当前位置: 仪器信息网 > 行业主题 > >

去甲基替诺福韦二吡呋酯

仪器信息网去甲基替诺福韦二吡呋酯专题为您提供2024年最新去甲基替诺福韦二吡呋酯价格报价、厂家品牌的相关信息, 包括去甲基替诺福韦二吡呋酯参数、型号等,不管是国产,还是进口品牌的去甲基替诺福韦二吡呋酯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合去甲基替诺福韦二吡呋酯相关的耗材配件、试剂标物,还有去甲基替诺福韦二吡呋酯相关的最新资讯、资料,以及去甲基替诺福韦二吡呋酯相关的解决方案。

去甲基替诺福韦二吡呋酯相关的资讯

  • 曝光!“副”产物生产N,N-二甲基乙酰胺,难道这是新工艺?
    前言:聚四氢呋喃生产过程中产生副产物生产N,N-二甲基乙酰胺新工艺研究报道一、背景介绍精细化工生产过程中常常会产生副产物。处理或有效利用副产物是生产企业非常关注的问题。将副产物深度加工,生产出更有价值的产品-“变副为宝",既可减少三废,又能为企业创造更多价值。今天,小编来分享一个利用上游工艺副产物作为原料,通过康宁G1反应器生产N,N-二甲基乙酰胺工艺研究成果。在聚四氢呋喃生产过程中产生副产物乙酸甲酯甲醇溶液。但由于该溶液易形成二元共沸物,常规的乙酸甲酯精馏或萃取提纯,很难得到高纯度的乙酸乙酯,且操作复杂、能耗很高。将副产物直接用于反应生产高附加值的产品,那是一条更加经济的解决方案。研究者决定将该副产物溶液用于N,N-二甲基乙酰胺(缩写为DMAC)的生产。TipsN,N-二甲基乙酰胺( 缩写为DMAC),是一种重要的精细化工产品,主要被应用在塑料、化妆品、制药、纤维、有机合成等多个领域。预计到2025年,DMAC产能达到22万吨。目前,乙酸甲酯法合成DMAC 采用传统间歇釜式。连续流技术是未来的发展方向,可以减少占地和人员,提高生产效率和自动化的程度,对传统工艺有着巨大的冲击。因此,传统工艺的连续流技术改造有着非常重要的意义。此外,釜式工艺的连续流改造升级,可以创造新的知识产权,为未来的发展获得竞争力。作者使用康宁G1反应器,对DMAC 的连续流工艺进行了研究。考察了反应温度、停留时间、催化剂含量等对反应结果的影响,优化工艺条件,形成一种以微通道反应器合成DMAC 的合成工艺技术。图1. 工艺流程图二、研究过程1、釜式实验研究者进行了釜式工艺的实验,结果如表1。经过分析,在釜式反应时间4h时选择性最高是96.2%。2、连续流工艺简介研究者结合微通道反应器的特点,可模块化设计,对反应器进行设计及改装如图2所示,选择9个模块组建成反应区。乙酸甲酯甲醇溶液与甲醇钠混合形成进料1,无水二甲胺液体储存于密封容器( 压力使无水二甲胺保持液相) 为进料2,两股物料泵入微通道反应器,然后在反应器进行液-液均相反应。调节仪器温度和压力,待反应温度和压力稳定,以及物料流速都达到测试要求时,开始计时。当运行时间达到为3 ~ 5 倍停留时间进行取样,用于气相色谱分析。3、连续流工艺条件优化作者研究了反应温度、 催化剂量、 原料配比、 停留时间等主要因素对乙酸甲酯转化率、 DMAC 选择性的影响,其实验结果及分析如下。如上图结果经过分析,该连续流工艺最佳反应条件为:反应温度 140 ℃,停留时间 72 s,反应压力为 1. 5 MPa,n(甲醇钠) ∶ n( 乙酸甲酯)= 0. 02∶ 1,乙酸甲酯与二甲胺摩尔比例为 1∶ 1. 1。在最佳条件下乙酸甲酯单程转化率 97. 5% ,DMAC选择性达到 100%。从连续流结果可以看出:对于均相反应,在不需要工艺强化的条件下,微反应取得了比釜式反应更好的结果,尤其是在微通道反应器内停留时间只有72秒。三、实验总结以聚四氢呋喃装置副产物乙酸甲酯甲醇溶液、无水二甲胺为原料、甲醇钠为催化剂,应用微通道反应器得到了新的 DMAC连续流新工艺。通过实验筛选获得较优的工艺条件和较佳实验结果,乙酸甲酯单程转化率 97. 5%,DMAC 选择性达到 100% 均优于釜式工艺。与传统间歇高压釜工艺相比,微通道反应器内乙酸甲酯转化率和DMAC选择性更高,且明显缩短反应时间。四、编者语微通道反应器常用于解决化学工艺中的安全问题被人熟知。实际上对于平时一般的釜式反应,即使是不需要强混合的均相反应,微通道连续流技术也是可行的。这对于化工的连续化,智能化以及多步反应的全连续至关重要;釜式工艺的连续流改造升级,可以创造新的知识产权,为未来的发展获得竞争力; 康宁反应器无缝放大的技术特性有助于快速实现工业化生产。参考文献:《广 州 化 工》,2019 年 10 月,第 47 卷第 20 期
  • 赛默飞发布测定清漆中六亚甲基二异氰酸酯单体(HDI)的解决方案
    2015年7月28日,北京——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布了使用GC-FID法测定清漆中六亚甲基二异氰酸酯单体(HDI)的解决方案。六亚甲基二异氰酸酯是全球应用发展十分迅速的一种新型聚氨酯原料。HDI 及 HDI 缩二脲、三聚体是生产聚氨酯涂料及聚氨酯弹性体的重要原料,广泛用于航空、汽车、建筑、木器、塑料皮革等行业和领域。HDI吸入有毒,会强烈腐蚀皮肤,引起红肿、胀痛、感染和皮疹。本品蒸气会刺激眼睛粘膜和呼吸道,引起流泪和咳嗽,可能会引起永久性眼部疾病。接触皮肤或吸入其蒸气可能会引起过敏。目前六亚甲基二异氰酸酯单体检测的检测方法有《GB/T 18446-2009 色漆和清漆用漆基 异氰酸酯树脂中二异氰酸酯单体的测定》,但是方法老旧,单点校正不准确,恒温分析会导致峰型较差,油漆残留在色谱柱内等缺点,因此需要改进。此次赛默飞发布的解决方案基于《GBT18446-2009 色漆和清漆用漆基 异氰酸酯树脂中二异氰酸酯单体的测定》,采用Thermo ScientificTM TRACE 1310气相色谱仪,搭配FID检测器,通过优化子内标物和HDI的浓度比,并将原来的130℃恒温模式分析改为程序升温模式分析(在高温度下运行几分钟,降低色谱柱污染,延迟使用寿命),对相应的气相色谱条件进行了优化;色谱柱由15m毛细管柱改为通用型的 30m 毛细管柱;同时采用多点校正的方式,使得内标物和待测组分的分离度更高、峰型更好,定量更加准确。产品链接:TRACE 1310 气相色谱仪www.thermoscientific.cn/product/trace-1310-gas-chromatograph.html解决方案下载:www.thermoscientific.cn/content/dam/tfs/Country%20Specific%20Assets/zh-ch/CMD/Chrom/petrochemical/documents/Measurement-of-HDI-in-varnish.pdf-------------------------------------------------------关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com赛默飞世尔科技中国 赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数约3700名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.cn
  • 诺禾致源新仪器正式落地交付,为科技服务事业注入强动力
    前不久,“国内第二批 PacBio Revio平台落地交付仪式”在诺禾致源天津实验中心圆满完成。作为专业的基因科技产品和服务提供者,诺禾致源一直在致力于为基因科学事业提供专业、全面的测序及技术支持,此次成功交付也正式开启品牌在国内三代测序新篇章。三方领导共同为第二批3台PacBio Revio新机交付剪彩诺禾致源全球产品中心总经理李依雪表示:“在全世界的测序服务商中,诺禾致源在技术平台覆盖、生产能力和规模,研发和项目合作经验等各方面均是佼佼者,我们致力于作为生命科技行业的中流砥柱,将最前沿的测序技术通过平台化模式,以更高的准确性,更短的周期,更好的服务质量,更具有性价比的解决方案普及到全世界有需求的客户。”诺禾致源全球产品中心总经理李依雪发表致辞PacBio 中国区总经理吴应光博士发表致辞:“我们非常欣喜地看到诺禾致源在全球范围内对PacBio技术进行增加投资。这一举措不仅体现了诺禾致源对科技创新的坚定承诺,而且预示着未来科研市场将迎来更加高效、高精度的HiFi测序服务。这意味着无论是在全球还是中国,科学家们将有更多机会利用这一强大的技术工具,推动分子育种和群体遗传学等领域的研究取得突破性进展。诺禾致源与PacBio的强强联合,将为科研工作带来前所未有的机会,促进人类科学技术的持续进步和医学研究的蓬勃发展。我们有理由相信,这一合作将为科研领域树立新的里程碑,引领未来的研究方向和趋势。“PacBio 中国区总经理吴应光博士发表致辞此外,11日凌晨于美国举办的第42届摩根大通医疗健康年会(J.P. Morgan Healthcare Conference)上,PacBio CEO Christian Henry也提到诺禾致源对于PacBio Revio的增购动作。诺禾致源作为PacBio全球认证测序服务商,通过此次Revio的增购及全球部署,将持续为全球多个国家的泛基因组项目提供服务。使客户能够在广泛的项目中对数千个高精度长读数基因组进行测序。基因公司中国区仪器事业部总经理项连才也发表致辞:“作为中国市场乃至全球知名的科技服务企业,诺禾致源已经逐步形成了顶部的优势,在客户资源的拓展上,在不同领域的应用开发上,以‘诺’为先!我们期待此次的启动,会推动诺禾致源,PacBio以及基因有限公司三方战略伙伴关系的进一步强化与夯实,形成以客户为终端的一个四方共赢局面!预祝诺禾致源在新的一年:会当凌绝顶,一览众山小! ”。基因公司中国区仪器事业部总经理项连才在本次交付仪式上,双方就未来合作方向进行了深入讨论。大家一致认为,随着全球经济一体化的不断深入,加强合作、实现共赢已成为企业发展的必然趋势,在未来的合作中,充分发挥各自优势,共同开拓市场,提高竞争力。此外,双方在技术创新和产品研发方面也达成了初步共识,可以尝试共同开发新技术、新产品,以满足多元化的市场需求。本次Revio的成功落地,不仅是诺禾致源在2024年布局三代测序全球化本地交付的重要开端,更是我们不断追求品质卓越、引领测序行业潮流的郑重承诺。2024年,诺禾致源中国区将继续坚持以客户为中心,继续秉承“专业、创新、诚信、共赢”的核心价值观,围绕基因科技产业的上中下游,通过不断提升自身产品及服务的价值、拓宽产品和服务的领域,为国内客户提供更准确、更快速、更稳定、更优质的三代测序产品与服务,成为终端客户可信赖的科研合作伙伴。三方领导及代表在交付仪式后进行合影凭借丰富全面的测序服务产品、多年积累的项目经验和强大的全球区域服务能力,诺禾致源不断发掘生物技术公司和学术机构的研究和创新潜力,提供稳定、高效、优质的基因科技服务,以实际行动诠释“基因科技守护生命健康”的企业使命。
  • 2018诺贝尔化学奖授予三位科学家 附历年得主盘点
    p   当地时间10月3日,瑞典皇家科学院宣布,将2018年诺贝尔化学奖授予2018年诺贝尔化学奖得主为Arnold,Smith,Winter。 br/ /p p   奖项的一半授予美国科学家阿诺德(Frances H. Arnold),表彰她实现了酶的定向演化 另一半授予给美国科学家史密斯(George P. Smith)和英国科学家温特(Gregory P. Winter),表彰他们实现了多肽和抗体的噬菌体呈现技术。 br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201810/uepic/8f1c90ac-2aec-4857-aa84-f43b6f2ce6aa.jpg" title=" 2018100318181296422.png" alt=" 2018100318181296422.png" / br/   2018年诺贝尔化学奖授予3位科学家。 /p p   根据诺贝尔奖官方网站介绍,诺贝尔化学奖由瑞典皇家科学院负责颁发,始于1901年,以表彰“在化学领域做出最重要发现或发明的人”。 /p p   化学是诺贝尔奖创始人阿尔弗雷德· 诺贝尔一生中最依赖的科学,他的发明和积累的巨额财富都得益于化学知识。1895年,诺贝尔立下遗嘱,从个人财富中拿出3100万瑞典克朗作为基金,设立诺贝尔奖,用以奖励在几大科学领域中做出重要贡献的人。遗嘱中,他把化学奖放在了第二位,仅次于物理学奖。 /p p   从1901年至2017年间,诺贝尔化学奖已颁发过109次,拥有178位获奖者。1911年,居里夫人获得诺贝尔化学奖,成为史上第一个两次获得诺贝尔奖的人。英国学者弗雷德里克· 桑格则是唯一一位两次获得诺贝尔化学奖的生物化学家。 /p p   2017年10月4日,2017年诺贝尔化学奖授予了瑞士科学家雅克· 杜博歇、美国科学家约阿希姆· 弗兰克以及英国科学家理查德· 亨德森,以表彰他们在冷冻显微术领域的贡献。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201810/uepic/c5171abc-dec5-4086-9143-053758daaed5.jpg" title=" u=364030801,3274004624& amp fm=173& amp app=25& amp f=JPEG.jpg" alt=" u=364030801,3274004624& amp fm=173& amp app=25& amp f=JPEG.jpg" / br/ 诺贝尔奖颁奖仪式 br/ /p p   诺贝尔化学奖是瑞典化学家阿尔弗雷德诺贝尔遗嘱中设立的原始四大奖项之一,首次颁发于1901年,截至2017年,共颁奖109次,有178人次获奖,化学奖得主的平均年龄是58岁。 /p p   其中,最年轻的化学奖得主是法国物理学家弗雷德里克约里奥-居里,他在1935年与其妻子因对人工放射性的研究共同获得诺贝尔化学奖时年仅35岁。值得一提的是,他妻子的母亲是两获诺奖的居里夫人,两人的一对儿女也是著名的科学家。 /p p   最年长的化学奖得主是美国化学家约翰贝内特芬恩,他因对生物大分子的鉴定和结构分析质谱法方法的研究,与日本化学家田中耕一、瑞士化学家库尔特维特里希共同获得了2002年诺贝尔化学奖,时年85岁。 /p p   百年间,诺贝尔化学奖仅有4位女性得主。分别是1911年因放射化学方面的成就而获奖的法国化学家玛丽居里 上文中提到的法国物理学家伊雷娜约里奥-居里 1964年因解析了一些重要生化物质结构而获奖的英国生物化学家多萝西霍奇金 及2009年因对核糖体结构和功能方面的研究而联合获奖的以色列晶体学家阿达约纳特。 /p p   截至今年,诺贝尔化学奖一共停发过8次,分别在1916, 1917, 1919, 1924, 1933, 1940, 1941和1942年。多数发生在一战二战时期。此外,据诺贝尔奖官网称,如果当年没有符合条件的候选人,该年的诺贝尔奖也将延后颁发。 br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201810/uepic/30f8da35-fcd8-47dd-b075-c066286f62b8.jpg" title=" u=3104463671,3442817358& amp fm=173& amp app=25& amp f=JPEG.jpg" alt=" u=3104463671,3442817358& amp fm=173& amp app=25& amp f=JPEG.jpg" / br/ 诺贝尔奖奖章 br/ /p p   strong  最后,附上21世纪以来诺贝尔化学奖得主名单: /strong /p p   2000年:艾伦黑格(美)艾伦麦克迪尔米德(美/新西兰)白川英树(日)对导电聚合物的研究。 /p p   2001年:威廉诺尔斯(美)野依良治(日)手性催化还原反应,巴里夏普莱斯(美)手性催化氧化反应。 /p p   2002年库尔特维特里希(瑞士)约翰贝内特芬恩(美)田中耕一(日)对生物大分子的鉴定和结构分析方法的研究。 /p p   2003年:彼得阿格雷(美)罗德里克麦金农(美)对细胞膜中的水通道的发现以及对离子通道的研究。 /p p   2004年:阿龙切哈诺沃(以)阿夫拉姆赫什科(以)欧文罗斯(美)发现了泛素调解的蛋白质降解。 /p p   2005年:罗伯特格拉布(美)理查德施罗克(美)伊夫肖万(法)对烯烃复分解反应的研究。 /p p   2006年:罗杰科恩伯格(美)对真核转录的分子基础所作的研究。 /p p   2007年:格哈德埃特尔(德),在“固体表面化学过程”研究中作出的贡献。 /p p   2008年:下村修(日)、马丁查尔菲(美)、钱永健(美),发现并发展了绿色荧光蛋白(GFP)。 /p p   2009年:万卡特拉曼拉玛克里斯南(英)、托马斯斯泰茨(美)、阿达约纳什(以色列),在核糖体结构和功能研究中做出贡献。 /p p   2010年:理查德赫克(美)、根岸英一(日)、铃木章(日),发明新的连接碳原子的方法。 /p p   2012年:罗伯特莱夫科维茨(美)、布莱恩克比尔卡(美),因“G蛋白偶联受体研究”获奖。 /p p   2013年:马丁卡普拉斯(美)、迈克尔莱维特(英、美)、阿里耶瓦谢勒(美、以色列),在开发多尺度复杂化学系统模型方面做出贡献。 /p p   2014年:埃里克贝齐格(美)、威廉莫纳(美)、斯特凡黑尔(德),为发展超分辨率荧光显微镜做出贡献。 /p p   2015年:托马斯林达尔(瑞典)、保罗莫德里奇(美)、阿齐兹桑贾尔(土耳其、美),因“DNA修复的细胞机制研究”获奖。 /p p   2016年:让-皮埃尔索维奇,J弗雷泽斯托达特和伯纳德L费林加三位科学家因“设计和合成分子机器”获奖。 /p p   2017年,约阿希姆弗兰克(瑞士),理查德亨德森(英),雅克杜博歇(瑞士),他们发展了冷冻电子显微镜技术,以很高的分辨率确定了溶液里的生物分子的结构。 /p p br/ /p
  • 安全可控、提质增效!胶原蛋白关键中间体二甲基砜MSM的连续流合成工艺
    甲基砜(MSM)是一种重要的有机硫代物,在胶原蛋白合成中起着关键作用,并具有增加胰岛素敏感性和促进体内糖代谢的潜在健康作用。传统的硝酸氧化法生产MSM存在废酸产量高、气味难闻、安全性差等缺点。在绿色化工的指导下,使用双氧水作为氧化剂,因纯度高、原子利用率高且产物仅为水和氧而备受关注。由于生产工艺的强放热性,使用传统间歇釜存在反应失控甚至爆炸的风险,在绿色化学品和安全化学品的概念下,这种生产过程逐渐被淘汰。微通道反应器作为一种新兴技术,针对强放热反应可以有效避免热失控的风险,且尺寸小持液量少,具有本质安全,显著提高反应的过程安全性。近年来,微通道技术已应用于各种高危反应,包括硝化、氧化、氯化、加氢、烷基化、酰化等。来自南京工业大学的倪老师团队构建了几种不同规格的微通道反应器,并将其应用于MSM的连续流合成。实验开始,作者考察了通道直径、水浴温度、催化用量和停留时间对MSM产率的影响,MSM的收率和纯度都很高:图1:初始实验装置图2:初始考察通道直径、水浴温度、催化用量和停留时间对MSM收率的影响最佳条件为使用3mm*1mm的PTFE管道,水浴温度80℃,催化剂用量0.002e.q., 停留时间4min,收率可达91.5%。考虑到此反应初始阶段原料浓度高放热量较大,作者采用两段温区(温区一Tf+温区二Ts)进行研究:图3:第二阶段实验装置图4:第二阶段不同的温区组合对MSM收率的影响当温区一温度20℃,停留时间1.0 min,温区二温度80℃,停留时间3.0 min时,MSM收率最高98.1%。后续作者在自建的工业化微通道反应器上进行了工业化放大,时间收率为18.36吨/年,空间收率为36.43吨/年/m3(如图5):图5:工业化放大装置图5:釜式和连续流的对比总结:根据反应的放热特性,采用微通道反应器实现了MSM连续流合成工艺。单控温工艺,通道直径为3 mm × 1 mm,水浴温度为80℃,催化剂用量为0.002 mol,停留时间为4 min时,MSM收率达91.5%。双温控工艺,当温区一温度为20℃,停留时间为1.0 min,温区二温度为80℃,停留时间为3.0 min时,MSM的收率可达98.1%。在自建的工业化微通道反应器平台上对MSM的连续流工业化生产进行了研究。MSM年平均时间产量为18.36 吨/年,年平均空间产量为36.43吨/年/m3。微通道技术的应用可有效提高MSM制备过程的本质安全性和生产效率,具有广阔的工业应用前景。
  • 华裔学者无缘诺贝尔化学奖 学界叫屈:厚此薄彼
    左边为用传统显微镜拍摄的图片,右边是贝齐格首次用STED显微镜拍摄的图片,分辨率提高很多倍。   美国科学家埃里克· 贝齐格、威廉· 莫纳和德国科学家斯特凡· 黑尔因开发出超分辨率荧光显微镜而获得2014年度诺贝尔化学奖。诺贝尔化学奖评审委员会8日在瑞典首都斯德哥尔摩宣布这一消息时认定,3名科学家成功突破传统光学显微镜的极限分辨率,将显微技术带入&ldquo 纳米&rdquo 领域,让人类能以更精确的视角窥探微观世界。   创新破&ldquo 极限&rdquo   3名获奖者中,现年54岁的贝齐格来自美国霍华德· 休斯医学研究所,现年61岁的莫纳现任美国斯坦福大学教授,现年52岁的黑尔同时就职于马克斯· 普朗克生物物理化学研究所和德国癌症研究中心。   长期以来,光学显微镜的成像效果被认为受到光的波长限制,无法突破0.2微米即光波长二分之一的分辨率极限。这三位科学家则以创新手段&ldquo 绕过&rdquo 这一极限,通过激光束激活荧光分子,在荧光分子发光的时候通过特别手段消除或过滤掉多余荧光,从而获得比&ldquo 极限&rdquo 更精确的成像。   诺贝尔化学奖评审委员会在当天发表的声明中说,通过荧光分子的帮助,这些科学家实现了这一突破,使用这一革命性显微技术在各自专业领域研究生命的最微小组成部分。   其中,黑尔通过研究神经细胞了解大脑突触现象,莫纳研究与亨廷顿氏症(一种神经退化性紊乱疾病)相关的蛋白质,贝齐格研究胚胎内部的细胞分裂。   探索&ldquo 无止境&rdquo   这一&ldquo 纳米显微&rdquo 技术问世前,人类凭借光学显微镜对细胞内分子作用的观察一直存在局限。   按照诺贝尔化学奖评审委员会的说法,3位科学家的成果将显微技术带入&ldquo 纳米&rdquo 领域,让人类能够&ldquo 实时&rdquo 观察活细胞内的分子运动规律,为疾病研究和药物研发带来革命性变化。   &ldquo 在帕金森氏症、阿尔兹海默氏症(老年痴呆症)或亨廷顿氏症发作时,他们(科学家)可以跟踪与之有关的蛋白质(变化) 受精卵分裂并发育成胚胎的过程中,他们也可以观察这些单个蛋白质(变化),&rdquo 诺贝尔化学奖评审委员会说,3人的研究成果为微生物研究带来了几乎无限的可能,&ldquo 理论上讲,如今没有什么物质结构小得无法研究。&rdquo   如今,&ldquo 纳米显微&rdquo 技术在世界范围内被广泛运用,每天人类都能从其带来的新知识中获益。   获奖&ldquo 太意外&rdquo   获得诺贝尔奖,对德国科学家黑尔似乎太过意外。他告诉诺贝尔奖基金会,接到电话时,他正在安静地阅读一篇科研论文,以为打来的是一个恶作剧电话。   &ldquo 太令人意外了,我没敢相信。我一开始觉得这可能是个恶作剧,&rdquo 黑尔说,&ldquo 幸运的是,我记得(瑞典皇家科学院常任秘书)诺尔马克教授的声音,我意识到(他)旁边还有其他人&hellip &hellip 才认为这是真的。&rdquo   不过,黑尔没有陷入惊喜中,而是挂完电话继续阅读论文。   &ldquo 我读完了那篇我希望读到结尾的论文,然后再给我妻子打电话,还有几个和我关系密切的人。&rdquo 黑尔说,他没有去理会如潮水般涌来的电话和采访请求。   回忆起研究成果,黑尔说,他的研究最开始时遭到业内人士的强烈抵制,&ldquo 人们觉得这个&lsquo 极限&rsquo 自1873年就存在,再去做一些研究&hellip &hellip 有点疯狂,不太现实&rdquo 。   &ldquo 然而,我的观点是,20世纪发生了那么多物理学(研究发现)&hellip &hellip 我觉得一定有某种东西或现象能帮助你突破那个极限,&rdquo 黑尔说,&ldquo 我一直都乐于挑战事物,挑战公共智慧。&rdquo   解读 显微镜下的更小世界   从光学显微镜到能探知纳米世界的超分辨率显微镜,2014年诺贝尔化学奖所表彰的科学研究突破了以往物体观测尺寸的界限,使人类得以研究更微小的世界。   北京大学生物动态光学成像中心研究员孙育杰介绍,超分辨率荧光显微技术主要应用于生物领域。孙育杰说,传统光成像分辨率一般是波长的一半200纳米。这个分辨率在细胞成像上有些大了。很多细胞结构小于这个,很多生物分子排列很紧,这样也看不到。因此,科学家们致力于超分辨率领域的研究。   孙育杰介绍,超分辨率领域的发展分为三个阶段,在1994年,德国人斯特凡· 黑尔最先从原理和技术上实现了超分辨率,当时称为STED,但因为生物兼容性很差,很容易将生物样品烧坏,因此一直没能大范围应用。2006年,此次诺奖得主埃里克· 贝齐格与华裔科学家庄小威几乎在同一时间各自独立发表论文,发明了新的超分辨率技术。二者在原理上非常像,且生物兼容性非常好,&ldquo 这个技术一下子火起来&rdquo 。   此后,最早推出超分辨率技术的黑尔教授也在技术上不断改革,使得生物兼容性很好。因此,目前该领域主要广泛使用这三种技术。&ldquo 这3个技术都很成熟,也有公司投入生产。比如尼康、奥林巴斯等,已经商用化了。北京还有10多家实验室在用这个技术。&rdquo   目前,这几种技术把传统成像分辨率提高了10到20倍,最好的能达到10纳米,&ldquo 这种提高是非常了不起的&rdquo 。因此,超分辨率技术推出后,科学家们可以看到细胞内的细节,包括细胞结构,分子间的相互作用,相互定位及动态过程等。&ldquo 好比一个近视眼的人突然戴上了合适的眼镜&rdquo 。   化学奖属于跨界出品   物理学的原理和技术,广泛应用于生命科学领域,最后却获得了诺贝尔化学奖,这令一些人感到困惑。对此,孙育杰说,这几个技术都是跨界技术。实际上黑尔和庄小威都是物理专业毕业。他们都是一直从事物理研究,最后转做生物,用物理理论解决了生物的技术需求。&ldquo 这是一个典型的技术诺贝尔奖,也是跨界的结果&rdquo 。   对于此技术获得化学奖,他说这几类技术实现超分辨率,都是利用荧光探针的性质,包括化学有机染料、荧光蛋白等。在2008年也有科学家凭借荧光蛋白获得过诺贝尔化学奖。&ldquo 这其实是个生物领域&rdquo 。他表示,这个技术就是利用了生物分子、化学分子的性质,实现了突破衍射极限的超高分辨率成像。   反应 学界为华裔学者叫屈   昨天,诺贝尔化学奖公布后,很多学界专家都认为华裔科学家庄小威更有资格获得该奖。   原北大生命科学院院长饶毅在第一时间发表文章称,&ldquo 贝齐格的工作不仅与华裔教授庄小威的工作在物理原理上完全一样,而且他们研究论文发表的时间也一样,令人不解为何厚此薄彼&rdquo 。   孙育杰认为,在荧光显微技术这一领域,庄小威也是极为重要的贡献人。   有学者说,莫纳虽然在成像领域里德高望重,备受尊敬,但是相比诺贝尔奖,还有一定差距。在质量上远不如黑尔、贝齐格和庄小威。   据介绍,庄小威目前任哈佛大学化学系和物理系教授,兼北京大学生物动态成像中心研究员。庄小威毕业于中国科技大学少年班,美国加州大学物理学博士、斯坦福大学博士后,40岁当选美国科学院院士。   埃里克· 贝齐格   1960年出生于美国密歇根州,1988年获得美国康奈尔大学博士学位。美国神经科学家、发明家、应用物理学家,他从康奈尔大学毕业后在贝尔实验室工作。其主要贡献是研发了用于分子生物学、神经科学的光学成像工具。现在美国弗吉尼亚州霍华德· 休斯医学研究所工作。   2011年7月,贝齐格接受BBC的采访介绍超分辨率显微镜技术时说,我们第一次掌握了这种技术,可以让我们了解正在发生的复杂的三维动态。   2006年,超高分辨率显微镜研究行业翻开了新的篇章。贝齐格和其他三个科研小组几乎同时发表了他们提高显微镜分辨率的科研成果。贝齐格和研究伙伴一起在2006年的《科学》杂志上发表了他们的研究成果。   斯特凡· 黑尔   1962年生于罗马尼亚阿拉德,于1981年进入德国海德堡大学学习,并于1990年获得海德堡大学物理学博士学位。现为德国籍,是马克斯· 普朗克生物物理化学研究所所长之一。   1991年至1993年,黑尔在位于德国海德堡的欧洲分子生物学实验室从事研究工作。1993年至1996年在芬兰图尔库大学的物理医学系从事研究工作。1994年,黑尔发明了STED显微镜,是超分辨率显微技术的一大突破。   1997年,黑尔迁往哥廷根,成为马克斯· 普朗克学会在哥廷根的生物物理化学研究所的研究员。2003年至今,黑尔也是位于海德堡的德国癌症研究中心高分辨率光学显微技术部门的主任。   2002年,黑尔获德国雷宾赫激光技术奖。2008年,曾获德国科学技术最高奖&mdash 莱布尼茨奖。   威廉· 莫纳   1953年生于美国加利福尼亚州的普莱森顿,1982年获得康奈尔大学物理学博士学位。现为美国斯坦福大学哈利· S· 莫什讲座教授,是单分子光谱和荧光光谱领域的著名专家。   1981年至1995年,莫纳在IBM位于加利福尼亚州圣荷西的研究中心担任研究人员和管理人员。1993年至1994年,在瑞士苏黎世联邦理工学院担任访问客座教授。1995年至1998年,在加利福尼亚大学担任杰出教授(物理化学领域)。1998年至今,在斯坦福大学担任教授。   莫纳曾获得不少荣誉,1984年获得罗杰· I· 威尔金斯全美杰出年轻电气工程师奖 2001年获得美国物理学会厄尔勒· K· 普利勒奖 2008年获得以色列沃尔夫奖化学奖 2009年获得欧文· 朗缪尔化学物理学奖。
  • 傅若农谈用于固相微萃取样品制备中的吸着材料
    往期讲座内容见:傅若农老师讲气相色谱技术发展   对复杂基体(例如食品中微量残留物和污染物)的非常低浓度的化合物的分析,通常需要一个复杂的分析方法,包括采样,样品制备,分析物分离,定性和定量测定。多数分析家认为样品准备是关键、瓶颈,因为它通常是耗时最长的步骤,回收率低,容易产生污染,比其他步骤更难以自动化。最近,受绿色分析方法的刺激,把微量固相萃取技术推向前台,而各种吸着(吸附和吸收)材料是这些微萃取技术的基础,所以这一领域的研究最为活跃。  在上世纪70年代,固相萃取(SPE)——经典液相色谱的小型化,很快成为多年使用的液-液萃取处理样品的替代方法之一,虽然SPE比以前使用的样品制备方法大大降低了有机溶剂的量,但是由于要使用相对大量的有机溶剂。因此,出现了各种固相微萃取的小型化方法,进入了所谓的微萃取技术的时代,如下图1所示。 图 1 固相萃取半个多世纪的演变  固相萃取的小型化使这一技术进一步扩大了它的应用,并促进了固相萃取吸着剂的研究和发展,吸着剂(sorbent materials)(或萃取剂,捕获剂)包括吸收和吸附。从微观的角度看,这两类的 SPE 涂层有明显的区别。吸附是分析物分子直接以分子力吸着到涂层表面。吸收则是分子溶入涂层的主体内。基于吸附机理的萃取因其可进行吸附的表面位置有限,因此吸附是竞争过程 而基于吸收机理的萃取,由于两种性质相似的液体可以以任何比例互溶,因此吸收是非竞争过程。如下图2所示。我把两种过程总称为吸着。 图 2 吸收和吸附的概念左面: a 吸附 b. 大孔吸附 c. 小孔吸附右面 a 吸收 b. 大孔吸收 c. 小孔吸收( 色谱,2001,19(4):314)1. 微固相萃取使用的吸着剂  在SPE 半个多世纪的第一阶段,是使用活性碳作吸附剂的时期,这是沿袭了历史的经验,用活性碳吸附水中的有机物,是一种很有效的方法,但是活性炭吸附性不均一,重复性不好,有过高的吸附性,有不可逆活化点,回收率低。所以从上世纪 60 年代末到80 年代初,一直在寻找更为合适的适应性更强的 SPE 填料。有许多溶于水中的有机化合物不能被活性碳所吸附,而一些被吸附的化合物又不能被溶剂洗脱出来。当时就着重于使用聚合物和各种键合在硅胶上的有机基团,前者如交联聚苯乙烯树脂 Amberlite XAD-1,后者如十八烷基硅胶(ODS)和辛基、乙基硅胶。上世纪 60 年代中期 Rohm 和 Haas 公司推出 Amberlite XAD-1 (交联聚苯乙烯)作萃取用吸着剂,上世纪 70 年初代又引入苯乙烯-二乙烯基苯 Amberlite ( XAD-2 和XAD-4)和乙烯二甲基丙烯酸酯树脂(XAD-7和XAD-8)。用于ppb级有机物的萃取。还研究了多种共聚物,如 porapaks 和 Chromosorbs 其中以 Tenax (2,6-diphenyl-p-phenylene oxide) 使用者最多。由于聚合物吸着剂中残留制造时的一些化合物如单体、溶剂,给SPE 的标准化带来困难,同时受到上世纪 70 年代 HPLC 填料研究的刺激,兴起了在 SPE 中使用 HPLC 填料作SPE 的吸着剂。  硅胶是很古老的吸附剂,广泛用于萃取介质,硅胶又可以键合各种有机基团,所以在固相萃取中有较多的使用。硅胶的活性中心是其结构上的羟基(硅烷醇),在结晶的硅胶中,它们是孤立的,不与相邻的羟基相作用。用于SPE 的硅胶是无定形的,其相邻的羟基间可发生氢键相互作用,发生氢键相互作用的羟基数目取决于吸附剂的孔径。小孔硅胶表面主要被氢键相互作用的羟基所占有,大孔硅胶表面主要被孤立的羟基所占有。如果将无定形硅胶进行加热处理,则表面羟基失水转变为硅氧烷,这时,表面活性中心基本消失,吸附作用很弱,大孔硅胶的这种失水反应是可逆的,如果将失水硅胶与水一起加热,硅氧烷与水反应成为硅烷醇。如果失水发生在小孔硅胶或加热温度过高,则反应是不可逆的。未经加热处理的无定形硅胶,其表面羟基被水所覆盖,没有吸附活性,故需将它置于150一200℃下长时间加热进行活化。除去水后的相邻羟基形成氢键。若加热温度超过200℃,氢键相互作用的羟基将失水成为硅氧烷。加热温度超过 600℃,全部羟基(包括氢键相互作用的羟基和孤立的羟基)失水成为憎水的硅氧烷。在更高的温度(900℃)下,硅胶表面将烧结。硅胶表面上成氢键存在的羟基是吸附剂的活性中心,它对单官能团化合物有很强的吸附作用。它对一些化合物会产生永久性的吸附。因此作为SPE吸附剂,应当适当地进行减活处理,使其表面的活性中心比较均匀一致。硅胶吸附少水对其性能有很大的影响。由于极性化台物的k’值随着吸附剂含水量的增加而减少,为了保持吸附的稳定,含水量必须保持恒定。硅胶在含水量为4—20%时,分离效率差别很小,通常,水的加入量只要满足吸附剂表面形成50-75%的水单分子层就行了,此时,每100 m2吸附剂表而含水 0.02-0.038 g 。例如每l00 g 硅胶加水8-12 g 水。加入水后,与干吸附剂相比,容量可提高5-l00倍。  由于 硅胶键合有机物的稳定性和规范化,1978 年形成了SPE 小柱的商品,从而得到了广泛的应用,逐渐成为SPE的主流。如表1 中100例MEPS中使用最多的是这类吸着剂。其中C18—25.1%,C8—24.5%,C2—13.3%,MI——14.4%,硅胶——7.6%,其他——15.4%。C18+ C8+ C2=62.9%。  2006年我从500多篇使用SPE研究报告中发现使用最多的是C18 SPE柱 和OasisHLB 柱(二乙烯基苯-N-乙烯基吡络烷酮共聚物(分析试验室,2006,25(2):100-122)。  表 1 填充吸着剂微萃取(MEPS)使用过的吸着剂吸着剂分析物文献1C18利多卡因,甲哌卡因、布比卡因,罗哌卡因J Chromatogr B,2004, 801:317–3212MIP肌氨酸J Sep Sci,2014, doi:10.1002/jssc.201401116.3硅基苯磺酸阳离子交换剂局部麻醉药J Chromatogr,2004, B 813:129–135.4聚苯乙烯聚合物ISOLUTE ENV +6-(苄基氨基)-2(R)-[[1-(羟甲基)丙基]氨基]-9-异丙基嘌呤(Roscovitine)J Chromatogr B,2005, 817:303–3075聚苯乙烯聚合物奥罗莫星(Olomoucine)Anal Chim Acta,2005, 539: 35–396硅胶基(C8),聚合物( ENV+),和甲基丙烯酸甲酯的有机整体柱罗哌卡因,利多卡因,代谢物(甘氨酰二甲苯胺,甘氨酸二甲代苯胺,3-OH-利多卡因)J Liq Chromatogr Relat Technol,2006,29:829–840.7聚苯乙烯聚合物醋丁洛尔,美托洛尔J Liq Chromatogr Relat Technol, 2007,30:575–5868Csilica-C8美沙酮J Sep Sci,2007,30:2501–25059C2-吸附剂环磷酰胺J Liq Chromatogr Relat Technol, 2008,31: 683–694.10C2, C8, 聚苯乙烯聚合物AZD3409( N-[2-[2-(4-氟苯基)乙基]-5-[[[(2S,4S)-4-[(3-吡啶羰基)硫代]-2-吡咯啉]甲基]氨基]苄基]-L-蛋氨酸 1-甲基乙酯)J Chromatogr Sci,2008,46:518–523.11C18羟基化聚苯乙烯二乙烯基本共聚物(ENV+)布比卡因和 [d3]-甲哌卡因Anal Chim Acta,2008, 630 : 116–12312C18氟喹诺酮类Anal Chem,2009,81:3188–319313C8 , ENV+ ,Oasis MCX,Clean Screen DAU可卡因及其代谢物J Am Soc Mass Spectrom,2009,20:891–89914C18麻醉药品Electrophoresis, 2009,30 :1684–169115C18甲基安非他明和安非他明J Chromatogr A,2009, 1216 :4063–407016C18溶解性有机物和天然有机物Anal Bioanal Chem, 2009, 395:797–80717C18单萜类代谢产物Microchim Acta,2009,166:109–11418C18硅胶有机优先污染物和暴露的化合物J Chromatogr A,2010, 1217 :6002–601119C8抗抑郁药J Chromatogr B,2010, 878:2123–212920C8利培酮及其代谢产物Talanta,2010,81:1547–155321C8,C18紫外滤光片和多环麝香化合物J Chromatogr A,2010,1217:2925–293222C18奥卡西平及其代谢物Anal Chim Acta,2010, 661:222–22823C2, C8, C18,硅胶,C8/SCX可替宁Anal Bioanal Chem,2010,396:937–94124C18甾体代谢物J Chromatogr A,2010,1217:6652–666025C8利培酮和9-羟利培酮J Chromatogr B,2011,879:167–17326MIP氟喹诺酮类化合物Anal Chim Acta,2011,685:146–15227C18非极性杂环胺Talanta,2011,83:1562–156728C8瑞芬太尼J Chromatogr B,2011,879:815–81829--氯氮平及其代谢产物J Chromatogr A,2011,1218:2153–2159.30C8阿托伐他汀及其代谢产物J Pharm Biomed Anal,2011,55:301–308.31C18氯贝酸,布洛芬,萘普生,双氯芬酸和布洛芬J Chromatogr A,2011,1218:9390–939632MIP,C18-硅胶(改性)雌激素类化合物的17β -雌二醇Anal Chim Acta,2011,703 41–5133C8阿片类药物Anal Chim Acta,2011,702:280–28734C2, C8, C18, SIL(未改性硅胶), M1(80% C8 和 20% SCX)(E)-白藜芦醇J Sep Sci,2011,34 :2376–2384. 35C18美沙酮Anal Bioanal Chem,2012,404:503–51136C18黑索金,TNTChromatographia,2012,75:739–74537C18多环芳烃Talanta,2012, 94:152–15738C8免疫抑制药物J Chromatogr B,2012,897:42–49.39C2, C8, C18, SIL, and M1生物相关的酚类成分J Chromatogr A,2012,1229:13–2340C18哌嗪类兴奋剂J Pharm Biomed Anal,2012,61:93–9941C18, C8,和 C8-SCX精神治疗药Anal Bioanal Chem,2012,402:2249–225742C2, C8, C18, 1M(阳离子交换剂)和Sil普萘洛尔、美托洛尔、维拉帕米Rapid Commun Mass Spectrom,2012,26:297–30343C8普伐他汀普伐他汀内酯Talanta,2012,90:22–2944C18酚酸J Chromatogr A,2012 1226:71–76.45C18抗癫痫剂J Sep Sci,2012,35:359–36646硅胶离子液体Talanta,2012, 89:124–12847聚吡咯/尼龙有机磷农药J Sep Sci,2012,35:114–12048C2, C8, C18, 硅胶和 M1 (混合 C8-SCX)挥发性和半挥发性成分Talanta,2012,88:79–9449C8, C18哌嗪类兴奋剂J Chromatogr A,2012,1222:116–12050C2, C8和ENV+感觉神经元特异性受体激动剂BAM8-22和拮抗剂BAM22-8Biomed Chromatogr, 27,2013:396–40351C18大环麝香香水J Chromatogr A,2012,1264:87–9452C8多环芳烃J Chromatogr A,2012,1262:19–26.53C18抗癫痫药物J Sep Sci,2012,35:2970–297754C18卤代苯甲醚J Chromatogr A,2012,1260:200–20555C18芳香胺Anal Bioanal Chem,2012,404:2007–201556聚苯胺纳米线农药 Anal Chim Acta,2012,739:89–9857C2、C8、C18和C8 / SCX,SIL黄酮醇Anal Chim Acta,2012, 739:89–9858C8褪黑素与其他抗氧化剂J Pineal Res,2012,53:21–2859C2, C8, C18和含C8的硅胶类似M1L-抗坏血酸的测定Food Chem,2012,135:1613–161860C18卤代乙酸J Chromaogr A,2013,1318:35–4261MIP局部麻醉剂:利多卡因,甲哌卡因和布比卡因Biomed Chromatogr,2013,27:1481–148862C8心脏药物J Chromatogr B,2013,938:86–9563C8和强阳离子交换剂5-羟色胺再摄取抑制剂,抗抑郁药J Braz Chem Soc,2013,24:1635–164164C18麝香酮Anal Bioanal Chem,2013,405:7251–725765C8利多卡因Biomed Chromatogr,2013,27:1188–119166C18非甾体类抗炎药J Chromatogr A,2013,1304:1–967C2、C8、C18,SIL,M1苯基黄酮J Chromatogr A,2013,1304:42–5168C18大麻类J Chromatogr A,2013,1301:139–14669C18氯苯Anal Bioanal Chem,2013,405:6739–6748.70CMK-3纳米碳迷迭香酸Chromatographia,2013, 76:857–86071C2,C8,C18,SIL,M1氧化应激生物标记物Talanta,2013, 116:164–17272CMK-3纳米碳橄榄生物酚73 Anal Sci,2013,29:527–5327380% C8 20% SCX抗精神病药物Anal Bioanal Chem,2013,405:3953–396374C18多环芳烃和硝基麝香75C8氧化损伤DNA尿中的生物标记物PLoS ONE 8 (2013)e5836676C18抗精神病药物Anal Chim Acta,2013, 773:68–7577C2、C8、C18和C8,SIL / SCX羟基苯甲酸和羟基酸Microchem J,2013,106:129–138.78C2抗精神病药齐拉西酮J Pharm Biomed Anal,2014,88:467–47179C8可的松,皮质酮,acortisolJ Pharm Biomed Anal,2014,88:643–64880多孔石墨化碳颗粒恩替卡韦J Pharm Biomed Anal,2014,88:337–34481C18和 C8/SCX,莱克多巴胺Food Chem,2014,145:789–79582DVB芳香胺Talanta,2014, 119:375–38483SIL, C2, C8, C18, and M1氨基甲酸乙酯Anal Chim Acta, 2014,818:29–3584聚苯乙烯β -受体阻滞剂美托洛尔和醋丁洛尔M.M. Moein (Ph.D. thesis), Stockholm University, 201485C8多环芳香族碳氢化合物J Chromatogr A,2006, 1114:234–238.86C18布比卡因,利多卡因,罗哌卡因Bioanalysis,2010, 2:197–20587C18卤乙酸J Chromatogr A,2013, 1318:35–4288C8/SCX三环类抗抑郁药 Chromatogr A,2014, 1337:9–1689C18氯酚J Chromatogr A,2014, 1359:52–5990C18溴联苯醚J Chromatogr A,2014, 1364:28–3591C18非甾体类抗炎药物J Chromatogr A 1367 (2014) 1–892MIP瘦肉精,J Pharm.Biomed Anal. 91 (2014) 160–16893C18卡马西平、拉莫三嗪,奥卡西平,苯巴比妥,苯妥英和活性代谢物环氧化卡马西平和利卡西平J Chromatogr B 971 (2014) 20–2994C8千金藤素J Anal Methods Chem,2014,2014:1–695C8磺胺类药物J Liq Chromatogr Relat Technol,2014,37:2377–238896氨丙基杂化硅胶整体柱五种抗精神病药(奥氮平、奎硫平、氯氮平、氟哌啶醇、氯丙嗪)和七中抗抑郁药(米氮平、帕罗西汀、舍曲林、西酞普兰,氯丙咪嗪,丙咪嗪、氟西汀)Talanta1,2015,40:166–17597C2,C8,C18,M1肉碱和酰基肉碱J Pharmaceu Biomed Anal,2015,109:171–17698C18儿茶酚胺类(如去甲肾上腺素、肾上腺素和多巴胺)J Pharmaceu Biomed Anal,2015,104:122–12999M1氯胺酮及其代谢物J Chromatogr B, 2015,1004:67–78100Carbon-XCOSβ -受体阻滞剂美托洛尔,醋丁洛尔J Chromatogr B, 2015,992:86–902. 新型、选择性固相微萃取吸着剂  目前被分析物基体十分复杂,如生物样品、食品,含有多种化合物及多种异构体,使用传统萃取吸着剂对其缺乏选择性。由于很难消除基体中杂质的影响,导致后续的色谱、质谱分析受到严重干扰。因此出现了许多新的、选择性吸着剂,如分子印迹聚合物、免疫亲和吸着剂、核酸适配体功能化吸着剂、磁性固相萃取吸着剂、分子印迹介孔材料吸着剂、金属有机骨架材料吸着剂、树枝状大分子材料吸着剂、各种纳米材料吸着剂(富勒烯、石墨烯、碳纳米管等)。下表2列出近年新型选择性微固相萃取吸着剂的应用实例。  表 2 新型选择性微固相萃取吸着剂吸着剂被分析物样品基质检测回收率/%LOD文献1石墨烯, Pb环境水和蔬菜火焰原子吸收光谱(FAAS)95.3–100.40.61 ug/LAnal Chim Acta,2012,716:112–1182石墨烯谷胱甘肽人血浆荧光分光光度计92-1080.01 nMSpectrochim Acta,2011,79:860–1863氧化石墨烯氯苯氧酸除草剂河水与海水CE93.3- 102.40.3–1.5ng/LJ Chromatogr A,2013,1300:227–2354RGO-silica(氧化石墨烯衍生物-硅胶)氟喹诺酮自来水和河水LC-FLR72–118未报道J Chromatogr A,2015,1379:9–155磺化石墨烯多环芳烃河水GC-MS81.6 -113.50.8–3.9 ng/LJ Chromatogr A,2012,1233:16–216富勒烯-二硫代氨基甲酸钠(C60-NaDDC)Pb雨水GC-MS92 -100 415 ng/LAnal Chem,2002, 74:1519–15247富勒烯C60Cd水,牡蛎组织,猪肾牛肝AAS未报道0.3-0.3 ng/mLJ Anal At Spectrom,1997,12 :453–4578富勒烯C60汞(II)、甲基汞(I) 与乙基汞(I)海水,废水和河水GC-MS80–1051.5 ng/LJ Chromatogr A,2004,1055:185–1909富勒烯C60有机金属化合物水溶液GC-MS未报道5–15 ng/mLJ Chromatogr A,2000, 869:101–11010富勒烯C60金属二硫代氨基甲酸盐粮FAAS92–981–5 ng/mLAnalyst,2000,125:1495–149911富勒烯C60BTEX海水,废水,地表水,雨水,湖水,饮用水和河水GC-MS94–1040.04–0.05 ug/LJ Sep Sci,2006,29:33–4012富勒烯C60,C70芳烃和非芳烃,亚硝化单胞菌游泳池水,废水,饮用水和河水GC-MS95–1024–15 ng/LJ Chromatogr A,2009,1216 :1200–120513富勒烯C60-键合硅胶阿马多瑞多肽人血清MALDI-TOF MS未报道未报道Anal Biochem,2009,393: 8–2214氧化单层碳纳米管,氧化多层碳纳米管有机磷农药海水GC-FID79–1020.07–0.12 ug/LJ Environ Monit,2009, 11 : 439–444.15多层碳纳米管磺酰脲类除草剂土壤HPLC-DAD76–930.5–1.2 ng/g J Chromatogr A ,2009,1216:5504–551016多层碳纳米管莠去津和西玛津水GC-MS未报道2.5–5.0 pg/mL17 Microchem J, 2010,96 : 348–351.17氧化和改性碳纳米管,Ni (II), Pb (II)湖泊沉积物 污泥ETAAS(电热原子吸收光谱)92.1–102.010–30 ng/L Talanta,2011,85:245–25118改性多层碳纳米管Fe (III), Cu (II) Mn (II), Pb (II)矿泉水FAAS96–1003.5–8.0 ug/LFood Chem Toxicol,2010 ,48:2401–240619碳纳米锥,纳米盘,纳米纤维和纳米角 碳纳米锥/磁盘氯酚水GC-MS98.8–100.90.3–8 ng/mL J Chromatogr A, 2009,1216 : 5626–5633.20碳纳米锥/纳米盘甲苯、乙苯、二甲苯同分异构体和苯乙烯水GC-MS920.15 ng/mLJ Chromatogr A,2010, 1217 :3341–334721单壁碳纳米管PAHs水GC-TOF-MS21–9630–60 ng/LAnal Chim Acta,2012,714 :76–81.22碳纳米纤维氯三嗪,和去烷基化代谢产物粗土、水(自来水、井水、河水)LC-DAD83.5–1050.004–0.03 ng/mLAnal Chem,2011,83:5237–5244.23尼龙6纳米纤维垫多西他赛兔血浆HPLC-UV852 ng/mLJ Chromatogr B,2010,878:2403–2408.24PFSPE(PS)填充纤维固相萃取(聚苯乙烯)曲唑酮人血浆HPLC-UV94.6–105.58 ng/mL74顾忠泽,Anal Chim Acta,2007,587:75–81.25PS/G NF(聚苯乙烯/石墨烯纳米纤维)醛人呼出气冷凝液HPLC-VWD79.8–105.64.2–19.4 nmol/L Anal Chim Acta,2015,878:102–108(徐辉)26NFS(从烟灰得到的碳纳米纤维)芳香胺烟灰HPLC-UV70–1080.009–0.081 ug/LJ Chromatogr A,2011,1218:3581–3587.27树枝状大分子的功能化KIT-6(介孔材料)酸性药物尿HPLC-UV85.7–113.90.4–4.6 ng/mLJ Chromatogr A,2015,1392 :28–36.28改性硅胶(DPS)碱基核苷标准溶液LC-DAD未报道未报道J Chromatogr A,2014, 1337: 133–139.29聚丙烯亚胺树枝状大分子改性硅胶(PID-SG)铂,镍合金FAAS未报道0.014 ug/mL Ann Chim, 2005,95:695–701.30磁纳米颗粒Fe3O4@SiO2-C18葛根素大鼠血浆HPLC-UV85.2–92.30.05 ug/mLJ Chromatogr B,2013,912 :33–3731CTAB 涂渍 Fe3O4甲芬那酸血浆、尿液HPLC-UV92–990.087– 0.097 ng/mLJ Chromatogr B,2014,945–946:46–52.32磁性多层碳纳米管聚乙烯醇(PVA)复合凝胶邻苯二甲酸酯包装食品GC-FID70–11826.3–36.4 ng/mL Food Chem,2015,166:275–28233Fe3O4@SiO2-C18利多卡因大鼠血浆HPLC-UV-VIS-DAD89.4–92.30.01 ug/mLJ Chromatogr A, 2011, 1218:7248–725334免疫吸附剂单克隆抗体的琼脂糖凝胶活化单克隆抗体:吡唑醚菌酯苹果汁和红葡萄汁HPLC-UV98.5–101.6250 ug/LJ Chromatogr A,2011, 1218 : 4902–490935从内吗啡肽1和2 (End1 和 End2)的多克隆IgG抗体得到Fab片段,通过2-琥珀酰亚胺把它键合到硅胶上得到的吸着剂阿片肽人血浆CE-MS未报道End1: 0.5 ng/mL End2: 5 ng/mLAnal Chim Acta,2013, 789 : 91–99.36把苯基乙胺A 的多克隆抗体接枝到CNBr活化的交联琼脂糖(Sepharose )4B 上苯乙醇胺饲料,肉及肝HPLC-UV89.48–104.8948.7 ng/mL J Chromatogr B ,2014,945–946: 178–18437核酸适配体功能化吸附剂——链霉亲和素活化的琼脂糖,溴化氰活化的琼脂糖可卡因死后血液HPLC-DAD90未报道Talanta ,2011, 85:616–62438核酸适配体功能化吸附剂——单链DNA四环素抗体四环素尿液和血浆ESI-IMS82.8–86.5%0.019–0.037 ug/mL J ChromatogrB: Anal Technol Biomed. Life Sci,2013,925:26–32.39核酸适配体功能化吸附剂——链霉亲和素聚(TRIM-co-GMA)凝血酶人血清HPLC-UV-VIS未报道4 nm [Anal Chem,80,2008 (8) :7586–759340离子印迹聚合物---铁(Ⅲ)-印迹氨基功能化硅胶吸附剂铁(Ⅲ)标准溶液ICP-AES950.34 ug/LTalanta,2007 ,71 : 38–4341离子印迹聚合物--铑(Ⅲ)离子印迹聚合物铑(Ⅲ)地球化学参照样品RLS900.024 ng/mLTalanta,2013 ,105:124–130.42离子印迹聚合物--Pb(II)印迹聚合物颗粒Pb(II)食品FAAS97.6–100.70.42 ng/mL Food Chem. 138 (2013) 2050–2056.43分子印迹聚合物---功能单体MAA---交联剂:乙二醇二甲基丙烯酸酯,致孔剂:丁酮和正庚烷,聚合类型:沉淀聚合烯酰吗啉人参GC-u-ECD89.2–91.60.002 mg/kg J Chromatogr B,2015, 988 :182–18644分子印迹聚合物---功能单体:DEAEMA,交联剂: EDMA,聚合化类型:本体极化生物活性的萘醌植物提取物HPLC-UV-VIS未报道未报道J Chromatogr A,2013, 1315 : 15–2045分子印迹聚合物---功能单体:接枝PMAA/ SiO2,交联剂:EGGE,模板:肌酐,肌酐肌酐标准溶液UV/vis未报道未报道Anal Bioanal Chem,2015, 407 :2685–271046金属有机框架化合物-- MOF MIL-101(Cr)PAHs环境水HPLC-PDA81.3–105.02.8–27.2 ng/LAnalyst, 137,2012:3445–345147金属有机框架化合物-- MOF MIL-53, MIL-100, 和 MIL-101肽,蛋白生物样品MALDI-TODF-MS未报道未报道Chem Commun,2011 ,47: 4787–478948金属有机框架化合物-- MOF MIL-53(Al)Fe水溶液XRD98.2–106.20.9 uMAnal Chem,2013, 85: 7441–744649金属有机框架化合物-- MOF MIL-101有机氯农药水样GC-MS87.6–98.60.0025/0.016 ng/mL J Chromatogr A, 2015,1401: 9–1650限进性材料—RAMs-MIPs, 模板分子:马拉硫磷有机磷农药蜂蜜GC-FPD90.9–97.60.0005–0.0019 ug/mLFood Chem,2015,187: 331–337.51亲水性共聚单体:GMA XDS-RAM碱性药物人血浆LC-UV-VIS94.2–98.2未报道J Chromatogr A ,2002,975:145–15552亲水性共聚单体:GMA C-WCX-RAM碱性药物人血浆LC-UV96.7–104.9未报道J Chromatogr A, 2008,1190 : 8–13.  AAS--原子吸收光谱 CE--毛细管电泳 CTAB--十六烷基三甲基溴化铵 DEAEMA--二乙基氨基乙基-2-甲基丙烯酸酯 DPS--聚合物改性二氧化硅 EDMA--乙二醇二甲基丙烯酸酯 EGGE--乙二醇缩水甘油醚 ESI-IMS-- 电喷雾电离离子迁移谱 ETAAS--电热原子吸收光谱法 FAAS--火焰原子吸收光谱法 FLR--荧光,荧光检测器 G--石墨烯 GMA--甲基丙烯酸缩水甘油酯 GO--氧化石墨烯 GSH--谷胱甘肽 ICP-AES-- 电感耦合等离子体原子发射光谱法 MAA--甲基丙烯酸 mAbs--单克隆抗体 MC-WCXRAM, 甲基纤维素固定化弱阳离子交换硅基限进性材料 OMWCNT--氧化多壁碳纳米管 OSWCNT--氧化碳纳米管 PAHs--多环芳烃 PFSPE, 填充纤维固相萃取 PPID-SG--G4.0聚(亚胺)树枝状大分子的固定化硅胶 PS--聚苯乙烯 PS/G--聚苯乙烯/石墨烯 PVA--聚乙烯醇 RGO--还原氧化石墨烯 RLS--共振光散射法, VWD--可变波长检测器, XDS--阳离子交换限进性吸着剂材料(文献:Tr Anal Chem, 2016, 77: 23–43)3. 小结  由于篇幅限制,这一篇主要介绍了常规和新型、选择性固相微萃取剂的应用实例,从这些应用中可以看出:常规吸着剂使用的以烷基键合硅胶居多。在新型、选择性微固相萃取吸着剂中各种碳类纳米材料为多。下一篇将详细讨论这些新型、选择性微固相萃取吸着剂。
  • 博奥生物程京院士等14位科学家获中国生命科学“诺贝尔奖”
    11月26日上午,有我国生命科学“诺贝尔奖”之誉的2016年度第九届“谈家桢生命科学奖”颁奖典礼在武汉大学隆重举行,共14位科学家荣获该奖,颁奖典礼由奖励委员会主任、中科院院士饶子和主持。详细名单如下:  “谈家桢生命科学奖”是为纪念国际知名遗传学家、我国现代遗传学奠基人之一谈家桢先生而设立,是我国生命科学领域的最高奖项。  生命科学成就奖得主:中国工程院院士、中国科学院大学药学院院长、上海药物研究所学术委员会主任丁健(下图左) 中国工程院院士、生物芯片北京国家工程研究中心主任程京(下图右)。  丁健院士主要贡献在于领导建立了符合国际规范的抗肿瘤药物筛选和药效学评价体系,为我国抗肿瘤创新药物的自主研发提供了重要的技术支撑和能力保障,在分子靶向抗肿瘤药物的研究中取得了重要进展,是我国新药研究领域具有影响力的领军人物之一。  程京院士长期从事基础医学和临床医学相关生物技术研究,在生物芯片的研究中有重要建树和创新,他站在国际生物芯片研究前沿并结合国情,主持建立了国内急需的疾病预防、诊断和预后分子分型芯片技术体系,领导研制了基因、蛋白和细胞分析所需的多种生物芯片,实现了生物芯片所需全线配套仪器的国产化并实现了国产生物芯片类产品向欧美等发达国家的批量出口。  生命科学临床医学奖得主:中国工程院院士、浙江大学教授、博士生导师李兰娟(下图左) 复旦大学附属中山医院院长、上海市肝病研究所所长樊嘉(下图右)教授。  浙大医学院李兰娟院士从事传染病学医疗、教学和研究工作30余年,创建独特有效的人工肝支持系统治疗重型肝炎(ALSS)获重大突破。主持制定ALSS技术规范作为全国标准,积极推广至全国 获国家科技进步二等奖。建立我国第一个永生化人源性肝细胞系 创建四步灌流分离肝细胞新方法 构建新型混合型人工肝等。此外,她还担任传染病诊治国家重点实验室主任,近年来在H7N9亚型禽流感病毒方面也取得了多项重要成果,还领衔研制了针对H7N9禽流感病毒的疫苗。  樊嘉教授长期致力于提高肝癌临床治疗疗效与转移复发机制研究,在肝癌门静脉癌栓及肝癌肝移植术后转移复发的临床防治上有重大突破、在转移复发机制研究方面有重要创新,是我国肝癌领域中青年专家的领军人物。  生命科学产业化奖得主:江南大学食品学院院长、国家功能食品工程技术研究中心主任陈卫教授。  陈卫 博士,1966年5月出生,江南大学食品学院食品生物技术研究中心教授、博士生导师,长江学者特聘教授,江苏特聘教授。目前担任江南大学食品学院院长、国家功能食品工程技术研究中心主任。1988年和1995年在无锡轻工大学分别获食品科学学士和硕士学位,毕业后留校任教 1998-2003年在江南大学在职攻读博士学位,2007年和2014年分别在美国Wake Forest University 医学院和美国University of California,Davis大学做访问研究。2011年获国家杰出青年科学基金,2012年入选国家特殊人才支持计划(“万人计划”)首批科技创新领军人才 同时还先后荣获新世纪“百千万人才”工程国家级人选、国务院特殊津贴、全国“五一”劳动奖章、全国优秀科技工作者、全国先进工作者等 2012年入选教育部长江学者奖励计划创新团队(负责人)、科技部重点科技领域创新团队(负责人)。陈卫教授主要从事食品微生物学的教学和研究工作,近年来围绕乳酸菌的资源发掘与整理,益生菌生理代谢与功能机制的解析和优化,益生菌与环境及宿主的互作,益生菌对宿主的健康效应,肠道微生物与人体健康等开展了一系列的研究。主持完成国家“十一五”863计划、国家科技支撑计划、国家自然科学基金项目等10余项,成果先后获国家与省部级奖励10余项,其中“功能性益生乳酸菌高效筛选及应用关键技术”获2009年国家科技进步二等奖 发表科研论文300余篇,其中SCI论文110余篇 申请国家发明专利72项,其中国际专利8项,已获授权专利28项 出版著作及教材5本 “食品学科创新实践链式教育人才培养模式研究与实践” 2014年获国家教学成果一等奖。  生命科学创新奖获得主(9名):中科院生物物理研究所王艳丽研究员,北大生科院汤富酬教授,中科院上海生化细胞所许琛琦研究员,清华大学生科院杨茂君教授,中科院动物所陈大华研究员,中科大学生科院周荣斌教授,浙江大学医学院胡海岚教授,复旦大学蓝斐教授,北京大学生物动态光学成像中心魏文胜研究员(依次如下图所示)。  生命科学创新奖获奖者简介:  王艳丽,2004年博士毕业于中国科学技术大学,中国科学院生物物理研究所 “百人计划”研究员(2010-),主要从事于CRISPR/Cas系统的作用机理和小分子介导的基因沉默的结构生物学研究。近期成果包括成功解析了分辨率为3埃的E.coli Cascade复合物结构,揭示了由11个Cas蛋白以及一个61核苷酸的crRNA共同组成的分子量为405kDa的Cascade复合物的精确的组装方式,揭示了CRISPR作用的分子机理,同时也为进一步了解靶标的识别机制提供了新的见解(Zhao et al.,Nature,2014) 解析了Cas1-Cas2与多种类型DNA的复合物的晶体结构,发现了Cas1-Cas2识别外源入侵DNA分子机制,揭示了外源核酸片段的长度是如何确定的,同时也解释了该阶段中的核心蛋白Cas1和Cas2各自的功能,该成果为揭示原核生物这一新的抵御病毒及遗传物质的入侵的机制奠定了重要的理论基础(Wang et al.,Cell,2015) 解析了嗜热菌Argonaute(TtAgo)和5磷酸化引导DNA(gDNA)和一系列靶点DNA三元复合物的晶体结构,在结构生物学水平阐明了细菌的Agos蛋白指导导向DNA双链切割靶标DNA双链的机制,这一发现在分子生物学水平也证明了细菌通过Argonaute蛋白介导的DNA干扰机制来对抗转座子和可移动的遗传原件(Sheng et al.,PNAS,2014) 解析了AcrF3以及AcrF3-Cas3复合物的结构,阐述了AcrF3在对抗CRISPR/Cas系统发挥的作用,揭示了病毒与细菌在长期进化中形成的相互拮抗的作用机制(Wang et al.,Cell Research,2016)。曾获得第十三届“中国青年女科学家奖”等奖励和荣誉。  汤富酬,现为北京大学生命科学学院BIOPIC中心研究员。1994 - 1998 , 本科毕业于北京大学,1998 - 2003 在北大获得细胞生物学博士学位,2004 - 2010,英国剑桥大学Gurdon研究所,博士后, 2010年回国在北京大学组建实验室,2015 - 现在 ,北大-清华生命科学联合中心PI。主要从事人类早期胚胎发育的单细胞功能基因组学研究。在国际上率先系统发展了单细胞功能基因组学研究体系,并利用这一技术体系对人类早期胚胎发育进行了深入、系统的研究,揭示了人类早期胚胎DNA去甲基化过程的异质性以及其他关键特征,发现了人类早期胚胎中基因表达网络的重要表观遗传学调控机理,为人们提供了一个全面分析人类早期胚胎DNA甲基化调控网络的研究框架,加深了对人类原始生殖细胞的发育以及表观遗传重编程过程的认识。现已发表论文40多篇,被同行引用3000多次。其中20多篇论文是以通讯(或者共同通讯)作者身份发表在Cell,Nature,Science,Cell Stem Cell,Cell Research,Genome Research,Genome Biology等期刊上。其中两项工作获评2014年度中国科学十大进展,2015年度中国科学十大进展,以及2015年度生命科学领域十大进展。  许琛琦,1977年12月生,中科院上海生命科学院生物化学与细胞生物学研究所研究员,所长助理。长期从事分子免疫学研究,揭示了脂质分子对免疫应答的调控机制,并且发展了基于脂代谢调控的肿瘤免疫治疗方法。发现细胞质膜中的酸性磷脂通过静电相互作用屏蔽关键受体的功能位点,从而维持T细胞的静息态 而钙离子可以直接与酸性磷脂结合并中和其负电荷,引起受体活化,从而调控T细胞的活化态。这种脂质分子的调控机制也适用于B细胞和肺癌细胞。近年来开创性地开展了脂质代谢与肿瘤免疫的交叉研究,发现了肿瘤免疫治疗的新靶点-胆固醇酯化酶ACAT1,并且证明了ACAT1抑制剂的抗肿瘤功能。以第一作者或通讯作者在Cell、Nature、Nature Review Immunology、J Exp Med和Nature Communication等国际知名杂志发表多篇学术论文。获得中科院百人计划(2010)、国家杰出青年基金(2014)、国家万人计划“青年拔尖人才”(2015)、全国优秀科技工作者、上海市优秀学术带头人、中科院青年科学家奖、上海市科学技术进步奖、上海青年科技英才、邹承鲁奖励基金杰出研究论文奖、明治生命科学杰出奖等人才项目和荣誉。  杨茂君,1975年出生于山东,2003年获中国协和医科大学博士学位(师从王琳芳院士,2001年10月进入清华大学饶子和院士实验室从事SARS蛋白酶晶体结构方面的研究),之后于美国西南医学中心从事博士后研究。清华大学首批tenure系列终身教授(2013-),清华-北大生命科学联合中心研究员(2011-)。2008年回国以来,杨茂君教授一直致力于综合运用结构生物学、生化与分子生物学等方法,研究与人类健康密切相关的重大疾病的发病机理及特异性抑制剂的筛选与设计,在细胞感应外界信号以及物质跨膜转运、蛋白质翻译后修饰调控等领域取得了一系列重大研究成果,以通讯作者身份在Nature(2012,2015,2016),Mol Cell(2010),Genes Dev (2014),PNAS(2012,2015)等国际知名期刊发表论文20余篇。曾获得霍英东基础研究奖励(2009)、教育部新世纪优秀人才支持计划(2010)、茅以升北京青年科技奖(2013)、药明康德生命化学研究奖(2013)、谈家桢生命科学创新奖(2016)和国家杰出青年基金(2016)等多项荣誉与奖励。人才培养方面,到目前为止实验室培养的所有博士研究生(5人)毕业时全部获得了清华大学或清华-北大生命联合中心优秀毕业生。其中第一个博士生冯越毕业后被直接特聘为北京化工大学副教授 三人次获得北京市优秀毕业生称号 两人获得清华大学优秀毕业生。  陈大华,博士,研究员,博士生导师 中国科学院动物研究所干细胞与生殖生物学国家重点实验室副主任,模式动物与干细胞生物学研究组组长。2005年中国科学院“百人计划”引进海外杰出人才,2008年国家基金委杰出青年获得者,科技部国家重大科学研究计划“原始生殖细胞发生和性腺发育的机制研究”首席科学家,现任干细胞与生殖生物学国家重点实验室副主任。1991年毕业于安徽农业大学,1999年毕业于中国科学院植物研究所获博士学位。1999年至2003年分别在美国肯塔基大学和德克萨斯大学西南医学中心从事博士后研究,2003年至2005年在西南医学中心分子生物系任Research Instructor。2005年回国后,实验室主要以果蝇和小鼠等模式动物为模型,开展干细胞不对称分裂的遗传和分子机制以及真核生物转录和翻译调控机制等方面的研究。目前主要研究干细胞与微环境信号相互作用的机制,TGF-beta/BMP和Hh等信号转导途径在生殖细胞发育过程中的作用,以及泛素介导的蛋白降解等途径在生殖干细胞命运调控中的作用。近年来实验室分别在Cell、 Developmental Cell、PLoS Biology、Nature Communications、Development、Human Molecular Genetics和PLoS Genetics等遗传和发育主流杂志上发表一系列文章。目前实验室承担科技部生殖发育重大计划、973、干细胞先导专项、国家基金委重点和杰青等项目。近年来最杰出的工作是在果蝇中鉴定到了DNA上m6A甲基化修饰的去甲基化酶,这一工作发表在2015年Cell。  周荣斌, 1980年5月生(生命科学领域目前唯一一名80后“杰青”),中国科学技术大学教授。主要从事炎症及炎症性疾病的发病机制和干预策略研究,近年来在NLRP3炎症小体的致病、活化和调控及靶向NLRP3炎症小体的疾病干预机制研究方面取得了多项研究成果:1)率先发现NLRP3炎症小体在2型糖尿病(T2D)中的致病作用并证明靶向NLRP3炎症小体干预T2D的可行性 2)揭示NLRP3炎症小体的关键内源性调控机制,发现神经递质多巴胺能通过其受体DRD1及下游信号通路抑制NLRP3炎症小体并改善神经炎症和外周炎症 3)揭示线粒体损伤是NLRP3炎症小体活化的关键因素,发现RNA病毒可通过RIP1-RIP3复合物诱发线粒体损伤及NLRP3炎症小体活化。以第一作者或通讯作者论文在Nature、Cell、Nat Immunol、Immunity、J Exp Med、PNAS等国际知名杂志发表多篇学术论文。 获得国家杰出青年基金、科技部中青年科技创新领军人才、中组部青年拔尖人才支持计划、中国青年科技人才奖、第十四届中国青年科技奖、第二届树兰医学青年奖、2015年度药明康德生命化学奖等人才项目和荣誉。  胡海岚,博士、教授、博士生导师、浙江大学求是特聘教授、浙江大学神经科学研究中心执行主任 2015年长江学者特聘教授获得者,第十二届中国青年女科学家奖获得者,国家杰出青年基金获得者,中科院百人计划获得者及赛诺菲优秀学者奖获得者等等 担任国际神经科学学会SFN程序委员会委员,中国神经科学学会理事,浙江省神经科学学会理事,中国动物学会动物行为学专业委员会特邀理事,中国国家自然科学基金评委,Neuron及Science杂志特邀审稿人。胡海岚教授于1996年获得北京大学学士学位 1996-1997年,于加州大学旧金山分校,担任研究助理 2002年,于加州大学伯克利分校获得神经生物学博士学位 2003-2008年,先后在美国弗吉尼亚大学、冷泉港实验室/加州大学圣地亚哥分校做博士后研究 2008-2015年,于中科院神经科学研究所任研究员 2015年至今,受聘于浙江大学求是高等研究院/医学院神经科学研究。胡海岚教授在情绪和社会行为的神经生物学基础这一脑科学前沿方向取得了一系列令人瞩目的成果:首次揭示内侧前额叶的神经活动在社会等级行为中的重要作用 阐明情绪因素如何影响学习和记忆的分子和细胞学机制 在抑郁症神经环路和病理机制的研究方向上也取得了关键的进展。  蓝斐,教授,博士生导师。1999年于上海复旦大学生物化学系获学士学位, 2002年获得复旦大学分子肿瘤学硕士学位,2008年获得美国哈佛大学细胞发育博士学位。博士期间在表观遗传甲基化可逆调控方向做出大量突出贡献,多篇论文发表在顶级期刊上,毕业时获得哈佛医学院院长提名嘉奖。博士毕业后,作为首位创始员工,受邀加入全球首批表观遗传制药公司(美)Constellation Pharmaceuticals,主要目标定位于将表观遗传学的科研成果转化成为有药用价值的产品,特别是在肿瘤和免疫疾病方面。在该公司,作为核心技术员工,参与大量公司组建工作并主导了多个药物研发项目,对表观遗传靶向性治疗的进展和前景有着极强的把握力。2012年11月辞去美国的职位,全职受聘于复旦大学,入选中组部第四批“青年千人计划”(2012年11月),并同月荣获上海高校特聘教授(“东方学者”2012)称号。回国后,蓝斐教授的主要科研方向将拓宽到新兴的非组蛋白表观遗传修饰的生物学意义及其调控机理,并揭示表观遗传异常在肿瘤及其它疾病发生过程中的作用,为抗肿瘤药物靶标的发现以及最终成药提供理论和实验依据。 蓝斐教授作为蛋白去甲基化领域的主要开辟者主导并参与发现了已知的21类去甲基化酶中的16类,包括第一个去甲基化酶LSD1,以及之后的4大类JMJC去甲基化酶家族的发现和功能研究。此外,他还首次发现了未甲基化赖氨酸的识别机理。这些开创性的工作不仅为表观遗传学甲基化标记的动态调控提供了大量的实验证据,并大大完善了甲基化生物学调控的理论体系。为了更好的理解疾病表观遗传学并获得转化医学的宝贵经验,蓝斐教授在博士毕业后接受了美国Constellation Pharmaceuticals的邀请,做为首位员工加盟并创建公司研发团队以及制定研发方向,在公司中多项临床前项目中做出重要贡献。现在该公司是业界公认的最具创新性的表观遗传公司。蓝斐教授发表SCI论文20余篇,作为第一和共同第一作者发表过3篇Nature和Cell文章,他的科研和创新成果还用于3项国际专利申请。  魏文胜,北京大学生命科学学院研究员(2007-),北京大学生物医学集成创新研究所(BIOPIC) 研究员(2014-),北大-清华生命科学联合中心(CLS)研究员(2015-),北京未来基因诊断高精尖创新中心(ICG)研究员(2016-)。长期致力于发展基因组编辑技术与高通量功能基因组学,以及在此基础上研究癌症、感染等重大疾病的分子机制。近期成果包括:首次发现艰难梭菌毒素受体 完成对TALE蛋白识别非修饰及修饰DNA碱基的完全解码 开发了基于CRISPR/Cas9系统的基因敲除文库及高通量功能性筛选平台 完成多种病毒侵染人源宿主重要靶位点的筛选和功能鉴定 建立了基因组大片段删除技术用于高通量筛选研究长片段非编码RNA(lncRNA)等。以第一作者或通讯作者在Cell、Nature、Nat Biotechnology、PNAS、Cell Research、Elife等国际知名杂志发表多篇学术论文。获得北京大学生命科学学院最受欢迎教师奖(2010)、北京大学东宝奖教金(2012)、The Roche Chinese Young Investigator Award(2014)、Bayer Investigator Award(2014)、北京大学郑昌学教学优秀奖(2015)、科学中国人年度人物(2016)、谈家桢生命科学创新奖(2016)等多个奖项和荣誉。  附:“谈家桢生命科学奖”简介  一、设立背景  为了促进我国生命科学、医学、药学及相关领域的科技进步和产业发展,促使生物技术产业的领军人物不断涌现,由国家科技部批准、联合基因集团出资设立、上海复星医药(集团)有限公司赞助,上海市生物医药行业协会承办的“谈家桢生命科学奖”正式启动。  设立单位联合基因集团1997年发源于复旦大学,由毛裕民教授、谢毅教授带领复旦大学生命科学学院的一批教师和博士、硕士研究生发起组建。由100万起步,迄今已经形成资产超过60亿、拥有30多家企业(两家为香港主板上市)的以基因技术为主的高科技产业集团。该奖是在生命科学领域由企业设立的第一个奖项,也是联合基因集团在树立生物技术领域的品牌后,回馈社会的一种方式。  赞助单位上海复星医药(集团)股份有限公司成立于1994年,1998年8月在上海证券交易所挂牌上市,是在中国医药行业处于领先地位的上市公司。复星医药专注现代生物医药健康产业,在研发创新、市场营销、并购整合、人才建设等方面形成竞争优势的大型专业医药健康产业集团。复星医药奉行可持续发展的原则,始终怀着感恩的心态,将履行社会责任纳入到企业发展的长期战略。  二、设奖宗旨  2008年,谈家桢先生迎来他的百年诞辰。谈先生是我国现代遗传学奠基人之一,是中国现代杰出的科学家和教育家。他将毕生献给了遗传学事业,为遗传学研究培养了大批优秀人才,建立了中国第一个遗传学专业,创建了第一个遗传学研究所,组建了第一个生命科学院。  该奖的设立旨在秉承谈先生对生命科学事业的奉献精神,促进生命科学研究成果产业化,激励我国生命科学工作者不断创新。  三、承办单位  谈家桢生命科学奖由上海市生物医药行业协会承办。上海市生物医药行业协会成立于2002年12月,是由上海市生物医药企业和相关大学、科研院所等单位自愿结成的社会团体。协会会员涵盖现代生物技术和医药领域从研发、生产到流通等整个产业链,现有会员单位205家,会员产业规模已超过2700亿,行业覆盖率达75%以上,具有较强的行业代表性。协会是中国社会组织首批最高荣誉获得者,2004年被中国民政部授予“全国先进民间组织” 其后被评为“中国社会组织评估等级五A”、“五星级社会组织党组织”和“工人先锋号”。  四、评选机构:  奖项评选机构由奖励委员会和评审专家委员会组成。奖励委员会由生物技术领域具有高尚道德情操、精深学术造诣、热心科技奖励事业的国内科技权威和著名学者组成。奖励委员会聘请的评审专家经过奖励委员会批准、颁发聘任书后,独立行使职能、负责评选工作。  五、奖励对象:  在中华人民共和国境内从事生命科学事业做出成就的科学家、教授,以及取得创新研究成果的青年学者 对生命科学科技成果产业化过程有突出贡献的人士。  六、奖项设置:  “谈家桢生命科学奖”下设“谈家桢生命科学成就奖”、 “谈家桢生命科学产业化奖” 和“谈家桢生命科学创新奖”三个奖项,每年奖励费用为人民币110万元:其中奖励“谈家桢生命科学成就奖”2名,各奖励人民币25万元 “谈家桢生命科学产业化奖”2名,各奖励人民币10万元 “谈家桢生命科学创新奖”8名,各奖励人民币5万元。  七、评选程序  谈家桢生命科学奖每年评奖一次,参照国际惯例,遵循“公平、公开、公正”的原则,按提名推荐、资格认定、初评、终评、颁奖的程序进行。  经奖励委员会核准的国内外高校、研究院所和企业、国内相关学科领域的著名专家、学术权威、主管领导和学科带头人为推荐人。奖励委员会委员每人每年可提出两名被推荐人,其他推荐人每人每年可提出一名被推荐人,向奖励委员会推荐。也欢迎有突出成就的个人通过自荐方式参加评选。  推荐材料经谈家桢生命科学奖管理办公室进行形式审查认定后,由评审专家进行初评(函评),对各位申请人打分并对申请人给出评价,申请人函评分数高于该奖项所有申请人函评平均分(含)以上者,进入谈家桢生命科学奖评审专家委员会评审。  谈家桢生命科学奖评审专家委员会举行全体会议进行评审,逐一审核进入复评申请人材料并进行评议,以记名方式进行评分,去除一个最高分和一个最低分后,按平均得分高低顺序排位,“谈家桢生命科学成就奖”取得分前二位,“谈家桢生命科学产业化奖”取得分前二位(如果产业化奖空缺,将把名额递补给创新奖),“谈家桢生命科学创新奖”取得分前八位,分别产生“谈家桢生命科学成就奖”、 “谈家桢生命科学产业化奖”和“谈家桢生命科学创新奖”候选人。 评审专家委员会评审后产生的“谈家桢生命科学成就奖”、 “谈家桢生命科学产业化奖”和“谈家桢生命科学创新奖”候选人名单,经相关网站和媒体公示十五天无异议者,方可提交奖励委员会进行终评。  谈家桢生命科学奖奖励委员会召开终评会议,会议须有谈家桢生命科学奖奖励委员会半数以上委员参加方能举行。并逐一审核每位候选人材料并进行评议,以记名投票方式确定获奖者,提名的谈家桢生命科学奖候选人须获得在场的奖励委员会委员三分之二以上票数同意,方可批准为本年度“谈家桢生命科学成新奖”、 “谈家桢生命科学产业化奖” 和“谈家桢生命科学创新奖”获得者。  八、评审原则  谈家桢生命科学奖的申报、评审和授奖,遵循“公开、公平、公正”的原则,不受任何组织或个人的非法干涉。
  • “光纤之父”高锟亲自领取诺贝尔奖
    12月10日,在瑞典首都斯德哥尔摩举行的2009年诺贝尔奖颁奖仪式上,瑞典国王卡尔十六世古斯塔夫向华裔科学家高锟(左)颁奖。高锟和两名美国科学家威拉德博伊尔、乔治史密斯荣获2009年诺贝尔物理学奖。当日,2009年诺贝尔物理学奖、化学奖、生理学或医学奖、文学奖和经济学奖颁奖仪式在斯德哥尔摩举行。新华社/法新   12月10日,2009年诺贝尔物理学奖、化学奖、生理学或医学奖、文学奖和经济学奖颁奖仪式在瑞典首都斯德哥尔摩举行。这是颁奖现场。   12月10日,在瑞典首都斯德哥尔摩举行的2009年诺贝尔奖颁奖仪式上,瑞典国王卡尔十六世古斯塔夫向华裔科学家高锟(左)颁奖。高锟和两名美国科学家威拉德博伊尔、乔治史密斯荣获2009年诺贝尔物理学奖。当日,2009年诺贝尔物理学奖、化学奖、生理学或医学奖、文学奖和经济学奖颁奖仪式在斯德哥尔摩举行。   2009年诺贝尔物理学奖、化学奖、生理学或医学奖、文学奖和经济学奖颁奖仪式10日在瑞典首都斯德哥尔摩举行。   来自诺贝尔去世的地方--意大利圣雷莫的几千朵鲜花将颁奖仪式台衬托得高贵典雅,华裔科学家高锟等获奖者陆续走上领奖台就坐。诺贝尔基金会主席斯托尔克首先在颁奖仪式上致辞,欢迎获奖者前来出席颁奖仪式,并赞扬了他们对促进世界科技发展和繁荣世界文学作出的贡献。   斯托尔克说,诺贝尔奖已经走过了108年,至今已有822名获奖者,而今天的诺贝尔奖早已超越诺贝尔遗言中所涵盖的领域,更加关注与现代社会发展及科学医学新难题有关的领域,如对艾滋病治疗的研究、应对气候变化挑战、经济社会发展的研究等。   在每个诺贝尔奖项评选委员会的代表介绍了获奖者的成就之后,瑞典国王卡尔十六世古斯塔夫向每位获奖者颁发了诺贝尔奖证书、金质奖章和奖金。今年每项诺贝尔奖的金额为1000万瑞典克朗(约合140万美元)。   荣获2009年诺贝尔物理学奖的是英国华裔科学家高锟以及美国科学家威拉德博伊尔和乔治史密斯。3名诺贝尔化学奖得主是美国科学家文卡特拉曼拉马克里希南、托马斯施泰茨和以色列科学家阿达约纳特。诺贝尔生理学或医学奖得主是美国科学家伊丽莎白布莱克本、卡萝尔格雷德和杰克绍斯塔克。德国女作家和诗人赫塔米勒荣获诺贝尔文学奖。诺贝尔经济学奖授予了两位美国经济学家埃莉诺奥斯特罗姆和奥利弗威廉森。   尽管高锟因健康原因8日未能在斯德哥尔摩大学进行演讲而由夫人黄美芸代替,但他今天亲自出席颁奖仪式,从卡尔十六世国王手中接过了这一殊荣。   瑞典王室主要成员、政府领导人及各界人士1500余人出席了颁奖仪式。   12月10日是瑞典科学家诺贝尔的逝世纪念日。每年的诺贝尔奖颁奖典礼都安排在这一天举行。   相关链接:华人科学家高锟等3人获得诺贝尔物理学奖
  • 诺贝尔科学奖花开中国起码还要10年
    2013年的诺贝尔生理学或医学奖授予了美国耶鲁大学的詹姆斯&bull 罗斯曼、美国加州大学伯克利分校兰迪&bull 谢克曼及德国的托马斯&bull 苏德霍夫,因为他们解释了细胞是如何组织自身的转运系统的。   汤森路透公司此前曾预测有三项研究,即细胞死亡方式自噬、脱氧核糖核酸甲基化和HER-2/neu原癌基因方面的研究的若干科学家可能获得今年贝尔生理学或医学奖。但是,此次一项都没有预测成功。但汤森路透却成功预测对了今年的物理奖,弗朗索瓦&bull 恩格勒和彼得&bull 希格斯因预测希格斯玻色子存在而获2013年诺贝尔物理学奖。即便是今年的诺贝尔生理学或医学奖得主,汤森路透也在2009年就预测罗斯曼和谢克曼将会获奖,只是漏下了苏德霍夫。如此看来,没有人能否认汤森路透预测的某种准确性,而且在2002年-2012年该公司预测的183名可能获奖的候选人中,一语中的人共有27,算得上是神算。   与此同时,也有中国的预测。9月29日,南京工业大学校长、中科院院士黄维在迎接该校6900名本科新生的开学典礼上做了一个长远的惊人预测:&ldquo 十年之后的中国,像诺贝尔奖这样的国际性重要指标,在中国大地出现应该将会成为常态,而不是个案。在文学奖之后,自然科学和生命科学方面的奖项将陆续被中国人斩获,没有任何悬念&hellip &hellip &rdquo   黄维的这番表述如果不是志壮山河,也应当是气冲云霄。但是,这样的预测能否成为现实或至少有一部分成为现实,是判断科学预测或未来学与说大话或乌鸦嘴之间一个明确的界线。尽管证明诺贝尔奖可以在未来10年成为中国常态的证据与汤森路透的预测根据有相似点,即根据发表论文后的引用数来预测,但是,汤森路透更重要的依据是,确认哪些研究是重要的基础研究和发现,然后再确定该研究和发现的最重要贡献者。   然而,黄维的根据并非如此。黄维把诺贝尔奖当作未来中国的家常便饭的证据有两个。一是中国科技人员的论文发表量和引用数,二是中国的科研水平和研发投入达到世界一流。   黄维称,中国科技人员发表国际论文总量居世界第二位,被引用次数排世界第六位,引用次数高的国际论文数量排世界第五位。不过,事实是,中国科学技术信息研究所发布的2013年度中国科技论文统计结果表明,2012年中国作者为第一作者的论文共16.47万篇,其中被引用次数高于世界均值的&ldquo 表现不俗&rdquo 论文只占了近三成。而且,在平均数上面,中国每篇国际科技论文平均被引用6.92次,低于世界平均10.69的数字。   至于中国的科研水平,当然有接近甚至超过国际水平的研究,但是,这些研究是什么,数量有多少,并不能获得确认。而且,即便是中国的一些研究处于对国际高水平的跟踪到并行发展水平,也未必能获得诺贝尔奖的青睐,因为诺贝尔奖选择的是第一,或者是奠基性的研究。   当然,中国的研发投入之大也是不容否认。2012年中国科技经费投入统计表明,全社会研究与试验发展(R&D)经费投入首次突破万亿元人民币大关,R&D经费投入总量位居世界第三。然而,科研成果的确是没有钱是不行的,但并非是有钱就行。因为,钱在科研中不是第一位的,而是从属的。   科研的第一位是创新、实干和苦干,以及需要时间和经验的积累。更令人遗憾的是,中国目前投入的科研经费大部分并未用在刀刃上。中国科协一项调查显示,中国的科研资金用于项目本身仅占40%左右,60%都用于开会、出差等。大部分科研经费都不用在正经的科研上,能指望科研出现什么突破性和开创性的成果?   尽管有人批评诺贝尔奖有倾向性,或者事实上诺贝尔奖也表现出了某种并不公正的现象,但从诺贝尔奖的统计学分析来看,诺贝尔奖无论对于哪个国家都是大餐,而非家常便饭,就连获得诺贝尔奖最多的美国也不可能把诺贝尔奖当作家常便饭,而只是当作通过艰辛劳作,绞尽脑汁的创造后可以烹调和享用的大餐。   从1901年到2012年的112年间,美国获得诺贝尔奖有298人,堪称世界之冠。排名在2-4名的分别是,英国,获奖总人为84 德国,获奖总人为66 法国,总获奖人数为33。即便以获得奖数最多的美国而言,在112年间,也不过每年有不到3人获奖,对于他们,也只能算是大餐,而非家常便饭。没有充分的准备和有份量的成果,不仅无法吃到诺贝尔奖这份大餐,更不可能把该奖当作家常便饭来享用。   再从获奖的时间来看,一项重要的科研成果要获得诺贝尔奖一般需要三四十年的时间,甚至更长,原因是,科研成果需要重复检验。例如,高锟从1966年提出光纤通信理论到2009年获奖,至少经历了40年时间。但是,也有获奖较快的,如日本的山中伸弥在2006年证实了诱导多能干细胞,在2012年就获得诺贝尔生理学或医学奖。但是,山中伸弥只是获奖者之一,而且诺贝尔奖评委会认为,山中伸弥不过是重新验证并深化了同为获奖者的英国人戈登在1962的发现,即已经定性定型的细胞是可以逆转的。   所以,即便10年后中国人的科研成果如雨后春笋般地出现,也需要时间来验证,到底是真还是假,是重大还是一般。要在那时就能把获得诺贝尔奖当做常态,实在有些勉为其难。   也许,黄维先生的预测要高于汤森路透,所以我们不妨期待和见证,中国人是否在10年之后拿诺贝尔奖如家常便饭。
  • 挪威将限制消费品中的全氟辛酸
    挪威近日宣布将限制消费品中的全氟辛酸化合物(perfluorinated compound ,PFOA)。生效日期将根据产品属性从2014年6月开始生效。   2013年6月28日,挪威环保局宣布了一项消费品中PFOA及其盐类和酯类的国家禁令。限制令适用于固体和液体产品,也包括纺织品。   PFOA被用于一系列消费品。它可被用于制造含氟聚合物,转而用于防水夹克。还可被用于制造地板蜡、蜡纸以及电线中的绝缘体。   该公告修订了《挪威产品法》第2-32节。禁令的生效日期根据产品属性从2014年6月1日开始。   新法律的重点图表格一所示:   表格一 管辖范围 法规 物质 范围 要求 生效日期 挪威 产品法规第2-32节“含有全氟辛酸铵的消费品” PFOA及其盐类和酯类 纯物质 混合物 ≤10毫克/千克 2014年6月1日 2016年1月1日 (半导体的粘合剂以及胶卷、相纸或屏幕的摄影涂层) 纺织品 地毯 表面有涂层的消费品 ≤1.0微克/平方米 2014年6月1日 消费品 ≤0.1% 2014年6月1日 2016年1月1日 (半导体中的箔或磁带) 豁免 食品包装和食品接触材料 医疗设备 2014年6月1日之前销售的消费品备用零件
  • 解密“N-二甲基亚硝胺”,浅谈基因毒性杂质
    2018年中旬,长春长生的疫苗案还未彻底了结,缬沙坦原料药事件让N-二甲基亚硝胺(NDMA)又一次上了热搜。 时至今日,风波犹存,欧盟范围内对所有沙坦类药物进行审查。之后EMA通报,分别在印度药企Hetero Labs和Aurobindo Pharma生产的氯沙坦及厄贝沙坦原料药中,同样发现了含量极低的亚硝胺类化合物。美国FDA 仍在继续评估含缬沙坦的药物,并将获得的新信息持续更新「召回范围内的药物清单」和「不在召回范围内的药物清单」。 “治病”?“致病”!众所周知,药品是特殊的商品,它可以预防、治疗、诊断人的疾病。近年来,多种新药例如PD1/PD-L1免疫抑制剂的问世,让攻克癌症不再是梦想。 同时,药品的副作用及其安全性很大程度上决定其使用效果,有时不仅不能“治病”,还可能“致病”,甚至危及生命安全,所以药品生产商和监管部门对药品追溯和管理承担着不可或缺的责任。 揭开“基因毒性杂质”真面目NDMA是亚硝胺化合物的一种,而亚硝胺化合物、甲基磺酸酯、烷基-氧化偶氮等又均为常见的基因毒性杂质。基因毒性杂质(或遗传毒性杂质, Genotoxic Impurity, GTI)一般指能直接或间接损伤细胞DNA,产生致突变和致癌作用的物质,具有致癌可能或者倾向。 基因毒性杂质向来受到了严格的监控,2006年爆发甲磺酸奈非那非(维拉赛特锭)事件后,欧洲药品管理局( EMA)随即颁布了《基因毒性杂质限度指南》,人用药品注册技术要求国际协调会议(ICH)与美国食品与药品监督管理局( FDA)出台了相应的法规,中国国家食品药品监督管理总局也密切跟踪国际药品质量控制技术要求,不断完善现有药典收载技术指南,包括方法学验证、药品稳定性评价指导原则以及药品基因毒性杂质评价技术指南等。 药物合成、纯化和储存运输(与包装物接触)等过程中,多个环节均有产生或有可能产生基因毒性杂质。在工艺研究中采用“避免-控制-清除(ACP)”的策略能够最大限度减少基因毒性杂质对原料药物的影响,从而快速灵敏的监测分析手段变得尤为重要。 这时候,飞飞在此!今天赛默飞借助全新一代LC-QQQ技术,让我们一起助力“解密N-二甲基亚硝胺”。 赛默飞针对药品中基因毒性杂质液质检测解决方案 飞飞芳基磺酸酯类基因毒性解决方案Thermo Scientific™ 全新液相色谱三重四极杆质谱TSQ Fortis™ 平台建立了检测8种磺酸酯类的方法(苯磺酸酯类3个、对甲苯磺酸酯类3个、1,5-戊二醇单苯磺酸酯、 1,5-戊二醇二苯磺酸酯)。本方法灵敏度高、专属性强、稳定性好,可以满足各药企对此类基因毒性杂质的检测要求,可为基因毒性杂质风险监控提供有效的技术支持。结果如下:图1. 8种芳基磺酸酯提取离子流图(点击查看大图) 图2. 部分化合物标准曲线图(点击查看大图) 可以看出实验建立了三重四极杆液质联用仪(TSQ Fortis)分析8种芳基磺酸酯类的检测方法。实验结果表明,基于Thermo Scientific™ TSQ Fortis™ 建立的检测方法不仅具有优异的灵敏度和线性范围,同时具备良好的重现性。本方法可用于芳基磺酸酯类基因毒性化合物的日常分析检测。 飞飞N-亚硝基类基因毒性解决方案Thermo Scientific™ TSQ Fortis™ 针对基因毒性物质10个N-亚硝基化合物建立了稳定灵敏的分析方法。该方法在电喷雾离子化(ESI)条件下即可进行有效检测分析,试验结果优异,该方法稳定,快速,满足日常微量基因毒性物质N-亚硝胺类化合物的分析要求。图3. 10个N-亚硝基化合物的色谱图(5ng/mL)(点击查看大图) 图4. 部分化合物标准曲线图(点击查看大图) 从上图中可以看出建立的方法灵敏,快速和稳定性,色谱峰形良好,同时具备优异的重现性,可以满足药品中日常分析N-亚硝基类基因毒性杂质的检测要求。 飞飞总结语此次的应用案例就分享到这里了,不过难道只有这些?不!后续赛默飞更会带来应对基因毒性杂质的多平台解决方案,令“NDMA们” 无所遁形,敬请期待!扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯
  • “真人”黄昆:令诺贝尔奖得主心悦诚服——2001年度获奖人
    如果不是亲身经历,你很难想象这位最高科技奖得主竟然将记者从家里“赶”了出来,成为记者多年采访生涯中绝无仅有的一次“遭遇”。   (一)“说实话我还是有点怕他”   “我一生中最重要的一年,不是在美国做研究,而是当时和黄昆同住一舍的时光。”时隔数十年后,诺贝尔奖得主杨振宁对黄昆的认真仍然念念不忘。当年从燕京大学毕业后的黄昆到西南联大任助教时,和年小几岁的杨振宁同住一屋。那时的黄昆和杨振宁都年方二十出头,总是喜欢纵论天下,相互顶牛。而黄昆往往都将话题引向极端,引发无休止的争论。有一次,为弄明白量子力学中“测量”的含义,他们从白天一直讨论到晚上,最后是上床后又爬起来,点亮蜡烛,翻看权威资料来解决争论。“正是这些争论,使我找到了科研的感觉。”杨振宁说。   黄昆较真儿,不光是杨振宁的感受,在圈内也早就出了名,有时甚至让人下不了台。1951年,学有所成的黄昆留英归来,在北京大学物理系任教。有一次,北大物理系一位教师评教授职称,大多数学术委员都觉得不错表示同意,而黄昆却“固执己见”:“就他那水平,给他一个副教授就不错了。”较真儿换个角度说,其实就是严谨。夏建白,中科院半导体所研究员,去年刚刚当选为“新科”院士。虽然和黄昆为师为友数十年,但谈起这位老师,至今仍然有些发怵:“说实话我还是有点怕他。”   黄昆让人“害怕”,别无他因,而是因为他对自己、对他人要求都比较严。从1977年担任中科院半导体所所长后,半导体所成为他至今工作和学习的地方。“一般人往往追求数量,频繁出成果,而他要求我们少而精,做出高水平、高质量的工作。”夏建白说。对于问题的每一个环节,黄昆总是反复推敲。他虽然不赞成用繁琐的数学方法来研究物理问题,但在需要数学推导和计算时,又十分仔细,反复多遍。黄昆不仅自己身体力行,也严格要求中青年科研人员,对他们撰写的论文往往多次修改,以致于密密麻麻的修改意见有时覆盖了原稿。正是这种严谨的精神,使黄昆半个世纪以前的研究成果经受住了历史长河的考验,相关论文至今仍年均被全世界的同行引用6至7次。   (二)“我没有‘照猫画虎’的习惯”   玻恩是量子力学的创始人之一,黄昆和他曾经在1951年合著一本固体物理学的“圣经”——《晶格动力学理论》,这本书直到1985年还第三次再版。这位诺贝尔奖获得者曾经在写给爱因斯坦的信中说:“书稿内容现在已经完全超越了我的理论,我能懂得年轻的黄昆以我们两人的名义所写的东西,就很高兴了。”然而,当黄昆评价起这本在国外被人像圣经一样放在书桌上的权威著作时却淡淡地说:“这本书也不是特别突出。”   《晶格动力学理论》仅是黄昆年轻时代在科研领域攀登的一座高峰。从黄漫射到黄理论、黄方程,从1945年到1951年,在英国求学的五、六年间,黄昆焕发出蓬勃的生命力,接连取得创新性的重大成果。1977年,在“阔别”科研生涯近30年后,年近花甲的他壮志不坠,再次开创了第二个春天,提出“黄-朱模型”,解决了20多年来科学界在超晶格领域存在的疑难问题。谈到科研上的这两个重大时期,黄昆说:“年轻时我的工作特色鲜明,但是没有再往下深入 后来在深度上比以前要好,解决问题的复杂性质要比年轻时强。”   不唯书,不唯上,只唯实。这就是黄昆的治学品格。他不喜欢翻阅文献资料,喜欢从“第一原理出发”,去探寻物理世界的奥秘。“我文献看得比较少,因为那样容易被人牵着鼻子走,变成书本的奴隶。自己创造的东西和接受别人的意见,对我来说,后者要困难得多。学别人的东西很难,而自己一旦抓住线索,知道怎么做,工作就会进展很顺利。”正是这种治学风格,使黄昆在学术上屡屡攻城掠地,一系列以他姓氏命名的“黄”理论就是例证。“我喜欢与众不同,不喜欢随大流。如果跟着大家做,就没有什么意思。”谈起创新,黄昆这样评说自己。刚上中学时,在伯父的要求下,黄昆除作业外还要去做数学书上所有题目,“不仅使我数学很熟练,也产生了很大的兴趣”。忙于自己做题的黄昆很少去看书上的例题。“这一偶然情况有着深远影响,使我没有训练出‘照猫画虎’的习惯。”   (三)“请尊重我的隐私权”   在科学界赫赫有名,在公众面前默默无闻,这是颁奖前黄昆的生存状态。而当记者接触黄昆时却发现,科学家的头脑、数十年的风雨生涯使他异常冷静,甚至“真实”得让人有点难以接受。   “我是一个普通的科学工作者,没有什么神奇和惊人的地方。”黄昆的低调比吴文俊有过之而无不及。在记者的百般争取下,虽然他答应采访,但只能给一个多小时 虽然应允记者去他家,但却只能看不能问,“否则无法向夫人交代”,条件相当“苛刻”。黄昆位于中关村的家,是套小三室的房子。狭窄昏暗,堆满了书,显得非常拥挤,门口一古色古香的木箱子上是中科院物理所在他70华诞时赠送的8个字:“壮志不已,耕耘不辍”,客厅兼卧室的墙上是一幅一米多长的松竹梅“三友图”。十几分钟的采访变成了无声的“参观”,而始终坐在沙发上的黄昆夫妇在翻阅着报纸。“如今的报纸太厚了,翻起来比看还难。”这是家庭采访中黄昆所说的唯一的一句话。   而黄昆的夫人——李爱扶更“绝”。“请尊重我的隐私权。”记者刚想开口问问半个世纪前,是什么原因促使年轻的她从英国远渡重洋来中国和黄昆喜结连理,是什么使他们携手共渡风风雨雨,谁知她却抢先表了态,“我想知道你们什么时候走?”“我很高兴,但也很不习惯。得奖意味着要占据我不少的精力和时间,像你们访问我。”黄昆实话实说。不以物喜,不以己悲,面对巨大的荣誉和奖励,这对相濡以沫半个世纪的老夫妇在捍卫着自己宁静的生活。   对小他7岁的夫人,黄昆打出了“90”的高分。“凡是和她接触的人对她的品格都有很高的评价,她不仅是个好人,而且很有能力。”的确,青年时代屡有斩获的黄昆背后,一直有这位异国贤内助的默默奉献,著名的黄理论实际上是“黄-里斯理论”,是夫妻二人智慧的共同结晶。如今黄昆先生身患帕金森病,“我扣扣子都有点困难,家里90%的事情靠她去做。”黄昆还在工作着。虽已83岁高龄,虽然身患疾病,他现在仍然坚持每天上午去研究所,和年轻人交流探讨,或者翻阅资料,处理文件。2001年,一生和微观世界打交道的他,还牵头和其他5位院士一起大声疾呼:国家应当组织充分的人力、财力和物力,参与占领世界纳米科技的制高点。一生不事张扬,一生默默耕耘,为科技事业鞠躬尽瘁,这就是一个真实的黄昆。83年的人生岁月里,黄昆以他的严谨和创新,以他的勤奋和率真,在固体物理学领域竖起了一座座丰碑,赢得了全世界的尊敬,也在人们的心目中铭刻下了四个大字:“真人”黄昆。   人物简介   世界著名物理学家、中国固体和半导体物理学奠基人之一、杰出教育家。浙江嘉兴人。自幼勤奋学习,热爱自然科学。西南联大毕业后从事物理理论研究,大胆预言与晶格中杂质有关的X光漫散射,后称为黄散射。受邀与玻恩著《晶格动力学》,至今仍是该领域权威著作。提出“黄方程”和由此引伸的极化元的重要概念,对理论物理发展作出重要贡献。1956年北大任教主持中国半导体物理专业的创建工作,著《固体物理学》为中国信息产业培养第一批人才。1977年任科学院半导体所所长为中国半导体科学技术的复苏发挥重要作用。2001年获国家最高科学技术奖。
  • 1982年/2022年,父子先后获诺贝尔生理学或医学奖!
    今天(北京时间17时30分),2022年诺贝尔生理学或医学奖获奖名单揭晓。瑞典科学家斯万特帕博(Svante Pääbo)获奖。斯万特帕博的获奖理由是“在灭绝古人类基因组和人类进化方面的发现”。奖金为1000万瑞典克朗(约合642.8万元人民币)。斯万特帕博1955年出生于瑞典的斯德哥尔摩。他的父亲为1982年的诺贝尔生理学或医学奖得主、瑞典生物化学家苏恩伯格斯特龙(Sune Bergström)。斯万特帕博苏恩伯格斯特龙诺贝尔生理学或医学奖从1901年到2021年,诺贝尔生理学或医学奖共颁发了112次。没有颁发的9年分别是1915、1916、1917、1918、1921、1925、1940、1941、1942年。从1901年至2021年,共224人获奖。112次颁奖中,39次为单独获奖者,34次为2人共享,39次为3人共享。最年轻和最年长的生理学或医学奖得主最年轻的获奖者是加拿大科学家弗雷德里克班廷(Frederick G. Banting),1923年因“发现胰岛素”获奖,时年32岁。最年长的获奖者是美国科学家佩顿劳斯(Peyton Rous),1966年因“发现肿瘤诱导病毒”获奖,时年87岁。父子均获诺奖,太少见在诺贝尔奖一百余年的历程中,共有两对父子先后获得了诺贝尔奖,在斯万特帕博教授获奖后,他和他的父亲苏恩伯格斯特龙成为第三对“父子诺奖”组合。斯万特帕博教授的父亲苏恩伯格斯特龙是瑞典生物化学家,他发现“前列腺素及其相关的生物活性物质”,与萨米尔松以及约翰范恩共同获得诺贝尔生理学与医学奖。
  • 安徽省食品行业协会发布《白酒酿造用酒曲、粮醅和酒醅中2,3,5,6-四甲基吡嗪的测定》等2项团体标准征求意见稿
    相关标准如下:白酒酿造用酒曲、粮醅和酒醅中2,3,5,6-四甲基吡嗪的测定白酒酿造用大曲、麸曲、粮醅和酒醅中乙偶姻的测定
  • 诺贝尔物理学奖得主、“光纤之父”高锟逝世,享年84岁
    p /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/42b3634f-405d-4cc6-a01c-d9e771210ebe.jpg" title=" 753.jpg" alt=" 753.jpg" / /p p style=" text-align: justify text-indent: 2em " 诺贝尔物理学奖得主、香港中文大学前校长高锟逝世,享年84岁。高锟一生最大成就,莫过于发明光纤通讯,亦因如此,他有“光纤之父”之称,享誉全球。高锟一生都离不开科学,曾为入读心仪的电机工程系,刻意到英国留学。 br/ /p p style=" text-indent: 2em text-align: justify " 高锟在六十年代已提出光纤理论,但初时不获认同,更被批评“痴人说梦”。然而,他并没有放弃,更持续不懈研究,终获得世人拜服的成就。 /p p style=" text-indent: 2em text-align: justify " 高锟于2003年确诊脑退化症后,行动和认知能力受到很大影响。2009年获得的诺贝尔物理学奖,对他来说,可算是“迟来的奖项”。 /p p style=" text-indent: 2em text-align: justify " 高锟于1948年移居香港;1954年赴英国攻读电机工程,并于1957年及1965年获伦敦大学学士和哲学博士学位;1970年加入香港中文大学,筹办电子学系,并担任系主任;1987-1996年任香港中文大学第三任校长;1996年当选为中国科学院外籍院士;2000年被《亚洲新闻周刊》选为“二十世纪亚洲风云人物”;2009年获得诺贝尔物理学奖;2010年获颁香港特别行政区大紫荆勋章。 /p p style=" text-indent: 2em text-align: justify " 60年代提光纤理论 起初不获认同 /p p style=" text-indent: 2em text-align: justify " 高锟1933年出生于江苏省金山县(今上海市金山区),祖父高吹万是晚清诗人和革命家,父亲高君湘是律师,另有一名弟弟高鋙。高锟于1948年举家移居台湾,至1949年迁往香港。 /p p style=" text-indent: 2em text-align: justify " 在香港,高锟就读圣若瑟书院,中学毕业后考入香港大学,但由于他想读电机工程系,港大当时未开设此科,于是远赴英国,进入英国伦敦的伍利奇理工学院(现格林威治大学)。在英国留学时,高锟于舞会中认识后来的妻子黄美芸,两人于1959年结婚,婚后有一子一女。 /p p style=" text-indent: 2em text-align: justify " 1966年,高锟在国际电话电报公司(ITT)任职期间,开始研究利用玻璃纤维传送讯号,发表过一篇题为《光频率介质纤维表面波导》的论文,提出利用石英基玻璃纤维,可进行长距离及高讯息量的讯息传送。 /p p style=" text-indent: 2em text-align: justify " 高锟的理论初时未获认同,更有媒体嘲笑他“痴人说梦”。但他未有放弃,继续研究及改良技术,至1981年第一代光纤系统面世,他亦因此获得“光纤之父”美誉。在1987年,高锟回港出任中文大学第三任校长,期间创立讯息工程学系,直至1996年退休。 /p p style=" text-indent: 2em text-align: justify " 2009年成就终获确认 获诺贝尔物理学奖 /p p style=" text-indent: 2em text-align: justify " 退休后,高锟生活较为低调。2003年,高锟由于打麻将时反应迟缓,在朋友建议之下到医院检查,确诊为老年痴呆(脑退化症),其后生活都大受影响,表达能力亦下降,需要妻子在旁照顾。 /p p style=" text-indent: 2em text-align: justify " 由于科学领域的诺贝尔奖,理论获确认需要较长时间,即使有杰出成就,往往也要在数十年后才能得奖,高锟也不例外。2009年,高锟首次提出光纤通讯后四十多年,终获得迟来的诺贝尔物理学奖,诺贝尔委员会赞扬他“在纤维中传送光以达成光学通讯的开拓成就(for groundbreaking achievements concerning the transmission of light in fibers for optical communication)” /p p style=" text-indent: 2em text-align: justify " 2010年,高锟先后获得“影响世界华人大奖”,以及英女王寿辰“爵士勋衔”及香港“大紫荆勋章”。他和妻子亦在2010年9月成立高锟慈善基金,晚年主要于香港和美国加州山景城两地居住。 /p p br style=" text-indent: 2em text-align: left " / /p
  • 中国氟硅有机材料工业协会发布团体标准《有机硅污水中甲基环硅氧烷的测定》团体标准
    经项目征集、审核、发布审议等程序,氟硅协会拟于2024年1月发布《有机硅污水中甲基环硅氧烷的测定》团体标准,为保障项目立项的公正性,现对本项氟硅团体标准进行公示,公示时间2024年1月19日至1月28日,共计10日。如任何单位、个人对拟发布标准持有异议,请以正式发函方式向协会提出意见和建议。氟硅协会标委会邮箱:fsibwh@163.com。附件:1、《有机硅污水中甲基环硅氧烷的测定》报批稿.pdf 中国氟硅有机材料工业协会 2024年1月19日
  • 助力双碳,再创佳绩!CTI华测认证中标多个政府项目
    近期,CTI华测认证捷报频传,中标多个政府节能减排项目。CTI华测认证将以先进技术助力国家双碳目标,完善碳排放交易市场,为绿色经济发展做出贡献!   1.2021年度重点用能单位“百千万”行动   该项目位于重庆市,将对主城新区105家重点用能单位,包括:市级重点用能单位开展现场评价,主要包括企业能耗双控目标完成情况、主要用能设备及产品能效情况、采取的节能管理措施、节能技术措施等,并逐项对照打分,确定评价考核等级;市级重点用能单位对能源利用状况报告进行审核,主要包括企业能效水平分析、能耗产出效益分析、节能潜力分析、建议措施;形成全市总体报告和各重点用能单位单项报告。   2.云南省重点排放企业碳排放数据核查与复核项目-2标段   中标该项目,CTI华测认证将承担红河州、玉溪市、普洱市、西双版纳州、临沧市、文山市、德宏州重点企业2022年度碳排放报告及补充数据表的核查任务,对2023年发电企业2023年月度信息化存证的数据和及信息逐月进行技术审核。   3.碳市场建设-碳排放报告核查   项目位于河北省,主要对河北省重点企业碳排放报告第三方核查,行业覆盖发电、钢铁、建材、化工、造纸等。负责对唐山市遵化、迁西、迁安、玉田、丰润重点排放企业的碳排放报告进行核查。配合唐山市生态环境局完成碳核查及碳市场有关技术支撑工作。   4.2023年自治区应对气候变化基础能力项目第五标段   项目位于新疆,主要对新疆维吾尔自治区14个地(州、市)2021-2022年任一年温室气体排放量达2.6万吨二氧化碳当量(综合能源消费量约1万吨标准煤)及以上的非发电行业重点排放单位2022年度温室气体排放报告的核查及2022年度、2023年度数据质量控制计划的审核工作;核查范围为吐鲁番市、哈密市、昌吉州、塔城地区、阿勒泰地区等5地非发电行业相关重点排放单位。   5.2023年重点企业碳排放核查   项目位于四川省,将按照国家和四川省相关法律、法规和政策对核查结果进行复查,其中发电行业文审复查 53 家,现场复查 15家,非发电行业文审复查 40 家,现场复查 15 家。对复查过程中出现的问题将及时与生态环境部门沟通,根据生态环境部门要求,保证复查工作在规定时间内完成。   多次中标,是对CTI华测认证专业技术和优质服务的认可和信任,更是CTI华测认证发展壮大的又一里程碑。CTI华测认证将秉承一贯的信仰和承诺,不断提高服务水平,为客户提供更加卓越的解决方案。   CTI华测认证一直以来将可持续发展业务作为公司未来发展的重点方向,致力于为企业和组织实现净零转型等方面提供全方位、一站式的服务。截至目前,CTI华测认证已累计完成近25个省市国家碳交易碳排放核查报告超过3000份,CDM/VCS/GS/CCER/GCC等温室气体减排项目审定/核证减排量超2千万吨,组织/产品/活动层面温室气体核查项目超过500个,为超过300家企业发放能源管理体系认证证书,政府级/企业级碳达峰碳中和规划超过30家,评价的国家级绿色制造示范项目超过50个。
  • 第66届诺贝尔奖获奖者大会闭幕
    第66届诺贝尔奖获奖者大会近日在德国波登湖畔的林道闭幕,本届大会共邀请到了29位诺贝尔物理学奖获得者,其中有获得2015年诺贝尔物理学奖的日本物理学家梶田隆章和加拿大物理学家阿瑟麦克唐纳。作为本届大会的合作伙伴国,奥地利总统费舍也出席了会议并讲话。  大会的闭幕式在波登湖的玛瑙岛上举行,风景秀丽的玛瑙岛是诺贝尔奖获奖者大会的创始人贝纳多特伯爵夫妇的私人领地,贝纳多特伯爵是瑞典皇室亲属,这位伯爵一生热衷于赞助科学事业,在1951年创办了第一届诺贝尔奖获奖者大会,此后每年一届从不间断。2004年贝纳多特伯爵去世后,索尼雅贝纳多特伯爵夫人继续领导和组织每年一届的大会,2008年索尼雅病逝后,其女儿贝蒂纳贝纳多特女伯爵又继承了家族的这项事业。  此次大会共邀请了来自80个国家的400多名青年科学家和学生参会,而这是从上万名申请的学者中经过多轮评委评比,精心挑选出来的。参加诺贝尔奖获奖者大会有严格的参会条件,要求有两个以上国际著名学术机构的推荐,有在国际专业杂志上发表的学术论文,有流利的英语会话能力,学生年龄不超过30岁,博士后年龄在35岁以下。中国参加本届大会的境内外人数共29名,是继德国、美国之后参加人数较多的国家。  据中国学生代表团领队,中德科学中心常务副主任陈乐生教授介绍,这是中国第13次派出如此多的青年学者参加诺贝尔奖获奖者大会,中国学者的选拔和组团工作由中德科学中心负责,并得到教育部、中科院的鼎立支持。中德科学中心与诺贝尔奖获奖者大会基金会共同组成评委会,共同审核申请参加会议学者的学术水平。在经过几轮筛选后,还要进行包括英语能力的面试,因此,中国挑选的年轻学者都非常优秀。  从前几届的参会情况看,中国参加过大会的学者中已有三分之二去了美国、德国等国深造,并有被诺贝尔奖得主招为弟子。这些人在国外经过几年的锻炼,将来回国后将挑起大梁,成为国家科技领域的风云人物。陈教授介绍说,改革开放后曾有一批留德的风云人物出现,如现任科技部部长万钢以及路甬祥、韦玉、王大中、林泉。近年来还有一批留德或在德国从事过研究工作的中青年学者成为所在研究领域的领军人物,如潘建伟、卢柯、葛均波等。  记者也随机采访了几位参会的中国年轻学者,请他们谈谈参加大会的感受。来自中国科学技术大学的任亚飞说,感受最深的是与德国诺奖获得者冯克里青教授面对面的交流,大师用深入浅出的语言阐述了量子霍尔效应的原理和发现过程,使这位正在开始从事固体物理研究,年仅23岁的研究生激发起了对量子物理学的浓厚兴趣。他表示参加这次活动不仅能和大师进行学术交流,而且能感受大师现实中最真实、生动的一面。  来自北京大学的蒋庆东表示,参加诺贝尔奖获奖者大会不仅是聆听科学大师的高超演讲,目睹大师的风采,也是一次与其他国家青年学者交流的很好机会。通过交流他感觉到,中国在物理学一些领域并不比欧美差,也有自己一流的论文、一流的学者。这些年国家对科研的投入在不断增长,中国的科研成果在国际上不断获得好评,2015年屠呦呦获得诺贝尔生理学或医学奖,相信中国人获得诺贝尔物理学奖也是早晚的事。  记者还采访了林道诺贝尔奖获奖者大会基金会主席沃夫冈许勒尔博士,他专门负责组织这项活动已经有16年,今年即将退休并出任基金会名誉主席。采访中,他称赞了中国科学中心为每年一届的大会给予很大支持,尤其是与陈乐生、赵妙根两位主任的合作非常愉快。许勒尔博士也期待中国能有更多优秀科学家获得诺贝尔奖。
  • “DNA之父”诺贝尔奖章拍卖 成交价475万美元
    诺贝尔生理学或医学奖得主、DNA双螺旋结构发现者之一、美国科学家詹姆斯&bull 沃森。 沃森将拍卖所得一部分将捐给母校芝加哥大学和曾任职的剑桥大学克莱尔学院,余款将用于补贴生计。   中新网12月5日电 据外媒报道,美国佳士得拍卖行当地时间4日拍卖诺贝尔生理学或医学奖得主、DNA双螺旋结构发现者之一、美国科学家詹姆斯&bull 沃森的诺贝尔奖牌,不出数分钟即以475万美元成交。   报道称,这是第一位在世诺贝尔奖得奖者拍卖奖牌,成交价较估计的250万至350万美元高出很多。   沃森因与研究伙伴共同发现脱氧核醣核酸(DNA)双螺旋结构而在1962年获颁诺贝尔医学奖,被称为&ldquo DNA之父&rdquo 。此后因发表涉种族言论,遭业界排挤,事业每况愈下。   沃森希望借这次拍卖&ldquo 重新投入公众社会&rdquo 。沃森坦承以前&ldquo 愚蠢&rdquo ,为往事道歉,这次拍卖所得一部分将捐给母校芝加哥大学和曾任职的剑桥大学克莱尔学院,余款将用于补贴生计。   佳士得也同时拍卖沃森在获奖宴会上发表演说的5页纸手稿,成交价为36.5万美元。
  • 中科院生物物理所在蛋白调节DNA去甲基化的新发现
    11月10日,《分子细胞》(Molecular Cell)杂志在线发表了题为Cooperative Action between SALL4A and TET Proteins in Stepwise Oxidation of 5-Methylcytosine 的研究文章,报道了在小鼠胚胎干细胞中,SALL4A蛋白与TET家族双加氧酶共同调节增强子上5-甲基胞嘧啶(5mC)的氧化过程。  哺乳动物DNA的胞嘧啶甲基化修饰被认为是最稳定的表观遗传修饰,在维持性DNA甲基转移酶的作用下,亲代细胞基因组的DNA甲基化信息经过有丝分裂以半保留复制的方式传递给子代细胞。近年来的研究发现,TET家族蛋白能够将5mC逐步氧化成5-羟甲基胞嘧啶(5hmC)、5-醛基胞嘧啶(5fC)和5-羧基胞嘧啶(5caC),并走向最终的去甲基化。这种动态变化拓展了DNA甲基化所承载的表观遗传信息的可塑性。在基因组上,5mC的氧化受到严格地控制,在某些基因组区域,5hmC会稳定存在,而在别的基因组区域5hmC只是进一步氧化和去甲基化的中间体。这一选择性事件的分子基础尚不明朗。  该研究利用稳定同位素标记的细胞培养(SILAC)联合亲和纯化与蛋白质定量质谱技术,发现锌指结构域蛋白SALL4A倾向于结合含有5hmC修饰的DNA。SALL4是早期胚胎发育过程中的一个重要基因,它的突变会导致常染色体显性遗传的Duane-radial ray综合症。Sall4基因敲除的小鼠胚胎在围着床期即停止发育,并很快死亡。该研究发现,在小鼠胚胎干细胞中,SALL4A蛋白主要定位于增强子,其与染色质的结合在很大程度上依赖于TET1蛋白。进一步分析基因组上SALL4A结合位点的胞嘧啶修饰状态发现,这些位点上缺乏稳定的5hmC,却富集了进一步氧化的产物5fC和5caC,提示SALL4A可能促进5hmC的进一步氧化。果然,敲除Sall4导致在原先的SALL4A结合位点上积累较高水平的5hmC,因为敲除Sall4降低了TET2的稳定结合,不利于5hmC的进一步氧化。  这一工作丰富了对TET家族蛋白调控的DNA氧化和去甲基化过程的理解,并提出了5mC的协同性递进氧化概念。促进了对DNA甲基化的动态性及其在胚胎干细胞功能及重编程中作用的理解。  中国科学院生物物理研究所研究员朱冰和副研究员张珠强为本文的共同通讯作者。朱冰课题组熊俊和张珠强为本文的并列第一作者。同济大学教授高绍荣和博士陈嘉瑜,北京生命科学研究所研究员陈涉、丁小军和许雅丽,中科院生态环境研究中心研究员汪海林和博士黄华,中科院上海生命科学研究院生物化学与细胞生物学研究所研究员徐国良,日本熊本大学教授Ryuichi Nishinakamura也参与了该项研究。该研究得到国家自然科学基金委、科技部、中科院战略性先导专项和美国霍华德?休斯医学研究所国际青年科学家项目的资助。图示:SALL4A促进由TET1和TET2介导的5mC氧化过程
  • 云浮市云安区都杨镇人民政府967.25万元采购固体废弃物
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 云浮市云安区都杨片区垃圾收运处理设施项目设计施工总承包招标公告 广东省-云浮市-云安区 状态:公告 更新时间: 2022-08-13 云浮市云安区都杨片区垃圾收运处理设施项目设计施工总承包招标公告 发布时间:2022-08-13 08:00:00 云浮市云安区都杨片区垃圾收运处理设施项目设计施工总承包招标公告 1.招标条件 本招标项目云浮市云安区都杨片区垃圾收运处理设施项目已由云浮市云安区发展和改革局以云安区发改资环[2020]2号、云安发改投审[2022]32号文批准建设,项目建设资金由上级专项资金解决,不足部分由区级财政统筹解决,招标人(项目业主)为云浮市云安区都杨镇人民政府。项目已具备招标条件,现对该项目的设计施工总承包进行公开招标。 2.项目概况与招标范围 2.1建设地点:云浮市云安区都杨镇。 2.2建设规模:云浮市云安区都杨片区垃圾收运处理设施项目,建设厨余垃圾处理场和员工宿舍,占地270平方米;建设垃圾分拣棚、污水处理池等。项目概算总投资967.25万元。 2.3招标范围:完成工程设计、施工、设备采购至工程竣工验收、备案、移交,完成并配合相关部门结(决)算、审计、工程保修等工作。 2.4工期要求:210个日历天内完工(含设计工期30个日历天、施工工期180个日历天)。 2.5承包方式:包设计、包施工、包主要设备采购(含安装、调试)、包工期、包安全、包文明施工、包相关工程配合服务。 3.投标人资格要求 3.1投标人须同时具备建设行政主管部门颁发的以下资质条件: (1)施工资质:具有市政公用工程施工总承包叁级及以上资质。 (2)设计资质:具有工程设计综合甲级资质、或市政行业丙级及以上设计资质、或市政行业(环境卫生工程(含固体废弃物处理工程)专业丙级及以上设计资质、或环境工程设计专项资质(固体废物处理处置工程)乙级及以上设计资质。 3.2本次招标接受联合体投标,组成联合体投标时,对联合体的要求如下: (1)组成联合体的单位数量不超过2家,以具备施工资质的一方作为联合体牵头人,由联合体牵头人合法代表联合体各成员负责本招标项目投标文件编制和并处理与投标有关的一切事务; (2)投标人的投标文件及中标后签署的合同协议书,对联合体各方均有法律约束力; (3)联合体各方签订联合体协议书后,不得再以自己名义单独投标或加入其他联合体在同一标段中进行投标,如有违反,其投标和与此有关的联合体的投标将被拒绝; (4)除非另有规定和说明,本招标文件(含招标公告)中的“投标人”一词亦指联合体各方。 3.3投标人须具有独立法人资格并依法取得营业执照,营业执照处于有效状态(若组成联合体,则联合体各方均需具备)。 3.4投标人须已按云建通〔2021〕15号文、云建市[2021]18号文有关规定办理信用管理手续,持有“云浮市智慧建筑管理服务信息平台”相关信用信息网页截图打印件,投标人最新月度信用评价等级须为B级或以上。(若组成联合体,则联合体各方均需具备)。 3.5投标人须具有建设行政主管部门颁发的安全生产许可证且处于有效期内。(联合体投标时,由联合体中施工单位提供) 3.6广东省以外的投标人,须按《广东省住房和城乡建设厅关于取消省外建筑企业和人员进粤信息备案有关工作的通知》(粤建市〔2015〕52号文)的规定,持有在广东建设信息网(网址:www.gdcic.net)“进粤企业和人员诚信信息登记平台”专栏关于投标人进粤企业及人员信息录入的网页打印件。(联合体投标时,由联合体中施工单位提供) 3.7提供对参与本次建设工程项目招标投标活动中提交的证明资料(包括但不限于营业执照、资质、业绩、获奖、人员、财务、社保、纳税、各类证书等)的真实性、有效性签署的承诺书。(格式见招标文件中第七章投标文件格式“六、投标人承诺书”) 3.8项目负责人要求: 3.8.1施工项目负责人(市政公用工程专业):广东省建筑施工企业须具备二级或以上建造师注册证书(不含临时建造师证书),广东省外建筑施工企业须具备一级注册建造师资格;持有效的安全生产考核合格证书(B证)或“建筑施工企业安全生产管理人员考核信息系统”中打印的证明材料;(如为联合体投标,须为联合体中施工单位人员) 3.8.2设计项目负责人:具备市政工程类或环境工程类相关专业中级及以上技术职称证书;(如为联合体投标,须为联合体中设计单位的人员) 4.招标文件的获取 本次招标公告在广东省招标投标监管网和云浮市公共资源交易服务平台上发布,相关后续信息将在广东省招标投标监管网、云浮市公共资源交易服务平台发布。 5.投标文件的递交 5.1线下投标文件递交的截止时间(投标截止时间,下同)为2022年9月7日09时30分,地点为云浮市公共资源交易中心 (地址:云浮市区城中路111号行政服务中心四楼)。 5.2线上投标文件递交的截止时间(投标截止时间,下同)为2022年9月7日09时30分,投标人应在截止时间前通过云浮市公共资源交易服务平台递交电子投标文件。 5.3线下逾期送达的、未送达指定地点的或者不按照招标文件要求密封的投标文件,招标人将予以拒收。 5.4线上逾期上传的投标文件,电子招标投标交易平台将予以拒收。 6.发布公告的媒介 本次招标公告同时在广东省招标投标监管网、云浮市公共资源交易服务平台上发布。相关后续信息将在广东省招标投标监管网、云浮市公共资源交易服务平台发布。 7.电子标注意事项 根据云浮市公共资源交易工作委员会云公资办〔2017〕5号、〔2018〕3号等相关文件要求,该项目试运行全流程电子化交易,投标人参与投标需于开标前在云浮市公共资源交易服务平台(新平台)电子交易平台点击填写投标信息,下载招标文件,并于投标截止时间前将制作完成的电子投标文件上传到电子交易平台。电子版投标文件制作过程中,如有技术问题请于投标截止时间前的每天8:00-11:30,14:30-17:30,联系云浮市公共资源交易中心,联系电话:0766-8838690,QQ:624175059。 7.1 投标文件软件下载地址:https://jyzx.yunfu.gov.cn/portal/; 7.2 投标保证金转入系统生成的子账号; 7.3 系统环境要求:win7以上操作系统、360极速浏览器(版本12或以上,极速模式),具体操作请查看服务指南,有技术问题请致电0766-8819989,QQ:624175059: https://jyzx.yunfu.gov.cn/portal/detail?firstTab=04 category=Bszngl id=467093769fc74aa3aafea7760193f2f0; 7.4 投标单位需用单位的CA锁(或粤企签)对电子投标文件进行电子签章并上传; 7.5 电子开标需要携带非加密电子投标文件到现场,以应对解密失败情况; 7.6 项目试运行采取线上与线下(纸质)并行的方式,交易结果以线下(纸质)为准。今后凡是采用试运行全流程电子化交易的项目,项目招标代理和投标单位需按相关要求制作电子招标投标文件并成功上传至信息化平台,否则,由交易营运机构向云浮市公共资源交易工作委员会报告,并将结果纳入云浮市公共信用信息管理平台。 7.7 参与电子投标,可能会出现未知的风险,存在的一切问题由投标单位自行承担; 7.8 制作电子投标文件出现的问题可在上班时间联系公告中载明的云浮市公共资源交易中心。 8.温馨提示 8.1请各投标人严格按照中央、省市关于做好新型冠状病毒感染的肺炎(下文简称“新冠肺炎”)疫情防控部署相关的防控工作文件及云浮市公共资源交易中心近期《公共资源交易活动疫情防控措施的通告》等相关通知严格执行。 8.2由于测温和登记通道排队人数可能较多,请各相关人员务必做好形势评估,建议提前半个小时以上到达现场。体温检测和信息登记时间不计入开标评标签到时间。 9.联系方式 招标人:云浮市云安区都杨镇人民政府 地址:广东省云浮市云安区都杨镇麦洲 联系人:李先生0766-8281338 招标代理机构:广东省广大工程顾问有限公司 地址:广东省云浮市云城区育华路133号八楼 联系人:梁先生0766-8833362 交易服务机构:云浮市公共资源交易中心 地址:广东省云浮市城中路111号行政服务中心四楼 联系电话:0766-8838690 监督(管)单位:云浮市云安区住房和城乡建设局 地址:广东省云浮市云安区六都镇白沙塘行政区东安大道南 联系电话:0766-8638861 日 期:2022年8月13日 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:固体废弃物 开标时间:null 预算金额:967.25万元 采购单位:云浮市云安区都杨镇人民政府 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:广东省广大工程顾问有限公司 代理联系人:点击查看 代理联系方式:点击查看详细信息 云浮市云安区都杨片区垃圾收运处理设施项目设计施工总承包招标公告 广东省-云浮市-云安区 状态:公告 更新时间: 2022-08-13 云浮市云安区都杨片区垃圾收运处理设施项目设计施工总承包招标公告 发布时间:2022-08-13 08:00:00 云浮市云安区都杨片区垃圾收运处理设施项目设计施工总承包招标公告 1.招标条件 本招标项目云浮市云安区都杨片区垃圾收运处理设施项目已由云浮市云安区发展和改革局以云安区发改资环[2020]2号、云安发改投审[2022]32号文批准建设,项目建设资金由上级专项资金解决,不足部分由区级财政统筹解决,招标人(项目业主)为云浮市云安区都杨镇人民政府。项目已具备招标条件,现对该项目的设计施工总承包进行公开招标。 2.项目概况与招标范围 2.1建设地点:云浮市云安区都杨镇。 2.2建设规模:云浮市云安区都杨片区垃圾收运处理设施项目,建设厨余垃圾处理场和员工宿舍,占地270平方米;建设垃圾分拣棚、污水处理池等。项目概算总投资967.25万元。2.3招标范围:完成工程设计、施工、设备采购至工程竣工验收、备案、移交,完成并配合相关部门结(决)算、审计、工程保修等工作。 2.4工期要求:210个日历天内完工(含设计工期30个日历天、施工工期180个日历天)。 2.5承包方式:包设计、包施工、包主要设备采购(含安装、调试)、包工期、包安全、包文明施工、包相关工程配合服务。 3.投标人资格要求 3.1投标人须同时具备建设行政主管部门颁发的以下资质条件: (1)施工资质:具有市政公用工程施工总承包叁级及以上资质。 (2)设计资质:具有工程设计综合甲级资质、或市政行业丙级及以上设计资质、或市政行业(环境卫生工程(含固体废弃物处理工程)专业丙级及以上设计资质、或环境工程设计专项资质(固体废物处理处置工程)乙级及以上设计资质。 3.2本次招标接受联合体投标,组成联合体投标时,对联合体的要求如下: (1)组成联合体的单位数量不超过2家,以具备施工资质的一方作为联合体牵头人,由联合体牵头人合法代表联合体各成员负责本招标项目投标文件编制和并处理与投标有关的一切事务; (2)投标人的投标文件及中标后签署的合同协议书,对联合体各方均有法律约束力; (3)联合体各方签订联合体协议书后,不得再以自己名义单独投标或加入其他联合体在同一标段中进行投标,如有违反,其投标和与此有关的联合体的投标将被拒绝; (4)除非另有规定和说明,本招标文件(含招标公告)中的“投标人”一词亦指联合体各方。 3.3投标人须具有独立法人资格并依法取得营业执照,营业执照处于有效状态(若组成联合体,则联合体各方均需具备)。 3.4投标人须已按云建通〔2021〕15号文、云建市[2021]18号文有关规定办理信用管理手续,持有“云浮市智慧建筑管理服务信息平台”相关信用信息网页截图打印件,投标人最新月度信用评价等级须为B级或以上。(若组成联合体,则联合体各方均需具备)。 3.5投标人须具有建设行政主管部门颁发的安全生产许可证且处于有效期内。(联合体投标时,由联合体中施工单位提供) 3.6广东省以外的投标人,须按《广东省住房和城乡建设厅关于取消省外建筑企业和人员进粤信息备案有关工作的通知》(粤建市〔2015〕52号文)的规定,持有在广东建设信息网(网址:www.gdcic.net)“进粤企业和人员诚信信息登记平台”专栏关于投标人进粤企业及人员信息录入的网页打印件。(联合体投标时,由联合体中施工单位提供) 3.7提供对参与本次建设工程项目招标投标活动中提交的证明资料(包括但不限于营业执照、资质、业绩、获奖、人员、财务、社保、纳税、各类证书等)的真实性、有效性签署的承诺书。(格式见招标文件中第七章投标文件格式“六、投标人承诺书”) 3.8项目负责人要求: 3.8.1施工项目负责人(市政公用工程专业):广东省建筑施工企业须具备二级或以上建造师注册证书(不含临时建造师证书),广东省外建筑施工企业须具备一级注册建造师资格;持有效的安全生产考核合格证书(B证)或“建筑施工企业安全生产管理人员考核信息系统”中打印的证明材料;(如为联合体投标,须为联合体中施工单位人员) 3.8.2设计项目负责人:具备市政工程类或环境工程类相关专业中级及以上技术职称证书;(如为联合体投标,须为联合体中设计单位的人员) 4.招标文件的获取 本次招标公告在广东省招标投标监管网和云浮市公共资源交易服务平台上发布,相关后续信息将在广东省招标投标监管网、云浮市公共资源交易服务平台发布。 5.投标文件的递交 5.1线下投标文件递交的截止时间(投标截止时间,下同)为2022年9月7日09时30分,地点为云浮市公共资源交易中心 (地址:云浮市区城中路111号行政服务中心四楼)。 5.2线上投标文件递交的截止时间(投标截止时间,下同)为2022年9月7日09时30分,投标人应在截止时间前通过云浮市公共资源交易服务平台递交电子投标文件。 5.3线下逾期送达的、未送达指定地点的或者不按照招标文件要求密封的投标文件,招标人将予以拒收。 5.4线上逾期上传的投标文件,电子招标投标交易平台将予以拒收。 6.发布公告的媒介 本次招标公告同时在广东省招标投标监管网、云浮市公共资源交易服务平台上发布。相关后续信息将在广东省招标投标监管网、云浮市公共资源交易服务平台发布。 7.电子标注意事项 根据云浮市公共资源交易工作委员会云公资办〔2017〕5号、〔2018〕3号等相关文件要求,该项目试运行全流程电子化交易,投标人参与投标需于开标前在云浮市公共资源交易服务平台(新平台)电子交易平台点击填写投标信息,下载招标文件,并于投标截止时间前将制作完成的电子投标文件上传到电子交易平台。电子版投标文件制作过程中,如有技术问题请于投标截止时间前的每天8:00-11:30,14:30-17:30,联系云浮市公共资源交易中心,联系电话:0766-8838690,QQ:624175059。 7.1 投标文件软件下载地址:https://jyzx.yunfu.gov.cn/portal/; 7.2 投标保证金转入系统生成的子账号; 7.3 系统环境要求:win7以上操作系统、360极速浏览器(版本12或以上,极速模式),具体操作请查看服务指南,有技术问题请致电0766-8819989,QQ:624175059: https://jyzx.yunfu.gov.cn/portal/detail?firstTab=04 category=Bszngl id=467093769fc74aa3aafea7760193f2f0; 7.4 投标单位需用单位的CA锁(或粤企签)对电子投标文件进行电子签章并上传; 7.5 电子开标需要携带非加密电子投标文件到现场,以应对解密失败情况; 7.6 项目试运行采取线上与线下(纸质)并行的方式,交易结果以线下(纸质)为准。今后凡是采用试运行全流程电子化交易的项目,项目招标代理和投标单位需按相关要求制作电子招标投标文件并成功上传至信息化平台,否则,由交易营运机构向云浮市公共资源交易工作委员会报告,并将结果纳入云浮市公共信用信息管理平台。 7.7 参与电子投标,可能会出现未知的风险,存在的一切问题由投标单位自行承担; 7.8 制作电子投标文件出现的问题可在上班时间联系公告中载明的云浮市公共资源交易中心。 8.温馨提示 8.1请各投标人严格按照中央、省市关于做好新型冠状病毒感染的肺炎(下文简称“新冠肺炎”)疫情防控部署相关的防控工作文件及云浮市公共资源交易中心近期《公共资源交易活动疫情防控措施的通告》等相关通知严格执行。 8.2由于测温和登记通道排队人数可能较多,请各相关人员务必做好形势评估,建议提前半个小时以上到达现场。体温检测和信息登记时间不计入开标评标签到时间。 9.联系方式 招标人:云浮市云安区都杨镇人民政府 地址:广东省云浮市云安区都杨镇麦洲 联系人:李先生0766-8281338 招标代理机构:广东省广大工程顾问有限公司 地址:广东省云浮市云城区育华路133号八楼 联系人:梁先生0766-8833362 交易服务机构:云浮市公共资源交易中心 地址:广东省云浮市城中路111号行政服务中心四楼 联系电话:0766-8838690 监督(管)单位:云浮市云安区住房和城乡建设局 地址:广东省云浮市云安区六都镇白沙塘行政区东安大道南 联系电话:0766-8638861 日 期:2022年8月13日
  • 傅若农:凌空一瞥洞察一切——神通广大的固相微萃取(SPME)
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。 第一讲:傅若农讲述气相色谱技术发展历史及趋势 第二讲:傅若农:从三家公司GC产品更迭看气相技术发展 第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状 第四讲:傅若农:气相色谱固定液的前世今生 第五讲:傅若农:气-固色谱的魅力 第六讲:傅若农:PLOT气相色谱柱的诱惑力 第七讲:傅若农:酒驾判官&mdash 顶空气相色谱的前世今生 第八讲:傅若农:一扫而光&mdash &mdash 吹扫捕集-气相色谱的发展 固相微萃取(Solid Phase Micro Extraction,SPME)顶空气相色谱是一种简洁、便捷、环保、一举三得(萃取、浓缩、进样)的制样和分析并举的方法。SPME不仅可以和气相色谱仪器结合使用还可以和其他分析方法如液相色谱及各种质谱分析相结合。SPME有八大优点:1、操作简单,2、功能多样,3、设备低廉,4、萃取快捷,5、无需溶剂,6、在线、活体取样,7、可自动化,8、可在分析系统直接脱附。所以SPME是一种神通广大的样品制备技术。 1. 固相微萃取的由来   加拿大的 Pawliszyn 研究组在1987年研究气相色谱(GC)的快速进样技术,他们使用激光加热样品,使之快速汽化,这种 GC进样技术是把样品涂渍在激光光导纤维头部,把光导纤维头置于GC 汽化室中,用激光使样品中挥发性组分进入色谱系统,在研究中发现样品化气样速度很快,但是样品前处理却要耗费很长的时间。为了把样品处理时间缩短,他们就把处理和GC进样合二为一。即把光导纤维的石英丝涂渍上固定相(高聚物或吸附剂),因为当时 GC 毛细管石英色谱柱的涂渍工艺已经是成熟技术了,把涂渍固定相的石英丝放在样品水溶液中,吸收(吸附)被分析物,一段时间后取出石英丝置于 GC 汽化室中进行 GC 分析[3,4],这就是SPME 的开始。   为了把涂渍固定相的石英丝放入和取出 GC 的进样口不并且不影响 GC 气路系统的密封性,他们把涂渍固定相的石英丝粘接到 Hamilton 7000 型注射器针头上,如图 1 所示。用一支内径略大的不锈钢毛细管代替注射器的金属活塞棒,取一段 1.5 cm 石英丝,剥去一端0.5cm 的保护涂层,把另一端用环氧树脂粘接插入到不锈钢毛细管中,这个粘接着涂有固定相石英丝的不锈钢毛细管可以伸出或缩回到注射器针头中,以便通过隔垫把微萃取丝插到GC进样口中。其结构如图2所示。   图1 原始的SPME装置 图2 原始的SPME 针头和萃取丝装置 2.SPME 的理论研究   为了更好地理解 SPMEP 的本质和影响吸收过程的因素,Pawliszyn 研究组在发明了 SPME 以后就立刻进行了理论研究,考察了 SPME 萃取头在从水溶液中直接吸收被分析物的动力学过程,他们研究的一个模型说明,在充分搅拌溶液的条件下,样品吸收的时间只取决于样品在固定相中的扩散速度。另一个模型说明在静止的溶液中,样品吸收的时间取决于样品在溶液中的扩散速度,在使用标准的搅拌器械时,SPME 的萃取过程受溶质扩散过围绕 SPME 萃取丝周围一层静止的溶液液膜的控制。   他们还考察了SPME 萃取头在顶空情况下萃取挥发性样品的过程,这一研究说明:在溶液静态不搅拌情况下,进行顶空SPME 萃取,适合于具有高亨利常数、疏水性较强有机物的分析, 而且这种有机物在萃取固定相和空间气氛之间的分配系数较小,这一方法对测定难挥发性物质中的挥发性有机物有利。同时也详细研究了在充分搅拌被测溶液情况下进行顶空 SPME 萃取的过程,各种参数对萃取的影响。这些模型的研究促进了对 SPME 过程的理解,有利于这一方法的推广。 3.国内近年使用顶空固相微萃取气相色谱案例   我们从实际出发,看看国内近两年使用这一方法的进展,表 1 列出2013-2014年国内期刊上发表的HS-SPME-GC-MS分析案例。从这些发表的文章刊出:(1) HS-SPME-GC-MS使用十分广泛 (2) 国内的研究工作相比前几年有很大的提高(都使用了GC-MS作深入一些的研究) (3)研究工作大都使用商品化产品。 表 1 国内期刊上发表的HS-SPME-GC-MS分析案例 序号 分析对象 主要设备 文献 1 3种山茶属花香气成分的HS-SPME-GC-MS分析 安捷伦6890-5975C GC-MS联用仪,50mL顶空采样瓶、手动固相微萃取装置(美国Supelco公司);萃取纤维头2cm.50/30&mu m DVB 甘秀海,梁志远,王道平等,食品科学,2013,34(6):204-207 2 HS-SPME-GC-MS分析刺梨种子挥发性香气成分 安捷伦6890-5975C GC-MS联用仪,15mL顶空采样瓶手动固相微萃取装置(美国Supelco公司);萃取纤维头70&mu m PDMS 陈青,高健,中国酿造,2014,33(1):141-142 3 HS-SPME-GC-MS分析香荚兰豆中挥发性成分 安捷伦6890-5973 GC-MS联用仪,15mL顶空采样瓶, 萃取纤维头德国IKA公司),65&mu m聚二甲基硅氧烷.二乙烯基苯(PDMS&mdash DVB)萃取纤维头及100 17),手动固相微萃取(SPME)进样器装置(美国Supelco公司),65 Ixm聚二甲基硅氧烷/二乙烯基苯(PDMS/DVB)萃取头(美国Supelco公司),15 mL样品瓶。m PDMS萃取纤维头(美国Supelco公司) 卢金清,李雨玲,张锐等,中国实验方剂学杂志,20414,20(3):79-82 4 HS-SPME-GC-MS结合化学计量法对不同产地艾叶药材挥发性成分的比较分析 安捷伦6890-5973 GC-MS联用仪65 &mu mPDMS/DVB萃取头(美国Supelco公司),手动固相微萃取进样器装置(美国Supelco公司), 梁欢,卢金清,戴艺等,中国实验方剂学杂志,2014,20(18):85-90 5HS-SPME和VDE两种方法对普洱茶香气成分分析的比较研究 HS-SPME手动进样,500顶空采样瓶, 谢吉林,肖海军&rdquo ,鲍治帆等,云南农业大学学报,2014,29(6):873&mdash 879 6 SD-HS-SPME-GC-MS分析华中碎米荠挥发性成分 Agilent 6890/5973 GC-MS联用仪,17),手动固相微萃取进样器装置(美国Supelco公司),65 &mu m聚二甲基硅氧烷/二乙烯基苯(PDMS/DVB)萃取头(美国Supelco公司),15 mL样品瓶。 卢金清,李婷+,郭彧等,中国实验方剂学杂志,2013,19(1):148-152 7 SPME-GC-MS法分析金华火腿风味物质的条件优化 Trace Ultra气相色谱.DSQ II质谱联用仪器、Triplus自动进样器美国, Thermo公司;75 gm CAR/PDMS萃取头(美国Supelco公司) 李鑫,刘登勇,李亮等,食品科学,2014,35(4):122-126 8 SPME-GC-MS法分析室内空气中挥发性有机物 Varian 4000 GC/MS气相色谱-质谱仪&rsquo ,分流/不分流进样口和离子阱质谱检测器。固相微萃取装置(美国Supelco公司),包括手柄和100 &mu m PDMS、65}&mu m PDMS/DVB、75肚m Carboxen/PDMS三种吸附纤维,15 mL顶空瓶(德国CNW公司)。 降升平,张小红,张玲玲等,太原理工大学学报,2013,44(3):272-277 9 SPME-GC-MS分析高梁 、大豆丹贝和大豆丹贝中的挥发性成分 SPME手动进样柄及75&mu m CAR/PDMS萃取头(美国Supelco公司); 1200 GC(美国瓦里安公司) 丁一,肖愈,黄瑾等,食品科学,2013,34(20):131 - 134 10 SPME-GC-MS 分析商品藤茶中环烃类化合物 Agilent 6890/5975C GC/ MS 联用仪, 手动固相微萃取装置(美国Supelco 公司),萃取纤维头为:2 cm - 50/30 &mu m DVB/ CAR/ PDMS 赖茂林,郁建平,山地农业生物学报,2014,33(4) :092 - 094, 11 SPME-GC-MS检测不同中西方奶酪的挥发性风味物质及比较 Agilent 6890N,59731气相色谱-质谱联用仪:SPME手柄、75&mu m CAR/PDMS萃取头(美国Supelco公司) 马艳丽,曹雁平,杨贞耐等,食品科学,2013,34(20):103 - 107 12 SPME-GC-MS联合分析槟榔花香气成分 岛津QP 2010 Plus型气相色谱-质谱联用仪(GC&mdash MS); 自动SPME进样器;5&mu mPDMS&mdash DVB萃取纤维头。 张明,黄玉林,宋菲等,热带作物学报,2014,35(6):1244-1249 13 薄皮甜瓜品种&lsquo 白玉糖&rsquo 香气成分的HS-SPME/GC-MS 分析 100&mu m PDMS(聚二甲基氧硅烷)萃取头(美国Supelco),Agilent 7890A/5975C GC-MS 气相色谱质谱联用仪 赵光伟,徐志红,孔维虎等,中国瓜菜,2014,27(5):14-17 14 保留指数在茶叶挥发物鉴定中的 应用及保留指数库的建立 SPME 65 &mu m 聚二甲基硅氧烷/二乙烯基苯(PDMS/DVB)萃取头(美国Supelco 公司);6890 气相色谱-5973 质谱仪(Agilent 公司);自制改良顶空瓶(容积150 mL 玻璃试验瓶) 林杰,陈莹,施元旭等,茶叶科学, 2014,34(3):261-270 15 不同高山杜鹃品种杂交后代花瓣香气成分的HS-SPME.GC.MS分析 Trace GCMS&mdash DSQ II气相色谱-质谱联用仪(Thermo,USA),萃取头的材料未报道 苏家乐,何丽斯,刘晓青等,江苏农业学报,2014,30(1):227-229 16 顶空固相微萃取结合气相色谱.质谱法分析兔肉的挥发性风味物质 QP 2010气相色谱-质谱联用仪(日本岛津公司);手动SPME进样器、75&mu m碳分子筛/ 聚二甲基硅氧烷(CAR/PDMS)涂层萃取头(美国Supelco公司):萃取瓶美国Perkinelmer公司 王琚,贺稚非,李洪军等,食品科学,2013,34(14):212-217 17 顶空固相微萃取-气相色谱-质谱法分析东北油豆角挥发性成分 6890N-5975气相色谱-质谱联用仪,20 mL钳口项空样品瓶(美国Agilent公司);65&mu m PDMS,DVB萃取头(美国Supelco公司) 王艳,宋述尧牢,张越等,食品科学,2014,35(12):169-173 18 顶空固相微萃取-气相色谱-质谱法分析玉兰花的挥发性成分 Agilent 6890 GC-5975MS气质联用仪(美国安捷伦公司);固相微萃取装置,75 &mu mCAR/PDMS萃取头(美国Supelco公司) 许柏球,栾崇林,刘莉萍等,香料香精化妆品 ,2014,(3): 19 顶空- 固相微萃取-气相色谱- 质谱联用法分析 &ldquo 无锡毫茶&rdquo 中的香气成分 Trace MS 气相色谱-四极杆质谱联用仪(美国Finnigan 公司);手动SPME 进样器(美国Supelco 公司);100 &mu m 聚二甲基硅氧烷(PDMS)萃取头、75 &mu m 碳分子筛/ 聚二甲基硅氧烷(CAR/ PDMS)萃取头、65 &mu m 二乙烯基苯/ 聚二甲基硅氧烷( DVB/ PDMS)萃取头、50/30 &mu m 二乙烯基苯/ 碳分子筛/ 聚二甲基硅氧烷(DVB/ CAR/ PDMS)萃取头、15 mL 顶空瓶(上海安谱科学仪器有限公司) 曾 茜,曹光群,李 明等,分析测试学报,2014,3(10):1136 -1141 20 顶空固相微萃取.气质联用分析并比较两种延胡索挥发性成分 Trace DSQ型气质联用仪(美国Thermo Finnigan公司),手动固相微萃取装置,聚二甲基硅氧烷涂层萃取头 (100 &mu m聚二甲基硅氧烷)和125 m1带聚四氟乙烯涂层硅橡胶垫的螺口玻璃瓶(美国supelco公司) 施华青,陈彬,寿佳妮等,中国医药工业杂志, 2014,45(1):66-68,75 21 顶空固相微萃取一气质色谱联用技术分析海州香薷与石香薷中挥发性成分 Agilent 7890N-5973N GC.MSD气相色谱质谱联用仪(美国Agilent公司),GC-MSD数据分析系统65&mu m PDMS/DVB(聚二甲基硅氧烷/二乙烯苯)SPME萃取头。 李佳,刘红燕,张永清,中国实验方剂学杂志,2013,19(16):118-122 22 发酵牛肉肠挥发性成分固相微萃取条件优化分析 , SCION TQ气质联用仪(德国布鲁克公司),固相微萃取头和57330U固相微萃取手柄美国(Supelco公司), 用DVB/CAR/DMS、PDMS/DVB,CAR/PDMS 3种萃取头 董琪,王武宰,陈从贵等,食品科学,2014,35(12):174-178 23 固相微萃取条件对橙汁主要挥发性成分GC-FID测定的影响 6890-5973气相色谱(美国Agilent公司); SP3400气相色谱仪(北分瑞利分析仪器公司),固相微萃100&mu m PDMS(美国Supelco公司) 牛丽影,郁萌,吴继红等,食品科学,2013,34(22):224-233 24 酒醅微量挥发性成分的HS-SPME和GC-MS分析 6890N-5973I气相色谱-质谱联用仪(美国安捷伦公司),PC420固相微萃取仪,萃取头(75&mu m CAR/PDMS、65&mu m PDMS/DVB,50/30&mu m DVB,CAR/PDMS 100&mu m PDMS(颜色分别为黑色、蓝色、灰色、红色,美国Supelo公司) 赵爽,张毅斌,张弦等,食品科学,2013,34(4):118-124 25 食用油品中己醛的分析 GC-2010气相色谱仪(本岛津公司), SPME手柄及SPME纤维(Supelco公司), 100 &mu m PDMS, 65 &mu m PDMS/DVB, 85 &mu m PA, 85 &mu m CAR/PDMS 和70 &mu m CW/DVB,最终选取 85 &mu mCAR/PDMS 陈冬梅, 福建分析测试, 2014,23(3):22-26 26 同时蒸馏萃取法和固相微萃取法分析棕榈油与菜籽油复合火锅底料中的风味物质 QP2010型气相色谱-质谱联用仪(日本岛津公司),固相微萃取手柄、75 &mu m CAR/DMS固相微萃取头(美国Supelco公司) 张丽珠,黄湛,唐洁等,食品科学,2014,35(18):156-160 27 应用SPME-GC-MS分析变温压差膨化干燥香蕉脆片香气成分 萃取头65 &mu m DVB/PDMS(美国Supelco公司),QP 2010 Plus气相色谱-质谱联用仪(日本岛津公司) 李宝玉,杨君,尹凯丹等,食品科学,2014,35(14):184-18828 HS-SPME-GC-MS分析河南产牛至挥发性成分 美国安捷伦公司GC 6890 N GC/5975 MS型气相色谱-质谱联用仪,美国Supelco公司手动固相微萃取(SPME)装置,萃取头为65&mu m PDMS-DVB 尹震花,王海燕,彭涛, 中国实验方剂学杂志,2014,20(6):77-80 29 HS-SPME-GC-MS分析藿香蓟花中的挥发性成分 美国安捷伦公司GC 6890 N GC/5975 MS气相色谱-质谱联用仪,美国supelco公司手动固相微萃取(SPME)装置,萃取头为100&mu m PDMS-DVB 张橡楠,张一冰,张勇等,中国实验方剂学杂志,2014,20(9):99-101 30 SPME与SD提取八角茴香挥发性风味成分的GC-MS比较 美国安捷伦公司GC 6890 N GC/5973 MS型气相色谱-质谱联用仪,65&mu mPDMS/DVB萃取纤维头, 顶空瓶15mL(德国IKA公司) 黎强,卢金清,郭胜男, 中国调味品,2014,39(7):107-109 31 SPME-GC/MS/O法分析水性涂料的气味问题 气相色谱-质谱-嗅觉测量联用仪(Agilent 6890-5973 MSD-O),固相微萃取装置(Combi&mdash PAL,CTC-SPME),萃取纤维(Supelco,50/30&mu m DVB/CAR/PDMS StableFlex/SS l cm),20 mL顶空样品瓶 董婕,朱莉莉,方芳等,涂料工业,2014,44(5):53-55 32 SPME-GC-MS法研究竹叶柴胡和北柴胡挥发性成分差异 6890-5973N型气相色谱-质谱联用仪 (美国Agilent公司),手动固相微萃取装置(美国Supelco公司),萃取纤维头(100&mu m PDMS,7&mu m PDMS,85&mu m PA),5 mL SPME.GC专用采样瓶(美国Supelco公司) 王砚,王书林, 中国实验方剂学杂志,2014,20(14):104-108 33 SPME/GC-MS鉴别地沟油新方法(Ⅲ) Agilent 6890 GC/5973i MS气相色谱-质谱联用仪(美国安捷伦公司);自制SPME固相微萃取头NACC-1。 吴惠勤,黄晓兰,林晓珊等,分析测试学报,2014,32(11):1277-1282 34 巴氏灭菌对不同品种菠萝蜜汁挥发性香气成分的影响 Thermo Trace 1300-ISQ气相色谱一质谱联用仪,20mL样品瓶、固相微萃取自动进样手柄美国Thermo公司;固相微萃取头(65 &mu m PDMS/DVB) 美国Supelco公司。 皋香,施瑞城,谷风林等,食品科学,2014,35(9):63-68 35 保留指数在茶叶挥发物鉴定中的应用及保留指数库的建立 SPME 手持器(SAAB-57330U)和65 &mu m聚二甲基硅氧烷/二乙烯基苯(PDMS/DVB)萃取头(美国Supelco 公司);6890 气相色谱-5973 质谱仪(Agilent公司);自制改良顶空瓶(容积150 mL 玻璃试验瓶) 林杰,陈莹,施元旭等,茶叶科学, 2014,34(3):261-270 36 不同地区黄酒挥发性物质差异性分析 75 &mu mCAR/PDMS固相微萃取头(美国Suplco公司), Trace MS气相色谱-质谱联用仪(美国Finnigan公司) 王培璇,毛健,李晓钟等,食品科学,2014,35(6):83-89 37 不同性别伊拉兔肉挥发性风味物质的SPME-GC-MS分析 QP 2010气相色谱-质谱联用仪(日本岛津公司);手动固相微萃取进样器、75&mu m CAR/PDMS涂层萃取头(美国Supelco公司) 陈康,李洪军,贺稚非等,食品科学,2014,35(6):96-102 38 顶空固相微萃取-气相色谱.质谱联用法分析仔姜与老姜的挥发性成分 QP 2010型气相色谱-质谱联用仪(日本岛津公司;固相微萃取装置(配有50/30&mu m DVB/CAR/PDMS萃取头) 美国 Supelco公司;萃取瓶美国Perkin Elmer公司 汪莉莎,陈光静,张甫生等,食品科学,2014,35(10):153-157 39 顶空固相微萃取与气相色谱.电子捕获技术联用检测软木塞中2,4,6.三氯苯甲醚 CP-3800气相色谱仪(美国Varian公司),20 mL项空瓶,;手动固相微萃取手柄,100&mu m聚二甲基硅氧烷涂层萃取头(美国sigma公司) 张哲琦,王玉春,陈臣等,食品科学,2014,35(12):148-150 40 多种提取方法分析蛇莓挥发性组分 QP 2010-Plus 气相色谱-质谱联用仪(日本岛津公司),顶空进样针PDMS 100 &mu m, PDMS-DVB 65 &mu m, CAR-PDMS 75 &mu m,PA 85&mu m (美国Sigma 公司) 王晨旭,于兰,杨艳芹等,分析化学,2014,42(11):1710 -1714 41 海南主要地域生咖啡豆挥发性化学成分对比研究 QP 2010 Plus气质联用系统(日本岛津公司),20 mL顶空瓶,未报道萃取头品种 胡荣锁,初众,谷风林等,光谱学与光谱分析,2013,33(2):548-55342 葎草鲜品不同部位的挥发油成分及含量 仪器:Aghilent 6890-5973 GC/MS ;手动固相微萃取(美国Supelco公司),萃取纤维头为:100&mu mPDMS 彭小冰,邵进明,刘炳新等,贵州农业科学,2014,42(4):178-181  43 熟化方式对小米粉制品挥发性成分的影响 气相色谱质谱联用仪(美国Varian公司);顶空固相微萃取装置(美国Supelco公司), DVB/CAR/PDMS萃取头 李雯,陈怡菁,任建华等,中国粮油学报,2014,29(4):93-97 44 GC-MS分析比较3个特产香椿品种的挥发性成分 Varian 4000 GC-MS(美国瓦里安公司);顶空固相微萃取装置(包括手持式手柄,50/30&mu m DVB/PDMS、75 &mu m CAR/PDMS、lOO&mu m PDMS、65&mu m PDMS/DVB 4种萃取头,40mL顶空瓶)( 美国Supelco公司) 刘常金,张杰,周争艳等,食品科学,2013,34(20):261-267 45 HS-SPME-GC-MS法分析肉桂子挥发性化学成分 QP2010气相色谱-质谱联用仪(日本岛津公司),;手持固相微萃取设备(美国,Supelco公司)100&mu m PDMS ,75&mu m PDMS/CAR ,65&mu m PDMS/DVB 和50/30&mu m PDMS/DVB/CAR萃取 头 熊梅,张正方,唐军等中国调味品,2013,38(1):88-91 46 HS-SPME-GC-MS分析两种南瓜瓤挥发性成分 Agilent GC 6890 N /5975 MS,Supelco SPME 65&mu m PDMSA-DVB 萃取头物膜(聚二甲基硅氧烷)   小结:SPME 是现今和气相色谱仪连接使用最多的一种结合样品处理与分离分析在一起的方法,应用模式和应用范围还在发展。   下一讲讨论样品处理的另一种模式&mdash &mdash &ldquo 悬空济世&mdash 单滴液体微萃取的妙用&rdquo 。   最后预祝读者羊年快乐!万事如意!
  • 中国第一人: 施一公获2014年爱明诺夫国际大奖
    根据清华大学官方网站消息,2013年9月13日,瑞典皇家科学院(Royal Swedish Academy of Sciences)宣布授予清华大学施一公教授2014年度爱明诺夫奖(Gregori Aminoff Prize),奖励他运用X-射线晶体学手段在细胞凋亡研究领域做出的突出贡献,奖金10万瑞典克朗(折合人民币93358.4元),颁奖典礼将于2014年3月31日在瑞典皇家科学院年会上举行。   细胞凋亡(程序性细胞死亡)是在所有多细胞生物中起关键作用的基本生命过程,细胞凋亡的异常会导致严重病变,比如癌症、老年痴呆症等等,因此揭示细胞凋亡的分子机理可以加深科学家对这一基本生命过程的了解,并为开发新型抗癌、预防老年痴呆的药物起提供线索。爱明诺夫奖官方新闻稿提到,作为细胞凋亡机制研究的一部分,施一公的蛋白质晶体学研究不仅能让研究者深入了解蛋白质的三维结构,还能让他们详细了解蛋白质调节系统的详细机制。除此以外,施一公团队在生物学其他领域也提出了诸多开创性见解,例如,他的研究小组曾经确定了一组与早衰相关的跨膜酶,该酶在阿尔茨海默症的发生发展中起到了一定作用。   施一公此次获得爱明诺夫奖,是该奖设立35年来,首次颁给中国科学家。对于施一公来说,是实至名归。施一公是中国著名的结构生物学家,长江讲座教授,国家杰出青年基金获得者,&ldquo 千人计划&rdquo 首批国家特聘专家,现任清华大学教授,生命科学院院长,普林斯顿大学教授 其领导的实验室主要运用X-射线晶体学,结合其它生物物理和生物化学方法研究生命科学的基本问题,在细胞凋亡调节机制、生物大分子机器组装与功能、重要膜蛋白结构与机理三个主要研究领域做出了重要的原创贡献。施一公2013年当选为美国艺术与科学院外籍院士,美国科学院外籍院士,成为美国双院外籍院士。   瑞典皇家科学院爱明诺夫奖   瑞典皇家科学院创建于1739年,以其专设的诺贝尔奖评选委员会而闻名世界。自1901年起,瑞典皇家科学院就开始负责每年的诺贝尔物理学奖和化学奖的评选,自1968年起,又加入了纪念阿尔弗雷德· 诺贝尔瑞典银行经济学奖(诺贝尔经济学奖)的评选。除诺贝尔奖外,瑞典皇家科学院还负责评选克拉福德奖、肖克奖等国际性大奖。   爱明诺夫奖同诺贝尔化学奖一样,是属于瑞典皇家学院颁发的国际类奖项,设立于1979年,用以奖励世界范围内在晶体学领域做出重大贡献的科学家,每年颁发给不超过3名科学家,个别年度空缺。本年度的爱明诺夫奖只有施一公一人获奖。   附:本年度爱明诺夫奖相关链接   http://www.kva.se/en/pressroom/Press-releases-2013/Aminoff-Prize-2014/   http://www.kva.se/en/Prizes/Gregori-Aminoff-Prize/
  • 以气相色谱为核心积极多领域拓展——访常州磐诺仪器有限公司副总经理王志攀
    p    strong 仪器信息网讯 /strong 2019年10月23日-26日,第十八届北京分析测试学术报告会暨展览会(BCEIA2019)在北京国家会议中心召开。会议期间,中国分析测试协会联合仪器信息网采访了常州磐诺仪器有限公司(简称“磐诺”)副总经理王志攀先生,就公司展会期间带来的明星产品及重点发展领域等方面展开讨论。 /p p   本届展会,磐诺石油化工、环境检测、军工科研三大展区同步亮相,为用户带来了痕量硫化物检测、水土气有机物检测、光催化、电催化、合成、稀有气体分析等多项专业的解决方案。 /p p   三大展区展示的仪器有所不同,环境检测领域展示了实验室和在线两大类产品;针对复杂气体组分分析,磐诺建立了一套完整、科学的多阀多柱方案组合,以应对石化行业的需求;军工科研方面,产品高级定制化是磐诺的一大特色。 /p p   今年9月份,华测检测发起“科学仪器试用、采购计划”,引起业内广泛关注,并且磐诺气相色谱仪入选第一期试用名单。在采访中,王总分享到,对于能够参加这样的活动感到十分荣幸。目前磐诺气相色谱仪在郑州华测、苏州华测、南京华测三个点已经完成安装调试,并且已经进入了跟同类型进口产品进行数据比对的阶段。 /p p   未来,磐诺仍将围绕气相色谱仪进行更多领域的应用的开发、二次开发,同时也会围绕着气相色谱仪自主研发一些相关的外围产品和辅助设备等,还会进一步拓展其他类型的仪器,这其中,少不了研发投入的增加。据王总介绍,磐诺在上海成立了一个研究院,目前已有20多名员工入驻,目标是招到100个研发人员,磐诺积极欢迎相关人才的加入。 /p p   更多详情请看视频: /p p script src=" https://p.bokecc.com/player?vid=94BD2C859AB359A39C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=5B1BAFA93D12E3DE& playertype=2" type=" text/javascript" /script /p
  • 科研赋能:珀金埃尔默助力半导体材料研发
    近年来中国在半导体领域的发展已经取得了一定的成就,想进一步的突破,仍面临着很大的挑战,限制中国半导体发展的关键因素集中在半导体设备和先进材料等方面。在材料方面,包括光刻胶、前驱体、硅材料、电子化学品等,是技术壁垒高的半导体关键材料,亟待广大科研单位及相关企业进行攻关。对这些关键材料的研发过程中,包括材料的优化开发、作用机理探究、定性定量分析、材料性能评估以及质量控制等,都需要使用各类分析手段。珀金埃尔默(PerkinElmer)作为分析仪器领先的全球供应商,广泛和深入的服务于全球研究机构和企业,助力半导体材料的研发。 珀金埃尔默分析技术在半导体材料研发中的应用 △点击查看大图 1 光刻胶 光刻胶是半导体制造和微电子制造中的关键材料之一,其研发和生产是半导体产业链中的关键环节,对于提升半导体制造工艺的精细度和效率具有重要意义。 光刻胶中金属元素杂质的存在会对其感光性能和成品质量产生影响,如降低分辨率、增加胶层的不均匀性等。光刻胶主要成分是树脂、光引发剂,单体等,主要成分都是有机物。在使用ICP-MS分析光刻胶中的金属杂质时,遇到的主要挑战是仪器对有机试剂的耐受能力以及反应池消除质谱干扰的能力。为了避免前处理可能带来的污染,通常采用有机溶剂稀释后直接进样的方式测试。珀金埃尔默NexION系列ICP-MS采用独有的34 MHz频率,使等离子体具有更强的趋附效应,中心通道更宽,有机类样品在经过等离子体时解离更完全,仪器测试有机样品时具有更好的稳定性。 NexION ICP-MS点炬状态直接进空气不熄炬, 体现出强大的基体耐受能力 △点击查看大图 同时,在进行ICP-MS分析时,光刻胶中大量的碳、作为等离子体的氩等会带来严重的质谱干扰,如12C12C+对24Mg+的干扰、12C15N+对27Al+的干扰,40Ar12C+对52Cr+的干扰、40Ar16O+对56Fe+的干扰等,NexION系列ICP-MS具有化学分辨能力,其核心就是采用具有专利技术的配备轴向加速电压的四极杆作为反应池,配合使用反应活性强的纯氨气作为反应气,在反应模式下能够彻底消除干扰,保证测试结果的准确度,达到精确评估光刻胶质量的目的。 光刻胶中受干扰元素典型检出能力 元素 检出限(DL/ppt) 背景等效浓度(BEC/ppt)Mg 0.05 0.20 Al 0.07 0.35 Cr 0.32 0.78 Fe 0.26 0.65 轴向加速四极杆通用池技术, 确保质谱干扰的去除 △点击查看大图 曝光动力学研究对于光刻胶的研发异常关键,因为其效能直接决定了制程良品率和生产效率。利用紫外光谱能够监测光刻胶在曝光过程中发生的光化学反应,通过跟踪特定化学键或官能团的变化,研究人员可以评估光刻胶的反应动力学和光化学稳定性。高性能紫外-可见-近红外分光光度计 (辅助建立DILL透光模型) △点击查看大图 为了更加准确原位模拟光刻胶在不同紫外-可见波段下的曝光历程,可采用差示扫描量热分析仪(DSC)和紫外光源联用进行分析,两者的联用,适合用于研究光刻胶的固化动力学过程,为研发更加稳定可靠的新一代无机金属氧化物复合光刻胶提供准确热力学数据支撑。 紫外光-差示扫描量热分析仪 △点击查看大图 在光刻胶配方开发过程中,出色的分析手段将极大帮助研究人员获取反馈信息。单独的手段往往具有局限性,比如热重(TG)没有结构定性能力,因此研究人员往往只能依靠个人的主观经验推测每个分解温度区间所产生组分的化学结构归属,这对于光刻胶配方逆向开发和性能优化等领域的应用存在较大的不确定性。而单独的红外(FTIR)或者气质(GC/MS)均存在单一温度维度测试的局限性,无法有效的还原温度维度或实现原位检测的要求。而采用分析技术的联用,就可以实现设备间的“协同效应,扬长避短”,比如热重引入的温度维度可以结合红外或气质的定性能力,赋予实时分析光刻胶组分随温度的动态逸出过程,做到原位监测、还原真实的反应/分解过程,应用于光刻胶配方开发和环境颗粒物的相互作用研究。 热重/红外/气质(TGA/IR/GC/MS) 联用逸出气体测试平台 △点击查看大图 2 前驱体前驱体是半导体薄膜沉积工艺的主要原材料,在薄膜、光刻、互连、掺杂等半导体制造过程中,前驱体主要应用于气相沉积(包括物理沉积PVD、化学气相沉积CVD和原子气相沉积ALD),以形成符合半导体制造要求的各类薄膜层。此外,前驱体也可用于半导体外延生长、刻蚀、离子注入掺杂和清洗等,是半导体制造的核心材料之一。 前驱体介绍 分类 示例 用途 硅前 驱体 TEOS(正硅酸乙酯)、DIPAS(二异丙胺硅烷)、4MS(四甲基硅烷)等 用于多晶硅/氧化硅/氮化硅薄膜沉积 金属 前驱体 TFMAT(四(二甲基胺基)钛)、TiCl4(四氯化钛)等 用于各类金属化合物薄膜沉积用ICP-MS对前驱体样品中金属杂质分析时,由于样品中的金属元素杂质含量低,稀释倍数受到限制,导致前处理后的溶液样品中总固体溶解含量(TDS)较高,对ICP-MS耐盐能力提出了很高的要求。珀金埃尔默NexION系列ICP-MS采用独特的大锥孔三锥设计(TCI)和90度四极杆离子偏转技术(QID),配合全基体进样系统(AMS),具有更加优异的基体耐受能力,以及更加优异的长期稳定性。 (a)大锥孔三锥设计(TCI) 和90度四极杆离子偏转技术(QID) (b)NexION ICP-MS优异稳定性 (2000 ppm 硅中35元素100ppt) △点击查看大图 前驱体中高基体的硅(Si)或金属(如Ti)也会产生严重的质谱干扰,比如高硅会对磷(P)、钛(Ti)、镍(Ni)等。利用NexION 系列ICP-MS的化学分辨能力,可以很好的实现前驱体中痕量杂质分析。 (a)高硅基体中对相关元素的质谱干扰 (b)NexION ICP-MS 典型受硅基体干扰元素分析 △点击查看大图 3 硅基材料 半导体硅基材料的研发是半导体集成电路发展的核心,集成电路制造技术已进入了后摩尔时代,传统硅基材料在尺寸微缩极限下遇到的关键挑战,是造成集成电路工艺复杂性和系统设计难度显著提升的重要因素。发展新材料(如三代半导体SiC等),探索与硅基技术兼容的新材料、新结构器件集成制造技术,是未来集成电路的重要发展趋势,也是后摩尔时代集成电路发展的主要技术路线之一。 利用晶圆表面分解技术(VPD)与NexION 系列ICP-MS结合,不仅可以对晶圆表面金属杂质分析,也可以对晶圆进行剖面分析。得益于NexION系列ICP-MS出色的性能,每平方原子数检出能力可达105。 (a)硅片经VPD处理后照片 (b)硅片表面金属杂质 分析 (c)掺硼硅片剖面分析 △点击查看大图 配备 MappIR 晶圆分析系统的珀金埃尔默Spectrum 3,不仅可以快速和简易的实现硅基材料中的碳和氧的杂质分析,还可以对涂层、电介质以及外延膜进行测量。 (a)Spectrum 3 FT-IR 和 MappIR 系统 (b)不同工艺硅片 光谱差异比较 (c)硅片中碳和氧分析 △点击查看大图 4 NexION 系列ICP-MS 电子化学品标准操作方法 △点击查看大图
  • 纪念诺贝尔奖级科学家:近红外光谱技术之父Karl Norris
    p strong span style=" font-family: 楷体, 楷体_GB2312, SimKai "   摘要:本文扼要综述了近红外光谱分析技术的发展里程,主要介绍了Dr. Karl H. Norris对近红外光谱分析技术做出的贡献,并汇总了与近红外光谱相关的诺贝尔奖获得者的贡献。很遗憾Dr. Karl H. Norris没有荣获诺贝尔奖,但这丝毫不影响Karl Norris的伟大,也不影响近红外光谱技术的伟大。世上诺贝尔奖可以缺席,但是却不能没有Karl Norris这位科学家,也不能没有近红外光谱这项分析技术。现代近红外光谱对分析技术和过程控制技术都产生了深远的影响。 /span /strong /p p span style=" font-family: 宋体, SimSun "   2019年7月17日,被誉为“近红外光谱技术之父”(Father of NIR Technology)的Dr. Karl H. Norris去世,享年98岁。7月18日收到国际知名光谱学家日本Ozaki教授发来的邮件: span style=" font-family: 宋体, SimSun color: rgb(255, 0, 0) " strong “We share the deep sadness for Dr. Karl Norris. I think his contribution truly corresponds to Nobel Prize. Although we lost the great scientist, we have to keep his great spirit not only in NIR spectroscopy but also in science and engineering. His contribution is much wider than NIR spectroscopy. ” /strong /span Ozaki教授评价Dr. Karl Norris的贡献可以与获得诺贝尔奖的科学家媲美。Ozaki教授的这段话让我萌发写一篇小随笔的冲动,随后系统整理了多年积累的相关文献,几经脉络的调整,终成这篇小文。 /span /p p strong   一、Dr. Karl H. Norris之前的情况 /strong /p p   近红外光是人们发现的第一个非可见光区域,由英国物理学家赫歇耳(F.W.Herschel,1739-1822)发现。赫歇耳是一位天文学家,他通过自己磨制镜片制作的天文望远镜发现了天王星。赫歇耳制作了400多个望远镜提供给天文爱好者使用,其中有些人抱怨通过望远镜观测星体会灼痛眼睛。于是,他设计了一个实验来研究太阳光线的热效应(图1)。赫歇耳利用1666年牛顿发现的三棱镜分光现象将太阳光色散成不同颜色的光,然后用温度计逐一测量不同颜色光的热量,在偶然情况下他发现在红色光之外仍存在更大强度的热量,他断定在红光之外仍存在不可见的光,他用拉丁文称之“红外”(Infra-red)。由于赫歇耳用的棱镜是玻璃制成的,其吸收了中红外区域的辐射,实际上该波段是近红外(Near Infrared,NIR),波长范围大致位于700~1100nm范围内,因此,在一些文献中常把这段短波近红外区域称为Herschel区。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 300px height: 389px " src=" https://img1.17img.cn/17img/images/201908/uepic/b75f5ce8-1b56-4da0-8121-0fff654f330e.jpg" title=" 01.jpg" alt=" 01.jpg" width=" 300" height=" 389" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图1 赫歇耳发现红外辐射实验的示意图 /strong /p p   巧合的是,第一次测量近红外吸收谱带的人是赫歇耳的儿子John Herschel,1840年他设计了一个巧妙的实验,将经玻璃棱镜色散后的太阳光照射到乙醇上,用黑色多孔纸吸收乙醇蒸气,然后通过称重方法来测定乙醇的蒸发速度。1881年英国天文学家阿布尼(W Abney)和E R Festing用Hilger光谱仪以照相的方法拍摄下了48个有机液体的近红外吸收光谱(700~1200nm),发现近红外光谱区的吸收谱带均与含氢基团有关(例如C-H、N-H和O-H等),并指认出了乙基和芳烃的C-H特征吸收位置。1889年瑞典科学家K Angstrem采用NaCl材料的棱镜和辐射热测量计作检测器,首次证实尽管CO和CO sub 2 /sub 都是由碳原子和氧原子组成,但因为是不同的气体分子而具有不同的红外光谱。这个试验最根本的意义在于它表明了红外光谱吸收产生的根源是分子而不是原子,整个分子光谱学科就是建立在这个基础上的。 /p p   上述这些原始性的科学发现都是在诺贝尔奖设立前完成的,诺贝尔奖设立时间是1900年6月,首次颁发是1901年12月。 /p p   直到上世纪六十年代,近红外光谱都没有得到较好的应用,主要是它的吸收非常弱,且谱带宽而交叠严重,依靠传统的光谱定量(单波长的朗伯-比尔定律)和定性分析(官能团的特征吸收峰)方法很难对其进行应用,一度被称为光谱中的“垃圾箱”(The garbage bin of spectroscopy)。相比较而言,近红外光谱两端的外延区域(紫外-可见光谱和中红外光谱)在这段时间内却得到了快速发展。 /p p   一些影响分子光谱分析的理论或技术,也都是在此期间(1900~1960)提出或发明的。例如,1912年丹麦物理化学家N Bjerrum 提出HCl 分子的振动是带负电的Cl原子核与带正电的H原子之间的相对位移,分子的能量由平动、转动和振动组成,以及转动能量量子化的理论,该理论被称为旧量子理论或者半经典量子理论。同年,F E Fowle用近红外光谱吸收谱带测定空气湿度,这可能是近红外光谱首次用于定量分析。1927年美国加州大学的J W Ellis观测到有机化合物近红外光谱中750nm、820nm、900nm、1000nm、1200nm、1400nm、1700nm、2200nm的吸收峰与C-H键相关,并指出3400nm处的为基频吸收峰,1700nm和1200nm处的分别为一级和二级倍频吸收峰,2300nm和1400nm分别为6800nm与3400nm、1400nm的合频吸收峰。1928年美国加州大学的F S Brackett利用1200nm谱带可以鉴别多个不同的化合物,并指认1190nm、1220nm和1230nm分别为-CH3、-CH2和-CH的吸收谱带。 /p p   1924年法国科学家J Lecomte首次提出分子指纹图谱的概念,发现中红外光谱可以识别同分异构体(如所有的辛烷异构体)。这一发现为二次世界大战期间,将中红外光谱用于分析性质相似的碳氢燃料以及橡胶产品提供了重要信息,人们真正认识到了中红外光谱的实用价值。1930年Mecke提出了表示分子振动的符号,如ν表示键伸缩振动,δ表示键角弯曲振动,γ表示面外弯曲振动,并对谱带的归属进行了研究,这些符号沿用至今。 /p p   为描述紫外-可见区测定无机颗粒物质漫反射光谱时的光学行为,P Kuhelka和 F Munk于1931年提出了K-M理论,其理论基础是假设光的多重散射,即反射被观察到之前,已在系统内由一个粒子到另一个粒子进行了多次反射。1933年,H Hotelling写出了关于主成分分析(PCA)的经典论文, 1936年,P C Mahalanobis提出了计算马氏距离的方法,后来PCA和马氏距离被广泛用于近红外光谱多元定性分析。 /p p   1942年,用于中红外气体分析的怀特池(White Cell)被发明,使得中红外光谱在气体分析中逐渐得到广泛应用。二次世界大战前的1939年世界仅有几十台中红外光谱仪,但到1947年世界已有500余台红外光谱仪在工作,中红外光谱已成为分子结构的分析的主要手段。1945年美国Beckmam公司推出世界上第一台成熟的紫外可见分光光度计商品仪器,仪器稍加改动便可以测定近红外区域的光谱了。二次世界大战还加速了1930年研制出的硫化铅检测器的发展,使其成为非常灵敏的商品化检测器,用于近红外区1~2.5μm波长范围的测量。1950年左右,干涉滤光片在光谱仪器中得到了应用,基于几个特定波长的红外滤光片式在线过程仪器相对独立地出现了,主要用于气体、水分和湿度的分析,这类仪器的应用延续至今。1955年左右,美国IBM公司已开发出Fortran语言,这是第一个结构化和科学化的计算机语言。1960年左右,Fahrenfort和Harrick发明了红外衰减全反射(ATR)测量附件,可直接测量一些特殊样品的红外光谱,显著扩展了红外光谱的应用范围。 /p p   尽管上述的理论和技术都有鲜明的原创性,也对后来的分子光谱技术产生了很大影响,但都与诺贝尔奖无缘,这些理论和技术或许算不上重大的发现或发明吧。 /p p   上世纪四五十年代,也有将近红外光谱用于定量分析的报道,包括测定环氧化合物官能度、聚合物和酚醛塑料不饱和度、化合物的羟基、药物的水分等,例如,英国化学工业公司(ICI)Harry Willis不仅采用近红外光谱表征聚合物的结构,还采用近红外光谱测量聚合物薄膜的厚度。但上述这些研究和应用从严格意义上讲都不属于现代近红外光谱分析技术,都是沿用传统的中红外光谱官能团解析和朗伯-比尔定律的定性和定量分析路线。 /p p   现代近红外光谱分析技术是从Dr. Karl H. Norris的工作开始的。 /p p strong   二、Dr. Karl H. Norris的贡献 /strong /p p   Dr. Karl Norris是美国农业部研究中心(马里兰州贝茨维尔市)的一位工程师。1949年他曾用自己改造的Beckmam DU紫外光谱仪通过透射测量方式对鸡蛋的新鲜度进行研究,发现750nm处的吸收峰为水中OH基团的倍频吸收。这或许是第一张复杂混合物(天然产物)的近红外光谱,所以很多介绍近红外光谱发展史的文章中都会引用这张图(见图2)。遗憾的是因当时条件和技术所限,没有建立光谱与鸡蛋品质之间的关系,只能靠蛋壳的颜色开发出了鸡蛋自动筛选设备,这项工作得到了时任美国总统Dwight D. Eisenhower的关注(见图3)。Karl Norris通过这项研究还发现水果和蔬菜在700~800nm有明显的吸收谱带,这对Karl Norris之后开发近红外无损果品品质分析仪(例如苹果的水心病等)埋下了伏笔(见图4)。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 346px " src=" https://img1.17img.cn/17img/images/201908/uepic/54b74d3d-7d4b-4ba5-a8b1-e7df3ea6bdd5.jpg" title=" 02.jpg" alt=" 02.jpg" width=" 500" height=" 346" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图2 鸡蛋随时间变化的吸收光谱图 /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 401px " src=" https://img1.17img.cn/17img/images/201908/uepic/918f91a2-f561-4b74-82e0-31a2915f6589.jpg" title=" 03.jpg" alt=" 03.jpg" width=" 500" height=" 401" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图3 1953年D D Eisenhower总统参观Karl Norris研制的鸡蛋自动筛选设备 /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 346px " src=" https://img1.17img.cn/17img/images/201908/uepic/73f9c7ca-f06c-4909-aead-a7dedf4b2a85.jpg" title=" 04.jpg" alt=" 04.jpg" width=" 500" height=" 346" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图4 Karl Norris与Neotec公司研制的近红外内部品质分析仪 /strong /p p   Karl Norris真正开始近红外光谱技术的研究是1960年从测定种子中的水分开始的,早期的思路也是基于朗伯-比尔定律的,例如测定种子甲醇提取物中的水分,后来又将粉碎的谷物与四氯化碳混合成浆,以减少光的散射,他们找到了透射光谱中两个波长(1.94μm和2.08μm)吸光度之间差值与水含量之间的一元二次多项式定量关系,获得了满意的结果。这个差值光谱的概念对Karl Norris影响很深,之后滤光片仪器波长的筛选和导数光谱消除颗粒等影响都源于此。但是,当实际应用推广时,发现四氯化碳有毒,且这种方法操作起来也相对繁琐,用户不接纳。没有四氯化碳做稀释剂,无法实现光谱的透射测量,Karl Norris开始尝试采用反射方式,他们买来了当时最好的Cary 14光谱仪。但这台仪器的性能并不能满足他们的需求,例如测量速度慢(20min才能得到一张光谱),没有合适的反射测量附件(尽管也有积分球,但信噪比很差),样品仓太小无法适合样品的无损分析等。在随后的多年中,随着电子技术的进步,Karl Norris与他的合作者不断对其进行了改造(见图5),包括样品仓、光路系统(将双光路变为单光路)、电子器件、A/D转换板、检测器和计算机等。 span style=" color: rgb(255, 0, 0) " strong 正是在这台被称为“The Norris Machine”的光谱仪上,Karl Norris开启了现代近红外光谱分析技术的大门。 /strong /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 384px " src=" https://img1.17img.cn/17img/images/201908/uepic/f1619571-5833-423b-b460-6684cfca33f5.jpg" title=" 05.jpg" alt=" 05.jpg" width=" 500" height=" 384" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图5 Karl Norris与他主持改造后的Cary 14光谱仪(1957年和1988年) /strong /p p   首先,Karl Norris创造性地将传统光谱分析中的吸光度(A=log1/T)用log1/R代替,这明显不符合朗伯-比尔定律,没有任何理论基础,受到当时大多数光谱学家和化学家的质疑。值得庆幸的是Karl Norris不是光谱学家,他是一位农业工程师,以解决实际应用问题为研究导向。Karl Norris的结果却是非常积极,log1/R与水分存在较强的相关关系。随着研究的深入,他们发现两波长测量谷物水分时会受样品中其他成分的干扰,例如小麦中的蛋白质,大豆中的油脂等。Karl Norris又创新性地将多个波长的吸光度通过多元线性回归(MLR)方法建立预测方程,显著提高了预测谷物水分的准确度。之后很短的时间内,Karl Norris意识到近红外光谱还可以测量这些干扰物的含量,例如蛋白质、油分含量等。经过Norris的努力,筛选出了6个关键波长(1680nm、1940nm、2100nm、2230nm、2310nm),这为随后开发商品化的滤光片仪器奠定了坚实的基础(见图6)。为了降低颗粒粒度对漫反射光谱的影响,Karl Norris采用导数方法对光谱进行处理,并提出了“Karl Norris滤波”方法,这种光谱预处理方法当时在光谱学中较少使用。 /p p    span style=" color: rgb(255, 0, 0) " strong Karl Norris所做的上述工作被认为是现代近红外光谱技术的开端,其已具备了现代近红外光谱技术的显著特征:整粒谷物无损分析、分析速度快、基于光谱预处理和多元校正的多物性参数同时分析,建标样本为实际样本等。值得注意的是,与传统分析技术相比,近红外光谱从创始起就存在着两个显著特点:(1)推崇不对样品进行处理,以附件的形式解决不同形态样品的测量问题 (2)推崇不将样品带到仪器旁边,而将仪器带到样品旁边(即现场分析和在线分析)。这两个特点对影响分析技术的发展是深远的。 /strong /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 407px " src=" https://img1.17img.cn/17img/images/201908/uepic/37802891-a429-40c4-8bd3-a316c16795b5.jpg" title=" 06.jpg" alt=" 06.jpg" width=" 500" height=" 407" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong   图6 1968年Karl Norris操作首台4个滤光片的大豆近红外分析仪样机(最初是基于粉碎大豆与四氯化碳混合成浆的透射测量方式,后来改为漫反射测量方式) /strong /p p   Karl Norris的另一项贡献是在他的指导下,DICKEY-john和Neotec两家公司于上世纪七十年代初,基于滤光片技术首次开发出了商品化的近红外光谱谷物专用分析仪,这是近红外光谱技术发展过程的一个重要里程碑。之后,滤光片型的仪器也进行了较多改进,针对不同的测量对象(例如草料和烟草等)选取不同波长的滤光片、增加滤光片的数量、温度控制、光学系统密封以适应恶劣的现场环境等,但Karl Norris提出的仪器本质的特征没有改变。DICKEY-john公司生产的GAC Model 2.5AF和Neotec公司生产的GQA Model 31成为上世纪70年代中期主力的近红外谷物快速分析仪器。这些仪器在实际应用中,发挥了很大的作用,在很大程度上推动了近红外光谱技术的发展。例如,在加拿大Phil Williams通过必要的改进,将这类近红外谷物分析仪(起初是Neotec Model I仪器)用于小麦出口区快速测定蛋白质的需求。因为贸易商愿意为高蛋白质含量的小麦付更多的钱,这样交易量大的贸易商,通过近红外分析仪经几次交易赚得钱,就能够购买一台近红外分析仪。因此,数百台这样的仪器进入大型粮仓和出口区,同时一些面粉厂、大豆加工厂和食品生产厂等也开始使用近红外分析仪。进入上世纪70年代末期,光栅扫描型近红外光谱分析仪开始出现,其关键技术都是以“The Norris Machine”为原型样机(雏型)研制的,例如Neotec Model 6100和Tchnicon InfraAlyzer 500等。 /p p   1975年,加拿大谷物委员会(Canadian Grain Commission,CGC)将近红外方法规定为蛋白质检测的官方方法。1978年,美国农业部联邦谷物检验服务中心(USDA,FGIS-Federal Grain Inspection Service)也为其所有的小麦出口基地购置了近红外分析仪,1980年FGIS采纳该方法作为官方指定的测定小麦蛋白质的标准方法。1982年美国谷物化学家协会(American Association of Cereal Chemists,AACC)正式批准了该方法(AACC No.39-00)。 span style=" color: rgb(255, 0, 0) " strong 2009年Phil Williams在匹兹堡沃特斯论坛上讲到,全球约90%小麦的贸易是基于整粒谷物近红外分析仪检测蛋白质含量进行的(Today, Phil Williams estimates that over 90% of wheat world-wide is sold on the basis of protein testing by whole-grain NIRS instruments)。有文献报道,加拿大采用近红外光谱技术后(主要是对农作物的管理),稻米的产量每公顷提高约0.6吨,小麦的产量提高约1.1吨,小麦蛋白质含量提高约1%(The success of NIR-based tissue testing services is substantial, being estimated to enhance yields of rice by 0.6 tonne ha–1and wheat yields by 1.1 tonnes ha–1. NIR spectroscopy has also helped producers raise the protein content of wheat grain by 1% protein)。 /strong /span /p p span style=" color: rgb(255, 0, 0) " strong   Karl Norris的工作,尤其是“The Norris Machine”迅速得到农业领域的关注,在上世纪七十年代,一些美国本土和国际同行纷至沓来,Karl Norris以无私、大度、开放的科学家精神,将他的研究成果毫无保留地传授给每位来访的学者,并与他们进行深入合作。毋庸置疑,Karl Norris的实验室成为了培养现代近红外光谱分析大师的摇篮,“The Norris Machine” 也成为名副其实的“Master Instrument”。这期间在Karl Norris实验室进行访问的学者有:美国宾州的John Shenk,美国北卡州的W Fred McClure,加拿大的Phil Williams,日本的Mutsuo Iwamoto,匈牙利的Karoly Kaffka等等。 /strong /span 这些学者后来都成为近红外光谱分析技术的卓越践行者和强有力推动者,他们参照Karl Norris的模式纷纷研发仪器、开发软件和推广应用。例如John Shenk在美国建立了第一个近红外光谱草料分析网络,并开发了著名的化学计量学软件DOSISI和WinISI Mutsuo Iwamoto回到日本后,在他的带领和影响下,近红外光谱技术在日本得到了广泛的应用,日本在上世纪八十年代末期就基于近红外光谱开发出果品品质自动分选装置,并得到了广泛推广应用。上世纪九十年代Karl Norris在日本静冈参观了Mitsui公司研制的果品近红外在线分选装置(图7),曾感叹说:“My dream has come true in Japan”。可见,Karl Norris在培育国际近红外大师这一方面的贡献无疑是巨大的。 /p p span style=" color: rgb(255, 0, 0) " strong   在Karl Norris的带领下,开创现代近红外光谱技术并取得成功应用的是农业工程师、农学家和动物营养家等,而不是物理学家、化学家和光谱学家,这与其他光谱技术的发展道路是截然不同的。 /strong /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 390px " src=" https://img1.17img.cn/17img/images/201908/uepic/2ce59b3e-c11f-4517-8fe6-20d24847a29e.jpg" title=" 07.jpg" alt=" 07.jpg" width=" 500" height=" 390" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图7 Karl Norris在日本参观过的Mitsui公司研制的果品近红外在线分选装置 /strong /p p   Karl Norris的工作也对我国产生了间接影响,我国的近红外光谱技术也是从农业领域的研究和应用开始的。上世纪七十年代后期我国科研人员通过Karl Norris等人的学术论文、仪器厂商的宣传、以及到日本等国家的考察学习开始认识近红外光谱技术(图8)。早在八十年代初期中国农科院吴秀琴老师和长春光机所陈星旦院士就开始合作研制滤光片型的近红外光谱分析仪,并取得了成功。这之后,严衍禄教授组建了中国农业大学近红外光谱分析实验室,开始了近红外光谱在农业领域的系统研究,他们的研究成果集中发表在1990年《北京农业大学学报》增刊上。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 339px " src=" https://img1.17img.cn/17img/images/201908/uepic/e1ba8853-96e4-4f72-a072-7edfb406c351.jpg" title=" 08.png" alt=" 08.png" width=" 500" height=" 339" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图8 我国早期开始关注近红外光谱技术的文献 /strong /p p   在上世纪六七十年代,Karl Norris等人的近红外光谱分析研究工作并未获得光谱界的认可。一度被光谱学家和化学家认为是“Black Magic”。Karl Norris为促进近红外光谱获得当时一些光谱学家的支持做了很多工作。Karl Norris在从事近红外光谱分析谷物研究初始,就找到美国著名的光谱学家Tomas Hirschfeld寻求帮助,但当时Karl Norris的研究工作并未得到Tomas Hirschfeld的支持,因为从传统光谱学来看,近红外光谱没有任何优势。但是,Karl Norris与Tomas Hirschfeld的交往并没有因此而终止,Karl Norris取得一些进展后,都会与Tomas Hirschfeld进行沟通交流,最终使Tomas Hirschfeld从近红外光谱的强烈反对者变为近红外光谱的强烈支持者。这一时期开始支持近红外光谱技术的光谱学家还有Peter Griffiths和Bill Fateley等人。这些光谱学家的加入,对近红外光谱技术理论体系的形成起到了重要的作用。例如,1985年Tomas Hirschfeld通过巧妙的实验设计,找到了近红外光谱可以预测水中氯化钠含量的光谱信息依据(图9)。1984年,在Tomas Hirschfeld的倡导下,美国材料与试验协会(ASTM)成立了近红外光谱工作组(E13.03.03),研究近红外光谱技术的标准方法问题。 /p p   令人惋惜的是,Tomas Hirschfeld英年早逝(1939-1986),但是他对近红外光谱的贡献被大家一直记得。在Karl Norris等人的倡议下,国际近红外光谱学会在上世纪八十年代末设立了“Tomas Hirschfeld Award”,表彰在近红外光谱领域做出突出贡献的科学家,截至2019年已有30位获此荣誉。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/4a48c389-3bc3-4217-9043-14d1a184efff.jpg" title=" 09.jpg" alt=" 09.jpg" / /p p style=" text-align: center " strong 图9 NaCl浓度对水近红外光谱的影响 /strong /p p   1974年瑞典化学家S Wold和美国华盛顿大学的B R Kowalski教授创建了化学计量学学科(Chemometris)。化学计量学是将数学、统计学、计算机科学与化学结合而形成的化学分支学科,其产生的基础是计算机技术的快速发展和分析仪器的现代化。据报道,1981年PC机全球销量为三十万台,但到1982年就激增至三百万台。计算机使仪器的控制实现了自动化,且更加精密准确,同时使数据矩阵计算变得相对简单了,可以用来处理更为复杂的定量或定性程序。遗憾的是,化学计量学产生初期并没有与近红外光谱在农业中的应用结合起来。是Karl Norris的不懈努力使化学计量学家逐渐重视这一技术,为近红外光谱技术的崛起起到了推波助澜的作用。一些基于主成分分析的化学计量学方法开始被大家所采用,如主成分回归和偏最小二乘等,这显著提高了近红外光谱分析结果的准确性和可靠性,这也是近红外分析理论体系的重要组成部分,使其基本达到了理论与实践的统一。在上世纪九十年代中期,人工神经网络方法已经出现在用于近红外光谱分析的化学计量学商品化软件中。 /p p   1984年,T Hirschfeld与B R Kowalski在美国《Science》杂志上发表了题为“Chemical Sensing in Process Analysis”的文章,文中多次提到近红外光谱技术。同年,MathWorks公司成立,正式把Matlab推向市场。也是在1984年,B R Kowalski受美国国家科学基金会(NSF)和21家企业共同资助,在美国华盛顿大学建立了过程分析化学中心(Center for Process Analytical Chemistry,CPAC),后更名为过程分析与控制中心(Center for Process Analysis and Control,CPAC)。该研究中心的核心任务是研究和开发以化学计量学为基础的先进过程分析仪器及分析技术,使之成为生产过程自动控制的组成部分,为生产过程提供定量和定性的信息,这些信息不仅用于对生产过程的控制和调整,而且还用于能源、生产时间和原材料等的有效利用和最优化,近红外光谱是其中一项关键的技术。与CPAC合作的这些企业都是当时化工和石化等领域知名的大企业,这意味着近红外光谱技术已开始从农业应用领域转向工业过程分析领域。其中一项划时代的创新技术是利用近红外光谱测定汽油的辛烷值,它可以在很多场合替代传统大型的马达机测试仪器(图10)。与此同时,一些知名的仪器制造商也开始研制新型的近红外光谱仪器,近红外光谱仪器市场和应用研究从此开始呈现出百花齐放的局面。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 246px " src=" https://img1.17img.cn/17img/images/201908/uepic/85a20100-29a6-4c0b-a551-cdcd5e3a4ece.jpg" title=" 10.jpg" alt=" 10.jpg" width=" 500" height=" 246" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图10 传统测定汽油辛烷值的马达机与CPAC研制的近红外辛烷值分析仪 /strong /p p   另外,Dr. Karl H. Norris还是将近红外光谱技术用于医学领域的先行者之一,始终从事和指导近红外光谱在这一领域的研究和应用工作。 /p p strong   三、与近红外光谱相关的诺贝尔奖 /strong /p p   下面介绍几个与近红外光谱技术相关的诺贝尔奖。 /p p   迈克尔逊干涉仪是1883年美国物理学家迈克尔逊(Albert Abraban Michelson)和莫雷(Edward Williams Morley)合作,为研究“以太”而设计制造出来的精密光学仪器。实验结果否定了“以太”的存在,动摇了经典物理学的基础,为狭义相对论的建立铺平了道路。因发明精密光学仪器和借助这些仪器在光谱学和度量学的研究工作中所做出的贡献,迈克尔逊被授予了1907年度诺贝尔物理学奖。目前,迈克尔逊干涉仪目前被广泛应用于近红外光谱仪器和中红外光谱仪器。 /p p   2017年诺贝尔物理学奖授予3位美国科学家Rainer Weiss、Barry C. Barish和Kip S. Thorne,获奖理由是“对LIGO探测器和引力波观测的决定性贡献”。LIGO全称“激光干涉引力波天文台(Laser Interferometer Gravitational-Wave Observatory)”。该项目的成就在于,当引力波到达地球时,两台大型激光干涉仪成功地检测到了比原子核还要小数千倍的细微变化(导致的空间变化程度最大值为10 sup -21 /sup ,相当于1亿千米的长度内产生一个原子大小(10 sup -10 /sup 米)的变化)。LIGO的干涉仪是迈克尔逊干涉仪在18世纪80年代的巨型版本,创新性的技术和工程将LIGO的干涉仪延伸到1120公里,使LIGO的干涉仪比迈克尔逊所使用的大144000倍,以保证有足够的灵敏度检测到引力波。2015年9月14日,LIGO探测器首次捕获到宇宙中的引力波,这次的引力波信号由两个黑洞相互碰撞而产生,经过了13亿光年才到达地球。 /p p   1922年诺贝尔物理学奖授予丹麦哥本哈根的尼尔斯· 玻尔(Niels Bohr,1885-1962),以表彰他在研究原子结构,特别是在研究原子发出的辐射方面所作的贡献。玻尔综合了普朗克的量子理论、爱因斯坦的光子理论和卢瑟福的原子模型,提出了新的定态跃迁原子模型理论,即后来被称玻尔理论,这理论成功地解释了氢光谱并排出了新的元素周期表。玻尔建立的原子量子论,打开了人类认识原子结构的大门,为近代物理研究开辟了道路。量子力学这一近代物理学大厦的基础,是以玻尔为领袖的一代杰出物理学家集体才华的结晶,包括1929年获得诺贝尔物理学奖的德布罗意(电子的波粒二象性理论)、1932年获得诺贝尔物理学奖的海森堡(矩阵力学)、1933年获得诺贝尔物理学奖的薛定谔(波动力学)、1945年获得诺贝尔物理学奖的泡利(泡利不相容原理)等。玻尔提出的能级跃迁理论至今仍在原子和分子光谱领域中得到广泛使用。 /p p   1964年诺贝尔物理学奖授予美国的汤斯(Charles H.Townes)、前苏联的巴索夫(Nikolay G.Basov)和普罗霍罗夫(Aleksandr M.Prokhorow),以表彰他们从事量子电子学方面的基础工作,这些工作导致了基于微波激射器和激光原理制成的振荡器和放大器。1960年美国加利福尼亚州休斯实验室的科学家梅曼宣布成功的研制了世界上第一台红宝石激光器,获得了波长为0.6943微米的激光,这是人类有史以来获得的第一束激光,梅曼因而也成为世界上第一个将激光引入实用领域的科学家。激光器的发明是20世纪科学技术有划时代意义的一项成就。自激光器发明后,激光理论、激光器件、激光应用各方面的研究广泛开展,各种激光器也如雨后春笋一般涌现,激光科学成果累累,已成为影响人类社会文明的又一重要因素。 /p p   印度物理学家拉曼(Chandrasekhara Venkata Raman, 1888-1970),因光散射方面的研究工作和拉曼效应的发现,获得了1930年度的诺贝尔物理学奖。受散射光强度低的影响,拉曼光谱经历30年的应用发展限制期。直到1960年后,激光技术的兴起,拉曼光谱仪以激光作为光源,光的单色性和强度显著提高,拉曼散射信号强度得以提高,拉曼光谱技术才得到迅速发展。1980年后,探针共焦激光拉曼光谱仪的成功研制,大大扩展了拉曼光谱的应用范围,出现了像共焦显微拉曼光谱技术、傅里叶变换拉曼光谱技术、表面增强拉曼光谱技术、激光共振拉曼光谱技术、光声拉曼技术、高温高压原位拉曼光谱技术等,使得拉曼光谱被广泛应用于物理、化学、医药、工业等各个领域。 /p p   1969年,贝尔实验室的科学家Willard S. Boyle和George E. Smith发明了第一个数字影像传感器技术:电荷耦合器件(CCD)。CCD的应用范围甚广,如数字相机、手机,影响了社交媒体和视讯共享革命的发展。据报道,2009年,CCD一年出货量达13亿颗。这两位技术发明人在2009年获颁诺贝尔物理奖,以表扬他们在数字成像领域的贡献。CCD作为阵列检测器,在光谱仪上的应用也十分广泛。 /p p   被誉为“光纤之父”的高锟(Charles Kao)获得2009年诺贝尔物理学奖。1966年高锟在一篇论文中首次提出用玻璃纤维作为光波导用于通讯的理论。简单地说,就是提出以玻璃制造比头发丝更细的光纤,取代铜导线作为长距离的通讯线路。这个理论引起了世界通信技术的一次革命。1970年,美国康宁公司研制出损耗为20dB/km的光纤,使光在光纤中进行远距离传输成为可能,光纤通信新纪元自此拉开序幕。现阶段光纤通信可实现同时传输24万路的信号,其容量比微波通信增加一千倍。而且,在确保通信质量的前提下,普通电缆或微波通信的中继距离为1.5~60公里,而现阶段光纤可实现2000~5000公里的无中继传输。光纤除用于通讯领域外,还在医学、传感器和光谱仪中得到广泛应用。没有光纤,在线近红外光谱技术在工业中的应用也不会像如今这样广泛。 /p p   与发射单一频率的传统激光器不同,频率梳光源可同时发射多个频率,均匀间隔以类似于梳齿的谱线,它可覆盖从太赫兹到紫外可见较宽频率的光。光学频率梳已经成为继超短脉冲激光问世之后激光技术领域又一重大突破。在该领域内,开展开创性工作的两位科学家J. Hall和T. W. Hansch于2005年获得了诺贝尔奖。光梳相当于一个光学频率综合发生器,是迄今为止最有效的进行绝对光学频率测量的工具,可将铯原子微波频标与光频标准确而简单的联系起来,为发展高分辨率、高精度、高准确性的频率标准提供了载体,也为精密光谱、天文物理、量子操控等科学研究方向提供了较为理想的研究工具,逐渐被人们运用于光学频率精密测量、原子离子跃迁能级的测量、远程信号时钟同步与卫星导航等领域中。 /p p    strong 四、结束语 /strong /p p   原创性是诺贝尔科学奖的奖励宗旨,原始性创新就是向科学共同体贡献出以前从未出现过、甚至连名称都没有的东西,包括重大科学发现、理论突破、技术和方法的发明等。拉曼效应属于科学发现,激光和光纤属于理论突破,迈克尔逊干涉仪和频率梳属于技术发明,这些都是重大的原始性创新工作,其贡献也是巨大的,无容置疑。 /p p   当然,诺贝尔奖也有无奈和尴尬,例如1948年的诺贝尔医学奖授予发明剧毒有机氯杀虫剂DDT(二氯二苯三氯乙烷)的瑞士化学家米勒。DDT能够有效地杀除蚊虫、控制疟疾蔓延,但是DDT很难降解,毒性残留时间长,世界各国现已明令禁止生产和使用。再例如,一些重大的发现和发明没有获得诺贝尔奖,提出元素周期表的德米特里· 门捷列夫,发明电灯泡的托马斯· 爱迪生,提出黑洞死亡理论的史蒂芬· 霍金,爱因斯坦虽然获得了诺贝尔奖,可是他提出的划时代意义的相对论并不是获奖的理由,等等。 /p p   Karl Norris的研发工作和成果对近红外光谱技术的贡献是巨大的,也是原创性的,对分析技术的进步(包括对过程控制技术的进步)也是革命性的。Karl Norris是近红外光谱技术的开拓者,是名副其实的“近红外光谱之父”。没有Karl Norris,人们可能会在近红外光谱技术探索之路的黑暗期中徘徊更长的时间,也或许这个“沉睡者”永不被唤醒,永不会成为分析技术家族中的“巨人”。Karl Norris遗憾与诺贝尔奖失之交臂,但这丝毫不影响Karl Norris的伟大,也不影响近红外光谱技术的伟大。 /p p   世上可以没有诺贝尔奖,但是却不能没有Karl Norris这位科学家,也不能没有近红外光谱这项分析技术。 /p p   谨以此文悼念Dr. Karl H. Norris! /p p strong span style=" font-family: 楷体, 楷体_GB2312, SimKai "   参考文献 /span /strong /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   1 W F McClure. 204 Years of near Infrared Technology: 1800–2003. Journal of Near Infrared Spectroscopy,2003,11(6):487~518 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   2 F E Fowle. The Spectroscopic Determination of Aqueous Vapor. Astrophysical Journal,1921,35(3):149~162 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   3 K H Norris. Early History of near Infrared for Agricultural Applications. NIR news,1992,3(1):12~13 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   4 T Davies. Happy 90th Birthday to Karl Norris, Father of NIR Technology. NIR news,2011,22(4):3~16 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   5 S Kawano. Past, present and future near infrared spectroscopy applications for fruit and vegetables. NIR news,2016,27(1):7~9 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   6 G Batten. An appreciation of the contribution of NIR to agriculture. Journal of Near Infrared Spectroscopy,1998,6(1):105~114 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   7 R D Rosenthal,D R Webster. On-line system sorts fruit on basis of internal quality. Food Technol,1973,27(1):52~56, 60 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   8 K H Norris,P C Williams. Optimization of Mathematical Treatments of Raw Near-Infrared Signal in the Measurement of Protein in Hard Red Spring Wheat. I. Influence of Particle Size. Cereal Chem,1984,61(2):158~165 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   9 K H Norris. When Diffuse Reflectance Became the Choice for Compositional Analysis. 1993,4(5):10~11 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   10 G L Bosco,l James. waters symposium 2009 on near-infrared spectroscopy. Trends in Analytical Chemistry,2010,29(3):197~208 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   11 T Davies. The history of near infrared spectroscopic analysis: Past, present and future - & quot From sleeping technique to the morning star of spectroscopy& quot . Analusis,1998,26(4):17~19 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   12 J S Shenk. Early History of Forage and Feed Analysis by NIR 1972–1983. NIR news,1993,4(1):12~13 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   13 F EBarton II. Near Infrared Equipment through the Ages and into the Future. NIR news,2016,27(1):41~44 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   14 T Davies. NIR Instrumentation Companies: The Story So Far. NIR news,1999,10(6):14~15 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   15 K H Norris. NIR is Alive and Growing. NIR news,2005,16(7):12 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   16 K H Norris. NIR-spectroscopy From a small beginning to a major performer. Cereal Foods World,1996,41(7):588 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   17 K J Kaffka. Near Infrared Technology in Hungary and the Influence of Karl H. Norris on Our Success. Journal of Near Infrared Spectroscopy,1996,4(1):63~67 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   18 M Iwamoto,S Kawano,Y Ozaki. An Overview of Research and Development of near Infrared Spectroscopy in Japan. Journal of Near Infrared Spectroscopy,1995,3(4):179~189 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   19 K H Norris. History of NIR. Journal of Near Infrared Spectroscopy,1996,4(1):31~37 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   20 P Geladi,E Då bakk. An Overview of Chemometrics Applications in near Infrared Spectrometry. Journal of Near Infrared Spectroscopy,1995,3(3):119~132 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   21 J J Workman. A Review of Process near Infrared Spectroscopy: 1980–1994. Journal of Near Infrared Spectroscopy,1993,1(4):221~245 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   22 A M C Davies. The History of near Infrared Spectroscopy 1. The First NIR Spectrum. NIR news,1991,2(2):12 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   23 R Miller. Professor Harry Willis and the History of NIR Spectroscopy. NIR news,1991,2(4):12~13 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   24 K B Whetsel. The First Fifty Years of Near-Infrared Spectroscopy in America. NIR news,1991,2(3):4~5 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   25 K B Whetsel. American Developments in near Infrared Spectroscopy (1952–70) . NIR news,1991,2(5):12~13 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   26 D Miskelly,J Ronalds,D M Miskellya,J A Ronaldsb. Twenty-One Years of NIR in Australia: A Retrospective Account with Emphasis on Cereals. NIR news,1994,5(2):10~12 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   27 B Osborne. Twenty Years of NIR Research at Chorleywood 1974–1993. NIR news,1993,4(2):10~11 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   28 F E Barton II. Progress in near Infrared Spectroscopy: The People, the Instrumentation, the Applications. NIR news,2003,14(2):10~18 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   29 P C Williams. The Phil William& #39 s Episode. NIR news,1992,3(2):3~4 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   30 P E K Donaldson. In Herschel& #39 s Footsteps. NIR news,2000,11(3):7~8 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   31 K I Hildrum,T Isaksson. Research on near Infrared Spectroscopy at MATFORSK 1979–1992. NIR news,1992,3(3):14 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   32 C Paula,J M Montesb,P Williams. Near Infrared Spectroscopy on Agricultural Harvesters: The Background to Commercial Developments. NIR news,2008,19(8):8~11 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   33 G D Battena,A B Blakeneyb,S Ciavarellaca,V B McGratha. NIR Helps Raise Crop Yields and Grain Quality. NIR news,2000,11(6):7~9 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   34 J Reeves III,S R Delwiche. Near Infrared Research at the Beltsville Agricultural Research Center (Part 1): Instrumentation and Sensing Laboratory. NIR news,2005,16(6):9~12 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   35 J Reeves III. Near Infrared Research at the Beltsville Agricultural Research Center (Part 2) . NIR news,2005,16(8):12~13 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   36 I Foskett. The Art and Science of Interference Filters. NIR news,1993,4(1):3~5 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   37 R F Goddu. Determination of Unsaturation by Near-Infrared Spectrophotometry. Analytical Chemistry,1957,29(12):1790~1794 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   38 R L Meeker,F E Critchfield,E T Bishop. Water determination by near infrared spectrophotometry. Analytical Chemistry,1962,34(11):1510~1511 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   39 R T O’Connor. Near-infrared absorption spectroscopy—a new tool for lipid analysis. Journal of the American Oil Chemists& #39 Society,1961,38(11)641~648 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   40 W A Patterson. Non-Dispersive Types of Infrared Analyzers for Process Control. Applied Spectroscopy,1952,6(5):17~23 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   41 J R Hart,C Golumbic,K H Norris. Determination of moisture content if seeds by near-infrared spectrophotometry of their methanol extracts. Cereal Chem,1962,39(2):94~99 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   42 K B Whetsel. Near-Infrared Spectrophotometry. Applied Spectroscopy Reviews,1968,2(1):1~67 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   43 J A Jacquez,W McKeehan,J Huss,J M Dmitroff,H F Kuppenheim. Integration Sphere for Measuring Diffuse Reflectance in the Near Infrared. J. Opt. Soc. Am.,1955,45(10):781-0 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   44 D L Wetzel. Near-Infrared reflectance analysis sleeper among spectroscopic techniques. Analytical Chemistry,1983,55(12):1165A~1176A /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   45 F W McClure. Near-infrared spectroscopy. the giant is running strong. Analytical Chemistry,1994,66(1):43A~53A. /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   46 P Williams. John Shenk& #39 s Retirement: Some Tributes from His Friends, Colleagues and Students. NIR news,2005,16(2):6~12 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   47 P Flinn. A Giant of a Man: In Memory of John Stoner Shenk II, 1933–2011. NIR news,2011,22(7):4~5 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   48 T Davies. Karl& #39 s London Marathon. NIR news,2002,13(3):3 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   49 D W Hopkins. What is a Norris Derivative? NIR news,2001,12(3):3~5 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   50 G E Ritchie. Investigating NIR Transmittance Measurements through the Use of the Norris Regression (NR) Algorithm: Part 1: How Do We Come to “Norris Regression”? NIR news,2002,13(1):4~6 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   51 P Williams. Twenty-Five Years of near Infrared Technology—What Were the Milestones? NIR news,1997,8(1):5~6 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   52 W F McClure. Breakthroughs in NIR Spectroscopy: Celebrating the Milestones to a Viable Analytical Technology. NIR news,2006,17(2):10~11 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   53 J L Gonczy. Developments in Hungary 1970–1990. NIR news,1993,4(3):3~4 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   54 T Fearn. Chemometrics for NIR Spectroscopy: Past Present and Future. NIR news,2001,12(2):10~12 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   55 T Davies. Looking Back& #8230 Looking Forward: My Hopes for 2020. NIR news,2006,17(7):3~4 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   56 P Williams. Near Infrared Technology in Canada. NIR news,1995,6(4):12~13 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   57 T Hirschfeld,J B Callis,B R Kowalski. Chemical Sensing in Process Analysis. Science,1984,226(4672):312~318 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   58 T Hirschfeld. Salinity Determination Using NIRA. Appl. Spectrosc.,1985,39(4):740~741 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   59 D A Burns,E W Ciurczak. Handbook of Near-Infrared Analysis(Third Edition),Marcel Dekker Inc,New York,2007 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   60 M Ferrari,K H Norris,M G Sowa. Medical near Infrared Spectroscopy 35 Years after the Discovery. Journal of Near Infrared Spectroscopy,2012,20(1):vii~ix /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   61 J T Kuenstnerb,K H Norris. Spectrophotometry of Human Hemoglobin in the near Infrared Region from 1000 to 2500 nm. NIR news,1994,2(2):59~65 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   62 K H Norris. Moving NIR into the Next Century. NIR news,1999,10(1):4~5 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   63吴敏,胡高峰,姚文坡,干振华,徐达军,黄亚萍,汪长岭. 近红外光谱在医学应用方面的最新进展. 中国医疗设备,2017,32(6):109~113 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   64 薛凤家编著. 诺贝尔物理学奖百年回顾. 北京:国防工业出版社出版,2003 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   65 李丽. 时空向度的现代探索-诺贝尔物理学奖获得者100年图说. 重庆:重庆出版社,2006 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   66 郭奕玲,沈慧君. 诺贝尔物理学奖一百年. 上海:上海科学普及出版社,2002 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   67 吴润,彭蜀晋. 光谱分析方法的演变与百年诺贝尔奖. 化学教育,2014,35(16):58~64 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   68 中国仪器仪表学会近红外光谱分会. 《回望 继承 凝聚 奋进—我与近红外故事文集》,北京:化学工业出版社,2017 /span /p p style=" text-align: right "   褚小立 /p p style=" text-align: right "   2019年8月8日 /p
  • 奔赴火星的承诺:火星车设计制造中的测量工程
    奔赴火星的计量承诺   在起飞后8个月多一点,好奇号火星车在8月6日凌晨降落在那片红色的土地。采用精密的着陆技术,利用空中起重机将好奇号降落在盖尔陨坑内部的山脚下。历经近两年的时间或者称为一个火星年 — 在着陆后的主要任务是研究火星是否适合微生物生存,包括适合生存的化学成分。   在好奇号火星车翱翔太空之前,为了完成这个6个轮子、18,000磅重、小型汽车大小的好奇号火星车的制造,我们进行了大量辛苦的工作。   制造之初 好奇号火星车   对于喷射推进实验室(JPL, Pasadena, CA)来说,压力可以说是巨大的,在这里,科学家、工程师以及技术人员夜以继日的工作,为火星科学研究实验室(MSL)进行火星车巡航阶段以及下降阶段设备的设计、制造与测试。   Gerald Clark,JPL的高级质量工程师与品质保证检测服务的负责人说,MSL项目是一个银河级的原型系统,产品开发阶段涉及了数以万计的零部件。在大多数情况下,团队需要为该项目的每一个零部件制造三个及以下的部件。   第一批零部件用于各种破坏与非破坏性试验。第二批用于火星任务。一个完全一样的火星车将建造于模拟火星环境实验室,用来演练飞跃数百万英里到达火星的动作。   NASA火星实验室的成员在5月将测试火星车带到了位于加利福尼亚莫哈韦沙漠的杜蒙特沙丘。测试火星车经历了各种沙质的斜坡。   除了管理一个10人的团队、开展各种检测工作,Clark的工作还包括了评估与采购用于完成超过10,000种零件、组件、装配件验证的测量设备。   尽管MSL项目中硬件的建造方法被称为“并行工程”,对Clark和他的团队来说,这意味着“所有的事情同时发生”。   Clark过去工作于传统的军工/航天制造环境下,在那里设计、计划与制造是严格组织的。“最初,我想我们的工程师和制造人员是一帮牛仔,” Clark说。“看起来他们缺乏严格的管理。但是,退一步了解这个运行时间短、一次性制造许多零部件的环境,就会发现相对之前许多的任务,实验室是多么的成功,我觉得我是一个需要适应的人。”   整合是关键 好奇号火星车正在制造中   Clark觉得他那支精干的团队要适应令人发狂工作节奏、完成海量同时制造的零部件验证工作,关键所在是质量团队要成为专家 — 不仅是测量设备和软件应用,还需要帮助设计与制造人员实现特殊零部件的开发,并制造出符合要求的成品,绝对不存在失败的可能性。事实上,一些测量机(CMMs)和其他一些设备缺乏统一的接口,在Clark的建议下,被搬离制造现场。   今天,JPL拥有来自海克斯康计量各种尺寸的测量机,还包括配备触发测头的ROMER关节臂以及Leica激光跟踪仪,均配备来自海克斯康计量统一的PC-DMIS企业计量解决方案(EMS)软件。另外,JPL超过200个合约部件制造商以及所有独立的测量实验室可以采用不同类型的测量设备,使用同一软件完成工件的测量、产生标准化的报告。作为回报,精干的测量团队有个各种不同的选择,以配合实验室无法预测的工作节奏。   除了使用的测量设备,通用测量程序一般在JPL编制,采用脱机编程工作站在设计之初以及制造阶段。最终,这些程序被应用于并行工作的工程和制造环节,产生标准化的输出:PDF、RTF文件或者PC-DMIS数据程序文件。   在JPL,编程的第一步是将A版本的UG CAD文件以step格式导入到PC-DMIS。在这一步,工程师将与质量人员合作,明确最为重要的设计参数和适合的基准。来自检测团队的人员凭借指向与点击编程技术建立检测程序。   因为整个太空船是一个样品,设计指标直到制造已经开始了还没有确定。“我们需要制造之前从未做过的,取得之前没有的成就,”Clark说。“设计修改在整个制造与装配过程中不断的出现。”   例如,决定将一些的重要的部件精炼以减轻重量,这就导致了增加结构刚性的需要,以增强刚性质量比。这样,更改的设计与制造过程要求对关键参数和测量策略进行更改 – 这是经常要发生的事情。   当需要验证一个完工部件,设计一般需要从Rev A升级到Rev E、F甚至G。对程序的更改需要进一步咨询工程师,这样使得测量程序能够很快的更改。PC-DMIS开放的结构允许修改可以在任何地点、任何顺序进行。   每天都不平凡 好奇号主机检测   如此众多的零部件,分布于设计与制造的不同阶段,对Clark和他的同事来说难以预测每天会发生什么。“有时,你都不知道下个小时会发生什么,”Clark说。“我们80%的零部件都是由外部供应商提供。我们能够知道它们何时到位,我们提前对最复杂的工件进行编程使之不成为检测领域的瓶颈。”   JPL的计划不是以周计,而是以天甚至小时。“我们保持着持续的沟通,”Clark说。“在不同测量系统上拥有统一的软件平台帮助我们适应这变化的环境。谁测量、测量什么、在那里测量、用那台设备 - 我们经常做最后一分钟的改变。”   通过邮件远程进行源头测试。Clark最近一天内进行了三次,而一天内两次是经常的事。不用到供应商现场进行工件验收,Clark要求其制造伙伴将测量程序以及所有的数据点发邮件给他,减除CAD模型一边减小文件的大小。“我们不能承受派人出差只进行源头测试,”Clark说。“只要我们能够获得数据,PC-DMIS允许我们对任何过程进行分析,使用的基准或者相关特征的位置。拥有可分析的数据和派人到现场观察测量过程具有同等效果。我们甚至可以用这些数据回答‘如果…又怎样’这样的问题。”   “你可以在软件中随意的调整,分析发现的不符合之处,与工程师商议判定汞加纳的验收,”Clark说。“这样,我们可以远程进行源头测试认定,推荐需要的更改,并在我们的实验室进行检测工作。”   JPL购买的ROMER关节臂测量机,配备的是PC-DMIS Portable软件,并将其整合于检测团队的工作过程中,用于加工过程中的检测。只需很少的调整,用于测量机的程序也可以应用于关节臂。利用关节臂,一些工件还固定在设备上时,利用原来的基准就可以测量。   JPL还通过利用关节臂测量测量机行程范围外的特征而实现测量范围的扩展。这种测量可以通过将关节臂与测量机纳入到同一测量程序中或者是将关节臂采集的数据导入到主程序中获得。任何一种情况下,JPL都能够避免将工件送到一个独立实验室所需的时间和费用 。   当实验室需要测量的工件很大,JPL使用一台DEA龙门式测量系统,是从JPL一个加工供应商那里,利用夜班的时间租用。JPL还利用来自独立检测实验室的服务以应对测量的高峰。无论零件在那里测量,检测设备使用的都是同一测量软件,这样程序和报告在JPL检测供应商层面保持一致。   Clark说统一测量软件的最大好处在于给予了实验室何时、何地、如何测量工件、谁来测量的灵活性。 “PC-DMIS EMS允许利用单一检测程序传递检测规划,在各种设备、各种场合完成测量,”Clark说。“一旦条件变化,我们还有其他选择。统一的软件平台使得检测团队将注意力集中在完成全部工件品质控制的大场景。”   好奇号与火星会面 好奇号的相机   一旦在火星着陆,固定在好奇号机械臂的相机将会在很近的距离拍摄岩石、泥土图片,了解小于头发丝宽度的细节。在制造机械臂和立体相机的过程中,超高精度测量机Leitz PMM-C,配备LSP-S扫描测头以及PC-DMIS软件用于镜头的检测,因为该机精度高、触测力小。   一个测量需要在500 mm的行程区间测量一个3英寸直径的镜头,测量重复性达到位置精度的五分之一。尽管在理论上能够实现,在实际操作中,由于过程的不确定性而增加了测量的难度。另外一项测量的挑战存在于镜头的组装,需要将支撑杆保持垂直与平行。   来自海克斯康计量的应用专家进行了详尽的重复性试验,意图找到不确定度的源头。应用团队确定测量不确定度在温度变化过程中表现明显。利用自动测头更换架以及温度补偿系统,并贯彻一些基本的计量理念,帮助获得理想的结果。关于镜头的匹配,在科学家们移动镜头时,PC-DMIS进行测量,这确保了镜头在伸缩过程中保持居中。   控制温度帮助减少由于机器结构以及测量机部件不对等伸缩所造成的误差,比如测头加长杆、探针以及夹具。采用自动测头更换架、选定适合的测量时间也能够优化测量结果。重复性从五分之四降低到了五分之一,稳定了制造过程,减少装配时间,提升了制造产品的确信度,并满足了制造要求。因为在火星上设备更换出错是不允许的。
  • 科学家开发出精氨酸二甲基化蛋白质组分析新方法
    近日,中国科学院大连化学物理研究所生物分离分析新材料与新技术研究组研究员叶明亮团队和上海有机化学研究所生物与化学交叉研究中心研究员刘聪团队合作,将硼酸化学引入到甲基化蛋白质组分析方法中,并巧妙利用精氨酸残基上不同修饰基团的位阻差异,实现高效的精氨酸二甲基化肽段富集,显著提高了蛋白质甲基化的分析能力;利用此新方法,系统分析了蛋白质分相过程中精氨酸二甲基化的变化,揭示了此类修饰的发生会降低蛋白质的分相能力。  蛋白质精氨酸甲基化是一种调控蛋白质功能的重要翻译后修饰,与较多疾病的发生发展相关。研究表明,精氨酸二甲基化会影响一些神经退行性疾病相关蛋白的液-液相分离,以及相分离所驱动的无膜细胞器的产生。然而,受限于目前精氨酸二甲基化蛋白质组分析技术覆盖率不足,这类研究仅聚焦于少数几个蛋白,尚未系统性探究精氨酸甲基化对蛋白质相分离的影响。  本研究发现,不同甲基化修饰的精氨酸残基在与邻二酮类化合物反应时,由于位阻不同,反应活性差异巨大。合作团队据此设计了一种精氨酸二甲基化肽段的富集方法:先利用环己二酮选择性的封闭无修饰精氨酸残基,随后利用丙酮醛选择性的在二甲基化精氨酸残基上修饰顺式邻二羟基,从而使得硼酸材料可以选择性的富集精氨酸二甲基化肽段。相比传统的免疫亲和富集方法,该方法拥有较强的精氨酸二甲基化肽段富集能力,特别是在鉴定RG/RGG序列上的精氨酸二甲基化位点方面有更高的灵敏度。合作团队将该方法应用于分析蛋白质相分离过程中精氨酸甲基化的变化,发现包括G3BP1,FUS,hnRNPA1、KHDRBS1在内的一些与无膜细胞器或神经退行性疾病相关的蛋白质上的精氨酸二甲基化程度发生了显著变化;系列实验验证发现,精氨酸甲基化会显著降低这些蛋白质的分相能力,且上述蛋白质组分析中鉴定到变化的甲基化位点是调控蛋白质相分离的关键因素。本工作开发了基于化学反应的精氨酸二甲基化蛋白质组分析方法,并利用这一方法揭示了精氨酸二甲基化对蛋白质液-液相分离具有重要的调控作用。  叶明亮团队致力于蛋白质磷酸化、糖基化、甲基化等翻译后修饰分析新方法的研究,发展了基于可逆酶促化学标记的O-GlcNAc糖肽无痕富集方法,克服了标记基团对糖肽质谱检测的干扰,实现了O-GlcNAc糖基化的高灵敏分析(Angew. Chem. Int. Edit.);利用不同糖肽的同一肽段骨架具有相似碎裂规律的特点,发展出基于“模式识别”的肽段序列鉴定新方法,实现了谱图拓展,显著提高了N-链接位点特异性糖型的鉴定灵敏度,并可发现未知的糖链及糖链修饰(Nat. Commun.)。  相关研究成果以Global profiling of arginine dimethylation in regulating protein phase separation by a steric effect-based chemical-enrichment method为题,发表在《美国国家科学院院刊》(PNAS)上。研究工作得到国家重点研发计划、国家自然科学基金、大连化物所创新基金等的支持。
  • 国家税务总局官方解读来了:仪器制造业企业享受研发费用加计扣除还需要符合这些条件!
    近日,财政部、税务总局发布《财政部 税务总局关于进一步完善研发费用税前加计扣除政策的公告》(2021年第13号)将制造业研发费用加计扣除比例由75%提高到100%,这对于国内仪器研发企业节省研发成本是重大利好。然而,部分仪器企业也十分想要知道:享受到这项政策红利是否还有其他的附加条件?今日,国家税务总局发布官方解读:《财政部 税务总局关于进一步完善研发费用税前加计扣除政策的公告》(2021年第13号)仅将制造业研发费用加计扣除比例由75%提高到100%,其他政策口径和管理要求没有变化,继续按照《财政部 国家税务总局 科技部关于完善研究开发费用税前加计扣除政策的通知》(财税〔2015〕119号)、《财政部 税务总局 科技部关于企业委托境外研究开发费用税前加计扣除有关政策问题的通知》(财税〔2018〕64号)、《国家税务总局关于企业研究开发费用税前加计扣除政策有关问题的公告》(2015年第97号)、《国家税务总局关于研发费用税前加计扣除归集范围有关问题的公告》(2017年第40号)等文件规定执行。小编将以上公告进行了归纳整理,以便于仪器企业加深了解此项政策的“前世今生”。《财政部 税务总局关于进一步完善研发费用税前加计扣除政策的公告》(2021年第13号)财政部 税务总局关于进一步完善研发费用税前加计扣除政策的公告财政部 税务总局公告2021年第13号    为进一步激励企业加大研发投入,支持科技创新,现就企业研发费用税前加计扣除政策有关问题公告如下:    一、制造业企业开展研发活动中实际发生的研发费用,未形成无形资产计入当期损益的,在按规定据实扣除的基础上,自2021年1月1日起,再按照实际发生额的100%在税前加计扣除;形成无形资产的,自2021年1月1日起,按照无形资产成本的200%在税前摊销。    本条所称制造业企业,是指以制造业业务为主营业务,享受优惠当年主营业务收入占收入总额的比例达到50%以上的企业。制造业的范围按照《国民经济行业分类》(GB/T 4574-2017)确定,如国家有关部门更新《国民经济行业分类》,从其规定。收入总额按照企业所得税法第六条规定执行。    二、企业预缴申报当年第3季度(按季预缴)或9月份(按月预缴)企业所得税时,可以自行选择就当年上半年研发费用享受加计扣除优惠政策,采取“自行判别、申报享受、相关资料留存备查”办理方式。    符合条件的企业可以自行计算加计扣除金额,填报《中华人民共和国企业所得税月(季)度预缴纳税申报表(A类)》享受税收优惠,并根据享受加计扣除优惠的研发费用情况(上半年)填写《研发费用加计扣除优惠明细表》(A107012)。《研发费用加计扣除优惠明细表》(A107012)与相关政策规定的其他资料一并留存备查。    企业办理第3季度或9月份预缴申报时,未选择享受研发费用加计扣除优惠政策的,可在次年办理汇算清缴时统一享受。    三、企业享受研发费用加计扣除政策的其他政策口径和管理要求,按照《财政部 国家税务总局 科技部关于完善研究开发费用税前加计扣除政策的通知 》(财税〔2015〕119号)、《财政部 税务总局 科技部关于企业委托境外研究开发费用税前加计扣除有关政策问题的通知 》(财税〔2018〕64号)等文件相关规定执行。    四、本公告自2021年1月1日起执行。    特此公告。  财政部税务总局2021年3月31日《财政部 国家税务总局 科技部关于完善研究开发费用税前加计扣除政策的通知》(财税〔2015〕119号)财政部 国家税务总局 科技部关于完善研究开发费用税前加计扣除政策的通知财税〔2015〕119号各省、自治区、直辖市、计划单列市财政厅(局)、国家税务局、地方税务局、科技厅(局),新疆生产建设兵团财务局、科技局:  根据《中华人民共和国企业所得税法》及其实施条例有关规定,为进一步贯彻落实《中共中央 国务院关于深化体制机制改革加快实施创新驱动发展战略的若干意见》精神,更好地鼓励企业开展研究开发活动(以下简称研发活动)和规范企业研究开发费用(以下简称研发费用)加计扣除优惠政策执行,现就企业研发费用税前加计扣除有关问题通知如下:  一、研发活动及研发费用归集范围。  本通知所称研发活动,是指企业为获得科学与技术新知识,创造性运用科学技术新知识,或实质性改进技术、产品(服务)、工艺而持续进行的具有明确目标的系统性活动。  (一)允许加计扣除的研发费用。  企业开展研发活动中实际发生的研发费用,未形成无形资产计入当期损益的,在按规定据实扣除的基础上,按照本年度实际发生额的50%,从本年度应纳税所得额中扣除;形成无形资产的,按照无形资产成本的150%在税前摊销。研发费用的具体范围包括:  1.人员人工费用。  直接从事研发活动人员的工资薪金、基本养老保险费、基本医疗保险费、失业保险费、工伤保险费、生育保险费和住房公积金,以及外聘研发人员的劳务费用。  2.直接投入费用。  (1)研发活动直接消耗的材料、燃料和动力费用。  (2)用于中间试验和产品试制的模具、工艺装备开发及制造费,不构成固定资产的样品、样机及一般测试手段购置费,试制产品的检验费。  (3)用于研发活动的仪器、设备的运行维护、调整、检验、维修等费用,以及通过经营租赁方式租入的用于研发活动的仪器、设备租赁费。  3.折旧费用。  用于研发活动的仪器、设备的折旧费。  4.无形资产摊销。  用于研发活动的软件、专利权、非专利技术(包括许可证、专有技术、设计和计算方法等)的摊销费用。  5.新产品设计费、新工艺规程制定费、新药研制的临床试验费、勘探开发技术的现场试验费。  6.其他相关费用。  与研发活动直接相关的其他费用,如技术图书资料费、资料翻译费、专家咨询费、高新科技研发保险费,研发成果的检索、分析、评议、论证、鉴定、评审、评估、验收费用,知识产权的申请费、注册费、代理费,差旅费、会议费等。此项费用总额不得超过可加计扣除研发费用总额的10%。  7.财政部和国家税务总局规定的其他费用。  (二)下列活动不适用税前加计扣除政策。  1.企业产品(服务)的常规性升级。  2.对某项科研成果的直接应用,如直接采用公开的新工艺、材料、装置、产品、服务或知识等。  3.企业在商品化后为顾客提供的技术支持活动。  4.对现存产品、服务、技术、材料或工艺流程进行的重复或简单改变。  5.市场调查研究、效率调查或管理研究。  6.作为工业(服务)流程环节或常规的质量控制、测试分析、维修维护。  7.社会科学、艺术或人文学方面的研究。  二、特别事项的处理  1.企业委托外部机构或个人进行研发活动所发生的费用,按照费用实际发生额的80%计入委托方研发费用并计算加计扣除,受托方不得再进行加计扣除。委托外部研究开发费用实际发生额应按照独立交易原则确定。  委托方与受托方存在关联关系的,受托方应向委托方提供研发项目费用支出明细情况。  企业委托境外机构或个人进行研发活动所发生的费用,不得加计扣除。  2.企业共同合作开发的项目,由合作各方就自身实际承担的研发费用分别计算加计扣除。  3.企业集团根据生产经营和科技开发的实际情况,对技术要求高、投资数额大,需要集中研发的项目,其实际发生的研发费用,可以按照权利和义务相一致、费用支出和收益分享相配比的原则,合理确定研发费用的分摊方法,在受益成员企业间进行分摊,由相关成员企业分别计算加计扣除。  4.企业为获得创新性、创意性、突破性的产品进行创意设计活动而发生的相关费用,可按照本通知规定进行税前加计扣除。  创意设计活动是指多媒体软件、动漫游戏软件开发,数字动漫、游戏设计制作;房屋建筑工程设计(绿色建筑评价标准为三星)、风景园林工程专项设计;工业设计、多媒体设计、动漫及衍生产品设计、模型设计等。  三、会计核算与管理  1.企业应按照国家财务会计制度要求,对研发支出进行会计处理;同时,对享受加计扣除的研发费用按研发项目设置辅助账,准确归集核算当年可加计扣除的各项研发费用实际发生额。企业在一个纳税年度内进行多项研发活动的,应按照不同研发项目分别归集可加计扣除的研发费用。  2.企业应对研发费用和生产经营费用分别核算,准确、合理归集各项费用支出,对划分不清的,不得实行加计扣除。  四、不适用税前加计扣除政策的行业  1.烟草制造业。  2.住宿和餐饮业。  3.批发和零售业。  4.房地产业。  5.租赁和商务服务业。  6.娱乐业。  7.财政部和国家税务总局规定的其他行业。  上述行业以《国民经济行业分类与代码(GB/4754 -2011)》为准,并随之更新。  五、管理事项及征管要求  1.本通知适用于会计核算健全、实行查账征收并能够准确归集研发费用的居民企业。  2.企业研发费用各项目的实际发生额归集不准确、汇总额计算不准确的,税务机关有权对其税前扣除额或加计扣除额进行合理调整。  3.税务机关对企业享受加计扣除优惠的研发项目有异议的,可以转请地市级(含)以上科技行政主管部门出具鉴定意见,科技部门应及时回复意见。企业承担省部级(含)以上科研项目的,以及以前年度已鉴定的跨年度研发项目,不再需要鉴定。  4.企业符合本通知规定的研发费用加计扣除条件而在2016年1月1日以后未及时享受该项税收优惠的,可以追溯享受并履行备案手续,追溯期限最长为3年。  5.税务部门应加强研发费用加计扣除优惠政策的后续管理,定期开展核查,年度核查面不得低于20%。  六、执行时间  本通知自2016年1月1日起执行。《国家税务总局关于印发〈企业研究开发费用税前扣除管理办法(试行)〉的通知》(国税发〔2008〕116号)和《财政部 国家税务总局关于研究开发费用税前加计扣除有关政策问题的通知》(财税〔2013〕70号)同时废止。财政部 国家税务总局 科技部2015年11月2日《财政部 税务总局 科技部关于企业委托境外研究开发费用税前加计扣除有关政策问题的通知》(财税〔2018〕64号)财政部 税务总局 科技部关于企业委托境外研究开发费用税前加计扣除有关政策问题的通知财税〔2018〕64号各省、自治区、直辖市、计划单列市财政厅(局)、科技厅(局),国家税务总局各省、自治区、直辖市、计划单列市税务局,新疆生产建设兵团财政局、科技局:    为进一步激励企业加大研发投入,加强创新能力开放合作,现就企业委托境外进行研发活动发生的研究开发费用(以下简称研发费用)企业所得税前加计扣除有关政策问题通知如下:    一、委托境外进行研发活动所发生的费用,按照费用实际发生额的80%计入委托方的委托境外研发费用。委托境外研发费用不超过境内符合条件的研发费用三分之二的部分,可以按规定在企业所得税前加计扣除。    上述费用实际发生额应按照独立交易原则确定。委托方与受托方存在关联关系的,受托方应向委托方提供研发项目费用支出明细情况。    二、委托境外进行研发活动应签订技术开发合同,并由委托方到科技行政主管部门进行登记。相关事项按技术合同认定登记管理办法及技术合同认定规则执行。    三、企业应在年度申报享受优惠时,按照《国家税务总局关于发布修订后的〈企业所得税优惠政策事项办理办法〉的公告》(国家税务总局公告2018年第23号 )的规定办理有关手续,并留存备查以下资料:    (一)企业委托研发项目计划书和企业有权部门立项的决议文件;    (二)委托研究开发专门机构或项目组的编制情况和研发人员名单;    (三)经科技行政主管部门登记的委托境外研发合同;    (四)“研发支出”辅助账及汇总表;    (五)委托境外研发银行支付凭证和受托方开具的收款凭据;    (六)当年委托研发项目的进展情况等资料。  七、后续管理与核查税务机关应加强对享受研发费用加计扣除优惠企业的后续管理和监督检查。每年汇算清缴期结束后应开展核查,核查面不得低于享受该优惠企业户数的20%。省级税务机关可根据实际情况制订具体核查办法或工作措施。八、执行时间本公告适用于2016年度及以后年度企业所得税汇算清缴。特此公告。附件:(点击此链接打包下载下列附件) 1.自主研发“研发支出”辅助账2.委托研发“研发支出”辅助账3.合作研发“研发支出”辅助账4.集中研发“研发支出”辅助账
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制