当前位置: 仪器信息网 > 行业主题 > >

酯和乙酸乙烯酯的聚合物

仪器信息网酯和乙酸乙烯酯的聚合物专题为您提供2024年最新酯和乙酸乙烯酯的聚合物价格报价、厂家品牌的相关信息, 包括酯和乙酸乙烯酯的聚合物参数、型号等,不管是国产,还是进口品牌的酯和乙酸乙烯酯的聚合物您都可以在这里找到。 除此之外,仪器信息网还免费为您整合酯和乙酸乙烯酯的聚合物相关的耗材配件、试剂标物,还有酯和乙酸乙烯酯的聚合物相关的最新资讯、资料,以及酯和乙酸乙烯酯的聚合物相关的解决方案。

酯和乙酸乙烯酯的聚合物相关的论坛

  • 胶黏剂-丙烯酸酯聚合物标准

    根据GBT--13553-1996 胶黏剂分类,丙烯酸酯聚合物的编号是531,分在大类5 合成热塑性材料/小类 5.3丙烯酸酯聚合物类/组别 丙烯酸酯聚合物,是否有这一类产品的相关标准?国标/行标等?谢谢

  • 利用紫外分光光度计测量苯乙烯中聚合物含量

    最近建立ASTMD D2121测试方法,测量苯乙烯聚合物含量,按照流程配制聚苯乙烯,但是建立标准曲线时,实测结果都是显示负数,试了好几次,不知道哪里出问题了,UV新买的,测量其他的的产品都没问题,难道是苯乙烯聚合反应没成功,请教各位大侠帮忙分析一下 ,小弟拜谢!

  • 聚合物基质色谱柱的优缺点

    聚合物基质的色谱柱大家有接触过吗?聚合物填料多为聚苯乙烯-二乙烯基苯或聚甲基丙酸酯等,优点:PH值为1~14均可使用。相对与硅胶基质的C18填料,这类填料具有更强的疏水性;大孔的聚合物填料对蛋白质等样品的分离非常有效。缺点:相对硅胶基质填料,色谱柱柱效较低。

  • 【原创大赛】pH 响应聚合物研究进展

    【原创大赛】pH 响应聚合物研究进展

    [font=宋体] pH [/font][font=宋体]响应聚合物研究进展[/font][font=宋体]1. pH [/font][font=宋体]响应聚合物概述[/font][font=宋体]一般而言,外界 pH 值的变化会导致生物大分子的水溶性或构象发生变化,因此具有类似结构的聚合物也能对环境的 pH 值变化做出相应的响应。该类聚合物具有 pH 响应的关键因素是一般主链上都含有大量对 pH 敏感的基团(弱电解质基团)如羧酸基、氨基、吡啶、咪唑基等。当外界环境的 pH 或离子浓度发生变化时,这些基团可以接受或释放质子来响应外界环境中 pH 的变化[76]。聚合物通过接受或给予质子导致其分子解离程度发生改变,造成聚合物分子的质子化或去质子化平衡发生移动,从而影响聚合物链的溶解性[77-78]。[/font][font=宋体]按照 pH 响应聚合物分子链中含有基团的性质 pH 响应聚合物可分为两大类:弱有机酸类和弱有机碱类[79]。弱有机酸类聚合物(如羧酸基)能在较低的 pH 值时接收质子呈正电性,而 pH 值较高时变成负电性,因为同种电荷间存在相互排斥作用使水与分子链之间的相互作用加强,进而提高了聚合物的亲水性,呈聚电解质状态,如聚甲基丙烯酸(PMAA)等[80-81];弱有机碱类聚合物则一般带有弱有机碱取代基,它能在低 pH 值件下得到质子变成亲水性基团,聚合物链之间因库仑排斥力而展开,而高 pH 条件下则是亲油性的,如聚甲基丙烯酸二甲氨基乙酯(PDMAEMA)、聚乙烯基吡啶等[82-84]。[/font][font=宋体]目前关于 pH 响应聚合物合成的研究不断被报道,其中大部分是利用含有乙烯基的单体为原料进行聚合。常见的聚合方法主要包括:自由基聚合、原子转移自由基聚合(ATRP)、基团转移聚合(GTP)、可逆加成-断裂链转移聚合(RAFT)等。自由基聚合是最常见的聚合方法,聚合产物通常为线性的高分子聚合物,相较于其它方法其合成条件相对简单,通常为一步反应,所得产物多为无规则共聚物。例如,Fan 等人[85]通过自由基聚合制备了一系列具有良好 pH 响应特性的聚合物,在低 pH 条件下,由于质子化叔胺单元的静电相互作用和亲水性,共聚物在水溶液中表现为溶解状态。而在高 pH 条件下,由于烷基上去质子化胺具有较强的疏水性,导致共聚物在水溶液中聚集沉淀。[/font][font=宋体]2 [/font][font=宋体]、pH 响应聚合物在分离富集领域的应用[/font][font=宋体]近年来,pH 响应聚合物在分离富集领域的应用潜力开始被众多研究者关注。基于pH 响应聚合物具有的溶解-沉淀 pH 响应特性,可以将目标物固定或吸附在 pH 响应聚合物上,通过调节环境的 pH 值使其形成共沉淀,实现对目标物的分离纯化。[/font][font=宋体]Bai [/font][font=宋体]等[86]开发了一种具有 pH 响应特性的聚合物,该聚合物是由 pH 反应型单体与糖基反应型单体共聚而成。所得的线性共聚物链与糖蛋白/糖肽样品在弱酸性 pH 条件下在水溶液中形成均相反应混合物,促进了聚合物基体与目标糖蛋白质/糖肽之间的偶联。只需降低体系 pH 值,即可使聚合物糖蛋白质/糖肽迅速自组装从溶液中析出大颗粒的团聚体,从而实现快速高效的样品回收。[/font][font=宋体]Ding[/font][font=宋体]等[87]以丙烯酸类化合物为功能单体通过自由基聚合制备了具有pH响应特性的聚合物,进一步将染料配基 Cibacron Blue 固定到聚合物上,利用 Cibacron Blue 和纤维素酶的亲和性使 pH 响应聚合物与纤维素酶共沉淀,实现了对纤维素酶的分离[/font]

  • 聚合物的分类

    按来源分类按来源可把高分子分成天然高分子和合成高分子两大类。按性能分类可把高分子分成塑料、橡胶和纤维三大类。塑料按其热熔性能又可分为热塑性塑料(如聚乙烯、聚氯乙烯等)和热固性塑料(如酚醛树脂、环氧树脂、不饱和聚酯树脂等)两大类。前者为线型结构的高分子,受热时可以软化和流动,可以反复多次塑化成型,次品和废品可以回收利用,再加工成产品。后者为体型结构的高分子,一经成型便发生固化,不能再加热软化,不能反复加工成型,因此,次品和废品没有回收利用的价值。塑料的共同特点是有较好的机械强度(尤其是体形结构的高分子),作结构材料使用。纤维又可分为天然纤维和化学纤维。后者又可分为人造纤维(如粘胶纤维、醋酸纤维等)和合成纤维(如尼龙、涤纶等)。人造纤维是用天然高分子(如短棉绒、竹、木、毛发等)经化学加工处理、抽丝而成的。合成纤维是用低分子原料合成的。纤维的特点是能抽丝成型,有较好的强度和挠曲性能,作纺织材料使用。橡胶包括天然橡胶和合成橡胶。橡胶的特点是具有良好的高弹性能,作弹性材料使用。按用途分类可分为通用高分子,工程材料高分子,功能高分子,仿生高分子,医用高分子,高分子药物,高分子试剂,高分子催化剂和生物高分子等。塑料中的“四烯”(聚乙烯、聚丙烯、聚氯乙烯和聚苯乙烯),纤维中的“四纶”(锦纶、涤纶、腈纶和维纶),橡胶中的“四胶”(丁苯橡胶、顺丁橡胶、异戊橡胶和乙丙橡胶)都是用途很广的高分子材料,为通用高分子。工程塑料是指具有特种性能(如耐高温、耐辐射等)的高分子材料。如聚甲醛、聚碳酸酯、聚砚、聚酰亚胺、聚芳醚、聚芳酰胺和含氟高分子、含硼高分子等都是较成熟的品种,已广泛用作工程材料。离子交换树脂、感光性高分子、高分子试剂和高分子催化剂等都属功能高分子。医用高分子、药用高分子在医药上和生理卫生上都有特殊要求,也可以看作是功能高分子。按主链结构分类可分为碳链高分子、杂链高分子、元素有机高分子和无机高分子四大类。碳链高分子的主链是由碳原子联结而成的。杂链高分子的主链除碳原子外,还含有氧、氮、硫等其他元素,如:如聚酯、聚酰胺、纤维素等。易水解。元素有机高分子主链由碳和氧、氮、硫等以外其他元素的原子组成,如硅、铝、钛、硼等元素,但侧基是有机基团,如聚硅氧烷等。无机高分子是主链和侧链基团均由无机元素或基团构成的。天然无机高分子如云母、水晶等,合成无机高分子如玻璃。高分子化合物的系统命名比较复杂,实际上很少使用,习惯上天然高分子常用俗名。合成高分子则通常按制备方法及原料名称来命名,如用加聚反应制得的高聚物,往往是在原料名称前面加个“聚”字来命名。例如,氯乙烯的聚合物称为聚氯乙烯,苯乙烯的聚合物称为聚苯乙烯等。如用缩聚反应制得的高聚物,则大多数是在简化后的原料名称后面加上“树脂”二字来命名。例如,酚醛树脂、环氧树脂等。加聚物在未制成制品前也常有“树脂”来称呼。例如,聚氯乙烯树脂,聚乙烯树脂等。此外,在商业上常给高分子物质以商品名称。例如,聚己内酰胺纤维称为尼龙-6,聚对苯二甲酸乙二酯纤维称为涤纶,聚丙烯腈纤维称为腈纶等。

  • 聚合物分析

    求专门的聚合物分析的样品前处理技术和分析方法我要分析的是聚合物的小分子添加剂,残单,和一些低聚物的杂质。目前不会配置裂解色谱,只有Agilent6890和1100

  • 一些聚合物英文简称

    ABS Acrylonitrile-Butadiene-Styrene(resin) 丙烯腈-丁二烯-苯乙烯树脂 AS Acrylonitrile-Styrene(resin) 丙烯腈-苯乙烯树脂 ASA Acrylic-styrene-acrylonitrile 丙烯酸-苯乙烯-丙烯腈 CA Cellulose Acetate 醋酸纤维素 CAP Cellulose Acetate Propionate 醋酸丙酸纤维素酯 CB Cellulose Butyrate 纤维素酪酸酯 CP Cellulose Propionate 丙酸纤维素酯 CN Collodion wool 硝酸纤维素CTFE Polychlorotrifluoroethylene 聚一氯三氟乙烯 EAA Ethylene Acrylic Acid 乙烯丙烯酸 EAE Ethylene Acrylic Ester copolymer 乙烯-丙烯酸乙酯 共聚物EC Ethyl cellulose 乙基纤维素ECTFE Ethylene-chlorotrifluoroeethylene 乙烯-一氯三氟乙烯共聚合物 EMA Ethylene Methyl Acrylate copolymer 乙烯-甲基丙烯酸酯 共聚物EMAA Ethylene Methacrylic Acid copolymer 乙烯丙烯酸甲酯 共聚物ENBA Ethylene N-Butyl Acrylate copolymer 乙烯-丙烯酸丁酯 共聚物EP Epoxy resin 环氧树脂ETFE Copolymer of ethylene and chlorotetrafluoroethylene 乙烯一氯四氟乙烯共聚物 EVA Ethylene Vinyl Acetate copolymer 乙烯-醋酸乙烯共聚物EVOH Ethylene-Vinyl alcohol copolymer 乙烯-乙烯醇共聚物FEP Fluorinated ethylene-propylene copolymer 氟化乙丙共聚物 HDPE High density Polyethylene 高密度聚乙烯 HDPE High density Polyethylene 高密度聚乙烯 LCP Liquid crystal polyester 液晶聚酯 LCP Liquid crystal polymer 液晶聚合物LDPE Low density Polyethylene 低密度聚乙烯 IONOMER ionomer 离子聚合物 LCP Liquid crystal polyester 液晶聚酯 LDPE Low density Polyethylene 低密度聚乙烯 LLDPE Linear Low density Polyethylene 线性低密度聚乙烯 MBS 甲基丙烯酸甲酯-丁二烯-苯乙烯 共聚物MDPE Medium density Polyethylene 中密度聚乙烯 PA Polyamide 聚酰胺 PA11 Polyamide 11 聚酰胺 11 PA12 Polyamide 12 聚酰胺 12 PA4/6 Polyamide 4/6 聚酰胺4/6 PA6 Polyamide 6 聚酰胺 6 PA6/10 Polyamide 6/10 聚酰胺 6/10 PA6/12 Polyamide 6/12 聚酰胺 6/12 PA6/6 Polyamide 6/6 聚酰胺 6/6 PA6/9 Polyamide 6/9 聚酰胺 6/9 PAI Polyamide-imide 聚酰胺酰亚胺 PBT Polybutylene terephathalate 聚对苯二甲酸二丁酯 PC Polycarbonate 聚碳酸酯 PCL Polyamide-6 layer sheet 聚己内酰胺PCT Polycarbonate hexandimethanol Terephthalate 聚环已醇二乙酯 PE Polyethylene 聚乙烯PEC Polyethylene-Chlorinated 氯化聚乙烯PEG Polyethylene glycol 聚乙二醇PEI Polyethyleneimineimpregnated 聚乙烯亚胺PEO Polyoxyethylenesorbitan 聚氧化乙烯PEEK Polyetheretherketone 聚醚醚酮 PEI Polyetherimide 聚醚酰亚胺 PES Polyethersulfone 聚醚砜 PET Polyethylene terephathalate 聚对苯二甲酸二乙酯 PFA Perfluoroalkoxy 过氟烷氧基 PI Polyimide 聚酰亚胺 PK Polyketone 聚酮 PMMA Polymethylmethacrylic 聚甲基丙烯酸甲酯 (有机玻璃)PMP Polymethylpentene 聚甲基戊烯 Polyolefin -- 聚烯烃 POM Polyoxymethylene 聚甲醛 PP Polypropylene 聚丙烯 PPE Polyphenylene Ether 聚苯醚 PPO Polypropylene Oxide 聚环氧丙烷 PPS Polyphenylene Sulfide 聚苯硫醚 PS Polystyrene 聚苯乙烯 PSF Polysulfone 聚砜 PTFE Polytetrafluorothylene 聚四氟乙烯 PU Polyurethane(TP) 聚氨基甲酸乙酯 PVA Polyvinylalcohol 聚乙烯醇PVB Polyvinylbutyral 聚乙烯醇缩丁醛PVC Polyvinyl Chloride(TP) 聚氯乙烯 PVDC Polyvinyl Dichloride 聚偏氯乙烯 PVDF Polyvin ylidene fluoride 聚偏氟乙烯 PVP Polyvinylpyrrolidone 聚乙烯吡咯烷酮SAN(AS) Styrene-Acrylonitrile 苯乙烯-丙烯腈 SBR Styrene-Butadiene Rubber 苯乙烯-丁二烯橡胶 SMA Styrene Maleic Anhydride 苯乙烯-马來酸酐 TPE Thermoplastic Elastomer (TPE) 热塑性弹性体 TPO Thermoplastic Polyolefin(TPO) 热塑性聚烯烃

  • GPC测定聚合物分子量及分子量分布

    GPC测定聚合物分子量及分子量分布一、基本原理:CPC是一种特殊的液相色谱,所用仪器实际上就是一台高效液相色谱(HPLC)仪,主要配置有输液泵、进样器、色谱柱、浓度检测器和计算机数据处理系统。与HPLC最明显的差别在于二者所用色谱柱的种类(性质)不同:HPLC根据被分离物质中各种分子与色谱柱中的填料之间的亲和力不同而得到分离,GPC的分离则是体积排除机理起主要作用。GPC色谱柱装填的是多孔性凝胶(如最常用的高度交联聚苯乙烯凝胶)或多孔微球(如多孔硅胶和多孔玻璃球),它们的孔径大小有一定的分布,并与待分离的聚合物分子尺寸可相比拟。GPC仪工作流程图如下所示。http://www.591ceshi.cn/UploadImage/edit/images/gpc1.gif当被分析的样品通过输液泵随着流动相以恒定的流量进入色谱柱后,体积比凝胶孔穴尺寸大的高分子不能渗透到凝胶孔穴中而受到排斥,只能从凝胶粒间流过,最先流出色谱柱,即其淋出体积(或时间)最小;中等体积的高分子可以渗透到凝胶的一些大孔中而不能进入小孔,比体积大的高分子流出色谱柱的时间稍后、淋出体积稍大;体积比凝胶孔穴尺寸小得多的高分子能全部渗透到凝胶孔穴中,最后流出色谱柱、淋出体积最大。因此,聚合物的淋出体积与高分子的体积即分子量的大小有关,分子量越大,淋出体积越小。分离后的高分子按分子量从大到小被连续的淋洗出色谱柱并进入浓度检测器。浓度检测器不断检测淋洗液中高分子级分的浓度。常用的浓度检测器为示差折光仪,其浓度响应是淋洗液的折光指数与纯溶剂(淋洗溶剂)的折光指数之差,由于在稀溶液范围内,与溶液浓度成正比,所以直接反映了淋洗液的浓度即各级分的含量,下图是典型的GPC谱图。http://www.591ceshi.cn/UploadImage/edit/images/gpc2.gif图中纵坐标相当于淋洗液的浓度,横坐标淋出体积Ve表征着高分子尺寸的大小。如果把图中的横坐标Ve转换成分子量M就成了分子量分布曲线。为了将Ve转换成M,要借助GPC校正曲线。实验证明在多孔填料的渗透极限范围内Ve和M有如下关系:lgM=A-BVe式中A、B为与聚合物、溶剂、温度、填料及仪器有关的常数。用一组已知分子量的单分散性聚合物标准试样,在与未知试样相同的测试条件下得到一系列GPC谱图,以它们的峰值位置的Ve对lgM作图,可得如图3-6的直线,即GPC校正曲线:http://www.591ceshi.cn/UploadImage/edit/images/gpc3.gif有了校正曲线,即可根据Ve读得相应的分子量。一种聚合物的GPC校正曲线不能用于另一种聚合物,因而用GPC测定某种聚合物的分子量时,需先用该种聚合物的标样测定校正曲线。但是除了聚苯乙烯、聚甲基丙烯酸甲酯等少数聚合物的标样以外,大多数的聚合物的标样不易获得,多数时候只能借用聚苯乙烯的校正曲线,因此测得的分子量M值有误差,只具有相对意义。用GPC方法不但可以得到分子量分布,还可以根据GPC谱图求算平均分子量和多分散系数,特别是当今的GPC仪都配有数据处理系统,可与GPC谱图同时给出各种平均分子量和多分散系数,无须人工处理。二、主要药品与仪器:THF(流动相)1000ml聚合物样品(如PS)10mg样品瓶注射器(1ml)流动相脱气系统样品过滤头http://www.591ceshi.cn/UploadImage/edit/images/njstspy.gif三、实验步骤:(1)THF(流动相)的脱气THF过滤、真空脱气后,加入到流动相瓶中。(2)样品配制将10mg聚合物样品溶于1mlTHF中,过滤后置于样品瓶中。(3)用进样器取20m,从GPC仪的进样口注入。(4)在电脑数据系统的窗口上观察GPC曲线,处理数据。

  • 热降解对三类聚合物分子量分析的影响

    热降解对三类聚合物分子量分析的影响

    聚合物分子量分析,样品溶解是一个很重要的因素,溶解时间过长,可能会造成聚合物热降解,特别是氧化降解,下面我们来看一下热降解对聚丙烯PP、聚苯乙烯PS及高密度聚乙烯HDPE的GPC分析结果的影响:http://ng1.17img.cn/bbsfiles/images/2015/10/201510191001_570312_1664_3.jpg图一、热降解对不同聚合物的GPC分析结果的影响从上图我们可以看出,热降解对PP的影响更大,不同受热时间的同一样品分析结果差别较大,而对PS和HDPE影响较小,但是多少也会有一些影响,如何保证样品分析结果不受或者减少热降解的影响,是很多从业人员关心的问题,如果我们保证了同一样品的受热时间一致,那么分析结果的重复性自然会很好。

  • 软包锂离子电池用聚合物电解质技术进展

    软包锂离子电池具有重量轻,比容量高、安全性能好、内阻小、设计灵活等特点,数码消费产品轻薄化、多样化设计使得软包电池发展迅速,软包电池占中国锂电池市场的比例已经突破30%。但目前生产的软包电池绝大部分仍使用液态电解液,并不是真正的“聚合物电池”。采用聚合物电解质替代液态电解液,可以有效提高极端情况下电池的安全性。聚合物电解质主要包括凝胶聚合物电解质(GPE)和全固态聚合物电解质(SPE)。全固态型聚合物电解质是以聚合物基质作为电解质的溶剂,不含任何液态成分。全固态聚合物电解质由于常温离子电导率较低的问题一直没有解决,并且成本过高,国内领先的电芯厂如东莞新能源(ATL)也仍在研发阶段,市场尚未有商业化产品面世。目前取得商业化应用的主要是凝胶聚合物电解质。凝胶聚合物电解质分两种:PVDF-HFP热压聚合工艺路线以及现场聚合工艺路线,目前国内电芯厂普遍采用PVDF-HFP热压聚合工艺(俗称“涂胶隔膜”)。凝胶聚合物电解质既有全固态聚合物电解质良好的安全性,又与有机溶剂电解液有相近的离子电导率,并且具有与电极材料间的反应活性低、质量轻、易成薄膜、黏弹性好等特点。采用凝胶聚合物电解质的电池可制成各种形状,并具有耐压、耐冲击、生产成本低和易于加工使用等优势。相对国内,日韩企业对凝胶聚合物及固态电解质研发及技术储备更早,索尼、三井化学、三星SDI、LG化学等公司拥有相关凝胶聚合物电解质的技术及专利群。国内领先的电解液供应商—广州天赐高新材料股份有限公司推出了适用于正极为钴酸锂、锰酸锂、三元材料软包电池的TC-E505#系列电解液和适用于正极为磷酸铁锂的TC-E506#系列电解液。本系列电解液为传统电解液和聚合物组成的具有一定粘度的聚合物电解液,将电解液注入到电池中后,通过一定的化成工艺,可以将电池的极片与隔膜粘结在一起,电池中不存在液体电解液,全面提升电池的高低温性能、倍率性能、使用寿命和安全性能。

  • 【原创大赛】聚合物整体柱的制备及其在蛋白质分离中的应用

    [align=center]聚合物整体柱的制备及其在蛋白质分离中的应用[/align][align=center]摘 要[/align][align=center][color=black] [/color][/align][align=left][color=black]整体柱作为第四代分离介质,具有制备简单、通透性好、传质快等优点,在生物分离分析中发挥的作用日益增加。多孔聚合物整体柱具有高通透性和高柱空间利用率,与填充柱相比优势明显。至今已成功地用于分离科学,特别是用于分离型生物分子。本文简要综述了聚合物整体柱的制备及其在蛋白质分离中的应用,并对其应用做了展望。[/color]关键词:[color=black]聚合物整体柱;蛋白质分离;综述[/color][b]1 引言[/b]蛋白质在人体生命过程中发挥着极其重要的作用,某些蛋白质在体内的含量水平严重影响着生命的质量,这就要求对其进行定量研究,而对其实现分离分析成为首要任务。对蛋白质进行分离鉴定通常使用电泳[color=black]—[/color][color=black]质谱、液相色谱[/color][color=black]—[/color][color=black]质谱联用技术,但这些方法并不能完全满足蛋白质分子对操作环境和分析方法要求较高的要求,并且费用较高。而聚合物单体种类繁多,且其上面的官能团可以有多种修饰方法从而对不同的生物分子具有不同的作用,从而对其实现快速分离。[/color]色谱柱是色谱分离的核心,整体柱代表了色谱柱技术发展的方向[sup][color=black][/color][/sup][color=black]。整体柱[/color][color=black]( Monolithiccolumn) [/color]又称连续床层( Continuous bed) [color=black],是一种用有机或无机聚合方法在色谱柱内进行原位聚合的连续床固定相[/color][sup][color=black][/color][/sup][color=black]。[/color][color=black]整体柱具有独特的双孔结构,具有灌注色谱的特点,比填充柱的通透性更好,可实现快速分离[/color][sup][color=black][/color][/sup][color=black]。根据整体材料基质的不同,整体柱分为硅胶整体柱、有机聚合物整体柱、有机[/color][color=black]-[/color][color=black]硅胶杂化整体柱。硅胶整体柱具有良好的稳定性和机械强度,通透性好,但制备周期长,需要柱后衍生[/color][sup][color=black][/color][/sup][color=black]。有机聚合物整体柱则制备简单、[/color][color=black]pH [/color][color=black]值适用范围广,具有良好的通透性、独特的比表面积和较好的化学稳定性,并且能在玻璃毛细管、不锈钢柱管、[/color][color=black]tip [/color][color=black]头甚至是微流控芯片的通道等多种模具中制备[/color][sup][color=black][/color][/sup][color=black]。[/color][b]2 聚合物整体柱的制备[/b]多孔聚合物整体柱出现在上世纪90年代初,继而在制备和应用中得到发展[sup][/sup]。与采用溶胶凝胶技术制备的无机硅胶整体柱相比,通过自由基聚合方式制备的聚合物整体柱更容易制备。除了传统的自由基聚合,其他方法预期制备一种具有均匀结构的新型聚合物整体柱。2006年,Hosoya等人报道了一种将环氧单体与二胺类开环聚合的高性能有机聚合物整体柱,在毛细管液相色谱上,其对苯的分离塔板高度(H)可以达到小于5μm[sup][/sup]。值得注意的是,相比链生长聚合(比如自由基聚合反应)产生的球状结构,逐步聚合方式导致整体柱有完全不同的形态。[b]3 聚合物整体柱的分类[/b]多种多样的功能单体使整体柱设计变得更容易,按单体不同,聚合物整体柱可分为聚丙烯酰胺类,聚甲基丙烯酸酯类和聚苯乙烯类[sup][/sup]。单体决定其适用范围,整体柱已被广泛用于不同的色谱模式,包括反相液相色谱(RPLC)、亲水相互作用色谱(HILIC)、离子交换色谱(IEC)等[sup][/sup]。而[color=black]从制备工艺上,聚合物整体柱可分为三类:后修饰整体柱、原位合成整体柱和结合微加工技术的整体柱。[/color]原位合成整体柱是一定温度或紫外光条件下,将交联剂、单体、引发剂、致孔剂,在不锈钢色谱柱管中充分反应,再冲洗除去致孔剂和残余未反应物得到。除研究可用单体外,新的制备方法和制备工艺和的研究也取得了很好发展。通过调节交联剂、单体、致孔剂之间的比例,可以较好地控制制备的整体柱的柱效和通透性[sup][color=black][/color][/sup][color=black]。原位聚合制备的整体柱并不能满足某些特定的分离需求。原位聚合时,很多功能团被包埋在颗粒内部,暴露在表面上的并不多,这导致聚合物整体柱的性能明显下降。后修饰整体柱则会改善这一问题。聚合物整体柱的后修饰方法使用最多的是在聚合物表面接枝[/color][sup][color=black][/color][/sup][color=black]。近年来,利用甲基丙烯酸缩水甘油酯[/color][color=black]( GMA) [/color][color=black]的环氧基团的接枝方法较为流行,并成功运用到离子交换色谱、亲和色谱等色谱柱的制备中[/color][sup][color=black][/color][/sup][color=black]。相对于接枝的方法,将功能化的纳米颗粒包被在聚合物的表面的方法较为简单,也常用于制备功能化的聚合物柱。作为固定相载体,微加工整体柱是芯片色谱柱所独有的。[/color]原位合成聚合物整体柱最为便捷,根据分离要求的不同,已经开发了各种各样的单体材料和制备工艺。对于一般分离需求,是很好的选择。采用后修饰的方法在固定相表面连接功能基团可以提高柱效,而微加工整体柱仅适用于芯片色谱。[b]4 聚合物整体柱的应用[/b]一般来说,多孔聚合物整体柱具有典型球状结构,其通孔之间的聚合微球显著有利于提高聚合物整体柱的通透性,并且使其在高流速下能够有效地分离蛋白质分子。然而,聚合物整体柱对小分子的分离通常表现为低的柱效,据研究是由于表面积较硅胶整体柱小造成的。为了解决这个问题,研究者提出了几种试图增加表面积的方法,如将纳米粒子引入聚合物整体柱和制备超交联整体柱[sup][/sup],分离能力在一定程度上得到了提高。此外,斯韦克系统地阐述了各种多孔聚合物整体柱的制备技术[sup][/sup]。例如,2,2,6,6-四甲基-1-哌啶(TEMPO)介导的活性自由基聚合。Kanamori等合成的聚合物(二乙烯基苯)单体具有明确的连续形态,高的比表面积[sup][/sup]。[b]5 展望[/b][color=black]实际有机分子样品结构复杂、种类众多,而且对操作环境和分析方法要求较高。不同色谱模式的液相色谱方法不仅对特定的生物分子具有较好的选择性,且制备方法简单易得,结构可控。此外,聚合物单体的种类繁多,且其上面的官能团可以有多种修饰方法从而对不同的生物分子具有不同的作用。因此,随着液相色谱固定相的发展,聚合物整体柱以其独有的优势也会在生物分子的分离与分析中得到越来越广泛的应用。[/color][color=black] [/color][color=black] [/color][color=black] [/color][color=black] [/color][color=black] [/color][color=black] [/color][color=black] [/color][color=black] [/color][b]参考文献[/b] 杨帆, 毛劼, 何锡文. 基于巯基-烯点击反应制备有机-无机杂化硼酸亲和整体柱用于糖蛋白的选择性富集. 色谱, 2013, 31(6): 531-536. 平贵臣, 袁湘林, 张维冰等. 整体柱的制备方法及其应用.分析化学,2001,29(12):464-469. Jing Liu, Fangjun Wang, Zhenbin Zhang. Reversed phasemonolithic column based enzymereactor for proteinanalysis. Chinese Journal of Analytical Chemistry,2013, 41(1):10-14. Motokawa M, Ohira M, Minakuchi H [i]et al[/i]. Performance ofoctadecylsilylated monolithic silica capillary columns of 530μm innerdiameterin HPLC. J.Sep Sci,2006, 29(9): 2471-2477. 王超然, 王彦, 高也等. 聚(4-乙烯基苯硼酸-季戊四醇三丙烯酸酯)亲和整体柱的制备与应用. 分析化学研究报告,2012, 40(8):1207-1212. 李晶, 周琰春, 张嘉捷等. 阴离子交换聚合物整体柱的制备及其在[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]中的应用.分析测试学报,2012, 31(9):1089-1094. 张振宾, 欧俊杰, 林辉等. 有机-硅胶杂化整体柱的制备及应用研究进展.高等学校化学学报,2013,34(9):2011-2019. 刘婵, 江茜, 陈蕾等. 金纳米粒子修饰的氨基硅胶整体柱的制备及超灵敏表面增强拉曼散射检测.高等学院化学学报,2013,34(11):2488-2492. Yongqin Lv, Zhixing Lin, Frantisek Svec. Thiol-ene clickchemistry: a facile and versatile route for the functionalization of porouspolymer monoliths.Analyst,2012,137(9):4114-4118. 吕仁江, 丁会敏, 李英杰. 丙烯酰胺-β-环糊精毛细管电色谱手性整体柱的制备及应.应用化学,2012,29,(5):604-607. Frantisek Svec, Yongqin Lv. Advances and recent trends in thefield of monolithic columns for chromatography. Analytical Chemistry,2014,87(9):250-273. Zhongshan Liu, Junjie Ou, Hui Lin. Preparation of monolithic polymercolumnswithhomogeneousstructure viaphotoinitiated thiol-yne click polymerization and their application inseparation of small molecules.Analytical Chemistry,2014,86,(105):12334-12340. Trojer L, Lubbad S H, Bisjak C [i]et al[/i]. Monolithicpoly( p-methylstyrene-co-1,2-bis(p-vinylphenyl) ethane) capillary columns as novel styrene stationary phases forbiopolymer separation.J. Chromatogr. A, 2006, 1117(1): 56-66. Luo Q Z, Zou H F, Xiao X Z [i]et al[/i]. Chromatographic separation of proteins on metal immobilizediminodiacetic acid-bound molded monolithic rods of macroporous poly( glycidylmethacrylate-co-ethylene dimethacrylate) . J. Chromatogr. A,2001,926(2):255-264. 郑晖, 李秋顺, 马耀宏等. 微流控芯片上电色谱聚合物整体柱研究进展.山东科学,2013,26(1):16-21. J. Zhang, HL. Zou, Q. Qing [i]et al[/i]. Effect of chemical oxidation on the structure of singlewalled carbon nanotubes. J. Phy. Chem. B, 2003, 107(16):3712-3718. Junjie Ou, Zhongshan Liu, Hongwei Wang. Recent development ofhybrid organic-silica monolithic columns in CEC and capillary LC.Electrophoresis ,2015, 36(9):62-75. 王玺, 何健, 季一兵. 聚甲基丙烯酸酯毛细管整体柱的制备及其性能考察.中国药科学学报,2012, 67(7):78-85.[/align]

  • 【讨论】支化聚合物的分子量可用什么仪器测?

    是一种支化聚合物,可溶于水、醇等极性溶剂,重复单元大概是-(CH2-CH2-NH)n-(仲胺基上的活泼H可使聚合物支链化,甚至可能生成超支化聚合物),分子量应在10万以下。请问,用什么仪器能测得分子量?

  • 常见聚合物的红外光谱一览

    常见聚合物的红外光谱一览最常见的几种聚合物Polyethylene 聚乙烯:http://ng1.17img.cn/bbsfiles/images/2011/10/201110302148_327284_1645275_3.gif

  • 关于聚合物中胺基的问题,谢谢

    关于聚合物中胺基的问题,谢谢

    我的实验是这样的,我们在模仿国外一个丙烯酸酯聚合物的产品,从热裂解-GCMS的结果来看,里面还有丙烯酸丁酯,乙烯基吡啶等主要单体,但经过化学测试,里面胺基含量比较高,但图谱结果中却怎么也找不到含有胺基的化学物,所以一直很头疼,我想知道通过什么其他办法可以尝试知道里面的胺基到底是什么物质?谢谢!附件是该物质的红外!!http://ng1.17img.cn/bbsfiles/images/2013/11/201311181049_477794_2113729_3.jpg

  • 【求助】聚合物的制样方法

    请问有些聚合物用热压法会粘到金属板上或一些聚合物膜上,粒子很硬,用溴化钾可以吗?还是有其他什么更好的方法介绍?或用什么膜压片?如要用涂抹法用什么溶剂??如PA66,聚对苯二甲酸乙二醇酯?

  • 【求助】请问这样的聚合物能做透射吗

    大家好!我想请问一个问题,我看一个聚合物的聚合结构,该聚合物是聚甲基丙烯酸酯类的,结构里面含有苯环,我做了切片和染色后,还是一点东西都看不到,只看到一层膜,请问这样的物质能通过透射看结构吗?可以的话是要用特殊的染色剂吗?谢谢大家!

  • 聚合物材料全自动特性粘度分析仪IVA

    聚合物材料全自动特性粘度分析仪IVA

    http://ng1.17img.cn/bbsfiles/images/2017/10/2015101316285033_01_1664_3.jpg 根据市场需求,Polymer Char研发一种可靠的全自动的聚合物材料特性粘度分析仪IVA®,溶解温度可以达到200℃。IVA®研发建立在已成熟的质控平台上,集成了强大的双毛细管粘度检测器和非常可靠的高温自动进样器,同时客户也可以选配红外检测器IR4。 双毛细管粘度计原理简单:聚合物溶液通过不锈钢毛细管管线产生的压降与纯溶剂所产生的压降之比,压降是同时测得的。聚合物溶液的相对粘度是由压力之比得到的,而特性粘度的计算要考虑注入聚合物的质量。 和乌氏粘度计的毛细管不同,IVA®的不锈钢管毛细管和管线无需额外的清洗或者冲洗,可以提供精确的粘度数值,经久耐用。加热部件和传输管线的精妙设计确保聚合物能够完全溶解,即使是高分子量的聚合物也能够完全溶解完成分析。 分析时,分析人员将已加聚合物的样品瓶放置在自动进样器的外部托盘中,直到需要分析前外部托盘处于室温状态。然后自动进样器的机械手会把需要分析的样品瓶从外部托盘转移到加热炉中,仪器自动加入溶剂,开始震动。分析人员可以自动选择溶解温度,震动的速率和时间,实现聚合物的完全溶解,同时也可以最大限度地减少聚合物热降解。选配IR4检测器,分析聚烯烃或者具有明显的C-H键的聚合物可以更加精确地获得聚合物的注入质量,从而提高特性粘度测试的精度和准确度。主要特点:Ø 配有高温溶解自动进样器Ø 全自动分析,包括溶解,无需处理溶剂Ø 自动清洗Ø 选配IR4检测器时无需精确称量Ø 操作简单,仪器可靠Ø 结果精确Ø 一次可以自动分析多达42个样品Ø 可用于分析高分子量和超高分子量聚合物Ø 溶剂消耗量小http://ng1.17img.cn/bbsfiles/images/2015/10/201510131629_569903_1664_3.jpg

  • 【资料】中华人民共和国国家标准 GB 11175-89 聚乙酸乙烯酯乳液试验方法

    10.4 水溶物含量试验10.4.1 原理 所制备的薄膜经水浸泡,其可溶于水的物质从薄膜中溶解于水中,以此薄膜质量与浸水前薄膜质量的百分比表示试样耐水程度。10.4.2 仪器和装置 a. 恒温水浴; b. 分析天平:感量0.1 mg; c. 干燥器:用硅胶作干燥剂。10.4.3 试验步骤 准确称量10.3中制备的薄膜(玻璃载片的质量是制备薄膜前准确称量过的),将其置于30~0.5 ℃的水浴中(水浴的水为蒸馏水),浸泡24 h,取出晾干,再置于干燥器中放置24h后准确称量。10.4.4 试验结果计算 C=[(m[2]-m[1])/(m[0]-m[1])]×100 (3)式中:m[0]——浸水前原薄膜试样总质量,g;m[1]——载薄膜的玻璃片的质量,g;m[2]——溶水后薄膜试样的总质量,g;C——水溶物含量,%。 试验结果取两位有效数字。10.4.5 试验报告 a.试样规格、批号和生产、取样及试验日期; b.试验结果; c.如经水浸泡,薄膜发生乳化分散现象(即薄膜中含有的乳化剂或分散剂溶水后,使薄膜中聚合物再乳化再分散现象)也应注明。11 稳定性试验方法11.1 冻融稳定性11.1.1 方法提要 把试样在水的冰点下冻结,破坏聚合物乳液颗粒的水合层,然后在规定的条件下融化,检查样品是否能恢复乳液状态。11.1.2 仪器和装置 a.容器:为高密度聚乙烯塑料瓶,有盖,高70 mm、内径40 mm、壁厚2 mm的瓶子; b.低温箱:温度控制在-10±0.5 ℃; c.天平:感量0.5 g; d.恒温水浴; e.玻璃棒:直径8 mm左右、长200 mm左右; f.玻璃温度计:2支,一支为-50~0 ℃,精度1 ℃;一支为0~100 ℃,精度0.5 ℃。11.1.3 试验步骤11.1.3.1 冻结 用塑料瓶称取约50 g试样,盖好盖子,放到温度为-1010.5 ℃的低温箱中,冻结16h。11.1.3.2 融化 取出冻结的试样,放到温度控制为30±0.5 ℃的水浴中,融化1 h后,用玻璃棒搅动试样。11.1.3.3 高温融化 若经融化后的试样粘度增大失去流动性,或用玻璃棒搅不动,需在60±0.5 ℃的水浴中继续融化11.1.4 试验结果 按下列情况判断: a. 按11.1.3.1和11.1.3.2条规定进行,如试样无变化,或粘度稍有增大者,则冻融稳定性合格; b. 若按11.1.3.2条的规定进行试验的试样,不能恢复原状态,冻融稳定性不合格。 c. 需按11.1.3.3条的规定进行试验的试样或能融化,仍不失乳液的使用价值;或虽能融化而呈渣状,失去使用价值;或最终不能融化,完全破乳;以上各种现象均视为不合格。11.1.5试验报告 a.试样的规格、批号和生产、取样及试验日期; b.试验结果及融化、高温融化后的现象; c.试验中观察到的特殊现象。11.2 高温稳定性11.2.1 方法提要 试样在高温下放置,造成聚合物乳液颗粒融结,然后冷却到室温,观察试样外观变化情况。11.2.2 仪器和装置 a.容器、天平、玻璃棒应符合11.1.2条中a.、c.、e.的规定。 b.恒温干燥箱。11.2.3 试验步骤11.2.3.1 高温放置 用塑料瓶称取约50 g试样,盖好盖子,放入温度为60 ℃的恒温箱中,持续放置120 h。11.2.3.2 冷却 把试样从恒温箱中取出,室温下冷却3 h,然后用玻璃棒搅拌。11.2.3.3 外观试验 按4.3条的规定进行。11.2.4试验结果 根据4.3条的外观标准表征试样的高温稳定性,用合格或不合格表示。11.2.5试验报告 a.试样规格、批号和生产、取样及试验日期; b.试验结果; c.试验中观察到的现象。11.3 稀释稳定性11.3.1 方法提要 把试样稀释,降低聚乙酸乙烯酯乳液保护胶体浓度,试验乳液颗粒在重力场作用下沉淀的程度。11.3.2 仪器和装置 a.试管:平底,具塞,容积30 mL,刻度精度0.1 mL,由底部至30 mL刻度处的高度为20 cm; b.天平:感量0.5 g。11.3.3 试验步骤 取一定量试样于试管中,加水稀释到30 mL使其蒸发剩余物为2.5%~3.5%,盖塞后,上下摇动均匀,放置72 h后测定上层澄清液容积,试管底部沉淀物的容积。11.3.4 试验结果计算 U=(V[1]/30)×100 (4)P=(V[2]/30)×100 (5)式中:V[1]——上层澄清液容积,mL;V[2]——沉淀物容积,mL;U——上层清液容积比,%;P——沉淀物容积比,%。 计算结果取整数位。11.3.5 试验报告 a.试样规格、批号和生产、取样及试验时间; b.试验结果; c.试验中观察到的现象。12 残存单体试验方法12.1 试验原理 根据乙酸乙烯酯与溴素可进行加成反应的机理,以试样所消耗标准溴液量计算残存乙酸乙烯酯的含量,反应式为: CH[3]COOCH=CH[2]+Br[2] —→ CH[3]COOCHBr+CH[2]Br 12.2 试剂 溴—溴化钾标准溶液:c(Br[2]/2)=0.15 mol/L,按附录A制备。12.3 仪器和装置12.3.1 锥形瓶:150或200 mL,具塞,薄壁。12.3.2 滴定装置:25 mL棕色滴定管,滴定架。12.3.3 天平:感量0.1 g。12.4 试验步骤` 准确称取10.0 g试样于锥形瓶内,加25 mL水稀释试样,以溴—溴化钾标准溶液滴定,直至呈微黄色且颜色不消失,记下消耗溶液的体积(每次试验时,需重新标定溶液)。12.5 试验结果计算 残存单体(%)=(V• c×0.043/m)×100 (6)式中:V——试样消耗溴—溴化钾标准溶液体积,mL;c——溴—溴化钾标准溶液的浓度,mol/L;m——试样总质量,s; 0.043——与1.00 mL溴—溴化钾标准滴定溶液[c(Br[2]/2)=0.15 mol/L]相当的,以克表示的乙酸乙烯酯的质量,g。平均试验的两个滴定值绝对误差不得超过o.1 mL。试验结果以算术平均值表示,取一位有效数字12.6 试验报告 a.试样的规格、批号和生产、取样及试验日期; b.标准溶液浓度; c.试样消耗标准溶液的体积,mL; d.试验结果。13 粒径试验方法13.1 方法提要 利用显微镜观察样品微观下的状态,目测颗粒的平均直径。13.2仪器和设备13.2.1 显微镜:放大倍数不低于1 000倍。13.2.2 载物片:7.5 cm×2.5 cm;盖玻璃:2cm×2cm。13.2.3 天平:感量1 g。13.2.4 烧杯:100 mL。13.2.5 玻璃棒:直径约8 mm、长约200 mm。13.3 试验步骤13.3.1 制备蒸发剩余物为1%的试样 称取一定量试样,加适量水稀释后,使其蒸发剩余物为1%,用玻璃棒搅匀。13.3.2 测粒径 用玻璃棒沾一滴制备好的试样于载物片上,把盖玻片盖在试样上,不使气泡产生,放在显微镜下观察,目测50个以上的粒子直径,确定其平均直径。13.4 试验结果 平均粒径取一位有效数字。13.5 试验报告 a.试样的规格、批号和生产、取样及试验日期; b.试验结果及放大倍数; c.试验中能观察到的特殊现象,如单个粒子的聚集体。 附 录 A 溴—溴化钾[c(Br[2]/2)=0.15 mol/L)标准溶液制备方法 (补充件) A1 配制 称取60 g溴化钾(分析纯)及3.3 mL溴(分析纯)溶于100 mL蒸馏水中,再稀释至1 000 mL。 A2 标定 移取20.00 mL上述溴—溴化钾溶液,置于200 mL碘量瓶中,加入15%碘化钾水溶液10 mL,密封后于20—25 ℃下在暗处放置5 min,用浓度c(Na[2]S[2]O[3])=0.1 mol/L硫代硫酸钠标准溶液滴定至碘的颜色极浅时,加入1%淀粉指示剂1 mL,继续滴定至蓝色消失。 A5 计算 溴标准溶液浓度按式(A1)计算c=0.005V (A1)式中:c——溴标准溶液浓度,mol/L;V——消耗的硫代硫酸钠标准溶液体积,mL。 附加说明: 本标准由上海橡胶制品研究所归口。 本标准由天津市有机化i实验厂负责起草。 本标准主要起草人何乃谦、苏蕴诚、王明堂。 本标准参照采用日本工业标准JISK 6828—1977(80)《聚醋酸乙烯酯乳液试验方法》。 中华人民共和国化学工业部1989—03—10批准 1 990—01—01实施 ---------中国电子胶水论坛

  • 硅胶基质和聚合物基质SPE固相萃取柱的优缺点,您知道吗?

    硅胶基质和聚合物基质SPE固相萃取柱的优缺点,您知道吗?

    Dikma公司自主开发了ProElut SPE系列产品。涵盖硅胶键合、有机聚合物等类型:http://ng1.17img.cn/bbsfiles/images/2016/03/201603151554_587052_2452211_3.png1. ProElut硅胶键合吸附剂:高纯硅胶键合有机硅烷得到带有功能基团的吸附剂(pH范围:2~7.5) 硅胶与不同的硅烷化试剂键和得到不同类型的吸附剂,如硅胶键和红色部分集团得到反相吸附剂,非极性相互作用,键和蓝色部分为正相吸附剂,机型相互作用,键和黄色部分为离子交换吸附剂 http://ng1.17img.cn/bbsfiles/images/2016/03/201603151556_587053_2452211_3.pnghttp://ng1.17img.cn/bbsfiles/images/2016/03/201603151556_587054_2452211_3.png2. 高分子聚合物吸附剂: ProElut高分子聚合物吸附剂由含亲水基团的聚苯乙烯/二乙烯基苯共聚吸附剂构成,简称PLS,典型的亲水亲脂平衡吸附剂,因其兼具亲水基团(吡咯烷酮基团)和疏水基团(二乙烯基苯),因此他对极性化合物和非极性化合物均有较好的保留,应用范围大大超过同为反相吸附剂的C18 高分子聚合物吸附剂与传统硅胶键合反相吸附剂比较主要有以下几方面的优势: 1)通用性:高分子聚合物吸附剂PLS对极性和非极性化合物均可保留,而传统硅胶键合反相吸附剂(如C18只能保留非极性化合物,极性化合物保留差; 2)稳定性:因PLS上有亲水的吡咯烷酮基团,因此它可吸收水分,即使活化后不上样柱床也不易干涸,而C18柱无亲水基团,柱床容易干涸; 3) pH值适用范围: C18柱在2-7.5性质稳定,而PLS在整个PH值范围内均性质稳定,因此不必担心溶液的PH值对吸附剂性能的破坏; 4)吸附容量: C18由硅胶键和十八烷基得到,起作用的基团是十八烷基,因此在60毫克吸附剂上,可能只有30毫克十八烷基在发挥作用,而PLS使聚合物基质吸附剂,聚合物上的基团都在发生作用,有多少可吸附剂,就有多少基团在起作用,所以PLS保留的化合物要比C18多。另外C18由于有残余的未键和的硅羟基所以存在次级相互作用,而PLS没有pH小于2时键合相水解,pH大于8时硅胶溶解

  • 聚合物红外光谱分析和鉴定

    [em07]聚合物红外光谱分析和鉴定 从实用的角度出发介绍了聚合物的初步鉴定、聚合物分析中常用的分离方法、红外光谱基本原理和实验技术、各类聚合物及添加剂的红外光谱分析和鉴定。 汇集了典型实用的聚合物和添加剂的红外光谱300余幅。这些光谱图可用于未知聚合物和添加剂的分析和鉴定。 需要的朋友请到资料中心下载! http://www.instrument.com.cn/download/shtml/028017.shtml

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制