当前位置: 仪器信息网 > 行业主题 > >

聚肌尿胞钠盐复合物溶液

仪器信息网聚肌尿胞钠盐复合物溶液专题为您提供2024年最新聚肌尿胞钠盐复合物溶液价格报价、厂家品牌的相关信息, 包括聚肌尿胞钠盐复合物溶液参数、型号等,不管是国产,还是进口品牌的聚肌尿胞钠盐复合物溶液您都可以在这里找到。 除此之外,仪器信息网还免费为您整合聚肌尿胞钠盐复合物溶液相关的耗材配件、试剂标物,还有聚肌尿胞钠盐复合物溶液相关的最新资讯、资料,以及聚肌尿胞钠盐复合物溶液相关的解决方案。

聚肌尿胞钠盐复合物溶液相关的论坛

  • 磷脂复合物液相分析和制备问题

    最近在做磷脂复合物,查了许多文献,大部分都是用氯仿溶解计算复合率,想问一下计算复合率,洗脱溶剂只能氯仿吗可以用别的吗,选择的要求是什么,还有如果用液相检测磷脂复合物药物的含量,需要用什么溶剂将它溶解,才能保证测的是磷脂复合物中药物含量,麻烦帮助解答一下,谢谢

  • EDTA二钠盐的溶液怎么储存?

    最近有专家评审,提出我们检测总硬度使用的滴定管应该用酸式的,因为EDTA二钠盐的溶液是显酸性的,但是EDTA二钠盐具有络合性,会跟玻璃中的金属反应,所以是不是应该放碱式滴定管呢?包括储存,也放在塑料瓶里?很迷惑,希望大家热烈讨论下,了解的给个专业的解答,到底用那个滴定管?用什么瓶储存?

  • 【求助】如何刻蚀我制备的聚合物复合物

    制备了环氧树脂、聚己内酯及in situ生成的SiO2复合物,想通过SEM看清楚三者的分布情况,请问该如何使用化学刻蚀?需要指出的是,三者之间都有化学键作用。 或者介绍我其他表征方法也行。谢谢!

  • 【求助】如何配制EDTA钠盐缓冲溶液,pH值8左右

    如何EDTA钠盐缓冲溶液,pH值8左右因工作需要,需配制EDTA缓冲溶液,拟用于解决土壤中硼中毒的问题。要求EDTA钠盐缓冲溶液pH值为8左右,浓度为0.05mol/L不知道这能否起到缓解土壤硼中毒的作用啊。

  • 脂肪间充质干细胞-壳聚糖凝胶复合物治疗大鼠深Ⅱ度烫伤创面实验研究

    【序号】:7【作者】: 廖筱梅罗兴前代蕾【题名】:脂肪间充质干细胞-壳聚糖凝胶复合物治疗大鼠深Ⅱ度烫伤创面实验研究【期刊】:中国修复重建外科杂志. 【年、卷、期、起止页码】:2019,33(01)【全文链接】:https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2019&filename=ZXCW201901022&uniplatform=NZKPT&v=NwTO9rDkQZHRHjdT8XMlNEkusJwTTn_j3NCCQSy80VBl1u9Qgb0WwKYdE5UVI499

  • 聚电解质复合物纳米胶束的合成及性能研究

    【序号】:1【作者】: 张亚南【题名】:聚电解质复合物纳米胶束的合成及性能研究【期刊】:江南大学 【年、卷、期、起止页码】:2015【全文链接】:https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD201501&filename=1014370567.nh&uniplatform=NZKPT&v=N8nmz_MTeIseDPCQglHFnPjs2A0-D2ZMflhoJYxzpAWDFqMpWg7IUqNHLX8MEBZH

  • 三种离子物质对壳聚糖/果胶聚电解质复合物牛血清蛋白释放特性的影响

    【序号】:3【作者】: 张立彦焦文娟包丽坤【题名】:三种离子物质对壳聚糖/果胶聚电解质复合物牛血清蛋白释放特性的影响【期刊】:现代食品科技. 【年、卷、期、起止页码】:2015,31(01)【全文链接】:https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2015&filename=GZSP201501008&uniplatform=NZKPT&v=ivma19ZMvHJaZIHyKyZR30CRPGu_zXf0CQAbNA5bBl48WAinaKwsKcGGTr_Z_rV2

  • 生物大分子魔芋的阳离子化改性及聚电解质复合物的研究

    【序号】:2【作者】:王凯【题名】:生物大分子魔芋的阳离子化改性及聚电解质复合物的研究【期刊】:武汉理工大学 【年、卷、期、起止页码】:2018【全文链接】:[url]https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD201902&filename=1019832452.nh&uniplatform=NZKPT&v=i8NcTeI2Rq255i6qGIcKWA1kDyDnxA8Dj7sYIKgA_k8UMTx7lV5MqdIHqkaNG2WA[/url]

  • 【求助】急!!!氨苄西林钠聚合物对照溶液严重拖尾!!!

    我在做氨苄西林钠聚合物,在以水为流动相B的时候,进样对照溶液,对照溶液严重拖尾,流速1.0。对照溶液浓度0.5mg/ml。在这个过程中调过流速0.8,但峰很宽;流速1.2只是出峰时间提前而已,拖尾问题没有改善。调过对照溶液浓度0.25mg/ml,拖尾仍然没有改善。水用的是注射用水,抽滤2遍。有关文献中又说对照溶液严重拖尾可以加0.5%葡萄糖溶液或0.01mol/l甘氨酸适量,抑制氨苄西林和葡聚糖凝胶的缔合。我两个都试过了,没有改善啊。这个适量真的是很难控制,几滴?几毫升?求求各位老师帮帮我吧,对照溶液严重拖尾啊!!!怎么办???

  • 紫杉醇口服聚电解质复合物胶束的制备及体外评价

    【序号】:5【作者】: 赵艳丽1葛建君1李艳丽2【题名】:紫杉醇口服聚电解质复合物胶束的制备及体外评价【期刊】:药物生物技术. 【年、卷、期、起止页码】:2014,21(01)【全文链接】:https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2014&filename=YWSW201401008&uniplatform=NZKPT&v=tl_TDad7FRyPNnBOi5TPVTYof7Rn9Mvd1wIYeJ16H1hBV2J0MMOaUUKSZTEfzoUx

  • LC-ESI-MS研究蛋白质复合物

    LC-ESI-MS研究蛋白质复合物

    LC-ESI-MS研究蛋白质(多聚体)复合物的实验中,LC用水作流动相,蛋白质及复合物带太多水分子而使质谱图复杂,而不易看到蛋白质和小分子配体的结合,而用酸水作流动相,又常遇到蛋白复合物被破坏的问题,请问有没有好的分析策略?向各位请教啦,谢谢!从图上可以看出右方四聚体部分的多电荷质谱图复杂,带有较多水分子。http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_648498_1634433_3.png

  • 【分享】科学家解析出MecA-ClpC复合物晶体结构

    【分享】科学家解析出MecA-ClpC复合物晶体结构

    3月2日,清华大学生命科学院施一公教授领导的研究组与王佳伟副教授合作在《自然》在线发表论文,报道原核细胞蛋白酶体调节亚基MecA-ClpC异六聚体结构与功能的研究。ATP依赖的可调控蛋白质水解广泛存在于大多数生命体中,对于及时清除机体内的垃圾蛋白以及调节蛋白具有十分重要的作用。原核生物中负责这一功能的蛋白酶体由调节亚基-Clp/Hsp100家族成员同催化亚基ClpP两部分组成。研究发现,Clp/Hsp100家族蛋白都是以六聚体形式执行功能。ClpC是Clp/Hsp100家族的重要成员,含有两个AAA+(ATPasesassociatedwithdiversecellularactivities)结构域(核酸结合结构域),与该家族其它成员不同的是,ClpC的六聚体形成及其进一步的激活需要接头蛋白MecA的参与。利用ATP水解的能量,激活后的六聚体MecA-ClpC分子能够去折叠特异性蛋白质底物,并将生成的去折叠多肽链转运到ClpP中降解。但是,MecA如何介导ClpC形成六聚体并激活ClpC的分子机制一直都没有明确的解释。自2007年6月起,施一公教授领导的该课题组一直致力于对原核细胞内蛋白酶体调控机理的研究。经过3年多的艰辛努力,该课题组首次解析了枯草芽孢杆菌内蛋白酶体调节亚基MecA-ClpC复合物的三个相关晶体结构,并结合大量的生化实验数据,揭示了六聚体MecA-ClpC复合物的组装方式,阐明了MecA介导ClpC激活的分子机理,并提供了MecA-ClpC执行功能的结构基础。这些发现对揭密其它Clp/Hsp100分子机器的组装方式也有很好的借鉴作用,并且为研究真核生物内更为复杂的泛素-蛋白酶体系统提供了方法论和实验基础。(来源:清华大学生命科学院)http://ng1.17img.cn/bbsfiles/images/2011/03/201103031411_280581_1607864_3.jpg

  • 壳聚糖-纤维素硫酸钠聚电解质复合物膜对药物表观渗透系数的测试(英文)

    【序号】:4【作者】: 朱丽英1,2晏晓琴1张红漫1【题名】:壳聚糖-纤维素硫酸钠聚电解质复合物膜对药物表观渗透系数的测试(英文)【期刊】:物理化学学报. 【年、卷、期、起止页码】:2014,30(02)【全文链接】:https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2014&filename=WLHX201402025&uniplatform=NZKPT&v=7-X0rx1H537sLa-GhgthPRi0h8FOsmLhVSA_6k-RCaUqg4y9vL_dQerfb6AwMR2t

  • CNS_08.009_叶绿素铜钠盐

    CNS_08.009_叶绿素铜钠盐

    [align=center][font='黑体'][size=29px]叶绿素铜钠盐[/size][/font][/align][align=center]杨宗琦[/align]叶绿素是植物进行光合作用所必需的催化剂,是由四个吡咯环与镁离子相互配合而形成的镁卟啉类化合物。它是天然生物活性物质之一,具有排毒养颜,抗病强身,抑菌除臭等功效,一方面被广泛应用于日用品、食品、色素、脱臭剂等方面,另一方面在医药上也可用来治疗多种疾病,并应用于各种牙膏的开发中。但游离的叶绿素卟啉环中的镁离子在酸性条件下容易被氢离子取代,生成脱镁叶绿素使色泽褪去,且对光、酸和热比较敏感,使叶绿素的应用受到严重限制。近年来,有不少研究者试图对叶绿素的结构进行修饰,使其变成相对稳定的金属卟啉结构,而叶绿素铜钠盐就是极其重要的一种。叶绿素铜钠盐具有很高的稳定性,在医学上,叶绿素铜钠盐是一类重要的药物,甚至可用叶绿素铜钠盐用于治疗白血病。本文将从基本性质、制备工艺、含量测定等方面介绍叶绿素铜钠盐。[font='黑体'][size=18px]一、基本性质[/size][/font] [align=left]叶绿素,英文名Chlorophyllin,中文别名叶绿素镁钠盐 、叶绿酸粉末、 叶绿素铜三钠,呈墨绿色粉末,着色力强,色泽亮丽,其水溶液呈蓝绿色澄清透明液,[font='宋体'][size=13px][color=#000000]易溶于水,几乎不溶于低醇,不溶于氯仿。水溶液透明、无沉淀。在酸性情况下([/color][/size][/font][font='times new roman'][size=13px][color=#000000]pH 6.5 [/color][/size][/font][font='宋体'][size=13px][color=#000000]以下[/color][/size][/font][font='宋体'][size=9px][color=#000000])[/color][/size][/font][font='宋体'][size=13px][color=#000000]或钙离子存在时,则有沉淀析出。[/color][/size][/font]当其水溶液pH 值小于6 时,染液底部出现粉末状沉淀,这是由于平面空间结构的叶绿素铜钠分子在酸性条件下易于聚集 。叶绿素铜钠盐可以菠菜或蚕粪为原料,用丙酮或乙醇提取叶绿素,添加适量硫酸铜、叶绿素卟啉环中的镁原子被铜置换即生成。[/align]1.1物理化学性质沸点:801.6℃at 760 mmHg分子式:C[font='calibri'][size=13px]34[/size][/font]H[font='calibri'][size=13px]31[/size][/font]CuN[font='calibri'][size=13px]4[/size][/font]Na[font='calibri'][size=13px]3[/size][/font]O[font='calibri'][size=13px]6[/size][/font]分子量:724.148闪点:438.6℃储存条件:密封于2-8℃阴凉干燥处溶解性:易溶于水,略溶于醇和氯仿。[img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108061804161897_7669_1608728_3.png[/img] [img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108061804162109_5211_1608728_3.png[/img]1.2中毒症状和影响,急性和迟发效应系统性铜中毒症状包括:毛细血管损伤、头痛、冷汗、脉搏微弱、肝肾损伤、中枢神经系统兴奋继而抑制、黄疸、抽搐、麻痹和昏迷。休克和肾衰会导致死亡。慢性铜中毒包括肝硬化、脑损伤和脱髓鞘、肾损害;铜沉积在角膜引起人威尔逊病。还有报道铜毒性导致血红蛋白贫血和加剧动脉硬化。目前,其化学、物理和毒性性质尚未经完整的研究。1.3安全操作的注意事项在有粉尘生成的地方,提供合适的排风设备。1.4安全储存的条件,包括任何不兼容性贮存在阴凉处。 容器保持紧闭,储存在干燥通风处。建议的贮存温度:2 - 8℃,对光线敏感[font='黑体'][size=18px]二、制备工艺[/size][/font]工艺流程:原料→预处理→浸提→过滤→皂化→回收乙醇→石油醚洗涤→ 酸化铜代→抽滤水洗→ 溶解成盐→过滤→干燥→ 成品2.1方法一将富含叶绿素的原料( 国内生产以蚕沙为主) 于40~ 50℃烘干后,研细成粉末状。加粉末量3倍的乙醇丙酮混合液( 1/ 1)于40~45℃提取2.5h,抽滤,滤渣用同等体积乙醇丙酮的混合液再提取 一次。合并两次提取液并加NaOH 调pH 值为11,加热皂化( 50°C左右) 30min。皂化是否完全可用石油醚萃取来判断,上层液呈黄色即为皂化完全 。皂化完全后蒸馏浓缩回收混合液( 60°C左右) 直至体积为原来的1/4~ 1/ 3 即可。再用石油醚萃取4次。下层用盐酸调至pH 值为7,加硫酸铜后调pH值为2, 并在50℃下铜代2h。反应结束即有颗粒状沉淀形成,静置冷却。室温下收集沉淀, 先用50~ 60℃水洗涤,再用30% ~ 40% 的乙醇洗涤至乙醇层为浅绿色。再用石油醚洗涤至石油醚层为浅绿色。滤饼用丙酮溶解,用5%的NaOH 乙醇溶液沉淀,pH 值为12,收集沉淀,用无水乙醇洗涤即得产品。在制备过程中反应温度不易过高,调节pH 值时要小心,温度过高以及pH 值过大或过小都能使叶绿素分解 。此为百度文库提供的制备方法。通过查阅知网,我们了解到以下几种从不同原材料出发的制备叶绿素铜钠盐的方法。2.2方法二:螺旋藻制取叶绿素铜钠盐基本思路:利用硫酸铜对螺旋藻进行浸泡铜化,再用丙酮乙醇混合液浸提得到叶绿素的有机溶液,再经过皂化、萃取、浓缩、干燥等步骤将叶绿素改造为叶绿素铜钠盐。具体步骤:材料:螺旋藻主要试剂:AR乙醇(沸点 78.1℃),AR 丙酮(沸点 56.1℃),AR氢氧化钠,AR 石油醚,AR 盐酸,硫酸铜晶体(CuSO[font='calibri'][size=13px]4[/size][/font].5H[font='calibri'][size=13px]2[/size][/font]O),食盐,白砂糖,可溶性淀粉,用时配成各种所需浓度。工艺流程:螺旋藻→粉碎→铜化(5%CuSO[font='calibri'][size=13px]4[/size][/font]溶液)→洗涤、脱水→浸提(丙酮乙醇混合液)→过滤→浓缩→皂化(5%NaOH溶液)→萃取(石油醚)→干燥→叶绿素铜钠盐产品具体步骤:称量 5.0g 粉碎好的螺旋藻于试管中铜化 13h 后,洗涤脱水于锥形瓶中,加入 70:30 的丙酮乙醇混合液 300mL,加盖在室温下浸提 2h,过滤,浓缩,皂化(5%NaOH 溶液),萃取(石油醚),干燥,可制得墨绿色带金属光泽的叶绿素铜钠盐产品。该文献还对叶绿素铜钠盐的稳定性进行实验分析,实验结果表明,螺旋藻叶绿素铜钠盐的耐光性较较差,需在避光条件下保存;热稳定性较好,但不能高于85 ℃;不耐强酸;食盐、白砂糖、淀粉等食品添加剂无不良影响。2.3方法三:剑麻膏中叶绿素铜钠盐的制备基本思路:以从剑麻膏中萃取得到的叶绿素为原料,研究了酸化、铜代、皂化条件对叶绿素铜钠盐产率的影响。该文献指出,叶绿素铜钠盐的制备过程可分为两种,一种是先皂化,后铜代,目前大多数文献都采用这种方法,但由于叶绿素的耐酸性较差,所得产品纯度不够,产率不高 另一种是先铜代后皂化,即将提取出的叶绿素首先脱镁铜代,使叶绿素变成比较稳定的叶绿素铜,再经皂化成盐得到产品。这种方法对反应温度和时间的要求不太苛刻,有利于提高叶绿素的稳定性。故他们采用先铜代后皂化的方法,遵循节能降耗,提高效率的原则,对反应条件进行优化,并对所得叶绿素铜钠盐的性能和质量进行检测。实验试剂与仪器:剑麻膏,由广西武鸣东风农场提供 乙醇、丙酮、盐酸、氢氧化钠、石油醚、硫酸铜均为分析纯。BSA224S电子天平 FZ102 微型植物试样粉碎机 HH-2数显恒温水浴锅 723N可见分光光度计 R201L 旋转蒸发仪。具体步骤:[font='宋体']①[/font]叶绿素的提取称取30 g 剑麻膏于250 mL的三口烧瓶中,用 85% 的乙醇在 60 ℃水浴锅中提取3 h。提取液减压浓缩,得到含有叶绿素的提取膏状物。加入丙酮,萃取叶绿素,回收丙酮,得到叶绿素膏状物。[font='宋体']②[/font]叶绿素铜的制备 叶绿素加入少量乙醇溶解,用 10%的盐酸调 pH 为酸性,这时溶液由绿色变成黄褐色,酸化脱镁 45 min 后,边搅拌边加入10%CuSO[font='calibri'][size=13px]4[/size][/font]溶液进行铜代,有絮状沉淀生成,抽滤,用热水反复洗涤,得叶绿素铜。[font='宋体']③[/font]叶绿素铜钠盐的制备 叶绿素铜用少量乙醇溶解,加入 10% NaOH 溶液,75 ℃皂化 1 h,加入等量的石油醚,充分摇动,静置分层。除去上层黄色的叶黄素等脂溶性杂质,将下层深绿色的叶绿素铜钠盐收集于小烧杯中,水浴蒸干水分,在 60 ℃下烘干,即得目标产物。 该文献还讨论了酸化脱镁的条件优化,他们发现,叶绿素铜的产率随着溶液 pH 的增大而逐渐减小,pH>3时,产率下降。说明当 pH较大时,酸度不够,一部分叶绿素卟啉环中的镁离子没有脱落下来,导致叶绿素铜得率下降。所以,以pH =3 为宜。对于[font='fzktk--gbk1-00'][size=13px][color=#000000]酸化时间对叶绿素铜得率的影响[/color][/size][/font][font='fzktk--gbk1-00'][size=13px][color=#000000],研究发现[/color][/size][/font][font='ssj4'][size=13px][color=#000000],[/color][/size][/font]酸化时间超过 60 min 时,叶绿素铜的产率增大不太明显,说明酸化反应基本完成。为了节约实验时间,酸化时间以 60 min 为宜。对于酸化温度对叶绿素铜得率的影响,发现叶绿素铜得率在45-65℃随着酸化温度的升高呈上升趋势在65-85 ℃产率变化不大,超过85 ℃时,产率突然下降。可能是高温使叶绿素铜中的环状结构氧化,四吡咯环破坏而被降解,使叶绿素铜的产率降低。所以,酸化温度以65℃为宜。对于加铜量对叶绿素铜得率的影响,研究发现随着硫酸铜量的增加,叶绿素铜的得率增加,加入量大于 15 mL 时,增大幅度不明显,基本保持稳定。实验过程中还发现,加铜量太多时,溶液中游离铜的量也会增多,会延长叶绿素铜的洗涤时间。考虑到实验效率和能耗问题,加铜量以15 mL为宜。对于铜代时间对叶绿素铜得率的影响,研究发现叶绿素铜的得率随着铜代时间的延长呈增大趋势,铜代时间超过2h时,叶绿素铜得率的增大幅度不大。所以,铜代时间以2h为宜。对于皂化温度对叶绿素铜钠盐得率的影响,叶绿素铜钠盐的产率随着皂化温度的升高不断提高,当温度高于85℃时,产率稍有下降,这可能是因为生成的叶绿素铜钠盐在较高的温度下会部分分解,导致产率下降,为了保证叶绿素铜钠盐的质量,皂化温度选择75 ℃为宜。对于皂化时间对叶绿素铜钠盐得率的影响,研究发现叶绿素铜钠盐的得率随着皂化时 间的延长而增大,≥60 min 后得率趋于稳定。皂化时间较短时,用石油醚萃取的过程中,分层不明显,醚相呈绿色,说明没有皂化完全。所以,皂化时间以60 min 为宜。对于pH 对叶绿素铜钠盐得率的影响,研究发现,当pH>11 时,叶绿素铜钠盐的得率趋于稳定,在实验过程中发现,当 pH为9或10时,用石油醚萃取酯溶性物质时,界面会有固体颗粒,分层界面不清晰,醚相为绿色,这都是因加碱量不够,导致皂化不完全。所以,皂化时以pH = 12为宜。该文献还对叶绿素铜钠盐的性质进行了探究。对于耐光性,研究表明叶绿素铜钠盐在强光下不稳定,但与叶绿素相比,已经大大提高了耐光性。对于耐热性,实验结果为在90 ℃以内,叶绿素铜钠盐的吸光度基本保持不变,颜色均为绿色 温度高于90 ℃时,吸光度开始有下降趋势,但幅度不大,即使是在110 ℃时,叶绿素的保存率也为96.9%,说明叶绿素铜钠盐的耐热性还是比较理想的,可添加到处理温 度在100 ℃以内的食物中。对于耐酸碱性,从实验数据可以看出溶液的吸光度随着pH的增大而升高,pH在3~6 范围内,吸光度变化幅度不大,溶液颜色呈土绿色 pH = 7时,吸光度值有个比较大的跳跃 在 7~12 范围内,吸光度的变化幅度也不太大,溶液颜色呈碧绿色。在实验过程中发现,当 pH<3时,溶液中会出现大量沉淀,这可能是因为叶绿素铜钠盐在强酸条件下生成了不溶于水的叶绿素铜酸 当pH>11时,因碱性太强,加速脱酯反应,使叶绿素分解,溶液的吸光度迅速下降,但在碱性条件下,因不发生脱镁或碳环裂解反应,却能保持相对稳定的色泽,在使用中只要控制溶液 pH 值在近中性或偏碱水平,就能基本维持叶绿素铜钠盐的稳定性。综上可以得出,采用先铜代后皂化的方法制备叶绿素铜钠盐,即叶绿素提取出来后先脱镁铜代,增加中间产物的稳定性,在后续操作中,不必考虑因温度太高或时间太长而使叶绿素分解的问题,从而提高了产品的产率和纯度。从剑麻膏中萃取制备叶绿素铜钠盐的优化条件是: 酸化时 pH = 3,酸化时间 60 min,温 度 65 ℃ 铜代时硫酸铜加量1.5 g,时间2h 皂化时温度 75 ℃,时间 60 min,pH = 12。在此条件下,产率为 4.46% ,产品为墨绿色粉末,略带氨臭,易溶于水,水溶液呈绿色透明澄清液,微溶于或不溶于乙醇、乙醚、丙酮、氯仿等有机溶剂,有Ca[font='calibri'][size=13px]2+[/size][/font],Mg[font='calibri'][size=13px]2+[/size][/font]存在时,产品中会有少许白色沉淀,在空气中容易吸潮,应隔绝空气保存。[font='黑体'][size=18px]三、含量测定[/size][/font]3.1试剂与材料氢氧化钠乙酸铵甲醇冰乙酸聚酰胺粉:粒径0.150mm~0.180mm。3.2试剂配制氢氧化钠溶液(4mol/L):称取16.0g氢氧化钠,用水溶解并定容至100mL。氢氧化钠溶液(0.1mol/L):称取0.40g氢氧化钠,用水溶解并定容至100mL。乙酸铵缓冲溶液(0.2mol/L):称取7.708g乙酸铵,用水溶解并定容至500mL。解吸液:0.1mol/L氢氧化钠溶液+甲醇=1+10(体积比)。3.3标准溶液配制精确称取经105℃±1℃干燥至恒重并按其纯度折算为100%质量的叶绿素铜钠标准品0.0500g,用水溶解并定容至100mL棕色容量瓶中,此溶液浓度为500μg/mL,当天配制,避光保存。3.4标准工作溶液准确移取500μg/mL标准溶液10mL至100mL烧杯中,加入0.2mol/L的乙酸铵溶液30mL,用4mol/L氢氧化钠溶液和冰乙酸调pH5~6。加入3.0g聚酰胺粉,充分搅拌2min,避光静置5min用约20mL蒸馏水转移至 G3砂芯漏斗中抽滤,弃去滤液。用75mL 解吸液分3次解吸色素:每次倒入约25mL解吸液,浸泡2min,再振摇2min,抽滤并用20mL解吸液洗净抽滤瓶中残液。收集滤液,用解吸液定容至100mL,配制成浓度为50μg/mL的标准溶液,此溶液临用时配制。[font='e-bz'][size=12px][color=#000000] [/color][/size][/font]3.5被测样品溶液后期处理向含有被测样品粉末或样品浆液的100mL烧杯中加入0.2mol/L的乙酸铵溶液30mL,溶解并混匀样液,用4mol/L氢氧化钠溶液和冰乙酸调pH5~6。加入3.0g聚酰胺粉,充分搅拌2min。将样品溶液用约20mL60 ℃±2 ℃蒸馏水转移至 G3砂芯漏斗中抽滤,弃去滤液。再用75mL 解吸液分3次解吸色素,抽滤并用20mL解吸液洗净抽滤瓶中残液,收集滤液,用解吸液定容至100mL。3.6仪器条件测定波长:405nm。比色皿:1cm。3.7标准曲线的制作分别取标准工作液0mL、5.0mL、10mL、20mL、30mL、40mL、50mL至100mL容量中,用解吸液稀释至刻度,配制成浓度为 0μg/mL、5μg/mL、10μg/mL、20μg/mL、30μg/mL、40μg/mL、50μg/mL的标准系列。以0μg/mL溶液为空白,测定其吸光值。以浓度为横坐标,以吸光值为纵坐标绘制标准曲线。试样溶液的测定取经过前处理的样品的制备液,以标准曲线的0μg/mL为空白,测定其吸光值,根据标准曲线获得样品溶液中叶绿素铜钠的浓度。本标准检出限为0.001g/kg,定量限为0.005g/kg。3.8总铜含量试样处理[align=left][font='宋体'][size=13px][color=#000000]准确称取 [/color][/size][/font][font='times new roman'][size=13px][color=#000000]0.1g [/color][/size][/font][font='宋体'][size=13px][color=#000000]试样,精确至 [/color][/size][/font][font='times new roman'][size=13px][color=#000000]0.000 2g[/color][/size][/font][font='宋体'][size=13px][color=#000000],置于硅皿中,在不超过 [/color][/size][/font][font='times new roman'][size=13px][color=#000000]500[/color][/size][/font][font='宋体'][size=13px][color=#000000]℃下灼烧至无碳,用[/color][/size][/font][font='times new roman'][size=13px][color=#000000]1[/color][/size][/font][font='宋体'][size=13px][color=#000000]滴[/color][/size][/font][font='times new roman'][size=13px][color=#000000]~2 [/color][/size][/font][/align][font='宋体'][size=13px][color=#000000]滴硫酸湿润,再次灰化。用质量分数为[/color][/size][/font][font='times new roman'][size=13px][color=#000000]10%[/color][/size][/font][font='宋体'][size=13px][color=#000000]的盐酸溶液分[/color][/size][/font][font='times new roman'][size=13px][color=#000000]3[/color][/size][/font][font='宋体'][size=13px][color=#000000]次(每次[/color][/size][/font][font='times new roman'][size=13px][color=#000000]5mL[/color][/size][/font][font='宋体'][size=13px][color=#000000])煮沸溶解灰分,并过滤[/color][/size][/font]于100mL容量瓶中,冷却后用水定容至刻度,此为试样液。测定[align=left][font='宋体'][size=13px][color=#000000]除试样处理外,其他步骤按[/color][/size][/font][font='times new roman'][size=13px][color=#000000]GB/T 5009.13[/color][/size][/font][font='宋体'][size=13px][color=#000000]规定的方法测定。[/color][/size][/font][/align]游离铜含量3.9试样处理[align=left][font='宋体'][size=13px][color=#000000]准确称取[/color][/size][/font][font='times new roman'][size=13px][color=#000000]0.1g[/color][/size][/font][font='宋体'][size=13px][color=#000000]试样,加水约[/color][/size][/font][font='times new roman'][size=13px][color=#000000]50mL[/color][/size][/font][font='宋体'][size=13px][color=#000000]溶解后,用[/color][/size][/font][font='times new roman'][size=13px][color=#000000]1mol/L [/color][/size][/font][font='宋体'][size=13px][color=#000000]盐酸调节[/color][/size][/font][font='times new roman'][size=13px][color=#000000]pH[/color][/size][/font][font='宋体'][size=13px][color=#000000]至[/color][/size][/font][font='times new roman'][size=13px][color=#000000]4.0[/color][/size][/font][font='宋体'][size=13px][color=#000000],定容至[/color][/size][/font][font='times new roman'][size=13px][color=#000000]100mL[/color][/size][/font][font='宋体'][size=13px][color=#000000],过 [/color][/size][/font][/align][align=left][font='宋体'][size=13px][color=#000000]滤,此为试样液。[/color][/size][/font][/align]测定[align=left][font='宋体'][size=13px][color=#000000]除试样处理外,其他步骤按[/color][/size][/font][font='times new roman'][size=13px][color=#000000]GB/T 5009.13[/color][/size][/font][font='宋体'][size=13px][color=#000000]规定的方法测定。[/color][/size][/font][/align]参考文献[align=left][font='宋体'][size=13px][color=#000000]【1】韩敏.直接皂化法制备叶绿素铜钠盐[J].应用化工,:,2014.43(4):704-707.[/color][/size][/font][/align][align=left][font='宋体'][size=13px][color=#000000]【2】赖海涛.螺旋藻制取叶绿素铜钠盐的稳定性研究[J].化学工程与装备,:,2020.3(3):14-15.[/color][/size][/font][/align][align=left][font='宋体'][size=13px][color=#000000]【3】李祥.剑麻膏中叶绿素铜钠盐的制备及性能测定[J].应 用 化 工,:,2018.47(2):262-267.[/color][/size][/font][/align][align=left][/align][align=left][/align][align=left][/align]

  • 全自动聚合物溶液外部过滤系统(EFS)

    全自动聚合物溶液外部过滤系统的主要功能专为GPC仪器过滤聚合物中炭黑、填料或者其它小尺寸颜料等添加剂。全自动聚合物溶液外部过滤系统的主要特点2 简单快速2 操作容易2 坚固耐用2 减少人工过滤造成的样品损失和污染2 无溶剂挥发,符合HSE规范详情见附件

  • 甲壳素/壳聚糖在碱/尿素体系中的溶解机理及溶液性质研究

    【序号】:10【作者】: 方燕【题名】:甲壳素/壳聚糖在碱/尿素体系中的溶解机理及溶液性质研究【期刊】:武汉大学【年、卷、期、起止页码】:2017【全文链接】:https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CDFD&dbname=CDFDLAST2018&filename=1017170003.nh&uniplatform=NZKPT&v=2LiJDDx7mKfmDxQG1XcaNABGJg2KdlWUyoz9OdqgKyFyVhDQ7QSk2KGxThjdd-6Y

  • 壳聚糖及其复合物对下肢缺血性溃疡愈合的实验与临床研究

    【序号】:3【作者】: 刘佳鑫【题名】:壳聚糖及其复合物对下肢缺血性溃疡愈合的实验与临床研究【期刊】:大连医科大学【年、卷、期、起止页码】:2020【全文链接】:[url]https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD202101&filename=1020085511.nh&uniplatform=NZKPT&v=MpFkZqdIwBYOu9wW3RBWI6Ae4gN0qMgQyUy4UMTpV9vS-CNK-i1UPFgRyiHnxowl[/url]

  • 全面解析EDTA溶液!

    EDTA  品名:乙二胺四乙酸(Ethylene Diamine Tetraacetic Acid)  简称:EDTA  俗名;依地酸(特别是它的钙盐络合物,医学上称为依地酸钠钙)  分子量:292.248  分子式:C10H16N2O8  理化性质:  白色无臭无味、无色结晶性粉末,熔点240℃(分解)。不溶于冷水、醇及一般有机溶剂,微溶于热水,溶于氢氧化钠,碳酸钠及氨的溶液中,能溶于160份100℃沸水。其碱金属盐能溶于水,钠盐在水中的溶解度见下表(g/L)。一般用乙二胺四乙酸的钠盐代替EDTA    用途:  是一种重要的络合剂。EDTA用途很广,可用作彩色感光材料冲洗加工的漂白定影液,染色助剂,纤维处理助剂,化妆品添加剂,血液抗凝剂,洗涤剂,稳定剂,合成橡胶聚合引发剂,EDTA是螯合剂的代表性物质。能和碱金属、稀土元素和过渡金属等形成稳定的水溶性络合物。除钠盐外,还有铵盐及铁、镁、钙、铜、锰、锌、钴、铝等各种盐,这些盐各有不同的用途。此外EDTA也可用来使有害放射性金属从人体中迅速排泄起到解毒作用。也是水的处理剂。

  • 柴油发动机氮氧化物还原剂 尿素水溶液(AUS 32)检测

    [font=&][size=16px][color=#333333]点击链接查看更多:[url]https://www.woyaoce.cn/service/info-39765.html[/url]服务背景[/color][/size][/font][font=&][color=#333333][/color][/font][font=宋体]柴油发动机氮氧化物还原剂 尿素水溶液([font=Calibri]AUS 32[/font])又称车用尿素,[/font][font=宋体]车用尿素是[font=Calibri]SCR([/font]选择性催化还原法[font=Calibri])[/font]的必需添加剂,用来减少柴油车尾气中的氮氧化物污染的液体。其组成成分为[font=Calibri]32.5%[/font]的高纯尿素和[font=Calibri]67.5%[/font]的去离子水;当发现排气管中有氮氧化物时,尿素罐自动喷出柴油机尾气处理液,柴油机尾气处理液和氮氧化物在[font=Calibri]SCR[/font]催化反应罐中发生氧化还原反应,生成无污染的氮气和水蒸气排出;如果不装载柴油机尾气处理液、或纯度不够、或质量伪劣,都会发生车辆发动机自动减速。同时,质量伪劣的柴油机尾气处理液会污染[font=Calibri]SCR[/font]催化反应罐中的催化剂,造成严重后果。[/font][font=&][size=16px][color=#333333]检测内容[/color][/size][/font][font=&][color=#333333][/color][/font][font=宋体]尿素含量、密度、折光率、碱度、缩二脲、醛类、不溶物、磷酸盐、钙、铁、铜、锌、铬、镍、铝、镁、钠、钾、一致性确认[/font][font=&][size=16px][color=#333333]检测标准[/color][/size][/font][font=&][color=#333333][/color][/font][table][tr][td]产品名称[/td][td]检测项目[/td][td]检测标准[/td][/tr][tr][td]柴油发动机氮氧化物还原剂 尿素水溶液(AUS 32)[/td][td]尿素含量、密度、折光率、碱度、缩二脲、醛类、不溶物、磷酸盐、钙、铁、铜、锌、铬、镍、铝、镁、钠、钾、一致性确认[/td][td]GB 29518-2013[/td][/tr][/table][font=&][size=16px][color=#333333]我们的优势[/color][/size][/font][font=&][color=#333333][/color][/font]山东精准产品质量检测有限公司具有多年的车用尿素水溶液检测实力,具有CMA 和CNAS检测资质,具有杜马斯定氮仪、[font=system-ui, -apple-system, BlinkMacSystemFont, &][size=17px][color=#222222]等离子体电感耦合发射光谱仪(ICP-OES)等精密仪器,其中[/color][/size][/font]尿素含量、缩二脲、密度等检测项目多次取得能力验证满意结果。

  • 柴油发动机氮氧化物还原剂 尿素水溶液(AUS 32)检测

    [font=&][size=16px][color=#333333]点击查看更多:[url]https://www.woyaoce.cn/service/info-39765.html[/url]服务背景[/color][/size][/font][font=&][color=#333333][/color][/font]柴油发动机氮氧化物还原剂 尿素水溶液(AUS 32)又称车用尿素,车用尿素是SCR(选择性催化还原法)的必需添加剂,用来减少柴油车尾气中的氮氧化物污染的液体。其组成成分为32.5%的高纯尿素和67.5%的去离子水;当发现排气管中有氮氧化物时,尿素罐自动喷出柴油机尾气处理液,柴油机尾气处理液和氮氧化物在SCR催化反应罐中发生氧化还原反应,生成无污染的氮气和水蒸气排出;如果不装载柴油机尾气处理液、或纯度不够、或质量伪劣,都会发生车辆发动机自动减速。同时,质量伪劣的柴油机尾气处理液会污染SCR催化反应罐中的催化剂,造成严重后果。[font=&][size=16px][color=#333333]检测内容[/color][/size][/font][font=&][color=#333333][/color][/font]尿素含量、密度、折光率、碱度、缩二脲、醛类、不溶物、磷酸盐、钙、铁、铜、锌、铬、镍、铝、镁、钠、钾、一致性确认[font=&][size=16px][color=#333333]检测标准[/color][/size][/font][font=&][color=#333333][/color][/font][table][tr][td]产品名称[/td][td]检测项目[/td][td]检测标准[/td][/tr][tr][td]柴油发动机氮氧化物还原剂 尿素水溶液(AUS 32)[/td][td]尿素含量、密度、折光率、碱度、缩二脲、醛类、不溶物、磷酸盐、钙、铁、铜、锌、铬、镍、铝、镁、钠、钾、一致性确认[/td][td]GB 29518-2013[/td][/tr][/table][font=&][size=16px][color=#333333]我们的优势[/color][/size][/font][font=&][color=#333333][/color][/font]山东精准产品质量检测有限公司具有多年的车用尿素水溶液检测实力,具有CMA 和CNAS检测资质,具有杜马斯定氮仪、[color=#222222]等离子体电感耦合发射光谱仪(ICP-OES)等精密仪器,其中[/color]尿素含量、缩二脲、密度等检测项目多次取得能力验证满意结果。

  • 【求助】关于青霉素降解产物-蛋白质复合物的知识

    关于国家十一五计划的 乳制品质量安全控制技术研究与产业化示范中青霉素降解产物-蛋白质复合物方面哪位大侠能介绍一下吗?介绍几篇文献也行不胜感激 因为我查了很多文献都没有这方面的知识 都没找到不清楚到底是与哪种蛋白形成了什么复合物

  • pH敏感性壳聚糖/海藻酸钠聚电解质复合物在胰岛素口服递送中的应用

    【序号】:1【作者】: 陈婷婷【题名】:pH敏感性壳聚糖/海藻酸钠聚电解质复合物在胰岛素口服递送中的应用【期刊】:南方医科大学 【年、卷、期、起止页码】:2019【全文链接】:[url]https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD201902&filename=1019171613.nh&uniplatform=NZKPT&v=wqSWdVnWsx01Fzu2oYBmRz1R03rkOOjDCnPuTwbAjWuuYO3QEy-32xYaTpM2BNA3[/url]

  • 盐雾试验箱盐水溶液是怎样配置的呢

    盐雾试验箱可以做三种盐雾试验,分为乙酸盐雾试验(AASS),中性盐雾试验(NSS),铜加速乙酸盐雾试验(CASS),下面我们来说说盐水溶液是怎样配置的吧。  中性盐雾试验:盐溶液采用蒸馏水和氯化钠配制,其浓度为5%±0.1,雾化后的收集液除挡板挡回了一些部分外,不能重复使用.雾化前的盐溶液的PH值在6.5~7.2(35±2℃)之间,配制盐溶液时,可以采用化学纯的稀盐酸或氢氧化钠的溶液来调整PH值,但浓度必须符合a点的规定。  乙酸盐雾试验:要将氯化钠溶于蒸馏水中,其浓度为50±5g/L。在a溶液中加入适量的冰乙酸以保证试验箱内盐雾收集液的pH值为3.1~3.3.如喷雾前溶液的pH值为3.0~3.1,则收集液的pH值一般在3.1~3.3的范围内。用酸度计测量溶液的pH值,也可用经酸度计校对过的能读出0.1pH值变化的精密的pH试纸作为日常检测。溶液的pH值可用冰乙酸或氢氧化钠调整。为了防止喷嘴堵塞,溶液在使用之前必须过滤。  铜加速乙酸盐雾试验:将氯化钠溶于蒸馏水中,其浓度为50±5g/L。将a溶液中加入氧化铜(CuC12?2H2O),其浓度为0.26±0.02g/L在a溶液中加入适量的冰乙酸以保证试验箱内盐雾收集液的pH值为3.1~3.3.如喷雾前溶液的pH值为3.0~3.1,则收集液的pH值一般在3.1~3.3的范围内。用酸度计测量溶液的pH值,也可用经酸度计校对过的能读出0.1pH值变化的精密的pH试纸作为日常检测。溶液的pH值可用冰乙酸或氢氧化钠调整。为了防止喷嘴堵塞,溶液在使用之前必须过滤。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制