当前位置: 仪器信息网 > 行业主题 > >

对三氟甲氧基苯基异丁酮

仪器信息网对三氟甲氧基苯基异丁酮专题为您提供2024年最新对三氟甲氧基苯基异丁酮价格报价、厂家品牌的相关信息, 包括对三氟甲氧基苯基异丁酮参数、型号等,不管是国产,还是进口品牌的对三氟甲氧基苯基异丁酮您都可以在这里找到。 除此之外,仪器信息网还免费为您整合对三氟甲氧基苯基异丁酮相关的耗材配件、试剂标物,还有对三氟甲氧基苯基异丁酮相关的最新资讯、资料,以及对三氟甲氧基苯基异丁酮相关的解决方案。

对三氟甲氧基苯基异丁酮相关的论坛

  • 迪马新产品——Inspire PFP 五氟苯基

    慕尼黑上海分析生化展,迪马科技最新推出了Inspire 苯基系列色谱柱,一直忙未给大家及时普及,今天来说说第一款Inspire PFP ( 五氟代苯基) 是Inspire 液相色谱柱家族新成员,针对分离极性化合物过程中的保留时间和分离度问题而特别设计。Inspire PFP 凭借其优异的选择性,可为极性化合物、复杂天然产物、位置异构体和其它相关化合物在C18 和C8 色谱柱上的分离提供一个替代和补充。Inspire PFP 具有U 型色谱分离特性,适用于正相、反相和亲水作用色谱三种分离模式,并具有多种作用机理,因而能够同时分离检测不同极性化合物的混合物,为目前难以解决的复杂极性和亲水性样品的分离分析提供了强有力的工具,可轻松解决其它色谱柱面临的分离难题,为用户实现强极性分析物的优异选择性提供一种更加便捷的途径。同时也为色谱工作者使用简单流动相,避免使用极端pH 条件和准备复杂流动相提供了可能性。Inspire PFP 色谱柱特点• 五氟代苯基硅烷键合在高纯硅胶基质上• 具有U 型色谱分离特性,适用于正相、反相和亲水作用色谱三种分离模式• 对极性化合物具有独特的保留能力• 良好的峰形、超高的柱效、分离度和使用寿命• 适用于芳环类化合物或长共轭体系化合物的分离• 优异的批次重现性增强位置异构体分离能力官能团位置的微小差异可以极大的影响分子性能,在许多情况下,传统的C18色谱柱根本无法扑捉到这种细微的差异。然而,Inspire PFP的多功能选择性却可以区分由于分析物内部微小位置变化而导致的分析物的空间位阻变化还是分析物的偶极矩偏移。色谱柱如图所示 规格 150 × 4.6 mm, 5 μm 流动相0.1% 甲酸乙腈溶液:0.1% 甲酸水溶液 = 40:60 流速1.5 mL/min 柱温室温 检测器 UV 254 nm 样品1. 3,4-二甲氧基苯酚 2. 2,6-二甲氧基苯酚3. 3,5-二甲氧基苯酚4. 2,6-二氟苯酚5. 2,4-二氟苯酚6. 2,3-二氟苯酚7. 3,4-二氟苯酚8.3,5-二甲基苯酚9.2,6-二甲基苯酚10.4-氯-3-甲基苯酚11.4-氯-2-甲基苯酚12.3,4-二氯苯酚13.3,5-二氯苯酚http://www.dikma.com.cn/u/image/2016/09/06/1473147613188048.jpg苯氧酸类化合物分子上卤素的加入可以从根本上增强化合物的极性,而极性的变化通常伴随着反相色谱柱在保留时间和分离能力上困难的增加。此时使用InspireTM PFP 是解决保留问题的最有效的方法。InspireTM PFP利用偶极-偶极和氢键作用更好地保留,区分和分离极性卤化化合物。色谱柱 如图所示规格 150 × 4.6 mm, 5 μm流动相乙腈:0.1% 甲酸水溶液 = 50:50流速1.0 mL/min柱温室温检测器UV 220 nm样品1. 苯氧乙酸2. 邻氯苯氧乙酸3. 对氯苯氧乙酸4. 2,4-二氯苯氧乙酸5. 2,4,5-三氯苯氧乙酸6. 2,4,5-三氯苯氧丙酸http://www.dikma.com.cn/u/image/2016/09/06/1473147817102957.jpg类固醇通过整合偶极-偶极、π-π和氢键机理,InspireTM PFP实现标准反相条件下极性化合物的最佳分离。色谱柱 如图所示 规格 150 × 4.6 mm, 5 μm 流动相甲醇:水 = 60:40 流速1.5 mL/min 柱温室温 检测器UV 254 nm 样品1.泼尼松龙3.地塞米松5.氢化可的松21-乙酸酯7.可的松-21-乙酸酯2.泼尼松4.皮质酮6.11-α羟孕酮8.11-酮孕甾酮http://www.dikma.com.cn/u/image/2016/09/06/1473148006619700.jpg甲基苯乙酮异构体目标分析物上的基团位置变化可以影响化合物的偶极矩,这种变化可以很容易被高电负性的氟原子和其它保留机理察觉,因此InpireTM PFP可以有效地用于分离甲基苯乙酮的位置异构体。色谱柱 如图所示规格 150 × 4.6 mm, 5 μm流动相甲醇:水 = 50:50流速1.0 mL/min柱温室温检测器UV 254 nm样品1. 邻 -甲基苯乙酮2. 对 -甲基苯乙酮3. 间 -甲基苯乙酮http://www.dikma.com.cn/u/image/2016/09/06/1473148212903667.jpg核苷酸和核苷色谱柱 如图所示规格 150 × 4.6 mm, 5 μm流动相0.1% 甲酸水溶液流速1.0 mL/min柱温室温检测器UV 220 nm样品1. 胞嘧啶2. 5'-CMP3. 5'-UMP4. 5'-GMP5. 尿苷6. 胸腺嘧啶 http://www.dikma.com.cn/u/image/2016/09/06/1473148405914511.jpg抗胃酸药色谱柱 如图所示规格 150 × 4.6 mm, 5 μm流动相乙腈:20 mM 磷酸氢二钾(pH 7.0) = 20:80流速1.0 mL/min柱温室温检测器UV 220 nm样品1.法莫替丁2.西咪替丁3.尼扎替丁4.雷尼替丁 http://www.dikma.com.cn/u/image/2016/09/06/1473148597658988.jpg氧化应激标记物色谱柱 如图所示规格 150 × 4.6 mm, 5 μm[/

  • 三苯基磷和三苯基氧磷的色谱检测条件

    [color=#444444][color=#444444]各位大牛,最近用液相色谱检测三苯基磷和三苯基氧膦,流动相是水和甲醇1:4,流量1.5ml/min,C18柱子,含有三苯基磷的样品在12min左右出了一个峰,含有三苯基氧膦的样品在2min左右出了一个峰,改成梯度测试,三苯基磷在32min左右出了一个峰,三苯基氧磷在2min左右出了一个峰,我不能确定2min左右的峰是不是三苯基氧膦,有没有做过的,给个判断,或者给个液相条件,不甚感激![/color][/color]

  • 紫外线吸收剂2,4-二乙氧基-6-(2’,4’-二羟基苯基)-1,3,5-三嗪在涤纶织物上的应用

    [b][font=宋体]摘要:[/font][/b][font=宋体]本文采用高温高压上染方法将自制的三嗪类紫外线吸收剂[/font]2,4-[font=宋体]二乙氧基[/font]-6-(2’,4’-[font=宋体]二羟基苯基[/font])-1,3,5-[font=宋体]三嗪上染到涤纶织物上,考察了该紫外线吸收剂对涤纶织物的上染性能,以及在与分散染料同浴上染时的相互影响,也考察了紫外线吸收剂的上染对涤纶织物紫外线防护性能以及染色涤纶织物耐光色牢度的影响。实验证明该紫外线吸收剂可以明显改善涤纶织物的紫外线防护性能,并能够在一定程度上改善染色涤纶织物的耐光色牢度。[/font][b][font=宋体]关键词:[/font][/b]2,4-[font=宋体]二乙氧基[/font]-6-(2’,4’-[font=宋体]二羟基苯基[/font])-1,3,5-[font=宋体]三嗪,紫外线吸收剂,涤纶,紫外线防护性能,耐光色牢度[/font]0 [font=宋体]前言[/font] [font=宋体]近几十年来,随着氯氟烃类污染物的大量排放,大气层上方的臭氧层遭到越来越严重的破坏,使得照射到地球表面在紫外线量不断增加,其中波长更短、破坏性更大的短波长紫外线增加的更为迅速[/font][sup][1,2][/sup][font=宋体]。紫外线尤其是短波长紫外线的迅速增加,会导致很多皮肤疾病如色斑、老化甚至皮肤癌等的发生;也会对户外使用的一些高分子材料造成危害,导致高分子材料以及上染到其上的染料发生分解,引起光褪色现象,影响材料的使用性能[/font][sup][3,4][/sup][font=宋体]。对于纺织品而言,一方面要设法降低其紫外透过率,增强织物的紫外线防护性能;另一方面又要设法保护上染到织物上的染料,增进织物的耐光色牢度。而紫外线吸收剂的应用,即可同时达到这两个方面的要求,这是因为紫外线吸收剂在上染到织物上以后,能够有效地吸收照射到织物表面的紫外线,并能将所吸收能量以对材料危害性较小的热能、振动能、磷光或者荧光灯形式释放出去,而后回复到基态,继续吸收紫外线[/font][sup][5,6][/sup][font=宋体]。这样就可以减小紫外线照射到织物基质或基质内其它光敏性物质上的几率,从而降低了引发织物基质以及上染到织物上染料发生光化学反应的几率,实现了对织物和染料的保护作用,同时增强了织物的紫外线防护能力以及染色织物的耐光色牢度[/font][sup][7,8][/sup][font=宋体]。[/font] [font=宋体]三嗪类紫外线吸收剂是紫外线吸收剂中的一个新的类型,它具有紫外吸收能力强、吸收所覆盖的波长范围广、与高分子材料相容性好以及自身耐光稳定性高等优点,使得三嗪类紫外线吸收剂已经成为近年来研究的一个热点[/font][sup][9,10,11][/sup][font=宋体]。本文采用高温高压方法将实验室自制的一只三嗪紫外线吸收剂[/font]2,4-[font=宋体]二乙氧基[/font]-6-(2’,4’-[font=宋体]二羟基苯基[/font])-1,3,5-[font=宋体]三嗪(其结构式如图[/font]1[font=宋体]所示)上染到涤纶织物上,考察其对涤纶织物的上染性能以及在与分散染料同浴上染时的相互作用,同时也考察了其对涤纶织物紫外线防护性能以及染色涤纶织物耐光色牢度方面的增进作用。[/font][align=center][img=,144,]file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image002.gif[/img][/align][align=center][font=宋体]图[/font]1. [font=宋体]紫外线吸收剂[/font]2,4-[font=宋体]二乙氧基[/font]-6-(2’,4’-[font=宋体]二羟基苯基[/font])-1,3,5-[font=宋体]三嗪[/font][/align]1 [font=宋体]试验[/font]1.1 [font=宋体]试验材料、药品及仪器[/font]1.1.1[font=宋体]试验材料[/font][font=宋体]涤纶平纹织物(市售,使用前经去油除杂处理)。[/font]1.1.2[font=宋体]试验药品[/font] 2,4-[font=宋体]二乙氧基[/font]-6-(2’,4’-[font=宋体]二羟基苯基[/font])-1,3,5-[font=宋体]三嗪(实验室自制),[/font][font=宋体]分散红玉[/font]SE-GFL[font=宋体]([/font]C.I. Disperse Red 73[font=宋体])[/font][font=宋体]、分散黄[/font]E-3G[font=宋体]([/font]C.I. Disperse Yellow 54[font=宋体])[/font][font=宋体]、分散蓝[/font]HGL[font=宋体]([/font]C.I. Disperse Blue 79[font=宋体]),[/font][font=宋体]消泡剂、润湿分散剂、[/font][font=宋体]分散剂[/font]NNO[font=宋体]等[/font][font=宋体]皆为工业级。[/font]1.1.3[font=宋体]试验仪器[/font] QM-ISP04[font=宋体]行星式球磨仪(南京大学仪器厂),[/font]LB-550V[font=宋体]激光粒度仪(日本[/font]Horiba[font=宋体]公司)[/font][font=宋体],[/font]TBB100-A[font=宋体]红外染色机(杭州三锦科技有限公司),[/font]Lambda 900 [font=宋体]紫外[/font]/[font=宋体]可见[/font]/[font=宋体]近红外分光光度仪(美国[/font]Perkin Elmer[font=宋体]公司),[/font]XENOTEST 150S[sup]+[/sup][font=宋体]风冷式[/font][font=宋体]日晒牢度仪(美国[/font]Atlas[font=宋体]公司),[/font]SF600X DataColor[font=宋体]测色光谱仪(美国[/font]DataColor [font=宋体]公司)。[/font]1.2 [font=宋体]试验方法[/font]1.2.1[font=宋体]紫外线吸收剂的合成[/font][font=宋体]紫外线吸收剂[/font]2,4-[font=宋体]二乙氧基[/font]-6-(2’,4’-[font=宋体]二羟基苯基[/font])-1,3,5-[font=宋体]三嗪的合成路线如图[/font]2[font=宋体]所示。[/font][align=center][img=,273,]file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image004.gif[/img][/align][align=center][font=宋体]图[/font]2. [font=宋体]紫外线吸收剂[/font]2,4-[font=宋体]二乙氧基[/font]-6-(2’,4’-[font=宋体]二羟基苯基[/font])-1,3,5-[font=宋体]三嗪的合成路线[/font][/align][font=宋体]分两步合成[/font]2,4-[font=宋体]二乙氧基[/font]-6-(2’,4’-[font=宋体]二羟基苯基[/font])-1,3,5-[font=宋体]三嗪:首先是让三聚氯氰和乙醇反应,生成二取代的中间体[/font]2,4-[font=宋体]二乙氧基[/font]-6-[font=宋体]氯[/font]-1,3,5-[font=宋体]三嗪;然后是让该中间体与间苯二酚反应生成产物。紫外线吸收剂合成出来以后,采用熔点测试、红外、核磁等手段对其进行表征,待确定合成所得到物质就是目的产物后,测试其紫外吸收性能,以考察其是否是紫外线吸收剂。[/font]1.2.2[font=宋体]紫外线吸收剂分散液的制备[/font] [font=宋体]由于合成所得到的紫外线吸收剂是一种疏水性的固体物质,若想上染到涤纶织物上必须先采用一定方法将其制成分散均匀稳定分散液,只有当紫外线吸收剂固体颗粒小到一定程度时,才能将其添加到涤纶织物的染浴中,本试验采用砂磨的方法来制备紫外线吸收剂分散液,用激光粒度仪来检测分散液中颗粒粒径的大小,从而确定砂磨时间。当紫外线吸收剂颗粒粒径小于[/font]3[font=宋体]μ[/font]m[font=宋体]时才能将紫外线吸收剂分散液添加到涤纶织物染浴中。[/font] [font=宋体]本实验采用[color=black]机械[/color]研磨及高速搅拌分散法将自制紫外线吸收剂配成均匀的分散液:[/font][font=宋体]向球磨仪中加入[/font]3g[font=宋体]紫外线吸收剂,[/font]150g[font=宋体]磨球,及含[/font]3%[font=宋体]消泡剂、[/font]3%[font=宋体]润湿分散剂的水溶液[/font]10mL[font=宋体],室温下球磨[/font]6h[font=宋体],球磨完成后定容到[/font]100mL[font=宋体],然后高速搅拌([/font]10000r/min[font=宋体]),制得[/font]30g/L[font=宋体]的分散体系,使用时稀释成浓度为[/font]3g/L[font=宋体]的分散液。[/font]1.2.3[font=宋体]紫外线吸收剂和分散染料对涤纶织物的上染[/font][font=宋体]采用与分散染料上染涤纶织物相同的高温高压方法将紫外线吸收剂单独或与分散染料同浴上染到涤纶织物上。[/font] [font=宋体]染液中分散剂[/font]NNO[font=宋体]浓度为[/font]1g/L[font=宋体],分散染料用量为[/font]1.0%[font=宋体]([/font]owf[font=宋体]),[/font][font=宋体]紫外线吸收剂[/font][font=宋体]用量分别为[/font]0.5%[font=宋体]、[/font]1.0%[font=宋体]、[/font]1.5%[font=宋体]、[/font]2.0%[font=宋体]、[/font]3.0%[font=宋体]([/font]owf[font=宋体])。织物重[/font]2g[font=宋体],浴比[/font]1:25[font=宋体]。染色温度为[/font]130℃,[font=宋体]保温[/font]45min[font=宋体]。[/font][font=宋体]上染结束后用含[/font]2g/L209[font=宋体]净洗剂和[/font]1.5g/L[font=宋体]碳酸钠的混合溶液净洗及清水洗涤。将清洗后的织物熨平晾干,用于后续测试。[/font]1.3 [font=宋体]测试方法[/font]1.3.1[font=宋体]紫外线吸收剂的表征及其紫外吸收性能的测试[/font] [font=宋体]紫外线吸收剂的熔点在[/font]XT-4[font=宋体]型数字显示熔点测定仪上进行;红外光谱在[/font]Nicolet Avator170[font=宋体]型红外光谱仪上进行,采用[/font]KBr[font=宋体]压片法进行测试;核磁测试在[/font]Avance-Av400[font=宋体]型核磁共振仪上进行,以氘代[/font]DMSO[font=宋体]为溶剂。[/font][font=宋体]将合成所得到的[/font]2,4-[font=宋体]二乙氧基[/font]-6-(2’,4’-[font=宋体]二羟基苯基[/font])-1,3,5-[font=宋体]三嗪配制成浓度为[/font][font=宋体]1[/font][font=宋体]×10[sup]-5[/sup]mol/L的氯仿溶液,然后在[/font]Lambda 900 [font=宋体]紫外[/font]/[font=宋体]可见[/font]/[font=宋体]近红外分光光度仪上测试溶液在紫外区域的吸收曲线。[/font]1.3.2[font=宋体]紫外线吸收剂分散液中颗粒粒径的测试[/font] [font=宋体]在[/font]LB-550V[font=宋体]激光粒度仪上测试,测试温度[/font]20[font=宋体]℃[/font][font=宋体]。[/font]1.3.3[font=宋体]紫外线吸收剂及分散染料在涤纶织物上上染率的测试[/font] [font=宋体]实验中采用残液法测试紫外线吸收剂及染料对织物上的上染率,按公式([/font]1[font=宋体])计算紫外线吸收剂及染料的上染率。[/font][img=,175,]file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image006.gif[/img] [font=宋体]([/font]1[font=宋体])[/font][font=宋体]式中:[/font]A[sub]1[/sub][font=宋体]表示残液中紫外线吸收剂或染料在其最大吸收波长处的吸光度;[/font]A[sub]0[/sub][font=宋体]表示对照液中紫外线吸收剂或染料在其最大吸收波长处的吸光度。[/font][font=宋体]文中所测染料在最大吸收波长下的吸光度扣除在该染料最大吸收波长处紫外线吸收剂吸光度的影响;紫外线吸收剂在其最大吸收波长处的吸光度扣除在该波长下染料吸光度的影响,扣除方法是双波长分光光度法[/font][sup][12][/sup][font=宋体]。[/font]1.3.4[font=宋体]紫外线防护因子的测试[/font][font=宋体]用[/font]Lamada 900 [font=宋体]紫外[/font]/[font=宋体]可见[/font]/[font=宋体]近红外分光光度仪测试织物的紫外透过率,并依此数据为依据参照国标[/font]GB/T 18830-2002[font=宋体]计算出织物的紫外线防护因子(即[/font]UPF[font=宋体]值)[/font][sup][13][/sup][font=宋体],[/font][font=宋体]按公式[/font]2[font=宋体]计算。[/font][img=,203,]file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image008.gif[/img] [font=宋体]([/font]2[font=宋体])[/font][font=宋体]式中:[/font][i]E([font=宋体]λ[/font])[/i][font=宋体]—日光光谱辐照度[/font]([font=宋体]参见国家标准[/font]GB/T 18830-2002)[font=宋体],单位为瓦每平方米纳米[/font](W[font=宋体][/font]m[sup]-2[/sup][font=宋体][/font]n m[sup]-1[/sup]) [i][font=宋体]ε[/font]([font=宋体]λ[/font])[/i][font=宋体]—相对的红斑效应[/font]([font=宋体]参见国家标准[/font]GB/T 18830-2002) [i]T([font=宋体]λ[/font])[/i] [font=宋体]—试样在波长为λ时的光谱透射比[/font] [i][font=宋体]Δλ[/font][/i] [font=宋体]—波长间隔,单位为纳米[/font](nm)[b]1.3.5[font=宋体]涤纶织物耐光照变色及耐光色牢度的测试:[/font][/b][font=宋体]将织物制成日晒样卡,在[/font]XENOTEST 150S[sup]+[/sup][font=宋体]风冷式日晒试验机中晒[/font]200h[font=宋体],光照条件按照标准[/font]GB/T 8427-1998 [font=宋体]《纺织品色牢度实验耐人造光色牢度:氙弧》:黑板温度[/font]65[font=宋体]℃[/font][font=宋体],湿度[/font]80%[font=宋体],功率为[/font]2000W[font=宋体]×[/font]95%[font=宋体]。然后参照此标准评出各试样耐晒牢度。[/font]2 [font=宋体]结果与讨论[/font]2.1 [font=宋体]紫外线吸收剂的表征及其紫外吸收曲线[/font][font=宋体]采用两步法将目标产物[/font]2,4-[font=宋体]二乙氧基[/font]-6-(2’,4’-[font=宋体]二羟基苯基[/font])-1,3,5-[font=宋体]三嗪合成出来后,要对其结构进行表征,表征结果如下:[/font][font=宋体]熔点为[/font]231-233[font=宋体]℃[/font][font=宋体];[/font]FT-IR[font=宋体]:[/font]3444[font=宋体]、[/font]3125[font=宋体]、[/font]2984[font=宋体]、[/font]1723[font=宋体]、[/font]1636[font=宋体]、[/font]1603[font=宋体]、[/font]1557[font=宋体]、[/font]1429[font=宋体]、[/font]1342[font=宋体]、[/font]1300[font=宋体]、[/font]1230[font=宋体]、[/font]836[font=宋体]、[/font]782[font=宋体];([/font]DMSO-d[sub]6[/sub][font=宋体])δ:[/font]1.371(t,2×3H)[font=宋体]、[/font]4.470[font=宋体]([/font]q,2×2H[font=宋体])、[/font]6.296(d,1H)[font=宋体]、[/font] 6.436(d,1H)[font=宋体]、[/font]8.150(s,1H)[font=宋体]、[/font]10.366(s,1H)[font=宋体]、[/font]12.720(s,1H)[font=宋体]。[/font][font=宋体]经以上表征结果可知合成所得到的物质就是目标产物[/font]2,4-[font=宋体]二乙氧基[/font]-6-(2’,4’-[font=宋体]二羟基苯基[/font])-1,3,5-[font=宋体]三嗪。确定目标产物合成出来后,将其配制成浓度为[/font][font=宋体]1[/font][font=宋体]×10[sup]-5[/sup]mol/L的氯仿溶液,然后在[/font]Lambda 900 [font=宋体]紫外[/font]/[font=宋体]可见[/font]/[font=宋体]近红外分光光度仪上测试溶液在紫外区域的吸收曲线,其紫外吸收曲线如图[/font]3[font=宋体]所示。[/font][align=center][img=,164,]file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image010.gif[/img][/align][align=center][font=宋体]图[/font]3 [font=宋体]产物[/font]2,4-[font=宋体]二乙氧基[/font]-6-(2’,4’-[font=宋体]二羟基苯基[/font])-1,3,5-[font=宋体]三嗪的紫外吸收曲线[/font][/align][align=center][font=宋体]溶剂为氯仿,产物浓度为[/font]1[font=宋体]×[/font]10[sup]-5[/sup]mol/L[/align][font=宋体]从图中可以看出,该产物[/font]2,4-[font=宋体]二乙氧基[/font]-6-(2’,4’-[font=宋体]二羟基苯基[/font])-1,3,5-[font=宋体]三嗪在紫外区域有明显的吸收,吸收主波长为[/font]275nm[font=宋体],因而可以确定该产物就是一种紫外线吸收剂,可以将其添加到涤纶织物的染浴中,单独上染涤纶或者是与分散染料同浴上染涤纶织物。[/font]2.2 [font=宋体]研磨所得分散液中紫外线吸收剂颗粒粒径的测试[/font][font=宋体]测试研磨所得分散液中颗粒粒径,所得结果如图[/font]4[font=宋体]所示。[/font][align=center][img=,264,]file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image012.jpg[/img][/align][align=center][font=宋体]图[/font]4[font=宋体]分散液中紫外线吸收剂颗粒粒径[/font][/align][font=宋体]从图[/font]4[font=宋体]中可以看出:紫外线吸收剂经过研磨后,其分散液中颗粒粒径的中径值([/font]Median[font=宋体])为[/font]87.4nm[font=宋体],颗粒粒径的平均值([/font]Mean[font=宋体])为[/font]233.8nm[font=宋体],所得分散液中紫外线吸收剂颗粒粒径已经很小,可以将其直接添加到涤纶织物的染浴中对织物进行上染。[/font]2.3 [font=宋体]单独及与分散染料同浴上染时紫外线吸收剂对涤纶织物的上染性能[/font][font=宋体]试验中所用的紫外线吸收剂是一种疏水性的小分子化合物,其对涤纶织物的上染原理类似于分散染料的上染原理,也是采取自由体积模型上染的,在高温高压染浴中,当温度升高,涤纶大分子运动加剧,会在瞬时产生较大的空穴,此时溶解在水中的紫外线吸收剂就能够通过这些空穴进入到纤维内部,从而实现对涤纶织物的上染,当溶解在水中的紫外线吸收剂分子减少时,聚集在颗粒上的紫外线吸收剂分子又会溶解下来,直至颗粒上紫外线吸收剂分子溶解完全。[/font][font=宋体]图[/font]5[font=宋体]显示的是不同用量下紫外线吸收剂对涤纶织物的上染率结果。[/font][align=center][img=,193,]file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image014.gif[/img][/align][align=center][font=宋体]图[/font]5[font=宋体]紫外线吸收剂对涤纶织物的上染率[/font][/align][align=center]U[font=宋体]:紫外线吸收剂单独上染;[/font]U+R[font=宋体]:紫外线吸收剂与[/font][font=宋体]分散红玉[/font]SE-GFL[font=宋体]同浴上染;[/font]U+Y[font=宋体]:紫外线吸收剂与分散黄[/font]E-3G[font=宋体]同浴上染;[/font]U+B[font=宋体]:紫外线吸收剂与分散蓝[/font]HGL[font=宋体]同浴上染。其中分散染料用量都是[/font]1%[font=宋体]([/font]owf[font=宋体])。[/font][/align][font=宋体]从图[/font]5[font=宋体]中可以看出:紫外线吸收剂对涤纶织物的上染率不太高,实验所测得的上染率都小于[/font]20%[font=宋体]。单独上染时,随着用量的增加,其上染率是先有所增加,而后又有所下降。在用量不大时,其上染率是逐渐增加的,之所以会出现这种现象,可能是由于该紫外线吸收剂在水中有一定的溶解度所造成的,当紫外线吸收剂在水中的溶解性能比较好时,则其对于疏水性纤维的亲和能力就会有所下降,另外在水中的溶解性能较好,也会造成染色残液中所剩余的紫外线吸收剂比较多,从而也会在一定程度上降低吸收剂的上染率,当在一定程度内增加吸收剂用量,就能降低溶解在水中那部分吸收剂对其上染率的影响,所以在低浓度范围内紫外线吸收剂的上染率是随着紫外线吸收剂用量的增加而增加;但是当紫外线吸收剂用量达到一定的程度时,水中溶解部分对上染率的影响就会减轻,这时候涤纶对吸收剂的相容性对上染率的影响就比较明显,因织物对吸收剂能够容纳的总量是一定的,就会导致在紫外线吸收剂用量增加时上染率有所下降。[/font][font=宋体]分散染料的加入对紫外线吸收剂上染性能的影响也比较复杂,当紫外线吸收剂用量比较小时,分散染料的加入能够促进吸收剂的上染;当紫外线吸收剂用量增大时,分散染料使其上染率有所下降。分散染料的加入,会从两个方面影响吸收剂的上染率:一是商品分散染料中所含有的大量分散剂等染整助剂在增大分散染料上染率的同时也会在一定程度上提高紫外线吸收剂的上染率;另一方面由于分散染料和紫外线吸收剂的分子大小相近,上染机理类似,所以在同浴染色时会存在一定程度的竞染作用。一般来讲在上染紫外线吸收剂的染液中加入分散染料之后,两个方面的影响是同时存在的。在用紫外线吸收剂对涤纶织物进行上染,用量较小时,商品分散染料中所含的分散剂等染整助剂对紫外线吸收剂的助染作用就处于优势,因此在一定程度上能够提高紫外线吸收剂的上染率,但是随着紫外线吸收剂用量的增加,染料和紫外线吸收剂之间的竞染作用就逐渐占据优势,因此当紫外线吸收剂用量增加到一定程度后,同浴上染的分散染料会导致其上染率下降。[/font]2.4 [font=宋体]紫外线吸收剂对分散染料上染性能的影响[/font][font=宋体]紫外线吸收剂与分散染料分子大小相近、极性相似、对涤纶纤维上染时的上染机理相同,因而在二者同浴对涤纶织物进行上染时,必然会存在一定的竞染关系。如前所述,与分散染料同浴上染时紫外线吸收剂的上染率会有一定程度的下降。紫外线吸收剂的加入对分散染料上染率影响情况如图[/font]6[font=宋体]所示。[/font][align=center][img=,181,]file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image016.gif[/img][/align][align=center][font=宋体]图[/font]6[font=宋体]分散染料[/font][font=宋体]的上染率[/font][/align][align=center]R[font=宋体]:[/font][font=宋体]分散红玉[/font]SE-GFL[font=宋体];[/font]Y[font=宋体]:分散黄[/font]E-3G[font=宋体];[/font]B[font=宋体]:分散蓝[/font]HGL[font=宋体]。其中分散染料用量都是[/font]1%[font=宋体]([/font]owf[font=宋体])。[/font][/align][font=宋体]从图[/font]6[font=宋体]中可以看出,染浴中紫外线吸收剂的加入,会在一定程度上影响分散染料的上染率,其中紫外线吸收剂对分散黄[/font]E-3G[font=宋体]的影响稍微明显一些,随着紫外线吸收剂用量的增加,分散黄[/font]E-3G[font=宋体]的上染率有所下降,但下降程度并不大,而紫外线吸收剂的加入对分散红玉[/font]SE-GFL[font=宋体]和分散蓝[/font]HGL[font=宋体]的影响很小。[/font][font=宋体]对比紫外线吸收剂与分散染料在同浴上染时的相互影响时可以发现:分散染料对紫外线吸收剂上染性能的影响要明显高于紫外线吸收剂对分散染料上染性能的影响,这可能是由于分散染料与涤纶纤维的相容性明显要比紫外线吸收剂高,因而在竞染过程中处于优势。[/font]2.5 [font=宋体]紫外线吸收剂对涤纶织物紫外线防护性能([/font]UPF[font=宋体])的影响[/font][font=宋体]将紫外线吸收剂上染到涤纶纤维上后,由于紫外线吸收剂对紫外线强烈的吸收作用,使得透过织物的紫外线减少,从而增强了织物的紫外线防护能力,增大理论织物的[/font]UPF[font=宋体]值。本试验中紫外线吸收剂的上染对涤纶织物[/font]UPF[font=宋体]值增大情况如图[/font]7[font=宋体]所示。[/font][align=center][img=,205,]file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image018.gif[/img][/align][align=center][font=宋体]图[/font]7[font=宋体]紫外线吸收剂对涤纶织物[/font]UPF[font=宋体]值的影响[/font][/align][align=center]W[font=宋体]代表涤纶白织物;[/font]R[font=宋体]代表红色织物;[/font]Y[font=宋体]代表黄色织物;[/font]B[font=宋体]代表蓝色织物[/font][/align][font=宋体]从图[/font]7[font=宋体]中可以看出,紫外线吸收剂上染后了,无论是涤纶白织物还是染色的涤纶织物,其[/font]UPF[font=宋体]值都有一定程度的增加,说明紫外线吸收剂的上染都在一定程度上增强了涤纶织物的紫外线防护性能。[/font]2.6 [font=宋体]紫外线吸收剂对染色涤纶织物耐光色牢度的影响[/font][font=宋体]当紫外线吸收剂上染到染色涤纶织物后,能够吸收照射到织物上的紫外线,从而降低了紫外线照射到织物上光敏物质的几率,降低了引发织物基质和染料降解的光化学反应的发生几率,增进了织物的耐光色牢度。测试[/font][font=宋体]经过[/font]200h[font=宋体]光照前[/font][font=宋体]后涤纶白布和染色布样的色差[/font][font=宋体]△[/font][i]E[/i][font=宋体],并进行耐光色牢度的评级,如表[/font]1[font=宋体]所示。[/font][align=center][font=宋体]表[/font]1[font=宋体]涤纶织物光照前后色差[/font][font=宋体]△[/font][i]E[/i][font=宋体]和耐光色牢度[/font][/align] [table][tr][td=2,1] UV-Abs[font=宋体]([/font]%owf[font=宋体])[/font] [/td][td] [align=center][font=宋体]白织物[/font][/align] [/td][td] [align=center][font=宋体]红织物[/font][/align] [/td][td] [align=center][font=宋体]黄织物[/font][/align] [/td][td] [align=center][font=宋体]蓝织物[/font][/align] [/td][/tr][tr][td=1,2] [align=center]0.0[/align] [/td][td] [align=center][font=宋体]色差[/font][/align] [/td][td] [align=center]2.55[/align] [/td][td] [align=center]2.78[/align] [/td][td] [align=center]4.46[/align] [/td][td] [align=center]14.36[/align] [/td][/tr][tr][td] [align=center][font=宋体]牢度[/font][/align] [/td][td] [align=center]/[/align] [/td][td] [align=center]7-8[/align] [/td][td] [align=center]7[/align] [/td][td] [align=center]5[/align] [/td][/tr][tr][td=1,2] [align=center]0.5[/align] [/td][td] [align=center][font=宋体]色差[/font][/align] [/td][td] [align=center]1.56[/align] [/td][td] [align=center]2.97[/align] [/td][td] [align=center]3.72[/align] [/td][td] [align=center]12.92[/align] [/td][/tr][tr][td] [align=center][font=宋体]牢度[/font][/align] [/td][td] [align=center]/[/align] [/td][td] [align=center]7-8[/align] [/td][td] [align=center]7[/align] [/td][td] [align=center]5[/align] [/td][/tr][tr][td=1,2] [align=center]1.0[/align] [/td][td] [align=center][font=宋体]色差[/font][/align] [/td][td] [align=center]1.47[/align] [/td][td] [align=center]2.73[/align] [/td][td] [align=center]3.26[/align] [/td][td] [align=center]12.33[/align] [/td][/tr][tr][td] [align=center][font=宋体]牢度[/font][/align] [/td][td] [align=center]/[/align] [/td][td] [align=center]7-8[/align] [/td][td] [align=center]7-8[/align] [/td][td] [align=center]5[/align] [/td][/tr][tr][td=1,2] [align=center]1.5[/align] [/td][td] [align=center][font=宋体]色差[/font][/align] [/td][td] [align=center]1.21[/align] [/td][td] [align=center]2.61[/align] [/td][td] [align=center]4.43[/align] [/td][td] [align=center]12.10[/align] [/td][/tr][tr][td] [align=center][font=宋体]牢度[/font][/align] [/td][td] [align=center]/[/align] [/td][td] [align=center]7-8[/align] [/td][td] [align=center]7[/align] [/td][td] [align=center]5[/align] [/td][/tr][tr][td=1,2] [align=center]2.0[/align] [/td][td] [align=center][font=宋体]色差[/font][/align] [/td][td] [align=center]1.12[/align] [/td][td] [align=center]2.22[/align] [/td][td] [align=center]3.79[/align] [/td][td] [align=center]11.83[/align] [/td][/tr][tr][td] [align=center][font=宋体]牢度[/font][/align] [/td][td] [align=center]/[/align] [/td][td] [align=center]7-8[/align] [/td][td] [align=center]7-8[/align] [/td][td] [align=center]5[/align] [/td][/tr][tr][td=1,2] [align=center]3.0[/align] [/td][td] [align=center][font=宋体]色差[/font][/align] [/td][td] [align=center]0.97[/align] [/td][td] [align=center]2.71[/align] [/td][td] [align=center]3.87[/align] [/td][td] [align=center]10.76[/align] [/td][/tr][tr][td] [align=center][font=宋体]牢度[/font][/align] [/td][td] [align=center]/[/align] [/td][td] [align=center]7-8[/align] [/td][td] [align=center]7-8[/align] [/td][td] [align=center]5-6[/align] [/td][/tr][/table][align=center] [/align][font=宋体]从表中可以看出,无论是涤纶白布还是染色涤纶织物,无论是否上染了[/font][font=宋体]紫外线吸收剂[/font][font=宋体],经过紫外线照射后,都会发生一定的颜色变化,这是由于紫外线不仅能够使涤纶纤维发生光降解反应,生成有色物质,使涤纶白布出现泛黄;而且还能够造成上染到织物上的染料发生光致褪色。[/font][font=宋体]从表中还可以看出,无论是涤纶白布还是染色涤纶织物,[/font] [font=宋体]紫外线吸收剂[/font][font=宋体]上染都可以使其颜色变化有所降低,这是[/font][font=宋体]由于[/font][font=宋体]对涤纶织物本身和织物上的染料都产生了一定的光稳定效果,而且随着其用量的增加,光稳定效果会更好。[/font][font=宋体]试验中所用的三只分散染料中,分散红玉[/font]SE-GFL[font=宋体]和分散黄[/font]E-3G[font=宋体]都是耐光色牢度比较高的染料,单独使用时耐光色牢度已经达到[/font]7-8[font=宋体]级,紫外线吸收剂的上染,并不能提高染料的耐光色牢度等级,但仍然能够在一定程度上降低经过日晒后织物所产生的色差值,说明紫外线吸收剂对耐光色牢度较高的分散染料也能起到一定的光稳定作用;分散蓝[/font]HGL[font=宋体]是一只中等耐晒牢度的染料,单独使用时耐光色牢度是[/font]5[font=宋体]级,当紫外线吸收剂用量达到[/font]3%[font=宋体]([/font]owf[font=宋体]),能够使织物的耐光色牢度达到[/font]5-6[font=宋体]级,即使耐光色牢度提高[/font]0.5[font=宋体]级。[/font]3 [font=宋体]结论[/font][font=宋体]采用高温高压方法将自制的紫外线吸收剂[/font]2,4-[font=宋体]二乙氧基[/font]-6-(2’,4’-[font=宋体]二羟基苯基[/font])-1,3,5-[font=宋体]三嗪上染到涤纶织物上,考察了该紫外线吸收剂对涤纶织物的上染性能,实验发现该紫外线吸收剂可以上染到涤纶织物上;同时考察了在与分散染料同浴上染时,该紫外线吸收剂与分散染料上染性能之间的相互影响情况,发现分散染料可以在一定程度上降低紫外线吸收剂的上染率,但是紫外线吸收剂对分散染料上染率的影响较小。[/font][font=宋体]通过紫外线吸收剂上染后涤纶织物紫外线防护性能影响的测试发现,无论是涤纶白织物还是染色的涤纶织物,其紫外线防护性能都会随着紫外线吸收剂的上染而增强。[/font][font=宋体]紫外线吸收剂的上染,能够在一定程度上提高染色涤纶织物的耐光色牢度,其中对自身耐光色牢度较差的分散染料效果明显。[/font]

  • 2015版《化妆品安全技术规范》防晒剂检验方法-苯基苯并咪唑磺酸等15种组分-第一法(高效液相色谱-二极管阵列检测器法)

    2015版《化妆品安全技术规范》防晒剂检验方法-苯基苯并咪唑磺酸等15种组分-第一法(高效液相色谱-二极管阵列检测器法)

    [align=center][b]2015版《化妆品安全技术规范》防晒剂检验方法-苯基苯并咪唑磺酸等15种组分[/b][/align][align=center][b]第一法(高效液相色谱-二极管阵列检测器法)[/b][/align]本次实验按照2015版《化妆品安全技术规范》中防晒剂检验方法的第一法(高效液相色谱-二极管阵列检测器法),对苯基苯并咪唑磺酸等15种防晒剂进行同时分析。15种防晒剂标准品按照《化妆品安全技术规范》配制成混合标准溶液,分别使用CAPCELL PAK C18 MG S5 4.6 mm i.d. × 250 mm,CAPCELL PAK C18 MGII S5 4.6 mm i.d. × 250 mm,CAPCELL PAK ADME S5 4.6 mm i.d. ×250 mm,CAPCELL PAK C18 AQ S5 4.6 mm i.d. × 250 mm以及SUPERIOREX ODS S5 4.6 mm i.d. × 250 mm五款色谱柱对混合标准溶液进行分析。其中,MG和MGII色谱柱得到相对较好结果,但两款色谱柱原流动相条件下,个别峰未实现基线分离。结果如图1、图2。[img=,690,460]http://ng1.17img.cn/bbsfiles/images/2017/08/201708170930_01_2222981_3.png[/img][img=,690,432]http://ng1.17img.cn/bbsfiles/images/2017/08/201708170930_02_2222981_3.png[/img]1:苯基苯并咪唑磺酸; 2:二苯酮-4和二苯酮-5; 3:对氨基苯甲酸; 4:二苯酮-3; 5:对甲氧基肉桂酸异戊酯6:4-甲基苄亚基樟脑; 7:PABA乙基己酯; 8:丁基甲氧基二苯甲酰基甲烷; 9:奥克立林;10:甲氧基肉桂酸乙基己酯; 12’:峰12的同分异构体; 11:水杨酸乙基己酯; 12:胡莫柳酯;13:乙基己基三嗪酮; 14:亚甲基双-苯并三唑基四甲基丁基酚; 15:双-乙基己氧苯酚甲氧苯基三嗪(按出峰顺序)[img=,690,304]http://ng1.17img.cn/bbsfiles/images/2017/08/201708170930_03_2222981_3.png[/img]为得到更好的分离效果,使用1支更新的MGII色谱柱,在原流动相条件基础上,对梯度进行调整,结果如图3所示。各峰分离度得到明显改善,但峰11和峰12分离度为1.43,仍未达到基线分离。[img=,690,425]http://ng1.17img.cn/bbsfiles/images/2017/08/201708170933_01_2222981_3.png[/img]1:苯基苯并咪唑磺酸; 2:二苯酮-4和二苯酮-5; 3:对氨基苯甲酸; 4:二苯酮-3; 5:对甲氧基肉桂酸异戊酯6:4-甲基苄亚基樟脑; 7:PABA乙基己酯; 8:丁基甲氧基二苯甲酰基甲烷; 9:奥克立林;10:甲氧基肉桂酸乙基己酯; 12’:峰12的同分异构体; 11:水杨酸乙基己酯; 12:胡莫柳酯;13:乙基己基三嗪酮; 14:亚甲基双-苯并三唑基四甲基丁基酚; 15:双-乙基己氧苯酚甲氧苯基三嗪(按出峰顺序)[img=,690,292]http://ng1.17img.cn/bbsfiles/images/2017/08/201708170933_02_2222981_3.png[/img]继续调整梯度条件,分析结果如4所示。在此条件下,各峰实现基线分离,得到良好分析结果。[img=,690,421]http://ng1.17img.cn/bbsfiles/images/2017/08/201708170935_01_2222981_3.png[/img]1:苯基苯并咪唑磺酸; 2:二苯酮-4和二苯酮-5; 3:对氨基苯甲酸; 4:二苯酮-3; 5:对甲氧基肉桂酸异戊酯6:4-甲基苄亚基樟脑; 7:PABA乙基己酯; 8:丁基甲氧基二苯甲酰基甲烷; 9:奥克立林;10:甲氧基肉桂酸乙基己酯; 12’:峰12的同分异构体; 11:水杨酸乙基己酯; 12:胡莫柳酯;13:乙基己基三嗪酮; 14:亚甲基双-苯并三唑基四甲基丁基酚; 15:双-乙基己氧苯酚甲氧苯基三嗪(按出峰顺序)[img=,690,307]http://ng1.17img.cn/bbsfiles/images/2017/08/201708170937_01_2222981_3.png[/img]接下来将色谱柱更换为MG色谱柱,在调整后的梯度条件下进行分析,结果如图5所示,同样可得到良好的分析结果。[img=,690,419]http://ng1.17img.cn/bbsfiles/images/2017/08/201708170938_01_2222981_3.png[/img]1:苯基苯并咪唑磺酸; 2:二苯酮-4和二苯酮-5; 3:对氨基苯甲酸; 4:二苯酮-3; 5:对甲氧基肉桂酸异戊酯6:4-甲基苄亚基樟脑; 7:PABA乙基己酯; 8:丁基甲氧基二苯甲酰基甲烷; 9:奥克立林;10:甲氧基肉桂酸乙基己酯; 12’:峰12的同分异构体; 11:水杨酸乙基己酯; 12:胡莫柳酯;13:乙基己基三嗪酮; 14:亚甲基双-苯并三唑基四甲基丁基酚; 15:双-乙基己氧苯酚甲氧苯基三嗪(按出峰顺序)[img=,690,291]http://ng1.17img.cn/bbsfiles/images/2017/08/201708170940_01_2222981_3.png[/img]

  • 【资料题目】NMR技术在苯基—2’,3’,4’—三羟基苯基酮分子内活泼质子动态特性研究中的应用

    看到这篇文章,很感兴趣,没能下载下来,下面是相关信息,欢迎有条件的上传附件,hoho:NMR技术在苯基—2’,3’,4’—三羟基苯基酮分子内活泼质子动态特性研究中的应用欧阳捷 北京师范大学分析测试中心 李敏一 北京师范大学分析测试中心 李维超 北京师范大学分析测试中心 邓志威 北京师范大学分析测试中心 摘 要:本文通过一维(ID)、二维(2D)核磁共振波谱法确定了苯基-2’,3’,4’——三羟基苯基酮分子结构,利用二维交换谱(2D EXSY)研究了该分子内活泼质子在二甲亚砜(DMSO)溶液中的动态特性,建立了活泼质子与溶液中水分子间的化学交换网络,并定量计算了化学交换的速率常数。实验结果表明:酚羟基氧形成分子内氢键使得它与自身的羟基氢的共价键被削弱,该活泼质子酸性增强,更容易发生反应。

  • 【分享】关于征求拟批准“二甲氧基甲苯基-4-丙基间苯二酚”和“聚甲基丙烯酰基赖氨酸”作为化妆品原料意见的函

    有关单位:  经国家食品药品监督管理局化妆品审评专家委员会审核,拟批准“二甲氧基甲苯基-4-丙基间苯二酚”和“聚甲基丙烯酰基赖氨酸”作为化妆品原料使用。现公开征求意见,请于2011年6月27日前将反馈意见电子版发送至chenzh@sfda.gov.cn。  附件:1.“二甲氧基甲苯基-4-丙基间苯二酚”技术要求     2.“聚甲基丙烯酰基赖氨酸”技术要求                       国家食品药品监督管理局食品许可司                          二〇一一年六月十五日

  • 关于乙酸乙酯、甲醇、丁酮,以及二甲苯异构体同时进行色谱分离的讨论

    关于乙酸乙酯、甲醇、丁酮,以及二甲苯异构体同时进行色谱分离的讨论

    溶剂残留分析是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的重要应用之一,在药品、食品、包装等领域都是必测的项目。常见溶剂中涉及到的检测目标物经常有乙酸乙酯、甲醇、丁酮,以及二甲苯异构体这几项。最近看到 @m3091333、@p3109800、@Insm_c1196d2b 等多人发帖子讨论相关问题,我从原理上进行了一些解释,但终究纸上谈兵,于是找别的实验室要了这几种试剂,用实践检验了一下。首先,如果二甲苯异构体不要求分离,用624柱可以很容易的解决问题,这里就不讨论了。如果要求乙苯、对二甲苯、间二甲苯、邻二甲苯四种异构体分离,用624柱是无法完成的。因为二甲苯异构体色散力差异非常小,只能靠诱导力的差异分离,不同异构体在强极性柱上的极化率不同,乙苯极化率最低,其次是对二甲苯、间二甲苯,邻二甲苯极化率最大,出峰时间也随极化率的增加而延长。而624柱的极性比较弱,不能产生足够的极化作用,特别是对二甲苯与间二甲苯的极化差异非常小,无法实现分离。这个问题是由分子结构决定的,无论怎么调节色谱条件都不能解决。要想解决只能换强极性柱,常见的就是聚乙二醇柱,包括各种wax柱和FFAP柱等。三氟丙基柱也是强极性的,可以分离二甲苯异构体,但是这种柱很少使用。在聚乙二醇类的色谱柱上,乙酸乙酯、甲醇、丁酮三种目标物分离困难,各种类型的聚乙二醇柱选择性略有差异,但这三种物质都是较为接近的,想要分离是不太容易的。但是这三种物质与聚乙二醇固定相之间的作用力存在本质上的差异,因此通过调整柱温条件是可以分离的。下面三幅图是用60米*0.53mm*1um的INNOWAX柱分离乙酸乙酯、甲醇、丁酮的效果,柱温分别是40℃、50℃、60℃。[img=,690,796]http://ng1.17img.cn/bbsfiles/images/2018/08/201808022157168864_5041_2204387_3.png!w690x796.jpg[/img][img=,690,796]http://ng1.17img.cn/bbsfiles/images/2018/08/201808022157170984_7926_2204387_3.png!w690x796.jpg[/img][img=,690,796]http://ng1.17img.cn/bbsfiles/images/2018/08/201808022157172914_736_2204387_3.png!w690x796.jpg[/img]图中很明显,柱温低时甲醇与丁酮出峰时间接近分不开,高温时甲醇与乙酸乙酯出峰时间接近分不开,温度适中时三者可以实现分离。虽然未达到基线分离,但分离度都超过1,用来定量是完全可以的。这是找别人借的一根旧柱子,柱效只有4万塔板,如果是新柱子柱效应该能达到七八万塔板,分离度肯定更高,如果是0.32mm口径的柱子分离就更没问题了。要强调的是,能够实现分离的条件并不是完全靠盲目尝试获得的。我们看一看三种目标物的保留时间随柱温的变化就能发现其中的规律,见下图:[img=,594,716]http://ng1.17img.cn/bbsfiles/images/2018/08/201808022156374904_6999_2204387_3.png!w594x716.jpg[/img]图中可以看出,三种目标物的保留时间都是随温度升高而减小的,但是减小的幅度却并不相同。甲醇的保留时间随温度升高而减小的幅度明显大一些。这是因为甲醇具有羟基,与聚乙二醇固定相的相互作用力以氢键为主,氢键的强度随温度升高而迅速减弱。而乙酸乙酯、丁酮与聚乙二醇固定相的作用力都是以诱导力和取向力为主,这种力是由分子偶极矩决定的,受温度的影响要小一些。甲醇峰位置在乙酸乙酯与丁酮之间,温度升高时保留时间都减小,但甲醇减小更多,于是甲醇与乙酸乙酯靠的更近,与丁酮的分离度提高。温度降低时保留时间都增大,但甲醇增大更多,于是甲醇与丁酮靠的更近,与乙酸乙酯的分离度提高。用其他的柱子,如DB-wax或者FFAP时,各组分之间的相对位置会有差别,甚至有时出峰顺序都会变,但是保留时间随温度变化的这种规律仍然是适用的。所以遇到分不开的情况,一定不要盲目的乱试一通,也不用盲目的换柱子,一定要把问题想明白,有针对性的优化条件。最后要强调的是,这里虽然是以溶剂检测为例讨论了如何只用一根柱子就实现分离,但实际样品很复杂,并不是每次都能通过这种优化实现全部分离目的。所以色谱实验室配备多种不同极性的色谱柱是非常重要的。特别是做复杂样品时,即使谱图上看起来分离不错,最好也能用另外一种柱子进行一次验证,以免实际样品中有干扰物共流出,造成假阳性。

  • 【求助】2,3,4-三甲氧基乙酰苯

    由于手上没有2,3,4-三甲氧基乙酰苯(2,3,4,-trimethoxyacetophenone,C11H14O4)的对照品,所以想求助大家有没有它的光谱图,有的请发一份上来好吗?谢谢大家帮忙啦,

  • 布洛芬中杂质4-异丁基苯基乙酮的测定

    请问大家布洛芬中杂质4-异丁基苯基乙酮是用什么方法测定的,我按欧洲药典中的梯度洗脱怎么测出来只有一个主峰呢,其他的峰都是很小很小,几乎看不出来,具体方法:流动相A是乙腈:水:磷酸=340:660:0.5,流动相B是乙腈,梯度洗脱,柱温=30,流速=2,波长=214,你们都是用什么方法测这个杂质的呀,求指教!

  • 【实战宝典】如何对含有三苯基磷和三苯基氧膦的样品进行定性检测?

    [b][font=宋体]问题描述:用液相色谱检测三苯基磷和三苯基氧膦,流动相是水:甲醇([/font][i]V/V[/i][font=宋体])[/font]=1:4[font=宋体],流速[/font]1.5mL/min[font=宋体],[/font]C[sub]18[/sub][font=宋体]柱子,含有三苯基磷的样品在[/font]12min[font=宋体]左右出了一个峰,含有三苯基氧膦的样品在[/font]2min[font=宋体]左右出了一个峰。改梯度洗脱,含有三苯基磷的样品在[/font]32min[font=宋体]左右出了一个峰,含有三苯基氧膦的样品在[/font]2min[font=宋体]左右出了一个峰,如何确定[/font]2min[font=宋体]左右的峰是不是三苯基氧膦?[/font][font=宋体]解答:[/font][/b][font=宋体]([/font]1[font=宋体])三苯基膦和三苯基氧膦都有纯度很高的标准品,在进行检测的时候需要购置,而不是只检测含有这两种物质的样品,因不同仪器、不同色谱柱,不同流速等条件制约,并不能准确判断是否是这两个物质。[/font][font=宋体]([/font]2[font=宋体])三苯基膦和三苯基氧膦多用于石油化工领域,常用的检测方法有滴定法、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法等,液相色谱多采用正相色谱,如果用反相液相色谱进行检测,因三苯基膦和三苯基氧膦在水中溶解度都不大,所以流动相的水相比例最好在[/font]30[font=宋体]以下(也可在溶解样品的时候加入几滴二氯甲烷)。流动相用水[/font]+[font=宋体]甲醇(或乙腈)即可,[/font]C[sub]18[/sub][font=宋体]色谱柱,流速根据目标物出峰时间进行调整,大概控制在[/font]0.8~1.5mL/min[font=宋体]。[/font][font='微软雅黑','sans-serif'][color=black][back=white]领取更多《实战宝典》请进:[url]http://instrument-vip.mikecrm.com/2bbmrpI[/url][/back][/color][/font][font='微软雅黑','sans-serif'][color=black][back=white] [/back][/color][/font]

  • 【求助】如何降低甲苯和丁酮的混合溶剂的气味

    为了达到某些需求,很多时候单一的溶剂并不能满足挥发速率等方面的要求,故产生了对混合溶剂的需求,然而现在的一些混合溶剂的气味很大,如中干水、洗网水、硝基稀料等,他们大多是甲苯、环己酮、丁酮等混合而成,如何才能将这种混合溶剂的气味降低呢,还请各位多多指教!不胜感激!

  • 2015版《化妆品安全技术规范》防晒剂检验方法 苯基苯并咪唑磺酸等15种组分-二元梯度法

    2015版《化妆品安全技术规范》防晒剂检验方法 苯基苯并咪唑磺酸等15种组分-二元梯度法

    [align=center][b]2015版《化妆品安全技术规范》防晒剂检验方法[/b][/align][align=center][b]苯基苯并咪唑磺酸等15种组分-二元梯度法[/b][/align][align=center][b] [/b][/align]在2015版《化妆品安全技术规范》防晒剂检验方法中,第一法对15种防晒剂的分析为三元梯度方法,此法要求仪器配备三元泵,且四氢呋喃会对PEEK基材的管路和仪器有溶胀作用,所以该方法在实际操作上会受到一定的限制;而第二法将15种防晒剂分为两组,在不同流动相条件下分别检测,较为费时费力,且前12种防晒剂峰未能达到基线分离。基于以上情况,本次实验采用二元梯度方法,对15种防晒剂标准品进行同时分析,既可在常规二元泵系统进行实验,也可免去分组分析的繁琐。本实验混合标准溶液按照《化妆品安全技术规范》配制,分别使用资生堂CAPCELLPAK C[sub]18[/sub] MG S5 4.6 mm i.d. × 250 mm和CAPCELL PAK C[sub]18[/sub] MGII S5 4.6 mm i.d.× 250 mm色谱柱进行分析,结果如图1和图2所示,两款色谱柱在二元梯度条件下均可使15种防晒剂峰实现基线分离。[img=,690,400]http://ng1.17img.cn/bbsfiles/images/2017/08/201708230913_01_2222981_3.png[/img][img=,690,366]http://ng1.17img.cn/bbsfiles/images/2017/08/201708230913_02_2222981_3.png[/img]1:苯基苯并咪唑磺酸; 2:二苯酮-4和二苯酮-5; 3:对氨基苯甲酸; 4:二苯酮-3; 5:对甲氧基肉桂酸异戊酯6:4-甲基苄亚基樟脑; 7:PABA乙基己酯; 8:丁基甲氧基二苯甲酰基甲烷; 9:奥克立林;10:甲氧基肉桂酸乙基己酯; 12’:峰12的同分异构体; 11:水杨酸乙基己酯; 12:胡莫柳酯;13:乙基己基三嗪酮; 14:亚甲基双-苯并三唑基四甲基丁基酚; 15:双-乙基己氧苯酚甲氧苯基三嗪(按出峰顺序)[img=,629,207]http://ng1.17img.cn/bbsfiles/images/2017/08/201708230913_03_2222981_3.png[/img]

  • 您的色谱图中有没有出现过“三苯基氧化膦”?

    您的色谱图中有没有出现过“三苯基氧化膦”?

    对用甲苯或丙酮做溶剂的样品进行scan时,有时会出来“三苯基氧化膦”且峰值较高, 想知道它的具体来源?三苯基氧化膦化学式:C18H15OP分子量:278CAS#: 791-28-6结构式:http://ng1.17img.cn/bbsfiles/images/2013/03/201303240051_431959_2582123_3.jpg

  • 【资料】气相色谱法分离和测定环境空气和废气中的2-丁酮和苯

    唐访良 朱文(杭州市环境监测中心站 杭州 310007) 摘 要:用活性炭吸附环境空气和废气中的2-丁酮和苯,经二硫化碳解吸后用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定。方法的回收率:2-丁酮为86.2%~104.6%,苯为91.3%~105.7%;变异系数:2-丁酮为2.5%~2.8%,苯为2.5%~3.8%。当采样体积为20L,解吸液体积为2.00mL,进样体积为2μL时,2-丁酮和苯的最低检测浓度分别为0.03mg/m3和0.01mg/m3。 关键词:环境空气和废气 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url] 2-丁酮 苯 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url] DETERMINATION OF 2-BUTANONE AND BENZENE IN AMBIENT AIR AND EXHAUST AIRTANG Fang-liang and ZHU Wen(Hangzhou Environmental Monitoring Centre, Hangzhou 310007,China) Abstract:Sampling of micro-amounta of 2-butanone and benzene in ambient air and exhaust air was carried out by their adsorption on active carbon filled in a sampling tube, and then desorbed with 2.00ml of carbon disulfide. Two μL of the desorbed solution were taken and analyzed by gas chromatography. Satisfactory separation was attained by using PEG-20M column. Retention time method was used in the qualitative analysis and peak height method was used in the quantitative analysis. Mixed standard solutions containing 2-butanone from 0.00 to 64.8mg• L-1 and benzene from 0.00 to 70.4 mg• L-1(in CS2) were used to prepare an external standard curve. RSD’s(n=8) for 2-butanone and for benzene were found to be in the range of 2.5%~2.8% and 2.5%~3.8% respectively. Recoveries found for 2-butanone and for benzene were in the range of 86.2% to 104.6% and 91.3% to 105.7% respectively. The detection limits(S/N=2) were found as 0.03mg• m-3(for 2-butanone and 0.01mg• m-3(for benzene) under the experimental conditions mentioned above and when 20L of sampling volume were taken. Keywords:Gas chromatography 2-Butanone Benzene Ambient air Exhaust air 2-丁酮和苯都是常用的有机溶剂,应用广泛。由于苯有毒有害,是人类公认的致癌物之一,在生产和使用过程中不可避免地会造成对人体的损害和对环境的污染[1]。随着人们环保意识的提高,人们已越来越多的用低毒或无毒溶剂来代替毒性大的溶剂,2-丁酮是常用的替代品之一,如有些胶粘剂所用的溶剂,就有用2-丁酮来代替苯、甲苯、二甲苯作为溶剂的。环境空气和废气中的苯常用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定[2],车间空气中2-丁酮也有用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法进行测定的报道[3],但环境空气和废气中2-丁酮和苯的同时分离和测定还较少报道。本文用活性炭吸附富集环境空气和废气中2-丁酮和苯,经二硫化碳(CS2)解吸后[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定,方法简便、快速,用于实际样品测定,结果满意。1 试验部分1.1主要仪器和试剂 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-9A[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url](日本岛津公司),具FID检测器,KB-6A型大气采样器(青岛市崂山电子仪器实验所),2L铝箔复合膜软气袋(简称气袋),活性炭吸附采样管(市售,内填0.2g粒度为20~40目的粒状活性炭);苯、甲苯、对-二甲苯、间-二甲苯、邻-二甲苯皆为色谱纯试剂,2-丁酮、丙酮为分析纯试剂;二硫化碳(CS2)为分析纯试剂,经纯化处理后用作溶剂。1.2色谱条件 色谱柱为长2m内径3mm的玻璃柱,内填10%PEG-20M/Shimalite W (NAW)(60~80目);柱温为70℃,汽化室、检测室温度为150℃;载气(N2)流速为50mL/min ,燃气(H2)流速为45 mL/min ,助燃气(A ir)流速为500 mL/min 。进样量为2μL1.3样品的采集和测定 环境空气样品中的2-丁酮和苯的浓度一般较低,常需用活性炭吸附采样管进行富集浓缩,按文献[2]进行环境空气样品的采集,按文献[4]进行污染源废气样品的采集。将上述已采样的活性炭采样管中的活性炭移入10mL具塞比色管中,加2.00mLCS2,轻轻振摇2min,放置20min后,吸取2μL解吸液,进行分离测定。以保留时间定性,以峰高外标法定量。 2 结果与讨论2.1色谱柱的选择 2-丁酮的沸点为79.6℃,苯的沸点为80.1℃,二者沸点相差0.5℃,用文献[2]给出的2.5%DNP+2.5%Bentone-34和PEG-400柱分析2-丁酮和苯,二者不能分离,本文选用PEG-20M柱,2-丁酮和苯能很好分离,且分析样品所需的时间短,如图1所示。2.2干扰试验 选择与2-丁酮、苯经常同时使用或共存的丙酮、甲苯、对-二甲苯、间-二甲苯、邻-二甲苯进行干扰试验(如图1)。从图中可以看出,在选定的色谱条件下,各组分之间能很好分离,不会干扰2-丁酮和苯的分离和定性、定量测定。 图1 2-丁酮和苯与共存物质的分离色谱图 图中 1.溶剂(CS2,0.59分) 2.丙酮(0.74分) 3.2-丁酮(1.19分) 4.苯(1 .56分) 5.甲苯(2.79分) 6.对-二甲苯+间-二甲苯(5.14分) 7.邻-二甲苯(6.74分)2.3 标准曲线及精密度检验 配制2-丁酮浓度为0.00,6.48,13.0,25.9,38.9,51.8,64.8mg/L和苯浓度为0.00,7.04,14.1,28.2,42.2,56.3,70.4mg/L的CS2混合标准系列,在选定的色谱条件下进行测定,线性回归方程和相关系数:2-丁酮,H=31.3C-15.1(C为mg/L ),γ=0.9999;苯,H=45.9C-4.35(C为mg/L),γ=0.9999。以混合标准系列浓度最高点的0.1倍(即2-丁酮浓度为6.48 mg/L、苯浓度为7.04 mg/L)和0.9倍(即2-丁酮浓度为58.3 mg/L、苯浓度为63.4 mg/L)的标准溶液为样品,各重复8次试验, 其变异系数: 0.1倍溶液,2-丁酮和苯分别为2.8%、3.8%; 0.9倍溶液,2-丁酮和苯皆为2.5%。2.4采样效率试验 采用相对比较法来评价采样效率。在2L气袋中用高纯氮气配制了不同浓度的2-丁酮和苯的混合气体样品,串联2支活性炭采样管,第一管连气袋,第二管连大气采样器,如1.2进行样品的采集和测定,结果如表1。表1 采样效率试验测定结果 序号 项 目 第一管测定量(m/μg) 第二管测定量(m/μg) 第一管采样效率( %) 1 2-丁酮 8.18 0.00 100 苯 5.27 0.00 100 2 2-丁酮 70.3 0.00 100 苯 49.0 0.00 100 3 2-丁酮 900 0.00 100 苯 177 0.00 100 结果表明,在上述测定量条件下,第一支采样管的采样效率已达100%,用一支采样管已能满足测定要求。 2.5 方法的检出限按两倍噪声计算的仪器的最小检出量,2-丁酮为0.6ng,苯为0.2ng (进样体积为2μL),当采样体积为20L,解吸液体积为2.00mL时,方法的最低检出浓度:2-丁酮为0.03mg/m3,苯为0.01mg/m3。2.6 样品的测定和回收率用本法测定了环境空气样品和某污染源废气样品,并在解吸液中进行了加标回收试验,结果如表2。 表2 样品测定结果和回收率 样品名称 项 目 样品含量(m/μg) 加标量(m/μg) 测得总量(m/μg) 回收率 (%) 环境空气 2-丁酮 0.00 0.65 0.68 104.6 苯 0.32 0.70 1.06 105.7 废气 2-丁酮 1620 1396 2824 86.2 苯 7.04 6.42 12.9 91.3

  • 矿泉水验出丁酮 瑞士全面下架

    据瑞士联邦政府网站报道,瑞士官员日前表示,当局发现圣安德里(San Andrea)牌两瓶矿泉水中含丁酮溶剂后,已下令将这类矿泉水全面下架。瑞士公共卫生局在声明中表示:"回收这商品是因在两瓶两公升矿泉水中发现丁酮溶剂。"并进一步表示,无论有无气泡,这类矿泉水一律下架。声明中指出,这项无色产品"一开瓶就会闻到溶剂难闻气味"。

  • 丁酮与丙酮的区别描述正确吗?

    在某网上看到一段话:关于丁酮与丙酮的区别描述:丙酮是三个碳原子,丁酮是四个碳原子,都有羰基,丙酮易挥发而丁酮挥发性没有丙酮好丁酮比丙酮毒性低.丙酮作为溶剂最大的缺点就是挥发性太强,这也是它无法替代丁酮的最主要的原因.丁酮沸点 73.4 ℃丙酮沸点56.05℃大家觉得这些描述正确吗?还有什么补充的吗?最根本的区别是这个吗?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制