储的前沿研究方向,确定相应的关键科学问题,推动颗粒与能源存储领域在基础理论、研究方法和工业应用中的发展。征文范围:(1)能源材料(如锂离子电池、电容器、锂硫电池、金属电池、空气电池、燃料电池相关材料);(2)能源颗粒的表征技术;(3)能源颗粒的应用及产业化。第12分会场:面向未来的能源催化颗粒组织单位:中国颗粒学会能源颗粒材料专业委员会分会主席:彭峰、余皓、刘兆清学术秘书:王浩帆,华南理工大学,whf@scut.edu.cn;杜磊,广州大学,lei.du@gzhu.edu.cn会场简介:面向未来的能源催化颗粒分会场聚焦双碳目标下的催化关键科学问题,围绕光、电、热催化的前沿理念和创新技术开展广泛的学术交流和讨论,凝练能源催化的前沿研究方向,推动基于颗粒材料的能源催化技术在能源高效利用、CO2催化转化、电化学合成等领域的科学研究和工业应用,通过学术思想的碰撞催生面向未来的能源催化新理念与新技术。征文范围:与能源转化、利用相关的:(1)光催化;(2)电催化;(3)热催化;(4)光电催化。第13分会场:发光颗粒照亮未来组织单位:南京理工大学、华南理工大学、郑州大学、海南大学分会主席:曾海波学术秘书:李晓明,南京理工大学,lixiaoming@njust.edu.cn会场简介:发光材料的应用在生活中已经随处可见,从照明显示到医疗诊断再到防伪探测等等,可以说和我们的生活息息相关。在大规模应用的基础上,新型发光颗粒的开发与完善依然是国际研究领域及应用行业的前沿热点,获得了全世界的广泛关注。近年来,以钙钛矿量子点、碳纳米颗粒和荧光金属团簇为代表的纳米发光颗粒取得了飞速的发展,稀土荧光粉在材料体系、波长范围、发光特性等的发展也有目共睹,此外,有机发光颗粒和无机金属卤化物及其在生物医学等领域的研究也获得了较大的关注。经过两年的发展,相关领域更是取得了较大的突破,本分会场将为这些领域提供一个良好的学术交流平台,分享最新研究成果的同时促进交叉合作,为领域的进一步发展提供动力。征文范围:(1)半导体发光颗粒(镉基、铟基、钙钛矿等量子点,及其他微纳米发光材料);(2)稀土发光颗粒(照明、显示用稀土发光颗粒、长余辉发光颗粒、特种功能发光颗粒等);(3)碳及有机发光材料(碳荧光纳米颗粒、聚合物纳米颗粒、有机发光材料等);(4)团簇发光颗粒;(5)发光光谱、发光器件、发光应用及产业化。第14分会场:超微颗粒材料及应用(能源、环保、生物医学等)组织单位:中国颗粒学会超微颗粒专业委员会分会主席:费广涛、林鸿明(台湾)、艾德生学术秘书:刘潜峰,清华大学,liuqianfeng@tsinghua.edu.cn;徐锡金,济南大学,sps_xuxj@ujn.edu.cn会场简介:(2)氮化物陶瓷的制备、应用与评价;(3)氮化物涂层和薄膜的制备、应用与评价;(4)氮化物领域的其他研究和应用。第16分会场:核电厂气溶胶行为研究组织单位:清华大学、中国核电工程有限公司、中国原子能科学研究院、东南大学核科学与技术系分会主席:于溯源、周涛、牛风雷、魏严淞、王辉学术秘书:孙婧,中国核电工程有限公司,010-88022429,sunjing@cnpe.cc会场简介:在“碳中和”和“碳达峰”背景下,核电作为一种清洁、低碳、安全和高效的基础性现代能源,具有广阔的发展前景。与一般工业设施相比,核电最主要的特征是具有放射性。在核电厂事故期间,放射性物质以气体、蒸汽、气溶胶的形式释放,其中气溶胶是放射性物质的主要载体。为实现核电“安全与高效”发展,需要对核电厂事故状态下的气溶胶行为进行深入研究。为此,“核电厂气溶胶行为研究”分会场邀请相关科研院所、设计单位及监管审评部门的专家学者及技术人员就核电厂的气溶胶行为进行研讨交流,推动核安全研究,促进核电厂持续发展。征文范围:(1)反应堆冷却剂系统内气溶胶的生成、生长及输运的实验与理论研究;(2)反应堆冷却剂系统内气溶胶的再悬浮和再汽化的实验与理论研究;(3)安全壳内气溶胶生长、输运及沉积的实验与理论研究;(4)放射性气溶胶去除措施研究;(5)气溶胶与安全系统的相互作用研究;(6)核电厂气溶胶行为计算分析程序开发与验证;(7)核电厂气溶胶行为先进数值算法研究。
  • “双一流”建设确定实施办法 不搞终身制
    近日,教育部、财政部、国家发展改革委联合印发《统筹推进世界一流大学和一流学科建设实施办法(暂行)》(以下简称《实施办法》,这意味着备受社会关注的“双一流”建设,有了明确建设的“施工图”。  据教育部学位管理与研究生教育司负责人介绍,《实施办法》共分七章二十九条,定位于《统筹推进世界一流大学和一流学科建设总体方案》的操作实施性文件,坚持以“中国特色、世界一流”为核心要求,坚持“以一流为目标、以学科为基础、以绩效为杠杆、以改革为动力”的基本原则,对遴选条件、遴选程序、支持方式、管理方式、组织实施等做出具体规定。统筹推进世界一流大学和一流学科建设实施办法(暂行)第一章 总则  第一条 为贯彻落实党中央、国务院关于建设世界一流大学和一流学科的重大战略决策部署,根据《统筹推进世界一流大学和一流学科建设总体方案》(国发〔2015〕64号,以下简称《总体方案》),制定本办法。  第二条 全面贯彻党的教育方针,坚持社会主义办学方向,按照“四个全面”战略布局和创新、协调、绿色、开放、共享发展理念,以中国特色、世界一流为核心,落实立德树人根本任务,以一流为目标、以学科为基础、以绩效为杠杆、以改革为动力,推动一批高水平大学和学科进入世界一流行列或前列,为实现“两个一百年”奋斗目标、实现中华民族伟大复兴的中国梦提供有力支撑。  第三条 面向国家重大战略需求,面向经济社会主战场,面向世界科技发展前沿,突出建设的质量效益、社会贡献度和国际影响力,突出学科交叉融合和协同创新,突出与产业发展、社会需求、科技前沿紧密衔接,深化产教融合,全面提升我国高等教育在人才培养、科学研究、社会服务、文化传承创新和国际交流合作中的综合实力。  到2020年,若干所大学和一批学科进入世界一流行列,若干学科进入世界一流学科前列 到2030年,更多的大学和学科进入世界一流行列,若干所大学进入世界一流大学前列,一批学科进入世界一流学科前列,高等教育整体实力显著提升 到本世纪中叶,一流大学和一流学科的数量和实力进入世界前列,基本建成高等教育强国。  第四条 加强总体规划,坚持扶优扶需扶特扶新,按照“一流大学”和“一流学科”两类布局建设高校,引导和支持具备较强实力的高校合理定位、办出特色、差别化发展,努力形成支撑国家长远发展的一流大学和一流学科体系。  第五条 坚持以学科为基础,支持建设一百个左右学科,着力打造学科领域高峰。支持一批接近或达到世界先进水平的学科,加强建设关系国家安全和重大利益的学科,鼓励新兴学科、交叉学科,布局一批国家急需、支撑产业转型升级和区域发展的学科,积极建设具有中国特色、中国风格、中国气派的哲学社会科学体系,着力解决经济社会中的重大战略问题,提升国家自主创新能力和核心竞争力。强化学科建设绩效考核,引领高校提高办学水平和综合实力。  第六条 每五年一个建设周期,2016年开始新一轮建设。建设高校实行总量控制、开放竞争、动态调整。第二章 遴选条件  第七条 一流大学建设高校应是经过长期重点建设、具有先进办学理念、办学实力强、社会认可度较高的高校,须拥有一定数量国内领先、国际前列的高水平学科,在改革创新和现代大学制度建设中成效显著。  一流学科建设高校应具有居于国内前列或国际前沿的高水平学科,学科水平在有影响力的第三方评价中进入前列,或者国家急需、具有重大的行业或区域影响、学科优势突出、具有不可替代性。  人才培养方面,坚持立德树人,培育和践行社会主义核心价值观,在拔尖创新人才培养模式、协同育人机制、创新创业教育方面成果显著 积极推进课程体系和教学内容改革,教学成果丰硕 资源配置、政策导向体现人才培养的核心地位 质量保障体系完善,有高质量的本科生教育和研究生教育 注重培养学生社会责任感、法治意识、创新精神和实践能力,人才培养质量得到社会高度认可。  科学研究方面,科研组织和科研机制健全,协同创新成效显著。基础研究处于科学前沿,原始创新能力较强,形成具有重要影响的新知识新理论 应用研究解决了国民经济中的重大关键性技术和工程问题,或实现了重大颠覆性技术创新 哲学社会科学研究为解决经济社会发展重大理论和现实问题提供了有效支撑。  社会服务方面,产学研深度融合,实现合作办学、合作育人、合作发展,科研成果转化绩效突出,形成具有中国特色和世界影响的新型高端智库,为国家和区域经济转型、产业升级和技术变革、服务国家安全和社会公共安全做出突出贡献,运用新知识新理论认识世界、传承文明、科学普及、资政育人和服务社会成效显著。  文化传承创新方面,传承弘扬中华优秀传统文化,推动社会主义先进文化建设成效显著 增强文化自信,具有较强的国际文化传播影响力 具有师生认同的优秀教风学风校风,具有广阔的文化视野和强大的文化创新能力,形成引领社会进步、特色鲜明的大学精神和大学文化。  师资队伍建设方面,教师队伍政治素质强,整体水平高,潜心教书育人,师德师风优良 一线教师普遍掌握先进的教学方法和技术,教学经验丰富,教学效果良好 有一批活跃在国际学术前沿的一流专家、学科领军人物和创新团队 教师结构合理,中青年教师成长环境良好,可持续发展后劲足。  国际交流合作方面,吸引海外优质师资、科研团队和学生能力强,与世界高水平大学学生交换、学分互认、联合培养成效显著,与世界高水平大学和学术机构有深度的学术交流与科研合作,深度参与国际或区域性重大科学计划、科学工程,参加国际标准和规则的制定,国际影响力较强。第三章 遴选程序  第八条 坚持公平公正、开放竞争。采取认定方式确定一流大学、一流学科建设高校及建设学科。  第九条 设立世界一流大学和一流学科建设专家委员会,由政府有关部门、高校、科研机构、行业组织人员组成。专家委员会根据《总体方案》要求和本办法,以中国特色学科评价为主要依据,参考国际相关评价因素,综合高校办学条件、学科水平、办学质量、主要贡献、国际影响力等情况,以及高校主管部门意见,论证确定一流大学和一流学科建设高校的认定标准。  第十条 根据认定标准专家委员会遴选产生拟建设高校名单,并提出意见建议。教育部、财政部、发展改革委审议确定建议名单。  第十一条 列入拟建设名单的高校要根据自身实际,以改革为动力,结合学校综合改革方案和专家委员会咨询建议,确定建设思路,合理选择建设路径,自主确定学科建设口径和范围,科学编制整体建设方案、分学科建设方案(以下统称建设方案)。建设方案要以人才培养为核心,优化学科建设结构和布局,完善内部治理结构,形成调动各方积极参与的长效建设机制,以一流学科建设引领健全学科生态体系,带动学校整体发展。以5年为一周期,统筹安排建设和改革任务,综合考虑各渠道资金和相应的管理要求,设定合理、具体的分阶段建设目标和建设内容,细化具体的执行项目,提出系统的考核指标体系,避免平均用力或碎片化。高校须组织相关专家,结合经济社会发展需求和国家战略需要,对建设方案的科学性、可行性进行深入论证。  第十二条 论证通过的建设方案及专家论证报告,经高校报所属省级人民政府或主管部门审核通过后,报教育部、财政部、发展改革委。  第十三条 专家委员会对高校建设方案进行审核,提出意见。  第十四条 教育部、财政部、发展改革委根据专家委员会意见,研究确定一流大学、一流学科建设高校及建设学科,报国务院批准。第四章 支持方式  第十五条 创新支持方式,强化精准支持,综合考虑建设高校基础、学科类别及发展水平等,给予相应支持。  第十六条 中央高校开展世界一流大学和一流学科建设所需经费由中央财政支持 中央预算内投资对中央高校学科建设相关基础设施给予支持。纳入世界一流大学和一流学科建设范围的地方高校,所需资金由地方财政统筹安排,中央财政予以引导支持。  有关部门深化高等教育领域简政放权改革,放管结合优化服务,在考试招生、人事制度、经费管理、学位授权、科研评价等方面切实落实建设高校自主权。  第十七条 地方政府和有关主管部门应通过多种方式,对世界一流大学和一流学科建设加大资金、政策、资源支持力度。建设高校要积极争取社会各方资源,形成多元支持的长效机制。  第十八条 建设高校完善经费使用管理方式,切实管好用好,提高使用效益。第五章 动态管理  第十九条 加强过程管理,实施动态监测,及时跟踪指导。以学科为基础,制定科学合理的绩效评价办法,开展中期和期末评价,加大经费动态支持力度,形成激励约束机制,增强建设实效。  第二十条 建设中期,建设高校根据建设方案对建设情况进行自评,对改革的实施情况、建设目标和任务完成情况、学科水平、资金管理使用情况等进行分析,发布自评报告。专家委员会根据建设高校的建设方案和自评报告,参考有影响力的第三方评价,对建设成效进行评价,提出中期评价意见。根据中期评价结果,对实施有力、进展良好、成效明显的建设高校及建设学科,加大支持力度 对实施不力、进展缓慢、缺乏实效的建设高校及建设学科,提出警示并减小支持力度。  第二十一条 打破身份固化,建立建设高校及建设学科有进有出动态调整机制。建设过程中,对于出现重大问题、不再具备建设条件且经警示整改仍无改善的高校及建设学科,调整出建设范围。  第二十二条 建设期末,建设高校根据建设方案对建设情况进行整体自评,对改革的实施情况、建设目标和任务完成情况、学科水平、资金管理使用情况等进行全面分析,发布整体自评报告。专家委员会根据建设高校的建设方案及整体自评报告,参考有影响力的第三方评价,对建设成效进行评价,提出评价意见。根据期末评价结果等情况,重新确定下一轮建设范围。对于建设成效特别突出、国际影响力特别显著的少数建设高校及建设学科,在资金和政策上加大支持力度。第六章 组织实施  第二十三条 教育部、财政部、发展改革委建立部际协调机制,负责规划部署、推进实施、监督管理等工作。  第二十四条 省级政府应结合经济社会发展需求和基础条件,统筹推动区域内有特色高水平大学和优势学科建设,积极探索不同类型高校的一流建设之路。  第二十五条 建设高校要全面加强党的领导和党的建设,坚持正确办学方向,深化综合改革,破除体制机制障碍,统筹学校整体建设和学科建设,加强组织保障,营造良好建设环境。  第二十六条 动员各方力量积极参与世界一流大学和一流学科建设,鼓励行业企业加强与高校合作,协同建设。省级政府、行业主管部门加大对建设高校的投入,强化跟踪指导,及时发现建设中存在的问题,提出改进的意见和建议。  第二十七条 坚持公开透明,建立信息公开网络平台,公布建设高校的建设方案及建设学科、绩效评价情况等,强化社会监督。第七章 附则  第二十八条 本办法由教育部、财政部、发展改革委负责解释。  第二十九条 本办法自发布之日起实施。
  • “双一流”建设 请亮出“实力”!
    下为具体内容:一、关于加快《深化新时代教育评价改革总体方案》的落地见效2020年出台的《深化新时代教育评价改革总体方案》(以下简称《方案》),是我国第一个关于教育评价系统性改革的纲领性文件。《方案》大力扭转不科学的教育评价导向,淡化功利性、行政性色彩,在各类评价中突出对创新的质量和贡献评价,引导树立好的评价指挥棒。为推进《方案》精神落实落地,教育部出台系列配套政策文件,涉及科技评价、人才评价、教师考核评价等多方面,推动建立相对完整的科研评价制度体系,让高校科研人员真正安心研究、专心研究、潜心研究。一是深化高校科技评价改革。会同科技部印发《关于规范高等学校SCI论文相关指标使用 树立正确评价导向的若干意见》,会同国家知识产权局、科技部印发《关于提升高等学校专利质量 促进转化应用的若干意见》,以破除论文“SCI至上”和提升高校专利质量为突破口,扭转高校科技评价中“重数量、轻质量”的评价导向,着力引导高校科技工作回归学术初心。二是营造良好创新生态。深入实施“转学风、提质量”攻坚行动,强化作风学风建设,建设求真务实、淡泊名利、潜心研究、水到渠成的创新文化。树立正确政策导向,引导高校科技人员脚踏实地、胸怀祖国,消除“学术泡沫”,自觉抵制“急功近利”,主动从国家急迫需要和长远需求出发,研究真问题、真研究问题,实现基础研究真有发现、应用研究真有突破、成果转化真有贡献。下一步,教育部将进一步抓好评价改革文件的落实工作,针对高校落实情况开展分类指导,切实让高校科研回归学术本质。同时,将大力营造利于潜心研究的创新生态,加大先进典型宣传力度,大力弘扬新时代科学家精神,激发高校科研人员创新的行动自觉,真正实现潜心研究、贡献祖国,为高水平科技自立自强提供支撑。二、关于鼓励地方高校在重大科技创新中演好自己的“角色”教育部高度重视发挥地方高校在重大科技创新中的作用,通过加强宏观指导、优化科研平台布局、加大财政支持力度等方式,全面提升地方高校自主创新能力、服务经济社会发展能力,引导地方高校科技创新高质量发展。一是加强地方高校科技工作的宏观指导。邀请地方教育行政主管部门和部分地方高校参加全国高校科技工作会、高校科技工作专题培训等,指导地方高校进一步明确新阶段科技工作发展思路和重点任务等,并根据自身科技创新发展需求强化科学决策、统筹协调、合理配置资源,促进地方高校不断提升科技管理水平,创新发展思路。二是完善高校科技创新体系建设。教育部统筹加强高校科技创新体系的顶层设计,正研究制定“关于加快构建高校高质量科技创新体系的指导意见”,分级分类开展高校科技创新平台的建设布局。支持地方高校根据自身发展需求,整合创新资源,建设各类国家级、省部级、校级科技创新平台。同时,加大在教育部科技平台基地建设中对地方高校的支持。例如,已立项建设的183个省部共建协同创新中心中,75%由地方高校牵头,对地方高校更好服务区域发展起到了重要促进作用。三是加大对地方高校的经费支持力度。近年来,中央财政通过转移支付,不断加大对地方高校的支持力度。2016年,财政部、教育部印发《支持地方高校改革发展资金管理办法》,在支持地方高校发展资金、地方高校生均拨款奖补资金的基础上,整合设立支持地方高校改革发展资金,更好的支持各地改革完善地方高校预算拨款制度,推动地方高校深化改革和内涵式发展。资金在分配时向包括河北省在内的高等教育薄弱地区倾斜,在使用上给予地方较大自主权。下一步,教育部将进一步加大对地方高校科技创新工作的指导力度,在科技平台基地建设布局中加大对地方高校的倾斜。同时,进一步指导地方教育行政主管部门根据实际情况统筹地方高校改革发展资金使用,支持地方高校培养高质量人次、提升科技研发能力、产出创新成果。三、关于推进京津冀高等教育协同发展教育部贯彻落实京津冀协同发展的战略部署,加大对河北高校的学科和科技创新指导力度,有力促进了河北高校的创新发展。一是指导加强河北高校学科建设。新一轮“双一流”建设,按照“以需求为导向、以学科为基础、以比选为手段、确保平稳推进”的路径进行调整认定,不搞平衡照顾。教育部会同有关部门,统筹推进“双一流”建设,更大程度发挥其引导作用,辐射一批区域优势特色学科建设,带动地方政府对河北高校的更大支持,促进区域高等教育的高质量发展。二是加强河北高校科技创新平台建设。支持河北省高校在新兴交叉学科、薄弱学科和关键急需领域新增布局教育部重点实验室、教育部工程研究中心、省部共建协同创新中心,推动河北省高校发挥现有学科基础、区域资源等方面优势,积极服务于国家重大需求和经济社会发展。目前,已支持河北省高校建设了6个省部共建协同创新中心、9个教育部重点实验室、6个教育部工程研究中心。下一步,教育部将通过部省合建、对口支援、专项工作等多种途径加大对河北省学科建设的指导,支持其积极服务区域经济社会发展,增强优势特色。进一步发挥京津冀高校科技创新整体优势,鼓励京津冀高校建立科研合作关系,通过京津冀大学科技园联盟等多种形式推进协同创新,全面提升河北高校原始创新能力、服务国家重大战略和经济社会协同发展水平。
  • “双一流”建设:在想象和热议中走过2016
    2015年8月,《统筹推进世界一流大学和一流学科建设总体方案》正式通过,“双一流”建设成为了继“211工程”和“985工程”之后,又一个以国字头命名的高等教育发展战略。在2016年,“双一流”建设成为了高教领域最受关注的话题。  近20年前的世纪之交,高等教育有关的话题曾经炙手可热。然而在过去的十多年里,中国故事上演更多的是关于环境、医疗、房地产的故事,高教事业的舞台被冷落已久。“双一流”建设为高等教育的布局和发展再一次打开了想象的大门。2016年,“双一流”建设在公众的热议和想象中开幕并落幕,翘首企盼了一年的教育部的那只靴子——拟于年内发布的“双一流”建设的实施办法——最终没有落下。  数量有了,质量还会远吗?  一流大学建设并不是一个新话题。早在上个世纪末“985工程”建设的命题里,一流大学建设就是其中的应有之义。但如今国务院“重提”一流大学建设,同一语句已经有了不同语境。在过去的十多年里,我国的高等教育事业已经发生了翻天覆地的变化,在很多定量指标方面都取得了非常耀眼的成绩和成就。  2016年4月,教育部首次发布的《中国高等教育质量报告》显示,2015年,中国在校大学生规模已经达到3700万人,占全球大学生总数的1/5,位居世界第一 各类高校2852所,仅次于美国位居世界第二 大学生毛入学率从改革开放之初的1.55%提高到40%,即将进入高等教育普及化阶段。  同时,我们的高等教育经费在过去的十多年里增长了3.6倍,高校专任教师数增加了2倍多,而45岁以下的青年教师占到了2/3,人才结构更加合理。从我国的科技产出来看,根据中国科技信息研究所2016年10月发布的科技论文统计结果,2016年我国高校被引国际论文数量、国际热点论文数量双双晋升一位,排在世界第三。八个学科领域的论文被引次数排名世界第二,十八个学科领域的论文被引次数进入世界前十。显然,目前我国的科研产出已经从单纯的国际论文数量的比拼,变成了高质量国际论文数量的比拼。如果单拼SCI论文数量的话,我国早在2010年就超过英国排在了世界第二。  教育部也已经认识到我国科教事业将面临的主要问题是质量而不是数量。因此,在评价导向上开始向质量类指标倾斜。2016年4月再次启动的全国第四轮学科评估工作中,对于指标体系进行了诸多层面的改革,包括以专家对师资队伍的水平、结果和国际化程度的综合评价取代之前的学术头衔评价方法,采用 A 类期刊指标(人文社科领域)中国版 ESI 高被引论文(自然科学领域)对学术论文进行评价等。  政策导向已经表明,在“双一流”建设的背景下,高等教育的下一个十年目标已经从发展数量转变成提升质量,从高等教育的普及阶段转变成拔尖阶段。  双一流建设 ≠ 双一流名单  坊间对“双一流”建设的议论,大部分关心的其实是“双一流”名单。2016年6月,教育部发布了一份公告,持续了20余年的“985工程”和“211工程”正式成为历史。在此背景下,“双一流”建设被解读为大学的又一次重新洗牌,能否进入新的“双一流”名单,决定了将来能否在政策倾斜和资源支持上占据有利地位。  教育部对这种声音进行了辟谣。教育部原部长袁贵仁也指出,“双一流”建设中不会像“211工程”和“985工程”那样固化身份,会采取一种开放的支持机制,对支持高校、支持学科和支持力度进行动态调整。然而,这并不妨碍坊间的竞猜和热议。  此外,各省份的一流大学和一流学科名单、建设目标相继出炉。例如,山东省选择了32个一流学科和13所高校进入立项建设名单 广东省教育厅拨款2亿元支持中山大学、华南理工大学冲击世界一流大学和一流学科。江苏省对进入全国百强的省属高校根据绩效评价结果,每年每校给予1亿元左右的资金支持。河北省将河北大学、河北工业大学、燕山大学、河北师范大学等4所高校列为该省重点支持的国家一流大学建设一层次高校。  然而,受第四届学科评估和教育部部长换届所累,教育部的“双一流”建设实施办法并没有如期在年内出炉。在其去年年底发布的《高等学校“十三五”科学和技术发展规划》中,虽有关于“双一流”建设的相关描述,但是并无新意。  “双一流”离不开一流学者  近十年来,国内膨胀最快的除了房地产,可能就是人才了。  这些年,我国在人才工程建设方面投入很大。2008年12月开始实施的中组部“千人计划”已经实施了8年,引进了6000余名高层次人才回国或来华服务。2012年,中组部又推出了“千人计划”的姊妹篇“万人计划”,计划用10年时间遴选支持1万名左右高层次创新创业人才。对于这些引进人才,中组部给予50万元或100万元的补助,而引进单位和所在地区另外给予的支持力度更是以百万计。例如,深圳大学的招聘信息中明确了广东省资助25万元个人补贴,深圳市资助个人补贴更是高达200万元等。  中组部的人才计划推动了人才从国外流向国内,而密集出台的各地人才计划则加剧人才在地区间的流动。近年来,各省市推出的各种人才计划多达近百个。在“双一流”建设启动之际,各地区对于一流人才的争夺更加激烈。广东省2016年度“珠江人才计划”,将资助金额最高提高到8000万元。四川省则提出向高校“双一流”建设重点学科倾斜,同时新增了顶尖人才项目,重点引进“千人计划”和“万人计划”入选者̷̷  随着“双一流”建设的临近启动,高校间的人才争夺战正进一步白热化。2016年,各高校校长最头疼的不是顶级人才引进不来,就是自家的一流学者被别人挖走。很多致力于在“双一流”建设中占有一席之地的地方高校不惜重金揽才,给出的优惠条件令人很难抗拒。  今天,每个头上“戴帽”的人才几乎都是待价而沽的凤凰,随时可能另栖高枝。然而令人担心的是,如果“双一流”建设沦落成对一流人才的抢夺,那么怎么保证“双一流”建设不会变成又一个零和游戏?(作者系大连理工大学教师胡志刚)
  • 陈清泉院士:氢能和四网四流融合推进双碳目标
    目前,世界各国能源供需格局加快调整,绿色低碳转型已经成为新的共识,新能源发展进入活跃期,数字化智能化技术推动行业重塑。 氢能与电能类似,是常见的二次能源,需要通过一次能源转化获得。同时,氢能的能量密度高、储存方式简单,是大规模、长周期储能的理想选择,为可再生能源规模化消纳提供了解决方案。我国提出,争取于2030年前达到峰值,努力争取2060年前实现碳中和的“双碳目标”。为实现“3060双碳目标”,发展氢能产业是重中之重。其中,绿氢的发展尤为重要。我们要加速发展绿氢制取、储运和应用等氢能产业链技术装备。实现双碳目标的重要途径 过去十年,全球温室气体排放以1.5%速度增长,2018年全球二氧化碳气体排放375亿吨,各种温室气体排放553亿吨二氧化碳当量。全球已有130多个国家和地区提出了实现碳中和的时间,发达国家多数把实现碳中和目标的时间定在2050年。 2018年,我国二氧化碳排放98.39亿吨,占全球碳排放总量的29.69%,人均排放6.98吨,是全球人均排放量的1.6倍。 我们在承受气候灾害和风险的同时,高碳粗放发展也使我国付出了沉重的资源、环境代价,制约着我国的可持续发展。积极应对气候变化,不仅是为了规避气候变化的风险,也是为了提高我国经济增长的质量和效益,破解资源、环境约束,事关国家发展和未来。 我国提出了“3060双碳目标”,这就要求我们力争到2030年实现碳排放减少65%,非化石能源占比达到25%,实现风光电装机达到12亿千瓦。到2060年,我国将实现控制化石能源的总量,提高现有能源体系的效率,加快发展可再生能源替代,构建以新能源为主体的新型能源体系。 从碳达峰到碳中和,欧盟用时大概需要70年,日本、美国需要40年左右,而我国仅有30年时间。 2022年全国两会上,政府工作报告提出,要有序推进碳达峰碳中和工作,落实碳达峰行动方案。同时,要推动能源革命,确保能源供应,立足资源禀赋,坚持先立后破、通盘谋划,推进能源低碳转型。 氢能源作为一种高效、清洁、可持续的能源,已得到世界各国的普遍关注,被誉为21世纪的新能源。随着世界范围内对绿色经济发展重视程度的提升,氢能源的需求和应用领域不断扩展。发展氢经济是人类摆脱对化石能源的依赖、保障能源安全的重要战略选择。 积极践行绿色制氢路线 我国的发展现状和挑战,表明我国化石能源只能打减量牌,我们必须要提高可再生能源的利用率,如太阳能、风能、水力能的利用潜力要进一步挖掘。我国可再生能源有深厚的资源禀赋,相当于我国峰值能源需求总量的2.7倍。但是可再生能源需要储能来解决稳定供应问题。 氢能可以解决大规模电力的储存问题,也可以解决将来单一电网不能解决的冶金、化工等行业的原料问题。目前,我国主要有两条绿色制氢路线。一是通过光伏、风力发电,开展水电解制氢,实现绿色制氢;二是通过光合作用,利用种植植物,通过生物发酵乙醇重整制氢。 从现有情况看,我国光伏电池发电效率目前已经可达到25%,度电成本不超过0.25元,通过可再生能源电解制氢,制氢成本有望进一步降低和可控,是当下比较符合国情的绿色制氢发展之路。 此外,我国氢气资源十分丰富,特别是作为工业副产品的氢气资源非常丰富,煤制氢产氢量占世界的三分之一。但副产氢气的问题是它含杂质多,不能用于质子交换膜氢燃料电池,目前基本上用于化工和石油工业。目前,我国燃料电池用氢量不到1%,主要是因为氢气提纯成本太高,工艺难度大,压缩耗能高,导致最终应用成本高。 燃料电池用氢气方面,大型化是制氢装备用于可再生能源制氢的前提。欧美等国家制氢装备开发较早,已有大型化成熟产品,但低成本技术仍未解决。 我国质子交换膜关键材料技术和大型化方面还是有短板,低成本技术有待加强攻关,产业化速度应该尽快提升。随着产业竞争日益激烈,氢能产业核心关键技术的攻关仍需加速。 在北京2022年冬奥会赛事保障中,国电投氢能车辆在延庆赛区、北京赛区总投入200辆,累计出车7200多次,总行驶里程超过88万公里,是我国氢燃料电池汽车发展方面取得的重要进展。推动四网四流融合 仅仅依靠技术不能够解决复杂的问题和迎接新的挑战,必须将人文世界、物理世界、信息世界等深度地融合,以“四网四流”融合推进碳中和、促进数字经济。 所谓“四网”,是指能源网、信息网、交通网、人文网;“四流”是指能源流、信息流、物质流、价值流。通过四网四流融合,可以将人的主观能动性和能源革命、信息革命、交通出行革命联动起来。通过建立“人-机-物”系统形成的新的生产关系,发掘第四次工业革命的数据红利所带来的巨大生产力,并在前三次工业革命生产力总和的基础上,爆发出指数级增长。 “四网四流”有三个载体:第一个载体是区域的智能能源管控中心;第二个载体是电动汽车,也是移动的载体储能;第三个载体是光伏的建筑,也是一个发电厂,多余的电量可以跟电网连接,可以制氢,可以给电动汽车充电。 在能源里,存在多种形态,通过不同能源形态的耦合,比如风能、太阳能是间歇性的,在电网不能接受时,把它们拿来制氢,就把能源流变成了物质流;等需要时,氢气再跟氧气结合,通过燃料电池发电,有助于解决电力能源和化工能源的矛盾问题。 通过“四网四流”形成智能能源,既能把没有用的能源变成有用的能源,又能促进实现“碳中和”。 而氢在其中有着重要的作用,因为氢气不仅具有能源和物质的属性,而且具有燃料和材料的属性,所以能够耦合电力能源和化工能源,耦合能源流和物质流。可以肯定,氢能在我国未来的能源系统中的地位将越来越重要。
  • 第十二届全国药物分析大会会议通知(第三轮)
    各相关单位:药物分析学是分析科学在药学中的应用,并在与化学、生物学、医学及药学相关学科的交叉融合过程中实现创新性发展,为药物研发和应用的全链条创新提供关键的技术平台和方法学支撑。药物分析学于2008年被国家自然科学基金委正式列入学科方向目录(代码 H3410)。在国家自然科学基金委药物学与药理学处领导支持下,由罗国安教授、贺浪冲教授、曾苏教授作为发起人,于2011、2012、2013年分别在西安、杭州和北京召开了三届“药物分析学科战略发展研讨会”,2013年起由清华大学、西安交通大学、浙江大学、沈阳药科大学、中国药科大学、第二军医大学、中国医学科学院、中国食品药品检定研究院、武汉大学等作为发起单位成立全国药物分析大会理事会并每年召开全国药物分析大会,至今已成功召开11届,得到了广大同行的充分认可和支持。2018年10月,以全国药物分析大会理事会为基础成立了中国医药生物技术协会药物分析技术分会。为更好把握药物分析学科最新发展方向和发展机遇,探索关键科学问题,为药物分析工作者提供展示最新研究成果、促进交叉合作以及分享新技术、新设备和新应用的交流平台,进一步推动我国药物分析学学科的快速及有组织发展,中国医药生物技术协会药物分析技术分会决定于2023年10月13-16日在重庆市召开“第十二届全国药物分析大会”。会议由中国医药生物技术协会药物分析技术分会主办,西南大学承办,遵义医科大学第二附属医院协办。届时将邀请药物分析同行及相关领域专家就药物分析新原理、新方法、新技术、新应用等进行深入交流与探讨。届时将同时召开中国医药生物技术协会药物分析技术专委会、Journal of Pharmaceutical Analysis编委会、国家自然科学基金交流研讨会。本次会议诚挚欢迎全国药物分析的同仁与研究生踊跃参加。同时热忱欢迎有关企业对大会进行赞助或进行产品展示,会议期间将为赞助商和参展单位提供展位,开展相关仪器、设备、技术及产品展示和宣传活动。现将有关事宜通知如下:一、会议主办及承办单位主办单位:中国医药生物技术协会药物分析技术分会承办单位:西南大学协办单位:遵义医科大学第二附属医院二、会议组织结构1. 大会主席:罗国安副主席:贺浪冲 曾苏 再帕尔阿不力孜 柴逸峰 张尊建 陈子林 黄承志 江正瑾执行主席:付志锋 梁琼麟2. 第十二届全国药物分析大会学术委员会主 席:罗国安副主席:贺浪冲 曾苏 再帕尔阿不力孜 柴逸峰 张尊建 陈子林 黄承志 江正瑾秘书长:梁琼麟副秘书长:王嗣岑 余露山 许风国学术委员会成员:(按照姓氏笔画排序)王璇 王振中 王嗣岑 王新宏 文红梅 卢建忠 叶正良 付志锋 再帕尔阿不力孜白钢 吕海涛 伍建林 刘利红 江正瑾 许风国 杜斌 李川 李绍平 李敏勇 李清 李新春 肖玉秀 肖伟 肖红斌 吴永江 吴彩胜 何勇 余露山 邸欣 狄斌 闵俊哲 张金兰 张真庆 张敏 张尊建 陆峰 陈万生 陈子林 陈啸飞 陈缵光 范国荣 杭太俊 罗国安 季申 周祥山 孟宪生 练鸿振 赵新锋 胡坪 胡泽平 柯博文 姜志宏 姜宏梁 洪战英 贺玖明 贺浪冲 夏之宁 顾景凯 柴逸峰 徐丽 凌笑梅 黄承志 曹进 康经武 梁琼麟 梁鑫淼 葛广波 傅强 曾苏 谢智勇 解笑瑜3. 组委会:组长:付志锋委员:梁琼麟、何勇、陈敏、张保顺、邹懿、杨坚、王国伟、杨晓明、欧阳辉、王薇、王健、李春梅、刘忠德、高鹏飞、刘慧、邹鸿雁、詹蕾、郭婷、安春华、彭小娇三、会议注册1. 会议注册:请填写附件1 的参会回执表,并按以下格式命名:参会回执-中文姓名-单位全称,发送至邮箱:ywfxtech_2018@163.com。2. 会务费用:学生代表需凭有效证件。2023年9月15日前缴费2023年9月15日后及现场缴费教职人员1600 元1800 元学生1100 元1300 元注册费汇款账户信息如下:户名:中国医药生物技术协会开户行:中国银行股份有限公司北京港澳中心支行账号:324656017253汇款时务必备注“姓名+单位+药分2023”,并拍照或扫描以电子版形式发送至会务组邮箱ywfxtech_2018@163.com。3. 会议联系:总负责:付志锋:15826136032,fuzf@swu.edu.cn梁琼麟:13683328687,liangql@tsinghua.edu.cn(1)会前注册及报告联系人:王 健:13627684638,wj123456@swu.edu.cn(2)现场注册报到联系人:安春华:13996421739,42258208@qq.com(3)会议交通联系人: 杨晓明:13618311117,xiaomingyang4444@126.com(4)会议食宿联系人:王 薇:13708367707,19387356@qq.com(5)会场服务联系人: 郭 婷:18629015967,guoting15@126.com(6)会议赞助联系人:欧阳辉:15826436781,ouyanghui@swu.edu.cn(7)宣传联系人: 李春梅:13658353541,licm1024@swu.edu.cn注:烦请已缴纳注册费的参会代表及时发送回执至会务组邮箱,以免影响发票的及时开具。四、墙报展1. 墙报展时间:10月14日下午2点前自行粘贴至指定展位,具体展位编号以报到时领取的会议手册为准。2. 地点:两江云顶大酒店北楼前厅及会议室走廊。3. 墙报建议尺寸:90 cm(宽)×120 cm(高)。墙报请自行提前打印并带至现场,排版设计格式风格自定。另展览结束后需自行取下,请注意维护场地整洁。五、报到及会议地点会议地点:重庆市北碚区两江云顶大酒店。地址:重庆市北碚区云汉大道136号。报到地点:两江云顶大酒店主楼大厅。10月13日下午13:00-22:00报到晚上20:30-21:30Journal of Pharmaceutical Analysis编委会10月14日上午 8:30-12:00开幕式、大会报告中午12:40-13:40中国医药生物技术协会药物分析技术专委会下午14:00-17:40分会报告、墙报展晚上20:10-21:30国家自然科学基金交流研讨会10月15日上午 8:30-12:05分会报告、墙报展下午 13:30-17:10大会报告、闭幕式、颁奖10月16日全天返程会议报告及墙报信息安排详见附件2。六、住宿信息本届会议协议酒店两江云顶大酒店(含主楼、北楼、丽怡),房型信息和协议价格如下:两江云顶大酒店(含北楼):标间368元/间 (含双早);单间368元/间 (含双早)两江云顶大酒店-丽怡:标间298元/间(含双早);单间298元/间 (含双早)住宿信息和操作通过扫描如下二维码完成:如有技术故障或疑问,请联系两江云顶大酒店,酒店前台:023-6831 8888;许登波:17815208874。注:A)敬请参会者根据参会时间自行合理安排住宿预订,付款及发票开具由两江云顶大酒店直接对接;B)酒店房间数量有限(会场所在地,或紧邻会场),请务必尽早预定住宿。七、交通信息1. 重庆江北国际机场——重庆两江云顶大酒店(打车约25分钟, 费用约50 元);2. 重庆北站——重庆两江云顶大酒店(打车约45分钟, 费用约75 元);3. 重庆西站——重庆两江云顶大酒店(打车约60分钟, 费用约105 元);八、厂商赞助及展品信息欢迎国内外分析仪器公司、厂商赞助会议的召开并到会介绍和展示产品。产品展示包括“大会介绍”、“会议摘要集插页介绍”、“展台展示”和“分发资料”四种类型。根据赞助金额确定产品展示方式。请拟赞助的国内外厂商早日与组织委员会联系。目前已确定赞助厂商如下:铂金赞助商:安捷伦科技有限公司金牌赞助商:岛津企业管理(中国)有限公司赛默飞世尔科技公司银牌赞助商:Journal of Pharmaceutical Analysis期刊宜昌人福药业有限责任公司贵州光正医药物流有限公司重庆夏耘科技有限公司铜牌赞助商:贵州省医药(集团)有限责任公司重庆子辰科技有限公司汉诺生物科技(苏州)有限公司日立科学仪器(北京)有限公司重庆腾吉科技有限公司齐鲁制药有限公司重庆奥思德仪器设备有限公司后续将持续更新。附件1 参会回执表.docx附件2 第十二届全国药物分析大会会议日程.docx
  • 具有负泊松比与负膨胀系数的新型双负超材料
    负泊松比材料在受到压缩载荷时横向收缩,负热膨胀系数材料在受热时发生收缩现象。而负泊松比和负热膨胀系数相结合的新型超材料为材料的特殊需求提供了进一步的可能性。香港城市大学深圳研究院介绍了一种具有负泊松比与负热膨胀系数的双负超材料(Extreme Mechanics Letters, 2019)。这种新型超材料基于传统的星型内凹结构。为了提高该结构的负泊松比,研究者分别在结构和排列方式上进行了创新。这种结构和排列上的创新使得超材料在受到外界力/位移载荷时呈现出内凹变形机制,从而表现出负泊松比。图1(a), (b)新构型超材料的结构以及(c), (d)两种不同的排列方式。为了得到负热膨胀系数,在一个结构中引入了两种热膨胀系数不同的材料(图1a)。蓝色的杆的热膨胀系数较小,而红色的杆热膨胀系数较大。研究者用大量的数值模拟对新构型超材料的负热膨胀系数进行了验证。在加热时红色的杆因为需要伸长的更多而使得垂直方向蓝色的杆发生弯曲,从而减小了整个结构所占有的空间,表现出负的热膨胀系数(图2)。图2新构型超材料受热变形图。为了验证该超材料的负泊松比行为,研究者们采用摩方P130 打印机对材料进行了制备。并用试验和数值仿真相结合的方法对其负泊松比行为进行了验证,两者吻合的较好。由于材料打印的尺寸在微米级别,这也为材料在声学、光学等方面的应用提供了可能性。图3新构型超材料电镜观测图以及受力变形图。该研究工作发表于Extreme Mechanics Letters,香港城市大学深圳研究院陆洋老师为通讯作者。摩方nanoArch® P130打印的轻质高强结构材料,最小杆径8 μm。深圳摩方材料科技有限公司持续助力香港城市大学深圳研究院在超材料领域的研究及应用,其自主研发的nanoArch® P130 3D打印机精度高达2微米。除上述研究工作中的超材料应用外,另一重要的应用是轻质高强力学超材料,具有超轻质量和超高强度。其优异的力学性能得益于其中的微晶格结构,如上图所示,这些微晶格结构非常复杂,使用传统的二维制造技术无法加工制作,而摩方的微尺度3D打印技术则可以快速高效加工出这种复杂三维微结构,且具有极高的打印分辨率(图中微点阵结构,最小杆径8 μm)。BMF nanoArch® P130打印系统
  • “第十二届全国环境化学大会”通知(第二轮)
    2023 年 11 月 17-21 日 中国 武汉会议主题:健康环境 宜居地球由中国化学会环境化学专业委员会和中国地质大学(武汉)主办的“第十二届全国环境化学大会”(The 12th National Conference on Environmental Chemistry, 12th NCEC)将于 2023 年 11 月 17-21 日在武汉隆重举行。大会将以“健康环境 宜居地球”(Healthy Environment & Habitable Earth)为主题,围绕双碳目标、环境 与健康,以及水、土、气、固废相关的环境分析、界面过程、生态毒理、污染治理与修复技术、环境政策等多个领域设置分会场,邀请国内外著名专家做大会报告和分会场报告,邀请环保设备与分析仪器公司参展,组织论文报展、研究生论坛、主编面对面,举办多场前沿技术培训等学术活动,促进环境科学领域创新与跨越发展,促进科教产业融合,推动国内外学术交流与合作,加快环境科学的学科建设与人才培养,为保护生态环境、推动绿色发展,促进人与自然和谐共生做出贡献。会议举办地武汉是白云黄鹤之乡、九省通衢之地、国际湿地之城。热忱欢迎各位同仁相聚美丽江城,莅临“第十二届全国环境化学大会”,共论环境科学创 新之道,共叙交流合作发展之谊,携手共创美丽中国、宜居地球!一、大会主席江桂斌(中国科学院院士、中科院生态环境研究中心研究员)王焰新(中国科学院院士、中国地质大学(武汉)校长)二、大会学术委员会主任: 郑明辉(中国化学会环境化学专业委员会主任,中科院生态环境研究中心研究员)委员(以姓氏音序排列)蔡宗苇、柴立元、柴之芳、陈宝梁、陈春城、陈吉平、陈建民、陈景文、陈 威、 戴晓虎、戴家银、党 志、冯新斌、冯玉杰、付 强、高志贤、葛茂发、谷 成、 桂建芳、郭良宏、郝吉明、郝郑平、贺 泓、贺克斌、胡 敏、黄业茹、季 荣、 贾金平、江桂斌、阚海东、X. Chris Le、李和兴、李俊华、李培武、李向东、李杏放、 林 璋、刘丛强、刘 鸿、刘景富、刘买利、刘汝涛、刘维屏、栾天罡、马 军、 麦碧娴、欧阳钢锋、潘丙才、彭平安、全 燮、宋茂勇、孙红文、唐 波、汤乃军、 陶 澍、王春霞、王秋泉、王书肖、王祥科、王小萍、王亚韡、王焰新、韦朝海、 魏复盛、邬堂春、吴永宁、夏 军、谢剑炜、谢先启、闫 兵、杨 新、要茂盛、 叶朝辉、尹大强、余 刚、俞汉青、曾永平、张爱茜、张庆华、张远航、赵进才、 郑明辉、周炳升、朱本占、朱东强、朱利中、朱永法、祝凌燕、庄乾坤、周 翔三、大会组织委员会主任:唐忠阳 (中国地质大学(武汉)党委副书记、纪委书记)副主任:史建波(中国地质大学(武汉)环境学院院长,教授)王亚韡(中国环境科学学会环境化学分会主任,中科院生态环境研究中心研究员)李素矿(中国地质大学(武汉)环境学院党委书记,研究员)梁 勇(江汉大学环境与健康学院党委副书记,教授)秘书长: 邓娅敏(中国地质大学(武汉)环境学院教授)委员(以姓氏音序排列)蔡卫卫、曹慧明、曹梦西、蔡 纯、柴 波、陈博磊、陈华荣、陈俊男、陈伟芳、 陈先明、陈学燕、程 杰、程诗洋、崔培昕、崔雪晶、戴若彬、单永平、董依然、 杜 尧、杜文超、段雪雷、方利平、付翯云、付庆龙、甘义群、高丽荣、高艳蓬、 高志鹏、耿柠波、韩 璐、郝艳芬、何 炽、何良英、何 倩、何伟华、何 毅、 侯 杰、胡祥云、胡译丹、贾建博、江 聪、姜传佳、姜 璐、姜晓刚、蒋永光、 蒋志强、季晨阳、金 蓉、孔 任、孔少飞、库婷婷、郎贤军、李 翀、李 超、 李 浩、李俊霞、李立青、李 平、黎清华、李双林、李琬聪、李英明、梁莉莉、 梁志梳、林春水、刘春生、刘丹青、刘 邓、刘凤莲、刘丽红、刘 鹏、刘 倩、 刘素琴、刘艳娜、卢桂宁、卢晓刚、陆达伟、罗明明、吕 冰、吕 品、马 娟、 毛 莉、孟庆达、莫昕欣、潘欢迎、彭海炎、皮坤福、戚 豫、邱 轩、曲 阳、 任佳玉、申芳霞、沈 帅、盛 南、盛雅琪、司文哲、苏 宇、隋海霞、孙燕博、 孙自永、田 晨、童 蕾、王 玲、王 璞、王 斌、王传洗、王丰邦、王海峰、 王昊天、王 桥、王 玮、魏高亮、魏海勇、吴菁京、吴清茹、肖 欣、解姣姣、 谢鹏超、谢先军、谢勇冰、邢新丽、徐剑桥、徐 进、徐丽广、徐 挺、徐彦森、 阎 莉、严丽莎、严 璐、颜 能、杨 涛、杨丽华、杨莉莉、杨晓溪、杨一舟、 于素娟、于万超、原 珂、张海峰、张 鹏、张伟军、张学海、章大鹏、赵 超、 赵恩明、赵甲亭、曾 文、郑会珍、郑唯韡、郑晓波、钟文珏、周 健、周 珍、 周慧慧、朱 琳、左麦枝四、大会主办单位中国化学会环境化学专业委员会中国地质大学(武汉)五、大会协办单位环境化学与生态毒理学国家重点实验室;生物地质与环境地质国家重点实验室;江汉大学;国科大杭州高等研究院环境学院;中国环境科学学会环境化学专业委员会;中国地质学会医学地质专业委员会;国家环境保护水污染溯源与管控重点实验室;地下水质与健康教育部重点实验室;持久性有毒污染物环境与健康危害湖北省重点实验室;中国长江三峡集团有限公司;长江经济带生态环境国家工程研究中心;中国科学院水生生物研究所;中国地质调查局武汉地质调查中心;武汉大学;华中科技大学;华中农业大学;武汉理工大学;华中师范大学;中南民族大学;武汉科技大学;武汉轻工大学;武汉工程大学;湖北大学;Environment & Health 期刊;Journal of Environmental Sciences 期刊;Journal of Earth Science 期刊;Water Biology and Security 期刊;《环境化学》期刊;《安全与环境工程》期刊;《长江流域资源与环境》期刊;《水生生物学报》期刊六、分会场议题1. 计算毒理、机器学习与大数据分析召集人:陈景文、张爱茜、庄树林、张秀辉2. 样品前处理与环境分析化学召集人:欧阳钢锋、栾天罡、阴永光3. 新污染物的筛查与识别召集人:陈吉平、张海燕、卢宪波、陈达4. 非靶标分析:前沿与交叉应用召集人:阮挺、邱兴华、苏冠勇、刘润增5. 环境质谱和成像召集人:蔡宗苇、陈达、林树海、罗茜6. 环境同位素技术召集人:刘倩、陈玖斌、胡兆初、李伟、刘娟7. 同步辐射技术与环境化学召集人:王玉军、姜政、李晓东、赵甲亭8. 环境分析仪器与设备研制召集人:张庆华、关亚风、方群、周振、史建波、江桂斌9. 碳中和与协同减排召集人:贺克斌、鲁玺、杨瑞强10. 大气环境化学召集人:陈建民、葛茂发、胡敏、王书肖、郭松11. 大气污染控制与碳减排技术召集人:陈运法、李俊华、张长斌12. 生物气溶胶检测预警与防控召集人:要茂盛、陈建民、黄建平、安太成13. 气溶胶与环境光学召集人:黄汝锦、刘诚、杜林14. 臭氧污染的物理化学机制与效应召集人:冯兆忠、王体健、阚海东、薛丽坤15. 饮用水化学风险:从源头到龙头全过程控制对策与技术召集人:马军、杨敏、陈超、杨欣16. 地下水污染与修复召集人:王焰新、郑春苗、吴吉春、郭华明、谢先军17. 地表水污染防治与生态修复召集人:李保安、冯玉杰、胡洪营18. 水污染控制与资源回收召集人:黄霞、俞汉青、陈志强、韦朝海、周明华19. 膜法水和废水净化技术召集人:王志伟、梁恒、胡承志、陈荣、肖康20. 水处理氧化还原技术召集人:潘丙才、徐斌、展思辉、方晶云21. 低碳水处理与回用技术召集人:邢德峰、曹宏斌、汪华林、成少安、张亚雷22. 水污染溯源与管控召集人:史建波、陈先明、李翀、谢先军、周小国23. 土壤环境化学召集人:朱利中、仇荣亮、李芳柏24. 有机污染土壤修复召集人:孙红文、骆永明、杨坤、张芳25. Green Remediation of Contaminated Sites召集人:Pedro J. J. Alvarez、陈威、张彤26. 污染场地风险管控与修复召集人:陈梦舫、郑春苗、王文科、周友亚、侯德义27. 矿山环境污染与修复召集人:党志、周建伟、张宝刚、刘云28. 化工场地污染与修复召集人:焦文涛、冯世进、付融冰、李书鹏29. 生物炭环境化学与绿色工程召集人:陈宝梁、曹心德、侯德义30. 土壤环境纳米技术召集人:林道辉、张礼知、Daniel C. W. Tsang、徐江31. 全球气候变化与土壤健康召集人:郭红岩、赵方杰、朱春梧32. 固体废物处理与资源化召集人:戴晓虎、薛强、杨家宽、刘文彬33. 危险废物无害化处置与资源回收召集人:林璋、宁平、孙轶斐34. 新能源固废高效低碳处理召集人:曹宏斌、许振明、汤琳35. 生态毒理学召集人:祝凌燕、尹大强、戴家银、周炳升36. 环境纳米毒理学召集人:陈春英、周群芳、李瑞宾、李灵香玉37. 大气环境毒理学召集人:阚海东、郑玉新、桑楠38. 大气细颗粒物的毒理与健康效应召集人:张爱茜、阚海东、陈建民、江桂斌39. 污染物暴露与健康风险召集人:安太成、冯新斌、孙红文、姬越蒙40. 消毒副产物与健康召集人:张相如、屈卫东、郑唯韡、曾强41. 环境污染与甲状腺相关疾病召集人:屈卫东、夏彦恺、汤乃军、李英明42. 环境污染与人体常见疾病召集人:刘思金、蒋义国、李瑞宾、张书平43. 大食品观与环境健康召集人:张灏、匡华、胥传来、李敬光44. 环境表观遗传及相关组学召集人:汪海林、蒋义国、赖玮毅45. 金属组学与健康召集人:孙红哲、胡立刚、徐明、李玉锋46. 环境风险评估与模式生物召集人:顾爱华、周炳升、王大勇、吉贵祥、秦占芬47. 环境污染物的毒性效应及分子机制召集人:宋杨、刘春生、林思劼48. 高通量毒理学与效应导向分析召集人:曲广波、杨晓溪、史薇、张效伟、江桂斌49. 环境放射化学召集人:王祥科、王宁、马利建、王殳凹50. 暴露组学与食品安全召集人:吴永宁、陈达、李敬光、柳鑫、傅建捷51. 食品接触材料与回收再用风险评估召集人:吴永宁、解孝林、王志伟、钟怀宁52. 国防与公共安全中的科学问题和前沿技术召集人:谢剑炜、高志贤、郭磊、王红梅53. 持久性有机污染物召集人:郑明辉、戴家银、谷成54. 持久性有机污染物的地球化学过程及效应召集人:麦碧娴、孙毓鑫、曾力希、章涛、郑晓波55. 环境抗生素与抗性基因召集人:应光国、罗义、李炳、张彤56. 有机碳的环境行为和效应召集人:朱东强、傅平青、冯晓娟、孙可57. 环境微纳塑料的行为与效应召集人:季荣、汪磊、贾汉忠、曾永平58. 砷锑环境污染与控制召集人:王焰新、柴立元、何孟常、王玉军、唐先进59. 环境汞污染召集人:冯新斌、王书肖、张彤、张彦旭、阴永光60. 铁环境化学召集人:张礼知、李芳柏、关小红61. 环境光催化召集人:朱永法、陈春城、井立强、展思辉62. 环境电化学召集人:贾金平、冯玉杰、刘鸿、冯春华63. 环境中的活性氧召集人:周东美、袁松虎、褚驰恒64. 自由基与环境/健康召集人:朱本占、陆克定、刘国瑞、邓积光65. 液滴与微界面化学召集人:杨雪晶、张立武、张新星、陈博磊66. 微生物-矿物相互作用和环境效应召集人:刘邓、董依然、蔡鹏、刘娟67. 环境污染物在植物中的行为和效应召集人:刘稷燕、祝凌燕、应光国68. 海洋环境与生态安全召集人:蔡勇、孙军、李雁宾、陈保卫、张黎69. 渔业环境化学与生态健康召集人:吴立冬、夏斌、张黎、穆希岩70. 高山和极地环境化学召集人:王小萍、丛志远、谢周清、张庆华、傅建捷71. 环境纳米技术召集人:全燮、林璋、潘丙才、郭良宏72. 纳米农业与环境召集人:王震宇、邢宝山、马传鑫73. 环境材料与催化召集人:郝郑平、张登松、邓积光、何炽、程杰74. 合成生物学召集人:赵斌、廖春阳、周宁一、张先恩75. 新能源与环境安全召集人:李金惠、程金平、苑春刚76.绿色能源化学召集人:程寒松、王永刚、余家国、葛君杰77. 新污染物环境风险评估与控制召集人:余刚、张干、黄业茹、隋倩、王斌78. 化学品国际履约及全球治理的科学与政策问题召集人:刘建国、彭政、郑明辉、王亚韡79. 环境化学交叉研究召集人:宋茂勇、韦斯、方明亮80. 青年学者专场召集人:王亚韡、陆达伟、刘春生81. 研究生专场召集人:史建波、杨家宽、谭文峰、沈焕锋、梁勇82. 环境科学前沿论坛:JES-《环境化学》联合分会召集人:郝吉明、X. Chris Le、郑明辉83. ACS 专场:可持续发展与环境健康召集人:刘倩、宋茂勇、王鹏84. EES 专场:生态环境健康与AI 大数据应用召集人:闫兵、梁勇、刘国瑞、陈仁杰、朱浩85. 健康海洋与海洋资源高值化可持续利用召集人:唐波、季明、孙旭平86. 农药环境安全与健康风险召集人:张全、王鹏、吴祥为87. 抗生素抗性基因的界面行为及风险防控召集人:朱利中、张彤、李向东、吴永宁88. 变价组分的环境化学行为及其调控召集人:郭华明、李芳柏、孙建强、陈春梅、曹文庚七、重要信息1. 会议时间与地点时间:2023 年 11 月 17-21 日,17 日全天报到地点:武汉国际博览中心会议中心(武汉市汉阳区晴川大道 66 号)2. 摘要及论文提交稿件字数限 300~600 字,不含图表,可附 5 篇以内的参考文献。摘要格式 包括题目、作者姓名、单位、通讯作者邮箱以及关键词(3-5 个)。本次会议采用 在线投稿系统,请在截止日期前访问大会网站(https://www.ncec2023.com )投稿开放日期:2023 年 6 月 15 日投稿截止日期:2023 年 8 月 15 日 3. 学生奖励 会议设立优秀研究生报告奖、优秀墙报奖等。3. 学生奖励会议设立优秀研究生报告奖、优秀墙报奖等。
  • “双一流”VS“111计划”,有何不同?
    p   临近年底,各项新规大有停不下来的感觉,近日,又一个事关各高校的新政发布,教育部、国家外国专家局印发《高等学校学科创新引智计划实施与管理办法》的通知,初看这个通知并不起眼,但是当看到这个计划的代号,相信很多人都会肃然起敬,“111计划”比“双一流”还多一个“1”,那么,这个计划到底有多牛呢? /p p    strong 没有名单的 “双一流”已经让各大学暗自较劲 /strong /p p   2015年11月,国务院印发《统筹推进世界一流大学和一流学科建设总体方案》,提出统筹推进世界一流大学和一流学科建设,实现我国从高等教育大国到高等教育强国的历史性跨越。这项工作被高教界简称为“双一流”建设。 /p p   围绕备受关注的“双一流”建设,舆论和业界一度出现了各种猜测、预言,网络上甚至流传出“‘双一流’大学建设拟定名单”。对于这一热点话题,今年10月,教育部新闻发言人曾回应:“教育部从未发布过‘双一流’名单,公众勿轻信谣言。目前教育部正与相关部门抓紧研究制定统筹推进世界一流大学和一流学科建设实施办法,争取尽早出台。 /p p   中国高等教育学会会长瞿振元曾表示, “双一流”是在“211”工程“985”工程的成绩和经验基础上进行的一种整合和继承性推进。众所周知,1995年开始实施的“211”工程,即面向21世纪重点建设100所左右的高等学校和一批重点学科的建设工程,是新中国成立以来由国家立项在高等教育领域进行的规模最大、层次最高的重点建设工作。随后,在“211”工程基础上,国家决定重点支持北京大学、清华大学等部分高校创建世界一流大学和高水平大学,即“985”工程。 /p p    strong 双一流战略下的高校标准的标准有四类: /strong /p p   第一类拥有多个国内领先、国际前沿高水平学科的大学,要在多领域建设一流学科,形成一批相互支撑、协同发展的一流学科,全面提升综合实力和国际竞争力,进入世界一流大学行列或前列。 /p p   这一类是定位在建设世界一流大学的大学。因为要求学校要“拥有多个国内领先、国际前沿高水平学科”,已经进入985工程的北大、清华之类的综合性大学,和已经进入985工程建设高校的部分覆盖领域较宽的高水平特色型大学可以定位在这一类。 /p p   第二类拥有若干处于国内前列、在国际同类院校中居于优势地位的高水平学科的大学,要围绕主干学科,强化办学特色,建设若干一流学科,扩大国际影响力,带动学校进入世界同类高校前列。 /p p   这一类是定位在建设世界一流学科、冲击“特色型”世界一流大学的大学。如果说第一类主要是对综合型大学说的,这一类就是对综合实力较强的特色型大学说的。目前已经进入985工程的部分综合型大学、大部分特色型大学,以及一部分211工程大学,都可以定位在这一类。 /p p   第三类拥有某一高水平学科的大学,要突出学科优势,提升学科水平,进入该学科领域世界一流行列或前列。 /p p   这一类是定位在建设世界一流学科的大学。主要覆盖的是办学特色明显、总体规模较小、没有形成特色学科集群的大学。个别985高校(冲击不上第二类的)、很多211高校,以及一些在以前的211工程建设中的因为地域平衡等原因没能进入的较高水平的特色型高校都可以定位在这一类。 /p p   没有提到的第四类全国两千多所高校,是否都能够对应到这三类里面呢?当然不是。因为还有很多高校只是在按部就班地办学而已,根本没有“某一高水平学科”。这类高校,其实就是国务院《方案》里没有提的第四类。 /p p   理智的说,并不能让全国所有高校都去争创世界一流,认清自己的定位,在自己的办学领域、办学地域,有所作为,力所能及地培养出经济社会发展和当地发展需要的人才,这类学校的办学使命也就大致达到了。 /p p    strong 有名单的“111计划”入选的对象多是“211” /strong /p p   从通知中,不难看到,所谓“111计划”即“高等学校学科创新引智计划”是由教育部和国家外国专家局联合组织实施,其目标是瞄准国际学科发展前沿,以国家重点学科为基础,从世界排名前100位的大学及研究机构的优势学科队伍中,引进、汇聚1000余名海外学术大师、学术骨干,配备一批国内优秀的科研骨干,形成高水平的研究队伍,建设100个左右世界一流的学科创新引智基地(以下简称“111基地”),努力创造具有国际影响的科技成果,提升学科的国际竞争力,提高中国高等院校的整体水平和国际地位,以推进我国高等学校建设世界一流大学的进程。 /p p   “111基地”以学科创新引智基地建设项目的形式实施,按照“统筹规划、服务需求、科教融合、择优建设、动态管理”的原则进行,每一个“111计划”引智基地的建设周期为5年,每年度支持经费不低于180万元。该项目原遴选范围为教育部、工业和信息化部、国家民委、国务院侨办、中科院等所属“211工程”和“985工程”的中央部属高校,2016年首次面向全国地方高等院校开放。 /p p   自该项目实施以来,遴选范围都是已进入“985工程”重点建设的高等学府以及部分相对有实力的“211重点建设高校”。 这一点从2017年度新建高等学校学科创新引智基地立项名单就可以看出,能在“111基地 ”立项的多出身不凡。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201612/noimg/d5ef00e8-5171-4f1c-8b8c-0735cb8a2f0c.jpg" style=" " title=" 1.jpg" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201612/noimg/2c4447d6-2464-43e8-90cd-4721edcc3d8a.jpg" style=" " title=" 2.jpg" / /p p    strong “双一流”的经费跟“111计划”的钱来源不同 /strong /p p   前几天,动源君曾转发一条信息《75所部属高校“晒账单”,哪些高校更会赚钱?》,综合2015年收入和年初结转结余、事业基金弥补差额的收支决算总额看,清华大学、浙江大学、北京大学(分数线,专业设置)和上海交通大学四所高校的收支决算总额超百亿元,其中清华大学首次超过200亿元,远远领先其他高校。 /p p   高校的钱从哪儿来?根据《高等学校财务制度》,高校收入包括财政补助收入、事业收入、上级补助收入、附属单位上缴收入、经营收入和其他收入,其他收入下涵盖了捐赠收入。 /p p   财政补助收入即高校从同级财政部门取得的各类财政拨款,事业收入指的是高校开展教学、科研及其辅助活动取得的收入。这两者是各高校最主要的资金来源,在北京大学、清华大学、南开大学(分数线,专业设置)等高校中占总收入的比重均超过80%。 /p p   值得注意的是,各高校的财务决算情况也反映出“211工程”、“985工程”与 “双一流”建设的变化,部分学校已获得“双一流”专项财政资金投入。 /p p   如北京大学决算报告显示,2013年获得的财政补助收入减少,主要原因是“985”工程专项资金较2012年减少6.3亿元。2014年,学校的财政拨款有所增加,主要原因是“统筹支持一流大学和一流学科建设”专项资金比上年增加了4.6亿元。2015年,该项资金又增加了6.2亿元。 /p p   对“111计划”的经费来源,从通知我们可以看到,“111基地”建设期间同样可获得专项经费支持,专项经费由教育部、国家外国专家局、高等学校主管部门、依托单位共同筹措,每年度支持经费不低于180万元。 /p p   而且,通知明确规定,高校配套经费除补充聘请外国专家费用不足部分外,还可用于:开展科学研究所需的科研业务费、实验材料费、人员费、助研津贴和其他相关费用 “111基地”配备的国内优秀科研骨干赴国外一流大学、科研机构从事合作研究、短期访问及联合培养博士研究生所需费用 “111基地”召开相关国际学术会议及其他与学科创新引智基地建设相关的费用。 /p p   通过以上梳理不难发现,建设“双一流”大学,必须先在学科建设上下工夫,对于第一类大学而言,就是要拥有多个国内领先、国际前沿高水平学科 对于二类大学而言,就是拥有若干处于国内前列、在国际同类院校中居于优势地位的高水平学科 对于第三类而言,就是拥有某一高水平学科的大学。 /p p   而“111计划”正是着眼于学科建设,以此说来,虽有差异,但方向和目标是一致的。 /p p style=" text-align: center " strong 《高等学校学科创新引智计划实施与管理办法》 /strong /p p   十八大以来,随着科技教育改革不断深入,对外开放水平提升到新境界。根据形势需要,为加大力度引进国外优秀人才智力,更好服务创新驱动发展战略,引领和支撑世界一流大学和一流学科建设,进一步规范和加强高等学校学科创新引智基地建设和管理,在2006年《高等学校学科创新引智基地管理办法》基础上,我们重新制定了《高等学校学科创新引智计划实施与管理办法》,现印发给你们,请认真遵照执行。 /p p style=" text-align: right "   教育部 国家外国专家局 /p p style=" text-align: right "   2016年11月3日 /p p style=" text-align: center " 高等学校学科创新引智计划实施与管理办法 /p p style=" text-align: center " 第一章 总 则 /p p   第一条 为进一步提升“高等学校学科创新引智计划”(以下简称“111计划”)实施和管理的科学化与规范化水平,充分发挥引进国外高水平人才和智力在服务国家重大战略需求,引领和支撑世界一流大学和一流学科建设方面的重要作用,制定本办法。 /p p   第二条 “111计划”由教育部和国家外国专家局联合组织实施,以建设世界一流学科创新引智基地为手段,加大成建制引进海外人才的力度,在高等学校汇聚一批世界一流人才,进一步提升高等学校引进国外智力的层次,促进海外人才与国内科研骨干的融合,形成国际化学术团队,开展高水平合作研究、高层次人才培养、高质量学术交流,重点建设一批具有自主创新能力的学科,提升高等学校的科技创新能力和综合竞争力。 /p p   第三条 “111计划”的总体目标是瞄准国际学科发展前沿,围绕国家需求,结合高等学校具有国际前沿水平或国家重点发展的学科领域,以优势特色学科为基础,以国家、省、部级重点科研基地为平台,从世界排名前100位的大学、研究机构或世界一流学科队伍中,引进、汇聚1000名海外顶级学术大师以及一大批学术骨干,与国内优秀学科带头人和创新团队相互融合,形成高水平的研究队伍,重点建设100个世界一流的学科创新基地,努力取得具有重大国际影响的科研成果,提高高等学校的整体水平和国际地位。 /p p   第四条 “111计划”以学科创新引智基地(以下简称“111基地”)建设项目的形式实施,按照“统筹规划、服务需求、科教融合、择优建设、动态管理”的原则进行。 /p p style=" text-align: center " 第二章 组织机构与职能职责 /p p   第五条 教育部、国家外国专家局联合成立“111计划”领导小组,负责计划的宏观指导和决策。领导小组由两部门领导和相关司级领导组成,主要职能为: /p p   1. 制订“111计划”的整体规划、战略布局 /p p   2. 审核确定“111基地”建设名单和资助经费等。 /p p   第六条 教育部科技司和国家外国专家局教科文卫司相关业务处室人员联合组成“111计划”管理办公室,主要职能为: /p p   1. 制订并发布“111计划”年度实施方案 /p p   2. 聘请国内外知名学者组成“‘111计划’高等学校学科创新引智计划专家委员会”(以下简称“111专委会”),作为学术咨询机构。委员会成员实行聘任制,5年一个聘期,可连续聘任 /p p   3. 对计划项目申报材料进行形式审查,并组织“111专委会”对项目进行评审 /p p   4. 负责“111基地”建设立项 /p p   5. 负责推进项目的执行和检查经费的落实 /p p   6. 组织对“111基地”的验收和评估。 /p p   第七条 “111专委会”受“111计划”管理办公室委托,主要行使以下职能: /p p   1. 对“111计划”有关问题进行咨询 /p p   2. 负责计划项目的评审 /p p   3. 对各“111基地”的建设运行情况进行检查监督与验收评估。 /p p   第八条 高等学校是“111基地”建设的依托单位,获得“111计划”资助的高校应加强学科创新引智工作力量。 /p p style=" text-align: center " 第三章 支持范围与条件 /p p   第九条 “111计划”遴选范围包括中央高校和地方高等学校。具体申报资格与申报数量由年度实施方案确定。 /p p   第十条 申请本计划的“111基地”应具备以下条件: /p p   1. 学科基础: /p p   依托学科应为国内一流优势特色学科,建设有国家、省部级重点科研平台,具有良好的国际合作研究基础。 /p p   2. 人员构成: /p p   (1)应聘请10名以上海外人才团队,其中包括:1名以上国际一流学术大师,5名以上高水平学术骨干 或成建制10人以上国际一流海外团队。 /p p   (2)国内人才团队10人以上,其中包括5人以上优秀学术带头人和中青年拔尖人才。 /p p   3. 人员条件: /p p   (1)海外人才应在世界排名前100位的大学、研究机构任职或受聘于世界一流学科的教学科研岗位,与本学科有良好的合作研究基础。 /p p   (2)海外人才应具有外国国籍,对中国友好,品德高尚,治学严谨,富于合作精神。国际学术大师年龄一般不超过65岁(诺贝尔奖获得者可适当放宽),学术骨干年龄一般不超过55岁。 /p p   (3)国际学术大师应为外国国家科学院或工程院院士或国际公认的一流专家学者,其学术水平在国际同领域处于领先地位,取得过国际公认的重要成就。 /p p   (4)海外学术骨干应具有所在国副教授以上或其他同等职位,在所属领域取得过同行公认的创新性成果。 /p p   (5)国内工作时间:国际学术大师每人每年原则上累计不少于1个月 海外学术骨干每人每年原则上累计不少于3个月,一般应保持有1名以上海外学术骨干长期在基地工作。 /p p   (6)国内研究团队学术带头人的年龄一般不超过60岁、科研骨干成员年龄一般不超过50岁,两院院士、千人计划、长江学者、杰出青年基金获得者等国家人才计划获得者应占有一定比例。 /p p   第十一条 两个“111基地”不得引进同一名国际学术大师。 /p p style=" text-align: center " 第四章 申报、评审及立项 /p p   第十二条 高等学校按照年度实施方案的具体要求进行申报。以学校为单位,不受理个人申报。 /p p   第十三条 申报单位根据核定的申报名额、本办法规定的申报条件和本单位实际情况进行遴选、推荐,组织填写《高等学校学科创新引智基地建设申请书》、并与相关材料一并报送至“111计划”管理办公室。 /p p   第十四条 “111计划”管理办公室组织项目的评审工作。项目评审程序为: /p p   1. “111计划”管理办公室对申报材料进行形式审查,凡审查不合格者将不予受理 /p p   2. 组织本领域同行专家对申报材料进行初评 /p p   3. 组织“111专委会”进行会议评审,对相关情况进行综合评议并填写评审意见表 /p p   4. “111计划”管理办公室汇总专家意见,并根据专家意见制定年度支持方案报领导小组审核批准 /p p   5. 根据领导小组审批结果,公布“111计划”年度项目立项名单和资助经费额度。 /p p   第十五条 予以立项的“111基地”依托高校须填写《高等学校学科创新引智基地建设计划任务书》,并组织专家组进行可行性论证,论证后的任务书和论证报告作为中期绩效检查和验收的依据。 /p p style=" text-align: center " 第五章 组织管理与验收评估 /p p   第十六条 “111基地”一个建设周期为5年,每个基地须从建设期首年度开始建立年度进展报告制度,每年根据相关通知要求将进展报告报送“111计划”管理办公室。 /p p   第十七条 予以立项的“111基地”根据计划任务书的要求,须持续提升引进国外人才层次和水平,自主开展合作研究,加强学科建设和人才培养,加大联合培养博士生力度,积极争取承担国内外重大科研任务,引领和支撑一流学科建设。 /p p   第十八条 “111基地”实行依托单位领导下的主任负责制,基地主任应是本领域高水平学科带头人,具有较强组织管理和协调能力。“111基地”实行“开放、流动、协同、共享”的运行机制。 /p p   第十九条 “111基地”实行中期绩效检查制度,对立项建设后满3年的基地进行中期绩效检查。对中期绩效检查中出现下列情况之一的,要求予以整改或中止建设: /p p   1. 对明显未达到引智计划要求、难以完成预期目标的 /p p   2. 保障条件不能落实,无法按原建设方案实施的 /p p   3. 其他因人为因素严重影响基地正常建设的。 /p p   第二十条 中期绩效检查委托“111专委会”进行,采取现场检查的办法,检查包括海外人才引进、重点工作进展、学校保障措施、基地管理运行、存在的主要问题等,并形成中期绩效检查报告。 /p p   第二十一条 对基地负责人调离的,其所在高等学校应在负责人调离后3个月内向“111计划”管理办公室提交负责人调整意见,经管理办公室同意后予以调整。 /p p   第二十二条 “111基地”首个5年建设期结束后,由“111计划”管理办公室组织验收,“111基地”所在高校应按相关通知要求,填写《高等学校学科创新引智基地验收申请报告》报“111计划”管理办公室。 /p p   第二十三条 “111计划”管理办公室组织专家对“111基地”进行现场验收,验收程序包括:听取基地主任和依托高校的建设汇报,审核验收材料,考察研究平台和建设成效,对照任务书确定的建设目标,重点对引进海外人才和国际化团队建设、创新能力和国际学术影响力、学科提升和高层次人才培养、建设管理和开放共享、高水平国际合作等进行验收并形成验收意见。 /p p   第二十四条 对“111基地”建立滚动支持机制,对建设成效显著、验收结果良好的“111基地” 可继续滚动支持5年。 /p p   第二十五条 “111基地”须参加5年一次的周期性评估,评估工作由“111专委会”或委托第三方专家组进行,坚持公开、公平、公正的原则,评估内容包括学科建设水平与人才培养质量、合作研究与协同创新水平、国际化团队建设和青年拔尖人才引进、管理运行和开放共享等,对通过评估的基地保留名称继续开放运行,对于未通过评估的“111基地”要求整改或淘汰。 /p p   第二十六条 “111基地”要积极探索实质性、高水平、可持续的协同合作机制,推进机构化、制度化、规范化的建设模式,积极承担国际合作联合实验室(研究中心)、国际大科学计划(工程)、世界一流国际学术期刊建设等项目,鼓励基地人员在国际重要学术组织任职,不断提高国际合作的层次与水平。 /p p   第二十七条 “111基地”经费支持人员所发表的相关论文、专著、研究报告、资料、鉴定证书及成果报道等,均须标注“高等学校学科创新引智计划资助”(Supported by the 111 Project)中英文字样和项目编号。 /p p   第二十八条 “111基地”要建立国际一流的管理和运行机制,加大宣传力度,建立国际化动态信息网站,营造创新引领、追求卓越的文化氛围。 /p p style=" text-align: center " 第六章 建设经费与使用管理 /p p   第二十九条 “111基地”建设期间可获得专项经费支持,专项经费由教育部、国家外国专家局、高等学校主管部门、依托单位共同筹措。 /p p   第三十条 国家专项建设经费的使用与管理应严格按照国家聘请外国专家经费相关办法和规定执行,依托单位应保障“111基地”建设经费投入,规范使用、提高效益,接受监督检查。 /p p   第三十一条 高校配套经费除补充聘请外国专家费用不足部分外,还可用于: /p p   1. 开展科学研究所需的科研业务费、实验材料费、人员费、助研津贴和其他相关费用 /p p   2. “111基地”配备的国内优秀科研骨干赴国外一流大学、科研机构从事合作研究、短期访问及联合培养博士研究生所需费用 /p p   3. “111基地”召开相关国际学术会议及其他与学科创新引智基地建设相关的费用。 /p p style=" text-align: center " 第七章 附 则 /p p   第三十二条 本办法自发布之日起施行,《高等学校学科创新引智基地管理办法》(教技〔2006〕4号)同时废止。 /p p   第三十三条 有关高等学校可参照本办法,制定本校“111基地”建设管理办法。 /p p   第三十四条 本办法由“111计划”管理办公室负责解释。 /p p br/ /p
  • 重磅:生态环境部《土壤和沉积物 甲基汞和乙基汞的测定》 (HJ 1269—2022) 标准发布
    生态环境部办公厅2023年1月29日正式发布《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 1269—2022),该标准为我国国内第一个土壤和沉积物中甲基汞和乙基汞的测定方法标准,标准将于2023年6月16日正式实施。 该标准的主要起草单位是由中国环境监测总站和江苏省环境监测中心,验证单位包括:山东省生态环境监测中心、广西壮族自治区生态环境监测中心、四川省生态环境监测总站、湖南省长沙生态环境监测中心、贵阳市环境监测中心站和合肥市环境监测为什么需要对土壤和沉积物中的甲基汞和乙基汞进行测定呢?土壤中的汞主要包括金属汞、无机化合态汞和有机化合态汞。有机化合态汞以有机汞(烷基汞)和有机络合汞普遍存在。其中烷基汞主要包括甲基汞和乙基汞;甲基汞是有机汞中毒性最大的一种形态,甲基汞很容易穿过血脑屏障,对人神经系统进行侵害,尤其对妇女和儿童有很大的影响;土壤中的甲基汞易被植物吸收,通过食物链在生物体内富集,从而暴露给人体;而土壤中的腐殖质与汞结合形成的络合物不易被植物吸收。另外,乙基汞也属于亲脂性化合物,中毒后可引起急性肠胃炎以及造成严重的肾脏损伤等。土壤和沉积物中的甲基汞和乙基汞国内是否有相关限值控制标准? 2018年6月,生态环境部与国家市场监督管理总局联合发布了《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)国家环境质量标准,该标准于2018年8月1日正式实施,标准中明确了不同类型建设用地中甲基汞的筛选值和管制值,其中甲基汞在第一类用地的筛选值为5mg/kg。目前国内暂无涉及土壤和沉积物中乙基汞的限值控制标准。《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 1269—2022)内容简介原理:土壤或沉积物样品经碱液提取后,提取液中的甲基汞和乙基汞与四丙基硼化钠发生衍生化反应,生成挥发性的甲基丙基汞和乙基丙基汞,经吹扫捕集、热脱附和气相色谱分离后,再高温裂解为汞蒸气,用冷原子荧光光谱法测定。根据保留时间定性,外标法定量。 方法检出限和定量下限:当取样量为0.5 g 时,提取液体积为 30 ml 时,甲基汞和乙基汞的方法检出限均为0.2 μg/kg,测定下限均为0.8 μg/kg 前处理过程:分析过程:标准曲线:8 个40 ml 棕色进样瓶,分别加入实验用水约35 ml,再分别加入0 pg,2.00 pg,5.00 pg,10 pg,50 pg,100 pg,500 pg,1000 pg的甲基汞和乙基汞混合标准溶液,,然后加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液,迅速加入实验用水至瓶满,不留空隙,盖紧盖子静置20 min实际样品:40 ml 进样瓶中加入实验用水约35 ml 至瓶颈处,取试样150 μl 至进样瓶中,依次加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液,最后迅速加入实验用水至瓶满,盖紧盖子静置20 min 上机分析:标准内部验证和外部验证均采用美国知名仪器厂家Brooks Rand公司生产的MERX全自动烷基汞分析系统:异位吹扫捕集,样品满瓶式进样,衍生化效率和烷基汞分析结果不受环境空气的影响三通道Tenax 捕集阱交替捕集,效率高液体传感器,水汽进入捕集阱会报警精密流量控制,气流波动小,避免因吹扫气流量过大造成大量水汽进入吸附阱或因流量过小造成的吸附不完全甲基汞检出限可达0.002ng/L;乙基汞检出限可达0.002ng/L宽线性范围:甲基汞0.0125-50ng/L,乙基汞0.025-50ng/L残留低:高浓度样品运行后仪器残留低于2‰重复性好,数据结果可靠国内销售数量超过350家,用户的普遍选择来源:《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》编制说明第65页MERX全自动烷基汞分析系统同时还是《水质烷基汞的测定吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 977-2018)的验证仪器。该仪器数据质量稳定可靠,在国内饱受好评。 谱图:质量控制:空白试验:每20 个样品或每批次样品(<20 个/批)应至少做一个空白试样,空白试样的测定值应低于方法检出限(甲基汞和乙基汞的方法检出限均为0.2 μg/kg)校准:每次分析样品前均应建立不少于 6 个点的校准曲线,采用线性回归法计算结果,曲线的相关系数≥0.995;采用校准系数法计算结果,校准系数 CFi的相对标准偏差≤15%。每20 个样品测定一个校准曲线中间浓度点的标准溶液,其相对误差值应该控制在±20%以内,否则应重新建立校准曲线平行样:每 20 个或每批次样品(少于 20 个样品)应至少测定 1 个平行双样,平行双样测定结果的相对偏差应在±30%以内基体加标:每 20 个样品或每批次样品(少于 20 个样品)应至少测定 1 个基体加标样品或1 个有证标准物质。甲基汞加标回收率控制在 75%~130%之间;乙基汞加标回收率控制在 65%~120%之间 展望:本标准的检出限、精密度等性能指标能满足《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)的相应要求,该标准会使涉及土壤和沉积物中甲基汞和乙基汞分析检测的单位有据可依,并为相关分析检测人员提供新的手段。 参考文献:1. 土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法 (HJ 1269—2022)(链接:https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/202301/t20230128_1014026.shtml);2. 土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)及编制说明(链接:http://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202012/t20201231_815730.html);3. 土壤环境质量 建设用地土壤污染风险管控标准(试行)(GB36600—2018)。
  • 2018第十二届药物制剂大会落下帷幕---锘海生命科学助力药物制剂研发
    为获取全球最前沿的药物制剂研发技术信息,把握药物制剂研究领域发展的国内外新动态,促进药物制剂行业交流与合作,提高我国药剂学研究水平,推动我国药剂学科的快速发展,中国药学会于2018年11月30日至12月2日在广东省广州市举办了第十二届中国药物制剂大会。锘海生命科学作为行业内供应商和服务商,为科研和企业药物研发人员提供纳米药物制造、生产、分析及药物体内外评价整体解决方案。 锘海带来的行业科技和产品吸引众多科研和企业行业人士,展位人气爆棚! 展出产品◆ 药物制造和表征分析 ◆加拿大 Precision Nanosystems 纳米药物载体制造系统世界TOP25大药企的选择!通过微流控芯片技术制造纳米颗粒包裹体,可包裹药物,mRNA、siRNA,CRISPR,DNA,蛋白等,从低通量至高通量均可覆盖,适合于临床及临床前研究,并可在纳米颗粒表面添加marker制造靶向药物。西班牙Bionicia静电纺丝及静电喷雾设备通过电流体动力学制备纳米/微纤维和颗粒流程(EHDA)俗称静电纺丝(纤维)或电喷雾(颗粒)。并且提供与之相关的产品和服务(CRO\CMO)。美国 Spectradyne 高分辨纳米微米颗粒分析仪Astra Zeneca的选择!测量纳米颗粒时应用电学性质识别混悬介质中的粒子,而无需依赖其光学参数。该仪器可测量单个粒子并快速整合粒子尺寸、定量浓度以及Zeta电荷的统计数据。这一特殊性能将nCS1与市面上其他纳米分析仪区分开来。◆ 药物体外筛选 ◆瑞士regenHU3D 生物打印机Novartis的选择!高性价比的3D生物打印平台,3D Discovery系列为高端医用活性细胞组织材料打印制造系统,可以按需制造出符合个体需求的单个器官或组织,真正实现医学的个性化需求。美国etaluma全自动活细胞成像系统FDA、Amgen、Merck的选择!Lumascope?720 三色激发光源全自动荧光显微镜具有更自动化的产品性能与更高端的三色荧光成像系统,精确的X-Y载物台控制系统,可进行自动对焦,还可置于培养箱中。高内涵筛选选择! ◆ 药物体内筛选 ◆法国 VILBERNEWTON 7.0 小动物荧光/生物发光成像系统Novartis、Pfizer、Roche、Boehringer Ingelheim的选择!采用7通道 LED双光源激发,双磁控溅射镀膜的滤光片技术,可进行高效的光谱分离,检测光谱范围可以从400nm至900nm,可同时实现GFP,YFP, Dyelight 680, Cy5.5, Cy7等多种染料标记的小动物荧光/生物发光成像。美国 Photosound小动物3D光声/荧光成像系统(PAFT)可同时实现近红外一区&近红外二区3D光声成像 具有100 um等向分辨率、高通量 (256个电子通道)、灵敏度高(60nM ICG )、桌面式设计,方便使用、成像速度快 (完成一次3D扫描只需30秒)的特点。比利时 Molecubes临床前成像PET/SPECT/CTPET/SPECT/CT能够实现小鼠(4只)和大鼠高灵敏度全身3D成像。PET具备出色的分辨率和灵敏度;SPET系统拥有高分辨探测器和专利准直器;CT系统能够以超低放射剂量获取很高的图像对比度。长按识别二维码关注我们关于锘海锘海生物科学仪器(上海)股份有限公司(Nuohai Life Science)成立于2004年,总部设在上海,并陆续在北京,广州,成都等地设立了8个办事处。锘海致力于提供先进的实验/研究与生产仪器、相关试剂耗材, 并提供专业的应用和技术服务支持。不断促进生命科学领域新技术发展,及时引进国外新的技术和产品。同时,锘海生命科学为科研及企业客户提供全方位的CRO/CMO 服务,满足产业中的研发和生产需求。
  • 上海微系统所成功实现六方氮化硼纳米带的带隙调控
    六方氮化硼(hBN)是一种具有与石墨烯类似的六角网状晶格结构的宽禁带半导体,其大带隙和绝缘性质使其成为极佳的介质衬底材料,同时也限制了其在电子学和光电子学器件中更广泛的应用。与hBN片层不同,hBN纳米带(BNNR)可以通过引入空间和静电势的约束表现出可变的带隙。计算预测,横向电场可以使BNNRs带隙变窄,甚至导致其出现绝缘体-金属转变。然而,如何通过实验在BNNR上引入较高的横向电场仍然具有挑战性。   针对上述问题,近日中国科学院上海微系统与信息技术研究所王浩敏研究员课题组与南京航空航天大学张助华教授团队、中国科学院上海技术物理研究所胡伟达研究员团队联合开展研究。联合研究团队对水吸附锯齿型BNNR (zBNNR)的带隙调制进行了系统的研究。计算结果表明,吸附在zBNNR两侧的水产生了超过2 V/nm的横向等效电场,从而缩小zBNNR的带隙。通过边缘吸附水分子,研究团队首次测量了zBNNR器件的栅极调制输运和其对红外光谱的光电响应,这有利于基于hBN的光电性质的同质集成。这项研究为实现基于六方氮化硼的电子/光电子器件和电路提供了新的思路。   相关成果近日以“Water induced bandgap engineering in nanoribbons of hexagonal boron nitride”为题在线发表在期刊Advanced Materials (https://doi.org/10.1002/adma.202303198)上。   中国科学院上海微系统所陈晨博士,王慧山博士与南京航空航天大学的杭阳博士为该文章的第一作者,王浩敏研究员、张助华教授和胡伟达研究员为论文的共同通讯作者。该研究工作得到了国家自然科学基金项目、中国科学院先导B类计划、国家重点研发计划、上海市科委基金与博新计划等项目资助。图1. (a) 在hBN表面上,Zn纳米粒子蚀刻出两个平行沟槽之间的zBNNR;(b) 不同宽度BNNR的原子力显微镜(AFM)高度图像。比例尺为50 nm;(c)水分子以六方冰形式吸附在zBNNR两侧边缘的结构示意图,由此诱导产生了横向电场。图2.(a)8 nm宽的zBNNR器件在300 K下,Vds从10 V到50 V,背栅电压Vg从-65 V到65 V下的输运曲线,开/关比超过103;(b) 不同宽度zBNNR的输运曲线;(c) 器件的场效应和光电流开/关比与zBNNR宽度的关系;(d) 在功率为35 mW的1060 nm激光照射下,两个zBNNR器件中随时间变化的光电流。它们的宽度分别为33 nm和8.5 nm。
  • 百实创发布百实创-双倾力热电集成系统 原子尺度分辨 原位新品
    INSTEMS系列为用户提供了7种原位TEM实验平台。其中包含三种单外场施加平台,三种双外场耦合平台和一种三外场耦合平台。三种单外场产品为INSTEMS-M(力学加载)、INSTEMS-E(电学加载)和INSTEMS-T(热场加载);三种双外场耦合产品为INSTEMS-ME(力电耦合)、INSTEMS-TE(热电耦合)和INSTEMS-MT(力热耦合);一种三外场耦合产品为INSTEMS-MET(力热电耦合)。产品介绍:INSTEMS-MET采用独特的MEMS芯片设计和新颖的集成策略,克服了多场耦合的诸多兼容性难题,完美保存了TEM样品杆的双轴倾转功能。可以在TEM中向样品施加力、热、电三种外场,实现外场的灵活组合,原位观察材料原子尺寸微观结构变化。该产品极大地拓宽了原位电子显微学的研究范畴,是科研工作者研究复杂力/热/电环境下材料的强大工具。突出优势:1、灵活热/力/电场耦合超宽加热范围 ( RT-1200 oC ) 超高加热精度( 100 mN) pm级驱动控制多种加载模式多种通电程序pA级电学测量2、双轴倾转α 轴倾转最高至±25° β 轴倾转最高至±25°3、稳定的原子尺度成像极限样品漂移<50 pm/s空间分辨率≤0.1 nm技术优势:ItemParametermini-lab兼容性MT/TE/ME/M/E/T加热范围RT up to 1200 ℃ *加热准确性≥98%加热速率10000 °C/s最大驱动力 100 mN最大驱动位移4 μm驱动精度电流测量范围1 pA-1 A空间分辨率≤0.1 nmEDS兼容性√应用领域:半导体电池安全器件失效热电材料… … 创新点:1、独特设计与精密加工的MEMS芯片排除了热膨胀或者样品抖动带来的干扰,提高实验成功率。 2、多通道信号传输保障多场的独立控制与信号采集 3、三场耦合大大提高了工作效率以及研发者的使用需求 百实创-双倾力热电集成系统 原子尺度分辨 原位
  • 华东师大吴鹏团队成功创制高效丙烷脱氢催化新材料
    近日,华东师范大学化学与分子工程学院吴鹏教授团队在分子筛孔道限域金属催化剂高效催化丙烷脱氢领域取得重要进展。面向丙烷脱氢制丙烯这一重要工业反应对高活性、高选择性和高稳定性贵金属催化剂的实际需求,课题组创制了超大微孔硅锗沸石孔道内限域锚定铂(Pt)团簇催化剂,利用沸石骨架金属与Pt的强相互作用,实现了丙烷脱氢高选择性制丙烯反应的长周期运行。2023年6月12日,研究成果以《Germanium-enriched double-four membered-ring units inducing zeolite-confined subnanometric Pt clusters for efficient propane dehydrogenation》为题在线发表于Nature Catalysis上。丙烯是化学工业中最重要的烯烃之一,用于生产多种大宗化学品,包括聚丙烯、丙烯腈、丙烯酸、丙酮和环氧丙烷等。广泛用于丙烷脱氢制丙烯的铂基催化剂面临着制造成本高、容易团聚烧结和高温下催化性能快速失活等诸多问题。因此开发兼具理想催化活性、高选择性及长期耐久性的新型催化剂具有重要的学术和应用价值。吴鹏教授团队开发了一种UTL型硅锗沸石孔道限域的Pt亚纳米团簇型金属催化剂,巧妙利用UTL型分子筛中特殊的富锗双四元环结构(d4r)诱导锚定客体Pt,形成特异性限域于14元环孔道内的亚纳米Pt团簇,构建的主客体双金属结构Pt4-Ge2-d4r@UTL催化剂极大地提升了丙烷脱氢的催化性能,并具有高活性、高丙烯选择性和高耐久性,极具工业应用前景。Pt4-Ge2-d4r@UTL催化丙烷脱氢反应的性能课题组以热/水热结构稳定的Ge-UTL为载体,H2PtCl6为Pt源,采用湿法浸渍制备得到催化剂Pt@Ge-UTL。该催化剂在500oC的反应温度下获得了超过54%的丙烷稳定转化率,99%以上的丙烯选择性。催化剂在不同的丙烷分压,空速以及反应温度下持续稳定催化4200小时。为了满足工业应用需要,课题组还评价了纯丙烷进料、580oC/600oC高温条件下长时间的丙烷脱氢性能,结果表明催化剂具有工业应用前景。亚纳米Pt团簇在UTL孔道内的落位课题组利用积分差分相位衬度成像扫描透射电子显微镜,证实了亚纳米级的Pt团簇特异性地落位在UTL的14元环孔道内,表明Pt在UTL孔道中占据了特定位置,这与14元环孔道具有较大孔尺寸以及骨架Ge在双四元环结构单元的局部富集有关。Pt和Ge的化学状态和配位环境的表征原位XAFS研究表明,最优催化剂Pt-A-2h(31)-R中的Pt物种价态介于0-1之间,线性组合拟合给出了Pt的平均价态为0.576。该催化剂拥有几乎可以忽略的Pt-Pt键散射路径贡献,说明高Ge含量的样品中Pt的尺寸极小(Pt-Pt键配位数大约为3)。重要的是,可以明显观察到位于2.93 Å位置的Ge-O-Pt键的散射路径,且强度很高,证明了Pt是通过Pt-O-Ge键的形式锚定在Ge-UTL沸石上。此外,没有观察到Ge-Ge键的散射路径信号,表明骨架Ge未被还原,仍为原子分散的骨架Ge位点。Ge原子在载体和催化剂中的位置采用19F MAS NMR技术对双四元环结构中的元素组成进行了表征,确认了各种组成的双四元环所占比例并计算出了双四元环结构中Ge含量占整个UTL晶体中Ge含量的95 %左右,表明经酸处理稳固后,样品中的Ge主要位于双四元环结构单元。确定了Pt的定向锚定和落位是通过与双四元环结构中的骨架Ge的化学相互作用来实现的。证明了一种全新的活性位点Pt4-Ge2-d4r@UTL的形成,其可以高效催化丙烷脱氢制取丙烯。丙烷脱氢过程的理论计算结果DFT理论计算和微观动力学模拟结果表明Pt4-Ge2-d4r@UTL结构的计算活化能接近实验值,且远低于Pt(111)的活化能。这归因于Pt4-Ge2-d4r@UTL结构可以有效降低第一步脱氢的能垒,这是整个PDH反应的速率决定步骤,从而提高丙烷脱氢反应速率。吴鹏教授课题组长期聚焦于新型沸石分子筛催化材料的设计及环境友好石油化学化工过程的研究。华东师大化学与分子工程学院博士后马跃为论文的第一作者,华东师大化学与分子工程学院吴鹏教授、徐浩教授、关业军教授,以及中国石油大学(北京)宋卫余教授、内蒙古大学张江威研究员、阿卜杜拉国王科技大学韩宇教授为共同通讯作者。合作单位包括石油科学研究院、崇明生态研究院、重庆大学、中国石油大学(北京)、内蒙古大学、华南理工大学以及阿卜杜拉国王科技大学。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制