当前位置: 仪器信息网 > 行业主题 > >

二乙二醇单乙基醚醋酸酯

仪器信息网二乙二醇单乙基醚醋酸酯专题为您提供2024年最新二乙二醇单乙基醚醋酸酯价格报价、厂家品牌的相关信息, 包括二乙二醇单乙基醚醋酸酯参数、型号等,不管是国产,还是进口品牌的二乙二醇单乙基醚醋酸酯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合二乙二醇单乙基醚醋酸酯相关的耗材配件、试剂标物,还有二乙二醇单乙基醚醋酸酯相关的最新资讯、资料,以及二乙二醇单乙基醚醋酸酯相关的解决方案。

二乙二醇单乙基醚醋酸酯相关的资讯

  • 世界首创万吨级“煤制乙二醇”成套技术通过鉴定
    世界首创万吨级“煤制乙二醇”工业化示范获得成功   5月7日,中国科学院“世界首创万吨级煤制乙二醇工业化示范”新闻发布会在北京人民大会堂隆重举行。全国人大常委会副委员长、中国科学院院长路甬祥出席会议。科学技术部、工业和信息化部、国土资源部、自然科学基金委、中国石油化工协会等相关部门领导,福建省人民政府领导、江苏省人民政府领导、内蒙古自治区领导以及技术成果鉴定专家组组长何鸣元院士等共同出席了发布会。会上获悉:中国科学院福建物质结构研究所依托20多年的技术积累与江苏丹化集团、上海金煤化工新技术有限公司联手合作,成功开发了“万吨级CO气相催化合成草酸酯和草酸酯催化加氢合成乙二醇”(简称“煤制乙二醇”)成套技术。该成套技术已通过中国科学院组织的成果鉴定。   “世界首创万吨级煤制乙二醇工业化示范”新闻发布会举行      全国人大常委会副委员长、中国科学院院长路甬祥讲话   鉴定委员会专家一致认为,此项成果标志着我国领先于世界实现了全套“煤制乙二醇”技术路线和工业化应用,是一项拥有完全自主知识产权的世界首创技术。该技术的推广应用将有效缓解我国乙二醇产品供需矛盾,对国家的能源和化工产业产生重要积极影响,具有重要的科学意义、突出的技术创新性和显著的社会经济效益。   乙二醇是重要的化工原料和战略物资,用于制造聚酯(可进一步生产涤纶、饮料瓶、薄膜)、炸药、乙二醛,并可作防冻剂、增塑剂、水力流体和溶剂等。“煤制乙二醇”即以煤代替石油乙烯生产乙二醇。专家指出,此类技术路线符合我国缺油、少气、煤炭资源相对丰富的资源特点。中国科学院福建物质结构研究所通过长期基础研究、应用研究和产业化获得的该项成果,拥有多项技术专利和自主知识产权 该成套技术符合循环经济 “减量化、再利用、资源化”三原则,其显著特点还在于全部采用工业级的CO、NO、H2、O2和醇类为原料,对形成规模化产业极为有利。鉴定委员会专家在现场考察后认为,万吨级工业试验装置运行稳定,具备了进一步建设大规模工业化生产装置的条件。据专家测算,用石油乙烯路线每生产一吨乙二醇约耗2.5吨石油。目前全世界用石油乙烯生产的2000多万吨乙二醇,若都以煤为原料进行生产,那么,节省下来的石油相当于新开发一个年产5000万吨石油的大庆油田。   煤制乙二醇技术是国家“八五”、“九五”重点科技攻关项目。中科院福建物构所自1982年起经过多年前期研究,获得了一系列具有完全自主知识产权的小试技术和模试技术 江苏丹化集团技术团队拥有化工新技术产业化的长期积淀,曾在国内首创“碳化法制碳酸氢铵”、“羰基化合成醋酐”和“变压吸附分离CO”等多项化工新工艺。2005年起,由上海盛宇企业投资有限公司投资约1.8亿元,与中科院福建物构所、丹化集团、上海金煤化工新技术有限公司等强强联手启动了“CO气相催化合成草酸酯和草酸酯催化加氢合成乙二醇”的产业化试验,经过3年多的艰苦努力,在国家发改委、科技部、中科院、福建省、上海市和江苏省政府的大力支持下,相继在丹化集团建成年产300吨中试和1万吨工业化试验两套装置,在多项关键技术领域取得突破,2007年12月万吨装置顺利开车打通全流程,经过一年多的实际运行检验,并经专家组鉴定,证明全球首套“万吨级煤制乙二醇”技术已完全取得成功。   经中国科学院和国家财政部批准,中科院福建物构所和上海金煤化工新技术有限公司已将全部煤制乙二醇技术入股通辽金煤化工有限公司,该企业正在内蒙古通辽市建设全球首套年产20万吨煤制乙二醇示范装置,该项目是我国煤化工五大重点示范工程之一,预计今年年底前即可建成投产,未来五年内将建成120万吨生产规模,有望成为国内最大的乙二醇生产企业,实现部分替代进口。   关于该项目的合作模式,全国人大常委会副委员长、中国科学院院长路甬祥认为:在学习实践科学发展观、建设创新型国家进程中,中国科学院实施创新工程,构建了知识创新、技术创新和工程产业化的“金三角”并发挥三者互动的科技创新体系,在推动科技创新、科技成果转移转化与产业化、创建高新技术企业等方面谋划了独具特色的创新机制。在应对国际金融危机的新形势下,它将为企业通过科技成果转移转化,提升自主创新能力提供一些宝贵的经验,为实现我国国民经济的平稳快速发展,探索出一条合作共赢的创新之路。
  • PEN聚萘二甲酸乙二醇酯的粘度测量
    聚萘二甲酸乙二醇酯简称PEN,是聚酯家族中重要成员之一,是由2,6-萘二甲酸二甲酯(NDC)或2,6-萘二甲酸(NDA)与乙二醇(EG)缩聚而成,是一种新兴的优良聚合物。目前主要应用于磁带的基带、柔性印刷电路板、电容器膜、F级绝缘膜等方面,也开始逐渐延伸至碳酸饮料瓶、酸性饮料瓶等包装领域和工业电缆料、过滤器介质用单丝等工业用纤维领域。PEN化学结构与PET相似,其各项特性也与PET类似,但在分子链中PEN由刚性更大的萘环代替了PET中的苯环。使PEN比PET具有更高的物理机械性能、气体阻隔性能、化学稳定性及耐热、耐紫外线、耐辐射等性能。国标GB/T 1632.5-2008中对聚萘二甲酸乙二醇酯特性黏度的测量方法给出了详细的说明:对于无定型的PEN采用苯酚四氯乙烷作为溶剂,结晶PEN采用苯酚三氯苯酚作为溶剂,再通过相关辅助设备测试PEN溶液的黏度。在PEN的黏度测试流程中,传统的手动测试方式是使用乌氏粘度管在温控精准度较高的恒温水浴槽中进行黏度测试,采用传统的手动测试方法会存在:测试精度低,测试流程繁琐等诸多弊端。随着生产企业以及研发机构等对于实验数据高标准、高精度、高效率的要求,自动化的乌氏粘度仪已逐步取代传统手动测试方法。以杭州卓祥科技有限公司的IV3000系列全自动乌氏粘度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例:实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时最多可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度最高可达180℃。3. 测试过程IV3000系列乌氏粘度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可精确到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV3000系列全自动粘度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表和外推分析等多种功能。5. 粘度管清洗干燥过程:仪器自动排废液、清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。清洗模式可多种选择,同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。IV3000系列乌氏粘度仪可实现自动测试、自动排废液、自动清洗及干燥过程的自动化,告别粘度管是耗材的时代。
  • 日本制修订食品添加剂醋酸钙和异丙醇的相关标准
    2013年12月4日,日本厚生劳动省医药食品局发布食安发1204第3号:部分修订食品卫生法实施规则(省令)及食品、添加剂等规格标准(告示)。内容包括:   1. 省令:   根据食品卫生法第10条规定,在食品卫生法实施规则附表1中追加醋酸钙。   2. 告示:   (1)根据食品卫生法第11条第1项的规定,设定醋酸钙的成分规格。   (2)根据食品卫生法第11条第1项的规定,修订异丙醇的成分规格和使用标准。   该修订自发布之日起实施。
  • 我国工业排放气制乙二醇技术获突破
    开创乙二醇生产新原料路径 降低投资30%   记者从西南化工研究设计院获悉,该院开发的“回收和利用工业排放气制乙二醇技术”,日前通过由四川省科技厅组织的专家鉴定。新技术不仅开创了乙二醇生产的新原料路径,降低投资30%,还有效解决工业排放气的污染问题,已具备成熟工业化条件。   西南化工院自1986年在国内率先开展合成气制乙二醇技术研究,并承担“十一五”国家科技支撑计划重点项目“非石油路线制备大宗化学品关键技术开发”。经过25年不懈努力,科研人员先后完成该技术的关键催化剂及配套工艺集成开发,开发了具有工业应用价值的两个核心催化剂,实现转化率100%、选择性90%条件下,6000小时以上长周期考核 通过减去复杂的“煤气化”设备和工艺,每吨产品节省甲醇消耗0.16吨、蒸汽消耗2.5吨 形成加氢反应器、聚酯级乙二醇产品精制等五大关键工艺技术,目前已获4项国家发明专利。   专家介绍,与传统石油路线、煤制路线制备乙二醇相比,采用黄磷尾气或电石炉尾气等工业排放气生产乙二醇的新技术,成本仅为4000元/吨,分别节省3500元和1000元。而从环保效益分析,按国内每年产100万吨黄磷计算,每年可减排3750吨磷化物、7500吨硫化物、200吨砷化物和1250吨氟化物。   乙二醇作为用于溶剂、防冻剂以及合成涤纶的主要原料,今年年底在我国产能将达到每年450万吨,消费量则为每年800万吨。若近400万吨产能缺口采用工业排放气为原料替代生产,每年可节约外汇30多亿美元,同时减少200多万吨乙烯消耗。
  • 铝蚀刻液成分分析—磷酸、硝酸、醋酸有多少?
    -----铝蚀刻液成分分析—磷酸、硝酸、醋酸有多少?一、背景介绍蚀刻是将材料使用化学反应或物理撞击作用而移除的技术。最早可用来制造铜版、锌版等印刷凹凸版,也广泛地被使用于仪器镶板,铭牌等的加工;经过不断改良和工艺设备发展,亦可以用于航空、机械、化学工业中电子薄片零件精密蚀刻产品的加工,特别在半导体制程上,蚀刻更是不可或缺的技术。铝是半导体工艺中最主要的导体材料。它具有低电阻、易于淀积和刻蚀等优点。铝蚀刻液主要成分是磷酸、硝酸、醋酸及水,其中磷酸、硝酸、醋酸及水的组成比例会影响到蚀刻的速率,故需要对这种混酸溶液的成分进行分析。 二、测试原理1、硝酸:在样品中加入适量乙醇做溶剂,用四丁基氢氧化铵(TBAOH)滴定至终点,即可计算硝酸的含量。TBAOH+HNO3 → NO3-+TBN++H2O2、醋酸和磷酸:在样品中加入适量饱和氯化钠溶液做溶剂,用氢氧化钠溶液做滴定剂,出现两个滴定终点。第|一个终点是H3PO4和HNO3被耗尽时的终点,第二个终点是H2PO4-和HAc被耗尽时的终点,根据已知的硝酸含量,即可计算出磷酸及醋酸的含量。H3PO4+HNO3+2OH- → NO3-+ H2PO4-+ 2H2OH2PO4-+HAc+2 OH- → Ac-+ HPO42-+ 2H2O 三、混酸分析方法(1)硝酸含量测试:在滴定杯内加入50mL无水乙醇,准确称取一定质量的样品置于滴定杯内,用 0.01mol/L TBAOH溶液做滴定剂进行电位滴定,终点电位突跃设置为20mV/mL。图1 硝酸含量滴定曲线图2 醋酸和磷酸含量滴定曲线 (2)醋酸和磷酸含量测试:在滴定杯内加入50mL饱和氯化钠溶液。准确称取一定质量的样品置于滴定杯内,用0.5mol/L氢氧化钠溶液做滴定剂进行电位滴定,终点电位突跃设置为100mV/mL。 四、注意事项1、TBAOH标定时需要使用纯水做邻苯二钾酸氢钾的溶剂,而使用TBAOH测定硝酸时必须使用无水乙醇做溶剂,不要在滴定杯内加入水,否则不会出现显著的滴定终点。2、使用氢氧化钠测定醋酸和磷酸时,需使用饱和氯化钠溶液做溶剂,若使用纯水做溶剂会出现假终点。 五、仪器推荐ZDJ-5B型自动滴定仪 ● 7寸彩色触摸电容屏,导航式操作● 支持电位滴定● 实时显示测试方法、滴定曲线和测量结果● 可定义计算公式,直接显示计算结果● 支持滴定剂管理功能● 支持pH的标定、测量功能● 支持USB、RS232连接PC,双向通讯● 可直接连接自动进样器实现批量样品的自动测量
  • 电力设备蒸汽冷凝水中乙二醇泄漏的早期探测
    背景矿物燃料与核电力设施使用换热器,使工艺蒸汽冷凝回到液体形态。热交换器的工作原理是,通过从一种介质(蒸汽)中转移热量至另一种介质(空气、水、或乙二醇)中。很多新近的封闭式冷却水系统、电力设施使用乙二醇(C2H6O2)作为热传递液体,因为乙二醇有很高的热传递效率。虽然乙二醇是超级好的热传递流体,但如果它从冷却器中泄漏并进入冷凝蒸汽中时,会造成严重问题。在升高的温度与压力下,水中乙二醇会降解为有机酸,会酸化冷凝液,导致系统内快速的腐蚀。有机酸的增长也会严重破坏离子交换树脂床与矿物质脱除塔。发现早期针孔大的热交换器泄漏,对于保持维护电力设施与工艺设备的完整性,非常重要。虽然很多工厂使用痕量水平的胺来中和,来控制回路的pH,但这些胺常规地都是按照控制来自二氧化碳溶解产生的碳酸,来给药的。乙二醇泄漏造成的有机酸的大量流入,很容易压垮这种pH控制,并造成冷凝液明显的酸化。问题电厂通常检测pH与阳离子电导率来监测蒸汽回路水的纯度。然而,那些参数并不总是足够。充分早地探测乙二醇的早期泄漏以预防显著的下游问题十分重要。因为pH与阳离子电导率的偏离,仅仅在乙二醇分解之后才产生,这些检测对于探测泄漏来说,经常已经太晚了。水中乙二醇在热的高压蒸汽回路中降解。如果热交换器中发生泄漏,这种泄漏的现象在乙二醇降解之前,可能无法通过pH与电导率探测到。在这一点上,工艺设备(例如:矿物质脱除塔、树脂床、冷凝液抛光器、锅炉、涡轮机等)可能已经暴露在酸性的冷凝液或蒸汽中。乙二醇是一种含碳38.7%的有机分子,因此能够使用在线、连续的总有机碳(TOC)分析来探测到。Sievers® M系列在线TOC分析仪能够在乙二醇在冷凝液蒸汽中降解之前,更早地检测到乙二醇的泄漏。解决方案在Sievers分析仪进行的实验室研究中,Sievers M系列TOC分析仪表现出对乙二醇的回收率在97.3%-99.1% ,对于碳含量在0.5-25 ppm 碳 (1.3-64.7ppm 乙二醇)。Sievers M系列TOC分析仪的回收率总结如下表:在图2中,分析仪显示出对检测乙二醇有高的线性响应。基于定量回收率(≥97.3%),与高度的线性(R2=1.0000),Sievers M系列TOC分析仪很适用于检测冷凝液蒸汽中宽广范围的乙二醇浓度。几个著名的组织(EPRI、VGB、与 Eskom)建议100-300 ppb作为蒸汽循环补给水的合适的背景TOC水平。水或蒸汽循环中的这个TOC背景很好地位于Sievers M系列TOC分析仪的检测水平0.03 ppb之上,同时这个TOC背景也足够低,可以轻松检测背景TOC浓度之上的乙二醇泄漏造成的TOC偏移。由于乙二醇泄漏造成的事故的成本,从设备维修与更换、以及停产期间损失的能量产出等方面,可能是成百上千美元。由于乙二醇有毒并有危险,额外的缓和被污染的冷凝水也非常关键。使用Sievers M系列在线TOC分析仪,冷凝蒸汽每2分钟被分析一次,提供给设备操作者高解析度的数据,使用这些数据,可以快速识别并解决使用乙二醇溶液的热交换器的泄漏。◆ ◆ ◆联系我们,了解更多!参考文献1.Berry, D. and Browning, A. Guidelines for SelectingandMaintaining Glycol Based Heat Transfer Fluids.2011. Chem-Aqua, Inc.2.EPRI Lead in Boiler Chemistry R&D. PersonalCommunication. January 28, 2015.3.Ethylene vs. Propylene Glycol. www.dow.com.Accessed January4.22,2015.http://www.dow.com/heattrans/support/selection/ethylene-vs-propylene.htm.5.Heijboer, R., van Deelen-Bremer, M.H., Butter, L.M.,Zeijseink, A.G.L. The Behavior of Organics in aMakeup Water Plant. PowerPlant Chemistry. 8(2006):197-2026.Faroon, O., Tylenda, C., Harper, C.C., Yu, Dianyi,Cadore, A., Bosch, S., Wohlers, D., Plewak, D.,Carlson-Lynch, H. Toxicological Profile for EthyleneGlycol. 2010. US Agency for Toxic Substances andDisease Registry (ASTDR).7.Maughan, E.V., Staudt, U. TOC: The ContaminantSeldom Looked for in Feedwater Makeup and OtherSources of Organic Contamination in the Power Plant.PowerPlant Chemistry. 8(2006): 224-233.8.Rossiter, W.J. Jr., Godette, M., Brown, P.W., Galuk,K.G. An Investigation of the Degradation of AqueousEthylene Glycol and Propylene Glycol Solutions usingIon Chromatography. Solar Energy Materials. 11(1985): 455-467.9.Vidojkovic, S., Onjia, A., Matovic, B., Grahovac, N.,Maksimovic, V., Nastasovic, A. Extensive FeedwaterQuality Control and Monitoring Concept forPreventing Chemistry-related failures of Boiler Tubesin a Subcritical Thermal Power Plant. Applied ThermalEngineering. 59(2013): 683-694.
  • 应用解读|光伏组件封装用乙烯-醋酸乙烯酯共聚物(EVA)胶膜的热分析标准解读
    1. 技术背景图1. 晶体硅太阳能电池结构晶体硅太阳能电池结构由钢化玻璃板/EVA膜/太阳能电池板/EVA膜/背板构成,如图1所示。其中,太阳能电池封装用EVA是以乙烯/醋酸乙烯共聚物(醋酸乙烯含量为30%-33%)为基料,辅以数种改性剂,经成膜设备热轧成薄膜型产品,厚度约0.4 mm。封装过程中EVA受热,交联剂(通常为过氧化物)分解产生自由基,引发EVA分子之间的结合,形成三维网状结构,导致EVA胶层交联固化,交联机理如图2 所示。固化后的胶膜具有相当高的透光率、粘接强度、热稳定性、气密性及耐老化性能。图2. EVA加热过程中在交联剂过氧化物下的交联机理EVA固化不足可直接导致光伏组件在其近20年的使用中性能恶化,这将意味着重大的经济风险。因此为实现经济有效的层压,快速可靠的EVA交联度分析方法至关重要。以往的化学法测交联度耗时长(30小时左右),结果重复性差,并且使用有毒的溶剂(甲苯或二甲苯),无法准确测试较低交联度和较高交联度的EVA。根据国家标准:1)GB/T 29848-2018:光伏组件封装用乙烯-醋酸乙烯酯共聚物(EVA)胶膜2)GB/T 36965-2018:光伏组件用乙烯-醋酸乙烯共聚物交联度测试方法--差示扫描量热法(DSC)采用差示扫描量热法(DSC)是目前较为可靠的分析方法,应用DSC测定光伏组件在层压过程中已交联的EVA的交联度,仅需1小时时间即可获得重复性良好的结果,是一种快速简便的产品质量控制方法。2.方法设计1)DSC:称取未交联和交联EVA样品5~10mg至40μL铝坩埚内,以10 K/min从−60℃加热到250°C,后以20 K/min的速度从250℃冷却至-60℃,再以10 K/min进行第二次升温,全程惰性氩气氛围。交联EVA的交联度可由以下方程计算获得:梅特勒-托利多差示扫描量热仪 DSC2)此外,醋酸乙烯组分的分解机理如下所示:根据上述计算公式,可通过热重法(TGA)分析计算得到EVA中VA的百分含量,从而帮助对EVA来料进行质检,以判定EVA的优劣。TGA/DSC:称取优质和劣质的交联EVA样品至陶瓷坩埚内,以10 K/min从30℃加热到600°C,全程惰性氩气氛围。3.数据分析1)DSC分析计算EVA的交联度图3为未交联EVA样品的升降升循环DSC测试曲线。在第一次升温曲线上可观察到明显的三个热效应,从低温至高温,依次是未交联EVA的玻璃化转变、结晶部分的熔融以及高温处的固化交联放热峰,所呈现的固化放热焓值为ΔH1(17.49 J/g)。由第二次升温曲线在高温处所表现处的平直基线可以得出结论,ΔH1为未交联EVA完全固化所释放出的热焓。图3. 未交联EVA样品的DSC测试曲线图4为交联EVA样品的DSC第一次升温曲线,第二次升温在高温处同样为平直的基线,故未呈现。温度从室温开始,可观察到结晶部分的熔融以及高温处的后固化交联放热峰,所呈现的后固化放热焓值为ΔH2(8.47 J/g)。因此,该交联EVA样品的交联度根据上述计算公式为51.55%。图4. 交联EVA样品的DSC第一次升温曲线1)TGA分析计算EVA中VA的百分含量图5为优质与劣质EVA的TGA/DSC测试曲线。根据EVA的分解机理,TGA曲线上的第一个失重台阶为醋酸乙烯分解产生醋酸的过程,因此失重量为醋酸的质量。第二个失重台阶为EVA中原有的乙烯组分和醋酸乙烯分解产生的乙烯的分解。因此,EVA中醋酸乙烯的含量可由第一个失重台阶即醋酸的失重百分含量的1.43倍计算而得。如图所示,优质EVA的VA含量为29.5%(太阳能电池封装用EVA的醋酸乙烯含量为30-33%),劣质EVA的VA含量仅为16.6%。与此同时,同步的DSC曲线上亦可找到相关判断依据。由于劣质EVA含有更高含量的乙烯组分,因此其结晶能力更强,所呈现的结晶熔融过程表现在更高的温度范围。图5. 优质与劣质EVA的TGA/DSC测试曲线4.小结由此可见,光伏组件封装用EVA胶膜的相关热性能的鉴定可由DSC、TGA或同步热分析TGA/DSC快速给出判断依据。此外,工艺上EVA固化通常采用层压实现,而层压的温度和时间作如何优化可由DSC动力学模块给出科学且精准的预测,为层压工艺提供数据和理论指导。
  • 使用表面增强拉曼光谱检测瓶装水中的聚对苯二甲酸乙二醇酯纳米塑料
    近日,挪威科技大学与南开大学合作在Environmental Science & Technology上发表了题为“Identification of Poly(ethylene terephthalate) Nanoplastics in Commercially Bottled Drinking Water Using Surface-Enhanced Raman Spectroscopy”的研究论文。研究合成了一种新型的表面拉曼增强光谱(SERS)衬底,该衬底可增强纳米颗粒的拉曼光谱信号,通过对不同粒径的聚苯乙烯(PS)纳米颗粒测试发现,粒径越小拉曼光谱信号增强因子越高。使用该SERS衬底,对经100 纳米滤膜过滤后瓶装水进行了检测,通过与标准谱图比对,发现瓶装水中的纳米塑料为聚对苯二甲酸乙二醇酯,浓度高达108 个/毫升。全文速览微纳塑料作为新型污染物,引起了全球范围的广泛关注。而作为微纳塑料研究的基石,检测分析方法一直是该领域的重点和难点,尤其是粒径更小的纳米塑料。本研究合成了一种新型三角孔隙阵列SERS衬底,该衬底可增强纳米塑料的拉曼信号。通过对不同粒径(50,200,500,1000 nm)的PS纳米塑料测试,发现粒径越小,拉曼光谱信号的增强因子越高。对于50 nm的PS纳米塑料检测限为0.001%,约为1.5×1011 个/毫升。使用该衬底,检测了市售的瓶装水,瓶装水经100 nm滤膜过滤后,滴加在衬底上,可直接检测到拉曼光谱信号,经过与标准谱图的比对,发现为聚对苯二甲酸乙二醇酯,该塑料主要为瓶身材质,浓度约为108 个/毫升。该研究提供了一种快速且灵敏的纳米塑料检测方法。引言微纳塑料由于其独特物化性质,分析检测一直是微纳塑料研究领域的重点和难点。拉曼增强由于其可对小分子有机化合物以及纳米颗粒的拉曼光谱信号进行增强,近年来也逐渐应用于纳米塑料的检测。但目前关于SERS测试纳米塑料多集中于实验室内的加标样品,对于实际样品的检测的研究仍然很少。本研究通过合成一种新型的三角孔隙阵列衬底,测试了其对PS纳米塑料的增强效果,并检测分析了市售瓶装水中纳米塑料的赋存。图文导读阵列合成Figure 1. A schematic illustration of fabrication process for the triangular cavity arrays (TCAs). First, close-packed polystyrene (PS) nanospheres are self-assembled on a silicon substrate (i). A thin silver (Ag) film is deposited over the nanospheres (ii), which are then tape stripped away, leaving Ag nanotriangle arrays (iii). A gold (Au) film is then deposited over the entire substrate (iv). An adhesive epoxy is applied on the top of Au and then peeled off, transferring two metals Ag and Au sitting in a complementary arrangement side-by-side on epoxy (v). Simply removing of the Ag parts using chemically etching, revealed gold triangular cavity arrays as shown in (vi).图1展示了该拉曼衬底的合成示意图,首先将一层500 nm的PS纳米微球平铺在硅胶板上,然后在表面添加一层Ag,去除掉纳米微球后,形成了Ag纳米三角阵列,再添加一层150 nm的Au薄膜,之后添加一层粘合剂环氧树脂,在紫外线照射下固化后剥离掉带着两层金属的环氧树脂,再去除孔隙中的Ag后,形成最终的三角阵列衬底。阵列表征Figure 2. Scanning electron micrographs (SEMs) of the corresponding processing steps in Figure 1 to fabricate gold TCAs substrate: (a) Close-packed PS nanospheres that corresponds to step i in Figure 1 (b) Ag triangle arrays after removing of PS nanospheres that corresponds to step iii in Figure 1 (c) Top-view of morphology after depositing Au layer that corresponds to step iv in Figure 1 (d) Au TCAs arrays after removing of Ag parts that corresponds to step vi in Figure 1. Scale bar in a-d: 250 nm. (e) Patterned gold TCAs over large area, scale bar in e: 1 µm.图2为经过图1合成的衬底的扫描电镜图,分别表示了衬底在不同合成阶段的扫描电镜图。从图中可清楚的表明于实际合成的衬底与图1中的示意图完全吻合。PS纳米颗粒测试Figure 3. (a) Raman spectra of PS nanoplastics with different sizes on Au TCAs substrates at concentration of 1%. (b) Enhancement factor (EF) as a function of PS size. (c) Raman spectra of 50 nm PS nanoplastics with concentrations varying from 1% to 0.001% on TCAs substrates and on plain glass substrate at the concentration of 1% (control line). (d-g) Raman mapping images of 50 nm PS nanoplastics on Au TCAs substrates with different concentrations from 1% to 0.001%. Scale bar in d-g: 200 nm.图3展示了不同粒径的PS纳米微球的增强测试,在50、200、500和1000 nm四个粒径中,50 nm的PS微球增强因子最高,随着粒径增加,增强因子变低。此外,还对50 nm的PS微球的不同浓度做了分析测试,发现在0.001%仍可检测到清晰的信号,特征峰1003 cm-1的信噪比为88。瓶装水前处理Figure 4. (a) Schematic of sample preparation from commercially bottled drinking water. (b-d) SEM images of an extracted sample that drop-casted on a silicon wafer after drying under ambient conditions. Scale bar: (b) 300 µm (c) 5 µm (d) 200 nm.图4为瓶装水的处理过程和SEM结果。在采购瓶装水后,取100 mL过100 nm的滤膜,对过滤后的水样进行SEM检测,从图中可看出,在扫描电镜下,存在大量的颗粒物,经过不同倍数的放大,粒径小的可低至几十纳米。同时,采用去离子水做了过程空白对照,在扫描电镜下,无颗粒物检出,排除了实验过程中外部的污染。瓶装水检测Figure 5. (a)Schematic of sample preparation from bottled drinking water. (b) Raman mapping image of sample extracted from bottled drinking water on TCAs substrate. Scale bar: 500 nm. (c) Raman spectra of sample extracted from bottled drinking water on TCAs substrate (red line) and plain glass substrate (brown line), and PET film (purple line). (d) Finite track length adjustment (FTLA) concentration/size image for NTA of sample extracted from bottled drinking water on TCAs substrate: indicating mean size of nanoplastics is ca. 130.8 ± 58.0 nm.图5为瓶装水的拉曼检测结果,将过滤后的瓶装水直接滴加在衬底上,经过拉曼检测后,可鉴别出1620和1760 cm-1两个峰,与PET纳米塑料标准品和PET膜进行对比,可知瓶装水中的颗粒物为PET,在检测空白和过程空白中均无信号。此外,水样还进行了NTA测试,平均粒径约为88.2 nm(三个平行样品的平均值),浓度为1.66×108 个/毫升。小结通过合成新的SERS衬底,可实现对纳米塑料的拉曼信号的增强,纳米塑料的粒径越小增强因子越高,且该衬底的灵敏度高,可对过滤后的水样直接检测,同时还可重复使用。瓶装水的检测结果表明塑料瓶身是水样中纳米塑料的主要来源。
  • 泰坦科技特种酯化溶剂工厂投产
    转载自 2015-12-20 《化工资讯》 国内领先的特种溶剂综合提供商之一的泰坦科技,(以下称“泰坦”)已经设立了一个新的酯类溶剂工厂。新工厂位于江苏仪征,是泰坦特种溶剂服务持续扩张的组成部分,旨在更好地为客户服务。工厂将采用进口为主的优质原料,能够生产二丙二醇甲醚醋酸酯(DPMA)、二乙二醇丁醚醋酸酯(DBA)、3-乙氧基丙酸乙酯(EEP)、3-甲氧基乙酸丁酯(MBA)等高沸程环保用酯类溶剂,一期产能5000吨。这些酯类溶剂适合生产那些对气味、酸度、环保需求较高的产品。 该公司特种化学品部门负责人表示:“这个新工厂是泰坦利用国外优质供应原料,推动本土化深加工和销售的的重要一步。新工厂进一步增强了我们在特种溶剂市场的独特地位。并将为进一步引入更多酯化产品本土化生产,打下基础。” 查询泰坦化学溶剂产品的详情,请登录 www.titanchem.com 关于泰坦 上海泰坦科技股份有限公司(以下简称泰坦科技)由在读博士生创办的高科技企业,一直得到科技部、教育部和上海市政府的重点扶持。公司产品分为高端试剂、通用试剂、分析试剂、特种化学品、仪器设备、安防耗材、实验室建设和科研信息化软件八大业务板块,为生物医药、新材料、新能源、化工化学、精细化工、食品日化、分析检测等领域提供全方位的产品与服务。公司已成功搭建具有国际化视野、全球供应链整合、专业化咨询的国内首家科学一站式服务平台,真正实现“有实验室的地方就有专业的产品和服务”,成为“中国科学服务首席提供商”。 泰坦科技总部设在上海,目前在北京、广州、重庆、成都、南京、杭州、香港、欧洲和北美等地设有分支机构或销售网点。公司汇聚了200名科学服务及相关领域的精英加入,其中博士、硕士研究生数十名,得到了东方汇富(证券“教父”阚治东先生和尉文渊先生创立)、上海市大学生科技创业基金会(国内首家支持大学生科技创业的公益性组织)和上海市科技投资股份公司的多轮风险投资。经过六年多的快速发展,泰坦科技已经成为上海市科技创业领军企业, 2011年入选上海市“创新驱动、转型发展”经典案例,2012年成为“上海市创新型企业”、“上海市科技小巨人培育企业”,2013年被上海市股权投资协会评为“2012年度最具成长价值企业”(全国十家)。泰坦人将继续在服务我国结构调整和科技创新事业上奋力拼搏、不断进取。 联系方式:泰坦 张经理 021-51701617 / 18964538285 jie.zhang@titanchem.com
  • 粘度测定仪用毛细管法测定PET(聚对苯二甲酸乙二醇酯)树脂稀溶液的特性黏度
    PET又名聚对苯二甲酸乙二醇酯(polyethylene glycol terephthalate)是由对苯二甲酸二甲酯与乙二醇酯交换或以对苯二甲酸与乙二醇酯化先合成对苯二甲酸双羟乙酯,然后再进行缩聚反应制得,为乳白色或浅黄色、高度结晶的聚合物,表面平滑有光泽,是生活中常见的一种树脂。PET分为纤维级聚酯切片和非纤维级聚酯切片。①纤维级聚酯用于制造涤纶短纤维和涤纶长丝,是供给涤纶纤维企业加工纤维及相关产品的原料。涤纶作为化纤中产量最大的品种。②非纤维级聚酯还有瓶类、薄膜等用途,广泛应用于包装业、电子电器、医疗卫生、建筑、汽车等领域,其中包装是聚酯最大的非纤应用市场,同时也是PET增长最快的领域。众所周知,聚酯生产过程中,产品粘度是影响产品质量的一项重要指标,特别是热灌级聚酯产品生产过程中,由于该品种粘度指标范围窄,一旦受原料、生产过程控制等因素影响,未及时判断出原因进行调整,基础切片粘度无论是下降还是升高,若未及时将该部分切片进行有效隔离,直接进入到后续系统,将对后续固相增粘造成极大影响,致使调整困难,导致产品质量降等。聚酯生产过程中影响聚酯产品质量的因素很多,从纺丝的角度出发,主要有色相、端羧基、二甘醇含量及黏度等,其中以黏度对可纺性的影响最为显著。目前,绝大多数聚合装置都与直接纺长丝或短纤维的装置街接,并且越来越多的纺丝装置采用高速纺和细旦的品种,这就对熔体的质量特别是熔体的特性黏度稳定提出了更高的要求。 乌氏毛细管法是PET(聚对苯二甲酸乙二醇酯)材料质量控制中常用的分析方法之一,由乌氏毛细管法测量得出的特性粘度也是PET(聚对苯二甲酸乙二醇酯)材料的核心指标之一。实验所需仪器:卓祥全自动粘度仪、多位溶样器、自动配液器、万分之一电子天平。实验所需试剂:苯酚、四氯乙烷、三氯甲烷、丙酮或无水乙醇。1、溶剂的配置选择:根据PET材料分类所选溶剂配比不同,纤维级聚酯切片可选择苯酚/1,1.2,2-四氯乙烷(质量比3:2)亦可选苯酚/1,1.2,2-四氯乙烷(质量比1:1),瓶级聚酯切片选择苯酚/1,1.2,2-四氯乙烷(质量比3:2); 2、溶剂粘度的测定:卓祥全自动粘度仪设置到实验目标温度值并且稳定后,加入苯酚/1,1.2,2-四氯乙烷,软件中启动测试任务待结束。3、粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。4、PET树脂稀溶液样品的制备:在万分之一天平上精准称量精确到0.0001g,通过ZPQ-50自动配液器将溶液浓度精准配制到0.005g/ml,再将样品瓶放置到MSB-15多位溶样器中(纤维级90~100℃,瓶级110℃~120℃),待半小时内溶解完毕后取出冷却到室温待用。5、样品粘度的测定:加入样品,启动软件中特定公式测试,待任务结束。6、粘度管的清洗:再次启动卓祥自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。苯酚/1.1.2.2—四氯乙烷(质量比50:50)作溶剂的试验,按公式(1)、(2)、(3)计算相对黏度(ηr)、增比黏度(ηsp)和特性黏度([η]):式中:ηr——相对黏度;t1——溶液流经时间,单位为秒(s);to——溶剂流经时间,单位为秒(s);ηsp——增比黏度;[η]——特性黏度;c——溶液浓度,单位为克每百毫升(g/100mL)苯酚/1.1.2.2一四氯乙烷(质量比60:40)作溶剂的试验,其结果按公式(4)计算:本文章为原创作品,无原作者授权同意,不得随便转载拷贝,侵权必究!
  • 全自动乌氏粘度计-用毛细管法测定PEN(聚萘二甲酸乙二醇酯)树脂稀溶液的黏数
    聚萘二甲酸乙二醇酯的简称。聚萘二甲酸乙二醇酯(PEN)是聚酯家族中重要成员之一,是由2,6-萘二甲酸二甲酯(NDC)或2,6-萘二甲酸(NDA)与乙二醇(EG)缩聚而成,是一种新兴的优良聚合物。其化学结构与PET相似,不同之处在于分子链中PEN由刚性更大的萘环代替了PET中的苯环。萘环结构使PEN比PET具有更高的物理机械性能、气体阻隔性能、化学稳定性及耐热、耐紫外线、耐辐射等性能。近年来,PEN薄膜主要应用于磁带的基带、柔性印刷电路板、电容器膜、F级绝缘膜等方面,而PEN薄膜新的用途仍然在不断开发中。如数据磁带,数据磁盘的种类有DDS(数字、数据、储存),8MM数据磁带,1/4英寸磁带,DDS的需求量较大。根据DDS的记忆容量公别为Ⅰ、Ⅱ、Ⅲ型。Ⅱ、Ⅲ型为聚芳酰胺膜,Ⅰ型为PEN与PET共用型。记忆容量为2G,90MM的PEN薄膜代替。从记忆容量来考虑,Ⅰ型几乎全部被PEN占领。随着手机及小型携带机械的发展,对薄膜电容器的需求也不断增大。目前,虽然这方面市场规模虽小,但将是一个很有发展前途的领域。众所周知,聚酯生产过程中,产品粘度是影响产品质量的一项重要指标,乌氏毛细管法是PEN树脂质量控制中常用的分析方法之一,由乌氏毛细管法测量得出的黏数也是PEN树脂的核心指标之一。按国标规定的中描述的步骤测定聚合物的黏数,测试温度为25℃。实验方法如下:实验所需仪器:卓祥全自动粘度仪、多位溶样器、自动配液器、万分之一电子天平。实验所需试剂:苯酚、四氯乙烷、三氯甲烷、丙酮或无水乙醇。1、溶剂的配置选择:苯酚/1,1.2,2-四氯乙烷溶剂,在25℃下2、溶剂粘度的测定:卓祥全自动粘度仪设置到实验目标温度值并且稳定后,加入苯酚/1,1.2,2-四氯乙烷,软件中启动测试任务待结束。3、粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。4、PEN树脂稀溶液样品的制备:在万分之一天平上称量到0.0001g,通过自动配液器将溶液浓度配制到0.005g/ml,再将样品瓶放置到多位溶样器中,待溶解完毕后取出冷却到室温待用。5、样品粘度的测定:加入样品,启动软件中特定公式测试,待任务结束。6、粘度管的清洗:再次启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。
  • 7项新规严控涂料质量,蓝天白云指日可待!
    导读 2020年3月4日,国家市场监督管理总局、国家标准化管理委员会联合发布《中华人民共和国国家标准公布(2020年第2号)》,批准公布了7项国家强制性标准:GB 18581-2020《木器涂料中有毒物质限量》、GB 18582-2020《建筑用墙面涂料中有害物质限量》、GB 24409-2020《车辆涂料中有害物质限量》、GB 30981-2020《工业防护涂料中有害物质限量》、GB 33372-2020《胶粘剂挥发性有机物限量》、GB 38507-2020《油墨中可挥发性有机物(VOCs)含量的限值》、GB 38508-2020《清洗剂挥发性有机物含量限值》。这些标准的发布,以制定产品质量标准的角度综合考虑环境保护,开辟了大气污染源头防控的路径,进一步明确了《大气污染防控治法》及《打赢蓝天保卫战三年行动计划》关于低挥发性有机物含量的胶粘剂、涂料、油墨、清洗剂的定义,这7项标准中除GB 38507-2020于2021年4月1日实施外,其余6个标准均将于2020年12月1日正式实施。 7项新发布国家标准中,VOCs的指标比之前的法规更为严格,重金属的指标整体变化不大,个别指标提高,同时增加了一些SVOCs的项目和指标,如多环芳烃、邻苯二甲酸酯、乙二醇醚及醚酯类化合物等。这一系列的措施反映了国家严抓涂料的质量的坚定决心。“为了人类和地球的健康”,岛津也在行动,在国家标准正式实施前推出了《涂料中有毒有害物质检测解决方案》,供涂料相关检测工作者参考,一起来看看我们的方案吧! 挥发性有机物分析 涂料在生产及使用过程中会释放出各种各样的挥发性有机物(VOCs)。目前岛津用于涂料中VOCs分析的仪器主要有GC和GCMS,外围附件有顶空进样器和热脱附仪。 GC-2010 ProNexis GC-2030 典型案例1:GC法测定车辆涂料中苯、甲苯、乙苯和二甲苯含量1、叔丁基甲醚(内标) 2、苯 3、甲苯 4、乙苯 5、间/对-二甲苯 6、邻-二甲苯 典型案例2:顶空-GCMS法测定水性涂料中23种挥发性有机物含量1、1,1-二氯乙烯 2、二氯甲烷 3、反-1,2-二氯乙烯 4、氯丁二烯 5、顺-1,2-二氯乙烯 6、三氯甲烷7、四氯化碳 8、苯 9、1,2-二氯乙烷 10、三氯乙烯 11、环氧氯丙烷 12、甲苯 13、四氯乙烯14、氯苯 15、乙苯 16、邻二甲苯 17、对二甲苯 18、苯乙烯 19、三溴甲烷 20、异丙苯21、1,4-二氯苯 22、1,2-二氯苯 23、六氯丁二烯 典型案例3:热脱附-GCMS法测定涂料中挥发性有机物含量1、异丁醇 2、苯 3、三乙胺 4、正丁醇 5、甲苯 6、1,2-丙二醇 7、乙苯 8、间/对-二甲苯9、邻二甲苯 10、1,3-丙二醇 11、乙二醇单丁醚 12、二乙二醇 13、二乙二醇乙醚醋酸酯14、二乙二醇单丁醚 15、2,2,4-三甲基-1,3-戊二醇 16、二乙二醇丁醚醋酸酯 半挥发性有机物分析 涂料中在生产及使用过程中也会释放出各种各样的半挥发性有机物(SVOCs)。 SVOCs GCMS-QP2020 NXGCMS-QP2020 NX 典型案例:GCMS法检测涂料中16种多环芳烃含量 1、萘 2、苊烯 3、苊 4、芴 5、菲 6、蒽 7、荧蒽 8、芘 9、苯并[a]蒽 10、屈 11、苯并[b]荧蒽12、苯并[k]荧蒽 13、苯并[a]芘 14、茚并[1,2,3-cd]芘 15、二苯并[a,h]蒽 16、苯并[g,h,i]苝 重金属分析 涂料中重金属的来源主要是其采用的颜料,颜料起着色与遮盖作用。目前岛津用于涂料中重金属分析的仪器主要有AA-6880/7000、ICPE-9820、ICPMS-2030等。 ICPE-9820ICPMS-2030 典型案例:ICP-AES法测定涂料中17种重金属元素含量 小结 2020年是我国打赢蓝天保卫战三年行动计划的收官之年,严格控制VOCs,把好涂料质量关,岛津已经为您做好了准备,您准备好了吗?让我们为了未来持续的蓝天白云一起努力!想了解更多涂料中有毒有害物质的检测,请关注岛津《涂料中有毒有害物质检测解决方案》。 识别二维码下载解决方案
  • 泡椒凤爪用工业防腐剂? 企业称脱氢醋酸标识有误
    泡椒凤爪又酸又辣,想起来都会流口水,这么好吃的东西竟然传出“有毒”。近日,一条关于泡椒凤爪添加剂有毒的消息在网络里迅速传开。一网友称在一款泡椒凤爪的包装上发现了用于工业防腐剂的“脱氢醋酸”,并质疑这种化学物质对人体健康有害。   【事发】   包装标注出工业防腐剂   近日,网民赵先生在网站发帖称,他在商场购买了一款成都产的泡椒凤爪。而在该食品的包装袋上,他无意间居然看到了用于工业防腐剂和兽药中间体的“脱氢醋酸”。   赵先生专门查询了“脱氢醋酸”的危害,他称这种工业用防腐剂,可快速被人或动物机体吸收,并分布在血浆和各个器官中,抑制多种酶的氧化作用 它在尿排泄的速度相当慢,不应作为“食品防腐剂”使用。   泡椒凤爪用上了工业防腐剂,这可不是闹着玩的。昨日,记者赶紧在杭城几家超市里查看各种泡椒凤爪的配料表。   在杭州体育场路一家小超市里看到,货架上堆放着几十包待售的“有友”牌山椒泡凤爪。翻看包装袋,在配料一栏里标注了十多种食品添加剂,其中同样出现“脱氢醋酸”字样。   而在世纪联华超市望江店,记者看到包括有友、永健、凤巢等牌子的泡椒凤爪标注有“脱氢乙酸钠”,还有些牌子未有标注。   【释疑】   “脱氢乙酸”俗称“脱氢醋酸”   工业用防腐剂怎么跑进食物里了?昨日,记者采访了浙江省食品添加剂协会专家组委员唐家寰。   唐家寰告诉记者,“脱氢醋酸”确实是一种防腐剂,用来抑制霉菌和酵母菌的生长。但是,“脱氢醋酸”难溶于水,一般食品行业都用它的盐类来做防腐剂。   另外,唐家寰称,“脱氢醋酸”是“脱氢乙酸”俗称,今年6月实施的食品添加剂新国标(GB2760-2011)中,“脱氢乙酸及其钠盐”已经列入新国标之中,属于国家允许的食品添加剂,准许添加在熟肉、腌制品等食品内。   随后,记者联系到“有友”牌山椒泡凤爪的生产厂家重庆有友实业有限公司,该公司质检部的龙经理告诉记者,他已经获悉网上盛传关于泡椒凤爪的消息。龙经理解释说,在行业内,企业在食品包装上标注俗名“脱氢醋酸”,但实际上采用的都是脱氢醋酸钠,用作防腐剂。   “脱氢醋酸是一种游离态的物质,单物质存在具有不稳定性,所以食品行业99%都会用它的盐类来当防腐剂。现在消费者出现这样的误区,是我们企业在标识上不够重视导致的。” 龙经理如是说。   【回应】   标注有误纷纷更换包装   “同样这个问题几个月前就有消费者向我们反映了。” 龙经理告诉记者,早有消费者对此产生了质疑,该企业已经在一两个月前就更换了产品包装,新包装袋上标注的是“脱氢醋(乙)酸钠”。   “杭州地区的销售量不及我们本地,本地的新包装基本已经更换完毕,杭州可能还需要两三个月来消化老包装产品。所以,杭州买到的部分有友牌泡椒鸡爪包装袋上可能还会有标脱氢醋酸。”龙经理说,消费者仍可放心食用。   此外,记者了解到,成都当地质监部门对上述网友质疑的厂家进行了检查,发现其生产泡凤爪产品使用的食品添加剂是天润牌“脱氢醋(乙)酸钠”,在其产品包装上标注为“脱氢醋酸”。经检该企业不存在非法添加和滥用食品添加剂的违法行为。但由于没有按标准进行食品添加剂名称标注,该局已经要求企业限期整改。目前已开始更换新的包装。来源:今日早报
  • 海关总署发布《进出口化妆品中生育酚及α-生育酚醋酸酯的测定》等37项行业标准
    现发布《鲁氏耶尔森氏菌检测技术规范》等37项行业标准(目录见附件)。被代替标准《化妆品中生育酚及α—生育酚醋酸酯的检测方法 高效液相色谱法》(SN/T 1496—2004)自新标准实施之日起废止。本次发布的标准文本可通过中国技术性贸易措施网站(http://www.tbtsps.cn)标准栏目查阅。特此公告。附件:《鲁氏耶尔森氏菌检测技术规范》等37项行业标准目录.xls海关总署2023年12月29日附件 《鲁氏耶尔森氏菌检测技术规范》等37项行业标准目录序号标准编号标准名称替代标准号实施日期1SN/T 5665—2023鲁氏耶尔森氏菌检测技术规范2024-7-12SN/T 1496—2023进出口化妆品中生育酚及α-生育酚醋酸酯的测定SN/T 1496—20042024-7-13SN/T 5326.4—2023进出口食品化妆品专业分析方法验证指南 第4部分:分子生物学方法2024-7-14SN/T 5487—2023十足目虹彩病毒1感染检疫技术规范2024-7-15SN/T 5562.1—2023海关实验室数字化管理规范 第1部分:总则2024-7-16SN/T 5562.2—2023海关实验室数字化管理规范 第2部分:组织管理2024-7-17SN/T 5562.3—2023海关实验室数字化管理规范 第3部分:数据管理2024-7-18SN/T 5562.4—2023海关实验室数字化管理规范 第4部分:架构管理2024-7-19SN/T 5562.5—2023海关实验室数字化管理规范 第5部分:数据控制和信息管理2024-7-110SN/T 5562.6—2023海关实验室数字化管理规范 第6部分:数据分析管理2024-7-111SN/T 5562.7—2023海关实验室数字化管理规范 第7部分:服务方管理2024-7-112SN/T 5562.8—2023海关实验室数字化管理规范 第8部分:安全管理2024-7-113SN/T 5570—2023进出口铁合金归类化验2024-7-114SN/T 5574—2023进口油品固体废物属性鉴别规程2024-7-115SN/T 5619.1—2023进出口医用防护用品安全项目技术规范 第1部分:通则2024-7-116SN/T 5619.2—2023进出口医用防护用品安全项目技术规范 第2部分:防护口罩2024-7-117SN/T 5619.3—2023进出口医用防护用品安全项目技术规范 第3部分:儿童口罩2024-7-118SN/T 5619.4—2023进出口医用防护用品安全项目技术规范 第4部分:防护服2024-7-119SN/T 5619.5—2023进出口医用防护用品安全项目技术规范 第5部分:一次性隔离衣2024-7-120SN/T 5619.6—2023进出口医用防护用品安全项目技术规范 第6部分:手套2024-7-121SN/T 5619.7—2023进出口医用防护用品安全项目技术规范 第7部分:防护帽2024-7-122SN/T 5619.8—2023进出口医用防护用品安全项目技术规范 第8部分:无纺布2024-7-123SN/T 5644.1—2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第1部分:总则2024-7-124SN/T 5644.2—2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第2部分:孔雀石绿和结晶紫2024-7-125SN/T 5644.3—2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第3部分:恩诺沙星和环丙沙星2024-7-126SN/T 5644.4—2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第4部分:多菌灵2024-7-127SN/T 5644.5—2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第5部分:噻菌灵2024-7-128SN/T 5644.6—2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第6部分:腈菌唑2024-7-129SN/T 5644.7—2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第7部分:毒死蜱2024-7-130SN/T 5644.8—2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第8部分:三唑磷2024-7-131SN/T 5644.9—2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第9部分:地虫硫磷2024-7-132SN/T 5644.10—2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第10部分:亚胺硫磷2024-7-133SN/T 5668—2023水禽圆环病毒感染检疫技术规范2024-7-134SN/T 5681—2023工业单羧脂肪酸含量的测定 气相色谱法2024-7-135SN/T 5706—2023化妆品微生物检验方法 大肠埃希氏菌检验2024-7-136SN/T 5742—2023鱼类及其制品中金枪鱼、鳕鱼和虹鳟鱼成分快速检测方法 PCR—试纸条法2024-7-137SN/T 5754—2023进口货物固体废物属性鉴别方法 对苯二甲酸2024-7-1
  • 江苏醋酸纤维素工程技术研究中心引进徕卡显微镜
    2008年11月24日,工程技术中心投入30万元人民币,引进德国徕卡Leica仪器公司DM2500P型偏光显微镜正式投入使用。   DM 2500P 技术参数   1. 偏光专用三目镜筒,可0/100% 50/50% 100/0%三档分光   2. 目镜:10X/22mm视域   3. 一套透反共用物镜:其中 1.25X的NA≧0.04 2.5X的NA≧0.07 5X的NA≧0.12 10X的NA≧0.25 20X的NA≧0.50 50X的NA≧0.75 100X的NA≧0.90 100X油镜的NA≧1.25   4. 可调中的360度旋转载物台,带2个微分尺,精度0.1度   5. 三级同轴(粗、中、细) 调焦旋纽,最小精度1um   6. 可双向调中孔位的物镜转盘,5孔位   7. 配180度旋转带刻度偏光检偏镜、圆偏光观察的四分之一波长补偿片、目镜测微尺、测微标尺   8. 透射光路包括:偏光专用聚光镜、暗场环、起偏器、全波长补偿片、四分之一波长补偿片、蓝色滤片、绿色滤片、灰度片、100W透射光灯箱   9. 反射光路包括:反射光光路架、带全波长补偿片起偏器、日光转换滤片、蓝色滤片、绿色滤片、灰度片、100W反射光灯箱   DM 2500P 主要特点   1. 无限远光学校正系统,图像清晰,高反差   2. 内置透反射卤素灯电源,透反射照明都是12V-100W,透、反射光转换方便,可加配荧光光源,荧光与卤素灯转换时不用拆换灯箱   3. 物镜透反共用,反射光、透射光观察转换时不用换物镜,省时省力   4. 检偏镜可180度旋转   5. 360度旋转专业偏光载物台,带2个微分尺,可加配带XY移动尺样品夹,移动样品夹有0,1mm,0.2mm0.3mm,0.5mm,1.0mm,2.0mm五档步距,调焦旋钮的扭力可调,物台高度限位可调整   7. 特有保护锁设计,使更换样品后无需重新调焦,实现样品与物镜双重保护   8. 调节工具可放在镜体上方便随时取用   9. 聚光镜架调中后,即便卸掉反光镜,调中位置也不改变   10. 各种滤片都经过防热处理   11. 专利的热补偿焦距稳定技术,即双金属片反向膨胀抵消技术,抵消机体由于长时间热效应带来的调焦面移动   江苏省醋酸纤维素工程技术研究中心(简称工程技术中心)依托南通醋酸纤维有限公司。工程技术中心的建立将进一步提升中国在醋酸纤维素领域的研发和自主创新能力,确保中国醋纤工业在日趋激烈的国际市场竞争中不断发展壮大。   工程技术中心大楼于2005年11月17日正式破土动工,2006年12月12日竣工并通过整体验收,2007年1月8日正式启用。工程技术中心占地总面积33000平方米,中心大楼建筑面积4000平方米,两层建筑加辅楼,分试验区和办公区两部分,试验区主要包括仪器分析实验室、烟气测试分析室、综合实验室、滤棒成型研究室、醋片小试室、丝束试验室、木浆粕研究室、油剂试验室。办公区主要包括:情报资料室、办公室、会议室、报告厅等,并预留部分面积作为发展之用。同时建成国内唯一的丝束中试和醋片中试线。   摘自南通醋酸纤维素工程技术研究中心网站
  • 卫生部办公厅发布《食品添加剂 醋酸酯淀粉》等16项食品安全国家标准征求意见函
    卫生部办公厅关于征求《食品添加剂 醋酸酯淀粉》等16项食品安全国家标准(征求意见稿)意见的函   卫办监督函〔2012〕441号   各有关单位:   根据《食品安全法》及其实施条例的规定,我部组织制定了《食品添加剂 醋酸酯淀粉》等16项食品安全国家标准(征求意见稿)。现征求你部门意见并向社会公开征求意见,请于2012年7月16日前以传真或电子邮件形式反馈我部。   传  真:010-67711813   电子信箱:gb2760@gmail.com   二○一二年五月十六日 食品添加剂 醋酸酯淀粉》等16项食品安全国家标准(征求意见稿) 编号 标准名称 1 食品添加剂 醋酸酯淀粉 2 食品添加剂 磷酸酯双淀粉 3 食品添加剂 氧化淀粉 4 食品添加剂 酸处理淀粉 5 食品添加剂 乙酰化二淀粉磷酸酯 6 食品添加剂 羟丙基淀粉 7 食品添加剂 羟丙基二淀粉磷酸酯 8 食品添加剂 乙酰化双淀粉己二酸酯 9 食品添加剂 氧化羟丙基淀粉 10 食品添加剂 辛烯基琥珀酸铝淀粉 11 食品添加剂 磷酸化二淀粉磷酸酯 12 食品添加剂 淀粉磷酸酯钠 13 食品添加剂 羧甲基淀粉钠 14 食品添加剂 松香甘油酯和氢化松香甘油酯 15 食品添加剂 天门冬氨酸钙 16 食品添加剂 凹凸棒粘土  附件:16项食品安全国家标准(征求意见稿).rar
  • 苏州大学:基于自由基促进的阳离子RAFT聚合实现快速活性3D打印!
    基于可逆失活自由基聚合(RDRP) 的3D 打印技术为制备具有“活性”的聚合物材料提供了有效手段。该类材料由于保留有活性位点,可进一步用于聚合后修饰及功能化,以制备多种多样的刺激响应性材料,目前正成为该领域的研究热点。然而,相较于商用体系,已有技术的打印速率通常较低,限制了其实际应用。同时,已报道工作主要基于RDRP方法,机理较为单一。近期,苏州大学朱健教授团队探索了基于阳离子可逆加成断裂链转移(RAFT)聚合的立体光刻蚀(SLA)3D打印(ACS Macro Lett. 2021, 10, 1315)以及阳离子/自由基RAFT聚合联用的数字光处理(DLP)3D打印(Macromolecules 2022, 55, 7181)。拓宽了活性3D打印的聚合机理及单体适用范围,为调控材料性能提供了丰富手段。相较于自由基RAFT聚合,阳离子RAFT聚合通常具有更快的聚合速率。在本文中,该研究团队考察了基于自由基促进的阳离子RAFT(RPC-RAFT)聚合的DLP 3D打印体系,实现了较为快速的打印速率(12.99 cm/h)。首先,作者设计了模型聚合来研究该方法的聚合行为,其机理如图一所示。商业可得的光引发剂(TPO)与二苯基碘鎓盐(DPI)被用于产生初始的阳离子引发种,随后聚合由一种二硫代氨基甲酸酯RAFT试剂(图3 B)通过阳离子RAFT过程调控。图1. 推测的聚合机理。如图2A所示,聚合呈现一级线性动力学,聚合物分子量与理论值吻合较好,分子量分布窄,符合活性聚合特征。图2. 在405 nm波长光源下IBVE的聚合动力学结果:A) 单体转化率半对数与聚合时间的关系曲线;B) 分子量(Mn)和分子量分布(Ɖ )与单体转化率的关系;C)IBVE聚合物的SEC曲线。随后研究团队详细研究了交联体系的聚合行为(图3),对双官能度单体二乙二醇二乙烯基醚(DDE),单官能度单体异丁基乙烯基醚(IBVE),RAFT试剂以及TPO/DPI引发体系不同配比进行了考察。结果显示没有IBVE时,聚合速率与单体最终转化率降低,这可能是由过高的交联密度导致。DDE与IBVE的比例在3:1到1:3之间变化时对聚合速率影响较小。进一步提高IBVE含量则会导致鎓盐析出。改变RAFT试剂的比例对聚合速率影响较小,这与传统的自由基RAFT聚合不同,可能是由于在阳离子RAFT聚合中不存在阻聚效应。图3. A)商用DLP 3D打印机模型示意图;B) 用于RPC-RAFT聚合3D打印的树脂配方; 聚合树脂在405 nm波长光源照射以及不同反应条件下单体的转化率与时间曲线:C) 不同光催化剂浓度;D)不同官能度乙烯基醚配比;E)不同RAFT试剂浓度。利用优化后的打印树脂与商业可得的DLP 3D打印机,研究团队成功打印出具有较好分辨率的物体(图4)。然而,打印速率最高为6.77 cm/h。当进一步优化打印条件提高速率时,由于IBVE相对较低的沸点(83 °C),释放的聚合热使树脂出现了沸腾现象。 图4. 具有不同形状的3D物体数字模型以及相应的3D打印实体模型。于是研究人员将低沸点的IBVE替换为高沸点(179.09 °C)的环己基乙烯基醚(CVE),成功将打印速率提升至12.99 cm/h,该速率为目前活性打印体系的最高值。在该打印条件下,成功打印出具有不同形成的三维物体(图5)。 图5. 具有不同形状的3D物体数字模型以及相应的3D打印实体模型。最终,研究人员通过荧光单体(TPE-a)的聚合后修饰证明了所打印物体的活性特征。如图6所示,在利用该树脂所打印的薄膜表面涂上荧光单体溶液并用打印机形成的图案光照射,随后洗去溶液。经过照射的部分由光引发RAFT聚合扩链成功实现了荧光单体的接枝,因此在紫外光下呈现出荧光图案(图6 F)。在对比实验中,打印的薄膜由不含RAFT试剂的树脂制备,经过相同操作后在紫外光下则无荧光图案(图6 D),证明了该方法所打印物体具有活性特征。 图6. A) DLP 3D打印机中进行3D打印物体后功能化修饰示意图;B)3D打印物体后功能化修饰机理图;C) 未经后功能化修饰的3D打印物体在可见光下的数字图像;D) 未经后功能化修饰的3D打印物体在紫外光下的数字图像;E) 经后功能化修饰的3D打印物体在可见光下的数字图像;F) 经后功能化修饰的3D打印物体在紫外光下的数字图像。该工作以“Fast Living 3D Printing via Free Radical Promoted Cationic RAFT Polymerization”为题发表在《Small》上 。论文第一作者是苏州大学在读博士生赵博文,通讯作者为苏州大学朱健教授和李佳佳博士后。该工作获得了国家自然科学基金,中国博士后科学基金以及江苏省优势学科基金的资助。后续工作敬请关注。原文链接:https://doi.org/10.1002/smll.202207637摩方精密作为微纳3D打印的先行者和领导者,拥有全球领先的超高精度打印系统,其面投影微立体光刻(PμSL)技术可应用于精密电子器件、医疗器械、微流控、微机械等众多科研领域。在三维复杂结构微加工领域,摩方团队拥有超过二十年的科研及工程实践经验。针对客户在新产品开发中可能出现的工艺和材料难题,摩方将持续提供简易高效的技术支持方案。
  • 国标委发布89项分析测试方法国家标准
    国家质量监督检验检疫总局、国家标准化管理委员会批准《工业硝酸 浓硝酸》等179项国家标准,其中相关分析方法标准89项。 国家标准编号 国  家  标  准  名  称 代替标准号 实施日期 GB/T 2383-2014 粉状染料 筛分细度的测定 GB/T 2383-2003 2014-12-01 GB/T 2386-2014 染料及染料中间体 水分的测定 GB/T 2386-2006 2014-12-01 GB/T 2391-2014 反应染料 固色率的测定 GB/T 2391-2006 2014-12-01 GB/T 2392-2014 染料 热稳定性的测定 GB/T 2392-2006 2014-12-01 GB/T 2399-2014 阳离子染料 染色色光和强度的测定 GB/T 2399-2003 2014-12-01 GB/T 2403-2014 阳离子染料 染腈纶时染浴pH适应范围的测定 GB/T 2403-2006 2014-12-01GB/T 2792-2014 胶粘带剥离强度的试验方法 GB/T 2792-1998 2014-12-01 GB/T 3517-2014 天然生胶 塑性保持率(PRI)的测定 GB/T 3517-2002 2014-12-01 GB/T 4851-2014 胶粘带持粘性的试验方法 GB/T 4851-1998 2014-12-01 GB/T 5211.15-2014 颜料和体质颜料通用试验方法 第15部分:吸油量的测定 GB/T 5211.15-1988 2014-12-01 GB/T 5275.1-2014 气体分析 动态体积法制备校准用混合气体 第1部分:校准方法 2014-12-01 GB/T 5275.2-2014 气体分析 动态体积法制备校准用混合气体 第2部分:容积泵 2014-12-01 GB/T 5275.4-2014 气体分析 动态体积法制备校准用混合气体 第4部分:连续注射法 2014-12-01 GB/T 5275.5-2014 气体分析 动态体积法制备校准用混合气体 第5部分:毛细管校准器 2014-12-01 GB/T 5275.6-2014 气体分析 动态体积法制备校准用混合气体 第6部分:临界锐孔 2014-12-01 GB/T 5275.7-2014 气体分析 动态体积法制备校准用混合气体 第7部分:热式质量流量控制器 2014-12-01 GB/T 5275.8-2014 气体分析 动态体积法制备校准用混合气体 第8部分:扩散法 2014-12-01 GB/T 5275.9-2014 气体分析 动态体积法制备校准用混合气体 第9部分:饱和法 2014-12-01 GB/T 5275.11-2014 气体分析 动态体积法制备校准用混合气体 第11部分:电化学发生法 2014-12-01 GB/T 6435-2014 饲料中水分的测定 GB/T 6435-2006 2015-01-09 GB/T 7125-2014 胶粘带厚度的试验方法 GB/T 7125-1999 2014-12-01 GB/T 7791-2014 防污漆降阻性能试验方法 GB/T 7791-1987 2014-12-01 GB/T 8657-2014 苯乙烯-丁二烯生橡胶 皂和有机酸含量的测定 GB/T 8657-2000 2014-12-01 GB/T 9339-2014 反应染料 染料与纤维素纤维结合键 耐酸耐碱性的测定 GB/T 9339-2006 2014-12-01 GB/T 10663-2014 分散染料 移染性的测定 高温染色法 GB/T 10663-2003 2014-12-01 GB/T 11141-2014 工业用轻质烯烃中微量硫的测定 GB/T 11141-1989 2014-12-01 GB/T 12701-2014 工业用乙烯、丙烯中微量含氧化合物的测定 气相色谱法 GB/T 12701-1990 2014-12-01 GB/T 13289-2014 工业用乙烯液态和气态采样法 GB/T 13289-1991 2014-12-01 GB/T 13290-2014 工业用丙烯和丁二烯液态采样法 GB/T 13290-1991 2014-12-01 GB/T 14420-2014 锅炉用水和冷却水分析方法 化学耗氧量的测定 重铬酸钾快速法 GB/T 14420-1993 2014-12-01 GB/T 15893.1-2014 工业循环冷却水中浊度的测定 散射光法 GB/T 15893.1-1995 2014-12-01 GB/T 16422.2-2014 塑料 实验室光源暴露试验方法 第2部分:氙弧灯 GB/T 16422.2-1999 2014-12-01 GB/T 16422.3-2014 塑料 实验室光源暴露试验方法 第3部分:荧光紫外灯 GB/T 16422.3-1997 2014-12-01 GB/T 16422.4-2014 塑料 实验室光源暴露试验方法 第4部分:开放式碳弧灯 GB/T 16422.4-1996 2014-12-01 GB/T 18175-2014 水处理剂缓蚀性能的测定 旋转挂片法 GB/T 18175-2000 2014-12-01 GB/T 18397-2014 预混合饲料中泛酸的测定 高效液相色谱法 GB/T 18397-2001 2015-01-10 GB/T 19281-2014 碳酸钙分析方法 GB/T 19281-2003 2014-12-01 GB/T 24148.7-2014 塑料不饱和聚酯树脂(UP-R) 第7部分: 室温条件下凝胶时间的测定 2014-12-01 GB/T 24148.8-2014 塑料 不饱和聚酯树脂(UP-R)第8部分:铂-钴比色法测定颜色 GB/T 7193.7-1992 2014-12-01 GB/T 24148.9-2014 塑料 不饱和聚酯树脂(UP-R) 第9部分:总体积收缩率测定 2014-12-01 GB/T 29493.9-2014 纺织染整助剂中有害物质的测定 第9部分: 丙烯酰胺的测定 2014-12-01 GB/T 30773-2014 气相色谱法测定 酚醛树脂中游离苯酚含量 2014-12-01 GB/T 30774-2014 密封胶粘连性的测定 2014-12-01 GB/T 30776-2014 胶粘带拉伸强度与断裂伸长率的试验方法 2014-12-01 GB/T 30787-2014 数字印刷材料用成膜树脂 平均分子量及其分布的测定 凝胶渗透色谱法 2014-12-01 GB/T 30790.6-2014 色漆和清漆 防护涂料体系对钢结构的防腐蚀保护 第6部分:实验室性能测试方法 2014-12-01 GB/T 30791-2014 色漆和清漆 T弯试验 2014-12-01 GB/T 30792-2014 罐内水性涂料抗微生物侵染的试验方法 2014-12-01 GB/T 30793-2014 X-射线衍射法测定二氧化钛颜料中锐钛型与金红石型比率 2014-12-01 GB/T 30794-2014 热熔型氟树脂涂层(干膜)中聚偏二氟乙烯(PVDF)含量测定 熔融温度下降法 2014-12-01 GB/T 30795-2014 食品用洗涤剂试验方法 甲醇的测定 2014-10-10 GB/T 30796-2014 食品用洗涤剂试验方法 甲醛的测定 2014-11-01 GB/T 30797-2014 食品用洗涤剂试验方法 总砷的测定 2014-11-01 GB/T 30798-2014 食品用洗涤剂试验方法 荧光增白剂的测定 2014-11-01 GB/T 30799-2014 食品用洗涤剂试验方法 重金属的测定 2014-11-01 GB/T 30902-2014 无机化工产品 杂质元素的测定 电感耦合等离子体发射光谱法(ICP-OES) 2014-12-01 GB/T 30903-2014 无机化工产品 杂质元素的测定 电感耦合等离子体质谱法(ICP-MS) 2014-12-01 GB/T 30904-2014 无机化工产品 晶型结构分析 X射线衍射法 2014-12-01 GB/T 30905-2014 无机化工产品 元素含量的测定 X射线荧光光谱法 2014-12-01 GB/T 30906-2014 三聚磷酸钠中三聚磷酸钠含量的测定 离子色谱法 2014-12-01 GB/T 30907-2014 胶鞋 运动鞋减震性能试验方法 2014-12-01 GB/T 30908-2014 摄影 加工废液 硼的测定 2014-12-01 GB/T 30909-2014 胶鞋 丙烯腈迁移量的测定 2014-12-01 GB/T 30910-2014 胶鞋 2-巯基苯并噻唑、二硫化二苯并噻唑迁移量的测定 2014-12-01 GB/T 30911-2014 汽车齿轮齿条式动力转向器唇形密封圈性能试验方法 2014-12-01 GB/T 30913-2014 工业射线胶片系统分类标准试验方法 2014-12-01 GB/T 30914-2014 苯乙烯-异戊二烯-丁二烯橡胶(SIBR)微观结构的测定 2014-12-01 GB/T 30917-2014 天然胶乳橡胶避孕套中可迁移亚硝胺的测定 2014-12-01 GB/T 30919-2014 苯乙烯-丁二烯生橡胶 N-亚硝基胺化合物的测定 气相色谱-热能分析法 2014-12-01 GB/T 30925-2014 塑料 乙烯-乙酸乙烯酯共聚物(EVAC)热塑性塑料 乙酸乙烯酯含量的测定 2014-12-01 GB/T 30926-2014 化妆品中7种维生素C衍生物的测定 高效液相色谱-串联质谱法 2014-11-01 GB/T 30927-2014 化妆品中罗丹明B等4种禁用着色剂的测定 高效液相色谱法 2014-11-01 GB/T 30929-2014 化妆品中禁用物质2,4,6-三氯苯酚、五氯苯酚和硫氯酚的测定 高效液相色谱法 2014-11-01 GB/T 30930-2014 化妆品中联苯胺等9种禁用芳香胺的测定 高效液相色谱-串联质谱法 2014-11-01 GB/T 30931-2014 化妆品中苯扎氯铵含量的测定 高效液相色谱法 2014-11-01 GB/T 30932-2014 化妆品中禁用物质二噁烷残留量的测定 顶空气相色谱-质谱法 2014-11-01 GB/T 30933-2014 化妆品中防晒剂二乙氨基羟苯甲酰基苯甲酸己酯的测定 高效液相色谱法 2014-11-01 GB/T 30934-2014 化妆品中脱氢醋酸及其盐类的测定 高效液相色谱法 2014-11-01 GB/T 30935-2014 化妆品中8-甲氧基补骨脂素等8种禁用呋喃香豆素的测定 高效液相色谱法 2014-11-01 GB/T 30936-2014 化妆品中氯磺丙脲、甲苯磺丁脲和氨磺丁脲3种禁用磺脲类物质的测定方法 2014-11-01 GB/T 30937-2014 化妆品中禁用物质甲硝唑的测定 高效液相色谱-串联质谱法 2014-11-01 GB/T 30938-2014 化妆品中食品橙8号的测定 高效液相色谱法 2014-11-01 GB/T 30939-2014 化妆品中污染物双酚A的测定 高效液相色谱-串联质谱法 2014-11-01 GB/T 30940-2014 化妆品中禁用物质维甲酸、异维甲酸的测定 高效液相色谱法 2014-11-01 GB/T 30942-2014 化妆品中禁用物质乙二醇甲醚、乙二醇乙醚及二乙二醇甲醚的测定 气相色谱法 2014-11-01 GB/T 30945-2014 饲料中泰乐菌素的测定 高效液相色谱法 2015-01-08 GB/T 30955-2014 饲料中黄曲霉毒素B1、B2、G1、G2的测定 免疫亲和柱净化-高效液相色谱法 2015-01-10 GB/T 30956-2014 饲料中脱氧雪腐镰刀菌烯醇的测定 免疫亲和柱净化-高效液相色谱法 2015-01-10 GB/T 30957-2014 饲料中赭曲霉毒素A的测定 免疫亲和柱净化-高效液相色谱法 2015-01-10
  • Supelco脂肪酸及脂肪酸甲酯分析产品用户回馈活动
    Supelco脂肪酸及脂肪酸甲酯分析产品促销 --为您提供一站式脂肪酸甲酯分析服务 2010年8月1日--2010年10月31日 活动规则: 1.凡在活动期间购买指定促销产品单次订单金额达10,000元,可获赠价值300元North face登山包一个或等值折扣 2.凡在活动期间购买指定促销产品单次订单金额达15,000元,可获赠价值600元伊莱克斯早餐吧一台或等值折扣 3.凡在活动期间购买指定促销产品单次订单金额达25,000元,可获赠价值1500元Ipod touch一台或等值折扣 脂肪酸/脂肪酸甲酯分析专用柱 Sigma-Aldrich/SUPELCO提供全面的脂肪酸分析气相色谱毛细管柱,满足您的各种需求。 SPTM-2560柱(强极性氰丙基硅氧烷类毛细管柱), 可最大程度地分离顺反异构脂肪酸甲酯,完全符合GB5413.27-2010,GB5413.36-2010等国标和USP G5方法,并且是AOAC方法996.06和 AOCS 方法Ce 1h-05指定用柱; SPTM-2380柱(强极性氰丙基硅氧烷类毛细管柱), 用于顺反异构、双键位置异构的脂肪酸甲酯分离,符合USP G48方法; SLB-IL100柱(强极性离子液体固定相毛细管柱), 可最大程度地分离顺反异构脂肪酸甲酯,是SP-2560和SP-2380柱的很好补充。 OmegawaxTM柱(聚乙二醇),用于不同碳链长度和不同饱和度(特别是omega-3和omega-6)的脂肪酸甲酯(FAMEs)的分离,符合USP G16方法,并且是AOAC方法991.39和 AOCS 方法Ce 1b-89指定用柱; Equity® -1柱(非极性聚二甲基硅氧烷),用于不同沸点的脂肪酸甲酯(FAMEs)分离,符合USP G1、G 2和G 9方法; NukolTM 柱(改性聚乙二醇),用于自由脂肪酸( Free Fatty Acids)的分析,符合USP G25和35方法; Discovery银离子交换SPE小柱 Discovery 银离子交换SPE小柱, 利用特有的技术将银离子(Ag+)嵌入SCX(磺酸基阳离子交换)载体上。在正相洗脱条件下,银离子(Ag+)仅对脂肪酸甲酯的双键有吸附作用,具体表现为: · 饱和的脂肪酸甲酯(无双键),不吸附,最快流出; · 顺式的双键,吸附作用比反式的强。反式的先流出,顺式的后流出; · 双键越多,吸附作用越强。双键少的先流出,双键多的后流出。 脂肪酸及脂肪酸甲酯标准品 Sigma-Aldrich/SUPELCO提供全面的脂肪酸及脂肪酸甲酯标准品, 质量保证&mdash SUPELCO品牌值得信赖,每个标准品均有分析证书(Certificate of Analysis) 品种齐全&mdash 从C 1到C 31一应俱全; 形式多样&mdash 纯品、溶液型,单标、混标全有; 特别是SUPELCO专有的37种脂肪酸甲酯混标(47885-U),涵盖了大部分常用脂肪酸甲酯标准品,完全符合国标GB5413.27-2010,深受广大用户喜爱! 衍生化反应瓶及反应加热器 反应瓶,内为锥形,容易移取微量样品,厚壁硼酸盐玻璃,配有Teflon/红橡胶垫,空心盖,可高压灭菌或离心。反应加热器,有两档温控范围可调节:室温~100℃,和75℃~ 150 ℃;有两种加热模块可选,一种是8孔的,适合3mL及5mL反应瓶;一种是12孔的,适合1mL及2mL反应瓶。衍生化试剂及衬管 衍生化试剂 Sigma-Aldich/SUPELCO 提供种类齐全的GC衍生化试剂,如:酯化试剂、硅烷化试剂、酰化试剂等。在脂肪酸的分析中,除了自由脂肪酸可以直接GC测定,其它脂肪酸必须要甲酯化之后才可以GC检测。三氟化硼甲醇溶液,就是最通用的脂肪酸甲酯化的试剂。并且大部分SUPELCO品牌的衍生化试剂,随货附有产品规格说明书,其中包括性质、特点、典型的衍生化步骤、机理、毒性、有害性和稳定性等信息,对于使用非常有帮助。 去活玻璃衬管 杯型玻璃衬管可以增加高分子量化合物在进样口的挥发,提高分辨力,降低进样口岐化。
  • 欧盟建议新增10种需授权物质
    2013年1月17日,欧洲化学品管理局(ECHA)拟将第四批经授权方可使用的10种物质列入授权物质清单,修订案将提交欧盟委员会、成员国委员会及欧盟议会做最后决议。早在2012年6月20日,ECHA就针对这10种物质开启为期六个月的公众评议。此外,在1个月前,ECHA就曾提议将另外8种物质列入REACH法规授权物单。从目前ECHA的工作进展来看,不远的将来,将有32种SVHC物质列入授权物质清单。   10种物质名称及主要用途: 物质名称 Cas号 EC 号 主要用途 锌黄 49663-84-5 256-418-0 汽车涂层,航空航天的涂层。 4,4'-二氨基-3,3'-二氯二苯甲烷(MOCA) 101-14-4 202-918-9 主要用于树脂固化剂和聚合物的生产,以及建筑和艺术 铬酸锶 7789-06-2 232-142-6 用于油漆、清漆和油画颜料;金属表面抗磨剂或铝片涂层之中 N,N-二甲基乙酰胺(DMAC) 127-19-5 204-826-4 用于溶剂,及各种物质的生产及纤维的生产。也会被用于试剂,工业涂层,聚酰亚胺薄膜,脱漆剂和油墨去除剂 氢氧化铬酸锌钾 11103-86-9 234-329-8 航空/航天,钢铁,铝线圈,汽车等涂层。 砷酸、原砷酸 7778-39-4 231-901-9 主要用于陶瓷玻璃融化和层压印刷电路板的消泡剂 铬酸铬 24613-89-6 246-356-2 用于在航空航天,钢铁和铝涂层等行业的金属表面混合物。 1,2-二氯乙烷 107-06-2 203-458-1 用于制造其他物质,少量作为化学和制药工业的溶剂。 甲醛与苯胺的聚合物 25214-70-4 500-036-1 主要用于其他物质的生产,少量用于环氧树脂固化剂 二乙二醇二甲醚 111-96-6 203-924-4 主要被用于化学的反应试剂,也用作电池电解溶液和其他产品例如密封剂,胶粘剂,燃料和汽车护理产品
  • REACH高度关注物质(SVHC)最新候选清单
    2011 年6 月20 日,欧洲化学品管理局(ECHA)将七种致癌和/或对生殖系统有害的化学物质新增到高度关注物质(SVHC)候选清单中。经过四次修订,现有效SVHC 候选物质清单已达53 项。 序号 物质名称 EC CAS 可能用途 1 氯化钴 231-589-4 7646-79-9 干燥剂、例如硅胶 2 重铬酸钠二水合物 234-190-3 7789-12-0 金属表面精整、皮革制作、纺织品染色、木材防腐剂 3 五氧化砷 215-116-9 1303-28-2 杀菌剂、除草剂 4 三氧化二砷 215-481-4 1327-53-3 除草剂、杀虫剂 5 酸式砷酸铅 232-064-2 7784-40-9 杀虫剂 6 三乙基砷酸酯 427-700-2 15606-95-8 木材防腐剂 7 邻苯二甲酸二丁基酯(DBP) 201-557-4 84-74-2 增塑剂、粘合剂和印刷油墨的添加剂 8 邻苯二甲酸二(2-乙基己) 204-211-0 117-81-7 PVC 增塑剂、液压液体和电容器里的绝缘体 酯(DEHP) 9 邻苯二甲酸丁苄酯(BBP) 201-622-7 85-68-7 乙烯基泡沫、橡胶、耐火砖和合成皮革的增塑剂 10 蒽(Anthracene) 204-371-1 120-12-7 染料中间体、杀虫剂、木材防腐剂。高纯蒽用于制取单晶蒽,用在闪烁记数器上。 11 三丁基氧化锡(TBTO) 200-268-0 56-35-9 木材防腐剂 12 二甲苯麝香 201-329-4 81-15-2 香水、化妆品 13 六溴环十二烷(HBCDD) 206-33-9 294-62-2 阻燃剂 14 C10-13氯代烃(短链氯化石蜡)(SCCP) 287-476-5 85535-84-8 金属加工过程的润滑剂、橡胶和皮革衣料、胶水 15 4,4'-二氨基二苯甲烷(MDA) 202-974-4 101-77-9 偶氮染料、橡胶的环氧树脂固化剂;有机合成的中间体 16 蒽油 292-602-7 90640-80-5 主要用于制造其他物质,如提炼蒽、碳黑,也用于炸药的还原促进剂,以及海洋捕捞、防腐。 17 蒽油、蒽糊、轻油 295-278-5 91995-17-4 18 蒽油、蒽糊、蒽馏分 295-275-9 91995-15-2 19 蒽油、少蒽 292-604-8 90640-82-7 20 蒽油、蒽糊 292-603-2 90640-81-6 21 高温煤沥青 266-028-2 65996-93-2 主要用于制作工业电极,少量用于重度防腐、铺路、黏土制作 22 硅酸铝耐火陶瓷纤维 工业绝缘隔热材料 23 氧化锆硅酸铝耐火陶瓷纤维 工业绝缘隔热材料 24 2,4-二硝基甲苯 204-450-0 121-14-2 用于制作甲苯二异氰酸盐(酯)(TDI),进而制造聚亚胺酯泡沫;也用于制造白明胶塑料。 25 邻苯二甲酸二异丁酯(DIBP) 201-553-2 84-69-5 增塑剂 26 铬酸铅 231-846-0 7758-97-6 色素,用于塑料、油漆着色 27 钼铬酸铅红(CI颜料红104) 235-759-9 12656-85-8 28 铬酸铅黄(CI颜料黄34) 215-693-7 1344-37-2 29 三(2-氯乙基)磷酸盐(TCEP) 204-118-5 115-96-8 阻燃剂 30 丙烯酰胺 201-173-7 1976-6-1 丙烯酰胺主要用于生产聚丙烯酰胺;聚丙烯酰胺应用于各个领域,尤其是在废水处理和纸张加工。丙烯酰胺也有少部分用于包括研究目的制备聚丙烯酰胺凝胶及在土木工程中的灌浆剂。 31 三氯乙烯 201-167-4 1979-1-6 金属部件的清洗剂和去污剂;黏合剂中的溶剂;用于生产氯氟有机化合物的中间体 32 硼酸 233-139-2 10043-35-3 具有众多的用途,例如用于生物杀灭剂,防腐剂,个人护理用品,食品添加剂,玻璃,陶瓷,橡胶,化肥,阻燃剂,涂料,工业液体,刹车液,焊锡产品,胶片显影剂等。 33 四硼酸钠,无水 215-540-4 1330-43-4 具有多种用途,例如用于玻璃及玻璃纤维,陶瓷,洗涤剂剂及清洁剂,个人护理产品,工业液体,冶金,黏合剂,阻燃剂,生物杀灭剂,化肥等 34 四硼酸钠,水合物 235-541-3 12267-73-1 35 铬酸钠 231-889-5 7775-11-3 实验用分析试剂;生产其他含铬化合物 36 铬酸钾 232-140-5 7789-00-6 金属处理及镀层;生产化学品及试剂;生产纺织品;陶瓷着色剂;皮革鞣制剂敷料;生产颜料及油墨;实验室用试剂;烟花制造 37 重铬酸铵 232-143-1 7789-9-5 氧化剂;实验室用试剂;皮革鞣制;生产纺织品;生产感光荧屏;金属处理 38 重铬酸钾 231-906-6 7778-50-9 生产金属铬;金属处理基镀层;生产化学试剂;实验室用试剂;皮革鞣制;生产纺织品;照相平板;木材处理;制冷系统防腐剂 39 硫酸钴 233-334-2 10124-43-3 用于制陶瓷釉料、油漆催干剂和镀钴等。也可用作饲料添加剂,碱性蓄电池添加剂等。 40 硝酸钴 233-402-1 10141-05-6 用于表面处理、电池、陶瓷颜料、催化剂。 41 碳酸钴 208-169-4 513-79-1 陶瓷、玻璃颜料,饲料微量元素添加剂,微量元素肥料 42 醋酸钴(乙酸钴) 200-755-8 71-48-7 用于表面处理、合金、颜料、染料和饲料添加剂。43 乙二醇单甲醚2- 203-713-7 109-86-4 用作涂料溶剂、渗透剂、匀染剂及有机合成中间体,也用作燃料的添加剂 44 乙二醇单乙醚2- 203-804-1 110-80-5 常用作溶剂,皮革工业用于着色剂,涂料工业用于配制油漆稀释剂、脱漆剂,及制造喷漆的原料,纺织工业用于制造纤维的染色剂,有机化工中用于制造醋酸酯、乳液稳定剂等。 45 三氧化铬 215-607-8 1333-82-0 用于金属处理和木材防腐剂中的稳定剂。 46 三氧化铬衍生酸,如:铬酸、重铬酸、低聚铬酸等 231-801-5236-881-5 7738-94-513530-68-2 用于金属处理和木材防腐剂中的稳定剂。 47 乙二醇乙醚醋酸酯 203-839-2 111-15-9 用于油漆、粘合剂、胶水、化妆品、皮革、木材染料、半导体、摄影和光刻过程 48 铬酸锶 232-142-6 7789-6-2 用于油漆、清漆和油画颜料;金属表面抗磨剂或铝片涂层 49 邻苯二甲酸二(C7-11支链与直链)烷基酯(DHNUP) 271-084-6 68515-42-4 用于聚氯乙烯(PVC)塑料、电缆的增塑剂及粘合剂 50 肼 206-114-9 7803-57-8302-01-2 防锈剂;用于制药,农药,油漆,油墨,有机染料等的合成原料,及高分子合成材料单体 51 1-甲基-2-吡咯烷酮 212-828-1 872-50-4 用于涂料溶剂、纺织品和树脂的表面处理和金属面塑料 52 1,2,3-三氯丙烷 202-486-1 96-18-4 用于脱脂剂溶剂、清洁剂、油漆稀释剂、杀虫剂、树脂和胶水 53 邻苯二甲酸二(C6-8支链与直链)烷基酯,富C7链(DIHP) 276-158-1 71888-89-6用于聚氯乙烯 (PVC)塑料增塑剂、密封剂和印刷油墨
  • 传赛百味添加偶氮二甲酰胺或为偶氮甲酰胺
    网上疯传的&ldquo 赛百味:食物中含鞋底成分&rdquo ,让正在赛百味啃三明治的张先生有点食不知味。   美国一个知名美食博客的博主曝光了赛百味的三明治面包中有Azodicarbonamide(国内媒体将其翻译为偶氮二甲酰胺)这一成分,在被CNN(美国有线电视新闻网)曝光后,赛百味承认在北美出售的食物中的确含有这种化学物质。CNN还称,市面上大部分连锁,包括麦当劳、星巴克出售的面包都含有此成分。   赛百味中国总部马上联系了第三方检测机构,就供应商提供的面包做了检测。赛百味中国官网发布信息显示,此次检测并未发现偶氮二甲酰胺。接着赛百味也在中国区官网上公布了供应商的名单。   昨天记者向多位食品工业专家咨询,他们纷纷表示头一次听说&ldquo 偶氮二甲酰胺&rdquo 这个化学式。   偶氮二甲酰胺,这个听起来有点拗口的化学名词到底是什么?为什么要将它添加到面包中?   网传赛百味添加的偶氮二甲酰胺 原始报道实指偶氮甲酰胺   偶氮二甲酰胺,是一种工业泡沫塑料发泡剂,通常用作瑜伽垫、橡胶鞋底或者人工皮革等,以增加产品的弹性。它是一种黄色粉末,无毒,无嗅,不易燃烧,溶于碱,不溶于汽油、醇、苯、吡啶和水 受热分解后生成由氮气、一氧化碳、二氧化碳和一些氨气组成的气体。   偶氮二甲酰胺既然不溶于水,如何添加到面包中呢?   记者在查看了CNN的原始报道后发现,CNN报道中提到的Azodicarbonamide,缩写为ADA,实为偶氮甲酰胺。这是一种面粉增筋剂,具有漂白和氧化双重作用,其自身与面粉不起作用,当将其添加于面粉中加水搅拌成面团时,能快速释放出活性氧。在欧盟和澳大利亚,偶氮甲酰胺被禁止使用在食品工业,也有部分国家(包括中国)是允许将其作为添加剂用在食品工业中的。   面包配方对口感影响很大   张先生回忆这些年吃赛百味的经历,发现面包的确有在悄悄变化。&ldquo 前几年,面包坯很扎实,很有嚼劲,现在感觉越来越蓬松了,有时服务员在切面包,如果刀子不够锋利,面包还会被压成一团,是不是就是因为添加了东西啊?&rdquo 张先生好奇。   赛百味浙江地区总代理虞予说:&ldquo 我们的面包全部由总部委托国内一家基层供应商生产,面包的成分、配比也严格按照总部要求执行,之所以顾客会觉得面包口感变了,是因为我们的配方变了。&rdquo 在美国,由于肥胖的人群较多,面包中的小麦粉、植物性原料的比例时常在变,于是国内面包的大小、克数、口感也就跟着变了。有时吃起来偏甜,有时吃起来口感更蓬松。   添加剂是面包配方的一部分   CNN原始报道中,美国面包协会称,在过去美国FDA(食品药品监督管理局)曾指出,少量且恰当地使用ADA作为面团的改良剂,可以使面包更好地成型,能改善面包的质量。   在我国,卫生部公布的《食品添加剂使用标准》(GB2760-2011)中明文指出,偶氮甲酰胺可用于小麦粉,最大使用量为0.045g/kg。   在面粉熟化处理的过程中,添加偶氮甲酰胺能氧化小麦粉中的半胱氨酸,从而使面粉筋度增加,提高面包气体保留量,增加烘焙制品的弹性和韧性。   简单来说,被作为面粉改良剂添加的偶氮甲酰胺主要是让面粉的延展性、加工性能变得更好。&ldquo 加强面筋蛋白的组织结构,使其形成更好的网络结构,改良形态的同时,也能增加面包的嚼劲和延长面包的保质期。&rdquo 中国计量学院标准化学院食品安全标准化研究所的杨勇教授说。自己在家制作的面包放置一段时间以后就容易变塌,也更容易掉渣,跟没有添加偶氮甲酰胺有一定的关系。   关于发泡剂的说法,杨教授表示,发泡并不是我们直接联想到的蓬松。&ldquo 一般在遇到蛋液的时候,才需要添加发泡剂。&rdquo 偶氮甲酰胺与面粉作用,主要是让面粉完成了快速氧化的过程。   食品工业少不了添加剂   本报曾对白吐司用到的添加剂做过调查,发现其中一个样本使用了12种食品添加剂。   面包粉中常见的添加剂有磷酸氢二钠、单硬脂酸甘油酯、羟丙基淀粉、羟丙基二淀粉磷酸酯、磷酸酯双淀粉等,以及食用香精。   面包改良剂中常见的添加剂有醋酸酯淀粉、单、双甘油脂肪酸酯、双乙酰酒石酸单双甘油酯、维生素C、谷朊粉等。   此外还有&alpha -淀粉酶、半纤维素酶等各种酶制剂。   它们中的有一些可以锁住吐司中的水分,有一些使面包变大变蓬变松软,有一些使吐司内部的质地更均匀,烤制后表皮的色泽更好看,还有一些能防止面包老化。它们中的许多都是被复合使用的,才能达到最理想的效果。   为什么外面买的面包总比自家做的面包保鲜度更持久,口感更好,这都是添加剂在起作用。使用几种以及使用哪些种类,各厂家会有自己的做法。但不管来自哪种原料,前提条件是种类和用量都要符合国标规定。   杨教授说,如果把面包中添加的盐写成氯化钠,而恰巧你对氯化钠又不熟悉,是不是也会认为这是一种不好的添加剂?&ldquo 只要没有超标,在国家规定的使用范围内,使用添加剂都是合法、正常的。&rdquo 食品企业有自律性,质检部门也会定期检查、抽查,完全没有必要对食品添加剂过度恐慌。   偶氮甲酰胺,英文简称ADA,是一种黄色至橘红色结晶性粉末。ADA具有漂白和氧化双重作用,是一种速效面粉增筋剂。本品自身与面粉不起作用,当将其添加于面粉中加水搅拌成面团时,能快速释放出活性氧,此时面粉蛋白质中氨基酸的硫氢基被氧化成二硫键,使蛋白质链相互联结而构成立体网状结构,改善面团的弹性、韧性、均匀性,使生产出的面制品具有较大的体积和较好的组织结构。   偶氮二甲酰胺,英文简称ADC,是一种黄色粉末,无毒,无嗅,不易燃烧,溶于碱,不溶于汽油、醇、苯、吡啶和水 受热分解后生成由氮气、一氧化碳、二氧化碳和一些氨气组成的气体。广泛用作聚氯乙烯、聚乙烯、聚苯乙烯、聚丙烯,ABS树脂等的发孔剂。   偶氮甲酰胺是对面粉增白增筋和促进成熟作用以提高烘焙制品品质的一类食品添加剂。过去人们大量使用溴酸钾,目前已被世界卫生组织和FDA认定具有较强致癌性,欧美早已禁用。ADA是当今国际上风行和公认的可安全用于食品的面粉改良剂。是溴酸钾的理想替代品。   偶氮二甲酰胺,英文简称ADC,是一种黄色粉末,无毒,无嗅,不易燃烧,溶于碱,不溶于汽油、醇、苯、吡啶和水 受热分解后生成由氮气、一氧化碳、二氧化碳和一些氨气组成的气体。广泛用作聚氯乙烯、聚乙烯、聚苯乙烯、聚丙烯,ABS树脂等的发孔剂。
  • 岛津推出蜂蜜中氨基酸的检测方案
    氨基酸是生物功能大分子蛋白质的基本组成单位,是构成人类和动物营养所需蛋白质的基本物质。人体所需的氨基酸约有22种,分为非必需氨基酸和必需氨基酸(须从食物中供给)。必需氨基酸指人体(或其它脊椎动物)不能合成或合成速度远不适应机体的需要,必需由食物蛋白供给,这些氨基酸称为必需氨基酸。蜂蜜是蜜蜂采集鲜花分泌的花蜜,经过蜜蜂反复酿造转化而成的食物。蜂蜜中含有多种氨基酸,且含有生物活性很强的蔗糖转化酶和淀粉酶等,这些酶使蜂蜜具有其他糖类食品所没有的特殊功能。不同蜜源和产地的蜂蜜具有的医药和营养功效也不同,人们开始关注和寻找区分蜂蜜蜜源和产地的方法,而通过氨基酸的含量和相对比例的不同可在一定程度上判断这一特征。 岛津公司建立了一种快捷方便的氨基酸分离检测方法,并应用于蜂蜜样品的分析。本方法使用岛津超高效液相色谱仪 Nexera UHPLC LC-30A液相色谱仪,采用自动柱前衍生法同时测定蜂蜜中的十几种氨基酸。以邻苯二甲醛(OPA)为柱前衍生剂,使用C18柱,乙腈/甲醇和0.05 mol/L的醋酸钠(pH6.5)为流动相,荧光检测器的激发波长为330nm,发射波长为440 nm。各氨基酸标准曲线的线性相关系数在0.9974至1.0000之间,保留时间的RSD%在.02%-0.06%之间,峰面积的RSD%在0.73%-6.44%之间,结果的重现性良好。0.5 μmol/L的氨基酸标准溶液的信噪比S/N的平均值在2201-126824之间,具有很高的检测灵敏度。此方法省去了繁琐的前处理步骤,每个样品的总分析时间仅需1小时。 本方法中使用的岛津超高效液相色谱仪 Nexera UHPLC LC-30A液相色谱仪与常规LC兼容,并实现了出色的扩展性、超快速、高分离、是面向未来的UHPLC。Nexera全面提高了所有基本性能,不仅实现了常规快速—超快速高分离分析,还为绿色LC、自动化系统等不断扩大的应用提供出类拔萃的性能。Nexera在宽流量范围内实现超高压分析,是前所未有的真正全能LC。 详细产品信息见:http://www.instrument.com.cn/netshow/SH101380/C132480.htm详细解决方案见:http://www.instrument.com.cn/netshow/SH101380/down_198293.htm如欲了解更多该产品信息,可来电咨询 021-61610135---------------------------------------------------------------------------   上海纳锘仪器有限公司   地址:上海市莲花南路1388弄8号楼碧恒广场1503室[201108]   电话:021-60900829,60900830,61131031,61131051   传真:021-61131052   E-Mail:info@nano-instru.com
  • 安徽省首批次新材料研制需求清单公布
    近日,安徽省经济和信息化厅公布《安徽省首批次新材料研制需求清单(2022年版)》。该清单是导向性的,相关企业应根据市场需求、先进性等确定研制材料性能具体目标。各地在新材料“双招双引”、研发、推广应用等方面,要统筹有关政策和资金,综合、精准施策,进一步促进安徽省新材料产业创新发展。安徽省首批次新材料研制需求清单(2022年版)(执行期2022年-2024年)一、先进钢铁材料高性能船舶用钢、海洋工程用钢、新型热成形钢板、高性能轴承钢、弹簧用钢、高温渗碳齿轮钢、超强合金钢丝、耐热钢、取向硅钢超/极薄带、高强抗疲劳05Cr17Ni4Cu4Nb沉淀硬化钢、高性能钼镍钢金属粉末材料、航空航天用铸造镍基高温合金、超纯净气门用渗氮弹簧线材、超强淬回火合金丝材、建筑结构用高强抗震耐蚀耐火钢。二、先进有色金属材料航空用高性能型材、高性能车用铝合金薄板、动力电池集流体用铝箔、软包电池用铝塑膜、新型镁合金挤压板(棒、型)材、高频微波覆铜板、高密度覆铜板、高频高速基板用压延铜箔、引线框架铜合金带材、高性能高精度铜合金丝线材、高性能铜镍锡合金帶箔材、电子、汽车等行业用高性能铜镍硅合金,高因瓦合金箔、铜铝复合材料、高纯铜和铜合金靶、铝合金焊丝、高强高导铬锆铜、超细晶强化铜镁合金、超细晶硬质合金棒材、医疗CT机X射线管(球管)阳极靶盘材料、稀有金属涂层材料、新型硬质合金材料。三、先进化工材料聚芳醚砜、聚苯硫醚、光学级聚甲级丙烯酸甲酯、生物基呋喃聚酯、生物基聚酰胺树脂、生物基聚氨酯、TDE85特种环氧树脂、高端基聚异丁烯、聚双环戊二烯、聚己二酸/对苯二甲酸乙二醇酯、高频高速通讯高端覆铜板用碳氢树脂、覆铜板用功能化低分子聚苯醚、光学薄膜用丙烯酸涂层树脂、光刻胶用树脂、非隔热型阻燃有机玻璃、医疗输液管用热塑性弹性体TPE材料、三醋酸纤维素及膜、液晶聚合物材料及薄膜、光谱纯/纤维级/拉膜级聚乳酸树脂、聚乳酸双向拉伸薄膜、高灼热丝无卤阻燃PC材料、膨化聚四氟乙烯密封材料、热转印碳带用聚酯薄膜、纳米级高分散性炭黑、VOCs回收膜、高性能水汽阻隔膜、双极膜电渗析膜、水性防火阻燃(保温)涂料、水性超支化环氧导静电涂料、环保型荧光颜料、耐蒸煮酞菁蓝、高效复合铜基催化剂、高性能自动变速箱油、高性能油膜轴承油、风电机组专用润滑油、生物基润滑油、镁合金切削液。四、先进无机非金属材料生物医药用中性硼硅玻璃包装材料、高强透明微晶玻璃、石英玻璃、高档电熔β-Al2O3耐火材料、高性能陶瓷基板、高频高速通信用高性能硅基玻璃粉、高纯氧化铝、电子级绢云母、新型耐候性矿物质阻燃材料、功能土壤处理材料。五、高性能纤维及复合材料高回弹耐磨包覆型TPE复合材料、特种树脂基吸波蜂窝材料、氮化物基陶瓷复合材料、无粘结相碳化钨金属陶瓷材料、辊压机辊套用铁基合金复合耐磨材料、铜钢、铜铝复合材料,特种树脂预浸料、反应型聚烯烃纤维复合增强材料、风电叶片用碳纤维复合材料、电子级低介电玻璃纤维及制品、超净排放高性能覆膜滤料、聚四氟乙烯纤维及滤料、超薄电子基布、高强度连续玄武岩纤维。六、稀土功能材料AB型稀土储氢合金、高性能钕铁硼磁体、钕铁硼热压磁体、高性能各向异性粘结磁体(粉)、汽车尾气催化剂及相关材料、MnZn宽频电磁吸收体材料、高性能金刚石工具稀土合金粉末材料、铈锆稀土基复合氧化物、稀土抛光材料。七、先进半导体材料和新型显示材料碳化硅单晶衬底、碲锌镉晶体衬底、锑化镓晶体、锑化铟晶体、超高纯锗单晶、光刻胶及其关键原材料和配套试剂、宽幅TFT偏光片用PVA光学基膜、超薄柔性玻璃、柔性显示盖板用透明聚酰亚胺薄膜、特种气体、光掩膜板、化学机械抛光液、高纯化学试剂、低温无铅玻璃封装浆料、电子封装用钨铜、钼铜热沉复合材料,高性能半导体封装用键合丝、微球材料、OCA光学胶、透明电致发光膜、透明柔性导电膜材料、半导体量子点材料、先进半导体材料前驱体、增亮膜,扩散膜、高激光损伤阈值减反膜、高强度、高导电、高速固化新型电子胶,低相位差保护膜、高性能有机发光显示材料及中间体、单体,量子点材料、靶材。八、新型能源材料新能源复合金属材料、燃料电池全氟质子膜、反光釉料、透明耐紫外聚乙烯醋酸乙烯树脂及封装胶膜、大颗粒四氧化三钴、高纯四氧化三锰、三元材料(镍钴铝酸锂、镍钴锰酸锂)及前驱体、氧化亚硅负极材料、高性能硅炭负极材料、碲化镉发电玻璃。九、前沿材料超材料、石墨烯导电浆料、石墨烯-纳米银线复合柔性透明导电膜、3D打印聚乳酸树脂、3D打印用合金粉末、球形非晶粉末、铁基宽幅超薄纳米晶带材、铪钨纳米热喷涂材料、超细碳化钨粉末、铜基微纳米粉体材料、电触头材料用纯铜粉。
  • 2015版中国药典总则第二次公开征求意见
    根据《中国药典》2015年版编制工作进度安排,第一批拟增修订通则草案已于2014年3月在国家药典委员会网站面向社会各界公开征求意见。2014年6~7月国家药典委员会陆续组织召开各相关专业委员会对《中国药典》2015年版通则内容进行了全面审定,并对第一批公示内容的反馈意见和建议进行了研讨,根据会议讨论审核意见,经整理形成了第二次总则(草案)征求意见稿(详见附件)。   现将有关事项通知并说明如下:   一、为进一步完善2015年版药典总则内容,现将药典总则(草案)整体框架和药典通则第二次征求意见稿内容在我委网站公开征求意见,即日起公示期一个月。   二、独立一卷的名称为&ldquo 《中国药典》2015年版总则&rdquo ,包括现有药典一部、二部、三部的附录(现改为&ldquo 通则&rdquo )内容和药用辅料品种正文(详见附件1)。   三、通则编码按照&ldquo XXYY&rdquo 四位罗马数字表示,其中XX代表现有附录编码的大罗马字母(Ⅰ、Ⅱ、Ⅲ&hellip &hellip ),YY代表现有附录编码的英文字母(A、B、C&hellip &hellip )。新旧附录/通则编码对照表详见附件2。   四、拟增修订的通则草案详见附件3。请相关单位认真研核,若有异议,请附相关说明及/或实验数据,及时来文来函(见附件4)。   五、联系人及联系方式:   许华玉(电话:010&ndash 67079521)   尚 悦(电话:010&ndash 67079578)   靳桂民(电话:010&ndash 67079527)   传 真:010&ndash 67152769   E-mail: ywzhc@chp.org.cn   附件: 1. 《中国药典》2015年版总则(草案) 2. 新旧附录/通则编码对照表 3. 药典通则目录及增修订内容 《中国药典》2015年版通则目录 编号 通则名称 0100 制剂通则 0101 片剂 0102 注射剂 0103 胶囊剂 0104 颗粒剂 0105 眼用制剂 0106 鼻用制剂 0107 栓剂 0108 丸剂 0109 软膏剂、乳膏剂 0110 糊剂 0111 吸入制剂(第一次公示) 0112 喷雾剂 0113 气雾剂(第一次公示) 0114 凝胶剂 0115 散剂 0116 糖浆剂 0117 搽剂 0118 涂剂 0119 涂膜剂 0120 酊剂 0121 贴剂 0122 贴膏剂 0123 口服溶液剂 口服混悬剂 口服乳剂 0124 植入剂 0125 膜剂 0126 耳用制剂 0127 洗剂 0128 冲洗剂 0129 灌肠剂 0181 合剂 0182 锭剂 0183 煎膏剂(膏滋) 0184 胶剂 0185 酒剂 0186 膏药 0187 露剂 0188 茶剂 0189 流浸膏剂与浸膏剂 0200 其他通则 0211 药材和饮片取样法(未修订) 0212 药材和饮片检定通则(第二增补本) 0213 炮制通则(未修订) 0251 药用辅料 0261 制药用水 0291 国家药品标准物质通则(第二增补本) 0300 0301 一般鉴别试验(第二增补本) 0400 光谱法 0401 紫外-可见分光光度法 0402 红外分光光度法 0405 荧光分光光度法 0406 原子吸收分光光度法 0407 火焰光度法 0411 电感耦合等离子体原子发射光谱法 0412 电感耦合等离子体质谱法 0421 拉曼光谱法 0431 质谱法 0441 核磁共振波谱法 0451 X射线衍射法 0500 色谱法(未修订) 0501 纸色谱法0502 薄层色谱法 0511 柱色谱法(未修订) 0512 高效液相色谱法 0513 离子色谱法 0514 分子排阻色谱法 0521 气相色谱法(未修订) 0531 超临界流体色谱法 0532 临界点色谱法 0541 电泳法 0542 毛细管电泳法 0600 物理常数测定法 0601 相对密度测定法(未修订) 0611 馏程测定法 0612 熔点测定法 0613 凝点测定法 0621 旋光度测定法 0622 折光率测定法(未修订) 0631 pH值测定法 0632 渗透压摩尔浓度测定法 0633 黏度测定法 0661 热分析法(第二增补本) 0681 制药用水电导率测定法(未修订) 0682 制药用水中总有机碳测定法(未修订) 0700 其他测定法 0701 电位滴定法与永停滴定法(未修订) 0702 非水溶液滴定法 0703 氧瓶燃烧法(未修订) 0704 氮测定法 0711 乙醇量测定法 0712 甲氧基、乙氧基与羟丙氧基测定法(未修订) 0713 脂肪与脂肪油测定法(未修订) 0721 维生素A测定法(未修订) 0722 维生素D测定法(未修订) 0731 蛋白质含量测定法 0800 限量检查法 0801 氯化物检查法(未修订) 0802 硫酸盐检查法(未修订) 0803 硫化物检查法(未修订) 0804 硒检查法(未修订) 0805 氟检查法(未修订) 0806 氰化物检查法 0807 铁盐检查法(未修订) 0808 铵盐检查法(第二增补本) 0821 重金属检查法(第一增补本) 0822 砷盐检查法(未修订) 0831 干燥失重测定法 0832 水分测定法 0841 炽灼残渣检查法(第二增补本) 0842 易炭化物检查法(未修订) 0861 残留溶剂测定法(未修订) 0871 甲醇量检查法 0872 合成多肽中的醋酸测定法(未修订) 0873 2-乙基己酸测定法(未修订) 0900 物理特性检查法 0901 溶液颜色检查法 0902 澄清度检查法 0903 不溶性微粒检查法 0904 可见异物检查法 0921 崩解时限检查法 0922 融变时限检查法(未修订) 0923 片剂脆碎度检查法(未修订) 0931 溶出度测定法(合并释放度测定法) 0941 含量均匀度检查法 0942 最低装量检查法 0951 吸入制剂微细粒子空气动力学特性测定法 0952 粘附力测定法 0981 结晶性检查法(未修订) 0982 粒度和粒度分布测定法(第一增补本) 0983 锥入度测定法 1000 分子生物学技术 1100 生物检查法 1101 无菌检查法 1105 非无菌产品微生物限度检查:微生物计数法 1106 非无菌产品微生物限度检查:控制菌检查法 1107 非无菌药品微生物限度标准 1121 抑菌效力检查法 1141 异常毒性检查法 1142 热原检查法 1143 细菌内毒素检查法 1144 升压物质检查法 1145 降压物质检查法(未修订) 1146 组胺类物质检查法 1147 过敏反应检查法(未修订) 1148 溶血与凝聚检查法 1200 生物活性测定法 1201 抗生素微生物检定法(未修订) 1202 青霉素酶及其活力测定法(未修订) 1205 升压素生物测定法 1206 细胞色素C活力测定法(未修订) 1207 玻璃酸酶测定法(未修订) 1208 肝素生物测定法(第三增补本) 1209 绒促性素生物测定法 1210 缩宫素生物测定法 1211 胰岛素生物测定法(未修订) 1212 精蛋白锌胰岛素注射液延缓作用检查法(未修订) 1213 硫酸鱼精蛋白生物测定法(未修订) 1214 洋地黄生物测定法(未修订) 1215 葡萄糖酸锑钠毒力检查法(未修订) 1216 卵泡刺激素生物测定法 1217 黄体生成素生物测定法 1218 降钙素生物测定法 1219 生长激素生物测定法(未修订) 1401 放射性药品检定法(详见药典委网站:关于&ldquo 附录ⅩⅢ放射性药品检定法&rdquo 修订草案的公示) 1421 灭菌法(未修订) 1431 生物检定统计法(未修订) 2000 中药相关检查方法 2001 显微鉴别法(第二增补本) 2101 膨胀度测定法(第二增补本) 2102 膏药软化点测定法(未修订) 2201 浸出物测定法(未修订) 2202 鞣质含量测定法(第二增补本) 2203 桉油精含量测定法(未修订) 2204 挥发油测定法(未修订) 2301 药材和饮片杂质检查法 2302 灰分测定法(未修订) 2303 酸败度测定法(未修订) 2321 铅、镉、砷、汞、铜测定法(未修订) 2322 汞和砷元素形态及其价态测定法 2331 二氧化硫残留量测定法 2341 农药残留量测定法 2351 黄曲霉毒素测定法 2400 中药注射剂有关物质检查法(未修订) 3000 生物制品相关检查方法 3100 含量测定法 3101 固体总量测定法 3102 唾液酸测定法 3103 磷测定法 3104 硫酸铵测定法 3105 亚硫酸氢钠测定法 3106 氢氧化铝(或磷酸铝)测定法 3107 氯化钠测定法 3108 枸橼酸离子测定法 3109 辛酸钠测定法 3110 乙酰色氨酸测定法 3111 苯酚测定法 3112 间甲酚测定法 3113 硫柳汞测定法 3114 对羟基苯甲酸甲酯、对羟基苯甲酸丙酯含量测定法 3115 O-乙酰基测定法 3116 己二酰肼含量测定法 3117 高分子结合物含量测定法 3118 人血液制品中糖及糖醇测定法 3119 人血白蛋白多聚体测定法 3120 人免疫球蛋白类制品IgG单体加二聚体测定法 3121 人免疫球蛋白类中甘氨酸含量测定法 3122 重组人粒细胞刺激因子蛋白质含量测定法 3123 组胺人免疫球蛋白中游离磷酸组胺测定法 3124 IgG含量测定法 3200 化学残留物测定法 3201 乙醇残留量测定法 3202 聚乙二醇残留量测定法 3203 聚山梨酯80残留量测定法 3204 戊二醛残留量测定法 3205 磷酸三丁酯残留量测定法 3206 碳二亚胺(EDAC)残留量测定法 3207 游离甲醛测定法 3208 人血白蛋白铝残留量测定法 3209 羟胺残留量测定法 3300 微生物检查法 3301 支原体检查法 3302 病毒外源因子检查法 3303 鼠源性病毒检查法 3400 生物测定法 3401 免疫印迹法 3402 免疫斑点法 3403 免疫双扩散法 3404 免疫电泳法 3405 肽图检查法 3406 质粒丢失率检查法 3407 SV40核酸序列检查法 3408 外源性DNA残留量测定法 3409 抗生素残留量检查法 3410 激肽释放酶原激活剂测定法 3411 抗补体活性测定法 3412 牛血清白蛋白残留量测定法 3413 大肠杆菌菌体蛋白质残留量测定法 3414 假单胞菌菌体蛋白质残留量测定法 3415 酵母工程菌菌体蛋白质残留量测定法 3416 类A血型物质测定法 3417 鼠IgG残留量测定法 3418 无细胞百日咳疫苗鉴别试验 3419 抗毒素、抗血清制品鉴别试验 3420 A群脑膜炎球菌多糖分子大小测定法 3421 伤寒Vi多糖分子大小测定法 3422 b型流感嗜血杆菌结合疫苗多糖含量测定法 3423 人凝血酶活性检查法 3424 活化的凝血因子活性检查法 3425 肝素含量测定法 3426 抗A、抗B血凝素测定法 3427 人红细胞抗体测定法 3428 人血小板抗体测定法 3429 猴体神经毒力试验 3430 人血浆病毒核酸检测技术要求 3431 单抗纯度茨顶方法-CE-SDS毛细管电泳(还原和非还原) 3500 生物活性/效价测定法 3501 重组乙型肝炎疫苗(酵母)体外相对效力检查法 3502 甲型肝炎灭活疫苗体外相对效力检查法 3503 人用狂犬病疫苗效价测定法 3504 吸附破伤风疫苗效价测定法 3505 吸附白喉疫苗效价测定法 3506 类毒素絮状单位测定法 3507 白喉抗毒素效价测定法 3508 破伤风抗毒素效价测定法 3509 气性坏疽抗毒素效价测定法 3510 肉毒抗毒素效价测定法 3511 抗蛇毒血清效价测定法 3512 狂犬病免疫球蛋白效价测定法 3513 人免疫球蛋白中白喉抗体效价测定法 3514 人免疫球蛋白Fc段生物学活性测定法 3515 抗人T细胞免疫球蛋白效价测定法(E玫瑰花环形成抑制试验) 3516 抗人T细胞免疫球蛋白效价测定法(淋巴细胞毒试验) 3517 人凝血因子Ⅱ效价测定法 3518 人凝血因子Ⅶ效价测定法 3519 人凝血因子Ⅸ效价测定法 3520 人凝血因子Ⅹ效价测定法 3521 人凝血因子Ⅷ效价测定法 3522 重组人促红素体内生物学活性测定法 3523 干扰素生物学活性测定法 3524 重组人白介素-2生物学活性测定法 3525 重组人粒细胞刺激因子生物学活性测定法 3526 重组人粒细胞巨噬细胞刺激因子生物学活性测定法 3527 重组牛碱性成纤维细胞生长因子生物学活性测定法 3528 重组人表皮生长因子生物学活性测定法 3529 重组链激酶生物学活性测定法 3530 鼠神经生长因子生物学活性测定法 3531 尼妥珠单抗生物学活性测定法 3532 白介素-11-生物活性测定方法 3600 特定生物原材料/动物 3601 无特定病原体鸡胚质量检测要求 3602 实验动物微生物学检测要求 3603 实验动物寄生虫学检测要求 3604 新生牛血清检测要求 3611 细菌生化反应培养基 8000 试剂与标准物质(待定) 8001 试药 8002 试液 8003 试纸 8004 缓冲液 8005 指示剂与指示液 8006 滴定液 8061 标准物质 9000 指导原则 9001 原料药与药物制剂稳定性试验指导原则(未修订) 9011 药物制剂人体生物利用度和生物等效性试验指导原则(第一次公示) 9012 生物样品定量分析方法验证指导原则(第一次公示) 9013 缓释、控释和迟释制剂指导原则(未修订) 9014 微粒制剂指导原则(第一次公示) 9015 药品晶型研究及晶型质量控制指导原则 9101药品质量标准分析方法验证指导原则 9102 药品杂质分析指导原则 9103 药物引湿性试验指导原则(未修订) 9104 近红外分光光度法指导原则(未修订) 9105 中药生物活性测定指导原则 9106 基于基因芯片药物评价技术指导原则 9107 中药材DNA条形码分子鉴定法指导原则 9201 药品微生物检验替代方法验证指导原则(未修订) 9202 非无菌药品微生物限度检查指导原则 9203 药品微生物实验室质量管理指导原则 9204 微生物鉴定指导原则 9205 药品洁净实验室微生物监测和控制指导原则 9206 无菌检查用隔离系统验证指导原则 9301 注射剂安全性检查法应用指导原则 9302 中药有害残留物限量制定指导原则 9303 色素检测指导原则 9304 中药中铝、铬、铁、钡元素测定指导原则 9305 中药中真菌毒素测定指导原则 9401 生物制品定量分析方法指导原则 9501 正电子类放射性药品质量控制指导原则(未修订) 9502 锝[99mTc]放射性药品质量控制指导原则(未修订) 9601 药用辅料功能性指标研究指导原则(第三增补本) 9621 药包材通用要求指导原则(第一次公示) 9622 药用玻璃材料和容器指导原则(第一次公示) 9901 国家药品标准物质制备指导原则(第二增补本) 附表 原子量表 附表 国际单位转换表 一部正文品种后 成方制剂中本版药典未收载的药材和饮片 4. 反馈意见单 国家药典委员会 2014年7月30日
  • 行业标准“难产” 抑制果醋行业发展
    随着天气渐热,饮料销售又将迎来旺季。记者走访市场发现,与种类繁多的茶饮料、碳酸饮料、乳饮料、谷物饮料相比,被称为“第四代功能性饮料”的果醋饮料却销售遇冷,厦门市果醋产量严重下降。业内人士认为,欠缺国家行业标准导致果醋产品良莠混杂,难以打动消费者。   果醋被误认为米醋或酒   记者在家乐福等超市看到,多数超市只有两三个品牌的果醋在销售,品种也极为单一,每瓶售价从10元到30多元不等。包装颇为精美,不少产品使用酒或香水才用的磨砂玻璃瓶。在一些中小型超市,当记者询问:有无果醋时,售货员径直将记者带到了酒类柜台或米醋柜台。   “销售情况很不好,一年卖不到1万元。”某品牌果醋经营者告诉记者,一些市民误以为果醋只是“米醋加果汁”,认为自己回家倒些米醋加入果汁就行了,并且担心醋喝多了对胃不好。只有少数白领知道果醋的保健效果,选择果醋饮料。此外,厦门也有个别西餐厅将果醋饮料当成餐前开胃饮料提供给消费者。   在酒楼工作的叶先生告诉记者,在他们酒楼,果醋一般都卖到25元、30元一瓶。“自己掏腰包吃饭的很少有人点,一般点果醋的都是公款消费,再有就是年轻人图个新鲜。”   果醋质量良莠不齐   “2006年,果醋曾在北方兴起,后来由于醋饮市场几乎被山寨、杂牌、食醋香精勾兑的产品充满,消费者对其质量失去信心。直到去年初,汇源集团请来陈佩斯、朱时茂担当果醋产品代言人,果醋才又引起关注。”在厦门经营金柑果醋业务的东和兴贸易有限公司总经理吴先生说。   据介绍,真正的果醋是纯果汁酿成果酒,再酿成果醋,等于是经过两次酿造、两次发酵而成,需时一般在 3~6 个月,个别产品甚至需时一年。如此长时间的酿造,成本必然较高,然而一些企业为缩短生产时间,压缩成本,便以果汁加食醋勾兑来冒充果醋。一些杂牌模仿一些成熟品牌的包装形式,给消费者造成视觉混乱 一些投机商将生产和保质日期印在瓶盖上,每次只是更换瓶盖,就可以将过期产品拿出来长期卖。   也就是说,市面上至少存在三种果醋:100%原汁果醋 将原汁果醋结合其他果汁进行调配的“勾兑型”果醋 以果汁加米醋形成,实际上只是“带醋味的果汁饮料”。然而,由于没有相应的标准,它们都披上了“果醋”的外衣,消费者无从区别。   吴先生称,“经过两次酿造的纯果醋,醋酸含量在1%,符合国际标准,不会伤害身体。而以米醋加果汁勾兑的‘合成型’果醋,醋酸含量往往过高,难免伤害身体。这也是果醋难以被消费者认可的重要原因。”   利益之争致行业标准“难产”   业内人士认为,果醋业要迅速发展的核心和关键,就是要尽快拿出果醋产品的标准、国家标准,包括怎样打假,检测方法的确定等,以此规范和推进果醋饮料的发展。   “例如,目前多数勾兑型果醋,可定位于中低端市场 而纯正酿造型果醋,可面向高端人群。通过一些指标,将产品的档次区分开来。这样,纯正酿造型果醋或许还有活下去的空间。”百味果相关负责人如是表示。   2008年底,全国食品工业标准化技术委员会饮料分委会曾发布了《果醋饮料》国家标准征求意见稿,意欲规范行业。该标准规定,果醋饮料应该用经发酵制成的果醋调制,禁止用未发酵的柠檬酸、苹果酸、酒石酸、醋酸作为辅料调制果醋饮料。产品标志上,名称应由“发酵型”、“水果名称”和“醋饮料”三部分组成。   业内人士曾表示,这一标准将于2009年底执行,但如今,这一标准因几家大型果醋饮料生产企业之间的利益博弈而变得遥遥无期。“几家企业的生产工艺、规范大相径庭,各家都希望国标更接近自己的工艺,实际上就是利用制定国标的手段将竞争对手逼出局,达到独霸果醋饮料市场的目的。”
  • 欧洲化学品管理局ECHA就高关注度物质提案征求意见
    2010年8月31日消息,欧洲化学品管理局(ECHA)发布了一份关于将11种化学物质确定为高关注度物质(SVHC)并添加到REACH候选列表的提案。并邀请公众在2010年10月14日之前对这些物质发表意见和评论。   此次提交的11种高关注度物质由奥地利、德国和荷兰提出,分别为硫酸钴(Cobalt(II) sulphate)、硝酸钴(Cobalt(II) dinitrate)、碳酸钴(Cobalt(II) carbonate)、醋酸钴(Cobalt(II) diacetate)、乙二醇单甲醚(2-Methoxyethanol)、乙二醇单乙醚(2-Ethoxyethanol)、三氧化二铬(Chromium trioxide)、三氧化二钴及其低聚碳物产生的铬酸、重铬酸(Acids generated from chromium trioxide and their oligomers Group containing:Chromic acid Dichromic acid)、1,3,5-三氯苯(1,3,5 Trichlorobenzene)、1,2,3-三氯苯(1,2,3 Trichlorobenzene)、1,2,4-三氯苯(1,2,4 Trichlorobenzene)。   这11种物质中,前8种物质属于致癌、致畸或生殖毒性的物质(CMR),其它3种物质属于持久性、生物累积性和毒性的物质(PBT)。
  • 福建质检院制定化妆品中三种禁用物质的检测国标
    日前获悉,由福建省质检院制定的《化妆品中禁用物质乙二醇甲醚、乙二醇乙醚及二乙二醇甲醚的测定气相色谱法》国家标准已正式公布并实施。   该标准建立了化妆品中三种乙二醇醚类禁用物质的测定方法,填补了国内乙二醇醚类物质检测标准的空白,研究成果达到国际先进水平。福建省质检院食品所相关人士介绍,乙二醇醚类物质属《化妆品卫生规范》中规定的禁用物质,被广泛用于溶液、喷气燃料防冰剂、刹车液、化学中间体,过量吸入会抑制中枢神经系统,高浓度可能造成头痛、恶心等。
  • 工信部:石化化工行业鼓励推广应用的技术和产品目录公示
    日前,工业和信息化部发布石化化工行业鼓励推广应用的技术和产品目录公示,新型微通道反应器装备及连续流工艺技术、超重力偶氮化反应器装备新技术、反应精馏成套技术、高纯/超高纯化学品精馏关键技术、高效高可靠多级化工离心泵关键技术等32项技术和产品在列。石化化工行业鼓励推广应用的技术和产品目录序号技术/产品名称技术/产品简介主要技术经济指标已推广应用情况适用领域推荐单位1新型微通道反应器装备及连续流工艺技术以新型连续流微通道反应系统为核心,可应用于多系列精细化学品的连续高效合成和规模化生产,尤其是放热剧烈、反应物或产物不稳定、物料配比严格、高温高压等危险化学反应。反应器总时空转化率STC≥20 mol⋅m-3⋅h-1;反应器温度T适用范围-100℃≤T≤350 ℃;反应器压力P适用范围≤10MPa;反应器单套处理量≥ 2000 t/a。该技术已应用于硝化、氯化、氧化、重氮化、烷基化等工艺中。精细化工中国石油和化学工业联合会2超重力偶氮化反应器装备新技术针对传统间歇反应器生产效率低、人工强度大等问题,开发了超重力偶氮化连续反应新工艺,可大幅降低生产过程危险化学品存量,实现精细化学品生产过程的流程再造和连续化生产,提升生产过程安全水平。主反应器体积较釜式反应器降低98%;原料转化率由98.5%提高到99.8%,产品收率提高2%;生产过程物料存量下降了90%以上,生产效率提高60%;高COD废水量减少20%,能耗降低30%以上。该技术已应用于染料和颜料的偶氮化反应。精细化工浙江省经济和信息化厅3反应精馏成套技术该技术创建了普适性反应精馏过程概念设计方法,实现了催化填料结构尺寸的优化和调控,发明出高性能的催化填料,开发了一系列高效的反应精馏成套技术,相比于反应与分离各自独立的过程,该反应精馏技术具有转化率高、选择性好、能耗低等优点,在酯化、水解、酯交换、叠合等过程中有着广泛的应用前景。反应转化率提高30-50%;催化剂利用率提高80-110%;选择性提高10-40%;能耗降低20-50%;产能提高20-40 %。该技术已在多家石化企业应用。石化中国石油和化学工业联合会4高纯/超高纯化学品精馏关键技术采用高效、抗堵的FGVT塔板精馏关键技术,高效率、大通量的BH型填料精馏关键技术,以及精馏全流程节能的四层面响应曲面优化技术(4D-RSM)等,提高了精馏效率,实现了塔内、塔间、工段间、装置间全流程节能优化。FGVT塔板的分离效率提高30%以上,操作弹性提高33%;BH 型填料的分离能力提高50%以上,压降降低37%;能耗降低30%以上。该技术已在化工企业应用。化工中国石油和化学工业联合会5高效高可靠多级化工离心泵关键技术开发了高效高可靠典型多级化工离心泵系列产品,改进了多级化工离心泵效率低、轴向力过大的问题,可提升多级离心泵总体节能降耗水平。关键技术提高了整泵效率和流体动力学稳定性,效率可提高9.8个百分点,轴向力可减小50%以上,可解决多级化工离心泵扬程和效率低、轴向力过大的难题;零部件节材15%-20%,机组成本降低10-15%。该系列产品已应用于石油开采、油气集输、石油炼制、化纤化肥、煤化工等行业。化工中国石油和化学工业联合会6智能乘用胎半钢一次法成型系统以轮胎成型过程的智能化为核心,通过开发智能成型装备的信息化管理控制软件、突破非接触检测与多传感器数据融合及视觉感知技术、攻关自适应控制算法等核心关键环节,实现了系统的智能化控制、智能感知和故障诊断、半部件自动定中及实时纠偏等功能,并采用模块化的产品研发理念,实现了不同客户个性化需求的快速定制,有效提升了轮胎成型装备的智能化水平。系统单循环时间低于40s,日产量可达1400套;同寸级的规格调整时间小于5min,跨寸级规格调整时间小于40min;每72小时设备有效运行时间高于97%。该技术已在多家轮胎企业应用,可在橡胶轮胎行业的推广应用。轮胎中国石油和化学工业联合会7农林废弃物快速热解液化及其产品高值化梯级利用与关键装备技术首创了农林废弃物自混合下行床快速热解制腐植酸新工艺及成套装备,可以生物腐植酸为主要原料生产高值靶向腐植酸环境材料,实现了铬污染土壤可持续修复的工业化,技术可用于重金属污染土壤和盐碱地改良。液体收率提高15%以上,含灰降至不高于0.1%;生物腐植酸纯度不低于96%,活性官能团提高3倍以上,成本降低80%。该技术已应用于污染和退化土壤修复。生物化工中国石油和化学工业联合会8提高轻油收率的深度延迟焦化技术开发了深度延迟焦化技术,解决了炉管结焦过快等问题,具有结焦速率低、停留时间长、处理量大、轻油收率高等特点。与目前先进技术相比:焦化炉单程处理量提高至60万吨/年,提高50%;注汽量降低至1000kg/hr,降低50%;清焦周期延长1倍左右;焦炭产率系数降低至1.4左右;石油焦产率平均降幅10%。该技术已在炼油企业实现应用。石油炼制中国石油和化学工业联合会9对苯二胺类防老剂新型过程强化技术采用贵金属催化氢化合成橡胶防老剂6PPD,可简化流程,实现连续化生产,提升安全性、降低能耗物耗。结晶点≥45.5℃;加热减量(70±2℃) ≤0.5%;灰分(750±25℃)≤0.1% ;纯度(GC法)≥97%。消耗下降30%,能耗下降20%,原料单耗下降5%,吨产品成本下降了10%以上。该技术已在多家橡胶企业实现应用。橡胶中国中化集团有限公司10高效合成、低能耗尿素工艺技术采用全冷凝反应器的尿素合成高压圈、两段式工艺流程,设置简捷中压系统,降低了高压汽提塔负荷和中压蒸汽消耗,工艺能耗低于传统水溶液全循环法尿素装置和CO2汽提法尿素装置。吨尿素消耗原料液氨568kg,CO2 735kg,循环水(10℃温差)65t,耗电25kWh,吨尿素耗蒸汽(2.4MPa饱和蒸汽)700kg;与传统CO2气提法尿素工艺比,吨尿素2.4MPa饱和蒸汽消耗可降低300kg,电耗增加2kw.h,循环水耗降低10t,原料液氨和CO2消耗相当;尿素主装置吨产品综合能耗折标煤107.8kg,比传统CO2气提法尿素装置低25-30%。该技术已在氮肥生产企业实现应用。化肥中国石油和化学工业联合会11绿色高效催化防脱氯连续加氢技术结合不同催化剂的特性,采用磁分离、膜分离等技术实现万吨级邻苯二胺、2,5-二氯苯胺连续化生产,具有工艺清洁,安全风险小,自动化程度高,能耗低,设备腐蚀程度低,产品质量稳定等特点。硝基物加氢原料转化率大于99.95%,选择性大于99%,其中氯代硝基苯加氢脱氯副反应产物选择性小于0.1%,吨产品的催化剂消耗小于1kg,产品含量大于99.95%;生产1t邻苯二胺产生的废水量较硫化碱还原法减少95%;连续化加氢反应风险为“1级”,氢气消耗下降15%。该技术已在精细化工行业实现应用。精细化工中国中化集团有限公司12基于工业互联网的石化行业重大危险源风险管控与应急一体化系统根据石化行业风险分析及安全需求,开发了生产企业、油气田、油库、长输管道等基于工业互联网的石化行业重大危险源风险管控与应急一体化系统,并在大型石化企业、油气储运设施成功应用,提升企业安全生产和应急管理的可视化、集成式、智能化水平。研发基于红外特征吸收光谱及多波长激光光谱分析的泄露检测技术,通过3μm以下H2S、CO、CH4和C2H4特征吸收光谱抗干扰测量及计算机层析技术的多线吸收光谱水平场快速反演,实现ppb级1公里范围水平场泄露准确识别和早期预警。该技术已在石化生产和储运企业、及安全生产监管部门的工业互联网系统建设中得到应用。石化中国石油和化学工业联合会13Robust-IC 全流程智能控制系统将互联网、大数据、人工智能与石油化工生产过程深度融合,解决了石化生产装置中多变量、非线性、强耦合、纯滞后、间歇式和连续式控制并存、多约束和多目标调控等技术难题,提高石化生产装置智能化水平。智能控制率达98%以上,平稳率达100%;控制回路均方差降低20-90%;收率提高0.2-3.0%;能耗降低0.5-10%。该系统已在多套石化炼油生产装置应用。石化中国石油和化学工业联合会14大型气流床气化技术气流床气化从原料形态分为水煤浆、干煤粉两种,水煤浆气化技术将煤粉制成煤浆,气化炉气化温度1350~1500℃;粉煤气化技术是用气化剂将煤粉夹带入气化炉,在1500~1900℃高温下气化,残渣以熔渣形式排出。先进气流床气化工艺具有气化压力高、处理能力大、碳转化率高、煤种适应范围较宽等特点,还可协同处置危险废物。水煤浆气化技术:气化压力1.5-8.7MPa,碳转化率>98.5%,冷煤气效率70%,有效气(CO+H2)含量80%;与固定床气化工艺相比,能耗降低10%以上。粉煤气化技术:气化压力2.0-4MPa,碳转化率≥99%,冷煤气效率80%,有效气(CO+H2)含量90%;与固定床气化工艺相比,能耗降低10%以上。该技术已经应用于煤化工等行业。煤化工、石化中国石油和化学工业联合会15基于界面调控和粒径优化的分散稳定技术基于可有效调控固液界面张力三元共聚物(NDF)和动态优化固体粒径及其分布技术(NDJ),解决了固液体系生产、储运和使用中界面不容、性能劣化、体系不稳的问题。在煤化工领域,煤浆浓度提高62%,稳定在1000mPa/s时存放45天无沉淀;在材料领域,熔体流动速率提高至33%;在农药领域,载药量提高50%。该技术已应用于化工、材料和农药领域。石化中国石油和化学工业联合会16面向石化行业的危化品存储运输监控系统针对危化品存储、车辆运输过程中存在的监控信息不全面、监控数据不准确、调度信息不科学等问题,将卫星导航、物联网技术、云计算技术、智能感知等技术应用于危化品车辆运输管理,提高了危化品车辆运输的生产管控水平。支持30万台终端接入位置服务平台;支持不少于1万的管理用户数,并可平滑扩展;满足信息安全三级要求;车载终端温度、压力、液位、胎压等常用传感器可配置兼容接口;支持3G/4G/5G移动通信;支持视频传输,最高可达720P;定位精度高于10m,速度精度优于0.2m/s。该技术已在多家石化企业应用。石化中国石油和化学工业联合会17管道完整性管理及智能分析决策技术围绕油气输送管道完整性管理及智能分析决策业务需求,开发多种技术的管道完整性管理及智能分析决策成套技术,可以有效提升管道完整性管理的专业化、科学化、智能化水平。管道不同批次检测数据对齐覆盖率100%;有效提高管道维修决策可靠性,降低检维修费用15%以上;提高管道数据关联性和利用率。该技术已在部分原油管道、成品油管道、天然气管道、集输管道及厂际管道得到应用。石化中国石油化工集团有限公司18石化企业水务智能技术以智能传感器为基础,对工业水系统的实时信息实现无线自动采集,实现从工业水生产运行中心到生产装置的各个层次的系统监控、统计分析及智能预警,通过工业水多水源分配优化、循环水系统全流程优化、污水系统整体优化。系统运行稳定,数据满足系统要求;系统整体功能完备,界面友好、互动性强,接口具有较强的开放性;系统安装配置灵活方便,支持快速部署与应用,易维护;系统支持并发用户数大于1000人;系统优化模型计算稳定收敛,计算误差小于5%;模型计算响应时间小于5秒,数据库服务器处理时间小于2秒,应用服务器处理时间小于3秒,数据查询响应时间小于3秒,系统能支持7×24小时的业务访问。该技术适用于流程行业的工业水系统(新鲜水系统、循环水系统),已在石化企业应用。化工天津市工业和信息化局19石化储罐完整性管理关键技术针对石化储罐(群)安全管理需求,开发形成了“检测+评价+决策+系统”的储罐完整性管理成套技术,可实现储罐结构形变和基础沉降的全面、精确、快速检测与评价。储罐结构形变识别精度±3mm以内;储罐腐蚀检测可靠性85%以上,风险因素辨识率90%以上;基于全面检查评价、风险评价和腐蚀预测的完整性综合分析与决策方法,有效提高开罐检维修修计划可靠性,降低检维修费用20%以上;储罐(群)完整性管理系统有效提高数据利用率和罐区管理水平。该技术已应用于多个石油储备库。石化中国石油化工集团有限公司20基于液化天然气(LNG)冷能利用的液体空分设备利用高压LNG气化过程的冷量,以较低的水电消耗生产液氧、液氮和液氩等产品,减少常规LNG气化过程中对周边环境的影响。采用先进的空分流程工艺和制造技术,比常规空分设备节电50%;采用乙二醇闭式循环,取消了常规的循环冷却水系统以及冷冻机组,节省水消耗70%。该设备已应用于液化天然气LNG接收站项目。石化装备中国石油和化学工业联合会21双氧水本质安全化技术针对双氧水生产中的安全环保问题,优化了气相燃爆高风险环节的工艺设计,降低了双氧水装置的废气排放,形成了包含工艺、控制、设备等内容的双氧水装置安全保障系列技术,提升了双氧水装置的自动化监控水平。尾气排放量降低80%以上;总磷含量平均降低50%以上;关键安全参数实现在线软测量分析,误差小于8%。该技术已用于多家石化企业双氧水装置。精细化工中国石油和化学工业联合会22周期性扩缩流动强化传热减阻节能技术开发了流道间距可调的连续扩缩错/逆流翅片板换热器以及组合式梅花瓣型/多向波纹型超长内翅片管换热器,可在流程工业严苛工况下实现余热资源高效利用。开发的扩缩变流冷凝式余热回收换热装置比传统翅片管式换热器传热系数提高2倍,内翅片管比传统光管换热器传热系数提高1.5倍;换热装备寿命提高30%,实现了高效低能耗。该技术已在化工行业实现应用。石化中国石油和化学工业联合会23满足国VI升级的FCC汽油关键组分定向分离技术该技术通过蒸馏切割将FCC汽油分离为轻、中和重三个汽油馏分,对中汽油馏分进行溶剂双向萃取,实现了“烷烃/环烷烃/大分子烯烃”、“小分子烯烃”和“芳烃和硫化物”三组关键组分的同时分离。芳烃和硫化物与重汽油馏分可直接选择性加氢脱硫,减少辛烷值损失;其余组分可作为高辛烷值调和组分或生产高辛烷值组分及高附加值化工产品原料。催化汽油精制后总硫小于10mg/kg;50%以上的高烯烃催化汽油不进行加氢脱硫;氢耗较加氢技术减少1/2~2/3,RON损失少1~2个单位。该技术已在多家炼油企业应用。石油炼制中国石油和化学工业联合会24煤基合成气制乙二醇工程技术该技术以合成气为原料,以亚硝酸甲酯为中间循环物质,经草酸二甲酯制备乙二醇产品,工艺路线安全、环保。草酸二甲酯选择性95%以上,时空产率600g/(kgcath)以上;草酸二甲酯转化率99.9%,乙二醇选择性95.0%以上,乙二醇的时空产率400g/(kgcath)以上;酯化羰化尾气经处理后的NOx≤80mg/m3;产品乙二醇纯度稳定达到99.9%以上,220nm下的紫外透过率85%以上,满足国标优等品要求;酯化羰化工段有效避免传统技术采用亚硝酸钠引发产生的废盐。该技术已经在多家煤化工企业实现应用。煤化工中国石油和化学工业联合会25PX氧化催化剂绿色制备关键技术该技术开发了醋酸钴水溶液、醋酸锰水溶液、醋酸钴锰水溶液和钴锰溴水溶液四种PX氧化催化剂及绿色制造技术。催化剂活性高、稳定性好,可减少环境污染,改善生产和应用环境。与传统技术相比,吨醋酸钴节约27kg钴、511kg醋酸及1t硝酸;吨醋酸锰节约73kg锰和602kg醋酸;醋酸钴能耗低于传统工艺的2%;醋酸锰和溴化锰可基本实现零外供能耗;产品中主要杂质含量降低90%。该技术在多家石化企业应用。石化浙江省经济和信息化厅26大规模低阶煤管式间接干燥工艺技术与装备采用间接换热低温干燥技术,以低压过热蒸汽作为干燥介质,通过与壳程内水蒸气间接换热实现干燥,煤中水分除尘、冷却后回收可作为项目补充用水,大幅降低废水产生量,适用于高水分低阶煤的提质和加工利用。褐煤水分由35-45%降低到10-12%;无固体或液体废弃物排放,干燥尾气中的粉尘含量达到200mg/m3(标况)以下;干燥机蒸发的水蒸气回收率可达94%;与现行通用技术相比,废水产生、处理量下降90%。该技术已在煤化工企业实现工业化应用。煤化工中国石油和化学工业联合会27三峰级配制备高浓度水煤浆成套技术基于煤浆复合流理论的三峰级配制备高浓度气化煤浆技术,配套研制了大型细磨机与超细磨机系列关键设备和专用添加剂,可在大幅度降低气化能耗的同时将细化/超细化改性污泥形成的均质浆液作为液相填充载体,实现了高掺量污泥与煤协同制浆。在单棒磨制浆基础上将煤浆浓度提高3-6个百分点,高掺量污泥与煤协同制浆技术可达到污泥(含水95%)/干煤≥5%; 水煤浆浓度每提高 1 个百分点,1000Nm3合成气煤耗降低7.51kg,氧耗降低8.61Nm3;与现有单棒磨技术相比,生产单位产品可节约标煤7%、水资源19%、无污泥排放。该技术已在煤化工企业实现应用。煤化工中国石油和化学工业联合会28高性能耐硫变换催化剂和净化剂成套关键技术针对煤或石油焦等制氢亟需的高压耐硫变换催化剂及净化剂存在抗水合性能差、易粉化、变换系统易“飞温”等技术难题,开发了高性能耐硫变换催化剂和净化剂成套关键技术,解决了催化剂床层在高浓度CO条件下易“飞温”的问题,实现了过程安全可控、高效脱除杂质气体和可控变换。催化剂在200℃水热处理4小时物相不发生变化;镁铝尖晶石载体强度不低于150N/cm,比表面积不低于180m2/g;催化剂强度不低于150N/cm,比表面积不低于150m2/g,催化剂CO转化率可在40-95%之间调整;与传统技术生产镁铝尖晶石载体相比,载体生产过程实现无废水排放,焙烧温度从约700℃降至550℃,每吨载体节省电耗15%以上;与传统催化剂生产技术相比,催化剂生产过程减少废水排放60%以上;降低活性金属氧化物用量20%以上。该技术已在煤化工领域实现应用。煤化工福建省工业和信息化厅29高性能聚四氟乙烯分散树脂产业化新技术设计开发了新型反应装置,实现反应体系的高效分散性、粒径分布均匀性以及聚合体系稳定性,提高了聚四氟乙烯的压缩比。针对现有聚四氟乙烯分散树脂生产废水中含有全氟辛酸的问题,开发了靶向捕获污水处理技术,可回收废水中98%以上的全氟辛酸或含量降至ppb级。废水中全氟辛酸回收率达到98%以上(或降至ppb级);乳液输送稳定性提升,破乳料减少90%。该技术已经实现工业化应用。化工新材料四川省经济和信息化厅30焦炉气制甲醇绿色技术该技术以焦炉气为原料生产甲醇,开发了废水汽提及热量回收、锅炉排污水回收等节能、节水绿色工艺,资源利用效率提高。该技术还可用于低阶煤分质分级利用领域,利用中低温热解煤气生产甲醇产品,发挥热解煤气潜在价值,实现资源综合利用、节能减排。该技术适用于17000~125000Nm3/h焦炉气制甲醇;30万吨/年焦炉气制甲醇装置运行能耗1272.4kgce/t。该技术已在焦炉气制甲醇领域实现应用。煤化工中国化工集团有限公司31高纯度(≥95%)过氧化氢异丙苯生产工艺及产品采用空气替代氧气制备过氧化氢异丙苯(CHP)新工艺,工艺简单安全,污染物零排放,生产周期短,产品产出率高,一次精镏可达到95%含量的优质产品。外观无色透明,纯度不低于95%; 活性氧含量不低于9.98%;密度不低于1.04g/ml;PH值4-8;色相(Gardner)不大于1。该产品已在医药生产行业应用。精细化工辽宁省工业和信息化厅32红矾钠有机还原制备氧化铬绿和铬酸酐联产清洁技术利用淀粉和葡萄糖混合物为还原剂,低温加压高效还原红矾钠,并与铬酸酐生产过程耦合,实现清洁生产,提高了资源利用率,全流程削减了污染物排放。红矾钠的液相还原转化率和含铬硫酸氢钠中六价铬的还原转化率均接近100%;可同时制备冶金级氧化铬和颜料级氧化铬,颜料级氧化铬绿符合国家标准;能耗降低约12%。该技术已应用于铬盐行业。无机盐中国石油和化学工业联合会
  • 315项行业标准正在公示中,涉及ICP-AES、GC等多类仪器方法
    根据行业标准制修订计划,相关标准化技术组织完成了315项行业标准的制修订工作,28项行业标准外文版的编制工作以及5项行业标准样品的研制工作,在以上标准、标准外文版及标准样品发布之前,目前正处于公示阶段,以听取社会各界意见,公示时间截止至2022年5月14日。小编整理了上述标准中与科学仪器相关的标准,主要涉及石化、冶金、有色金属、轻工和稀土行业,包含色谱、质谱、光谱方法等。行业标准共有20项与仪器相关,其中使用电感耦合等离子体发射光谱法的共有5项,使用气相色谱法的3项,还有高效液相色谱法、辉光放电质谱法、(波长色散型)X射线荧光光谱法、核磁共振波谱法等。行业标准名称及主要内容等一览序号标准编号标准名称标准主要内容代替标准1 SH/T 1833-2022合成生橡胶色差的测定 色差仪法 本文件规定了用色差仪测定合成生橡胶色差的方法。 本文件适用于浅色的丁二烯橡胶、丁苯橡胶、丁腈橡胶、乙丙橡胶、异戊橡胶及丁基橡胶等块状合 成生橡胶。 2 SH/T 1835-2022低碳α-烯烃中金属含量的测定 电感耦合等离子体发射光谱法 本文件规定了用电感耦合等离子体发射光谱法(ICP-OES)测定低碳α-烯烃中金属含量的方法。 本文件适用于C6~C10低碳α-烯烃中铁、铝和铬金属含量的测定,其最低测定浓度分别为0.2 mg/kg、0.5 mg/kg和0.2 mg/kg。 3 SH/T 1054-2022工业用二乙二醇纯度和杂质的测定 气相色谱法 本文件规定了工业用二乙二醇的纯度及杂质测定的气相色谱法。 本文件适用于纯度不低于99.0%(质量分数)的工业用二乙二醇样品。其中乙二醇、三乙二醇、1,3-二氧戊环-2-甲醇、1,4-二氧六环-2-醇和1,4-丁二醇等杂质的检测限为0.0020%(质量分数)。SH/T 1054-19914 SH/T 1496-2022工业用叔丁醇酸度的测定 滴定法 本文件规定了工业用叔丁醇酸度测定的手动滴定法和电位滴定法。 本文件适用于异丁烯水合法及异丁烷共氧化法工艺制得的酸度不低于2 mg/kg的工业用叔丁醇的测定。SH/T 1496-19925 SH/T 1497-2022工业用叔丁醇纯度及杂质的测定 气相色谱法 本文件规定了用气相色谱法测定工业用叔丁醇纯度及杂质含量。 本文件适用于异丁烯水合法和异丁烷共氧化法工艺生产的工业用叔丁醇的测定。当采用热导检测器(TCD)测定TBA-85时,其杂质的最低测定含量为0.01%(质量分数),当采用氢火焰离子化检测器(FID)测定TBA-85、TBA-95、TBA-99时,其杂质的最低测定含量为0.001%(质量分数)。SH/T 1497-20026 SH/T 1498.6-2022尼龙66盐 第6部分:硝酸盐含量的测定 高效液相色谱法 本文件规定了测定尼龙66盐中硝酸盐含量的高效液相色谱法。 本文件适用于尼龙66盐中硝酸盐含量的测定,最低测定含量为0.15 mg/kg。SH/T 1498.6-19977 YB/T 4983-2022磷铁 磷、硅、锰、钛含量的测定 电感耦合等离子体原子发射光谱法 本文件规定了采用电感耦合等离子体原子发射光谱法测定磷、硅、锰和钛的含量。 本文件适用于磷铁中磷、硅、锰和钛含量的测定。8 YB/T 4989-2022焦炉煤气 煤焦油含量的测定 分光光度法 本文件规定了焦炉煤气中煤焦油含量测定的试剂和材料、仪器和设备、测试步骤、试验结果、允许差和试验报告。 本文件适用于焦炉煤气中煤焦油含量测定。9 YB/T 4990-2022焦化轻油酚含量的测定 气相色谱法 本文件规定了焦化轻油中酚含量测定的试剂材料、仪器设备、试验步骤、数据处理、允许差等。 本文件适用于煤焦油蒸馏所制得的焦化轻油中酚含量的测定。10 YS/T 1525-2022镍铂合金化学分析方法 氧和氮含量测定 脉冲-红外吸收法和热导检测法 本文件规定了镍铂合金中氧含量和氮含量的测定方法。 本文件适用于镍铂合中氧含金量和氮含量的测定。测定范围:0.0010%~0.020%。11 YS/T 1530-2022高纯锡化学分析方法 杂质元素含量的测定 辉光放电质谱法 本文件规定了高纯锡中杂质元素含量的测定方法。 本文件适用于高纯锡中杂质元素含量的测定。各元素测定范围:0.001 μg/g~5 μg/g。12 YS/T 482-2022铜及铜合金分析方法 火花放电原子发射光谱法 本文件规定了铜及铜合金中合金元素及杂质元素的火花放电原子发射光谱法。 本文件适用于铜及铜合金中铅、铁、铋、锑、砷、锡、镍、锌、磷、硫、锰、硅、铬、铝、银、锆、镁、硒、碲、钴、镉、硼、钛、铍含量的测定。YS/T 482-200513 YS/T 483-2022铜及铜合金分析方法 X射线荧光光谱法 (波长色散型) 本文件规定了铜及铜合金中合金元素及主要杂质元素的X射线荧光光谱分析方法。 本文件适用于铜及铜合金中铜、镍、锌、铝、铁、锡、铅、锰、硅、铬、砷、磷、镁、银、钴、铋、锑、硫、硒、碲、镉含量的测定。YS/T 483-200514 YS/T 1075.9-2022钒铝、钼铝中间合金化学分析方法 第9部分:氯含量的测定 氯化银分光光度法 本文件规定了钒铝、钼铝中间合金中氯含量的测定方法。 本文件适用于钒铝、钼铝中间合金中氯含量的测定。测定范围:0.010%~0.10%。15 YS/T 1075.10-2022钒铝、钼铝中间合金化学分析方法 第10部分:钠含量的测定 火焰原子吸收光谱法 本文件规定了钒铝、钼铝中间合金中钠含量的测定方法。 本文件适用于钒铝、钼铝中间合金中钠含量的测定。测定范围:0.001%~0.020%。16 YS/T 1075.13-2022钒铝、钼铝中间合金化学分析方法 第13部分:铁、硅、钼、铬含量的测定 电感耦合等离子体原子发射光谱法 本文件规定了钒铝中间合金中铁、硅、钼、铬含量及钼铝中间合金中铁、硅含量的测定方法。 本文件适用于钒铝中间合金中铁、硅、钼、铬含量及钼铝中间合金中铁、硅含量的测定。测定范围:0.004%~0.50%。17 YS/T 1539-2022铝基氮化硼粉末中氮化硼含量的测定 电感耦合等离子体原子发射光谱法 本文件规定了铝基氮化硼粉末中氮化硼含量的测定方法。 本文件适用于不含有机粘接剂的铝基氮化硼粉末中氮化硼含量的测定,测定范围:10.00%~23.00%。18 YS/T 1531-2022铑炭化学分析方法 铑含量的测定 电感耦合等离子体原子发射光谱法 本文件规定了铑炭中铑含量的测定方法。 本文件适用于铑炭中铑含量的测定。测定范围:0.100%~8.00%。19 QB/T 5759-2022番茄酱罐头中番茄红素含量测定 高效液相色谱法 本文件规定了采用高效液相色谱法测定番茄酱罐头中番茄红素含量的方法。 本文件适用于采用高效液相色谱法进行番茄酱罐头中番茄红素含量的测定。20 QB/T 5761-2022食品中水苏糖的测定 核磁共振波谱法 本文件规定了食品中水苏糖的测定方法——核磁共振波谱法。 本文件适用于采用核磁共振波谱法测定食品中的水苏糖,包括水苏糖原料、饮料及压片糖果。行业标准外文版序号标准编号标准名称(中文)标准名称(外文)标准主要内容项目类型翻译语种1XB/T 617.3-2014钕铁硼合金化学分析方法 第3部分:硼、铝、铜、钴、镁、硅、钙、钒、铬、锰、镍、锌和镓量的测定 电感耦合等离子体原子发射光谱法Chemical analysis methods for neodymium iron boron alloy -Part 3: Determination of boron, aluminum, copper, cobalt, magnesium, silicon, calcium,vanadium,chromium, manganese, nickel, zinc and gallium contents-Inductively coupled plasma atomic emission spectrometry本部分规定了钕铁硼合金中硼、铝、铜、钴、镁、硅、钙、钒、铬、锰、镍、锌和镓量的测定方法。翻译已有标准英语2XB/T 617.4-2014钕铁硼合金化学分析方法 第4部分:铁量的测定 重铬酸钾滴定法Chemical analysis methods of neodymium iron boron alloy-Part 4: Determination of iron content - The potassium dichromate titrimetry本部分规定了钕铁硼合金中铁含量的测定方法。翻译已有标准英语行业标准样品目录序号标准号标准名称有效期研 制 单 位1 YSS106-2022铝合金3004化学标准样品15年东北轻合金有限责任公司2 YSS107-2022铝合金3004铸态光谱单点标准样品15年东北轻合金有限责任公司3 YSS108-2022铝合金3A11化学标准样品15年东北轻合金有限责任公司4 YSS109-2022铝合金3A11铸态光谱单点标准样品15年东北轻合金有限责任公司5 YSS110-2022铝合金6063铸态光谱单点标准样品15年抚顺铝业有限公司
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制