当前位置: 仪器信息网 > 行业主题 > >

內消旋酒石酸鈣三水合物

仪器信息网內消旋酒石酸鈣三水合物专题为您提供2024年最新內消旋酒石酸鈣三水合物价格报价、厂家品牌的相关信息, 包括內消旋酒石酸鈣三水合物参数、型号等,不管是国产,还是进口品牌的內消旋酒石酸鈣三水合物您都可以在这里找到。 除此之外,仪器信息网还免费为您整合內消旋酒石酸鈣三水合物相关的耗材配件、试剂标物,还有內消旋酒石酸鈣三水合物相关的最新资讯、资料,以及內消旋酒石酸鈣三水合物相关的解决方案。

內消旋酒石酸鈣三水合物相关的论坛

  • 脱毛剂含量测定——巯基乙酸钙盐三水合物与碘反应原理是什么?

    脱毛剂含量测定——巯基乙酸钙盐三水合物与碘反应原理是什么?

    巯基乙酸钙盐三水合物 CAS号:5793-98-6 分子式:C2H8CaO5S 分子量 184 结构式http://ng1.17img.cn/bbsfiles/images/2017/10/2016042817011772_01_1490617_3.png 《化妆品安全技术规范》(2015年版)当中,3.9巯基乙酸第三法——化学滴定法的反应方程如下:https://ng1.17img.cn/bbsfiles/images/2017/01/201701191701_670059_1490617_3.png 原理是https://ng1.17img.cn/bbsfiles/images/2016/04/201604281715_591808_1490617_3.png 该方法的适用范围中这样描述:本方法适用于脱毛类、烫发类和其他发用类化妆品中巯基乙酸及其盐类和酯类含量的测定。客户委托了一款产品,要求按照巯基乙酸钙含量出报告,含量计算公式中有一个系数0.184,描述是1mmol碘溶液相当于巯基乙酸钙的克数,这样显然其指的巯基乙酸钙不是CAS:814-71-1 分子式C4H6CaO4S2(分子量222.3),不知道巯基乙酸钙盐三水合物是否依然按照上述原理与碘反应。 求高手指教,前辈指点!谢谢

  • 【资料】认识下酒石酸

    【资料】认识下酒石酸

    [img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911071655_182497_1610969_3.jpg[/img][color=#DC143C]酒石酸(tartaric acid)是一种羧酸﹐存在于多种植物中[/color]﹐如葡萄和罗望子﹐也是葡萄酒中主要的有机酸之一。作为食品中添加的抗氧化剂﹐可以使食物具有酸味。  结构图酒石酸,2,3-二羟基丁二酸.  分子式:HOOCCHOHCHOHCOOH  即二羟基琥珀酸。有二个不对称碳原子,有3种立体异构体,即:右旋型(D型, L型)、左旋型(L型,D型)、内消旋型。通常,外消旋型酒石酸又称为葡萄酸。右旋型酒石酸以游离的或K盐、Ca盐、Mg盐的形态广泛分布于高等植物中,特别是多存在于果实和叶中。在制造葡萄酒时,会沉积大量酒石(氢钾盐)。另外,在霉菌和地衣类中也常见到它的存在。最近分离到的酒石酸发酵细菌(Gluconoba-cter suboxydans的变异菌株),在体内是通过葡萄糖氧化分解,经由5-酮葡萄糖酸,在形成羟基乙酸的同时形成酒石酸。酒石酸铵受微生物作用,可变成琥珀酸,因此,工业上用酒石酸作为生产琥珀酸的原料,巴斯德 (L.Pasteus)曾以酒石酸作为研究天然物质旋光性的材料,在历史上是很有名的。(杨乃博 译)  酒石酸具有两个相互对称的手性碳﹐具有三种旋光异构体。  酒石酸也是一种抗氧化剂,在食品工业中有所应用。生化试验中可利用其作为除氧剂。  又称2,3-二羟基丁二酸。结构简式HOOCCH(OH)CH(OH)COOH。酒石酸氢钾存在于葡萄汁内,此盐难溶于水和乙醇,在葡萄汁酿酒过程中沉淀析出,称为酒石,酒石酸的名称由此而来。酒石酸主要以钾盐的形式存在于多种植物和果实中,也有少量是以游离态存在的。   酒石酸分子中含有两个相同的手性碳原子(见不对称原子),存在三种立体异构体:右旋酒石酸、左旋酒石酸和内消旋酒石酸(见旋光异构),其结构式分别为:   等量右旋酒石酸和左旋酒石酸的混合物的旋光性相互抵消,称为外消旋酒石酸。各种酒石酸均是易溶于水的无色结晶,它们的物理性质见表。

  • 【每日一贴普及知识】酒石酸

    酒石酸是一种α-羧酸,存在于多种植物中,如葡萄和罗望子,也是葡萄酒中主要的有机酸之一。作为食品中添加的抗氧化剂,可以使食物具有酸味。酒石酸具有两个相互对称的手性碳,具有三种旋光异构体:右旋L-酒石酸、左旋L-酒石酸、内消旋酒石酸,其中右旋体最为常见。http://upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Tartaric_acid.png/200px-Tartaric_acid.pnghttp://upload.wikimedia.org/wikipedia/commons/thumb/7/72/Tartaric-acid-3D-balls.png/200px-Tartaric-acid-3D-balls.pngIUPAC名2,3-dihydroxybutanedioic acid2,3-二羟基丁二酸别名酒石酸识别CAS号526-83-0SMILES显示▼隐藏▲ C(C(C(=O)O)O)(C(=O)O)O性质化学式C4H6O6摩尔质量150.087 g·mol−1外观白色粉末熔点171-174 °C (L-酒石酸)206 °C (DL, 外消旋体)146-148 °C (内消旋体)溶解性(水)133 g/100ml (20 °C)酒石酸 - 质量指标DL-酒石酸的质量指标:   指标名称 一水品 无水品   DL-酒石酸的质量分数/%≥ 99.5 99.5   熔点范围/% 200~206 200~206   硫酸盐/%≤0.04 0.04   加热减量/%≤ 11.5 0.5   灼烧残渣/%≤0.10 0.10存在与制备L-酒石酸是天然产物,广泛存在于水果中,尤其是葡萄。是最廉价的光活性酒石酸,常被称为“天然酒石酸”。工业上,L-酒石酸来源仍然是天然产物。葡萄酒酿造工业产生的副产物酒石,通过酸化处理即可制得L-酒石酸。意大利是世界上L-酒石酸的最大生产国,这跟该国造葡萄酒的规模不无关系。D-酒石酸在天然产物中很罕见,但以比较高的含量存在于西非马利的一种植物里。外消旋酒石酸在工业上是通过双氧水与马来酸酐作用后水解制得,南非是主要的生产国。应用酒石酸最大的用途是饮料添加剂。然后是药物工业原料。在当代有机合成中是非常重要的手性配体和手性子,可以用来制备许多著名的手性催化剂,以及作为手性源来合成复杂的天然产物分子。在制镜工业中,酒石酸是一个重要的助剂和还原剂,可以控制银镜的形成速度,获得非常均一的镀层。

  • 【资料】二虎食品添加剂-酸度调节剂之酒石酸

    3 酒石酸百科名片 酒石酸结构式酒石酸(tartaric acid),即,2,3-二羟基丁二酸,是一种羧酸﹐存在于多种植物中﹐如葡萄和罗望子﹐也是葡萄酒中主要的有机酸之一。作为食品中添加的抗氧化剂﹐可以使食物具有酸味。酒石酸最大的用途是饮料添加剂。也是药物工业原料。在制镜工业中,酒石酸是一个重要的助剂和还原剂,可以控制银镜的形成速度,获得非常均一的镀层。物品简介  酒石酸,2,3-二羟基丁二酸.   分子式:HOOCCHOHCHOHCOOH 是一种羧酸﹐存在于多种植物中﹐如葡萄和罗望子﹐也是葡萄酒中主要的有机酸之一。作为食品中添加的抗氧化剂﹐可以使食物具有酸味。酒石酸最大的用途是饮料添加剂。也是药物工业原料。在制镜工业中,酒石酸是一个重要的助剂和还原剂,可以控制银镜的形成速度,获得非常均一的镀层。   即二羟基琥珀酸。有二个不对称碳原子,有3种立体异构体,即:右旋型(D型, L型)、左旋型(L型,D型)、内消旋型。通常,外消旋型酒石酸又称为葡萄酸。右旋型酒石酸以游离的或K盐、Ca盐、Mg盐的形态广泛分布于高等植物中,特别是多存在于果实和叶中。在制造葡萄酒时,会沉积大量酒石(氢钾盐)。另外,在霉菌和地衣类中也常见到它的存在。最近分离到的酒石酸发酵细菌(Gluconoba-cter suboxydans的变异菌株),在体内是通过葡萄糖氧化分解,经由5-酮葡萄糖酸,在形成羟基乙酸的同时形成酒石酸。酒石酸铵受微生物作用,可变成琥珀酸,因此,工业上用酒石酸作为生产琥珀酸的原料,巴斯德 (L.Pasteus)曾以酒石酸作为研究天然物质旋光性的材料,在历史上是很有名的。(杨乃博译)    酒石酸酒石酸具有两个相互对称的手性碳﹐具有三种旋光异构体。   酒石酸也是一种抗氧化剂,在食品工业中有所应用。生化试验中可利用其作为除氧剂。   又称2,3-二羟基丁二酸。结构简式HOOCCH(OH)CH(OH)COOH。酒石酸氢钾存在于葡萄汁内,此盐难溶于水和乙醇,在葡萄汁酿酒过程中沉淀析出,称为酒石,酒石酸的名称由此而来。酒石酸主要以钾盐的形式存在于多种植物和果实中,也有少量是以游离态存在的。   酒石酸分子中含有两个相同的手性碳原子(见不对称原子),存在三种立体异构体:右旋酒石酸、左旋酒石酸和内消旋酒石酸(见旋光异构),其结构式分别为:   等量右旋酒石酸和左旋酒石酸的混合物的旋光性相互抵消,称为外消旋酒石酸。各种酒石酸均是易溶于水的无色结晶,它们的物理性质见表。   右旋酒石酸存在于多种果汁中,工业上常用葡萄糖发酵来制取。左旋酒石酸可由外消旋体拆分获得,也存在于马里的羊蹄甲的果实和树叶中。外消旋体可由右旋酒石酸经强碱或强酸处理制得,也可通过化学合成,例如由反丁烯二酸用高锰酸钾氧化制得。内消旋体不存在于自然界中,它可由顺丁烯二酸用高锰酸钾氧化制得。   酒石酸与柠檬酸类似,可用于食品工业,如制造饮料。酒石酸和单宁合用,可作为酸性染料的媒染剂。酒石酸能与多种金属离子络合,可作金属表面的清洗剂和抛光剂。   酒石酸钾钠又称为罗谢尔盐,可配制斐林试剂,还可做医药上的缓泻剂和利尿剂。酒石酸钾钠晶体具有压电性质,可用于电子工业。酒石酸锑钾为呕吐剂,又称吐酒石,并可治疗日本血吸虫病。 编辑本段历史  酒石酸最早是1769年由瑞典化学家卡尔·威廉·舍勒发现的。 [colo

  • CNS_01.111_L(+)-酒石酸

    CNS_01.111_L(+)-酒石酸

    闫丽洁[align=center]关于食品添加剂L(+)-酒石酸的研究[/align]摘要:[size=13px]L(+)-酒石酸是一种天然有机酸,它的酸味值约是柠檬酸的1.25倍,可用于清凉饮料,它和柠檬酸、氧化亚铁产生鲜绿色作为食用色素用于糕点。本文主要介绍了L(+)-酒石酸的检测方法及生产方法。[/size]关键词:[size=13px]L(+)-酒石酸,检测,生产[/size]1 引言L(+)-酒石酸广泛存在与自然界的多种植物果实中,其中成熟葡萄中L-酒石酸含量较多。L-酒石酸时一种用途非常广泛的天然有机酸,主要作为食品添加剂和医药拆分剂应用于食品、医药和化学工业等领域,据报道,L-酒石酸还可以用于纳米材料的制备及作为染料经济性改性剂和抗磨剂。2 L(+)-酒石酸简介2.1 L(+)-酒石酸基本结构L(+)-酒石酸又称为L(+)-2,3-二羟基丁二酸,分子式是C4H6O6,结构简式HOOCCH(OH)CH(OH)COOH。有两个不对称的碳原子,有3个立体异构体,即:右旋型(D型,L型)、左旋型(L型,D型)、内消旋型。通常,外消旋型酒石酸又称为葡萄酸。右旋型酒石酸以游离的或K盐、 Ca盐、Mg盐的形态广泛分布于高等植物中,特别是多存在与果实和叶中。2.2 L(+)-酒石酸的发现酒石酸氢钾存在与葡萄汁中,此盐难溶于水和乙醇,在普通纸酿酒过程中沉淀析出,成为酒石,酒石酸的名称由此得来。在制造葡萄酒时,会沉积大量酒石(氢钾盐)。另外,在霉菌和地衣类中也常见到它的存在。分离到的酒石酸发酵细菌,在体内是通过葡萄糖氧化分解,经由5-酮葡萄糖酸,在形成羟基乙酸的同时形成酒石酸。酒石酸铵受微生物作用,可编程琥珀酸。因此,工业中用酒石酸作为生产琥珀酸的原料。酒石酸主要以钾盐的形式存在于多种植物和果实中,也有少量是以游离态存在的。L(+)-酒石酸在某些植物果实如葡萄、罗望子果等中有较高的含量。1769年舍勒首次从葡萄汁的发酵液内得到游离的无色酒石酸结晶。它的各种立体异构体和外消旋体具有不同的物性。自然界存在的多为右旋体,葡萄汁和其他浆果汁中尤多,故又叫果酸。如用丁烯二酸控制氧化得到的是外消旋体。将上述反应过程中产生的酒石以石灰乳处理生成酒石酸钙,再酸化则得内消旋体。酒石酸盐在历史上对建立有机立体化学起了作用。1848年法国化学家巴斯德从事酒石酸钠铵结晶学研究工作时,看到一种前人未曾注意的有趣现象:无旋光性的酒石酸钠铵是由二种不同结晶组成的混合物,它们的外形互为Chemicalbook镜像关系,实际上是外消旋体。他用放大镜和镊子将混合物细心分成小堆。一堆是右旋体晶体,一堆是左旋体晶体,它们犹如一堆是右手套,一堆是左手套。两堆晶体溶于水都有旋光性。他首次发现了分子的立体异构和旋光的关系,提出了对映异构概念,为有机立体化学的发展奠定了基础。酒石酸常用于制药物、媒染剂和鞣剂等,也常用作拆分外消旋碱性化合物的试剂。它也是食品添加剂中的酸味剂,酸感优于苹果酸、乳酸等。它的几种盐都有重要应用,例如实验室中用酒石酸钾钠配制斐林试剂,用于鉴定有机分子结构中醛基官能团。它的钾钠盐又叫罗谢尔盐,其晶体在压力作用下发生极化而使两端表面产生电势差(压电效应),借此可以制成压电元件,用于无线电和有线电广播的受话器和拾音器。医疗上将酒石酸锑钾(俗称吐酒石)用于治疗血吸虫病。2.2 L(+)-酒石酸的理化性质外观为无色半透明晶体或白色细至粗结晶粉末,有酸味,熔点为170-172°C,比旋光度12°(c=20,H2O),沸点191.56°C,密度1.76,蒸汽密度5.18,蒸气压 5Pa(20°C),折射率12.5°(c=5,H2O),在室温下进行储存,溶解度1M(20℃)无色溶液。毒性:小鼠经口LD50为4.36 g/kg ;ADI 0~30 mg/kg(酒石酸及其盐类)。3 L(+)-酒石酸的检测3.1 国标检测3.1.1 范围本标准适用于以顺丁烯二酸酐和过氧化氢为原料经氧化、酶法水解而制得的食品添加剂L(+)-酒石酸。3.1.2 检测方法以酚酞为指示剂,用氢氧化钠标准滴定溶液滴定干燥试样的水溶液,根据氢氧化钠标准滴定溶液的用量,计算以C4H6O6计的总酸含量为L(+)-酒石酸含量。3.1.3 试剂和材料氢氧化钠标准滴定溶液:c (NaOH) = 1.0 mol / L酚酞指示剂:10 g / L3.1.4 分析步骤称取2.0 g 干燥样,精确至0.0002 g,加40 mL 无二氧化碳的水溶液,加2滴酚酞指示剂,用氢氧化钠标准滴定溶液滴定至微红色,保持30 s 不褪色为终点。在测定的同时,按与测定相同的步骤,对不加试样而使用相同数量的试剂溶液做空白试验。3.1.5 数据计算L(+)-酒石酸(以C4H6O6计,以干量计)的质量分数ω1,数值以 % 表示,按式1计算: ——————————式1式中:V——试料消耗氢氧化钠标准滴定溶液体积的数值,单位为毫升(mL);V0——空白试验消耗氢氧化钠标准滴定溶液体积的数值,单位为毫升(mL);c——氢氧化钠标准滴定溶液浓度的准确数值,单位为摩尔每升(mol/L);m——试料质量的数值,单位为克(g);M——酒石酸(1/2 C4H6O6)的摩尔质量的数值,单位为克每摩尔(g/mol)(M=75.04).取两次清醒测定结果的算术平均值为报告结果。两次平均测定结果的绝对差值不大于0.2 % 。3.2 高效液相色谱3.2.1 检测原理采用高效液相色谱分析测定酒石酸的含量以及与标准酒石酸的分析对比,高效液相色谱分析法是主要具有高压、高速、高效、高灵敏度等特点,对试样进行分析测定。流动相与固定相都是液体,流动相与固定相之间应互不相溶(极性不同,避免固定相流失),有一个明显的分界面。当试样进入色谱柱,[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]在两相间进行分配。达到平衡时,服从于高效液相色谱计算公式:式中,Cs——[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]在固定相中的浓度; Cm——[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]在流动相中的浓度; Vs——固定相的体积; Vm——流动相的体积。3.2.2 试剂和仪器试剂:80%乙醇,酒石酸,磷酸二氢铵均为分析纯,实验用水均为二次蒸馏水。仪器:高效液相色谱仪C18色谱柱(250*4.60nm)3.2.3 色谱条件固定相为Phencmenex luna 5μm C18 色谱柱(250*4.60nm),流动相为 0.01 mol/L(NH4)2HPO4溶液,流速1mLmin-1,检测波长为210 nm,柱温为30℃。3.2.4 分析步骤精确称取酒石酸标准品0.25 g,置于烧杯中用二次蒸馏水完全溶解,转移至100 mL容量瓶中加二次蒸馏水稀释并定容,然后用移液管移取分别稀释成2.5 μgmL-1、2.0 μgmL-1、1.5 μgmL-1、1.0 μgmL-1、0.8 μgmL-1 等不同质量浓度的标准品,并用0.45 μm的滤膜过滤,然后超声处理。采用电子天平准确称取1.3206 g (NH4)2HPO4 晶体,于小烧杯中加入二次蒸馏水完全溶解,然后转移到1000 mL容量瓶中稀释并定容至刻度线,最后用0.45 μm的滤膜过滤,超声15 min处理作为流动相。3.2.5 数据处理依次对不同浓度的标准品进行色谱分析,并拟合标准曲线,对样品进行色谱分析,并进行定量计算。3.2.6 方法优点色谱分析法检测线性范围宽,具有操作简便,快捷,选择性好等优点。4 L(+)-酒石酸的生产4.1 L(+)-酒石酸的生产方法一个方法是,以制造葡萄酒时生成的酒石为原料,将其转化为钙盐,再用稍过量的稀酸使其分解而得。或以顺丁烯二酸和过氧化氢为原料,在一定温度下转化为环氧丁二酸,再水解得D L-酒石酸。也可由化学合成法制得的环氧琥珀酸,经琥珀酸诺卡氏菌所含的开环酶的作用而得L(+)酒石酸。另一个方法是,将蒸馏水加到工业品酒石酸中,通蒸气加热并搅拌使之溶解。加入适量活性炭,充分搅拌后静置,过滤,滤液加热浓缩至表面结膜时,趁热抽滤,滤液冷却结晶,待完全后,结晶用少量蒸馏水洗淋后于30~40℃下平铺干燥至不沾勺即可。若控制活性炭脱色温度为80℃,过滤后于80℃减压浓缩,冷却结晶,将得到的结晶在非铁质容器中重结晶精制低温下烘干,可得右旋酒石酸 [ L(+)-酒石酸 ] 成品。4.2 酒石酸的生物合成途径酒石酸的生物合成途径如图1所示:[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/07/202107251428084146_7015_1608728_3.png[/img][/align][align=center]图1 酒石酸的生物合成途径[/align]直接发酵法生产酒石酸异性物质多,提取困难,收率低,经济上目前还没有吸引力。4.3 酶法生产L-酒石酸1974年佐藤英次等人首先报道了采用Achromobater lartarogenes 和Alcaligenes epoxylyticus 水解顺式环氧琥珀酸生产L-酒石酸的前体发酵,过程如图二所示:[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/07/202107251428086957_2391_1608728_3.png[/img][/align][align=center]图2 酒石酸生产[/align]以无水马来酸(顺丁烯二酸酐)为原料经水解得到马来酸,再以钨酸钠(Sodium tungstate)作为催化剂将马来酸与过氧化氢反应制得顺式环氧琥珀酸。培养具有L-酒石酸外氧化酶的微生物作酶源将顺式环氧琥珀酸转化为酒石酸。具有L-酒石酸外氧化酶的微生物主要是细菌,目前报道的有无色杆菌、产碱杆菌、醋酸杆菌、不动杆菌、土壤杆菌、诺卡氏菌、根瘤菌、假单胞菌和棒杆菌。酒石酸外氧化酶是一种诱导酶,在培养这类微生物生产酒石酸时通常在培养基中需加入少量顺式环氧琥珀酸进行诱导培养。这种酶的分子量在25000~45000之间,在pH5~9范围内稳定,最适pH 为7.5~8.5,作用温度范围为25~55℃。酶法生产L-酒石酸的工艺流程大致如图3 :[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/07/202107251428088052_2948_1608728_3.png[/img][/align][align=center]图3 酶法工艺流程图[/align]4.4 棒状杆菌固定化细胞生产L-酒石酸采用卡拉胶将含环氧琥珀酸水解酶的诺卡氏菌细胞包埋固定,利用固定化细胞转化底物环氧琥珀酸生成L-(+)-酒石酸,以将环氧琥珀酸水解酶反复多次使用。采用卡拉胶作为载体制得固定化微生物细胞生产L-酒石酸,这种方法具有较高的酶活性回收率和良好的化学和机械稳定性。固定化细胞经过底物活化处理后顺式环氧琥珀酸水解酶酶活性回收率在100%以上。另外此固定化细胞的贮藏稳定性较好,经0.2 molL-1底物溶液浸泡,在4℃冰箱中贮藏90d酶活性基本不变。底物和表面活性剂能大幅度提高固定化细胞的酶活性回收率,这主要是增加了细胞膜对底物的渗透性或造成菌体的自溶,当菌体自溶时,酶被截留在凝胶腔内,不会由凝胶溢出,而底物和产物则易由凝胶网溢出,维持了固定化细胞较高的稳定性。4.5 糖质发酵法[color=#333333]制造L-(+)-酒石酸[/color]在L-酒石酸的生物代谢途径中,认为葡萄糖经过Gluconobater suboxydans 发酵形成葡萄糖酸,继而氧化为2-酮基-D-葡萄糖酸(2-KGA)和5酮基-D-葡萄糖酸(5-KGA),5-KGA在金属催化剂的作用下,可以形成羟基乙酸和L-酒石酸。1972年,Kotera等在研究5-KGA转化为L-酒石酸的过程中,发现了一种能与AbdelAkhel和Smith试剂形成紫红色的物质,并对这种物质进行了分离纯化,通过红外光谱及质谱分析,证实该物质为1,2-二羟乙基氢酒石酸,并命名为“前酒石酸”,同时提出了相关机理如图4,5-KGA通过烯醇化,转化为4-KGA,再形成“前酒石酸”。通过该物质的过渡,5-KGA被催化分解为L-酒石酸和羟基乙酸。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/07/202107251428090793_95_1608728_3.png[/img][/align][align=center]图4 L-酒石酸形成机理[/align]1995年,Klasen等认为5-KGA主要在氧化葡萄糖酸杆菌的细胞质中合成,并在G.oxydans DSM3503中过表达了依赖NADP的GNO,该酶在细胞质中催化葡萄糖酸形成5-KGA,最终酶活提高了85倍;1999年,Shinagawa等通过对G.suboxydans IFO12528静息细胞培养和膜结合部分催化实验发现,5-KGA的形成主要是膜结合蛋白PQQ-依赖的葡萄糖酸脱氢酶,并考察了该酶翠花形成5-KGA的最适pH 为4.0和温度15℃,在此条件下,膜结合蛋白部分催化转化形成5-KGA为110 mmol/L ;因此,在氧化葡萄糖酸杆菌中,酮基葡萄糖酸催化合成途径如图5所示,PQQ-依赖的葡萄糖酸脱氢酶是主要的5-KGA合成酶,而FAD-依赖的葡萄糖酸脱氢酶是合成2-KGA的主要酶,从代谢流上分析为5-KGA的主要分流节点。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/07/202107251428091768_3741_1608728_3.png[/img][/align][align=center]图5 氧化葡萄糖酸杆菌中酮基葡萄糖酸的催化反应[/align]糖质发酵法生物制造L-酒石酸因利用可再生生物质资源而日益备受关注。但是,要提高其相对于酶法合成L-酒石酸的竞争力,就必须使用现代生物技术,包括分子生物学、代谢工程以及合成生物学等手段,提高L-酒石酸的前体——5-KGA的发酵水平以及5-KGA到L-酒石酸的转化水平。5 用途及应用5.1 食品添加剂方面首先,L(+)-酒石酸广泛用作饮料和其他食品的酸味剂,用于葡萄酒、软饮料、糖果、面包、某些胶状甜食。其次,可以作为食品中添加的抗氧化剂﹐可以使食物具有酸味。酒石酸最大的用途是饮料添加剂。5.2 药物方面利用其光学活性,作为化学拆分剂,用于制造抗结核病药物中间体DL-氨基丁醇的拆分;还可以作为手性原料用于酒石酸衍生物的合成;利用其络合性,用作电镀、脱硫、酸洗以及化学分析、医药检验中的络合剂、掩蔽剂、螯合剂、印染的防染剂;也是药物工业原料。5.3 工业方面利用其酸性,作为涤纶织物树Chemicalbook脂整理的催化剂,谷维素生产的PH调节剂;利用其还原性,用作化学制镜的还原剂。照相的显影剂。还能与多种金属离子络合,可作金属表面的清洗剂和抛光剂;在制镜工业中,酒石酸是一个重要的助剂和还原剂,可以控制银镜的形成速度,获得非常均一的镀层;金属离子掩蔽剂;防染剂;用于天然产物的手性砌块,也与化合物 TiCl2(O-i-Pr)2形成Diels-Alder 催化剂。最后,可用作生化试剂、掩蔽剂及啤酒发泡剂,也用于鞣革工业。6 结语L(+)-酒石酸是天然的有机酸,应用十分广泛,在食品、医药、纳米材料等各个方面具有显著的应用,L(+)-酒石酸的检测方法主要有滴定法、液相色谱法等。以前L(+)-酒石酸主要从葡萄酒酿造的副产物酒石中提取,但由于酒石供应量有限,来源不稳定,近年来采用化学合成和生物转化相结合的方法来生产L(+)-酒石酸。7 参考文献袁建锋,吴绵斌,林建平,岑沛霖.基于5-酮基-D-葡萄糖酸生物制造L-(+)-酒石酸的研究进展[J].现代化工,2013,33(09):13-16.张建国,黄滕华.微生物转化法生产L-(+)-酒石酸的研究[J].工业微生物,1990,2(2):7-12.刘斌,须辑.半生物合成法合成酒石酸[J].化学世界,1996,8(10):527-531.[color=black]郑璞,孙志浩.用诺卡氏菌酶法转化顺式环氧琥珀酸生产L(+)-酒石酸的研究[/color][J].化工业微生物,1994,3(24):12-17.张建国,钱亚娟.棒状杆菌固定化细胞生产L(+)-酒石酸[J].生物工程学报,2000(02):72-76.万屹东, 蒋志清, 顾松林,等. 一种L(+)酒石酸的生产方法:, CN102093208B[P]. 2015.楼锦芳, 张建国. 酶法合成L(+)-酒石酸的研究进展[J]. 食品科技, 2006, 31(011):162-164.杨阳, 李文鹏, 陆鲁生,等. L(+)-酒石酸发酵法生产工艺改进的研究[J]. 生物工程学报, 2001, 17(3):345-348.柯昌武, 蔡水洪, 叶勤. 卡拉胶固定化Nocardia sp.生产L(+)酒石酸[J]. 华东理工大学学报(自然科学版), 2006.Yamada K. Kodama T. Obata T, et al.Microbial formation tartaric acid from glucose 1 Isolation and identification tartaric acid producing microorganisms[J].Journal of Fermentation Technology, 1971. 49 (2) :85-89.Kotera U, Kodama T, Yamada к, et al.Microbial formation of tartaric acid from glucose 5 lsolation and chemical structure of new oxidation product of 5-ketogluconic acid, and a hypothetical pathway from glucose !o tararic acid through this new compound[J]Agricultural and Biological Chemistry. 1972. 36 (8) 1315-1325.Klasen R. Bringerneyer s, Sahm H.Biochemical characterization and sequence analysis of the gluconate-NADP 5-oxidoreductase gene from Gluconobacter oxydans[J].Journal of Bacteriology, 1995, 177 (10) :2637-2543.Shinagawa E, Matsushita K, Toyama H, et al.Production of 5-ketod-gluconate by acetic acid bacteria iscatalyzed by pyrroloquinoline quinone (PQQ) -dependent membrane-bound d-gluconate dehydrogenase[J].Journal of Molecular Catalysis B:Enzymatic, 1999, 6 (3) :341-350.

  • D酒石酸二乙丙酯旋光度测定

    D酒石酸二乙丙酯旋光度测定,请问大伙是怎么测的?为什么我这边取10ml置100ml量瓶中,用水定溶。它出来的比旋度会不达标?

  • 【求助】酒石酸不出峰

    用酒精水溶液溶解的酒石酸,大约含水20%,酒石酸10%,不出峰,不知道什么原因,HP-5 MS柱子请问有人用GC/MS(EI)做过酒石酸吗?本来是用纯酒精做溶剂,可是就算加热也不见溶解,后来查一下资料,酒石酸的溶剂都是含水的,加了水,溶解的很好,可是,进样后却不出峰酒石酸二乙酯40分钟左右出峰,50分钟左右有个小峰包,量非常小,检索确认不了那是什么化合物

  • 酒石酸鈉能代替酒石酸来用吗?

    主要是分析样品中的镍含量,用酒石酸来掩蔽其他干扰元素的,但是实验室里面没有买酒石酸,而是上次买的一瓶酒石酸钠。不知道能不能替代。有影响吗?望大神给解答一下~

  • 【金秋计划】白藜芦醇-盐酸巴马汀共晶水合物的制备、晶体结构及溶解性研究

    植物源性多酚由于具有预防和治疗多种疾病的特性,在制药、化工和食品工业等领域引起广泛关注[1-2]。白藜芦醇(resveratrol,图1)是一种天然多酚,存在于葡萄皮、蔓越莓、可可等植物中,具有抗氧化、抗炎、保护心脏和抗癌等生物活性[3-4]。此外,白藜芦醇对阿尔茨海默病、帕金森病和癫痫等神经系统疾病也有神经保护作用[5-6]。该化合物在自然界中以反式和顺式2种异构体的形式存在,但反式异构体更丰富,生物活性更高[7]。然而,白藜芦醇较低的水溶性、生物利用度限制了其在人体中的吸收和生物利用有效性[8]。 药物共晶是活性药物成分和共晶形成物按一定化学计量比在非共价键相互作用下自组装而成的固体结晶材料[9-10],共晶中存在的氢键或其他非共价作用,会改变原药物晶体的结构,通过降低晶格能、提高溶剂的亲和力,从而改善药物在共晶中的溶解度[11]。因此,药物共晶技术成为解决药物生物利用度低的新途径、新领域。通过药物共晶技术提高药物生物利用度是今后药物开发新的研究方向。近年来,白藜芦醇共晶和多晶型用于提高其溶解度和生物利用度已有报道,如氨基苯甲酰胺[12]、异烟肼与烟酰胺[13]、乙烯基二吡啶[14]等共晶。不同共晶之间白藜芦醇的构象和分子堆积是灵活的,且白藜芦醇共晶的物理化学性质与其晶体堆积模式密切相关。基于共晶策略优势,利用高水溶性生物活性药物增强白藜芦醇的溶解度和生物利用度,同时有助于发挥2种药物在抗炎、抗病毒功效等方面协同作用,如白藜芦醇-金刚烷胺盐酸盐共晶[15]。 盐酸巴马汀(palmatine chloride,PCl,图1)又名黄藤素,是一类典型的异喹啉生物碱,主要存在于黄柏、黄连、三棵针、南天竹等天然中草药植物中[16-17]。PCl易溶于热水,具有抗菌、抗炎、抗病毒与抗肿瘤等药用价值,在临床上常用于治疗妇科炎症、菌痢、肠炎、呼吸道和泌尿道感染以及眼结膜炎等症状[16,18-19]。PCl结构中含有1个季铵盐阳离子与氯离子(Cl?),其中Cl?是一类潜在的氢键受体,不仅空间位阻小,还具有良好的空间适应性和几何延展性,可以同时接纳多个氢键给体,与氨基、羧基、羟基等官能团可形成较强的电荷辅助氢键[20-21],利用含Cl?的PCl作为共晶形成物为药物共晶开发提供了新的思路。本课题组前期系统研究了PCl作为共形成物与外消旋橙皮素的药物共晶多晶型,2种共晶均存在O-HCl?氢键相互作用,对温度、湿度和光表现出很高的稳定性,共晶的形成降低了盐酸巴马汀的溶解度,提高了橙皮素的溶解度。同时,在纯水中实现了盐酸巴马汀的缓释和增强橙皮素的释放[22]。本实验基于Cl?与羟基之间易形成O-HCl?氢键作用,研究了白藜芦醇与PCl的共结晶。采用溶剂悬浮法成功制备了一种新的白藜芦醇-盐酸巴马汀共晶水合物(RES-2PClH2O),利用单晶X射线衍射、粉末X射线衍射和傅里叶红外光谱对其结构进行表征,并利用差示扫描量热、动态水蒸汽吸附、高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]分析等对共晶水合物的稳定性、溶解度及溶出速率等进行了考察。 图片 1 仪器与材料 Smart Lab SE型粉末X射线衍射仪,日本理学公司;Super Nova CCD型单晶X射线衍射仪,美国安捷伦科技有限公司;DSC 214 Nevio型差示扫描量热仪、TG 209 F3型热重分析仪,德国耐驰仪器制造有限公司;Intrinsic Plus型动态水蒸汽吸附仪,英国Surface Measurement Systems公司;LC-20AD型高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url],日本岛津仪器有限公司;Nicolet iS 50型衰减全反射傅里叶红外光谱仪,美国赛默飞世尔科技公司;LHH-150SD型综合药品稳定性试验箱,上海一恒科学仪器有限公司;RC806ADK型溶出度测试仪,天津市天大天发科技有限公司;SHH-100GD-2型药品强光照射试验箱,重庆市永生实验仪器厂。 盐酸巴马汀三水合物(PCl3H2O)、白藜芦醇,质量分数均为97%,购自大连美仑生物技术有限公司;甲醇为色谱纯,购自上海泰坦科技股份有限公司;磷酸为色谱纯,购自上海阿拉丁试剂有限公司。其他试剂均为分析纯,购自国药集团药业股份有限公司。 2 方法与结果 2.1 样品的制备 2.1.1 白藜芦醇-盐酸巴马汀单晶的制备 取白藜芦醇(22.8 mg,0.1 mmol)与PCl3H2O(44.2 mg,0.1 mmol)混合均匀后加入20 mL甲醇溶液,加热搅拌至完全溶解后滤过。将溶液放于避光环境下缓慢蒸发,2~3 d后有橘红色块状晶体析出,即为白藜芦醇-盐酸巴马汀单晶。 2.1.2 RES-2PClH2O共晶水合物的制备 取白藜芦醇(114.0 mg,0.5 mmol)与盐酸巴马汀三水合物(442.0 mg,1 mmol)混合均匀后加入10 mL的甲醇溶液,在室温条件下密封搅拌48 h后滤过。将固体放于自然条件下干燥即可得到RES-2PClH2O共晶水合物。 2.2 固态表征 2.2.1 单晶X射线衍射(single crystal X-ray diffraction,SC-XRD) 利用Super Nova CCD单晶衍射仪测试待测样品,在100 K条件下收集晶体参数,入射光束为Cu-Kα射线(λ=0.154 184 nm),利用CrysAlisPro程序进行经验吸收校正[23]。采用SHELX程序对晶体结构进行直接法求解,通过全矩阵最小二乘方法对F2进行精修[24-25]。非氢原子在无约束位移参数下进行各向异性细化,氢原子则放置在合适的几何位置上。单晶结构解析表明,RES-2PClH2O为单斜晶系,P21/c空间群,在晶体结构中含有2个PCl分子、1个白藜芦醇分子与1个水分子。如图2所示,白藜芦醇结构中的3个酚羟基均参与了氢键的形成,其中2个酚羟基与2个Cl?形成O-HCl?氢键作用,而另1个酚羟基则与水分子形成O-HO氢键作用。水分子又同时与2个Cl?形成O-HCl?氢键作用。白藜芦醇分子、水分子与Cl?间通过上述的多种氢键作用相连接,形成了一维链状结构。形成的链与链间通过不同白藜芦醇分子间的C-HO作用相连接,进而形成二维层状结构(图3)。在分子间弱作用力下,层与层之进而形成堆积结构(图4)。RES-2PClH2O共晶水合物的晶体学数据见表1,共晶水合物中氢键的参数见表2。 图片 图片 图片 图片 2.2.2 粉末X射线衍射(powder X-ray diffraction,PXRD) 将待测样粉末均匀铺满样品槽后开始测量。入射光束为Cu-Kα射线,工作电压为40 kV,工作电流为15 mA,2θ范围取5°~45°,步长0.02°。如图5所示,RES-2PClH2O的PXRD谱图与白藜芦醇、PCl3H2O 2种原料药均不同,在10.6°、13.1°、14.0°、14.5°、16.2°、21.5°、26.7°、28.2°等处出现新的特征峰,且图谱中并未显现PCl3H2O在9.7°、17.8°等处的特征峰,表明所制备的产物形成了新的晶相。此外,RES-2PClH2O的PXRD图谱与其单晶结构的模拟图谱吻合较好,证实所制备的共晶水合物具有较高的纯度和均匀性。 图片 2.2.3 衰减全反射傅里叶变换红外光谱(attenuated total reflection fourier transform infrared spectroscopy,ATR-FTIR) 将待测样均匀铺于iD7 ATR附件上,扫描次数为32,分辨率为4 cm?1,波长范围为550~4 000 cm?1。如图6所示,RES-2PClH2O与PCl3H2O的图谱中均存在有水分子的伸缩振动峰,与单晶结构中存在的水分子相对应。在PCl3H2O中,水分子的伸缩振动峰为3 602~3 227 cm?1,而共晶水合物中水分子的伸缩振动峰为3 292 cm?1。在形成强分子间氢键时,-OH伸缩振动峰会发生红移(100~693 cm?1)[26-27]。白藜芦醇中-OH的伸缩振动峰在3 200 cm?1左右,而共晶水合物中-OH的伸缩振动峰显著红移至在3 002 cm?1,表明白藜芦醇和PCl3H2O分子间具有较强的氢键相互作用。同时,在形成共晶水合物后,白藜芦醇中-OH的弯曲振动峰从1 145 cm?1偏移至1 170 cm?1,归因于白藜芦醇上的-OH同PCl、水分子间均存在较强的氢键作用。 图片 2.2.4 差示扫描量热/热重分析(differential scanning calorimetry/thermal gravity analysis,DSC/ TGA) 称取适量白藜芦醇、PCl3H2O、RES- 2PClH2O分别放于铝制坩埚中,密封、扎孔后进行DSC测试。以同样的空坩埚作为参比,将其放置于仪器中预热、平衡至读数稳定后,将待测样品放于空坩埚中进行TGA测试,温度范围为30~300 ℃,升温速率10 K/min,通氮气作为保护气,体积流量为40 mL/min。如图7-a所示,白藜芦醇在268.1 ℃处有1个吸热熔融峰,PCl3H2O在204.2 ℃处出现吸热熔融峰。RES-2PClH2O在136℃附近存在1个宽的脱水吸热峰,在230.5 ℃附近存在熔融吸热峰。共晶水合物的熔点介于2个原料药之间,是不同于原料药的新晶型。由TGA图谱(图7-b)可知,白藜芦醇在30~150 ℃没有明显质量变化,PCl3H2O在105 ℃失重比为11.3%。相较于2原料药,RES-2PClH2O在136 ℃附近的失重比为2.8%,与其理论的失水质量比(2.8%)一致,进一步证实共晶水合物结构中存在1个水分子。 图片 2.3 物理稳定性研究 2.3.1 稳定性分析 根据《中国药典》2020年版药物稳定性试验,评价温度、湿度、光照等环境参数对所制备共晶水合物物理稳定性的影响。将RES- 2PClH2O分别储存于烘箱、湿稳定性箱及光稳定箱中,放置10 d后取出进行PXRD表征。如图8所示,在60 ℃,90%相对湿度(RH),或4 500 lx条件下储存10 d后,RES-2PClH2O的PXRD图谱保持不变,说明所制备共晶水合物在恶劣的储存条件下未发生晶型的变化,具有物理稳定性。 图片 2.3.2 动态水蒸汽吸附(dynamic vapor sorption,DVS)分析 称取适量待测样品置于动态水蒸气吸附仪中,设定温度为25 ℃,在体积流量为200 mL/min氮气下测量,模式选择为0~95%~0相对湿度吸附、脱附水蒸汽全循环,步长5%,平衡标准为粉体质量变化(dm/dt)≤0.002%/min。如图9-a所示,PCl3H2O吸湿量随着相对湿度增加而逐步增大。相比于PCl3H2O,白藜芦醇、RES-2PClH2O吸湿量基本不变,说明白藜芦醇可有效减少PCl3H2O吸湿量。根据局部放大图(图9-b),在95%相对湿度下,RES-2PClH2O共晶水合物吸湿量仅为0.16%,吸湿性极低。此外,共晶水合物的吸附与脱附曲线基本重合,表明在吸附过程中仅存在物理吸附水,共晶水合物未发生任何固态变化,具有良好的吸湿稳定性。 图片 2.4 体外溶出度研究 2.4.1 色谱条件 白藜芦醇、PCl的色谱分析采用Kristl等建立的方法[28]及《中国药典》2020年版一部黄藤素含量测定,并进行适当修改。色谱柱为中谱蓝XR-C18柱(150 mm×4.6 mm,5 μm),采用双波长模式,白藜芦醇的吸收波长306 nm,PCl的吸收波长345 nm,体积流量1 mL/min,进样量5 μL,柱温30 ℃,流动相为甲醇-0.2%磷酸水溶液(50∶50),洗脱方式为等度洗脱。 2.4.2 对照品储备液的制备 精密量取250 mg白藜芦醇置于50 mL量瓶中,甲醇定容,摇匀即得5 mg/mL白藜芦醇对照品储备液,同法制备5 mg/mL PCl3H2O对照品储备液。 2.4.3 线性关系考察 采用甲醇将“2.4.2”项下对照储备液分别稀释成5、10、20、50、100、200、500 μg/mL系列对照品溶液,按照“2.4.1”项下色谱条件测定各质量浓度(C)的峰面积(A)。方法学结果表明,PCl的线性回归方程为A=23 744 C+22 055,R2=1.000 0,结果表明PCl在10~500 μg/mL线性关系良好。白藜芦醇的线性回归方程为A=42 114 C?161.8,r=1.000 0,结果表明白藜芦醇在5~100 μg/mL线性关系良好。 2.4.4 供试品溶液的制备 精密量取5 mg RES-2PClH2O至50 mL量瓶中,甲醇定容,摇匀即得RES-2PClH2O供试品溶液。 2.4.5 专属性考察 取稀释后的对照品溶液、供试品溶液,分别按上述色谱条件进样,结果见图10,供试品溶液中白藜芦醇与PCl出峰时间与对照品溶液一致,分离度大于1.5,峰形良好,表明该色谱条件适用性良好。 图片 2.4.6 平衡溶解度实验 选用醋酸/醋酸盐缓冲液(pH 4.5)与纯水作为缓冲介质[15,29],称取过量待测样品加入少量介质溶液,得到过饱和溶液。37 ℃振荡48 h,取上层液0.45 μm滤膜滤过,纯水稀释后利用高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]测量其质量浓度,得到待测样品的饱和平衡溶解度,平行样为3组。实验结束后,收集未溶解的残留固体,室温干燥后进行PXRD表征。结果如表3所示,在纯水中,白藜芦醇的溶解度为(55.100±0.669)μg/mL,PCl3H2O的溶解度(24.130±0.670)mg/mL。与之相比较,白藜芦醇、PCl3H2O在pH 4.5缓冲液中的溶解度基本不变。值得注意的是,共晶水合物中白藜芦醇溶解度在2种介质中均显著提高,尤其在pH 4.5缓冲液中,共晶水合物中白藜芦醇溶解度提高约10倍。而共晶水合物中PCl溶解度在2种介质中均显著降低,在pH 4.5缓冲液中,溶解度降低到(1.760±0.015)mg/mL。上述结果均表明通过白藜芦醇与PCl形成共晶策略极大提高了白藜芦醇溶解度,同时降低了PCl溶解度。此外,溶解度测定后将未溶解的固体残渣收集后进行PXRD表征,图谱结果表明2种介质处理后的残渣与RES-2PClH2O的PXRD图谱基本吻合(图11),未发现明显的相变。 图片 图片 2.4.7 溶出速率评估 实验在RC806ADK溶出测试仪上进行,采用小杯桨法,桨转速为75 r/min,温度为37 ℃。选用醋酸/醋酸盐缓冲液(pH 4.5)与纯水作为溶出介质,溶出介质体积为250 mL。精密称取100 mg的RES-2PClH2O粉末,86.5 mg的PCl3H2O粉末以及22.3 mg的白藜芦醇粉末,待介质温度稳定后往介质投料。设置不同时间点进行取样,每次取样1 mL后随即补充1 mL缓冲液。所有样品溶液均过0.45 μm膜后,使用HPLC测量其质量浓度,平行样为3组。如图12-a可知,在2种介质中,白藜芦醇原料药释放缓慢,4 h后最大累积释放仅约45%;形成共晶水合物后,RES-2PClH2O中白藜芦醇在纯水与pH 4.5缓冲液中的溶出行为基本一致,溶出速率均增加,溶出释放量较白藜芦醇原料药显著提高,在1 h附近达到最大值,分别为82.26%与83.43%。与白藜芦醇溶出不同的是,PCl3H2O在2种介质中5 min内几乎完全溶解,共晶水合物中PCl的溶出速率较PCl3H2O有效减缓,1 h后达到最大累积释放量(图12-b)。 图片 综合上述溶出结果表明,相比于白藜芦醇原料药,通过与PCl3H2O形成共晶水合物,可有效促进白藜芦醇的溶出、同时延缓PCl的释放。 3 讨论 将水溶性较高的药物与难溶性药物形成药物-药物共晶,有利于平衡两者的溶解度[11]。利用水溶性较好的PCl[(24.13±0.67)mg/mL]与难溶性白藜芦醇[(55.100±0.669)μg/mL]通过分子间相互作用形成共晶,有望优化两者溶解度和溶出速率。本研究采用溶剂悬浮法成功制备了新的RES- 2PClH2O共晶水合物。RES-2PClH2O的PXRD图谱与其单晶结构的模拟图谱吻合较好,证实所制备的共晶水合物具有较高的纯度和均匀性。 DSC测试结果显示,RES-2PClH2O的熔点介于2个原料药之间,进一步证实该共晶水合物是不同于原料药的新晶型。通过单晶结构分析,该共晶水合物存在O-HCl?氢键作用且含有水分子。白藜芦醇上的2个羟基与2个Cl?形成O-HCl?氢键,而水分子通过O-HO与O-HCl?的氢键作用分别与白藜芦醇、PCl相连并形成一维链状结构。链与链间又通过C-HO作用形成二维层状结构,层与层之间通过分子间弱作用力进而形成堆积结构。 TGA表征结果显示,RES-2PClH2O实际失水质量与理论失水质量相一致,进一步证实该共晶水合物结构中存在1个水分子。ATR-FTIR显示,RES-2PClH2O中,水分子伸缩振动峰和白藜芦醇的-OH伸缩振动峰、弯曲振动峰均发生了明显偏移,表明白藜芦醇中的-OH与PCl、水分子间均存在较强的氢键作用,2原料药间发生了相互作用。 药物稳定性测试证实,RES-2PClH2O在高温、高湿或强光照射等恶劣条件下长期储存具有较好的物理稳定性,与非吸湿性白藜芦醇共结晶后,PCl的抗湿稳定性得到显著提高。为研究PCl对白藜芦醇溶解度影响,评估了共晶水合物在纯水与醋酸/醋酸钠缓冲液介质中的平衡溶解度,并与原料药溶解度对比分析。结果显示,可溶性PCl与不溶性白藜芦醇共结晶同时影响了2种药物的溶解性能。在所制备的共晶水合物中,白藜芦醇溶解度明显提高、PCl溶解度显著降低。 为探究RES-2PClH2O共晶水合物形成后白藜芦醇、PCl溶出速率变化,对比在纯水与pH 4.5缓冲液2种介质中共晶水合物与原料药的溶出速率。溶出结果表明PCl作为白藜芦醇共晶形成的共形成物,显著促进白藜芦醇的释放同时延缓PCl的释放。本研究阐明了PCl作为白藜芦醇药物共晶形成物的可行性,为利用共结晶技术开发白藜芦醇药物共晶提供新的借鉴。

  • 【讨论】关于酒石酸钾钠的问题

    在测铁中,用酒石酸钾钠掩蔽铜,发现每次配制后不到一个星期,就会产生白色的絮状物,这是为什么呢?白色絮状物是什么东东呢?

  • 【讨论】关于酒石酸

    我们买的酒石酸分析纯溶解度低,优级纯(国药)可溶但Cr含量高(如何去除?)。我只能暂用柠檬酸代替 请问哪里有合格的酒石酸。

  • CNS_01.105_偏酒石酸

    CNS_01.105_偏酒石酸

    [align=center][size=16px]CNS[/size][size=16px]_01.105_[/size][size=16px]偏酒石酸[/size][/align][align=center][size=16px]高飞[/size][/align][size=16px]摘要[/size][size=16px]偏酒石酸是一种颗粒状的多孔性物质,通常是白色或微黄色固体,气味微酸,有吸湿性,难溶于水,水溶液呈酸性。偏酒石酸还具有络合作用,偏酒石酸可与酒石酸盐的钾离子或者钙离子通过络合作用形成可溶性络合物,使酒石酸盐处于溶解状态。偏酒石酸在高温下容易分解,形成酒石酸。[/size][size=16px]偏酒石酸主要应用于葡萄罐头的生产以及抑制葡萄酒[/size][size=16px]中[/size][size=16px]酒石酸[/size][size=16px]盐[/size][size=16px]沉淀的形成。[/size][size=16px]我国《食品安全国家标准食品添加剂使用标准》[/size][size=16px](GB2760-2014)规定:偏酒石酸作为[/size][size=16px]一种[/size][size=16px]酸度调节剂可用于水果罐头食品中,并可按生产需要适量使用。[/size][size=16px]本文从偏酒石酸的理化性质、[/size][size=16px]制备方法、技术要求、检验方法、偏酒石酸的限量以及应用等方面对食品添加剂偏酒石酸进行简单的介绍。[/size][size=16px]关键词[/size][size=16px] 偏酒石酸[/size][size=16px]、[/size][size=16px]酒石酸[/size][size=16px]、[/size][size=16px]酒石酸盐[/size][size=16px]、[/size][size=16px]葡萄酒[/size][size=16px]、[/size][size=16px]糖水葡萄罐头[/size][size=16px]一[/size][size=16px]、[/size][size=16px]偏酒石酸的[/size][size=16px]基本介绍及[/size][size=16px]理化性质[/size][size=16px]1[/size][size=16px]、基本介绍[/size][size=16px]化学名称:[/size][size=16px]偏酒石酸[/size][size=16px];[/size][size=16px]分子式:[/size][size=16px]C[/size][font='等线'][size=16px]8[/size][/font][size=16px]H[/size][font='等线'][size=16px]8[/size][/font][size=16px]O[/size][font='等线'][size=16px]10[/size][/font][size=16px];结构式:见图一;相对分子质量:[/size][size=16px]2[/size][size=16px]64.142[/size][size=16px](根据2[/size][size=16px]018[/size][size=16px]年国际相对原子质量)[/size][size=16px]。[/size][img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108061752291545_8732_1608728_3.png[/img][size=16px]图1 偏酒石酸的结构[/size][size=16px]2、理化性质[/size][size=16px]偏酒石酸是一种[/size][size=16px]颗粒状的[/size][size=16px]多孔性[/size][size=16px]物质[/size][size=16px],[/size][size=16px]通常是白色或微黄色固体,[/size][size=16px]气味微酸[/size][size=16px],有吸湿性,难溶于水[/size][size=16px],[/size][size=16px]水溶液呈酸性。[/size][size=16px]偏酒石酸还[/size][size=16px]具[/size][size=16px]有[/size][size=16px]络合作用,[/size][size=16px]偏酒石酸[/size][size=16px]可与酒石酸盐的钾[/size][size=16px]离子[/size][size=16px]或[/size][size=16px]者[/size][size=16px]钙离子[/size][size=16px]通过络合作用[/size][size=16px]形[/size][size=16px]成可溶性络合物,使酒石酸盐处于溶解状态。[/size][size=16px]偏酒石酸在高温下容[/size][size=16px]易分解[/size][size=16px],形[/size][size=16px]成酒石酸。[/size][size=16px]二、制备方法[/size][size=16px]1、酒石酸在高温下失水聚合而成[/size][size=16px]将一定量的酒石酸(即[/size][size=16px]2,3-二羟基丁二酸)细粉置于带有抽真空装置的由耐腐蚀材料制成的容器中加热至熔点150-160℃(常压下酒石酸的熔点为170℃),在连续搅拌的条件下维持此温度20-30分钟以上,使酒石酸分子内的酸和醇官能团进行酯化反应,然后停止加热,任其自然冷却,将得到一种色泽较白、溶解度较大,呈玻璃体状的脆性产品偏酒石酸,于阴凉干燥处密封保存,以防止潮解或结块。[/size][size=16px]2、酒石酸在168-172℃的温度下烘烤3.5h后自然冷却而成[/size][size=16px]将化学试剂α[/size][size=16px]-酒石酸[/size][size=16px]粉碎[/size][size=16px],在不锈钢盘中铺成0.3厘米厚度, 放进恒温、带鼓风机的干燥箱中, 严格控制温度在168-172℃,烘焙3.5小时后取出,自然冷却20分钟左右,得到一种很轻的多孔性固体,将其捣碎后装入塑料袋中封口,或者装入大口径塞的玻璃瓶中备用。[/size][size=16px]三[/size][size=16px]、[/size][size=16px]技术要求[/size][size=16px]1、感官要求[/size][size=16px]感官要求应该符合表[/size][size=16px]1[/size][size=16px]的规定。[/size][align=center][size=16px]表1偏酒石酸的感官要求[/size][/align][table][tr][td][size=16px]项目[/size][/td][td][size=16px]要求[/size][/td][td][size=16px]检验方法[/size][/td][/tr][tr][td][size=16px]状态[/size][/td][td][size=16px]颗粒状多孔固体[/size][/td][td=1,3][size=16px]取适量试样置于白搪瓷盘内,在自然光线下观察[/size][size=16px]色泽和状态,嗅其气味[/size][/td][/tr][tr][td][size=16px]气味[/size][/td][td][size=16px]微酸[/size][/td][/tr][tr][td][size=16px]色泽[/size][/td][td][size=16px]白色或微黄色,[/size][size=16px]1[/size][size=16px]0%[/size][size=16px]乙醇溶液无色透明或略带琥珀色[/size][/td][/tr][/table][size=16px]2、理化指标[/size][size=16px]理化指标应该符合表2的规定。[/size][align=center][size=16px]表2偏酒石酸的理化指标[/size][/align][table][tr][td]项目[/td][td]指标[/td][td]检验方法[/td][/tr][tr][td]总酸量(以干基计),w/% ≥[/td][td][align=center]99.0[/align][/td][td][align=center]四→2[/align][/td][/tr][tr][td]脱羧度[font='等线'][size=13px]a[/size][/font]/% ≥[/td][td][align=center]30.0[/align][/td][td][align=center]四→2[/align][/td][/tr][tr][td]灼烧残渣,w/% ≤[/td][td][align=center]0.05[/align][/td][td][align=center]GB/T 19741[/align][/td][/tr][tr][td]草酸盐[/td][td][align=center]通过试验[/align][/td][td][align=center]四→3[/align][/td][/tr][tr][td]硫酸盐[/td][td][align=center]通过试验[/align][/td][td][align=center]四→4[/align][/td][/tr][tr][td]铅(Pb)/(mg/kg)≤[/td][td][align=center]2.0[/align][/td][td][align=center]GB 5009.75-2014第二法或GB 5009.12-2017第一法[/align][/td][/tr][tr][td]砷(以As计)/( mg/kg)≤[/td][td][align=center]2.0[/align][/td][td][align=center]GB 5009.76-2014第二法或[/align][/td][/tr][tr][td=3,1]a酒石酸在聚合时失去羧基的百分数[/td][/tr][/table][size=16px]四、偏酒石酸的检验方法[/size][size=16px]1、高效液相色谱法检测食品中的偏酒石酸[/size][size=16px]1[/size][size=16px].1[/size][size=16px]试剂和材料[/size][size=16px]硫酸溶液:c[/size][size=16px](H[/size][font='等线'][size=16px]2[/size][/font][size=16px]SO[/size][font='等线'][size=16px]4[/size][/font][size=16px])=0.0025mol/L[/size][size=16px];微孔滤膜:0[/size][size=16px].22[/size][size=16px]微米。[/size][size=16px]1[/size][size=16px].2[/size][size=16px]仪器和设备[/size][size=16px]高效液相色谱仪;二极管阵列检测器;分析天平:感量[/size][size=16px]0.0001[/size][size=16px]克;微量进样器:1[/size][size=16px]0[/size][size=16px]微升。[/size][size=16px]1[/size][size=16px].3[/size][size=16px]参考色谱条件[/size][size=16px]色谱柱[/size][size=16px] : Rezex ROA - Organic Acid分析柱[/size][size=16px],3[/size][size=16px]00[/size][size=16px]毫米[/size][size=16px]*7.8[/size][size=16px]毫米[/size][size=16px],8[/size][size=16px]微米,或者满足条件的其他色谱柱。[/size][size=16px]柱温[/size][size=16px] : 40℃。[/size][size=16px]流动相[/size][size=16px] : 0[/size][size=16px].[/size][size=16px]0025mol/L 硫酸溶液[/size][size=16px]。[/size][size=16px]流速 : 0[/size][size=16px].[/size][size=16px]4mL /min[/size][size=16px]。[/size][size=16px]检测波长 : 210nm[/size][size=16px]。[/size][size=16px]进样量 :10μL。[/size][size=16px]1[/size][size=16px].4[/size][size=16px]实验步骤[/size][size=16px]1[/size][size=16px].4.1[/size][size=16px] 0.0025mol/L 硫酸溶液[/size][size=16px]的配制[/size][size=16px]在1[/size][size=16px]000mL[/size][size=16px]烧杯中加入8[/size][size=16px]00mL[/size][size=16px]超纯水,缓慢加入1[/size][size=16px]36[/size][size=16px]微升9[/size][size=16px]8%[/size][size=16px]的浓硫酸,用玻璃棒缓慢搅匀,待溶液冷却至室温后,将所配制溶液移入1[/size][size=16px]000mL[/size][size=16px]容量瓶中定容至1[/size][size=16px]000mL[/size][size=16px]。[/size][size=16px]1[/size][size=16px].4.2[/size][size=16px]待测溶液的配制[/size][size=16px]称取0[/size][size=16px].010[/size][size=16px]克的待测样品,放入5[/size][size=16px]0mL[/size][size=16px]的烧杯中,加入3[/size][size=16px]0mL[/size][size=16px]的0[/size][size=16px].0025[/size][size=16px]mol/L[/size][size=16px]的[/size][size=16px]硫酸溶液[/size][size=16px],搅拌至样品完全溶解后移入1[/size][size=16px]00mL[/size][size=16px]容量瓶中,用[/size][size=16px]0.0025mol/L的硫酸溶液[/size][size=16px]定容至1[/size][size=16px]00mL[/size][size=16px]。[/size][size=16px]1[/size][size=16px].4.3[/size][size=16px]对待测样品溶液进行测定[/size][size=16px]取1[/size][size=16px]0mL[/size][size=16px]配制好的样品溶液过0[/size][size=16px].22[/size][size=16px]微米的滤膜后,取1[/size][size=16px]0[/size][size=16px]微升处理后的样品溶液注入液相色谱仪,进行高效液相色谱分析,记录色谱峰保留时间,根据保留时间判断是否是偏酒石酸。偏酒石酸在给定的色谱条件和试剂条件下,保留时间为1[/size][size=16px]0.0[/size][size=16px]分钟。[/size][img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108061752295852_9590_1608728_3.png[/img]图2 偏酒石酸液相色谱图[size=16px]2、总酸量(以干基计)和脱羧度[/size][size=16px]的测定[/size][size=16px]2[/size][size=16px].1[/size][size=16px]试剂和材料[/size][size=16px]溴百里酚蓝溶液[/size][size=16px]:4[/size][size=16px].0[/size][size=16px]克/[/size][size=16px]升;[/size][size=16px]氢氧化钠标准滴定溶液:c[/size][size=16px](NaOH)=1.0mol/L[/size][size=16px];[/size][size=16px]硫酸溶液:[/size][size=16px]c([/size][size=16px]H[/size][font='等线'][size=16px]2[/size][/font][size=16px]SO[/size][font='等线'][size=16px]4[/size][/font][size=16px])=[/size][size=16px]0.5[/size][size=16px]mol/L[/size][size=16px]。[/size][size=16px]2[/size][size=16px].2[/size][size=16px]实验步骤[/size][size=16px]称取2.000g样品,加100 mL去离子水加热溶解备用。取新配制的偏酒石酸溶液50 mL放[/size][size=16px]入[/size][size=16px]250mL锥形瓶中,滴加3滴溴百里酚蓝指示剂[/size][size=16px],[/size][size=16px]用1.0mol/L的氢氧化钠溶液滴定至溶液呈蓝绿色,稳定30s不变色,记录氢氧化钠的消耗体积V[/size][font='等线'][size=16px]1[/size][/font][size=16px]。[/size][size=16px]继续加入20.0 mL1.0 mol/L的氢氧化钠溶液[/size][size=16px],[/size][size=16px]盖上瓶塞[/size][size=16px],[/size][size=16px]在室温下静置2h[/size][size=16px],[/size][size=16px]然后用0.5mol/L的硫酸[/size][size=16px]溶液[/size][size=16px]滴定过量的氢氧化钠至溶液呈蓝绿色,记录硫酸[/size][size=16px]的消耗量V[/size][font='等线'][size=16px]2[/size][/font][size=16px]。[/size][size=16px]在测定前需要将测试样品在120[/size][size=16px]℃的[/size][size=16px]烘箱中烘干至恒重后再进行称取。[/size][size=16px]2.3[/size][size=16px]数据处理[/size][size=16px]每消耗1.0 mL 1.0 mol/L的氢氧化钠溶液,相当于溶液中含有0.075 g酒石酸[/size][size=16px]。[/size][size=16px]待测样品中总酸量(包括游离的和脱羧酯化的酸)[/size]ω[size=16px]按式(A.1)计算。[/size][img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108061752296858_5189_1608728_3.png[/img][size=16px]式中:[/size][font='arial'][size=13px][color=#333333]ω[/color][/size][/font][font='arial'][size=13px][color=#333333]:[/color][/size][/font][size=16px]总酸量[/size][size=16px],[/size][size=16px]%[/size][size=16px]([/size][size=16px]保留三位有效数字[/size][size=16px])[/size][size=16px];[/size][size=16px]0.075[/size][size=16px]:[/size][size=16px]换算系数 [/size][size=16px]V[/size][font='等线'][size=16px]1[/size][/font][size=16px]:[/size][size=16px]第一次[/size][size=16px]滴定所用氢氧化钠的体积[/size][size=16px],[/size][size=16px]单位为毫升(mL)(读数精确到0.1mL) [/size][size=16px]20.[/size][size=16px]0[/size][size=16px]:[/size][size=16px]第[/size][size=16px]一[/size][size=16px]次滴定后氢氧化钠溶液的加[/size][size=16px]入[/size][size=16px]量,单位为毫升(mL)(读数精确到0.1mL) [/size][size=16px]V[/size][font='等线'][size=16px]2[/size][/font][size=16px]:[/size][size=16px]第二次滴定所用硫酸的体积[/size][size=16px],[/size][size=16px]单位为毫升(mL)(读数精确到0.1 mL) [/size][size=16px]m[/size][size=16px]:[/size][size=16px]所称取的样品质量,单位为克(g)[/size][size=16px]。[/size][size=16px]待测样品的脱羧度T按式(A.2)计算。[/size][img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108061752297746_4326_1608728_3.png[/img][size=16px]式中:[/size][size=16px]T[/size][size=16px]:[/size][size=16px]脱羧度[/size][size=16px],[/size][size=16px]%[/size][size=16px]([/size][size=16px]保留三位有效数字[/size][size=16px])[/size][size=16px] [/size][size=16px]20.0[/size][size=16px]:[/size][size=16px]第一次滴定后氢氧化钠溶液的加入量,单位为毫升(mL)(读数精确到0.1mL) [/size][size=16px]V[/size][font='等线'][size=16px]2[/size][/font][size=16px]:第二次滴定所用硫酸的体积[/size][size=16px],[/size][size=16px]单位为毫升(mL)(读数精确到0.1 mL) [/size][size=16px]V[/size][font='等线'][size=16px]1[/size][/font][size=16px]:第一次滴定所用氢氧化钠的体积,单位为毫升(mL)(读数精确到0.1mL)[/size][size=16px]。[/size][size=16px]上述测定均取两次平行测定结果的算术平均值为报告结果。两次平行测定[/size][size=16px]结果的绝对差值不大于0[/size][size=16px].2%[/size][size=16px]。[/size][size=16px]3、草酸盐试验[/size][size=16px]3[/size][size=16px].1[/size][size=16px]试剂和材料[/size][size=16px]氨水溶液:1[/size][size=16px]0%[/size][size=16px];硫酸钙饱和溶液。[/size][size=16px]3[/size][size=16px].2[/size][size=16px]分析步骤[/size][size=16px]称取1[/size][size=16px].00[/size][size=16px]克样品,溶于[/size][size=16px]10[/size][size=16px]毫升水中,用氨水溶液中和至中性,再加1[/size][size=16px]0[/size][size=16px]毫升硫酸钙饱和溶液,摇匀后观察,不得出现浑浊。[/size][size=16px]4[/size][size=16px]、硫酸盐试验[/size][size=16px]4.1[/size][size=16px]试剂和材料[/size][size=16px]盐酸溶液:[/size][size=16px]1+4[/size][size=16px];氯化钡溶液:称取1[/size][size=16px]2.0[/size][size=16px]克B[/size][size=16px]aCl[/size][font='等线'][size=16px]2[/size][/font][size=16px].2H[/size][font='等线'][size=16px]2[/size][/font][size=16px]O[/size][size=16px]溶于1[/size][size=16px]00[/size][size=16px]毫升水中。[/size][size=16px]4.2[/size][size=16px]分析步骤[/size][size=16px]称取1[/size][size=16px].00[/size][size=16px]克样品,溶于[/size][size=16px]100[/size][size=16px]毫升水中,加热溶解。取1[/size][size=16px]0[/size][size=16px]毫升该溶液置于试管中,加入3滴盐酸溶液及1毫升氯化钡溶液,摇匀后观察,不得出现浑浊。[/size][size=16px]五[/size][size=16px]、偏酒石酸的限量[/size][size=16px]中国 《食品添加剂使用卫生标准 》 (GB2760) 规定 , 偏酒石酸可按生产需要适量添加到[/size][size=16px]产品[/size][size=16px]中 , [/size][size=16px]一般用量为[/size][size=16px]2[/size][size=16px]%[/size][size=16px],[/size][size=16px]饮料中一般用量为0.1%~0.2%,用于[/size][size=16px]生产[/size][size=16px]葡萄罐头[/size][size=16px]时[/size][size=16px],实际使用添加量约[/size][size=16px]为[/size][size=16px]20g/kg。[/size][size=16px]而欧盟有关葡萄酒协议允许的添加量为 100g/L。[/size][size=16px]六[/size][size=16px]、[/size][size=16px]偏酒石酸的[/size][size=16px]应用[/size][font='arial'][size=16px][color=#333333]偏酒石酸主要[/color][/size][/font][font='arial'][size=16px][color=#333333]的两个应用:[/color][/size][/font][font='arial'][size=16px][color=#333333]抑制瓶装葡萄酒中酒石酸盐沉淀的形成[/color][/size][/font][font='arial'][size=16px][color=#333333]以及[/color][/size][/font][font='arial'][size=16px][color=#333333]用于[/color][/size][/font][font='arial'][size=16px][color=#333333]生产糖水[/color][/size][/font][font='arial'][size=16px][color=#333333]葡萄罐头[/color][/size][/font][font='arial'][size=16px][color=#333333]。除此之外,偏酒石酸[/color][/size][/font][font='arial'][size=16px][color=#333333]还可以作为[/color][/size][/font][font='arial'][size=16px][color=#333333]一种食品除蜡清洗剂[/color][/size][/font][font='arial'][size=16px][color=#333333]的原料之一。[/color][/size][/font][size=16px]1、抑制[/size][size=16px]瓶装[/size][size=16px]葡萄酒[/size][size=16px]中[/size][size=16px]酒石酸[/size][size=16px]盐[/size][size=16px]沉淀[/size][size=16px]的[/size][size=16px]形成[/size][size=16px]1[/size][size=16px].1[/size][size=16px]葡萄酒介绍[/size][size=16px]葡萄酒是以鲜葡萄或葡萄汁为原料,经全部或部分发酵酿制而成的,酒精度不低于[/size][size=16px]7.0%[/size][size=16px]的酒精饮品[/size][size=16px],它的主要产地是法国和西班牙等国家[/size][size=16px]。[/size][size=16px]葡萄酒[/size][size=16px]对促进人体健康有着[/size][size=16px]良好的效果,比如[/size][size=16px]葡萄酒[/size][size=16px]中含有多种无机盐,[/size][font='arial'][size=16px][color=#333333]无机盐[/color][/size][/font][font='arial'][size=16px][color=#333333]是人体骨骼[/color][/size][/font][font='arial'][size=16px][color=#333333]和[/color][/size][/font][font='arial'][size=16px][color=#333333]肌肉的重要组成部分[/color][/size][/font][font='arial'][size=16px][color=#333333],所以葡萄酒[/color][/size][/font][size=16px]可以[/size][size=16px]保护心肌、预防心脏病[/size][size=16px];[/size][size=16px]葡萄酒中含有[/size][size=16px]一种[/size][size=16px]名为[/size][size=16px]白藜芦醇[/size][size=16px]的[/size][font='arial'][size=16px][color=#333333]非黄酮类多酚[/color][/size][/font][size=16px]有机化合物,[/size][size=16px]人们通过实验发现[/size][size=16px],[/size][size=16px]这种物质具[/size][size=16px]有抗炎、抗癌[/size][size=16px]以[/size][size=16px]及[/size][size=16px]保护[/size][size=16px]心血管等作用[/size][size=16px]。[/size][size=16px]由于葡萄酒对人体健康有着重要的作用,所以越来越多的人喜爱饮用葡萄酒。[/size][size=16px]但是葡萄酒[/size][size=16px]装瓶后会出现很多[/size][size=16px]病害[/size][size=16px](病害即装瓶后出现浑浊沉淀,影响葡萄酒的口味和感官质量)[/size][size=16px],[/size][size=16px]常见的病害有:[/size][size=16px]铁破败、氧化破败、酒石沉淀[/size][size=16px]和还原病害等,其中酒石沉淀是葡萄酒最常见的病害之一[/size][size=16px],而利用偏酒石酸可以有效抑制葡萄酒中酒石沉淀病害[/size][size=16px]。[/size][size=16px]1[/size][size=16px].2[/size][size=16px]葡萄酒中酒石酸盐沉淀[/size][size=16px]形成的原因[/size][size=16px]酒石酸、苹果酸和柠檬酸是葡萄中[/size][size=16px]三种主要的酸,由于[/size][size=16px]葡萄酒是[/size][size=16px]以鲜葡萄或葡萄汁为原料[/size][size=16px]酿造而成的[/size][size=16px],[/size][size=16px]所以葡萄酒中也含有大量的酒石酸[/size][size=16px]。[/size][size=16px]酒石酸在酒精中的溶解度很低,[/size][size=16px]在酿造葡萄酒的过程中,[/size][size=16px]酒石酸会与水中的钾、钙等金属元素反应生成酒石酸氢钾和酒石酸钙等晶体[/size][size=16px]沉淀,但是由于这些晶体沉淀形成的速度很慢,[/size][size=16px]在酿造时[/size][size=16px]沉淀不明显,[/size][size=16px]往往在将葡萄酒[/size][size=16px]装瓶后形成大量沉淀,[/size][size=16px]使葡萄酒变得浑浊。[/size][size=16px]1[/size][size=16px].3[/size][size=16px]偏酒石酸抑制[/size][size=16px]酒石酸盐沉淀[/size][size=16px]形成的机理[/size][size=16px]偏酒石酸是[/size][size=16px]抑制[/size][size=16px]酒石酸[/size][size=16px]结晶[/size][size=16px]的高效抗结晶剂,[/size][size=16px]如果[/size][size=16px]在[/size][size=16px]葡萄[/size][size=16px]酒中加入[/size][size=16px]一定[/size][size=16px]量[/size][size=16px]的偏酒石酸[/size][size=16px],[/size][size=16px]当葡萄酒中[/size][size=16px]的酒石酸与钾、钙等金属元素[/size][size=16px]反应生成晶体沉淀[/size][size=16px]时,由于吸附作用,这些[/size][size=16px]刚形成的[/size][size=16px]晶体表面[/size][size=16px]会吸附大量的[/size][size=16px]偏酒石酸[/size][size=16px],[/size][size=16px]使[/size][size=16px]得这些晶体[/size][size=16px]无法[/size][size=16px]进行进[/size][size=16px]一步结晶,[/size][size=16px]也就不会有较大的晶体沉淀的形成[/size][size=16px],[/size][size=16px]通过这种方法[/size][size=16px]保证[/size][size=16px]装瓶后的[/size][size=16px]葡萄酒在[/size][size=16px]很长一段时间[/size][size=16px]内不[/size][size=16px]会[/size][size=16px]出现酒石酸盐[/size][size=16px]的[/size][size=16px]结晶[/size][size=16px]沉淀[/size][size=16px],这种方法也是[/size][size=16px]一种[/size][size=16px]最常用的避免葡萄酒发生[/size][size=16px]酒石酸盐晶体沉淀的有效措施。[/size][size=16px]1[/size][size=16px].4[/size][size=16px]偏酒石酸溶液[/size][size=16px]的添加方法以及注意事项[/size][size=16px]偏酒石酸是通过酒石酸分子[/size][size=16px]内[/size][size=16px]的[/size][size=16px]羧基和羟基发生[/size][size=16px]酯化作用而形成的一种聚酯,[/size][size=16px]它[/size][size=16px]在葡萄酒中,易缓慢水解[/size][size=16px]而[/size][size=16px]重新[/size][size=16px]生成[/size][size=16px]酒石酸,[/size][size=16px]如果偏酒石酸在葡萄酒中重新变成酒石酸,那么它不仅不会抑制酒石酸盐晶体沉淀的形成,[/size][size=16px]还会加重这种病害。[/size][size=16px]但是偏酒石酸水解重新生成酒石酸的反应[/size][size=16px]与温度[/size][size=16px]有着密切关联[/size][size=16px],研究表明,[/size][size=16px]在[/size][size=16px]0[/size][size=16px]℃[/size][size=16px]时,[/size][size=16px]如果在[/size][size=16px]葡萄酒中加入0.13g/L偏酒石酸,[/size][size=16px]那么偏酒石酸抑制[/size][size=16px]酒石酸盐[/size][size=16px]晶体沉淀[/size][size=16px]形成的[/size][size=16px]作用[/size][size=16px]可[/size][size=16px]维持很长时间[/size][size=16px],[/size][size=16px]如果[/size][size=16px]在20℃时[/size][size=16px]加入相同量的偏酒石酸[/size][size=16px],[/size][size=16px]这种抑制作用[/size][size=16px]只能[/size][size=16px]维持[/size][size=16px]3个月。因此,偏酒石酸只宜使用于冬季供应市场的葡萄酒。[/size][size=16px]偏酒石酸[/size][size=16px]在葡萄酒中[/size][size=16px]的添加可按下述方法:[/size][size=16px]按约[/size][size=16px]80[/size][size=16px]克[/size][size=16px]偏酒石酸/m[/size][font='等线'][size=16px]3[/size][/font][size=16px]葡萄酒的剂量称取[/size][size=16px]对应质量的[/size][size=16px]固体偏酒石酸,[/size][size=16px]将其[/size][size=16px]溶于冷水中,[/size][size=16px]然后[/size][size=16px]配制成浓度为[/size][size=16px]2[/size][size=16px]00[/size][size=16px]克[/size][size=16px]偏酒石[/size][size=16px]酸[/size][size=16px]/[/size][size=16px]L[/size][size=16px]左右浓度的溶液[/size][size=16px],[/size][size=16px]于[/size][size=16px]对溶液进行[/size][font='等线'][size=16px][color=#333333]澄清和纯化[/color][/size][/font][font='等线'][size=16px][color=#333333]处理[/color][/size][/font][size=16px]之后,[/size][size=16px]溶液[/size][size=16px]过滤之前,在连续搅拌的条件下,[/size][size=16px]快速[/size][size=16px]将配制好的偏酒石酸溶液[/size][size=16px]缓慢[/size][size=16px]地加入[/size][size=16px]葡萄[/size][size=16px]酒中,混合均匀。[/size][size=16px]在配制偏酒石酸溶液时,要注意以下几点:[/size][size=16px]a[/size][size=16px].[/size][size=16px]配制偏酒石酸溶液时,不[/size][size=16px]要用热水溶解,因为偏酒石酸在热水中会水解,重新生成酒石酸。[/size][size=16px]b.[/size][size=16px]使用剂量一般不能超过8[/size][size=16px]0g/m[/size][font='等线'][size=16px]3[/size][/font][size=16px],[/size][size=16px]如果葡萄酒的酸度较[/size][size=16px]高[/size][size=16px],可适当[/size][size=16px]增大剂量,偏酒石酸的酯[/size][size=16px]化指数越高,使用剂量越小。[/size][size=16px]c.[/size][size=16px]由于偏酒石酸在低温下的抑制效果更好,更稳定,所以应该在低温下储存葡萄酒。[/size][size=16px]d.[/size][size=16px]若葡萄酒中钙的含量较高,则应在冷处理前加入适量的外消旋酒石酸[/size][size=16px],它不仅可以除去葡萄酒中过量的钙,还可以提高钙的稳定性[/size][size=16px]。[/size][size=16px]2、[/size][size=16px]偏酒石酸用于[/size][size=16px]生产糖水葡萄罐头[/size][size=16px]糖水葡萄罐头的原料之一是葡萄,[/size][size=16px]和葡萄酒一样,由于[/size][size=16px]葡萄中有大量的酒石酸,[/size][size=16px]糖水葡萄罐头中[/size][size=16px]也会出现大颗粒的酒石酸盐晶体沉淀[/size][size=16px],从而[/size][size=16px]严重影响了[/size][size=16px]产品的口味[/size][size=16px],降低了产品的质量。[/size][size=16px]特别是在冬天,[/size][size=16px]糖水葡萄罐头中[/size][size=16px]经常出现[/size][size=16px]大量的[/size][size=16px]酒石酸氢钾结晶[/size][size=16px],[/size][size=16px]也存在微量[/size][size=16px]的[/size][size=16px]酒石酸钙[/size][size=16px]结晶沉淀。[/size][size=16px]2[/size][size=16px].1[/size][size=16px]偏酒石酸对酒石酸盐的作用原理[/size][size=16px]偏酒石酸是络合剂,当它与酒石酸盐接触时,结合成溶解度较大的络合物,使酒石酸盐处于溶解状态,但由于络合物在糖水中也存在着络合平衡,[/size][size=16px]络合反应[/size][size=16px]是可逆反应,[/size][size=16px]它的[/size][size=16px]稳定常数较小,[/size][size=16px]并且[/size][size=16px]受酸度、温度等因素影响较大,所以[/size][size=16px]这种[/size][size=16px]络合物[/size][size=16px]很不[/size][size=16px]稳定,[/size][size=16px]容易[/size][size=16px]受外界因素影响而沉淀出来。[/size][size=16px]2[/size][size=16px].2[/size][size=16px]偏酒石酸[/size][size=16px]的添加方法以及注意事项[/size][size=16px]偏酒石酸[/size][size=16px]在糖水葡萄罐头中的[/size][size=16px]添加可按下述方法:[/size][size=16px]称取检验合格的偏酒石酸[/size][size=16px]2[/size][size=16px]升,加水102升,[/size][size=16px]在[/size][size=16px]加热[/size][size=16px]过程中[/size][size=16px]搅拌,[/size][size=16px]待[/size][size=16px]沸腾[/size][size=16px]一段时间充分[/size][size=16px]溶解后,立刻[/size][size=16px]将溶液[/size][size=16px]倒入冷却装置中,冷却至室温,[/size][size=16px]溶液冷却的时间不宜过长,一般不能超过[/size][size=16px]30分钟,这是因为偏酒石酸在高温下会大量水解成酒石酸。[/size][size=16px]冷却之后[/size][size=16px]过滤[/size][size=16px],[/size][size=16px]备用。[/size][size=16px]将[/size][size=16px]罐头需用的糖水配制[/size][size=16px]好以后[/size][size=16px],经冷却装置冷却到50℃[/size][size=16px]以下,[/size][size=16px]然后[/size][size=16px]按每吨罐头成品中含偏酒石酸[/size][size=16px]1公斤计算,在每吨糖水中加入2%的偏酒石酸溶液。[/size][size=16px]注意事项:[/size][size=16px]a.烤酒石酸的温度和时间需要严格控制,[/size][size=16px]没有烤好的产品不能使用。[/size][size=16px]b.[/size][size=16px]硬度较大的罐头生产用水,[/size][size=16px]需要使用经过离子交换树脂处理过的水。[/size][size=16px]c.[/size][size=16px]在产品的生产过程中,应避免原料与[/size][size=16px]腐蚀性强的金属用具接触。[/size][size=16px]d.[/size][size=16px]糖水葡萄[/size][size=16px]罐头成品[/size][size=16px]在运输和存放时,应维持温度高于4℃,避免罐头[/size][size=16px]冻结。[/size][size=16px]3、偏酒石酸作为一种[/size][size=16px]食品除蜡清洗剂的原料[/size][size=16px]这种食品[/size][size=16px]除蜡清洗剂[/size][size=16px]清洁效果[/size][size=16px]较[/size][size=16px]好,[/size][size=16px]它不仅能[/size][size=16px]除[/size][size=16px]去[/size][size=16px]食品表面的一般污垢[/size][size=16px],[/size][size=16px]还能有效[/size][size=16px]去除[/size][size=16px]其它硬质杂质,[/size][size=16px]尤其对[/size][size=16px]食品表面涂覆的蜡[/size][size=16px]具有良好的去除作用[/size][size=16px]。[/size][size=16px]其[/size][size=16px]具体实施方式有三种[/size][size=16px]:[/size][size=16px]①[/size][size=16px]按质量百分比计[/size][size=16px],[/size][size=16px]将[/size][size=16px]5%的非离子聚丙烯酰胺、4%的烷基酚聚氧乙烯醚、10%的偏酒石酸、5%的果酸、6%的甲基羟丙基纤维素、5%的十二烷基苯磺酸钠、5%的乙醇、5%的质量浓度为1%[/size][size=16px]的碳酸钠溶液、[/size][size=16px]与[/size][size=16px]55%的去离子水加入同一容器中进行充分搅拌[/size][size=16px]以[/size][size=16px]至完全溶解[/size][size=16px],即得到一种清洁效果良好的[/size][size=16px]食品除蜡清洗剂[/size][size=16px]。[/size][size=16px]②[/size][size=16px]按质量百分比计,将[/size][size=16px]8[/size][size=16px]%[/size][size=16px]的非离子聚丙烯酰胺、7%的烷基酚聚氧乙烯醚、15%的偏酒石酸、7%的果酸、8%的甲基羟丙基纤维素、7%的十二烷基苯磺酸钠、7%的乙醇、5%的质量浓度为1%[/size][size=16px]的碳酸钠溶液、与[/size][size=16px]36%的去离子水加入同一容器中进行充分搅拌至完全溶解后即得到所述[/size][size=16px]除蜡清洗剂,使用该清洗剂对表面涂蜡的食品进行冲洗,洗涤结束后,食品表面洁净光滑,无任何明显杂质。[/size][size=16px]③[/size][size=16px]按质量百分比计,将[/size][size=16px]7%的非离子聚丙烯酰胺、6%的烷基酚聚氧乙烯醚、10%的偏酒石酸[/size][size=16px]、[/size][size=16px]7%的果酸[/size][size=16px]、[/size][size=16px]8%的甲基羟丙基纤维素[/size][size=16px]、[/size][size=16px]5%的十二烷基苯磺酸钠[/size][size=16px]、[/size][size=16px]7%的乙醇[/size][size=16px]、[/size][size=16px]7%质量浓度为2%的[/size][size=16px]碳酸钠溶液[/size][size=16px]、[/size][size=16px]与[/size][size=16px]43%的去离子水加入同[/size][size=16px]一容器中进行充分搅拌至完全溶解后即得到所述除[/size][size=16px]蜡清洗剂,使用该清洗剂对表面涂蜡的食品进行冲洗,洗涤结束后,食品表面洁净光滑,无任何明显杂质。[/size][size=16px]参考文献[/size][size=16px][1][/size][size=16px]GB 1886.324-2021[/size][size=16px]食品安全国家标准[/size][size=16px] 食品添加剂 偏酒石酸[/size][size=16px].[/size][size=16px][[/size][size=16px]2][/size][size=16px]陈健,[/size][size=16px]杨方[/size][size=16px],[/size][size=16px]黄晓蓉[/size][size=16px],[/size][size=16px]林杰[/size][size=16px],[/size][size=16px]林真[/size][size=16px]等[/size][size=16px].[/size][size=16px]食品中偏酒石酸的高效液相色谱法检测研究[/size][size=16px].[/size][size=16px]福建出入境检验检疫局检验检疫技术研究重点实验室 , 福州 350003[/size][size=16px].[/size][size=16px]福建生物工程职业技术学院保健营养学系 , 福州 350002[/size][size=16px].[/size][size=16px][[/size][size=16px]3[/size][size=16px]][/size][size=16px]黄[/size][size=16px]亚东[/size][size=16px].[/size][size=16px]利用偏酒石酸抑制装瓶后葡萄酒中酒石酸盐沉淀的形成[/size][size=16px][J].酿酒科技,1997[/size][size=16px],[/size][size=16px]1[/size][size=16px].[/size][size=16px]江[/size][size=16px]苏省淮阴食品工业学校发酵专业科[/size][size=16px]([/size][size=16px]223001).[/size][size=16px][[/size][size=16px]4[/size][size=16px]][/size][size=16px]陆[/size][size=16px]兴龙[/size][size=16px].[/size][size=16px]偏酒[/size][size=16px]石酸在糖水葡萄罐头中的应用[/size][size=16px][J].食品科学,1983[/size][size=16px].[/size][size=16px][[/size][size=16px]5][/size][size=16px]黄继生[/size][size=16px].[/size][size=16px]一种食品除蜡清洗剂.[/size][size=16px]2018[/size][size=16px],[/size][size=16px]08[/size][size=16px],[/size][size=16px]10[/size][size=16px].[/size]

  • 【求助】急求:D-L酒石酸的拆分

    我的原料是左右混旋的.我想用D-酒石酸拆分.需要怎么拆解呢我用D的拆得到的是左旋 但是 拆分后 还会残余少量的右旋不知道是什么原因出现这样的结果?相关文献我都看了 但不是很懂 请高手解答下

  • 【求助】酒石酸的溶解度

    最近做铝土矿中三氧化二铝的含量测定,发现新购的酒石酸(用于掩蔽二氧化钛)配制成20%的质量浓度过夜后竟敢析出晶体了,做出来的结果也不正常!而原来的酒石酸不会析出晶体的!怪事了!怎么办?

  • 【求助】酒石酸钾钠的屏蔽能力???

    请问酒石酸钾钠溶液屏蔽金属离子的能力是以什么计算的??以钙离子为例,其对应关系应该不是简单的摩尔比1:1吧,因为酒石酸钙的溶解度很小,如若全部反应,产生沉淀,就失去屏蔽的意义了。那么到底应该如何计算??请高手指教!!!

  • 酒石酸与DMA气相

    各位大神,我在做一个原料药(含酒石酸)残留溶剂时,有的批次在1.5~1.6min处出峰了,但有的批次没有,我单独配制酒石酸进样,在相同位置也出现了峰,而且用DMA配制时有峰,但用水配制是没有出峰的,这是什么原因呀,DMA会和酒石酸反应吗[img=,690,441]https://ng1.17img.cn/bbsfiles/images/2023/08/202308022014291113_1855_3935903_3.png[/img]

  • 【原创】天然气水合物

    打开能源的“牢笼”在冰的天然气水合物矿床中,可以发现大量的天然气,但是将这些天然气开采出来却是一个严峻的挑战。一万亿立方英尺 (tcf) 有多大? 尽管我们知道这个体积非常大,但是要想像其具体的大小将会相当困难。这里有一种方法。假定我们站在足球场或橄榄球球场一端的球门附近。在另一端俯视球场,设想一条长度为 30 倍球场长度的直线。(这一距离大概为 3 公里(约 1.9 英里)或相当于 3500 步。)现在右转 90 度,然后按照该方向设想一条相同距离的直线。最后,直视前方,设想一条长度相同并且垂直于地面向天空方向延伸的直线。那么,这个立方体的三条边所包含的体积就大约为一万亿立方英尺!平均而言,地球上的每人每月大约消费七万亿立方英尺天然气! 燃烧的冰地球上的人使用天然气(甲烷,CH4)这种矿物燃料提供日常所用能源的 45%。目前,每年的天然气燃烧量约为 2.4 万亿立方米(85 万亿立方英尺)。不幸的是,按照这一速度,我们所发现的地球天然气储量只能使用 60 年。这意味着按照目前所知的情况,对于今天正在上高中的学生而言,他们的子孙就没有可用的天然气了。对于这一暗淡的前景也有一些好的消息。看起来还有另外一个天然气资源的世界,足以满足我们当前以及将来 2000 年的能源需求。这完全可以惠及我们子子孙孙!不幸的是,我们还没有找到开采这一天然气的经济方式。我们目前正在研究。 这些特殊的天然气储量称为天然气水合物,它们由其甲烷(天然气)分子中类似小鸟笼一样的冰结构构成。基本的水合单元是中空的水分子晶体,其中包含一个天然气单分子。这些晶体以紧密的网格结构相互联接在一起。如果这些天然气水合物的联接程度紧密上几倍,那么它们看起来将更象是冰。但是其属性和冰不同:它们在适当的条件下可以燃烧!这是 21 世纪一个相当热门的话题。全球天然气水合物的储量丰富,因此有些国家已经开始研究和探索计划,致力于理解水合物的行为、确定其精确储量并开发可行的开采方法。日本、印度、美国、加拿大、挪威和俄罗斯等国家都在进行天然气水合物的勘测。 天然气水合物是一个晶体结构。这一天然气水合物的每个单元小室都包含 46 个水分子,构成两个较小的十二面体和 6 个较大的十四面体。天然气水合物只能承载较小的气体分子,例如甲烷和乙烷。在常温常压(STP)下,一体积的饱和甲烷水合物将包含 189 体积的甲烷气体。天然气水合物这么大的气体储量意味着重要的天然气来源。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制