当前位置: 仪器信息网 > 行业主题 > >

氟替卡松丙酸酯中间体

仪器信息网氟替卡松丙酸酯中间体专题为您提供2024年最新氟替卡松丙酸酯中间体价格报价、厂家品牌的相关信息, 包括氟替卡松丙酸酯中间体参数、型号等,不管是国产,还是进口品牌的氟替卡松丙酸酯中间体您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氟替卡松丙酸酯中间体相关的耗材配件、试剂标物,还有氟替卡松丙酸酯中间体相关的最新资讯、资料,以及氟替卡松丙酸酯中间体相关的解决方案。

氟替卡松丙酸酯中间体相关的资讯

  • ​【诺华新案例】重氮-叠氮-环合,三步全连续制备药物中间体
    欢迎您关注“康宁反应器技术”微信公众号,点击图片报名一、早期药物发现一个自身免疫性疾病的治疗药物发现项目中,2H-吲唑类化合物被鉴定为高效的选择性TLR 7/8拮抗剂。在先导化合物发现阶段,化合物12被确定可进一步进行体内药效实验研究。图1. 微克级样品的合成路线药物的早期发现使得化合物12和作为关键中间体的化合物5(2H-吲唑)的需求迅速增加。项目团队认识到,该微克级的合成路线可能会在进一步批量放大中产生问题。分离不稳定、潜在危险的叠氮化物中间体4及其在热环化为2H-吲唑5的工艺过程中有安全性的隐患。【考虑到连续工艺在处理高活性、不稳定化合物方面具有的优势,从间歇反应切换到连续流工艺的多个驱动因素中,安全性是最重要的一个因素。在需要快速合成化合物的早期临床前阶段,流动化学作为一种新技术可以大大加快开发过程。】二、连续流工艺探讨针对100克及以上规模的合成,团队启动了流动化学的工艺研究,其主要目标是保持反应体积尽可能小,精确控制反应条件,并避免在任何时间内反应混合物中危险且不稳定中间体的积累。1. 间歇式工艺的连续流技术评估图2. 2H-吲唑类化合物5a的三步合成将氨基醛2a转化为叠氮化物4a,间歇式工艺采用了在酸性条件下使用亚硝酸钠的重氮化方案,然后在0°C下添加叠氮化钠。该反应通常在三氟乙酸(TFA)作为酸性介质和溶剂的存在下进行,可以获得高收率的结果,并常规用于小规模合成。【但含有叠氮化物4a的反应混合物形成的悬浊液明显不适合流动化学筛选。而当该反应在水和盐酸的混合物中进行时,观察到明显较低的产率和大量副产物的形成。考虑到下一步反应,叠氮化合物4与氨基哌啶化合物6在Cu(I)催化的热环化反应仍然面临不适合连续流工艺的固体溶解问题。】研究团队首先需要找到合适的反应溶剂和试剂,对这两步反应来说,合适的溶剂既要溶解所有的物料,又要保持高的转化率。其次,作为另一个重点考虑的事项,需要避免叠氮化合物中间体4的分离。2. 叠氮化合物4a生成的连续流工艺开发 1)溶剂的选择研究者首先用亚硝酸叔丁酯和三甲基叠氮硅烷来代替无机物亚硝酸钠和叠氮化钠,但仅得到了20%的转化率。接着,研究者发现利用二氯乙烷和水的两相混合溶剂与三氟乙酸组合,可以将反应体系中的物质完全溶解,并得到了很高的转化率。而其它酸的应用,如乙酸、盐酸、硫酸和四氟硼酸等,仍会造成沉淀的生成或者反应的转化率降低。2)工艺条件筛选对该反应仔细的研究揭示,需当亚硝酸钠完全消耗后再向反应混合物中添加叠氮化钠,如果过早加入叠氮化钠,它将立即被第一反应步骤中剩余的未反应的亚硝酸钠所消耗。图3. 叠氮化合物4a的连续流工艺流程【Entry 3的实验条件连续稳定运行60分钟,可产中间体16g/h,完全满足下游实验的需要。】3. 2H-吲唑5a连续流工艺开发在完成重氮化及叠氮取代的连续流工艺开发之后,研究团队继续研究铜催化环化的连续流工艺。1)间歇式工艺缺陷间歇式反应中,10% mol的氧化亚铜在体系中悬浮性差,不适合用于连续流工艺。对于流动反应而言,80°C下反应90分钟的时间太长,会导致不可接受的低生产率。这种环化反应的收率通常合理的范围在70−80%,研究团队使用LC-MS鉴定了两种主要副产物氨基亚胺8a和氨基醛2a。图4. 2H-吲唑 5a反应路径及副产物确认2)对铜催化剂和配体的筛选研究者发现,在1当量TMEDA存在下,0.1当量的碘化铜可溶于二氯乙烷中。经反应筛选后,研究者确定了流动条件下环化的合适参数。含有0.1当量碘化铜(I)和1当量TMEDA的0.45M 4a 二氯乙烷溶液,在120°C下,在20分钟的停留时间内,完全转化为吲唑5a。使用LC-MS分析反应混合物表明,叠氮化物4a被完全消耗,得到产物5a、氨基醛2a和亚胺8a,其比例分别为91.5%、3.4%和5.1%,与之前使用的间歇式工艺相比,有了显著的改进。3)停留时间及铜盘管催化为了缩短停留时间和提高生产率,研究者在寻求用更具反应性的催化剂代替碘化铜(I)和TMEDA过程中发现,内径为1mm的铜线圈也有效地催化了该环化反应。推断在铜线圈的内表面上形成了少量的氧化铜(I),起到有效催化该反应的作用。图5. 铜盘管反应器催化反应作为概念证明,制备了0.32M的4a溶液,该溶液已与1.2当量的胺6在甲苯中混合,并在120°C下泵送通过铜盘管,停留时间为20分钟。使用色谱法进行处理和纯化后,分离出5.6g吲唑5a,产率为85%,纯度为98%(图5)。4. 重氮-叠氮-环合三步全连续合成2H-吲唑类化合物图6. 2H-吲唑 5b的连续流工艺结果利用上述研究结果,研究者同样进行了类似物5b的连续流工艺开发。与最初使用的间歇合成相比,新的替代连续工艺不仅避免了危险叠氮化物4a和4b的分离,而且为叠氮化物形成和热环化这两个关键步骤提供了更高的纯度和产率。总结报道了三步反应的连续工艺开发,在100克的规模上制备了两个关键的药物中间体2H-吲唑化合物5a和5b。与最初使用的间歇合成相比,新的替代连续工艺不仅避免了危险叠氮化物4a和4b的分离,而且为叠氮化物形成和热环化这两个关键步骤提供了更高的纯度和产率。通过减小反应器的持液体积,避免固体叠氮化合物的分离,并确保精确控制反应参数,特别是反应温度和试剂的比例,改进了工艺的安全性。将两个连续流步骤整合到化合物12的多步合成中导致更安全地制备和处理叠氮化物中间体,并显著促进了高效和选择性TLR 7/8拮抗剂项目的加速开发。随后,连续流工艺从研究部门转移到化学开发部门,仅对工艺进行了少量的修改,便用于制备千克规模的5b。参考文献:Org.Process Res. Dev. 2022,26, 1308−1317
  • 拉曼光谱新应用:原位光谱观测多种关键反应中间体
    在 BBC 纪录片《蓝色星球》第二季中,担任解说员的“世界自然纪录片之父”大卫爱登堡(David Attenborough)为了探究二氧化碳对海洋的危害,拜访了一位科学家。▲图 | 大卫爱登堡(左一)和一位海洋科学家(来源:见水印)后者把稀释的酸倒向水中,结果贝壳开始“消失”。贝壳由碳酸钙构成,而酸会溶解它们。构成珊瑚礁的材质,和贝壳是一样的。科学家认为,在 21 世纪之前,珊瑚礁有可能会消失。背后的“罪魁祸首”便是二氧化碳,它们溶解在海水中会变成碳酸。空气中的二氧化碳越多,海水酸性就越强,“死去”的珊瑚礁就越多。有证据显示,燃烧矿物燃料是造成二氧化碳浓度上升的主要原因。因此,全球许多国家都在致力于碳中和。实现“双碳”目标(2030 年前碳达峰、2060 年前碳中和)是中国为应对全球气候变化做出的重大战略决策和庄严承诺,也是构建人类命运共同体和促进人与自然和谐共生的必然选择。其中的战略路径选择之一,是实现碳化工与碳利用产业结构重构,比如利用风能、水能、太阳能等可再生能源,将CO2电催化成为高附加值的化工产品和化学燃料。目前,在用于CO2还原反应的各类催化剂中,铜(Cu)基材料是最具潜力的催化剂,因为其能直接将CO2电催化还原为多种高碳氧和碳氢化合物。此外,人们还可通过调整铜催化剂的形貌、晶面、孔径、颗粒间距离、次表面原子和晶界等参数,来实现特定的催化反应活性和选择性。因此,在实际的电化学反应条件下,原位研究铜表面上CO2的电催化反应、及其反应中间体是非常重要的,这有助于我们更深入地了解 CO2电催化反应机理,并借此设计出更合理、高效的催化剂。尽管目前许多原位表征测试技术,比如表面增强拉曼光谱(SERS,Surface-Enhanced Raman Scattering)、表面增强红外吸收光谱(SEIRAS,Surface-enhanced infrared absorption spectroscopy)、衰减全反射傅里叶变换红外光谱(ATR-FTIR,Attenuated total reflectance-Fourier transform infrared)、X射线吸收光谱、和X射线光电子光谱等,在研究CO2电催化还原反应中取得了快速的发展。但是,如何全面识别其众多表面反应中间体、理解其表面吸附物种之间的相互作用,仍然是一个巨大的挑战。基于此,南京工业大学材料化学工程国家重点实验室邵锋团队及其合作者针对上述挑战,结合运用电化学-壳层隔绝纳米粒子增强拉曼光谱 (EC-SHINERS,electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy)技术、以及从头算分子动力学(ab initio molecular dynamics,AIMD)模拟,对铜表面的一氧化碳电催化反应过程进行系统而深入的研究,首次用全光谱(40-4000cm-1)观测了多种关键反应中间体,指认了中间体的特征拉曼峰,提出了表面吸附物种相互作用机理,并通过同位素标记实验进一步获得证实。▲图 | 大卫爱登堡(左一)和一位海洋科学家(来源:见水印)概括来说,本研究主要关注CO2电催化还原反应中间体和机理的基础研究,以期指导新型高效铜催化剂的设计与制备。▲图 | EC-SHINERS 技术示意图、(FDTD,Finite-difference Time-domain)以及 AIMD 模拟示意图(来源:PNAS)近日,相关论文以《原位光谱电化学探测铜单晶表面一氧化碳氧化还原过程》(In situ spectroelectrochemical probing of CO redox landscape on copper single-crystal surfaces)为题,发表在 PNAS 上[1]。邵锋教授(南京工业大学)担任第一兼通讯作者,李景国博士(瑞典乌普萨拉大学)和兰晶岗博士(瑞士洛桑联邦理工大学)担任共同通讯作者。▲图 | 相关论文(来源:PNAS)邵锋表示:“(投稿期间)印象最深的一个插曲,是在我们的返回第一轮审稿意见大概两个月后,编辑给我发来邮件说其中的一个审稿人失去联系了,准备再重新找一个新的审稿人开启新一轮的审稿。”而当时正是俄乌冲突发生最激烈的时候,并且欧美也开始了各类制裁和限制俄国和俄裔人士的风潮。课题组担心其中之一的审稿人可能是俄国或俄裔科学家,因此,或多或少会受到了一点影响,也耽误了审稿的进程。“因此我们的论文从投稿到接收,确实经历耗时很久。虽然虚惊一场,好在最后还是得到了编辑的肯定,最终论文被接收了!”邵锋说。同时审稿人表示,论文的光谱实验部分非常令人兴奋,包含大量有价值的信息,对研究反应机理非常有帮助。此外,理论计算部分质量也很高,预测了各种可能中间体的特征振动图谱,并能与实验结果很好地吻合。其还称,这是一项非常扎实的工作,进行了大量的控制实验和对比实验,同时结合了 AIMD 计算,故论文的论证路线和数据分析令人信服。此外,审稿人也提出了非常重要的建议:即对于特征拉曼峰的归属指认,如何排除其他接近的拉曼峰的重叠与干扰?例如,课题组首次观测并指认了 1220 和 1370cm-1 处的拉曼峰,为 CO-CO 耦合后迅速夺取表面水分子的质子而形成的*HOCCOH 中间体的特征峰。然而,这些峰的位置与反应过程中共存的 *HCO3–/*COOH /*CO32–/*CO2– 等表面中间体的拉曼峰十分接近。因此,该团队需要进行严格的对比实验,来排除可能的重叠与干扰。通过控制实验和理论计算相结合,课题组对这些中间体的特征拉曼峰进行了明确归属,并由此提出了相应的电催化反应机理和路径。研究中的第一步是对原位检测技术的选择。鉴于其具有明确的表面状态以及光电性质,铜单晶表面被用作电催化反应基底。常用的 SERS 技术很难应用于单晶界面研究,而基于红外的光谱技术又难以提供低波数范围(至-0.8 V);2. 不同反应氛围(CO 与 Ar 饱和溶液);3. 不同反应阳离子(CsOH、KOH 与 LiOH);4. 不同反应晶面(Cu(100)、(111)与(110)晶面5. 不同反应 pH 值(CsOH、CsHCO3 与 CsCl 溶液);6. 不同同位素标记(13CO 与 D2O 溶液);7. 不同中间体的稳定性(*OCCO、 *HOCCO, 和*HOCCOH物种)。8. 不同特征峰的重叠(*HCO3–/*COOH /*CO32–/*CO2– )等。值得注意的是,课题组的 AIMD 的计算还表明,溶剂水分子不太可能与铜表面吸附的一氧化碳形成氢键,这意味着 *CO 在较低的过电位下,难以直接从溶剂水分子里得到质子进而形成 *COH/*CHO。与此同时,之前文献报道的 *OCCO 和 *HOCCO 作为 C-C 耦合的关键中间体,它们在铜表面依旧拥有较高的反应活性而发生进一步的反应,最终形成 *HOCCOH 中间体。其中,吸附于铜表面的水分子可以作为质子源参与反应,同时还能留下 Cu-OHad 这一表面吸附物种。下一步,该团队计划开展基于新材料的 CO2捕获富集、催化转化与产物分离耦合的过程研究,以提高传统反应过程的资源和能源利用率为目标,助力“双碳”目标的高质量实现。参考资料:1.Shao, F., Wong, J. K., Low, Q. H., Iannuzzi, M., Li, J., & Lan, J. (2022). In situ spectroelectrochemical probing of CO redox landscape on copper single-crystal surfaces. Proceedings of the National Academy of Sciences, 119(29), e2118166119.
  • 注射剂中间体质量标准制定策略
    药物成品之前的都是中间体。根据产品特点及工艺情况,综合确定关键中间体,关键中间体需要制定质量标准,并检验控制。对于注射剂而言,关键中间体一般是指在配液罐中完成调配的药液。对于注射剂产品,一般会将性状、含量、pH值列为中间体检查项,参考成品的质量标准,将含量和pH值的限度收一收。但光是这样做就有些粗糙了,我们应该根据剂型的特点,产品的特点,有目的地设定中间体检查项,更好地做好产品的质量控制。一、性状对于无色溶液,一般简单地规定“无色澄明液体”即可。但对于有色溶液,特别是灭菌后颜色会加深的产品,建议中间体增加溶液颜色检查项。这样一旦成品颜色比正常情况要深,便于分析是配液工序还是灭菌工序发生的异常。有些冻干产品,随着药液储存时间的延长,溶液颜色也逐渐加深,而一旦冻干开始,颜色即不再变化。这类产品更应建立溶液颜色检查项,并以此检查项确定配液灌装工序的储存时限。基于中间体检查需要简单、快速的特点,一般对比色号即可,不建议使用溶液颜色测定仪。二、含量可以认为,制剂成品的含量控制限度即是药物可以在人体内起效的限度,低于这个限度,药效降低。而制定中间体含量标准的目的就是要保证含量在药品有效期内符合其质量标准。对于非常稳定的品种而言,假如成品的含量限度是90.0%-110.0%,那么中间体含量限度定在95.0%-105.0%即可;假如成品的含量限度是95.0%-105.0%,中间体含量限度可定在97.0%-103.0%。由于含量在效期内基本不会发生变化,中控范围只需能够包容检测方法产生的系统误差。对于储存期间含量逐渐下降的品种,中控含量限度除了要包容方法的误差外,还要包容含量降低的幅度。假如成品的含量限度是90.0%-110.0%,含量在效期内预期降低6%,检测误差不会超过2%,则中控限度应定为98.0%-102.0%。对于冻干产品,由于其标示量和水针不同,影响产品含量的还包括装量。灌装机总是有精度误差的,因此在制定中控含量标准时,还应考虑这一因素。下面用一张图表示某冻干产品制定中控含量限度的思路。 对于其他特殊情况,如采用半透性包材包装的注射剂,也应根据其特点制定做相应的调整。此外,由于尚未灌装的药液不存在标示量这一概念,注射剂的中控含量采用浓度表示(如4.8-5.2mg/ml)较为规范。为了方便理解,企业可以在内部文件中注明浓度对应的百分比。如4.8-5.2mg/ml(96.0-104.0%)。三、pH值大多数的注射剂都对pH值非常敏感,一般不能将成品的pH值标准简单收紧作为中控pH值范围。如硫酸阿托品注射液,中国药典规定pH3.5-5.5,但pH低于4时水解速度明显下降;又如氨茶碱注射液,USP规定pH8.0-9.0,但事实上pH低于8.5原料根本无法溶解。因此,一般以药物最适的pH值范围作为中控范围,同时注意不要触及成品pH值的上下限。四、渗透压摩尔浓度因为渗透压的检测方法非常简单快捷,所以建议成品有渗透压检测项的也在中间体制定,有时投料出现偏差能及时发现。所有的输液产品都会规定渗透压检查项,水针品种用法中包含有静脉推注给药方式的要进行渗透压检测。需要注意的是,有的产品,虽然给药方式是静脉推注,但并不等渗。如地西泮注射液和托拉塞米注射液,限于API溶解性或稳定性的原因,处方中加入了较大量的有机溶剂,形成高渗溶液。这类产品建议也增加渗透压检查项,对产品质量形成更有效的控制。五、有关物质一般终端灭菌的注射剂不需在中间体进行有关物质检测。对于极不稳定的某些产品,如易水解的冻干制剂,可在中控中加有关物质项。并以此验证配液和灌装的试产。六、抗氧剂按照要求,制剂产品放行标准应包括所含的抗氧剂的含量测试,以保证有足够的抗氧剂保留在制剂中,能在整个货架期和所拟的使用期间一直对制剂起到保护作用。 依据上述理念,亚硫酸盐这类属于还原剂的抗氧剂的含量还是非常有必要定在中控标准中的,因为配液及药液在配液罐放置过程中,亚硫酸盐即在被消耗。而依地酸二钠的含量不会发生变化,因此无需进行控制。EMA在《药品注册上市许可申请材料中对辅料的要求》(Guideline on Excipients in the dossier for application for marketing authorisation of a medicinal product)中也指出抗氧剂应提供药品生产过程中的控制方法,但不适用于增效剂,如依地酸二钠。七、微生物负载对于注射剂的微生物负载,国内的GMP有很明确的规定,即:对于除菌过滤前非最终灭菌产品微生物的限度标准一般为:10CFU/100ml对于最终灭菌的无菌产品微生物的限度标准一般为:100CFU/100ml但对于微生物负载的取样位置,各企业却有不同的做法。有的企业会在配液罐中取,有的企业会在药液过0.45μm滤芯后取。后一种做法的依据是:GMP中规定最后一步除菌过滤前,料液的微生物含量应不大于 10CFU/100ml。但其实这样做是有些违背GMP理念的。在欧盟《药品、活性物质、辅料和内包材灭菌指南》中,有如下描述:In most situations, a limit of NMT 10 CFU/100 ml (TAMC) would be acceptable for bioburden testing. If a pre-filter is added as a precaution only and not because the unfiltered bulk solution has a higher bioburden, this limit is applicable also before the pre-filter and is strongly recommended from a GMP point of view. A bioburden limit of higher than 10CFU/100 ml before pre-filtration may be acceptable if this is due to starting material known to have inherent microbial contamination. In such cases, it should be demonstrated that the first filter is capable of achieving a bioburden of NMT 10 CFU/100 ml prior to the last filtration. Bioburden should be tested in a bulk sample of 100 ml in order to ensure the sensitivity of the method. Other testing regimes to control bioburden at the defined level should be justified.翻译如下:大多数情况下不超过10 CFU/100 ml(TAMC)的限度对于生物负载测试是可接受的。如果仅作为预防措施添加预过滤器而不是因为未过滤溶液具有更高的生物负载,则此限度也适用于预过滤器,并且从GMP的角度强烈推荐。如果由于已知具有固有微生物污染的起始物料,则预过滤前的生物负载限度高10CFU/ 100ml是可接受的。在这种情况下,应该证明第一个过滤器能够在最后一次过滤之前达到不超过10CFU/100ml的生物负载。生物负载应在100ml的样品中进行测试,以确保该方法的灵敏度。其他在特定浓度控制生物负载的测试方案应该是合理的。 显然,欧盟是建议在配液罐中取样进行微生物负载检测的。GMP的一个核心理念即是“可控”。要知道即使药液微生物负载很大了,经过预过滤滤芯后也会有几个数量级的下降。数据虽然好看了,但焉知预过滤前未知的微生物负载会不会导致细菌内毒素的失控?有的营养性药物,浓度大,确实适合微生物生长,但如果确知微生物的种类,在可控的前提下进行预过滤,是可以接受的。八、细菌内毒素建议在配液罐中取药液进行检测,与中控含量检测同步进行。九、可见异物、不溶性微粒这两个检查项可以取药液过滤后的样品,取滤芯后或灌装初始样品,各企业可以按照自己的习惯进行管理。不溶性微粒的中控标准制定必然是1ml药液含有多少微粒,而制剂成品的标准是每支样品中含有多少微粒。应注意换算关系,确保中控标准严于成品标准。
  • 爆炸级反应安全化!炸药中间体苦味胺的连续合成
    苦味胺作为关键中间体用于合成DATB、TATB等高能材料,在染料行业被用于制备2,4,6-三硝基苯肼的前体。Scheme1: 对硝基苯胺一步硝化法制苦味胺&bull 先前苦味胺的合成主要是通过邻/对位硝基苯胺的再硝化得到(scheme1),但是硝酸会氧化氨基导致收率下降。有报道称,苦味胺可通过苦味酸和尿素(摩尔比1:3)在173℃@36hr 条件下合成得到,但收率仅有88%。这条路线的风险主要是高温和较长反应时间带来的潜在过程安全风险。截至目前,文献中报道大规模生产苦味胺的工艺具有很大的安全风险且难以放大。&bull 微反应器为此反应提供了机会,在微反应器中,极佳的传热和传质效率可以大大缩短反应的停留时间,在任何时间点上都只有很少量的原料、中间体和产物,对于高能材料而言可显著提升反应的安全性。来自印度的Ankit Kumar Mittal等人开发了一种从对硝基甲醚到苦味胺的连续合成路线(scheme2)。Scheme2: 对硝基苯甲醚两步法制苦味胺&bull 首先进行了step-1的条件筛选和优化,分别优化了不同的温度、停留时间和硝酸用量(Table1):Table1: step1连续合成条件筛选和优化 &bull 根据实验结果,选择硝酸用量2.5e.q.,温度80℃,停留时间2.5min,此条件下中间体TNAN含量最高且杂质苦味酸含量相对较少。&bull Step-1放大至16ml盘管中生产,15min可以得到6.27gTNAN,相当于25g/hr的产量,分离收率90%,纯度99%。&bull 同时做了step-1的连续流和釜式工艺的结果对比,釜式75min仅能达到25%收率,而连续流2.5min就可以达到90%的收率(Table2):Table2: step-1釜式和连续流工艺对比&bull 随后进行了step-2的条件筛选和优化,NH3 用量5.e.q.,温度70℃,停留时间30s,苦味胺纯度100%(Table3):Table3: step-1连续合成条件筛选和优化 &bull Step-2放大由于受到设备(10ml盘管)自身参数的限制,选择了60℃和1min的停留时间,15分钟可以拿到6.68g产品,相当于26g/hr的产能,纯度99%。Scheme3: step-2放大&bull 总结:&bull 1. 使用微反应器成功开发了苦味胺的连续合成工艺,产能26g/hr&bull 2. 两步的条件都很温和,可以在优化后的条件下成功放大&bull 3. 该工艺可以安全、经济地进行苦味胺的工业化生产&bull 4. 后续结合自动监控装置可以更有效地保障工艺的安全性和稳定性参考文献:An Asian Journal Volume 18 Issue 2 Pages e202201028Journal---------------------------------------------------------------------------------------------------------------------集萃微反应创新中心: 打造微通道反应器定制开发、绿色合成工艺研发、化工连续化与自动化生产技术、化工在线检测与在线数据处理平台;提供连续化、自动化、智能化生产技术、化工高效分离技术、副产物的高效回收与综合利用、在线检测与大数据收集等,实现化学合成生产过程 “连续化、微型化、信息化、智能化”。如您有连续流工艺开发、转化方面的需求,欢迎联系我们!
  • 重要科研用试剂核心中间体研发 申报指南
    关于发布“十一五”国家科技支撑计划重点项目“重要科研用试剂核心中间体研发与产业化应用示范”课题申报指南的通知 各有关单位:   为贯彻落实《国家中长期科学和技术发展规划纲要(2006-2020年)》,满足我国科学研究对试剂需求日益增长的需要,科技部在认真总结前期工作的经验、成果并广泛征求各有关部门(单位)、地方对科研用试剂提出的需求的基础上,决定启动“十一五”国家科技支撑计划重点项目“重要科研用试剂核心中间体研发与产业化应用示范”。通过本项目的实施,将进一步完善产学研相结合的机制,在政府的引导下构建更加完善的科研用试剂产学研用联盟 发挥和提升我国科研用试剂的自主创新及产业化的能力,进一步推动我国科研用试剂行业的稳步发展,为科研提供更有力的支撑。   为充分调动各方的积极性,促进科技资源优化配置,公平、公开、公正地选择课题承担单位,科技部对本项目的课题采取公开申报,择优委托的方式选择课题承担单位,现将项目课题申报指南发给你们,请按照指南要求,做好组织申报工作。   联系人:王建伦 010-58881698       wangjl@most.cn   附件:“十一五”国家科技支撑计划重点项目“重要科研用试剂核心中间体研发与产业化应用示范”课题申报指南   科技部科研条件与财务司   二〇〇九年六月二十三日
  • 德祥顺利参展第10届中国(长春)国际医药原料、中间体、包装设备展览会
    2017年3月23日到25日,第10届中国(长春)国际医药原料、中间体、包装设备展览会在长春国际会展中心顺利举办,德祥携手众多进口实验室仪器供应商在展会上亮相。 作为制药行业的展会,我司代理的德国Hettich离心机,德国Heidoph旋蒸、美国SP scientific、冻干机、德国Pharmatest等仪器作为代表参展,在展会期间,我们产品的质量和性能受到客户的高度认可,客户也对他们目前遇到的技术问题与我们工作人员进行沟通,我们的技术人员也一一给予了满意的答复。 德祥,作为进口实验室仪器的代理商,将一如既往为广大新老客户提供*的产品和完善的服务,欢迎来电咨询,了解更多资讯和产品详情! 电话:4009-000-900
  • 创新通恒参展2012中国国际医药原料药、中间体、包装、设备交易会
    第69届中国国际医药原料药、中间体、包装、设备交易会于2012年11月7日至9日在厦门国际会展中心隆重举行。本届展览交易会的主题是“药品安全之源,品牌优质之选”,旨在关注药品安全,打造创新制药品牌,引领中国制药工业发展大势。 本次交易会吸引了大批国内外众多知名厂商参与。 北京创新通恒科技有限公司作为国内能提供工业化核酸药物合成仪及大型工业级制备纯化系统的企业,组织了公司精干技术人员和市场人员参加了本次交易会。创新通恒十多年来一直专注色谱产品领域的研发及生产,不断攻坚克难,满足客户不同需求。本届展览交易会上我公司展出的产品受到了广大参观者的关注和好评。 “因为专注,所以专业”创新通恒一定能为广大客户提供优质的产品和服务,为用户创造价值。 交易会开幕式 客商正在参观创新通恒展品 创新通恒市场人员与客商进行交流 创新通恒技术人员解答客商的问题
  • 德国新帕泰克将参加第62届中国国际医药原料药、中间体、包装、设备春季交易会!
    德国新帕泰克公司将参加第62届中国国际医药原料药、中间体、包装、设备春季交易会(62nd API)! 德国新帕泰克公司将参加于2009年05月12-14日在西安曲江国际会展中心(西安市雁展路1号)举办的&ldquo 第62届中国国际医药原料药、中间体、包装、设备春季交易会&rdquo ,The 62nd API China 2009 Xi&rsquo an。 公司展位号B1309,届时公司会携专利的全自动干湿二合一激光粒度仪HELOS/OASIS 和世界上第一台光子交叉相关光谱纳米激光粒度仪NANOPHOX 参展!期待与大家进行专业的现场技术交流,并可以在现场提供样品粒度检测。 热忱欢迎各界人士光临公司展位!
  • 丹东百特精密仪器亮相第86届中国国际医药原料药中间体包装设备交易会
    在初夏的美丽羊城-广州,丹东百特携百特激光粒度仪Bettersizer 2600,纳米粒度电位仪BeNano 90 Zeta,智能粉体特性仪 BT-1001,图像颗粒分析仪BT-1600参加了为期三天的第86届中国国际医药原料药中间体包装设备交易会。此次展会吸引了生物制药行业上下游众多企业,同时丹东百特也为制药行业提供了全方位的颗粒检测解决方案。会议开展于广交会展馆,拥有9.2、9.3、10.2、10.3、11.2五个展区,分别展示了制药设备、干燥设备、包装设备、检测设备及原料药和辅药材料,吸引了数以万计的观众前来交流学习。期间,到访百特展位的观众络绎不绝,对于粒度检测比较陌生的观众,百特销售经理从激光粒度仪的原理、测试方法、报告解读以及售后保养等方面为每位观众进行详细全面的介绍。对于前来交流的的老客户,百特销售经理更是细心的询问仪器目前的使用状态是否良好,若出现疑问,销售经理和工程师在现场立刻解决问题,保证每位客户在百特展台的交流都有所收获。耐心的仪器讲解、一丝不苟的做事态度赢得了每一位观众的好评。针对生物制药行业,丹东百特深入研究行业标准,产品均符合ISO13320-2016,21CFR Part 11等制药标准及审计追踪。对于药物颗粒检测,Bettersizer 2600 同时可以具备干湿法分散器及微量耐腐蚀样品池进样方式。正反傅里叶光路设计使得粒度检测范围达到0.02μm-2600μm,重复性和准确性都能达到国际水平。对于纳米颗粒检测,例如蛋白质、脂质体、纳米悬浮液,丹东百特研发的第四代纳米粒度电位仪BeNano 90 Zeta,采用高性能APD和准确的温控系统能够准确测量颗粒的粒度和电位变化。BT-1600图像颗粒分析仪是颗粒检测的眼睛,它能够拍摄到清晰的颗粒照片并通过百特自主研发的高速率分析软件进行颗粒的多项指标分析,例如:长径比、圆形度、单体颗粒和颗粒群等。智能粉体特性仪能够测量粉末的14项粉体特性指标,能够充分表征粉末的物理特性。丹东百特仪器有限公司秉着“诚信经营,以客户为本”的经营方针,为广大制药用户提供全方位的颗粒检测方案,展会还在进行中,百特团队在广交会展馆9.2A06展位期待着您的光临。
  • 德国新帕泰克公司将参加第61届中国国际医药原料药、中间体、包装、设备秋季交易会!
    公司将参加于2008年11月05-07日在苏州国际博览中心(苏州工业园区现代大道博览广场.) 举办的“第61届中国国际医药原料药、中间体、包装、设备秋季交易会 The 61st API CHINA&INTERPHEX CHINA”。 公司展位号3A522,公司会携专利的全自动干湿二合一激光粒度仪HELOS/OASIS和世界上 第一台光子交叉相关光谱纳米激光粒度仪NANOPHOX 参展! 随着对原料药出口要求的不断提高,粒径分布已经成为原料药出口过程中一个很关键的参数指标。 德国新帕泰克专注于医药行业的粒度检测需要,在全球尤其欧美拥有大量的医药客户,专利的干 法激光粒度仪HELOS/RODOS能为您提供快速、方便的原料药粒度检测技术,功能强大,完全符 合FDA的各项要求! 届时中国区首席代表耿建芳博士等将与大家进行专业的现场技术交流,并可以在现场测试样品。 热忱欢迎各界人士光临公司展位!
  • 定位中国制药新未来——第82届中国国际医药原料药/中间体/包装/设备交易会在杭州召开
    p    strong 仪器信息网讯 /strong & nbsp 2019年5月8-10日,制药及制药设备行业盛会——第82届中国国际医药原料药/中间体/包装/设备交易会(以下简称“API China”)在杭州国际博览中心盛大召开。1200余家医药原料、辅料配料、医药包装、制药设备及检测仪器企业参展,超过5万名全球药品、保健品与化妆品领域专注研发与生产的精英人士汇聚于此,共同分享大健康产业蓬勃发展带来的巨大市场机遇,探讨中国制药行业未来的发展,为观众打造一场规模盛大、产业链齐全的制药工业展会。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201905/uepic/698835a3-34ce-4bb4-8460-709d2db1275e.jpg" title=" 观众入场.JPG" alt=" 观众入场.JPG" / /p p style=" text-align: center " 观众入场 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201905/uepic/2c545a59-36c3-426c-b0df-73dbb1c52986.jpg" title=" 现场.JPG" alt=" 现场.JPG" / /p p style=" text-align: center " 展馆内景 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201905/uepic/9decb2af-c7d2-4017-af58-cef6551293c9.jpg" title=" 现场3.JPG" alt=" 现场3.JPG" / /p p style=" text-align: center " 展馆外景 /p p   API China是中国制药领域规模较大、历史悠久的展会,也是海内外数万家药品与保健品生产企业采购原料药、中间体、药用辅料、医药包材、制药设备的“一站式”的平台。展会当天,穿梭于各展馆之中,可以看到现场人头攒动,展商和参展观众热情高涨,气氛十分热烈。 /p p   除了展览之外,本次展会还给展商以及参展观众提供了一个与前沿技术接触、和专家学者交流的机会。当一致性评价、两票制、智能化、信息化、自动化等政策和趋势向制药工业袭来时,很多企业或许无法采取及时有效的应对措施。本次展会特针对于国内各种制药“新政”举办了三十余场高质量会议论坛,邀请了来自NMPA、CDE、核查中心、中检院、药典委、省市药检所等相关政府部门领导及国内外优秀的制药企业、CRO公司、原辅料企业的百余位嘉宾,为制药行业同仁带来最务实的分析、指导和建议。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201905/uepic/0578332c-f636-4dea-9904-fa05e4eea44c.jpg" title=" 高峰论坛.JPG" alt=" 高峰论坛.JPG" / /p p style=" text-align: center " 2019中欧医药产业发展论坛 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201905/uepic/1d8d1384-9206-4814-933b-a12bdf29abec.jpg" title=" 仪器论坛.JPG" alt=" 仪器论坛.JPG" / /p p style=" text-align: center " “工欲善其事,必先利其器——论现代仪器技术在药品研发与质控中的应用”论坛 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201905/uepic/9d0fe1b5-8f42-471c-b061-58bc2cb1a55e.jpg" title=" 一致性.JPG" alt=" 一致性.JPG" / /p p style=" text-align: center " API China 巡回交流会(杭州)注射剂一致性评价技术和法规研讨会 /p p    span style=" color: rgb(0, 112, 192) " strong 部分实验室仪器设备参展商: /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/909e4ccd-dc69-4316-8f16-ecff5fd194b3.jpg" title=" 永合创新.JPG" alt=" 永合创新.JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 永合创信 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/5699fd34-8a39-4c8e-81af-46217216bedf.jpg" title=" 永岐实验.JPG" alt=" 永岐实验.JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 永生仪器 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/3a5e374c-939a-438e-a34e-dd221ea99dbe.jpg" title=" 苏盈仪器.JPG" alt=" 苏盈仪器.JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 苏盈仪器 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/d1685a44-34c3-4c55-ae7f-ce4241547797.jpg" title=" 真理光学.JPG" alt=" 真理光学.JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 真理光学 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/799f973d-70ba-472e-a4b9-dc1404612bc7.jpg" title=" 长城.JPG" alt=" 长城.JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 郑州长城 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/83938542-3488-4bf2-a322-ed06e4bf6966.jpg" title=" 岩征仪器.JPG" alt=" 岩征仪器.JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 岩征仪器 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/26c575da-30bd-4fde-8bb4-c9015961288f.jpg" title=" 马尔文.JPG" alt=" 马尔文.JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 马尔文帕纳科 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/586bb406-01bb-4eb8-bbe5-e22b1d368003.jpg" title=" 庚yu .JPG" alt=" 庚yu .JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 庚雨仪器 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/aa61d815-7eea-43ce-a924-b7253669736f.jpg" title=" 欧世盛.JPG" alt=" 欧世盛.JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 欧世盛 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/9a4de8d0-be36-4822-8d7b-65df63b0dea2.jpg" title=" 上海雅称.JPG" alt=" 上海雅称.JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 上海雅程 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/7c223040-8f13-45a6-8af4-f80178701006.jpg" title=" 仪器信息网.JPG" alt=" 仪器信息网.JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 仪器信息网 /strong /span /p p br/ /p
  • 欧盟发布活性物质环丙酸酰胺的执行法规
    2011年10月15日,欧盟在官方公报上发布了有关批准活性物质环丙酸酰胺的委员会执行法规(EU)1022/2011。   具体内容参考   http://www.tsinfo.js.cn/SIS/WTO/database/warn/eu-1022-2011-e.pdf
  • 安全可控、提质增效!胶原蛋白关键中间体二甲基砜MSM的连续流合成工艺
    甲基砜(MSM)是一种重要的有机硫代物,在胶原蛋白合成中起着关键作用,并具有增加胰岛素敏感性和促进体内糖代谢的潜在健康作用。传统的硝酸氧化法生产MSM存在废酸产量高、气味难闻、安全性差等缺点。在绿色化工的指导下,使用双氧水作为氧化剂,因纯度高、原子利用率高且产物仅为水和氧而备受关注。由于生产工艺的强放热性,使用传统间歇釜存在反应失控甚至爆炸的风险,在绿色化学品和安全化学品的概念下,这种生产过程逐渐被淘汰。微通道反应器作为一种新兴技术,针对强放热反应可以有效避免热失控的风险,且尺寸小持液量少,具有本质安全,显著提高反应的过程安全性。近年来,微通道技术已应用于各种高危反应,包括硝化、氧化、氯化、加氢、烷基化、酰化等。来自南京工业大学的倪老师团队构建了几种不同规格的微通道反应器,并将其应用于MSM的连续流合成。实验开始,作者考察了通道直径、水浴温度、催化用量和停留时间对MSM产率的影响,MSM的收率和纯度都很高:图1:初始实验装置图2:初始考察通道直径、水浴温度、催化用量和停留时间对MSM收率的影响最佳条件为使用3mm*1mm的PTFE管道,水浴温度80℃,催化剂用量0.002e.q., 停留时间4min,收率可达91.5%。考虑到此反应初始阶段原料浓度高放热量较大,作者采用两段温区(温区一Tf+温区二Ts)进行研究:图3:第二阶段实验装置图4:第二阶段不同的温区组合对MSM收率的影响当温区一温度20℃,停留时间1.0 min,温区二温度80℃,停留时间3.0 min时,MSM收率最高98.1%。后续作者在自建的工业化微通道反应器上进行了工业化放大,时间收率为18.36吨/年,空间收率为36.43吨/年/m3(如图5):图5:工业化放大装置图5:釜式和连续流的对比总结:根据反应的放热特性,采用微通道反应器实现了MSM连续流合成工艺。单控温工艺,通道直径为3 mm × 1 mm,水浴温度为80℃,催化剂用量为0.002 mol,停留时间为4 min时,MSM收率达91.5%。双温控工艺,当温区一温度为20℃,停留时间为1.0 min,温区二温度为80℃,停留时间为3.0 min时,MSM的收率可达98.1%。在自建的工业化微通道反应器平台上对MSM的连续流工业化生产进行了研究。MSM年平均时间产量为18.36 吨/年,年平均空间产量为36.43吨/年/m3。微通道技术的应用可有效提高MSM制备过程的本质安全性和生产效率,具有广阔的工业应用前景。
  • 涨幅超50%!TDI、PX、丙烯酸、新戊二醇等原材料价格上涨
    p style=" text-indent: 2em " 近日,国内各大化工原材料价格持续上涨,部分原材料价格创下历史新高。中间体H酸、对位酯价格上调幅度达52%。 /p p style=" text-indent: 2em " H酸、对位酯价格暴涨 /p p style=" text-indent: 2em " 作为活性染料最重要的染料中间体,H酸、对位酯5月10日起正式涨价。H酸从3.3万元/吨涨至5万元/吨,对位酯从2.7万元/吨涨至3.5万元/吨。 /p p style=" text-indent: 2em " TDI价格上涨4.16% /p p style=" text-indent: 2em " TDI价格5月10日上涨4.16% 受厂家涨价的带动,区内TDI市场也积极看涨,但由于市场行情变化频繁,导致部分商家封盘,甚至有商家捂货不出。 /p p style=" text-indent: 2em " 对二甲苯价格上涨 /p p style=" text-indent: 2em " 10日上午亚洲对二甲苯任意6月船货递盘在1030美元/吨CFR中国,报盘在1045美元/吨CFR中国 任意7月船货递盘在1015美元/吨CFR中国,报盘在1030美元/吨CFR中国。受美国推迟伊朗协议引发原油供应担忧利好影响,国际油价上涨至三年半新高,PX成本端支撑强劲。下游PTA期现价因资金涌入且库存压力放缓而窄幅攀升,另亚洲PX市场供应商因盈利空间缩窄而挺价意愿增强。因此综合助力下,PX早盘商谈暴涨。 /p p style=" text-indent: 2em " 正丁醇 /p p style=" text-indent: 2em " 正丁醇工厂检修较为集中,某工厂推迟开车,市场供需缺口持续扩大,下游开工稳定,采购热情高涨,主流工厂积极上调价格,库存低位。万华本周期华北上调200元/吨,华东、华南上调100元/吨。 /p
  • 中国认证认可协会发布《食品中硫代二丙酸二月桂酯含量测定 气相色谱-质谱法(征求意见稿)》
    各有关单位:根据《中国认证认可协会团体标准管理办法》规定,经中国认证认可协会批准立项,广州检验检测认证集团有限公司等单位已完成《食品中硫代二丙酸二月桂酯含量测定 气相色谱-质谱法》团体标准的起草工作,形成征求意见稿,现公开征求意见。有关事项通知如下:一、《食品中硫代二丙酸二月桂酯含量测定 气相色谱-质谱法》团体标准征求意见稿及编制说明等有关材料可从中国认证认可协会网站下载,网址信息如下:http://www.ccaa.org.cn/ttbzgl/6484.html二、请填写《意见反馈表》(见附件),并于2024 年4 月15日前通过电子邮件反馈至标准起草组。联 系 人:李秀英联系电话:020-84655116电子邮箱:js@cngttc.cn附件:《食品中硫代二丙酸二月桂酯含量测定 气相色谱-质谱法》公开征求意见材料.rar
  • ​卡宾化学印记法结合质谱技术揭示抗体药物结合表位
    大家好,本周为大家分享一篇最近发表在Analytical Chemistry上的文章,Residue-Level Characterization of Antibody Binding Epitopes Using Carbene Chemical Footprinting 1。该文章的通讯作者是美国百时美施贵宝的Jason M. Hogan研究员。抗体药物结合表位的测定是药物开发的重要环节。抗体的结合位点决定了它的药理学和药代动力学特性。本文采用化学印迹法结合质谱技术对MICA蛋白上的抗体结合表位进行了测定,单残基水平的分辨率能够展现更精细的结构信息。作者选择了两种包含有双吖丙啶基团的光催化标记试剂TDBA和3-azibutanol(如图1AB中的化学结构式)。在紫外光照射下,双吖丙啶基团会形成较高反应活性的卡宾中间体插入到氨基酸的X-H键中(X=C, O, N, S)中,进而实现较高水平的标记序列覆盖和结构分辨率。值得注意的是,TDBA和3-azibutanol在分子尺寸、极性以及对不同氨基酸的反应活性上都存在差异,因此两种试剂获得标记结果往往能展现一些互补的结构信息。作者首先对MICA与Fab-1的互作表位进行了测定。由于同一条肽段存在多个标记位点,每个位点的标记比例变化也不一样,所以肽段水平的标记往往反映是该肽段连带区域结构平均化的结果。图1AB为MICA与Fab-1结合后标记比例的变化。在MICA α3结构域中,共有34个残基被TDBA试剂修饰(图1A)。在这些残基中,发现18个位点的标记量在与Fab-1形成复合物后显著性地下降,3个位点的标记量显示出增加。如果按照肽段标记水平的变化来看,其中5个位点的结构变化信息则会被掩盖。相较于肽段标记量变化,计算单个残基的标记量变化能将抗体结合表位锁定到更精确的位置。将标记量下降的残基映射到MICA蛋白晶体结构上(图1C),可以观测到大多数受保护的残基在α3结构域上形成了一个连续的表面。其中一个残基Q278显示出标记量增加,并且靠近TDBA定位的表位,表明它可能位于表位边缘或附近。其余差异标记残基位于远离表位的区域,可能是Fab-1结合时蛋白质结构构象变化导致的结果。在3-azibutanol的实验中,复合物形成后仅显示5个标记量显著性下降的残基和2个增加的残基(图1B)。四个标记量下降的残基R279、Y283、E285和H290在TDBA标记实验也观察到。两种标记试剂的测定结果可以相互验证,同时互相补充。3-azibutanol定位的表位覆盖了TDBA表位中的两个不连续区域(图1D)。整合两种标记试剂定位的表位区(图1E),对比X-射线晶体学测定的表位(图1F)发现大多数通过卡宾化学标记鉴定的表位残基被晶体结构证实,其余残基则位于晶体学表位外围的8Å范围内。以上结果均说明卡宾化学印记法在测定抗体结合表位上具有较高的准确性。图1 MICA与Fab-1的互作表位测定:A)TDBA, B) 3-azibutanol实验标记量的变化;使用C) TDBA, D) 3-azibutanol 定位的表位;E)整合标记试剂测定的表位;F) X-射线晶体学测定的表位。鉴于此,作者将卡宾化学印记法应用到了其他候选Fab与MICA结合表位的测定上。在实验开始之前,作者首先用生物膜层干涉(BLI)技术对几个Fab在MICA上的竞争结合关系进行了考察。如图2A所示,Fab3、Fab4、Fab5存在着竞争结合,表明它们结合的表位一致或表位之间存在重叠。而Fab1、Fab2与MICA结合相对独立,不受其他Fab的干扰,说明Fab1和Fab2都具有各自单独的结合表位。尽管生物膜干涉能够展现各个Fab结合表位的位置关系,但却无法实现更高分辨的定位。表面标记法则能很好地解决此问题。如图2B-G,通过卡宾化学印迹法的测定6个Fab的结合表位都实现了准确定位,位置接近或重叠的表位则会产生竞争结合,因此更精准地解释了Fab间的竞争关系。此外,作者还将卡宾化学印记法应用到了完整抗体Ipilimumab与CTLA-4结合表位的测定(图3),卡宾化学印迹法依旧展现出较高的分辨率,准确描绘出了Ipilimumab与CTLA-4结合表位轮廓。图2 A)通过生物膜层干涉测定6个Fab的竞争结合关系;B-G)卡宾化学印记法测定6个Fab的表位图3 卡宾化学印记法测定全长抗体Ipilimumab与CTLA-4互作表位总之,使用卡宾化学印迹可以快速定位抗体结合表位,以支持抗体药物的开发。两种标记试剂的使用增加了蛋白复合物表面标记残基的覆盖率,可提供互补结构信息。残基水平的标记细化了相互作用表面并且能够区分与结合表位不相关的远端调控。撰稿:刘蕊洁编辑:李惠琳原文:Residue-Level Characterization of Antibody Binding Epitopes Using Carbene Chemical Footprinting参考文献1. Hogan JM, Lee PS, Wong SC, et al. Residue-Level Characterization of Antibody Binding Epitopes Using Carbene Chemical Footprinting. Anal Chem. 2023 95(8):3922-3931.
  • 1144万!上海发布2022第三批科技创新券(仪器类)兑付清单
    为落实《国务院关于强化实施创新驱动发展战略 进一步推进大众创业万众创新深入发展的意见》(国发〔2017〕37号)要求,优化财政资助方式,降低创新创业成本,进一步推广应用科技创新券,上海市科学技术委员会同市财政局于2018年研究制定了《上海市科技创新券管理办法(试行)》。科技创新券是指利用市级财政科技资金,支持企业、团队向服务机构购买专业服务的一种政策工具。创新券采用电子券形式,由企业、团队申领和使用,由服务机构收取和申请兑付。每家企业每年使用创新券的额度不超过30万元,每个团队每年使用创新券的额度不超过10万元。11月28日,上海市科学技术委员会对2022年第三批拟兑付的上海市科技创新券(仪器类)名单进行公示,拟对120家符合科技创新券兑付条件的服务机构进行兑付,兑付额总计11440338元。2022 年度第三批上海市科技创新券拟兑付清单(仪器类)序号 服务名称 订单编号 申领使用主体 服务机构 兑付额 (元) 1 105 系列化合物合成、分离和纯化20200901094757780562 上海轶诺药业有限公司辉源生物科技(上海)有限公司500000 2 LB4330 小鼠毒理实验和毒代动力学20220326124821495947 上海健信生物医药科技有限公司上海益诺思生物技术股份有限公司500000 3 KY0118 非临床安全性评价20200819154115103388 上海科弈药业科技有限公司上海益诺思生物技术股份有限公司500000 4 LB1410 临床前毒理研究20200226131303942016 上海健信生物医药科技有限公司中国科学院上海药物研究所500000 5 射频收发芯片多项目晶圆(MPW)服务20211201110501829278 上海擎昆信息科技有限公司上海集成电路技术与产业促进中心500000 6 数字信号处理芯片多项目晶圆(MPW)服务20220513110631268322 上海奥令科电子科技有限公司上海集成电路技术与产业促进中心500000 7 中间体化学合成服务20220404200609504372 上海添泽生物医药有限公司上海药明康德新药开发有限公司500000 8 接口芯片多项目晶圆(MPW)服务20220615144128647572 景略半导体(上海)有限公司上海集成电路技术与产业促进中心500000 9 高速光互联芯片多项目晶圆(MPW)服务20220211113101022507 光梓信息科技(上海)有限公司上海集成电路技术与产业促进中心449509 10 ESG401 非临床安全性评价20200622120941940602 上海诗健生物科技有限公司上海益诺思生物技术股份有限公司419000 11 雄性激素受体降解剂关键中间体合成20220818164731788761 都创(上海)医药开发有限公司上海药明康德新药开发有限公司415000 12 毫米波雷达芯片多项目晶圆(MPW)服务20220503103125225935 矽典微电子(上海)有限公司上海集成电路技术与产业促进中心368299 13 VVN111 小分子抑制剂药效研究20211213110541067916 维眸生物科技(上海)有限公司上海药明康德新药开发有限公司300000 14 ES014 肿瘤药物非临床安全性评价20210222150039527583 科望(上海)生物医药科技有限公司上海益诺思生物技术股份有限公司300000 15 血流导向装置动物实验20201216095437016589 心凯诺医疗科技(上海)有限公司澎立生物医药技术(上海)股份有限公司297500 16 新药化合物化学合成20201027150236707352 上海强睿生物科技有限公司上海美迪西生物医药股份有限公司230000 17 TSN084 片剂研发、样品制备及分析20211126153252035996 泰励生物科技(上海)有限公司上海合全药物研发有限公司219313 18 物联网芯片多项目晶圆服务20220308122739118660 上海佩纶半导体有限公司上海集成电路技术与产业促进中心197349 19 CA0678 原料药的工艺研发和样品制备20210415145857545480 上海椿安生物医药科技有限公司上海合全药物研发有限公司193894 序号 服务名称 订单编号 申领使用主体 服务机构 兑付额 (元) 20 移植瘤模型测试化合物动物体内药效服务20220314171649760113 上海湃隆生物科技有限公司上海药明康德新药开发有限公司187772 21 抗体药药效评价20220315094311914907 上海才致药成生物科技有限公司上海南方模式生物科技股份有限公司175760 22 稳压器芯片多项目晶圆(MPW)服务20210517113058416734 上海乐瓦微电子科技有限公司上海集成电路技术与产业促进中心175000 23 倒车雷达智能芯片多项目晶圆(MPW)服务20220112135317148860 上海隽上电子科技有限公司上海集成电路技术与产业促进中心172528 24 电流管理芯片多项目晶圆(MPW)服务20220111180338241441 上海乐瓦微电子科技有限公司上海集成电路技术与产业促进中心168905 25 超低静态电流 LDO 芯片多项目晶圆(MPW)服务20220112135313533736 上海隽上电子科技有限公司上海集成电路技术与产业促进中心166045 26 弹簧圈栓塞系统动物实验20201030151556899181 上海小鱼医疗科技有限公司汇智赢华医疗科技研发(上海)有限公司165000 27 云平台软件测试20220805110623205215 上海尚青通信科技有限公司上海宽带技术及应用工程研究中心164000 28 数字信号处理芯片多项目晶圆(MPW)服务20220112135309035656 上海隽上电子科技有限公司上海集成电路技术与产业促进中心161427 29 动态调姿 AR 设备样机设计及 3D 打印20220719162613923493 上海元聿智能科技有限公司上海莘临科技发展有限公司145000 30 S2 系列化学合成20201203145652208855 上海兴糖生物技术有限公司上海药明康德新药开发有限公司135000 31 5G 室内定位软件系统开发20210527135847965950 上海谱域科技有限公司华东师范大学125000 32 丙酸氟替卡松雾化混悬液人血清样本分析20220314173603402323 上海秀新臣邦医药科技有限公司上海熙华检测技术服务股份有限公司124250 33 LX-V001 体内生物活性评价20220617131058891285 启昇(上海)生物科技有限公司澎立生物医药技术(上海)股份有限公司109800 34 稳压器芯片多项目晶圆(MPW)服务20220111180348026721 上海乐瓦微电子科技有限公司上海集成电路技术与产业促进中心106777 35 CA0678 原料药的工艺研发和样品制备20210129153129920486 上海椿安生物医药科技有限公司上海合全药物研发有限公司106106 36 颅内药物球囊预动物实验20220317114912878348 上海博畅医疗科技有限公司澎立生物医药技术(上海)股份有限公司102250 37 一次性带装置内镜夹动物正式实验20211104091854299707 希罗镜下医疗科技发展(上海)有限公司汇智赢华医疗科技研发(上海)有限公司88180 38 药品包材相容性试验20220727162434903514 上海新黄河制药有限公司上海微谱检测科技集团股份有限公司79000 序号 服务名称 订单编号 申领使用主体 服务机构 兑付额 (元) 39 小分子化学合成服务20220526161434307075 上海智肽生物科技有限公司上海药明康德新药开发有限公司70015 40 半边莲颗粒质量标准研究20210819100851131881 上海品源生物科技有限公司上海恩力检测技术有限公司60000 41 小鼠模型评价受试物体内药效服务20220602100332568518 和度生物医药(上海)有限公司上海药明康德新药开发有限公司59335 42 电源芯片多项目晶圆服务20220121161142587476 上海爻火微电子有限公司上海集成电路技术与产业促进中心50291 43 石斛产地质量标准研究20210820113653257443 上海匀欣实业有限公司上海恩力检测技术有限公司50000 44 智能电源路径管理多项目晶圆(MPW)服务20220121161133798868 上海爻火微电子有限公司上海集成电路技术与产业促进中心48790 45 电压调制芯片多项目晶圆服务20220121161137064547 上海爻火微电子有限公司上海集成电路技术与产业促进中心48730 46 抗肿瘤药物药效实验20220331092333770317 云白药征武科技(上海)有限公司上海药明康德新药开发有限公司48285 47 颅内药物球囊预动物实验20210823171919253800 上海博畅医疗科技有限公司澎立生物医药技术(上海)股份有限公司47795 48 药物衍生物颅内药物球囊预动物实验20211203103858061333 上海博畅医疗科技有限公司澎立生物医药技术(上海)股份有限公司40735 49 APR2103 小分子化学药体外实验20220512180038582572 上海湃隆生物科技有限公司上海药明康德新药开发有限公司36878 50 DCS 载荷通用环境试验20220801100351486619 上海德寰通信技术有限公司上海西虹桥导航技术有限公司35100 51 一次性带装置内镜动物实验20220530122821959141 希罗镜下医疗科技发展(上海)有限公司汇智赢华医疗科技研发(上海)有限公司34430 52 TWS 蓝牙芯片可靠性测试20201111103407522632 上海物骐微电子有限公司上海季丰电子股份有限公司32671 53 扶正化瘀(发酵虫草菌粉)成分分析及含量测定20211021094942378632 上海现代中医药股份有限公司上海诗丹德标准技术服务有限公司32500 54 低功耗广域网芯片设计 EDA 服务20220627160951152974 上海道生物联技术有限公司上海集成电路技术与产业促进中心30000 55 磷酸钙骨水泥的研发与表征服务20220803122539597432 上海贝奥路生物材料有限公司东华大学30000 56 蓝牙信号控制芯片可靠性测试20210304141222713379 上海物骐微电子有限公司上海季丰电子股份有限公司28083 57 射频收发芯片可靠性测试20220421171048193028 芯朴科技(上海)有限公司上海季丰电子股份有限公司26931 58 石墨烯粉底漆重防腐性能测试20210922110527644436 上海超碳石墨烯产业技术有限公司上海市涂料研究所有限公司24187 59 扶正化瘀质控中指纹图谱方法转移20211012092432335150 上海现代中医药股份有限公司上海诗丹德标准技术服务有限公司24000 序号 服务名称 订单编号 申领使用主体 服务机构 兑付额 (元) 60 多肽偶联物化学合成20220628115548467474 上海智肽生物科技有限公司上海药明康德新药开发有限公司23916 61 车载式甲烷断电仪样机检验20201029103808569987 上海申传电气股份有限公司上海煤科检测技术有限公司23570 62 神经退行性疾病药物亲和力检测20210827101133990263 上海强睿生物科技有限公司上海药明康德新药开发有限公司21500 63 喷雾剂电子显微镜检测20210728134811553009 上海新黄河制药有限公司华东理工大学20025 64 芯片设计 EDA 服务20220809105334594529 荣湃半导体(上海)有限公司上海集成电路技术与产业促进中心20000 65 无线收发芯片设计 EDA 服务20220627171940576562 上海坚芯电子科技有限公司上海集成电路技术与产业促进中心20000 66 SC3433-IMP21 分析制备20220804141112824555 上海科胜药物研发有限公司上海药明康德新药开发有限公司20000 67 传感器芯片 EDA,IP 服务20220228153507967977 多感科技(上海)有限公司上海集成电路技术与产业促进中心20000 68 智能毫米波芯片 EDA 设计许可费20220426104600852214 矽典微电子(上海)有限公司上海集成电路技术与产业促进中心20000 69 芯片 EDA 服务20220809112101645454 上海富芮坤微电子有限公司上海集成电路技术与产业促进中心20000 70 扶正化瘀(商陆苷、商路素等)药物分析20210928095305322962 上海现代中医药股份有限公司上海诗丹德标准技术服务有限公司18000 71 TWS 蓝牙芯片可靠性测试20210304141228019433 上海物骐微电子有限公司上海季丰电子股份有限公司17868 72 TWS 蓝牙芯片可靠性测试20201225104707427970 上海物骐微电子有限公司上海季丰电子股份有限公司17607 73 青蒿素衍生物小鼠药代动力学20220705111756681616 云白药征武科技(上海)有限公司上海药明康德新药开发有限公司15655 74 发射芯片模组可靠性测试20220421171051176445 芯朴科技(上海)有限公司上海季丰电子股份有限公司15198 75 传热钢结构材料高温耐腐蚀实验20220717082257273084 上海羲蓝节能环保科技有限公司上海天梯检测技术有限公司15000 76 传热钢结构材料步入式试验20220816102847249886 上海羲蓝节能环保科技有限公司上海天梯检测技术有限公司15000 77 冠脉药物球囊预动物实验20220601161722482939 上海博畅医疗科技有限公司澎立生物医药技术(上海)股份有限公司13800 78 神经退行性疾病药物与靶蛋白相互作用检测20211104140300646034 上海强睿生物科技有限公司上海药明康德新药开发有限公司13677 79 涂料人工耐老化试验20201120133139003729 上海吉丽仕化工有限公司上海市涂料研究所有限公司13395 80 凤尾草质量标准研究20220113101928818217 上海品源生物科技有限公司上海恩力检测技术有限公司13000 81 神经退行性疾病药物与靶蛋白相互作用检测20211021172320552300 上海强睿生物科技有限公司上海药明康德新药开发有限公司12000 序号 服务名称 订单编号 申领使用主体 服务机构 兑付额 (元) 82 弹簧圈栓塞系统动物实验20200720133526494386 上海小鱼医疗科技有限公司汇智赢华医疗科技研发(上海)有限公司11200 83 一次性带装置内镜夹动物预实验20211025114318723468 希罗镜下医疗科技发展(上海)有限公司汇智赢华医疗科技研发(上海)有限公司9750 84 化合物 EW602 药效筛选20210525102013078919 上海东西智荟生物医药有限公司澎立生物医药技术(上海)股份有限公司9450 85 化合物 c-MET 激酶抑制活性测试20220718142842623743 云白药征武科技(上海)有限公司上海药明康德新药开发有限公司7627 86 通讯模块芯片可靠性测试20220421171053730048 芯朴科技(上海)有限公司上海季丰电子股份有限公司7174 87 闪存芯片可靠性测试20200904140124874392 芯成半导体(上海)有限公司闳康技术检测(上海)有限公司6759 88 射频芯片失效分析20210714143352961093 芯朴科技(上海)有限公司上海季丰电子股份有限公司6437 89 样品检测20210928152248932834 上海方心制药科技有限公司上海恩力检测技术有限公司6000 90 酮酸片化合物含量方法学研究20210823111610609542 上海臣邦医药科技股份有限公司上海微谱检测科技集团股份有限公司6000 91 OLED 驱动集成电路芯片整合性失效分析测试服务20200925103948683998 芯颖科技有限公司闳康技术检测(上海)有限公司5612 92 血浆样品检测20200217094718060553 睿欧生物科技(上海)有限公司澎立生物医药技术(上海)股份有限公司5453 93 氯沙坦钾原料药杂质研究20210809191714222961 上海秀新臣邦医药科技有限公司上海微谱检测科技集团股份有限公司5000 94 射频芯片失效分析20210521162342246784 芯朴科技(上海)有限公司上海季丰电子股份有限公司4717 95 原料药测试20220510173812549806 上海新黄河制药有限公司上海微谱检测科技集团股份有限公司4500 96 氯沙坦钾片杂质研究20210820173119642419 上海秀新臣邦医药科技有限公司上海微谱检测科技集团股份有限公司3500 97 IC 芯片可靠性测试20210524144309246762 观洲微电子(上海)有限公司上海季丰电子股份有限公司3299 98 神经退行性疾病药物亲和力检测20211021172316375955 上海强睿生物科技有限公司上海药明康德新药开发有限公司3150 99 道路检测图像分析软件测评20220606131547192482 上海数久信息科技有限公司上海市软件评测中心有限公司3000 序号 服务名称 订单编号 申领使用主体 服务机构 兑付额 (元) 100 显示驱动 IC 芯片可靠性测试20210625141246075237 观洲微电子(上海)有限公司上海季丰电子股份有限公司2941 101 交换机兼容性检测服务20210722100700922570 上海博达通信科技有限公司上海同耀通信技术有限公司2768 102 显示芯片整合性失效分析20210419130810917432 上海视涯技术有限公司闳康技术检测(上海)有限公司2627 103 精密放大器 ESD 测试20220524102320725210 上海治精微电子有限公司闳康技术检测(上海)有限公司2601 104 OLED 驱动集成电路芯片整合性失效分析测试服务20201021113153294420 芯颖科技有限公司闳康技术检测(上海)有限公司2548 105 射频芯片失效分析20210219174021462334 芯朴科技(上海)有限公司上海季丰电子股份有限公司2527 106 CB1 受体膜蛋白亲和力实验20211013101414430900 上海桀蒙生物技术有限公司上海药明康德新药开发有限公司2483 107 显示驱动 IC 芯片可靠性测试20210823111933085838 观洲微电子(上海)有限公司上海季丰电子股份有限公司2467 108 IGBT 芯片工艺可靠性分析20200723123859610986 上海睿驱微电子科技有限公司上海新微技术研发中心有限公司2305 109 小鼠药代动力学20211104141711636562 上海东西智荟生物医药有限公司澎立生物医药技术(上海)股份有限公司1923 110 药物球囊科技查新20220606094240960525 上海脉全医疗器械有限公司上海图书馆(上海科学技术情报研究所) 1510 111 无线通讯智能检测20220726121410986156 上海伽易信息技术有限公司上海中铁通信信号测试有限公司1500 112 原料药测试20220509230712362261 上海新黄河制药有限公司上海微谱检测科技集团股份有限公司1500 113 实验室管理平台验收测试服务20210302162439244455 上海中铁通信信号测试有限公司上海宜软检测技术有限公司1400 114 引物合成20200909085402110167 上海创坤生物科技有限公司上海捷瑞生物工程有限公司1255 115 原料药中基因毒性物质检测20220727104532532415 上海新黄河制药有限公司上海微谱检测科技集团股份有限公司1000 116 触控传感器芯片可靠性测试20210421155200765788 隔空(上海)智能科技有限公司上海季丰电子股份有限公司642 117 IC 芯片可靠性测试20210604130326072776 观洲微电子(上海)有限公司上海季丰电子股份有限公司576 118 雷达感应芯片可靠性测试20210609150323567126 隔空(上海)智能科技有限公司上海季丰电子股份有限公司544 119 复合耐磨材料有机物含量检测20200827142959227421 博斯科聚合物(上海)有限公司上海市涂料研究所有限公司500 120 基因合成20200813140917469426 上海兴糖生物技术有限公司上海捷瑞生物工程有限公司462 合 计11440338 ‍扩展阅读:总计1966万!上海发布2022年第一批科技创新券(仪器类)兑付清单总计831万!上海发布2022年第二批科技创新券(仪器类)兑付清单
  • 德国IKA/艾卡:为什么说它好? RET control-visc 使用心得
    李玉川,博士,北京理工大学材料学院庞思平课题组。主要从事杂环化合物和化工医药中间体的设计、合成与应用研究,近年来,已合成出新型化合物50多种,发表论文十数篇,其中以第一作者在〈Journal of the American Chemical Society〉、〈ChineseChemical Letters〉、〈化学学报〉等SCI刊源发表论文6篇,申请国家发明专利6项,已授权2项。主持或作为主要研究人员参加重大专项、国家自然科学基金项目等10余项科研项目。2014年5月,RET control-visc加热磁力搅拌器正式走进中国高端客户实验室中。今天我们跟随第一台RET control-visc 一起来到北京理工大学材料学院李玉川教授实验室,一起体验了一下。作为国内杂环化合物及医药中间体合成领域里的重量级人物,李教授拥有丰富的科研经验和多项科研专利技术,其实验团队也多次在国内及国际重大化学期刊中有着令人称奇的科研数据发布。“IKA RET control-visc,世界顶级加热磁力搅拌器,中国首位高端科学家”的称号,李教授当之无愧。IKA全新推出的RET control-visc控制型加热磁力搅拌器,作为目前全球最高端的一款磁力搅拌器,颠覆了传统磁力搅拌器的定义,将称重、在线PH监测、在线扭矩监测等与传统搅拌、加热功能集于一身,给整个磁力搅拌领域带来了一股无可匹敌的新势力。RET control-visc磁力搅拌器外形延续了IKA专用蓝色,简洁大气。新改进的一体化上盖式外壳对仪器内部组件也起到了非常好的保护作用,有效避免了各种外界污染危害,在实验室通风橱中一放就令人赏心悦目,得到了大家的一致好评。图为IKA工程师为老师讲解仪器的操作及使用使用之前,IKA工程师为李教授讲解了RET控制型的各项功能及操作,包括其独有的专利称重功能,PH监测功能,搅拌子跳子检测功能等。了解了基本操作之后,李教授也亲自上阵,直接进行了各项功能的测试。图为客户亲自进行实验测试操作图为称重功能测试 同一把镊子在不同位置的称量结果分毫不差。客户直言“这个精确度足够了”!除称重之外,客户对PH监测、扭矩变化监控、定时及控温等也一一进行了测试,让客户最感意外的是新款RET控制型竟然还增加了搅拌子跳子的检测功能。这项功能看起来微不足道,但是李教授跟我们分享了他之前遇到的一个实验案例。在反应过程中由于物料的粘度不断变化,需要的搅拌速度也不一样,最初设定的速度不满足要求的时候出现了搅拌子严重跳子,将反应瓶打出一个裂缝。学生赶紧急救,拎起旁边一个不锈钢加热锅垫在反应瓶底,想要接住漏液。没有想到该加热锅里有少量残留的水溶液,而反应体系溶液为浓硫酸。万幸的是进行的是微量反应,但是瞬间的放热仍旧导致学生轻度烫伤。李教授郑重的告诉我们“在化学实验设备里,没有什么比安全更重要的,凡是有利于安全操作的都是至关重要的功能”。这也让我们深深体会了安全对于化学实验工作者的重要性,IKA也将继续把安全第一的原则贯彻到底。 作为国内的第一位尝试这款世界顶级磁力搅拌器的客户,李教授坦言,当时决定购买这台全新设备,主要是实验的控温高精度需要,试验了太多的仪器,目前已有的搅拌器均没有办法满足要求,后来IKA应用部门的实验测试结果让他对这台新仪器的控温有了非常高的期待。没有想到操作下来,竟然有这么多的使用便利和安全考虑在里面,哪怕是一个小小的锁机功能,都会给实验过程带来意想不到的安全和便利。 “这步高端路线走得真是一举多得了!以前只知道检测分析设备需要做得非常精密,现在看来前处理实验的小仪器也需要精致高端,科研需要新思维,科研工作的每一步都需要细密和严格的数据支撑。” 作为搅拌器全球市场领导者,IKA新款RET control-visc的推出在以往搅拌器的基础上进行了飞跃式的改进和提升,多项独有的专利技术,充分的操作便利及安全考量,高精的参数细节设计,给搅拌实验带来全新体验!为此,IKA集团专门组织了“发现RET control-visc的奇妙之处——填问卷,赢奖品”的活动:www.ikaasia.com
  • 日本ATAGO(爱拓)折光仪在制药行业中成功应用
    折射率(又称折光率、折光系数RI)是物质的物理常数,固体、液体和气体的纯物质都有一定的折射率。如果其中含有杂质则折射率将发生变化,杂质越多,偏差越大。因此折射率常作为检测原料、溶剂、中间体和最终产物的浓度、纯度及鉴定未知样品的依据。 ATAGO(爱拓)全自动旋光仪 (型号:AP-300)用于原料药、 中间体、 以及成品药的比旋度的检验 制糖业主要是用旋光仪检测糖的纯度。 产品的特性概况: &bull 国际糖度(温补)标度在测量过程中检测旋光度 &bull 与温度就进行温度补正, &bull 没有恒温样品管也自动显出准确的国际糖度 &bull 可存储10种旋光管信息,自动计算。 &bull 丰富的配件选择 折光系数是原料药的一个非常重要的参数,用折光方法能方便快捷的检测检测某些药品的纯杂程度或者测定其含量,此外折光率也常被用来用来检测中药汤剂的浓度和控制中草药的汤剂质量。&ldquo 药典&rdquo 是当今全世界所有医药公司在药用物质的研究、开发、生产及测定过程中都必须遵循的质量标准。药用物质不仅仅包括药品和静脉注射类药物,还包括化妆品和保健产品。药典中包含了许多参考值,如原材料的折光系数和旋光度/比旋光度,因此折光仪、旋光仪在制药行业的有重要的作用。 《中国药典》规定折光率测定方法,采用钠光谱的D线(589.3 nm)测定供试品相对于空气的折光率(如用阿贝折光计,可用白光光源)。除另有规定外,供试品温度为20℃。测量后再重复读数2次,3次读数的平均值即为供试品的折光率。测定用的折光计需能读数至0.0001。 日本ATAGO(爱拓)专业生产制造折光仪70多年,是折光仪和旋光仪的领导者。其折光仪产品包括NAR-1T阿贝折光仪、NAR-3T精密型阿贝折光仪、DR-A1数字式阿贝折光仪和RX-5000&alpha 、RX-5000&alpha -plus、RX-7000&alpha 、RX-9000&alpha 等全自动台式数显折光仪等。此外,还开发出来PAL-RI、PAL-BX/RI手持数显折射仪、MARSTER-RI手持刻度式折射仪。这些仪器可方便的用于实验室及检测机构做精密检测和快速检测。 尽管阿贝折光仪可以满足药典的最低要求,但需要外接水浴装置,测量结果往往因操作者而异,并且实验结果不能传输或自动记录,但因为价格相对便宜,这种型号的折光仪在制药行业中也有很多的用户。某些特殊型号的阿贝折光仪例如ATAGO(爱拓)的NAR-1T LO有一些特殊应用,可用于测量低RI值的样品,如液体麻醉剂(约1.27 RI)。全自动台式数显折光仪具有精度高、能精确控温、测量方便快捷等优点,因此得到越来越多的制药企业选用。ATAGO(爱拓) RX系列全自动台式数显折光仪带Peltier控温装置,不再需要水浴,能实现精确控温;而且具有极高的精确度,测量精度可达小数点后五位(± 0.00002 RI)。 附:药典中常用的原料药折射率指数 维生素E 1.494~1.499 苯甲醇 1.538~1.541 丙酸酐 1.403~1.405 苯丙醇 1.517~1.522 薄荷素油 1.456~1.466 大豆油 1.472~1.476 日本ATAGO(爱拓)自动旋光仪在制糖、制药行业的应用 快拿起电话 拨打020-38106065/38108256 或者登陆http://www.atago-china.com:咨询订购吧 访问日本ATAGO(爱拓)中文网站,您将获得更多信息 &hellip 如果想了解RX台式折光仪、在线折光仪,在线浓度计,旋光仪系列产品的更多信息, 请访问: http://www.atago-china.com/
  • 陈素明课题组实现了电化学中间过程的时间分辨质谱解析
    近日,国际权威学术期刊Angew. Chem. Int. Ed(《德国应用化学》)在线发表了高等研究院陈素明教授课题组在结构导向的质谱分析方面最新研究成果。论文题为“Elucidation of Underlying Reactivities of Alternating Current Electrosynthesis by Time-resolved Mapping ofShort-lived Reactive Intermediates”。武汉大学为论文唯一署名单位,高等研究院万琼琼副研究员为论文的第一作者,陈素明教授、易红研究员为论文共同通讯作者。该工作通过构建具有时间分辨能力的Operando电化学-质谱分析装置,实现了电化学过程中活性中间体以及自由基异构体的结构和动力学解析,揭示了电化学反应的内在机制(图1)。图1.时间分辨的Operando电化学-质谱分析装置与电化学芳胺功能化反应质谱是对分子进行定性和定量的有力工具,但在实际的复杂研究体系中,常规的质谱分析方法很难实现深层次的结构解析和定量分析。其中,化学反应瞬态中间过程的分析就是一个巨大的挑战。电化学合成是合成化学的新兴领域,但是电化学反应过程的机理研究一直受限于短寿命活性中间体的捕获和结构分析鉴定。为了解决电化学中间过程分析的难题,本研究开发了一种具有超快时间响应的原位电化学-质谱分析装置,可以在电合成工况条件下时间分辨地解析电化学反应过程中的短寿命活性中间体。由于该装置可以最大程度地模拟直流电合成和交流电合成反应,因此通过全面解析电化学芳胺功能化反应过程中活性中间体的结构和动力学,揭示了交流电合成相对于直流电合成具有独特反应性的内在机制。包括:减少中间体的过度氧化/还原,促进氧化-还原电生活性中间体的有效反应,尤其是控制多步电合成反应过程中氮中心自由基的动力学来减少竞争反应。这些发现对于深入理解交流电合成反应的机理提供了关键的信息。此外,本研究还发展了一种解析反应过程中氮中心自由基异构体的新型分析策略。由于中性的氮中心自由基和胺自由基阳离子在质谱分析时都会呈现出相同质量的质子化离子峰,因此难以在质谱中进行区分。研究巧妙利用中性自由基能形成碱金属加合峰的特性,并通过时间分辨的电化学-质谱分析装置测定中性自由基和自由基阳离子的寿命差异,从而准确地分辨出了反应过程中的氮中心自由基异构体。该方法不仅揭示了电化学芳胺功能化过程中隐藏的自由基反应历程,而且提供一种氮自由基异构体解析的通用方法,从而可以深入理解氮中心自由基的反应动力学。据悉,该研究得到了国家自然科学基金、国家重点研发计划等项目经费的支持,雷爱文教授课题组为该工作提供了电化学实验装置支持。
  • 岛津合作研究:全球首次!开发出准确测量代谢的新技术
    —有助于代谢疾病治疗方法、生物燃料生产微生物开发的新技术—研究成果的重点? 发挥产学相结合优势,在世界上首次开发出准确测量细胞内代谢物的糖磷酸盐的技术。? 代谢中间体糖磷酸盐大多是结构相似的物质,而且存在传统技术无法对其进行分离并准确测量的问题。? 预计有助于代谢疾病的新型治疗方法、生物燃料生产微生物的开发、生物质资源植物的开发等。研究概要大阪大学研究生院情报学研究科的冈桥伸幸副教授、松田史生教授等生物信息计测学讲座研究小组,与(株)岛津制作所、大阪大学?岛津分析创新共同研究讲座※1饭田顺子特聘教授(岛津制作所分析计测事业部 生命科学事业统括部高级经理)的团队,在世界上首次开发出一项准确分析在细胞内代谢物中发挥着重要作用的糖磷酸盐※2的技术。这使得可以更准确地测量代谢流量。人类的每一个细胞都具有新陈代谢※3的功能,分解通过膳食等摄取的糖分,获取生存必需的能量和生长所需的制造新细胞的成分(氨基酸等)。一般认为代谢功能异常与糖尿病和癌症等各种疾病有关,为了阐明其机理,亟需一种准确测量糖降解过程中可能产生的代谢中间体的分析技术。其中,若干种被称为糖磷酸盐的代谢中间体具有相似的结构,即使2000年前后出现的代谢中间体的网罗式测量技术,经过近20年的发展,使用传统技术分离这些中间体非常困难,而且测量的准确性有限。此次,松田教授等人的研究小组利用岛津制作所开发的前沿分析仪器进行产学联合研究,成功开发出一种通过完全分离糖磷酸盐,准确进行分析的方法。将本方法应用于癌细胞时,可以更准确地测量代谢流量。今后,通过将本方法应用于各种细胞、组织等,并对所获得的数据进行分析,预期有助于疾病新治疗方法和药物的研发。另外,由于所有生物都具有代谢功能,因此本技术可应用于生产生物燃料的微生物和固定CO2的生物质植物,有助于环境友好产品制造技术的改进等各项研究的发展。本研究成果于9月2日(日本时间)发表在美国科学期刊《Metabolic Engineering》上。研究背景截至目前,已知构成生物的细胞将葡萄糖等糖摄入细胞内,通过糖酵解系统的代谢途径进行分解,并在此过程中制造能量及成为新细胞成分的前体物质。糖酵解是所有细胞生物的基本功能,近年来表明糖尿病和癌症等各种疾病与糖酵解系统有着密切的关系。而且,为培育生产生物燃料的微生物,正在尝试人工改善糖酵解系统。为了开展这些研究,需要准确测量糖酵解系统中大约15种代谢中间体。但是,糖酵解中间体(糖磷酸盐)大多是结构相似的物质,而且存在传统技术无法对其进行分离并准确测量的问题。生物信息计测学讲座的冈桥副教授、松田教授等人,与(株)岛津制作所和大阪大学?岛津分析创新共同研究讲座开展共同研究,根据(株)岛津制作所拥有的负CI模式气相色谱/质量分析技术※4,开发一种新型分析方法,可以完全分离糖磷酸盐,准确测量其同位素标记率※5。而且,将本方法应用于乳腺癌细胞(MCF7)的分析,成功地测量了代谢流量,准确度比以往提高10倍以上。这是大阪大学的研究成果和(株)岛津制作所的技术成果相结合的产学合作研究成果。本研究成果对社会的影响(本研究成果的意义)根据本研究成果,通过测量各种生物可以获得糖酵解系统更准确的数据。通过对收集的数据进行分析和运用,阐明各种疾病与糖酵解功能之间的关系,有望获得癌症以外疾病的新型治疗方法和药物研发有关知识。而且,通过将本技术应用于微生物和植物,预计有助于生产生物燃料的有用微生物的开飞,固定CO2的植物改良等,环境友好产品制造技术等研究的发展。特别记载事项本研究成果于2018年9月2日(日本时间)发表在美国科学期刊《Metabolic Engineering》(Online)上。标题 :“Sugar phosphate analysis with baseline separation and soft ionization by gas chromatography-negative chemical ionization-mass spectrometry improves flux estimation of bidirectional reactions in cancer cells”作者名称 :Nobuyuki Okahashi, Kousuke Maeda, Shuichi Kawana, Junko Iida, Hiroshi Shimizu,and Fumio Matsuda此外,作为文部科学省新学术领域研究“代谢适应的Trans-Omics分析”的重要一环,本研究的部分研究在与大阪大学研究生院工学研究科福崎英一郎教授的合作下实施的。术语说明※1 大阪大学?岛津分析创新共同研究讲座 成立于2015年4月20日,旨在建立以“生物技术”为核心的环境友好型可持续社会系统。以大阪大学的代谢物组学(总代谢物分析)为核心竞争力,协同岛津制作所致力于解决各种问题。(URL:https://www.shimadzu.co.jp/labcamp/index.html)※2 糖磷酸盐磷酸基团与几乎所有生物拥有的糖相结合的代谢物群的总称。结构类似的物质很多,完全分离很难。※3 代谢所有细胞都通过代谢的一系列化学反应,供给生存所需的能量和蛋白质合成所需的前体物质。如果代谢发生异常,则会导致糖尿病和高脂血症等疾病。※4 负CI模式气相色谱/质量分析技术一种在气相色谱分离技术、质量分析检测技术中组合应用负CI电离技术的测量方法。岛津制作所是日本气相色谱及质量分析仪器的顶级制造商。※5 同位素标记率大阪大学研究生院信息科学研究科正在开发测量代谢流量的技术。向细胞施用碳稳定同位素(与碳的性质相同但质量不同的物质)标记的葡萄糖,通过调查碳的稳定同位素通过糖酵解系统转移到糖磷酸盐的情况,可以测量代谢流量。为了准确地掌握代谢流量,必须将各个糖磷酸盐完全分离,并测量其同位素标记率。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • Cell主刊 | MST助力人体抑癌基因研究取得新发现!
    01研究背景在正常血氧水平的典型细胞中,大多数丙酮酸进入线粒体,并由三羧酸循环氧化生成 ATP 来满足细胞的能量需求。然而,在癌细胞或其他高度增殖的细胞类型中,糖酵解产生的大部分丙酮酸离开线粒体并通过乳酸脱氢酶 (LDH/LDHA) 的作用产生乳酸, 这一过程通常是在低氧状态时才会出现。有氧情况下产生乳酸称为“有氧糖酵解”或 Warburg 效应,它是肿瘤代谢改变的最早证据之一。p53基因,人体抑癌基因。该基因编码一种分子量为43.7KDa的蛋白质,但因蛋白条带出现在Marker所示 53 kDa处,命名为p53蛋白。该蛋白的失活对肿瘤形成起重要作用,是一个关键的肿瘤抑制蛋白。p53作为转录因子,它通过激活控制DNA修复、细胞周期进程靶基因来保护细胞免受恶性转化。在肿瘤发生过程中,p53的活性会受到磷酸化、乙酰化和泛素化等翻译后修饰的调控。癌细胞的代谢改变导致乳酸等糖酵解中间体的积累,这些乳酸不仅支持细胞增殖,还参与调节免疫细胞分化、肿瘤免疫监视等多种生物学过程。尽管目前已知乳酸可以共价修饰蛋白质,但是其乳酸化的具体机制尚不清楚,同样目前对于p53与乳酸化之间的关联也知之甚少。02研究内容2024年4月22日,苏州大学生物医学研究院周芳芳教授团队在 Cell 发表题为“Alanyl-tRNA synthetase, AARS1, is a lactate sensor and lactyltransferase that lactylates p53 and contributes to tumorigenesis” 的研究论文。DOI: 10.1016/j.cell.2024.04.002IF: 45.5 Q1 在这篇研究中,课题组发现肿瘤源性乳酸是p53的天然抑制剂,可促进p53乳酸化,全基因组CRISPR筛选确定了AARS1是肿瘤细胞中全局赖氨酸乳酸化的介质。AARS1耗竭的肿瘤细胞中增殖、集落形成能力显著降低,并且AARS1的耗竭抑制了乳酸诱导的赖氨酸乳酸化。另外,β-丙氨酸在结构上类似于乳酸,研究者发现用其预处理的细胞赖氨酸乳酸化减少。这些生理表象背后的分子机制,研究者仍需要进行进一步探究。借助NanoTemper公司的MST技术,研究者验证证实了AARS1蛋白(EcAlaRS细菌酶、HsAlaRS人源酶)在分子层面上与乳酸的结合,乳酸与EcAlaRS、乳酸与HsAlaRS的Kd值分别为13 μM和35 μM(图1A),表明EcAlaRS和HsAlaRS可以使用乳酸作为底物直接催化乳酸化。同时,通过MST实验,研究了β-丙氨酸与AARS1的互作,Kd值为2.7 μM(β-alanine与EcAlaRS) 和4.0 μM(β-alanine与HsAlaRS)(图1B), β-丙氨酸有着更强的亲和力。MST的结果在分子层面上非常直观地给出了β-丙氨酸可以抑制乳酸化的结果,从而阐明了生理上β-丙氨酸的拮抗乳酸化的机制(图1C、D)。图1.AASR1与乳酸互作(A),AASR1与β-丙氨酸互作(B), β-丙氨酸与乳酸竞争结合机制(C), β-丙氨酸抑制乳酸结合AASR1(D)但是,AARS1结合了乳酸其后续是如何靶向到p53上的呢? 为了寻找答案,研究人员进行了分子对接模拟及关键位点突变pull-down实验,采用质谱分析结合MST实验的方式,发现AARS1 通过 ATP 依赖的方式催化形成乳酸-AMP 中间体,随后将乳酸转移至目标蛋白的赖氨酸残基上,可实现共价结合。这一过程不仅在人类中,也在大肠杆菌中观察到,表明 AARS1 在物种间具有催化赖氨酸乳酸化的古老功能。 通过MST实验,研究者们得到了验证,HsAlaRS和EcAlaRS在体外直接与p53结合,p53与HsAlaRS和p53与EcAlaRS的Kd分别达到39 μM和21 μM,定量确认了pull-down实验的结果(图2A、B)。结合其他生化实验提出描述AlaRS介导的乳酸化的工作模型(图2C):AlaRS首先与乳酸结合,在ATP存在下形成乳酸AMP和PPi;在底物蛋白存在的情况下,AlaRS将丙酰基转移到底物蛋白上的赖氨酸残基上。图2.p53与HsAlaRS和p53与EcAlaRS定性pull-down结果(A), p53与HsAlaRS和p53与EcAlaRS互作(B), AlaRS介导的乳酸化的工作模型(C)后续进一步通过质谱分析和抗体识别确认了p53上乳酸化的残基是K120和K139。通过MST实验直接比较了乳酸化p53(p53Lac)与非乳酸化p53(p53Non-Lac)对含有p53应答元件的DNA(p53RE-DNA)的亲和力,乳酸化p53(p53K120-Lac、p53K139Lac和p53-Dual-Lac)对p53RE-DNA的亲和力分别降低了约100倍、10倍和1000倍(图3)。之后的生化生理实验进一步表明p53的位点特异性乳酸化减弱了它们的DNA结合和液-液相分离(LLPS),从而降低了p53的抑瘤作用。图3.p53乳酸化减弱了其与DNA结合另外,对于p53上的位点K120和K139, 各种研究表明,p53-K120N可能是无功能的,这些乳酸化模拟变体可能有助于肿瘤发生。研究者通过借助MST实验给出了有力的数据支持(图4),纯化的K120N/Q/E和K139 N/T/Q/E突变体对p53RE-DNA的结合亲和力降低。K120E和K139E的减少更为明显,表明K-to-E突变导致电荷减少更强。在进一步的生化活性实验中发现,K120N/Q和K139N/T/Q部分丧失了刺激p53反应基因表达的能力,而K120E和K139E几乎完全丧失了这种能力。K120、K139上的病理性突变(肿瘤发生)与p53乳酸化(肿瘤发展)都会导致其与DNA结合能力降低,从而活性丧失(图4)。图4.Cy5-p53RE-DNA与p53 WT及其突变蛋白互作(左), p53中乳酸化与模拟突变(右)本项研究中进行了大量的MST实验,通过MST技术,来验证测定AARS1蛋白与肿瘤代谢产物(乳酸)的互作,确认AARS1与p53(蛋白与蛋白)互作的行为, 表征蛋白突变体功能上改变。结合其他生理生化实验完整详细地阐述了关键酶AARS1与肿瘤代谢物(乳酸)在肿瘤发生和发展中重要作用,揭示了p53乳酸化失活机制,提供了一种利用β-丙氨酸阻止p53乳酸化的方法,β-丙氨酸与乳酸竞争结合AARS1,从而加强癌症治疗(图5)。图5.AARS1在赖氨酸乳酸化组和p53乳酸化在肿瘤发生中的作用以及β-丙氨酸的抑制作用03技术优势NanoTemper公司的专利MST技术不依赖于分子量的改变,蛋白用量少,可以轻松进行蛋白与小分子代谢产物实验。MST实验是在溶液中,无需固定蛋白的实验体系,可以便捷地设计多组分的实验方案,验证类似小分子的功能。在这篇研究中,除了采用标记蛋白的方式,在检测多种突变体蛋白与p53RE-DNA互作(蛋白与DNA)时,还选择了标记DNA的方式,使得实验内容设计更加简洁且高效。Monolith系列分子互作平台可以更好的帮助科研人员简便地设计互作方案,在分子层面上直观验证生理机制上的互作结果,为您的实验研究提供强大助力。Monolith 分子互作检测仪 直接在溶液中检测亲和力,无需固定 无惧分子量的变化,轻松检测各种类型小分子 检测一个Kd仅需10min 无微流控系统,无需清洗维护
  • 解决反应中的固体,可放大的端到端三步反应全合成!
    个康宁用“心”做反应让阅读成为习惯,让灵魂拥有温度摘要莫达非尼是一种抗发作性睡病药物,用于治疗与睡眠呼吸暂停和轮班工作障碍相关的白天过度嗜睡并且无副作用或成瘾性。本文将向您介绍如何通过康宁Lab Reactor反应器无需中间纯化步骤,三步串联合成USP级莫达非尼。该工艺可以在单个串联工艺中进行,是构建端到端药物连续生产的一次非常有意义的尝试。[1]图1. 报道的典型的莫达非尼合成路线Bicherov[3]在Maurya的基础上做了改进的三步反应研究:利用硫代硫酸钠和2-氯乙酰胺制备氨甲酰甲基硫酸钠(SCS,图2)SCS与二苯甲醇反应生成 2-(苯甲酰硫代)乙酰胺中间体6中间体6氧化合成莫达非尼(图1)该合成路线,虽然避免使用昂贵的Nafion催化剂和含有巯基的试剂(有强刺激性气味)。但是产率和产能的问题依然没有很好的解决。图2. 适用于连续流技术三步合成莫达非尼研究者受到Bicherov的启发,通过仔细选择低毒性试剂和FDA3级溶剂,研究连续流反应条件。研究过程:一、初步连续流工艺研究图3. 3步连续合成流程图研究者尝试了3步连续合成莫达非尼。该工艺系统在不到6分钟内获得标准剂量莫达非尼(100毫克)。可运行1.5小时以上,产能为23克/天。经过研究3步串联基本反应条件和关键点如下:第一步:为了避免硫代硫酸钠与步骤二中甲酸反应堵塞通道,使用略微过量的2-氯乙酰胺。第二步:反应需保持中间产物6(熔点为110℃)为液体状态,实验选择115℃为反应温度。反应结束后,向反应液加入甲基丙酮(简称MEK)作为溶剂溶解反应物避免管道堵塞。在此步骤中随着反应时间变长选择性降低。第三步:在20℃使用钨酸钠作为催化剂(4 mol%),加入苯基膦酸作为稳定剂,背压7巴,反应时间大大缩短。【编者】作者利用自制微反应器可以做一些连续流反应的初步研究。为了进行更好的工艺条件优化和得到可放大的连续流工艺条件,作者使用康宁Lab反应器进行了实验。康宁反应器可以实现从实验室工艺到大生产的无缝放大,有利于迅速实现工业化生产。二、康宁Lab Reactor 三步连续合成莫达非尼利用康宁Lab反应器,研究者将第一步和第二步的停留时间减少到1分钟。在第二步反应温度调整到150°C,相较于自制微反应器,转化率从78%升高到97%,选择性也从86%增加到88%,纯度99%。采用高温进料方式,可以解决反应过程中的固体析出的难题。康宁反应器可以精确控制反应条件,如物料比和温度,最大程度上减少副产物的生成。图4. 康宁Lab Reactor连续流工艺流程图最终三步合成工艺:第一步:将2-氯乙酰胺和硫代硫酸钠溶液注入康宁Lab Reactor第一个模块,停留时间为1分钟。反应液与二苯甲醇甲酸溶液在第二单元模块混合,反应物流经第三单元模块保持温度150℃,停留时间为1 分钟。第二步:第一步输出溶液连接到Y型混合器与甲基丙酮混合。输出溶液进入第四个Lab Reactor模块。泵入钨酸钠(4 mol%)、苯基膦酸(4.5 mol%)和1.5当量的15%过氧化氢溶液,反应温度20℃,停留时间1.25分钟。Zaiput背压阀背压7巴。冰浴收集粗品,搅拌后通过饱和碳酸钠水溶液来溶解羧酸副产物,用甲基叔丁基醚(MTBE)清洗固体,去除剩余的中间体6,通过HPLC-DAD分析。获得77%的总收率,纯度99 %,符合USP要求。同时,研究者在选用溶剂的时候考虑了毒性问题,选择的都是符合FDA要求的低毒性溶剂。还从经济可行性考虑测算了成本,最后测算结果每片莫达非尼的成本为0.03欧元(每片100毫克)。较Maurya合成法成本7.30欧元相比降低了200多倍。结果与讨论本文报告的工艺展示了流动化学在合成领域的优势:反应时间短,可以精确地控制反应量,以减少杂质的形成,提高再现性;应用康宁AFR反应器串联在3分钟内即可完成整个3步反应,中间产物6的输出量为17.8克/小时,莫达非尼的输出量为5.3克/小时,纯度99%;该三步连续流工艺比目前任何工业化工艺E因子都低。不仅选用的溶剂环保而且产生副产物也是无害的(例如NaCl、NaHSO4);康宁反应器无缝放大的特性有助于未来实现连续工业化生产;药物端到端的多步合成的连续化,为药物的智能制造打开了大门。参考文献:[1]Green Chem., 2022,24, 2094-2103[2]Green Chem.,2017, 19, 629–633.[3]Chem. Bull., 2010, 59, 91–101.
  • 日加大对中国产荔枝中对氯苯氧乙酸检测频率
    近日,日本厚生劳动省医药食品局食品安全部监视安全课发布食安输发0606第1号:加强对中国产荔枝中对氯苯氧乙酸的监控检查。根据2013年度进口食品等的监控检查计划,按2013年6月5日发布的食安输发0605第1号,对中国产生鲜荔枝实施检查时,发现其违反了食品卫生法。因此,将对其残留农药对氯苯氧乙酸的监控检查频率提高到30%。   对氯苯氧乙酸,又叫防落素,为白色针状粉末结晶,基本无臭无味,是一种苯酚类植物生长调节剂。可用于番茄、蔬菜、桃树等,也用作医药中间体。该物质对眼睛、皮肤、黏膜和上呼吸道有刺激作用,对环境有危害,对水体和大气可造成污染。   检验检疫部门提醒相关企业:要详细了解日本厚生劳动省发布相关通报详细内容,尽快核实荔枝中是否使用了对氯苯氧乙酸,且所使用的剂量是否有超标风险 要配合检验检疫部门,加强对出口荔枝中对氯苯氧乙酸残留量的检测,特别是要加大检测对氯苯氧乙酸的频率,避免造成不必要的贸易风险,确保产品符合进口国标准。
  • 上海有机所在PdH催化的不对称迁移烯丙基取代研究中获进展
    中国科学院上海有机化学研究所天然产物有机合成化学重点实验室研究员何智涛课题组在Nature Communications上,在线发表了题为Palladium-Catalyzed Regio- and Enantioselective Migratory Allylic C(sp3)-H Functionalization的研究论文。该工作利用链行走的策略为惰性烯丙位C-H键的不对称官能团化提供了新思路,揭示出亲核试剂的pKa值对迁移和取代历程的影响,并通过机理研究阐释和验证了反应的基本历程。  相较于传统带有离去基的烯丙基取代反应,不对称烯丙基C-H键的直接官能团化更为直接和步骤经济。目前,该领域的研究仍面临诸多问题。大部分相关催化工作要求烯丙位C-H被相邻的杂原子或sp2碳单元进一步活化,对非活化的烯丙位C-H键的不对称官能团化的研究相对局限。过渡金属催化的链行走策略已被证实可以有效活化远程的惰性C-H键。基于此,科研人员设想利用过渡金属参与的链行走策略来定位烯丙位的C-H金属化,由此产生的稳定烯丙基金属中间体再被分子间的亲核试剂捕获,从而实现非活化的烯丙位C-H键的高效不对称官能团化(图1)。  该反应对于不同的链长度和取代基均有较为突出的结果,兼容复杂迁移体系的同时也能实现了手性控制(图2)。此外,亲核试剂的pKa值与反应的活性密切相关。只有当亲核试剂的pKa值处于13-18间时才有相对较高的反应活性。pKa值高的亲核试剂往往无法促进开始的烯烃迁移的发生,而pKa值低的亲核试剂虽能有效实现金属迁移,但却具有相对较弱的亲核取代能力。  进一步探究反应机理(图3)并结合传统的迁移反应和烯丙基取代过程,研究推测,反应可能首先由二价钯在亲核试剂作用下还原形成零价钯启动,随后在碱的作用下被质子氧化形成二价PdH物种,与末端烯烃配位继而发生快速链行走过程得到烯丙基钯中间体,再接受亲核试剂的进攻,从而得到烯丙位C-H官能团化的产物,同时再生零价钯完成催化循环历程。研究发现,反应初期存在诱导期,为初始零价钯形成过程。该串联过程对于催化剂和亲核试剂均呈现出一级反应,而对二烯底物的动力学符合Micheaelis-Menten模型,即饱和动力学关系,由此推断反应决速步为亲核取代过程。   研究工作得到国家自然科学基金委员会、上海市科学技术委员会、中科院等的资助。
  • 【新案例】重氮乙酸乙酯微反应连续流新工艺
    重氮乙酸乙酯是重要的合成片段,在有机合成中具有非常重要的作用,主要应用在C-H键的插入反应和不饱和键上的环化反应。 重氮乙酸乙酯在路易斯酸催化剂的存在下,与醛发生的C-H键插入反应具有十分重要的应用价值,因为产物 β-酮酸乙酯是多种原料药的中间体。 重氮乙酸乙酯试剂在加热情况下会引起分解和爆炸,还会自动分解出有毒物质,储存和运输都需要特别注意。 目前重氮乙酸乙酯的生产主要采用间歇釜式滴加工艺,即向釜内反应体系滴入亚硝酸钠水溶液,由于该滴加过程伴随着剧烈的热量释放,若不能及时有效地移走这些热量,将会造成局部飙温,导致产物分解,严重时甚至引起安全事故。 与传统釜式反应器相比,微通道反应器 面积/体积比提高了上千倍,反应传热快速且稳定,避免局部温度过高造成爆炸。 此外,由于采用连续化操作方式,生成的产物能够及时移出反应器进行冷却处理,从而最大限度地避免产物分解。 本文将向读者介绍今年6月份常州大学张跃教授研究团队发表在《现代化工》上的“重氮乙酸乙酯的连续合成工艺研究”研究成果。 该研究以甘氨酸乙酯盐酸盐和亚硝酸钠、硫酸为原料,合成重氮乙酸乙酯,采用微通道连续流反应器系统研究重氮乙酸乙酯的连续合成工艺。该工艺提高了产品收率并具有系统结构简单、操作简便、安全性高、易于自动化控制等优点。 研究介绍 一、微通道反应器模块结构通道反应系统由一系列特定的模块以及连接件组成,通过微通道模块、连接配件、物料输送装置的组合,形成适用于本反应的反应器系统。二、实验步骤1. 在室温下,将甘氨酸乙酯盐酸盐溶于定量的水记为原料1。2. 按照物料配比将亚硝酸钠溶于水记为原料2。3. 再按照物料配比将浓硫酸配制成5% 硫酸记为原料3。4. 在进行实验前将原料1和原料3混合在一起记为混合原料,待换热器系统温度稳定后,混合原料与原料2分别通过质量计量泵进入预冷模片,在2股物料分别充分预冷后,进入反应区中进行重氮化反应。5. 产物从出口连续出料,系统运行稳定后取样进行分析检测。反应装置及流程如图2所示。三、反应条件研究 研究者对重氮乙酸乙酯的微通道连续合成工艺多个影响因素进行了考察,探究亚硝酸钠用量、反应温度、酸用量和停留时间对反应的影响,研究过程分别如下图。最终研究者获得了该合成工艺的最佳条件:取用 n(甘氨酸乙酯盐酸盐):n(亚硝酸钠):n(5%硫酸) = 1 : 1.1 : 2,反应停留时间120 s,反应体系温度为10℃,此时收率可达92.8%。结果讨论与小结 研究者成功应用微通道反应器进行重氮乙酸乙酯的合成,大大缩短了反应时间,扩大工艺条件选择区间,实现对重氮化反应的有效控制,增加了安全系数,提高了反应效率并得到较高的收率 从乙酸乙酯的重氮化反应工艺研究过程来看,连续流技术充分发挥了其技术优势 连续流微反应器持液量小、高效的传热传质特点,保证了反应快速平稳的进行及反应安全性 康宁反应器无缝放大的优势为后续工业化应用提供了研究基础 该工艺可以实现重氮乙酸乙酯的连续化生产,为在其它反应中该产物现制现用提供了可能性,降低了储存和运输的安全风险 参考文献[1]岳家委,辜顺林,刘建武,朱佳慧,李孟金,张跃,严生虎.重氮乙酸乙酯的连续合成工艺研究[J].现代化工,2021,41(06):205-208.
  • 《质谱学报》“化学反应中间产物的质谱捕捉与测量”专辑征稿通知
    化学反应在自然界中无处不在。揭示化学反应及其相关过程的机制和基本规律,对认识化学反应的本质、创制新的物质有着不可替代的作用。质谱作为一种重要的分析检测技术,由于具有极高的原位性、特异性、灵敏度、操作性,在化学反应中间体的捕捉、化学反应机制的跟踪等方面大放异彩。从化学反应发生的物相来分,有气相反应、液相反应、固相反应、界面反应等 从化学反应发生的驱动力来分,有电化学反应、高电场反应、光化学反应、催化反应等 从化学反应发生的环境来分,有大气化学反应、生物化学反应、微液滴反应、气泡反应等。质谱技术在这些反应所涉及到的中间体捕获和机理探索研究中均已取得了很大的进展。  然而,机遇和挑战并存,化学反应中间产物通常有着不稳定、寿命短等特点,对质谱的进样、电离、结构解析等过程提出了一定的挑战,也对质谱方法的开发提出了新的要求。  为推动质谱技术在化学反应机制研究中的发展,集中报道相关领域的最新成果,促进广大质谱工作者的交流与合作,《质谱学报》计划组织一期“化学反应中间产物的质谱捕捉与测量”专辑。  本刊邀请南开大学张新星研究员担任该专辑的执行主编。  欢迎各位老师不吝赐稿!  1. 征稿范围(包括但不限于):  (1)多种类型、多种环境化学反应中间产物的捕捉与测量   (2)化学反应新、奇、特中间体的发现   (3)化学反应中间产物质谱检测新方法的开发。  2. 发表形式及时间:正刊(EI,中文核心),2024年1月  3. 稿件要求:  (1)研究性和综述论文,接收英文稿件   (2)投稿论文必须为未在正式出版物上发表过,不存在涉密问题,不存在一稿多投现象,不存在学术不端问题。  4. 投稿方式:  请登录《质谱学报》网站(http://www.jcmss.com.cn)进行在线投 稿。投稿时请选择“化学反应中间产物的质谱捕捉与测量”专辑。  5. 截稿日期:2023年8月底  6. 投稿咨询:  邮箱:jcmss401@163.com  电话:010-69357734  执行主编简介:  张新星,南开大学化学学院研究员、博士生导师,美国约翰霍普金斯大学博士,美国加州理工学院博士后。入选一系列国家和地方人才计划,获得中国化学会第二届菁青化学新锐奖、美国质谱学会ASMS新兴科学家称号、中国物理学会2021年度质谱青年奖。在气液界面质谱分析和相关质谱仪器开发,以及微液滴化学质谱分析领域取得了一系列成果,在PNAS,Angew. Chem.,JACS,Nat. Commun.等国际顶尖刊物发表SCI论文90余篇。
  • 文献解读丨生物活性聚甲基丙烯酸甲酯骨水泥治疗骨质疏松性椎体压缩性骨折
    研究背景 目前全球骨缺损手术每年约为2000万例,为保持原有骨骼的结构与功能的完整,骨修复就必须依赖于移植材料,因而临床治疗中对于具有支撑作用的骨植入材料需求量巨大。植入材料的特性对于骨修复具有重要影响,是再生医学研究中的关键问题,也是临床骨修复的核心要点。聚甲基丙烯酸甲酯 (PMMA) 骨水泥是临床上出现很早、使用非常广泛的骨水泥制品,其安全性和临床效果已经得到普遍认可。但是过高的弹性模量、相对较低的生物活性都限制了它在临床使用上的进一步应用和发展。骨组织的修复和再生是一个动态过程,始于骨祖细的增殖和迁移,最终分化为成熟骨细胞。虽然骨组织具有较强的再生能力,但是当大段骨组织损伤造成大范围骨缺损时,为保持原有骨骼的结构和功能,骨的修复就必须依赖于移植材料。植入材料的特性对于骨修复具有重要影响,该过程的影响成为再生医学研究中的关键问题,也是临床骨修复的核心要点。骨植入材料主要有自体骨、异体骨(同种异体骨、异种骨)和合成材料等。自体骨一直被认为是骨移植材料的金标准,但来源有限,取骨后容易出现穿孔、伤口感染、脓肿、出血等相关并发症,植入困难、创伤大等,也使其在临床上的应用受到限制。随着组织工程技术的不断发展,人工骨不仅可以实现大批量生产,而且往往具有新的研究不断赋予的生物相容性、成骨诱导性等特点,使得人工骨普遍应用于临床骨修复以及作为骨外科填充材料。 鉴于上述缺点,材料和医学科学家尝试了多种PMMA骨水泥改性策略,通过改变单体、添加生物活性材料或有机材料等策略来优化PMMA骨水泥的生物机械性能和生物学活性。 方法与结果 本研究以PMMA骨水泥作为支持材料,在其中添加具有生物活性的矿化胶原(MC)材料,通过基础实验研究复合骨水泥的材料学表征以及体内外活性,通过将该材料应用于临床,探究临床的实用性以及价值。采用兔骨质疏松模型对复合骨水泥材料MC-PMMA在体内的生物相容性及成骨性能进行评价。 采用岛津InspeXio SMX-225 CT FPD HR对骨水泥进行扫描重建,统计骨水泥的孔隙率。如图1所示,PMMA骨水泥的孔隙率与MC-PMMA骨水泥的孔隙率几乎相同(5.61±0.16%比7.22±0.53%)。与PMMA骨水泥相比,MC-PMMA具有较低的CT值(9.36±0.13对5.46±0.22)。图1 岛津micro-CT扫描材料结果 体内实验中,更重要的评价环节为影像学评价。在4周,8周,12周时处死兔子,选择有材料的椎体,在Micro-CT定位下确定材料的位置,并进行硬组织切片和染色。采用岛津InspeXio SMX-225 CT FPD HR扫描样品,扫描后经三维等值画图软件重建并进行成骨体积分析测定。通过X线透视及CT扫描影像评估样品植入前后的形状、骨密度,并通过成骨体积的测量进行定量分析。 术后各组在各个时间点的典型扫描三维重建结果如图2A所示,骨水泥材料牢固地结合到骨组织上,没有明显的间隙。通过显微CT进行的三维渲染显示了缺损和骨水泥的位置。在图2A中,骨水泥具有以红色和黄色显示的高CT值,而骨是黑色的。随着骨水泥被骨替代,颜色变为绿色,蓝色,最后变为黑色,表明CT值逐渐降低。在4周时,两组标本的骨水泥CT值和体积相似。在8周时,MC-PMMA组的CT值下降,但在PMMA组中几乎相同。在12周时,MC-PMMA组的CT值与以前相似的区域更多。然而,PMMA组的CT值保持不变。骨水泥的界面外观和CT值的差异表明MC-PMMA组中的材料吸收和骨再生比PMMA组更多。在手术后4,8和12周,MC-PMMA骨水泥组的椎体重建三维图像的定量显示比PMMA骨水泥组有更多的骨形成(图2B-E)。手术后4周,MC-PMMA组的骨量百分比和骨小梁厚度较高。然而,骨小梁厚度或骨小梁分离没有差异。手术后8周和12周,与PMMA组相比,MC-PMMA组的骨小梁厚度显着增加,骨量百分比增加,骨小梁数较高,骨小梁分离度较低,表明随着时间的推移MC-PMMA组的骨生长增加。图2 micro-CT三维重建结果和计算结果 总结与讨论 本研究通过向广泛用于PVP和BKP的PMMA骨水泥品牌的粉末中添加矿化胶原来开发基于生物活性PMMA的骨水泥。与PMMA骨水泥相比,MC-PMMA骨水泥的压缩模量显着降低,而处理时间大致相同。MC-PMMA骨水泥促进细胞增殖和分化,并加速骨质疏松兔模型中椎骨的修复和小规模临床试验中患者的OVCF。我们的研究结果表明,MC-PMMA骨水泥有望用于临床转化。 微焦点X射线CT装置inspeXio SMX-225CT FPD HR Plus高分辨率,图像清晰擅长复合材料的拍摄操作简单、试验速度快 文献题目《Bioactive poly (methyl methacrylate) bone cement for the treatment of osteoporotic vertebral compression fractures》 使用仪器岛津inspeXio SMX-225CT FPD HR Plus 第一作者诸进晋,杨淑慧 原文链接:https://doi.org/10.7150/thno.44276
  • 泡椒凤爪用工业防腐剂? 企业称脱氢醋酸标识有误
    泡椒凤爪又酸又辣,想起来都会流口水,这么好吃的东西竟然传出“有毒”。近日,一条关于泡椒凤爪添加剂有毒的消息在网络里迅速传开。一网友称在一款泡椒凤爪的包装上发现了用于工业防腐剂的“脱氢醋酸”,并质疑这种化学物质对人体健康有害。   【事发】   包装标注出工业防腐剂   近日,网民赵先生在网站发帖称,他在商场购买了一款成都产的泡椒凤爪。而在该食品的包装袋上,他无意间居然看到了用于工业防腐剂和兽药中间体的“脱氢醋酸”。   赵先生专门查询了“脱氢醋酸”的危害,他称这种工业用防腐剂,可快速被人或动物机体吸收,并分布在血浆和各个器官中,抑制多种酶的氧化作用 它在尿排泄的速度相当慢,不应作为“食品防腐剂”使用。   泡椒凤爪用上了工业防腐剂,这可不是闹着玩的。昨日,记者赶紧在杭城几家超市里查看各种泡椒凤爪的配料表。   在杭州体育场路一家小超市里看到,货架上堆放着几十包待售的“有友”牌山椒泡凤爪。翻看包装袋,在配料一栏里标注了十多种食品添加剂,其中同样出现“脱氢醋酸”字样。   而在世纪联华超市望江店,记者看到包括有友、永健、凤巢等牌子的泡椒凤爪标注有“脱氢乙酸钠”,还有些牌子未有标注。   【释疑】   “脱氢乙酸”俗称“脱氢醋酸”   工业用防腐剂怎么跑进食物里了?昨日,记者采访了浙江省食品添加剂协会专家组委员唐家寰。   唐家寰告诉记者,“脱氢醋酸”确实是一种防腐剂,用来抑制霉菌和酵母菌的生长。但是,“脱氢醋酸”难溶于水,一般食品行业都用它的盐类来做防腐剂。   另外,唐家寰称,“脱氢醋酸”是“脱氢乙酸”俗称,今年6月实施的食品添加剂新国标(GB2760-2011)中,“脱氢乙酸及其钠盐”已经列入新国标之中,属于国家允许的食品添加剂,准许添加在熟肉、腌制品等食品内。   随后,记者联系到“有友”牌山椒泡凤爪的生产厂家重庆有友实业有限公司,该公司质检部的龙经理告诉记者,他已经获悉网上盛传关于泡椒凤爪的消息。龙经理解释说,在行业内,企业在食品包装上标注俗名“脱氢醋酸”,但实际上采用的都是脱氢醋酸钠,用作防腐剂。   “脱氢醋酸是一种游离态的物质,单物质存在具有不稳定性,所以食品行业99%都会用它的盐类来当防腐剂。现在消费者出现这样的误区,是我们企业在标识上不够重视导致的。” 龙经理如是说。   【回应】   标注有误纷纷更换包装   “同样这个问题几个月前就有消费者向我们反映了。” 龙经理告诉记者,早有消费者对此产生了质疑,该企业已经在一两个月前就更换了产品包装,新包装袋上标注的是“脱氢醋(乙)酸钠”。   “杭州地区的销售量不及我们本地,本地的新包装基本已经更换完毕,杭州可能还需要两三个月来消化老包装产品。所以,杭州买到的部分有友牌泡椒鸡爪包装袋上可能还会有标脱氢醋酸。”龙经理说,消费者仍可放心食用。   此外,记者了解到,成都当地质监部门对上述网友质疑的厂家进行了检查,发现其生产泡凤爪产品使用的食品添加剂是天润牌“脱氢醋(乙)酸钠”,在其产品包装上标注为“脱氢醋酸”。经检该企业不存在非法添加和滥用食品添加剂的违法行为。但由于没有按标准进行食品添加剂名称标注,该局已经要求企业限期整改。目前已开始更换新的包装。来源:今日早报
  • 康宁新案例 |可烯醇化酮α -羟胺化连续流合成工艺之二
    可烯醇化酮的α-羟胺化反应一、以苯乙酮或苯丙酮的α-羟胺化反应以苯乙酮或苯丙酮为底物,在高效、多功能流动化学工艺平台进行了α-氯亚硝基衍生物原位制备、底物拔氢、α-羟胺化反应、硝酮中间体酸解、产物分析、液液分离、环戊酮骨架循环套用的整个流程(下图)。该连续流工艺平台实验室和放大规模反应单元采用的是康宁 LowFlow Reactor 和G1反应器,康宁反应器无缝放大的技术优势是该反应进一步扩大产能的保障。图7. 苯乙酮或苯丙酮的α-羟胺化反应连续流反应体系底物苯乙酮/苯丙酮与LiHMDS进入反应模组I在0℃、1 min停留时间条件下完成拔氢反应。反应液与发生器II中生成的 1-氯-1-亚硝基环戊烷进入反应模组II在0℃、1 min停留时间条件下发生亲电胺化反应。所得反应液中的硝酮中间体与盐酸进入反应模组III在60℃、1 min停留时间条件下发生酸解,原料转化率分别为70%(苯乙酮)和98%(苯丙酮),产物分离收率分别为62%(苯乙酮)和90%(苯丙酮)。表8. 产物收率随时间和温度变化曲线值得一提的是,在反应釜条件下,如果以一级酮(苯乙酮)为底物,即便将反应温度冷却至-78℃,反应生成的硝酮中间体还是更容易与原料烯醇负离子质子交换,进一步反应后只能得到46%的二胺化杂质。而在连续流工艺条件下,得益于物料的快速混合效果、低返混以及局部化学计量的精准控制,有助于得到目标产物,避免二胺化杂质的产生(下表)。对比典型的间歇釜反应条件(-78℃),在连续流工艺中,亲电胺化反应可以在更温和的反应温度(0℃)中进行,同时避免物料分解并在停留时间1分钟内达到几乎定量的转化。但不建议尝试高于0℃的反应条件以进一步减少停留时间,这可能会导致堵塞或物料的爆炸性分解。反应模块III的出料口集成了Zaiput高效液-液分离器在用来在线自动分离水相和有机相,水相中基本为纯的目标产物的盐酸盐,有机相中主要为环戊酮骨架。对有机相进一步处理以回收环戊酮,可转化为环戊酮肟,分离收率83%。环戊酮骨架的循环利用,使整个工艺更加绿色环保。Zaiput 液-液分离器是康宁在中国独家代理的在线分离仪器。是由MIT孵化出来的新型专利技术,可取代传统萃取技术。 二、扩展实验维持反应器设置不变,尝试了包括苯乙酮在内的22个底物,原料转化率和产物分离收率列于下表:实验结果讨论本通过独特、高效、可放大的连续流平台,可实现从可烯醇化酮和α-氯亚硝基化合物1a以高分离收率制备α-羟胺化酮化合物库。对高附加值的α-羟胺化酮中间体的生产可以实现工业化生产。分别以一级、二级和三级酮类化合物为原料制备了22个α-羟胺化酮化合物,为几种医药中间体 (包括世卫组织必需品和短缺药物)的生产开辟了道路。本项研究充分体现了连续流工艺的主要优点包括:高效的传热、传质系数,在线分析的集成、很少的占地面积等。反应平台保持了紧凑和高度集成的反应器设计(包括辅助设备在内小于2平方米)。连续流工艺条件下毒性和有潜在爆炸风险的化合物的原位制备和消耗使反应对环境的影响大大降低,对绿色合成技术延伸与拓展具有显著的参考意义!Reference:Victor-Emmanuel H. Kassin, Romain Morodo,a Thomas Toupy,Isaline Jacquemin, Kristof Van Hecke, Raphaël Robiette and Jean-Christophe M. Monbaliu ,Green Chem., 2021, 23,2336
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制