当前位置: 仪器信息网 > 行业主题 > >

全氟丁基磺酸三苯基锍盐

仪器信息网全氟丁基磺酸三苯基锍盐专题为您提供2024年最新全氟丁基磺酸三苯基锍盐价格报价、厂家品牌的相关信息, 包括全氟丁基磺酸三苯基锍盐参数、型号等,不管是国产,还是进口品牌的全氟丁基磺酸三苯基锍盐您都可以在这里找到。 除此之外,仪器信息网还免费为您整合全氟丁基磺酸三苯基锍盐相关的耗材配件、试剂标物,还有全氟丁基磺酸三苯基锍盐相关的最新资讯、资料,以及全氟丁基磺酸三苯基锍盐相关的解决方案。

全氟丁基磺酸三苯基锍盐相关的方案

  • HPLC-ICPMS测定水样中二苯基锡、二丁基锡、三苯基锡和三丁基锡等4种有机锡化合物
    使用岛津高效液相色谱仪(LC-20Ai)和电感耦合等离子体质谱仪(ICPMS-2030)联用直接进样测定了水样中二苯基锡(DPhT)、二丁基锡(DBT)、三苯基锡(TPhT)和三丁基锡(TBT)等四种有机锡化合物。使用岛津Shim-pack VP-ODS(5 μ m,4.6 mm× 150 mm)色谱柱,四种有机锡化合物分离度良好,保留时间较短,等度洗脱满足方法检测需求,由等度洗脱变为梯度洗脱后,二苯基锡、二丁基锡和三苯基锡保留时间不便,三丁基锡保留时间提前,色谱峰形图更好,检出限更低。
  • 化妆品中苯基苯并咪唑磺酸的快速分离
    防晒剂能够防止或减轻由于紫外线辐射而造成的皮肤损害,被广泛用于各类化妆品中。我国2015年版《化妆品安全技术规范》规定了防晒化妆品中能够添加的27项准用防晒剂。有机防晒剂的防晒能力大多强于无机防晒剂,但是对皮肤有刺激作用、导致皮肤过敏等。《化妆品安全技术规范》(2015年版)中明确规定了各类有机防晒剂的使用限值。国家食药总局发布的《化妆品安全技术规范》(2015年版)1中提供了同时检测苯基苯并咪唑磺酸等15种防晒剂的方法。但由于原方法中存在部分化合物分离度差等问题,如方法一中苯基苯并咪唑磺酸、二苯酮、对氨基苯甲酸的分离不好;方法二需要分组,检测效率较低。因此,为了改善这些方法中的不足,我们做了本方案的方法开发。本方案在Waters ACQUITY UPLC H-Class系统上,开发了2015版《化妆品安全 技术规范》中对应的15种防晒剂的分离度方案,15种防晒剂及标品中含有的同分异构体实现了完全分离,尤其是显著改善了苯基苯并咪唑磺酸、二苯酮、对氨基苯甲酸的分离。同时方法不再需要THF作为流动相,对液相系统更加友好,更加环保。重现性结果、加标回收率考察显示,绝大部分都在90-100%。
  • 化妆品中苯基苯并咪唑磺酸的快速分离
    流动相体系简单,于液相系统更加友好。15种防晒剂实现了完全分离,尤其改善了在 传统HPLC方法上分离度不够的苯基苯并咪 唑磺酸、二苯酮、对氨基苯甲酸三种防晒剂 的分离。 Empower 3色谱管理软件,具有完美的法 规依从性,能够快速得到分离度的定量的标 准曲线。
  • 上海力晶:布洛芬中(2-(4-异丁基苯基)丙酸检测产品配置单(离子色谱)
    布洛芬,化学名称-(-异丁基苯基)丙酸,是一种治疗类风湿性关节炎的药物。布洛芬制剂中的布洛芬含量的测定一般是用液相色谱法或容量分析法。由于布洛芬是一种有机弱酸,在碱性条件下可离解成离子,因此也可以用离子色谱法进行分析。布洛芬在碱性溶液中离解成负一价的阴离子,所带的电荷较低,其上虽有苯环,但由于其上的苯环距负电荷中心很远,不能与负电荷中心共轭,故带电荷部分不容易极化变形,与阴离子交换剂的亲和力较弱,因此选用浓度较低的淋洗液,分离效果良好。但由于其为大分子有机弱酸,电导检测灵敏度低,而其有苯环,故可用紫外检测器进行检测提高灵敏度
  • 化妆品中苯基苯并咪唑磺酸等15种防晒剂的测定
    本文建立了 化妆品中 苯基苯并咪唑磺酸等 15种防晒剂 测定的 HPLC方法。参照 化妆品 安全技术规范( 2015版) 中的色谱条件 并 对梯度进行优化 ,采用色谱柱 ShimNex CS C18 对 苯基苯并咪唑磺酸等 15种防晒剂 进行 分析 结果显示各组分峰形和重现性良好,分离度 均 大于 1.5 满足检测 要求。 此方法可 为苯基苯并咪唑磺酸等 15种防晒剂 的测定 提供参考。
  • GCMS法测定药品中3种痕量丁基磺酸酯类基因毒性物质
    药品安全性潜在风险研究;丁基磺酸酯类物质属于基因毒性物质的一类,在某些药品的生产过程中会成为副产物。如何有效测定并控制在成品中的含量,是药企质量控制的关键。本文建立了液体直接进样法分析药物中三种丁基磺酸酯的气相色谱质谱法,该方法快速、有效,灵敏度能满足对痕量基因毒物分析的需求
  • 化妆品中亚甲基双-苯并三唑基四甲基丁基酚的快速分离
    防晒剂能够防止或减轻由于紫外线辐射而造成的皮肤损害,被广泛用于各类化妆品中。我国2015年版《化妆品安全技术规范》规定了防晒化妆品中能够添加的27项准用防晒剂。有机防晒剂的防晒能力大多强于无机防晒剂,但是对皮肤有刺激作用、导致皮肤过敏等。《化妆品安全技术规范》(2015年版)中明确规定了各类有机防晒剂的使用限值。国家食药总局发布的《化妆品安全技术规范》(2015年版)1中提供了同时检测苯基苯并咪唑磺酸等15种防晒剂的方法。但由于原方法中存在部分化合物分离度差等问题,如方法一中苯基苯并咪唑磺酸、二苯酮、对氨基苯甲酸的分离不好;方法二需要分组,检测效率较低。因此,为了改善这些方法中的不足,我们做了本方案的方法开发。本方案在Waters ACQUITY UPLC H-Class系统上,开发了2015版《化妆品安全 技术规范》中对应的15种防晒剂的分离度方案,15种防晒剂及标品中含有的同分异构体实现了完全分离,尤其是显著改善了苯基苯并咪唑磺酸、二苯酮、对氨基苯甲酸的分离。同时方法不再需要THF作为流动相,对液相系统更加友好,更加环保。重现性结果、加标回收率考察显示,绝大部分都在90-100%。
  • PerkinElmer:使用GCICPMS对生物组织中三氯化一丁基锡分析
    由于有机锡在农业,工业和家庭中被广泛使用,因此其对环境的影响受到了极大的重视。丁基锡和苯基锡已被广泛用作活性杀生物剂,在防污涂料、聚氯乙烯(PVC)稳定剂、木材处理,以及其他方面都有应用。例如,当被用于防污涂料时,痕量水平(ppt)的丁基锡和苯基锡将会对非靶标生物造成严重损害,并在沉积物和生物群中累积。因此,欧盟(EU)将三丁基锡(TBT)及其降解产物列入到优先控制污染物名单中(修订水框架指令2000/60/EC的决定2455/2001/EC)。由于TBT、三苯基锡(TPhT)以及它们的降解产物(二取代锡, 单取代锡和无机锡)各自的毒性存在差异,而且对环境影响的监测也不相同, 因而非常有必要对有机锡的形态进行分析。由于气相色谱-电感耦合等离子体质谱(GC/ ICP-MS)联用法具有灵敏度高,选择性好,可以同时分析多种元素和多种同位素等优势,因此成为了金属有机物痕量分析的首选方法。通过GC/ ICP-MS开展有机锡形态分析,为了增加各形态的挥发性,需要加入四丙基硼酸钠或四乙基硼酸钠进行衍生化反应。此外,对于复杂基质,如生物组织和沉积物的分析,在有机锡化合物衍生前需要进行软提取,以保持分析物的形态不发生改变。开放聚焦微波提取由于具有快速和高效的优点,是最流行的提取方法。本实验使用GC/ ICP-MS(CLARUS® GC 和NexION® ICP-MS)对有机锡形态进行分析,更具体地说,是通过外标法对生物样品中的单丁基锡、二丁基锡和三丁基锡进行分析。而且在实验中特别注意了对连接GC和ICP-MS的GC传输线参数的优化
  • PerkinElmer:使用GCICPMS对生物组织中三丁基氯化锡分析
    由于有机锡在农业,工业和家庭中被广泛使用,因此其对环境的影响受到了极大的重视。丁基锡和苯基锡已被广泛用作活性杀生物剂,在防污涂料、聚氯乙烯(PVC)稳定剂、木材处理,以及其他方面都有应用。例如,当被用于防污涂料时,痕量水平(ppt)的丁基锡和苯基锡将会对非靶标生物造成严重损害,并在沉积物和生物群中累积。因此,欧盟(EU)将三丁基锡(TBT)及其降解产物列入到优先控制污染物名单中(修订水框架指令2000/60/EC的决定2455/2001/EC)。由于TBT、三苯基锡(TPhT)以及它们的降解产物(二取代锡, 单取代锡和无机锡)各自的毒性存在差异,而且对环境影响的监测也不相同, 因而非常有必要对有机锡的形态进行分析。由于气相色谱-电感耦合等离子体质谱(GC/ ICP-MS)联用法具有灵敏度高,选择性好,可以同时分析多种元素和多种同位素等优势,因此成为了金属有机物痕量分析的首选方法。通过GC/ ICP-MS开展有机锡形态分析,为了增加各形态的挥发性,需要加入四丙基硼酸钠或四乙基硼酸钠进行衍生化反应。此外,对于复杂基质,如生物组织和沉积物的分析,在有机锡化合物衍生前需要进行软提取,以保持分析物的形态不发生改变。开放聚焦微波提取由于具有快速和高效的优点,是最流行的提取方法。本实验使用GC/ ICP-MS(CLARUS® GC 和NexION® ICP-MS)对有机锡形态进行分析,更具体地说,是通过外标法对生物样品中的单丁基锡、二丁基锡和三丁基锡进行分析。而且在实验中特别注意了对连接GC和ICP-MS的GC传输线参数的优化
  • LC-MS/MS检测土壤及沉积物中的全氟辛基磺酸和全氟辛基羧酸
    本文参照生态环境标准HJ 1334—2023《 土壤和沉积物 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释/液相色谱-三重四极杆质谱法》,建立了一种使用岛津液相色谱质谱联用仪内标法测定土壤和沉积物中的全氟辛基磺酸和全氟辛基羧酸含量的方法。样品经甲醇水溶液提取,固相萃取柱净化,浓缩、定容后上机测定。采用内标法定量,全氟辛基羧酸与全氟辛基磺酸在其相关线性范围内,相关系数均大于0.998;分别进行空白基质低、高浓度加标测试,每个浓度重复6次,验证方法的精密度,全氟辛基羧酸与全氟辛基磺酸其测定样品量的相对标准偏差(RSD)分别在7.6~9.2%和11.0~13.0%之间;低、高加标量的样品的回收率在90.7%-110.0%之间。该方法快速准确,可为土壤和沉积物中的全氟辛基磺酸和全氟辛基羧酸的含量测定提供参考。
  • 首次发布!水、土壤中全氟辛基磺酸和全氟辛酸及其盐类的测定 前处理解决方案
    据报道,周健副教授于2023年9月汾渭平原地区对露天农田和温室大棚土壤进行研究对比,结果发现温室大棚因频繁浇灌、温度较高,是的全氟化合物(PFASs)具有较高活性。目前大多数农作物种植都采用温室大棚,加上全氟化合物(PFASs)具有稳定性强和生物累积性,故对于土壤中全氟化合物(PFASs)含量检测尤为重要,是全民乃至检测行业需要重点关注的问题。 HJ 1334-2023《土壤和沉积物 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释/液相色谱-三重四极杆质谱法》、HJ 1333-2023《水质 全氟辛基磺酸和全氟辛酸及其盐类的测定同位素稀释/液相色谱-三重四极杆质谱法》标准为首次发布,在今年7月份正式实施。标准填补了水、土壤和沉积物中相关分析方法标准的空白,支撑新污染物治理工作及《关于持久性有机污染物的斯德哥尔摩公约》履约监测。莱奥提供正压固相萃取仪、全自动氮吹浓缩仪、氮气发生器等全氟化合物解决方案,以满足客户在新污染物研究领域中各种应用场景需求。
  • 化妆品中丁基甲氧基二苯甲酰基甲烷的快速分离
    流动相体系简单,于液相系统更加友好。15种防晒剂实现了完全分离,尤其改善了在 传统HPLC方法上分离度不够的苯基苯并咪 唑磺酸、二苯酮、对氨基苯甲酸三种防晒剂 的分离。 Empower 3色谱管理软件,具有完美的法 规依从性,能够快速得到分离度的定量的标 准曲线。
  • 化妆品中双-乙基己氧苯酚甲氧苯基三嗪的快速分离
    流动相体系简单,于液相系统更加友好。15种防晒剂实现了完全分离,尤其改善了在 传统HPLC方法上分离度不够的苯基苯并咪 唑磺酸、二苯酮、对氨基苯甲酸三种防晒剂 的分离。 Empower 3色谱管理软件,具有完美的法 规依从性,能够快速得到分离度的定量的标 准曲线。
  • 化妆品中丁基甲氧基二苯甲酰基甲烷的快速分离
    防晒剂能够防止或减轻由于紫外线辐射而造成的皮肤损害,被广泛用于各类化妆品中。我国2015年版《化妆品安全技术规范》规定了防晒化妆品中能够添加的27项准用防晒剂。有机防晒剂的防晒能力大多强于无机防晒剂,但是对皮肤有刺激作用、导致皮肤过敏等。《化妆品安全技术规范》(2015年版)中明确规定了各类有机防晒剂的使用限值。国家食药总局发布的《化妆品安全技术规范》(2015年版)1中提供了同时检测苯基苯并咪唑磺酸等15种防晒剂的方法。但由于原方法中存在部分化合物分离度差等问题,如方法一中苯基苯并咪唑磺酸、二苯酮、对氨基苯甲酸的分离不好;方法二需要分组,检测效率较低。因此,为了改善这些方法中的不足,我们做了本方案的方法开发。本方案在Waters ACQUITY UPLC H-Class系统上,开发了2015版《化妆品安全 技术规范》中对应的15种防晒剂的分离度方案,15种防晒剂及标品中含有的同分异构体实现了完全分离,尤其是显著改善了苯基苯并咪唑磺酸、二苯酮、对氨基苯甲酸的分离。同时方法不再需要THF作为流动相,对液相系统更加友好,更加环保。重现性结果、加标回收率考察显示,绝大部分都在90-100%。
  • 化妆品中双-乙基己氧苯酚甲氧苯基三嗪的快速分离
    防晒剂能够防止或减轻由于紫外线辐射而造成的皮肤损害,被广泛用于各类化妆品中。我国2015年版《化妆品安全技术规范》规定了防晒化妆品中能够添加的27项准用防晒剂。有机防晒剂的防晒能力大多强于无机防晒剂,但是对皮肤有刺激作用、导致皮肤过敏等。《化妆品安全技术规范》(2015年版)中明确规定了各类有机防晒剂的使用限值。国家食药总局发布的《化妆品安全技术规范》(2015年版)1中提供了同时检测苯基苯并咪唑磺酸等15种防晒剂的方法。但由于原方法中存在部分化合物分离度差等问题,如方法一中苯基苯并咪唑磺酸、二苯酮、对氨基苯甲酸的分离不好;方法二需要分组,检测效率较低。因此,为了改善这些方法中的不足,我们做了本方案的方法开发。本方案在Waters ACQUITY UPLC H-Class系统上,开发了2015版《化妆品安全 技术规范》中对应的15种防晒剂的分离度方案,15种防晒剂及标品中含有的同分异构体实现了完全分离,尤其是显著改善了苯基苯并咪唑磺酸、二苯酮、对氨基苯甲酸的分离。同时方法不再需要THF作为流动相,对液相系统更加友好,更加环保。重现性结果、加标回收率考察显示,绝大部分都在90-100%。
  • 采用液相色谱-质谱联用技术直接分析水中全氟丁基磺酸酯
    串联液相色谱- 质谱联用(LC/MS/MS)具有高选择性与灵敏度,因此,是测定生物和环境样品中全氟烷基表面活性剂含量的最常用的分析方法。在液相色谱-质谱/质谱联用(LC/MS/MS)分析之前实施固相萃取(SPE)程序是从水性环境基质中提取全氟烷基表面活性剂的最常用方法之一。在本研究中,我们开发了LC/MS/MS 直接进样方法,结果表明这种简单的LC/MS/MS工作流程为饮用水与地表水全氟烷基表面活性剂的分析提供了极好的灵敏度和特异性。
  • 3-(3-三氟甲基苯基)丙酸在ChromCorePFP上的分离
    采用纳谱分析ChromCore PFP色谱柱对3-(3-三氟甲基苯基)丙酸进行分离和检测,主峰具有良好的峰形,主峰与杂质峰具有良好的分离度,该方法操作简单,灵敏度高,重复性好,可用于3-(3-三氟甲基苯基)丙酸的分离和测定,为该药物的质量保证提供检测依据。
  • Capcell Pak C18 MGII分析苯基苯并咪唑磺酸-2015版《化妆品安全技术规范》三元梯度法
    该解决方案按照2015版《化妆品安全技术规范》苯基苯并咪唑磺酸等15种物质检测方法,实现16种防晒剂(15种防晒剂+甲酚曲唑三硅氧烷)的良好分离。 大阪曹達CAPCELL PAK C18 MGII液相色谱柱,其采用高纯度硅胶作为基质,通过减少硅胶微细孔的数量来增大有效比表面积;并且采用新包被技术Ultimate Polymer Coating,实现了对硅醇基极大程度的封锁,兼具分离性能和普适性能,通用性非常好,能够满足化妆品中多种防晒剂同时检测的需求。
  • 水中全氟辛烷磺酸和全氟辛酸的测定
    全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA),属于新型持久性有机污染物,目前全世界范围内被调查的水体、沉积物和生物体内都检测出存在全氟类化合物污染的踪迹。全氟类化合物具有持久性、高度生物累积性、有毒以及可以远距离环境迁移的特点。PFOS是重要的全氟化表面活性剂,具有极其稳定的物化性质(被作为中间体用于生产涂料、泡沫灭火剂、地板上光剂、农药等)及疏水疏油两性质(作为原料被广泛用于纺织品、地毯、纸、影像材料、航空液压油等),而PFOA主要用作聚四氟乙烯、氟橡胶聚合时的分散剂,也用作制备憎水、憎油剂的原料和选矿剂。本实验参考《超高效液相色谱-新型串联四极杆质谱法测定环境水体与土壤中的全氟辛酸和全氟辛烷磺酸》,利用莱伯泰科SPE 1000全自动固相萃取系统和MultiVap-10定量平行浓缩仪进行相关方法研究。
  • 气相色谱法同时测定饲料中的丁基羟基茴香醚、二丁基羟基甲苯、乙氧喹
    抗氧化剂即为防止或延缓饲料中某些活性成分发生氧化变质而添加于饲料中的制剂。主要用于含有高脂肪的饲料,以防止脂肪氧化酸败变质,也常用于含维生素的预混料中,它可防止维生素的氧化失效。我国《食品添加剂使用卫生标准》(GB2760—1996)中规定:丁基羟基茴香醚可用于食用油脂、油炸食品、干鱼制品、饼干、方便面、速煮米、果仁罐头、腌腊肉制品、早餐谷类食品,其最大使用量为0.2g/kg。丁基羟基茴香醚与二丁基羟基甲苯、没食子酸丙酯混合使用时,其中丁基羟基茴香醚与二丁基羟基甲苯总量不得超过0.1g/kg,没食子酸丙酯不得超过0.05 g/kg(使用量均以脂肪计)。此外也可用于胶姆糖配料。
  • GCMS法测定塑料制品中2,4,6-三叔丁基苯酚和五氯苯硫酚含量
    本文采用溶剂超声提取法,萃取塑料制品中的2,4,6-三叔丁基苯酚(2,4,6-TTBP)和五氯苯硫酚(PCTP),利用岛津气质联用仪GCMS-QP2020 NX进行检测。在0.5~50 μ g/mL浓度范围内,两物质线性相关系数均在0.999以上。取混合标准溶液 (2,4,6-TTBP 2.5 μ g/mL、PCTP 5.0 μ g/mL),连续6次进样,各组分峰面积RSD均小于3%。加标回收率在94.6~101.3%之间。该方法完全满足日常检测分析的要求。
  • 赛默飞GC-MS 法测定烟用白乳胶中的邻苯二甲酸二丁基苄基酯
    本文采用Thermo Scientific ISQ 单四极杆GC-MS 系统,以正己烷溶剂进行提取,选择离子方式对烟用白乳胶中邻苯二甲酸二丁基苄基酯进行检测。该方法的操作步骤简单,邻苯二甲酸二丁基苄基酯的检出限在3.4—63.4 ng/g 范围,定量限在13.4—216.7 ng/g 范围,体现了其较高的检测灵敏度;同时以3 种不同浓度水平对烟用白乳胶样品进行加标回收试验,其回收率均在77.4%-130% 之间,能够很好地符合日常分析检测的要求。
  • 岛津:气相色谱三重四极杆质谱法测定化妆品中防腐剂和抗氧剂2,6-二叔丁基对苯甲酚
    建立了三重四极杆气质联用仪检测化妆品中2,6-二叔丁基对苯甲酚等12种防腐剂及抗氧化剂的分析方法。样品经甲醇超声提取,离心后,用GCMSMS 分离和检测。12 种防腐剂及抗氧化剂在0.5~50 μg/mL 浓度范围内标准曲线线性良好,相关系数均在0.999 以上,样品加标回收率在95~120%之间,对基质加标样品连续5 次进样,峰面积RSD 值均小于5.0%,精密度良好。
  • Capcell Pak C18 MGII分析亚甲基双-苯并三唑基四甲基丁基酚-2015版《化妆品安全技术规范》三元梯度法
    该解决方案按照2015版《化妆品安全技术规范》苯基苯并咪唑磺酸等15种物质检测方法,实现16种防晒剂(15种防晒剂+甲酚曲唑三硅氧烷)的良好分离。 大阪曹達CAPCELL PAK C18 MGII液相色谱柱,其采用高纯度硅胶作为基质,通过减少硅胶微细孔的数量来增大有效比表面积;并且采用新包被技术Ultimate Polymer Coating,实现了对硅醇基极大程度的封锁,兼具分离性能和普适性能,通用性非常好,能够满足化妆品中多种防晒剂同时检测的需求。
  • LC/LCMSMS法测定化妆品中联苯乙烯二苯基二磺酸二钠等5种荧光增白剂
    本文使用岛津高效液相色谱仪建立了快速测定化妆品中荧光增白剂85等5种原料含量的方法,并使用LC-MS/MS建立了化妆品样品的确证方法。5种荧光增白剂在相应标曲范围内,相关系数均大于0.999,各浓度点的回读准确度在85.9%~113.1%之间,线性相关性良好。稳定性考察中,5种组分的保留时间和峰面积的相对标准偏差分别在0.06~0.41%和0.13~0.54%之间,仪器精密度良好。对于有阳性检出的样品,建立了LC-MS/MS阳性确证方法,仪器检出限在0.03~12.8 ng/mL之间,经过验证,LC-MS/MS作为5种荧光增白剂定性确证方法,满足标准检测需要。本文中所建立的LC和LC-MS/MS法能满足国家药监局公布的《化妆品中联苯乙烯二苯基二磺酸二钠等5种原料的检验方法》的检测需求。
  • Capcell Pak C18 MGII分析丁基甲氧基二苯甲酰基甲烷-2015版《化妆品安全技术规范》三元梯度法
    该解决方案按照2015版《化妆品安全技术规范》苯基苯并咪唑磺酸等15种物质检测方法,实现16种防晒剂(15种防晒剂+甲酚曲唑三硅氧烷)的良好分离。 大阪曹達CAPCELL PAK C18 MGII液相色谱柱,其采用高纯度硅胶作为基质,通过减少硅胶微细孔的数量来增大有效比表面积;并且采用新包被技术Ultimate Polymer Coating,实现了对硅醇基极大程度的封锁,兼具分离性能和普适性能,通用性非常好,能够满足化妆品中多种防晒剂同时检测的需求。
  • 采用三重串联四极杆液质联用仪应对痕量全氟辛酸 (PFOA) 和全氟辛烷磺酸盐 (PFOS) 分析的挑战
    针对在复杂基质中很难实现的痕量全氟辛酸(PFOA)和全氟辛烷磺酸盐(PFOS)的定量分析,建立了一种液相色谱-串联质谱(LC/MS/MS)分析方法。该技术使用同位素标记的分析物实现精确定量分析(柱上量0.4-400 pg)。重要的是,应认识到如果使用直链样品作为标准品进行校准,真实样品(支链和直链异构体的混合物)的定量分析结果将偏离至少40%。
  • 弘埔技术:硫化体系及工艺对丁基瓶塞与生理盐水相容性的影响
    丁基橡胶由于具有良好的气密性、抗老化性、耐热耐化学药品性,以及其制品的生物安全性、化学稳定性、低吸水率和高净洁度等都较天然胶要好。因此,丁基橡胶被广泛用于药用包装材料。 近几年来,药用丁基橡胶瓶塞的生产和应用发展很快,丁基橡胶输液瓶塞生产技术已取得了很大进步,国内一些企业现已批量化生产。然而瓶塞在经封装药物灭菌后,质量不太稳定,特别是在与药物的相容性方面较为突出。其具体表现为瓶壁挂水、澄明度不合格、不溶性微粒多和影响药物pH值等。由于丁基橡胶输液瓶塞与药物相容性的好坏直接关系到输液药物的质量,因此,研究丁基橡胶瓶塞对药物相容性的影响,对提高输液瓶塞质量以及人们用药安全具有极为重要的意义。本文选择生理盐水注射液作为研究对象,就输液瓶塞配方中的硫化体系和生产工艺对瓶塞与生理盐水注射液相容性的影响进行了研究。
  • GCMS法测定润滑油脂中2,4,6-三叔丁基苯酚含量
    本文参考了标准GB/T 7602.4和GB/T 7602.2标准的前处理步骤,采用岛津气相质谱联用仪GCMS -QP2020 NX,优化了提取溶剂和色谱条件,使方法的样品适用种类更多,杂质提取更少,减少了仪器污染。同时该方法具有良好的线性关系、重复性、回收率及方法选择性。可以为润滑油及润滑脂中的2,4,6-三叔丁基苯酚含量检测提供参考。
  • 抑制电导-离子色谱法测定三氟甲磺酸中杂质阴离子的含量
    三氟甲磺酸是一种有机超强酸,具有强腐蚀性和吸湿性,在医药合成和化工合成领域应用广泛,其纯度将直接影响下游产品的产率和质量。三氟甲磺酸的生产过程中使用到氟化氢、浓硫酸等试剂原料,直接导致了三氟甲磺酸成品中不可避免地残余一定量的氟化物、硫酸盐等杂质。因此,建立准确测定三氟甲磺酸中痕量杂质离子的分析方法,将有助于改善生产工艺,提高产品质量,成为有机氟化工行业的迫切需求。刘玉珍等采用离子对色谱-电导检测的方法分离测定了三氟甲磺酸及四氟硼磺酸等离子液体组分的含量。然而,方法以离子对试剂为流动相,小分子量的氟离子、氯离子等组分分离度不佳。李文[4]等建立了同时分离分析三氟甲磺酸及常见阴离子的离子色谱分析方法,以邻苯二甲酸氢钾为淋洗液,直接电导检测。方法实现三氟甲磺酸与常见阴离子的基线分离,但随着三氟甲磺酸基体浓度的增加,氟化物的分离测定逐渐受到干扰,甚至不能进行准确定量,故不适合于高浓度、高酸度三氟甲磺酸样品中杂质检定分析。本注解选用高容量IonPac AS18高效阴离子交换分析柱,以氢氧化钾溶液为淋洗液,梯度淋洗,实现了高浓度、高酸度三氟甲磺酸基体中痕量氟离子、氯离子和硫酸盐的准确测定。方法重复性较好,准确性较高。

厂商最新方案

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制