当前位置: 仪器信息网 > 行业主题 > >

牛脂酰胺基丙基胺氧化物

仪器信息网牛脂酰胺基丙基胺氧化物专题为您提供2024年最新牛脂酰胺基丙基胺氧化物价格报价、厂家品牌的相关信息, 包括牛脂酰胺基丙基胺氧化物参数、型号等,不管是国产,还是进口品牌的牛脂酰胺基丙基胺氧化物您都可以在这里找到。 除此之外,仪器信息网还免费为您整合牛脂酰胺基丙基胺氧化物相关的耗材配件、试剂标物,还有牛脂酰胺基丙基胺氧化物相关的最新资讯、资料,以及牛脂酰胺基丙基胺氧化物相关的解决方案。

牛脂酰胺基丙基胺氧化物相关的论坛

  • 【原创】测益母草中盐酸水苏碱?来看丙基酰胺键合硅胶柱

    【原创】测益母草中盐酸水苏碱?来看丙基酰胺键合硅胶柱

    2010年版药典(一部)中,对益母草中盐酸水苏碱的测定有如下描述(以丙基酰胺键合硅胶为填充剂):http://ng1.17img.cn/bbsfiles/images/2011/01/201101080907_272670_801_3.jpg那么为什么要用丙基酰胺柱来测盐酸水苏碱呢?丙基酰胺硅胶基质的柱子是什么柱子呢? 首先我们要了解盐酸水苏碱的特性,盐酸水苏碱的极性极大,普通的反相色谱对它的保留分离能力较弱,通常在死时间里流出而无法得到分离,而亲水作用色谱HILIC能为极强性的化合物提供良好的保留,在此类化合物上应用广泛。 目前已有多种商品化的HILIC色谱柱,多为硅胶基质,键合不同极性基团,如丙基酰胺基,酰胺基,聚琥珀亚酰胺等极性基团,氨基键合硅胶柱由于使用寿命较短,键合相容易流失,造成保留 丙基酰胺键合硅胶克服了传统正相色谱柱在水相条件下不稳定的缺点,其常使用流动相是和反相色谱相同的水相缓冲液( 40%)及有机溶剂,但是其梯度条件通常是初始为高比例有机相,逐步加大水相含量;极性丙基酰胺键合硅胶的HILIC色谱柱在反相条件下,可以有效的保留极性化合物,是一种崭新的极性化合物HPLC分离解决方式.博纳艾杰尔推出的Venusil HILIC (丙基酰胺键合硅胶),就是一样一款非常适合于益母草中盐酸水苏碱测定的柱子,测定方法及谱图如下:色谱柱:Venusil HILIC (丙基酰胺键合硅胶),4.6×250mm,5µm,100Å(订货号:VH952505-0)流动相:乙腈-0.2%冰醋酸(80:20)流速:0.5mL/min柱温:25℃进样体积:20μL检测器:ELSD蒸发光散射检测器http://ng1.17img.cn/bbsfiles/images/2010/11/201011291710_262707_801_3.jpg益母草供试品含量测定色谱图(主峰保留时间:22.697min)

  • 【第三届原创参赛】C18与丙基酰胺硅胶柱对肌肽分离能力比较

    维权声明:本文为huomeng520原创作品,本作者与仪器信息网是该作品合法使用者,该作品暂不对外授权转载。其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现均属侵权违法行为,我们将追究法律责任。本实验建立了一种以牛肉中肌肽为代表,反相分离测定亲水性物质的方法。该方法选用丙基酰胺键合硅胶亲水作用色谱柱,反相分析测定牛肉中亲水性成分—肌肽的含量。该方法操作简单,样品无需衍生处理。通过该法结合 H P L C—M S联用技术确定了保留时间为10.276~10.609min的色谱峰就是肌肽峰。将该色谱柱与常规C18色谱柱进行对比后发现,该色谱柱对L-肌肽的保留能力和分离能力均优于C18柱。此法精密度实验显示其相对标准偏差(RSD%)为1.06%,最低检测限为4.59×10-2mg/L。最后实验结果表明:亲水性色谱柱反相使用时,完全适用强极性物质含量的测定,通过实际样品分析检测,每克牛肉的肌肽含量为0.011克。引言L-肌肽(L-carnosine)是一种水溶性二肽,在1900年由Gulewitsch和Amiradzhibi在牛肉提取物中发现。L-肌肽天然存在于多种脊椎动物的骨骼肌以及新陈代谢旺盛的脑中。它具有广泛的生物活性,如抗氧化、保护膜的完整性、抗糖基化、质子缓冲、调节巨噬细胞活性等,是维持机体正常状态的一种含量很低的物质。L-肌肽的结构为β-丙氨酰—L-组氨酸。L-肌肽的结构如图1所示。从化学结构上看,肌肽由于含有较多的极性基团(-OH、-NH2、-COOH),水溶性特别强。肌肽的正辛醇—水分散系数为-2,远远小于0,理论上说明了L-肌肽的强极性,不溶于任何有机溶剂,属于亲水性成分。近年来,L-肌肽的研究一直受到人们关注。其含量测定方法一直在探索中。目前已报道的L-肌肽的分析方法主要以高效液相色谱法为主,且多采用柱前衍生化法,这种方法试剂成本高,样品预处理繁琐,且分析时间长,不利于对样品的快速检测。也曾有报道将离子色谱和毛细管电泳色谱应用于L-肌肽的测定,但两种方法较为复杂,且仪器操作较为繁琐。将氨基柱应用于反相高效液相色谱,能实现对样品中L-肌肽快速、准确地检测,但氨基柱不耐水解,长时间在反相条件下使用,会缩短氨基柱的使用寿命。所以应选择一款既耐水解,柱效又高的色谱柱对牛肉中L-肌肽进行分析。色谱柱填料通常是以硅胶为载体,在硅胶表面进行修饰。C18色谱填料是在硅胶表面键合非极性的十八烷基碳,属于非极性色谱填料。根据“相似相亲原则”,应选用极性较强的色谱柱分析极性物质,普通的C18反相色谱柱属于非极性色谱柱,对亲水性成分没有保留能力,因此不能满足对此类物质的分析要求。实验中选用丙基酰胺键合硅胶柱,该色谱柱填料以硅胶为载体,表面键合丙基酰胺基团,极性强,耐水解,适用于对极性物质的分离。马婧玮采用此柱,实现了对亲水性井冈霉素A快速准确的定量分析。本次实验从L-肌肽的性质出发,结合色谱柱的性质,将丙烯酰胺键合硅胶色谱柱与常规C18柱进行对比,并借鉴田颖刚等人已发表的L-肌肽质谱分析条件,选择分离效果最好的色谱柱与电喷雾质谱串联使用,对牛肉中肌肽进行了分析鉴定。

  • 【求助】丙稀酰胺,氧化双三丁基锡怎么不出峰?

    丙烯酰胺(1000ppm左右),氧化双三丁基锡TBTO(800ppm左右)怎么不出峰?用的是DB-XLB非极性的柱子15*0.25*0.25开始丙稀酰胺,氧化双三丁基锡试过几十ppm,没出峰,浓度加大到800-1000还是没出峰。做这些物质有哪些标准啊?升温程序:40度-保持1.5min; 120度/Min-155-保持1min; 20度/min-300度-保持8min; 进样口和传输线分别是270,280度。MS程序:0-18MIN采集信号(其中1.8-2.3关闭灯丝避开溶剂)峰难看一点没关系,但为什么会不出来呢,是分解掉了?还是化合物不稳定?查不到什么资料另外2-甲氧基乙醇和2-乙氧基乙醇虽然出峰了,但峰超级难看,是用DB-XLB这种非极性的柱子做不好吗?哪个做过的,分享下经验和注意事项?http://simg.instrument.com.cn/bbs/images/brow/em09511.gif修改:不好意思,刚才SIM时没把二甲苯麝香的离子加进去,现在出来了,但20ppm峰不高,估计要买固体标物配高浓度的来做

  • 【实验】有机实验之磺胺药物对氨基苯磺酰胺的合成

    磺胺药物对氨基苯磺酰胺的合成目的原理Ar-NHCOCH3 + 2HOSO2Cl → p-ClO2S-Ar-NHCOCH3+ HClp-ClO2S-Ar-NHCOCH3 + NH3 → p-CH3CONH-Ar-SO2NH2 + HClp-CH3CONH-Ar-SO2NH2 + H2O → p-H2N-Ar-SO2NH2 + CH2CO2H仪器药品乙酰苯胺(自制) 5g(0.037mol);氯磺酸(d=1.77) 22.5g(12.5ml,0.19mol);浓氨水(28%,d=0.9) 35ml 浓盐酸,碳酸钠。过程步骤(1)对乙酰氨基苯碘酰氯在100ml干燥的锥形瓶中,加入5g干燥的乙酰苯胺,在石棉网上用小火加热熔化。瓶壁上若有少量水气凝结,应用干净的滤纸吸去。冷却使熔化物凝结成块。将锥形瓶置于冰浴中冷却后,迅速倒入12.5ml氯磺酸,立即塞上带有氯化氢导气管的塞子。反应很快发生,若反应过于激烈,可用冰水浴冷却。待反应缓和后,旋摇锥形瓶使固体全溶,然后再在温水浴中加热10~15min使反应完全。将反应瓶在冷水中充分冷却后,于通风中在充分搅拌下,将反应液慢慢倒入盛75g碎冰的烧杯,用少量冷水洗涤反应瓶,洗涤液倒入烧杯中。搅拌数分钟,并尽量将大块固体粉碎,使成颗粒小而均匀的白色固体。抽滤收集,用少量冷水洗涤,压干,立即进行下一步反应。(2)对乙酰氨基苯磺酰胺将上述粗产物移入烧杯中,在不断搅拌中慢慢加入17.5ml浓氨水(在通风橱内),立即发生放热反应并产生白色糊状物。加完后,继续搅拌15min,使反应完全。然后加入19ml水,在石棉网上用小火加热10~15min,并不断搅拌,以除去多余的氨,得到的混合物可直接用于下一步合成。(3)对氨基苯磺酰胺(磺胺)将上述反应物放入圆底烧瓶中,加入3.5ml浓盐酸,在石棉网上用小火加热回流0.5h。冷却后,应得一几乎澄清的溶液,若有固体析出,应继续加热,使反应完全。如溶液呈黄色,并有极少量固体存在时,需加入少量活性炭煮沸10min,过滤。将滤液转入大烧杯中,在搅拌下小心加入粉状碳酸钠至恰呈碱性(约4g)。在冰水浴中冷却,抽滤收集固体,用少量冰水洗涤,压干。粗产物用水重结晶(每克产物约须12ml水),产量3~4g。熔点161~162℃。纯品对氨基苯磺酰胺为白色针状结晶,熔点163~164℃。注意事项1.氯磺酸对皮肤和衣服有强烈的腐蚀性,暴露在空气中会冒出大量氯化氢气体,遇水会发生猛烈的放热反应,甚至爆炸,故取用时需加小心。反应中所用仪器及药品皆需十分干燥,含有氯磺酸的废液不可倒入水槽,而应倒入废液缸中。工业氯磺酸常呈棕黑色,使用前宜用磨口仪器蒸馏纯化,收集148~150℃的馏分。2.酰磺酸于乙酰苯胺的反应非常剧烈,将乙酰苯胺凝结成快状,可使反应缓和进行,当反应过于激烈时,应适当冷却。3.在氯磺化过程中,将有大量氯化氢气体放出。为避免污染室内空气,装置应严密,导气管的末端要与接受器内的水面接近,但不能插入水中,否则可能倒吸而引严重事故!4.加入速度必须缓慢,必须充分搅拌,以免局部过热而使对乙酰胺基苯磺酰胺水解。这是实验成功的关键。5.尽量洗去固体所夹杂和吸附的盐酸,否则产物在酸性介质中放置过久,会很快水解,因此在洗涤后,应尽量压干,且在1~2h内将它转变为磺胺类化合物。6.粗制的对氨基苯磺酰氯久置容易分解,甚至干燥后也不可避免。若要得到纯品,可将粗产物溶于温热的氯仿中,然后迅速转移到事先温热的分液漏斗中,分出氯仿层,在冰水浴中冷却后即可析出晶体。纯品对氨基苯磺酰氯的熔点为149℃。7.为了节省时间,这一步的粗产物可不必分出。若要得到产品,可在冰水浴中冷却,抽滤,用冰水洗涤,干燥即可。粗品用水重结晶,纯品熔点为219~220℃。8.对乙酰胺基苯磺酰胺在稀酸中水解成磺胺,后者又与过量的盐酸形成水溶性的盐酸盐,所以水解完成后,反应液冷却时应无晶体析出。由于水解前溶液中氨的含量不同,加3.5ml盐酸有时不够,因此,在回流至固体全部消失前,应测一下溶液的酸碱性,若酸性不够,应补加盐酸回流一段时间。9.用碳酸钠中和滤液中的盐酸时,有二氧化碳产生,故应控制加热速度并不断搅拌使其逸出。磺胺是一两性化合物,在过量的碱溶液中也易变成盐类而溶解。故中和操作必须仔细进行,以免降低产量。分析思考 1.为什么在氯磺化反应完成以后处理反应混合物时,必须移到通风橱中,且在充分搅拌下缓缓倒入碎冰中?若在未倒完前冰就化完了,是否应补加冰块?为什么?2.为什么苯胺要乙酰化后在氯磺化?直接氯磺化行吗?3 .如何理解对氨基苯磺酰氨是两性物质?试用反应式表示磺胺与稀酸和稀碱的作用。

  • 椰油酰胺丙基甜菜碱

    椰油酰胺丙基甜菜碱——两性离子表面活性剂由于两性表面活性剂具有良好的表面活性剂性能、低刺激性以及被称为解毒性的刺激缓和性能(A.L.L. Hunting, 1985 ; G. Panzer, 1980),故它们被广泛地应用于温和的无泪香波和敏感的皮肤清洁剂。然而,在过去几年中,由于对两性表面活性剂基本特性的不断关心,人们进行了深入的研究;其结果显示,除了固有的特性之外,两性表面活性剂有着更多的功能属性。罗地亚公司的研究结果显示,通常被看作是杂质的副产品在控制化妆品配方发泡性和流变性方面发挥着十分重要的作用。从而人们可以通过调整产品组分,提供特制的性能。

  • 【讨论】-丙烯酰胺大讨论

    开始关注丙烯酰胺:2002年4月24日,瑞典国家食品管理局(Swedish National Food Administration)举行记者招待会宣布,一些富含淀粉类的食品在进行高温加工处理后都含有一种有毒的、存在潜在致癌性的化学物质——丙烯酰胺,并向全世界公布了他们的研究结果,立即引起WHO、FAO以及世界各国食品业的广泛关注。随后,挪威、瑞士、英国、美国等各国的科学家均分别进行了试验,取得了与瑞典科学家相同的实验结果,丙烯酰胺的问题进一步引起世界范围的重视。丙烯酰胺的基本性质及其应用: 丙烯酰胺(Acrylamide),CAS的登记号为79-06-1,其分子量71.09,化学分子式CH2CHCONH2。丙烯酰胺是一种不饱和酰胺,其单体为无色透明片状结晶,沸点125℃,熔点84~85℃。能溶于水、乙醇、乙醚、丙酮、氯仿,不溶于苯及庚烷中。丙烯酰胺单体在室温下很稳定,但当处于熔点或以上温度、氧化条件以及在紫外线的作用下很容易发生聚合反应。当加热使其溶解时,丙烯酰胺释放出强烈的腐蚀性气体和氮的氧化物类化合物。丙烯酰胺的来源:食品中的丙烯酰胺主要源于高温烹调,饮用水中的丙烯酰胺主要源于污水净化等工业用的聚丙烯酰胺的降解。丙烯酰胺的毒性:1 丙烯酰胺的神经毒性研究丙烯酰胺是一种中等毒性的亲神经毒物,可通过未破损的皮肤、粘膜、肺和消化道吸收入人体,分布于体液中[4]。  丙烯酰胺的神经毒性已经为许多学者所公认,大量的中毒事件也多是围绕其神经毒性方面,但丙烯酰胺导致周围神经和中枢神经系统损伤的机制还不十分清楚。现场劳动卫生学研究和体格检查发现长期职业接触丙烯酰胺的工人主要表现为四肢麻木、乏力、手足多汗、头痛头晕、远端触觉减退等,累及小脑时还会出现步履蹒跚、四肢震颤觉、深反射减退等,并发现外周神经损害多表现为通向胞体的长纤维末端首先受损,逐渐向胞体方向发展,呈“返死现象”[5]。  韩漫夫等[6]发现丙烯酰胺能使脑能量代谢受到影响,脑组织供能代偿潜能损伤,并认为这种对脑能量代谢的影响是丙烯酰胺产生神经元损伤的生化基础。丙烯酰胺中毒致周围神经病时轴突首先受累,当轴突变性时,神经元胞浆中呈持续的逆行改变,故其神经元多可恢复,神经末梢可再生。周梅荣、施建俐、秦小梅等报道了职业性丙烯酰胺中毒致小脑萎缩的案例[8];褚学斌、马佩琛、任冰等报道了丙烯酰胺中毒致视野缺损的案例[9]等。  从现已报道关于丙烯酰胺中毒的案例中可以看出,丙烯酰胺的中毒不仅仅能带来一些神经性伤害,甚至还会导致人体某些脏器发生实质性病变,从而造成严重的后遗症。我国在70年代开始报道丙烯酰胺中毒的病例,并开展了对丙烯酰胺中毒的防治研究,目前已经基本明确了丙烯酰胺毒理及临床表现,并于1996年提出丙烯酰胺中毒诊断标准(GB16370-1996)。  2. 丙烯酰胺的致癌性研究  2.1 丙烯酰胺致癌性的评估状况  大量的实验动物数据证实了丙烯酰胺具有一定的致癌作用,在实验动物的饮用水中每天加入2.0mg/kg体重的丙烯酰胺的剂量,一段时间后就可以在脑部、脊髓或其他组织中发现肿瘤细胞。Bull和Robinson等以6.25,12.5,25mg/kg的丙烯酰胺剂量经口染毒A/J小鼠,发现丙烯酰胺可诱发小鼠皮肤肿瘤,促进肺腺瘤的发展[9]。Damjanov和Friedman在饮水中加丙烯酰胺,以每天0.1、0.5、2.0mg/kg的剂量对大鼠进行104周慢性染毒,发现大鼠睾丸鞘膜肿瘤发生增加,从而认为丙烯酰胺具有一定的多巴胺拮抗作用,该机制可能是导致多种组织细胞异常增生,从而引发癌症的原因之一[10]。  Richard [11]认为,虽然各国对丙烯酰胺进行了大量的研究,并对其毒性、病理变化及毒理学特性有了较好了解,并通过实验动物模型,确认了丙烯酰胺的潜在致癌性和对生殖、神经系统的损伤作用,但是应该强调的是,虽然对丙烯酰胺职业病的流行病学研究发现了它的神经毒理作用,但是并没有说明丙烯酰胺暴露的量与癌症发生之间的联系。所以我们现在应该尽可能的获得更多的关于丙烯酰胺的资料,而不是单单强调丙烯酰胺致癌这一个方面上。  2.2 食品中丙烯酰胺的致癌性研究  食品中存在的丙烯酰胺是否存在致癌作用、多大的剂量会引起癌症,各国的科学家和研究人员存在不同的看法。  评估丙烯酰胺对人体的危险是很重要的。基于一些动物实验的结果,对丙烯酰胺的NOAEL,即最大无作用剂量水平为0.1mg/kg 体重[12]。根据新西兰国家营养机构对具有代表性的西方饮食的调查,出版了关于食品中丙烯酰胺浓度的文章[13]。通过以上文献,Ian等计算了消费者食用热的油炸薯条或油炸薯片,即经常食用的可能产生丙烯酰胺最多的食品,其中每日平均食用的丙烯酰胺的剂量在0.3μg/kg体重,这一数量是NOAEL所规定0.1mg/kg 体的三分之一,这样的话,即使消费者每天食用薯条、薯片等食品致癌的危险也是很低的[14]。虽然现在对丙烯酰胺已经进行了大量的研究,但是关于它的致癌性仍然是各国争论的焦点之一,现有数据并不足以说明食品中的丙烯酰胺可以导致某种癌症,这就需要我们通过多种实验手段、先进的科学技术来进一步深入研究食品中丙烯酰胺的问题,希望在不久的将来能够彻底的解决食品中的丙烯酰胺的问题。  3.丙烯酰胺的其他不良影响  3.1 丙烯酰胺对小鼠抗氧化能力和免疫功能的影响  小鼠经口给予不同剂量(50、100、150 mg/kg)的丙烯酰胺, 5次/7d,42d后断头取血检测指标。结果显示,染毒小鼠体重明显下降,血清脂质过氧化代谢产物(MDA)含量增高(P0 01),超氧化物歧化酶(SOD)及全血谷胱甘肽氧化酶活性于150 mg/kg染毒组降低非常明显(P0 01),150 mg/kg染毒组小鼠血中胶体炭粒清除速度明显降低,胸腺相对质量明显增加[15]。说明丙烯酰胺有抑制机体抗氧化能力和降低机体网状内皮系统吞噬功能的作用。  3.2 丙烯酰胺的基因毒性及DNA损伤作用  丙烯酰胺不能诱导细菌的基因突变,但是丙烯酰胺代谢的环氧化物——环氧丙酰胺在代谢停滞时却能诱导基因突变现象。在诱导哺乳动物细胞基因突变试验中,丙烯酰胺能表现一种很不确定的、很弱的基因突变作用。丙烯酰胺在哺乳动物细胞中可以诱导染色体失常、姊妹染色体互换、染色体倍增现象、染色体非整倍体形成以及其他有丝分裂异常现象。丙烯酰胺不能在小鼠肝细胞中诱导非常规的DNA合成,环氧丙酰胺却能诱导人体乳腺细胞的非常规的DNA合成,但环氧丙酰胺在小鼠肝细胞中的作用却不明显。  关景芳,贾文英,程林等进行了丙烯酰胺单体的细胞染色体实验观察,目的是通过对不同梯度丙烯酰胺进行诱变性实验,观察丙烯酰胺对哺乳类动物细胞遗传毒性的影响。采用细胞培养染色体畸变技术进行实验观察,结果表明,丙烯酰胺单体即诱导染色体结构畸变,又能诱导非整倍体形成。这一研究结果与WHO提出的关于丙烯酰胺的基因毒性一致,同时丙烯酰胺致畸作用有剂量反应关系,高浓度诱发大量非整倍体形成及结构变异,低浓度无诱发CHL细胞染色体畸变的作用[16]。  3.3 丙烯酰胺的生殖毒性[17]  Sickes等研究认为,丙烯酰胺的生殖毒性机制与其神经毒性的机制相似。丙烯酰胺可抑制驱动蛋白样物质的活性,导致细胞有丝分裂和减数分裂障碍,从而引起生殖损伤。  有研究证据表明[18],丙烯酰胺可以影响雄性动物的生育能力。给予雄性大鼠15mg/kg体重的丙烯酰胺,连续5天,或者给予小鼠12mg/kg体重,连续28d,均可发现其生育能力受到损害,具体表现为精子计数减少和精子活动能力减弱。说明丙烯酰胺对动物的生殖系统有一定的损伤作用,但在人类却未发现有此危害

  • 【分享】认识丙烯酰胺

    【分享】认识丙烯酰胺

    [color=#DC143C]丙烯酰胺[/color][img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911171718_185078_1610969_3.jpg[/img] [color=#00008B]丙烯酰胺是一种白色晶体化学物质,是生产聚丙烯酰胺的原料。[/color]聚丙烯酰胺主要用于水的净化处理、纸浆的加工及管道的内涂层等。淀粉类食品在高温(120℃)烹调下容易产生丙烯酰胺。  研究表明,人体可通过消化道、呼吸道、皮肤黏膜等多种途径接触丙烯酰胺,饮水是其中的一条重要接触途径。2002年4月瑞典国家食品管理局和斯德哥尔摩大学研究人员率先报道,在一些油炸和烧烤的淀粉类食品,如炸薯条、炸土豆片等中检出丙烯酰胺,而且含量超过饮水中允许最大限量的500多倍。之后挪威、英国、瑞士和美国等国家也相继报道了类似结果。此外,人体还可能通过吸烟等途径接触丙烯酰胺。  丙烯酰胺进入体内又可通过多种途径被人体吸收,其中经消化道吸收最快。进入人体内的丙烯酰胺约90%被代谢,仅少量以原形经尿液排出。丙烯酰胺进入体内后,会在体内与dna上的鸟嘌呤结合形成加合物,导致遗传物质损伤和基因突变。  对接触丙烯酰胺的职业人群和偶然暴露于丙烯酰胺人群的调查表明,丙烯酰胺具有神经毒性作用,但目前还没有充足的证据表明通过食物摄入丙烯酰胺与人类某种肿瘤的发生有明显关系。★  根据香港消费者委员会的研究,含碳水化合物的食物在经油炸之后,都会产生丙烯酰胺。研究已知丙烯酰胺可致癌。但世界卫生组织表示,由于难以统计丙烯酰胺要到哪一个浓度才会致癌,所以难以订立安全标准。  英文名 Acrylamide   分子式 CH2=CHCONH2   分子量71.08  丙烯酰胺是一种不饱和酰胺,别名AM,其单体为无色透明片状结晶,沸点125℃(3325Pa),熔点84~85℃,密度1.122g/cm3。能溶于水、乙醇、乙醚、丙酮、氯仿,不溶于苯及庚烷中,在酸碱环境中可水解成丙烯酸。丙烯酰胺单体在室温下很稳定,但当处于熔点或以上温度、氧化条件以及在紫外线的作用下很容易发生聚合反应。当加热使其溶解时,丙烯酰胺释放出强烈的腐蚀性气体和氮的氧化物类化合物。

  • 【资料】大球盖菇过氧化物酶及超氧化物歧化酶的研究

    大球盖菇过氧化物酶及超氧化物歧化酶的研究 张琪林1,王红2(1运城学院生命科学系,山西运城044000 2运城学院生化实验中心,山西运城044000) 摘 要:采用聚丙烯酰胺凝胶圆盘电泳法测定大球盖菇过氧化物酶和超氧化物歧化酶(SOD)同工酶活 性,结果表明大球盖菇过氧化物酶有4种同工酶,比移分别是:0.13、0.18、0.25、0.32,其活性大小接近. SOD三种都有,比移分别为0.20、0.21、0.25,以CuZn-SOD活性最大,Mn-SOD活性较小.CuZn-SOD 及Mn-SOD辅因子易于丢失,应用时应予以注意.关键词:大球盖菇 过氧化物酶 超氧化物歧化酶 聚丙烯酰胺凝胶圆盘电泳中图分类号:Q935 文献标识码:A大球盖菇(Strophariarugoso-annulate)栽培广 泛,食药两用,深受菇农与消费者青睐,栽培研究颇 多,生理研究也日渐深入.已有液体培养氮碳营养 源[1]、与pH关系[2]、胞外酶特性[3]等研究报道,而 胞内酶研究报道尚未见到.过氧化物酶、超氧化物 歧化酶是机体清除H2O2、超氧离子(O-2)等活性氧 的氧化还原酶.[img]http://ng1.17img.cn/bbsfiles/images/2009/03/200903260925_140607_1614854_3.gif[/img]对生物抗氧化、防辐射、抗衰老等方面都有重要作 用,尤其是SOD.本文采用聚丙烯酰胺凝胶圆盘电 用方法鉴定大球盖菇上述两种酶的活性及种类,以 期为大球盖菇的生理生化研究和大球盖菇的应用 提供理论依据.1 材料与方法1.1 材料供试菌株引自河南省清丰县食用菌技术推广 中心.所用化学试剂均为分析纯.1.2 方法1.2.1 菌丝培养 20%土豆浸汁1000mL,蔗糖 20g,蛋白胨2g,磷酸二氢钾2g,硫酸镁1.5g,pH值 自然.分装于300mL锥形瓶,每瓶50mL,高压灭菌.接种后25~28℃恒温摇床培养21天,振荡频 率为120r/min.1.2.2 酶液制备 菌丝冲洗干净后,于-4℃冷冻 12h.按菌丝∶0.1MpH7.4磷酸缓冲液(冷藏)∶石 英砂=1∶2∶0.2比例混合.冰浴磨成匀浆.在 10℃以下环境离心(4000r/min,15min).取上清液 5份与40%蔗糖(冷藏)、0.01%溴酚蓝各1份混 合,置冰箱备用.1.2.3 电泳 方法为聚丙烯酰胺凝胶圆盘电泳. 样品分离胶浓度为7%,pH8.9.浓缩胶浓度为2. 5%,pH6.7.电极缓冲液为Tris-甘氨酸缓冲液, pH8.3.点样量为30μL/管.以溴酚蓝为指示剂.电 流开始为10mA,电泳两分钟后加大至50mA.待溴 酚蓝移至凝胶柱下端附近时停止电泳.电泳环境温 度为10℃,时间1.2h.1.2.4 染色1.2.4.1 过氧化物酶染色 A液:0.4g联苯胺加 入3mL冰醋酸于80℃溶解,加入17mL蒸馏水,随 用随配.B液:4%氯化铵.C液:5%EDTA.D液:0. 3%H2O2.按等体积加8倍水混合,量以淹没胶柱 为度.剥胶后立即放入染液,等到有蓝色谱带出现 后,取出用水冲洗干净,再用7%醋酸脱色漂洗后 观察.1.2.4.2 SOD染色 (1)对照a、在2.45×10-2M 氯化硝基四氮唑蓝(NBT)液中黑暗下浸泡1h,温 度37℃.b、在2.8×10-2M四甲基乙二胺、2.8× 10-5M核黄素和在3.6×10-2MpH7.8磷酸缓冲 液中黑暗下浸泡1h,温度37℃.c、在1×10-4M EDTA,5×10-2MpH7.8磷酸缓冲液中,距40W日 光灯20cm光照20min.(2)添加辅基处理.在(1 中分别添加5mMNa2SO4 FeSO4 MnSO4 CuSO4+ ZnSO4 FeSO4+MnSO4+CuSO4+ZnSO4.(3)添加 抑制剂处理.在酶液中分别添加10mMKCN或 30%氯仿-乙醇,其他同上.2 结果与讨论2.1 过氧化物酶谱及分析[img]http://ng1.17img.cn/bbsfiles/images/2009/03/200903260926_140608_1614854_3.gif[/img]结果如图1.从图1可见,大球盖菇菌丝体过 氧化物酶有4条带.比移分别为0.13,0.18,0.25, 0.32.其活性大小接近.2.2 超氧化物歧化酶谱及分析(1)添加SOD辅因子试验结果见图2.从中可 见共有三条带.比移分别为A:0.20,B:0.21,C:0. 25.都有B带,但加铁处理(3、6)的较亮,说明B带 是Fe-SOD,铁离子对该SOD活性有明显的增强作 用.没有加铁的处理(1,2,4,5)SOD也有活性,说 明铁与酶蛋白的结合较牢固,不易丢失.1,2,3,5 无A带,4,6有,说明A带是Mn-SOD.同理,C带为 CuZn-SOD.未加锰、铜、锌盐的没有相应的带,说 明锰、铜、锌与酶蛋白的结合较为松散,易于丢失. 比较三种SOD,以Mn-SOD活力最小,CuZn-SOD 活性最大.(2)添加抑制剂试验结果为:加KCN后,显色 结果无C带 加氯仿-乙醇后,无A带.已知10mM KCN抑制CuZn-SOD,30%氯仿-乙醇抑制Mn- SOD[4].说明2.2.1结论是正确的.综上所述,大球盖菇菌丝体抗氧化酶比较丰 富,过氧化物同工酶有4种 超氧化物歧化酶有3 种,以CuZn-SOD活性较高,Mn-SOD、Fe-SOD活 性较低,但CuZn-SOD、Mn-SOD辅因子易于丢 失,应用时应予以注意.参考文献:[1]张琪林,王红.大球盖菇液体培养碳氮营养源研究[J].食用 菌.2002,24(1):6.[2]王红,张琪林.大球盖菇液体培养与pH值关系研究[J].山西 师范大学学报(自然科学版).2003,17(增1期):108~109. [3]王红,张琪林.大球盖菇液体培养胞外酶特性研究[J].食用 菌.2003,25(2):8~9.[4]李中振,田廷亮.灵芝超氧化物歧化酶同工酶研究[J].中国食 用菌.1997,16(4):32~34.

  • 椰油酰胺丙基甜菜碱中一氯乙酸、二氯乙酸和羟基乙酸的测定

    椰油酰胺丙基甜菜碱中一氯乙酸、二氯乙酸和羟基乙酸的测定

    [align=center][b]椰油酰胺丙基甜菜碱中一氯乙酸、二氯乙酸和羟基乙酸的测定[/b][/align] 椰油酰胺丙基甜菜碱(CAB)是一种两性表面活性剂,因其对眼睛和皮肤刺激性低,对头发和皮肤有护理效果并产生大量稳定泡沫,在肥皂和硬水中有出色的起泡性和洗涤性,故广泛用于香波和泡沫浴液等洗涤用品中。 在工业生产中,常使用一氯乙酸(MCA)作为原料生产CAB。而工业MCA中含有少量的二氯乙酸(DCA),DCA是生物学证实具有潜在致癌风险的物质,同时在生产过程中残留的MCA对皮肤、黏膜有很强的腐蚀性,通常采用水解法将MCA转化为刺激性更小的羟基乙酸(GCA)。椰油酰胺丙基甜菜碱产品的指标含量分析中,一般要求一氯乙酸<20ppm,二氯乙酸<300ppm,羟基乙酸<0.5%。[b]色谱条件:[/b]色谱柱:[b]Kromasil C8(4.6*250mm,5μm)[/b]柱 温:24℃检测器:紫外检测器波 长:200nm流动相:乙腈:水=10:90(每1000mL中加入2.0mL磷酸)流 速:1ml/min进样体积:20μL采集时间:10min[img=,690,219]https://ng1.17img.cn/bbsfiles/images/2018/10/201810291003374445_9066_2428063_3.png!w690x219.jpg[/img] 图1 :一氯乙酸、二氯乙酸和羟基乙酸混标色谱图[img=,690,328]https://ng1.17img.cn/bbsfiles/images/2018/10/201810291003547039_780_2428063_3.png!w690x328.jpg[/img] 图2 :椰油酰胺丙基甜菜碱样品色谱图[b]总结[/b]参考国标GB/T 28193-2011表面活性剂中氯乙酸(盐)残留量的测定方法,建立高效液相色谱法,一次性测定样品中一氯乙酸、二氯乙酸和羟基乙酸的含量。其优点是以高比例水相作为流动相,样品不需要进行萃取、酯化等前处理,操作方便,快速高效。使用Kromasil C8色谱柱分离样品中一氯乙酸与其余组分,效率高,分离度好,结果可靠,可为椰油酰胺丙基甜菜碱生产厂家提高产品质量提供参考。[b]注:由深圳爱湾医学检验实验室验证 [/b]

  • 【求助】请问伯胺和酰胺基的问题

    【求助】请问伯胺和酰胺基的问题

    间苯二甲胺 和 己二酸反应生成 酰胺基胺,可是红外光谱上只能看见仲酰胺基的特征吸收峰,为什么看不到伯胺的峰?3000.41和2915.37处是不是伯胺吸收峰?是不是往后挪了?[img]http://ng1.17img.cn/bbsfiles/images/2009/06/200906080958_154498_1608859_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/06/200906080958_154497_1608859_3.jpg[/img]

  • 急问,专家请进:关于氮氧化物的测定

    急问,盐酸萘乙二胺比色法测氮氧化物浓度时,加上氧化管后吸收液会先变黄再变红,且颜色也不是真正的玫瑰红色,有时甚至不变红,并且测得的总氮氧化物浓度要比单独测得的二氧化氮浓度低,这是怎么回事?氧化管换了好几个厂家的,应该没问题了。

  • 丙烯酰胺三个主要来源途径,食品安全法规中规定了吗?

    1、直接从氨基酸生成丙烯酰胺。比如,天门冬酰胺(Asn)在受热之后,脱掉一个CO2和一个NH3,即可转化为丙烯酰胺。凡是富含天门冬酰胺的食物,都非常容易产生丙烯酰胺。比如土豆、麦类、玉米等都是富含天门冬酰胺的食品。 2、氨基酸和淀粉类食物中的微量小分子糖在加热条件下发生美拉德反应,生成丙烯酰胺。在食品中,只要是含淀粉的食品,一般都会同时含有一些蛋白质,比如所有的主食、所有的薯类、所有的淀粉豆类。不过,各种氨基酸合成丙烯酰胺的“能力”有所不同。其中还是以天门冬酰胺独占鳌头,其次是谷氨酰胺(Gln),再次是蛋氨酸(Met)和丙氨酸(Ala)等。淀粉倒是不产生丙烯酰胺,但淀粉分解产生的糖会产生丙烯酰胺,葡萄糖最有效,后面依次是果糖、乳糖和蔗糖。  3、脂肪和糖降解形成丙烯醛,然后和氨基酸分解产生的氨结合,形成丙烯酰胺。凡是油炸的食品,都会发生油脂热氧化反应,而反应产物之一就是丙烯醛,它是一种挥发性小分子物质和油烟的味道有密切关系。油炸食品特别容易产生丙烯酰胺,这是理由之一。此外,蛋白质氨基酸分解也能产生少量的醛类,其中包括丙烯醛。

  • 用正丙醚萃取水中的二甲基甲酰胺

    用正丙醚萃取水中的二甲基甲酰胺,然后进[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]分析,是否可行?醚类易生成氧化物爆炸,以正丙醚为溶剂,进[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url],会有危险吗

  • 氮氧化物的测定 盐酸萘乙二胺分光光度法

    HJ 479-2009 环境空气 氮氧化物(一氧化氮和二氧化氮)的测定 盐酸萘乙二胺分光光度法[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=181815]HJ 479-2009 环境空气 氮氧化物(一氧化氮和二氧化氮)的测定 盐酸萘乙二胺分光光度法.pdf[/url]

  • 《环境空气 氮氧化物(一氧化氮和二氧化氮)的测定 盐酸萘乙二胺分光光度法》HJ 479-2009曲线

    《环境空气 氮氧化物(一氧化氮和二氧化氮)的测定 盐酸萘乙二胺分光光度法》HJ 479-2009曲线,分享下,吸量管做的标曲,检测条件严格按分析标准执行的(显色忘记放暗处外,是晚上做的一般日光灯亮度下显色;另对氨基苯磺酸高于50度热水溶解,不然溶解不了),空白0.001,室温20度,原始数据无修改,玻璃量具有自校都是A级,试剂和标准溶液都是现配,纵轴A-A0,横轴ug

  • 【资料】化妆品用增稠剂

    摘要:综述了使用于化妆品的增稠剂:无机盐类、表面活性剂类、水溶性高分子类和脂肪醇脂肪酸类等共200多种。增稠剂通过与表面活性剂形成棒状胶束、与水作用形成三维水化网络结构、或利用自身的大分子长链结构等使体系达到增稠的目的。详细介绍了增稠剂的配伍性能、使用范围、影响因素和增稠机理分类。在产品配方开发过程中根据配方的pH值、稳定性、刺激性、泡沫、配方成本、是否透明、流变形态、外观颜色、电解质稳定性和法规等方面的要求综合进行考虑,才能有效地选用恰当的增稠剂。只有不断在实际中总结经验,才能真正懂得如何有效地选用增稠剂。   关键词:化妆品;增稠剂;水溶性高分子;表面活性剂   配方师在进行配方设计时通常要考虑配方最终产品的流变形态,适当的流变形态能给产品带来美感,便于使用和生产,对配方的稳定性也有一定的影响。有些产品的流变形态甚至对产品的使用起很大作用,比如牙膏,要求产品的触变性好,因为在挤出时要求保持较好的形态,在刷牙时要求牙膏在外力作用下能够迅速变稀分散开来。流体的流变形态分为牛顿流体和非牛顿流体,牛顿流体为剪切应力与剪切速率成正比的流体;非牛顿流体又有假塑性流体、塑性流体和胀流体。假塑性流体和塑性流体都属于剪切变稀的流体,但塑性流体具有屈服值。胀流体属于剪切变稠的流体。要调节产品的流变形态,配方师是在配方中加入增稠剂达到目的。增稠剂简单地说就是提高配方产品黏度或稠度的一类物质,增稠剂加入量不大,但是能够大幅提高产品的黏度或稠度。配方师在选择增稠剂时需要考虑的因素较多:配方主体是选择增稠剂的首要考虑因素,什么样的体系决定采用什么样的增稠剂;其次是产品形态,产品形态要求不同类型的增稠剂,有些要求牛顿流体,有些要求塑性流体,根据不同的需要采用不同的增稠剂;在最终产品中增稠剂的比例、配方的成本也是增稠剂选择的重要因素,如果配方的成本让生产商和消费者都难于承受,那么这配方是没有应用价值的,平衡增稠剂的效果及其成本是非常重要的。另外配方的理化指标也是选择增稠剂必须考虑的,比如配方的稳定性、泡沫等,这些都是配方所关注的一些重要指标,有些增稠剂虽然增稠效果理想,但稳定性差或是消泡太厉害也是没有价值的。一般情况下几种增稠剂的协调增稠比用单一增稠剂对产品的最终流变形态有更好的效果。   1 增稠剂分述   能够作为增稠剂的物质很多,从相对分子质量看有低分子增稠剂,也有高分子增稠剂;从功能团来看有电解质类、醇类、酰胺类、羧酸类和酯类等等。下面按化妆品原料的分类方法对增稠剂进行分类,表l列出了目前使用的增稠剂。   1.1 低分子增稠剂   1.1.1 无机盐类   用无机盐来做增稠剂的体系一般是表面活性剂水溶液体系,最常用的无机盐增稠剂是氯化钠,增稠效果明显。表面活性剂在水溶液中形成胶束,电解质的存在使胶束的缔合数增加,导致球形胶束向棒状胶束转化,使运动阻力增大,从而使体系的黏稠度增加。但当电解质过量时会影响胶束结构,降低运动阻力,从而使体系黏稠度降低,这就是所说的“盐析”。因此电解质加入量一般质量分数为1%-2%,而且和其他类型的增稠剂共同作用,使体系更加稳定。   1.1.2 脂肪醇、脂肪酸类   脂肪醇、脂肪酸是带极性的有机物,有文章把它们看成为非离子表面活性剂,因为它们既有亲油基团,又有亲水基团。少量的该类有机物的存在对表面活性剂的表面张力、omc及其他性质有显著影响,其作用大小 是随碳链加长而增大,一般来说呈线,陛变化关系。其作用原理是脂肪醇、脂肪酸能插入(参加)表面活性剂胶团,促进胶团的形成,同时由于该极性有机物与表面活性剂的分子间有强烈的相互作用(碳氢链间的疏水作用加极性头间的氢键结合),使两分子在表面上定向排列得很紧密,大大改变了表面活性剂胶束性质,达到增稠的效果。   表1 增稠剂的分类   一、非离子SAA   1、无机盐    氯化钠、氯化钾、氯化铵、单乙醇胺氯化物、二乙醇胺氯化物、硫酸钠、磷酸钠、磷酸二钠和三磷酸五钠等   2、脂肪醇和脂肪酸   月桂醇、肉豆蔻醇、C12-15醇、C12-16醇、癸醇、己醇、辛醇、鲸蜡醇、硬脂醇、山嵛醇、月桂酸、C18-36酸、亚油酸、亚麻酸、肉豆蔻酸、硬脂酸、山嵛酸等   3、烷醇酰胺类   椰油二乙醇酰胺、椰油单乙醇酰胺、椰油单异丙醇酰胺、椰油酰胺、月桂酰-亚油酰二乙醇酰胺、月桂酰-豆蔻酰二乙醇酰胺、异硬脂二乙醇酰胺、亚油二乙醇酰胺、豆蔻二乙醇酰胺、豆蔻单乙醇酰胺、油二乙醇酰胺、棕榈单乙醇酰胺、蓖麻油单乙醇酰胺、芝麻二乙醇酰胺、大豆二乙醇酰胺、硬脂二乙醇酰胺、硬脂单乙醇酰胺、硬脂单乙醇酰胺硬脂酸酯、硬脂酰胺、牛脂单乙醇酰胺、小麦胚芽二乙醇酰胺、PEG(聚乙二醇)-3月桂酰胺、PEG-4油酰胺、PEG-50牛脂酰胺等   4、醚类   鲸蜡醇聚氧乙烯(3)醚、异鲸蜡醇聚氧乙烯(10)醚、月桂醇聚氧乙烯(3)醚、月桂醇聚氧乙烯(10)醚、Poloxamer-n(乙氧基化聚氧丙烯醚)(n=105、124、185、237、238、338、407)等   5、酯类    PEG-80甘油基牛油酯、PEC-8PPG(聚丙二醇)-3二异硬脂酸酯、PEG-200氢化甘油基棕榈酸酯、PEG-n(n=6、8、12)蜂蜡、PEG-4异硬脂酸酯、PEG-n(n=3、4、8、150)二硬脂酸酯、PEG-18甘油基油酸酯/椰油酸酯、PEG-8二油酸酯、PEG-200甘油基硬脂酸酯、PEG-n(n=28、200)甘油基牛油酯、PEG-7氢化蓖麻油、PEG-40霍霍巴油、PEG-2月桂酸酯、PEG-120甲基葡萄糖二油酸酯、PEG-150季戊四硬脂酸酯、PEG-55丙二醇油酸酯、PEG-160山梨聚糖三异硬脂酸酯、PEG-n(n=8、75、100)硬脂酸酯、PEG-150/癸基/SMDI共聚物(聚乙二醇-150/癸基/甲基丙烯酸酯共聚物)、PEG-150/硬脂基/SMDI共聚物、PEG-90。异硬脂酸酯、PEG-8PPG-3二月桂酸酯、鲸蜡豆蔻酯、鲸蜡棕榈酯、C18—36酸乙二醇酯、季戊四硬脂酸酯、季戊四山嵛酸酯、丙二醇硬脂酸酯、山嵛酯、鲸蜡酯、三山嵛酸甘油酯、三羟基硬脂酸甘油酯等   6、氧化胺   肉豆蔻氧化胺、异硬脂氨基丙基氧化胺、椰油氨基丙基氧化胺、小麦胚芽氨基丙基氧化胺、大豆氨基丙基氧化胺、PEG—3月桂氧化胺等   二、两性SAA   鲸蜡甜菜碱、椰油氨基羟磺基甜菜碱等   三、阴离子SAA   油酸钾、硬脂酸钾等   四、水溶性高分子   1、纤维素类   纤维素、纤维素胶、羧甲基羟乙基纤维素、鲸蜡羟乙基纤维素、乙基纤维素、羟乙基纤维素、羟丙基纤维素、羟丙基甲基纤维素、甲基纤维素、羧甲基纤维素等   2、聚氧乙烯类   PEG-n(n=5M、9M、23M、45M、90M、160M)等

  • 氮氧化物的测定问题及资料合集

    氮氧化物指的是只由氮、氧两种元素组成的化合物。常见的氮氧化物有一氧化氮(NO,无色)、二氧化氮(NO2,红棕色)、笑气(N2O)、五氧化二氮(N2O5)等,其中除五氧化二氮常态下呈固体外,其他氮氧化物常态下都呈气态。作为空气污染物的氮氧化物(NOx)常指NO和NO2。 氮氧化物(NOX)种类很多,包括一氧化二氮(N2O)、一氧化氮(NO)、二氧化氮 (NO2)、三氧化二氮(N2O3)、四氧化二氮(N2O4)和五氧化二氮(N2O5)等多种化合物,但主要是NO和NO2,它们是常见的大气污染物。天然排放的NOX,主要来自土壤和海洋中有机物的分解,属于自然界的氮循环过程。 人为活动排放的NO,大部分来自化石燃料的燃烧过程,如汽车、飞机、内燃机及工业窑炉的燃烧过程;也来自生产、使用硝酸的过程,如氮肥厂、有机中间体厂、有色及黑色金属冶炼厂等。据80年代初估计,全世界每年由于人类活动向大气排放的NOX约5300万吨。NOX对环境的损害作用极大,它既是形成酸雨的主要物质之一,也是形成大气中光化学烟雾的重要物质和消耗O3的一个重要因子。 在高温燃烧条件下,NOX主要以NO的形式存在,最初排放的NOX中NO约占95%。 但是,NO在大气中极易与空气中的氧发生反应,生成NO2,故大气中NOX普遍以NO2的形式存在。空气中的NO和NO2通过光化学反应,相互转化而达到平衡。在温度较大或有云雾存在时,NO2进一步与水分子作用形成酸雨中的第二重要酸分——硝酸(HNO3)。在有催化剂存在时,如加上合适的气象条件,N02转变成硝酸的速度加快。特别是当NO2与SO2同时存在时,可以相互催化,形成硝酸的速度更快。 此外,NOX还可以因飞行器在平流层中排放废气,逐渐积累,而使其浓度增大。NOX再与平流层内的O3发生反应生成NO与O2,N0与O进一步反应生成NO2和O2,从而打破O3平衡,使O3浓度降低,导致O3层的耗损。【求助】新标准环境空气氮氧化物标准曲线的制作 【求助】氮氧化物检测中对氨基苯磺酸溶液的配制 【求助】环境空气 氮氧化物 盲样考核 【求助】氮氧化物标准曲线为什么斜率难达到现在标准方法的要求 【求助】急问,专家请进:关于氮氧化物的测定【求助】分光法氮氧化物的测定讨论 【求助】环境空气监测中二氧化氮和氮氧化物计算公式有什么区别 【求助】NOx做曲线的疑惑【分享】HJ 479-2009 环境空气 氮氧化物的测定 盐酸萘乙二胺分光光度法

  • 你对烯丙胺了解多少?

    产品别名: 3-氨基丙烯, 2-丙烯-1-胺, 3-氨基丙烷, 氨基丙烯, 烯丙基胺, 一烯丙胺, 丙烯胺, 2-烯丙基胺, 丙烯基胺 ,3-氨基-1-丙烯 丙烯基胺, 9【用途一】用作制药中间体、乳液改性剂、有机合成和树脂改性剂、硅产品等的中间体 【用途二】用于有机合成,制造树脂及利尿药。 【用途三】可用于制药中间体、以及家用化学品、乳液改性剂、有机合成和树脂改性剂、硅产品等的中间体。有报导称,可与血浆聚合生成反渗透腊的聚合物用于密闭的载人宇宙飞船中;也可以作腐蚀抑制剂、催化剂和溶剂等。 【制备方法】烯丙基氯与氨反应可制得烯丙胺:反应在带回流装置

  • 【求助】氮氧化物检测中对氨基苯磺酸溶液的配制

    欲用氮氧化物测定—Saltzman法(GB/T 15436-1995)测定环境空气中的氮氧化物浓度,但是其中的显色液在配制过程中,对氨基苯磺酸总是不能溶解,呈现白色的絮状不溶物。请教各位大侠,这个问题要怎样解决呢?

  • 氮氧化物标准曲线

    想请教一下,环境空气 氮氧化物(一氧化氮和二氧化氮) 盐酸萘乙二胺分光光度法HJ/T 479-2009与固定污染源废气 氮氧化物的测定 盐酸萘乙二胺分光光度法HJ/T 43-1999用同一个曲线行不行呢?

  • 丙烯酰胺简介

    丙烯酰胺简介

    丙烯酰胺是一种有机化合物,别名AM;纯品为白色结晶固体,易溶于水、甲醇、乙醇、丙醇,稍溶于乙酸乙酯、氯仿,微溶于苯,在酸碱环境中可水解成丙烯酸。职业性接触主要见于丙烯酰胺生产和树脂、黏合剂等的合成,在地下建筑、改良土壤、油漆、造纸及服装加工等行业也有接触机会。日常生活中,丙烯酰胺可见于吸烟、经高温加工处理的淀粉食品及饮用水中。 丙烯酰胺属中等毒类,对眼睛和皮肤有一定的刺激作用,可经皮肤、呼吸道和消化道吸收,在体内有蓄积作用,主要影响神经系统,急性中毒十分罕见。密切大量接触可出现亚急性中毒,中毒者表现为嗜睡、小脑功能障碍以及感觉运动型多发性周围神经病。长期低浓度接触可引起慢性中毒,中毒者出现头痛、头晕、疲劳、嗜睡、手指刺痛、麻木感,还可伴有两手掌发红、脱屑,手掌、足心多汗,进一步发展可出现四肢无力、肌肉疼痛以及小脑功能障碍等。 丙烯酰胺慢性毒性作用最引人关注的是它的致癌性。丙烯酰胺具有致突变作用,可引起哺乳动物体细胞和生殖细胞的基因突变和染色体异常。动物试验研究发现,丙烯酰胺可致大鼠多种器官肿瘤,如乳腺、甲状腺、睾丸、肾上腺、中枢神经、口腔、子宫、脑下垂体肿瘤等。但目前还没有充足的人群流行病学证据表明,食物摄入丙烯酰胺与人类某种肿瘤的发生有明显相关性。国际癌症研究机构(IARC)对其致癌性进行了评价,将丙烯酰胺列为2类致癌物(2A),即人类可能致癌物。其主要依据为,丙烯酰胺在动物和人体均可代谢转化为致癌活性代谢产物环氧丙酰胺。⒈ 业性接触者要通过改革工艺、采取工程技术措施等手段,降低工作场所空气中丙烯酰胺的浓度;同时通过加强个人防护,如戴口罩、手套,穿防护服和鞋等,以防止或减少丙烯酰胺进入体内。 ⒉ 日常生活中尽量避免过度烹饪食品,如温度过高或加热时间太长。提倡平衡膳食,减少油炸和高脂肪食品的摄入,多吃水果和蔬菜,不要吸烟。 ⒊ 由于煎炸食品是我国居民常吃的食物,国家应加强膳食中丙烯酰胺的监测与控制,开展我国人群丙烯酰胺的暴露评估,并研究探索减少加工食品中丙烯酰胺含量的方法。(引自中国CDC网站)附迪马丙烯酰胺检测方案链接:http://www.dikma.com.cn/search.html?keyword=丙烯酰胺http://ng1.17img.cn/bbsfiles/images/2016/05/201605111724_592991_1610895_3.jpg

  • 关于环境空气中氮氧化物的对氨基苯磺酸配置问题

    现在做环境空气的氮氧化物实验,根据HJ479-2009中规定,对氨基苯磺酸溶解于200mL40到50度的热水中,请问大家做这一步时,药品都能溶解吗?我通常把水烧到50度,也不能充分溶解所有的对氨基苯磺酸,而且发现如果在溶解时,断断续续的加热,配出的显色液会变成淡红色。求大神分析下该怎么操作?还有就是,我配置的显色液并没有规范中说的在25摄氏度,暗处保存可稳定三个月,感觉过上1个星期,空白值就会越来越高。

  • 【转帖】化妆品用增稠剂

    化妆品用增稠剂刘 义,广州市浪奇实业股份有限公司,广东 广州510660高 俊,汽巴精化(中国)有阳公司广州公司,广东 广州510095 摘要:综述了使用于化妆品的增稠剂:无机盐类、表面活性剂类、水溶性高分子类和脂肪醇脂肪酸类等共200多种。增稠剂通过与表面活性剂形成棒状胶束、与水作用形成三维水化网络结构、或利用自身的大分子长链结构等使体系达到增稠的目的。详细介绍了增稠剂的配伍性能、使用范围、影响因素和增稠机理分类。在产品配方开发过程中根据配方的pH值、稳定性、刺激性、泡沫、配方成本、是否透明、流变形态、外观颜色、电解质稳定性和法规等方面的要求综合进行考虑,才能有效地选用恰当的增稠剂。只有不断在实际中总结经验,才能真正懂得如何有效地选用增稠剂。 关键词:化妆品;增稠剂;水溶性高分子;表面活性剂 中图分类号:TQ658 文献标识码:A 文章编号:1001-1803(2003)01-0044-05 配方师在进行配方设计时通常要考虑配方最终产品的流变形态,适当的流变形态能给产品带来美感,便于使用和生产,对配方的稳定性也有一定的影响。有些产品的流变形态甚至对产品的使用起很大作用,比如牙膏,要求产品的触变性好,因为在挤出时要求保持较好的形态,在刷牙时要求牙膏在外力作用下能够迅速变稀分散开来。流体的流变形态分为牛顿流体和非牛顿流体,牛顿流体为剪切应力与剪切速率成正比的流体;非牛顿流体又有假塑性流体、塑性流体和胀流体。假塑性流体和塑性流体都属于剪切变稀的流体,但塑性流体具有屈服值。胀流体属于剪切变稠的流体。要调节产品的流变形态,配方师是在配方中加入增稠剂达到目的。增稠剂简单地说就是提高配方产品黏度或稠度的一类物质,增稠剂加入量不大,但是能够大幅提高产品的黏度或稠度。配方师在选择增稠剂时需要考虑的因素较多:配方主体是选择增稠剂的首要考虑因素,什么样的体系决定采用什么样的增稠剂;其次是产品形态,产品形态要求不同类型的增稠剂,有些要求牛顿流体,有些要求塑性流体,根据不同的需要采用不同的增稠剂;在最终产品中增稠剂的比例、配方的成本也是增稠剂选择的重要因素,如果配方的成本让生产商和消费者都难于承受,那么这配方是没有应用价值的,平衡增稠剂的效果及其成本是非常重要的。另外配方的理化指标也是选择增稠剂必须考虑的,比如配方的稳定性、泡沫等,这些都是配方所关注的一些重要指标,有些增稠剂虽然增稠效果理想,但稳定性差或是消泡太厉害也是没有价值的。一般情况下几种增稠剂的协调增稠比用单一增稠剂对产品的最终流变形态有更好的效果。1 增稠剂分述 能够作为增稠剂的物质很多,从相对分子质量看有低分子增稠剂,也有高分子增稠剂;从功能团来看有电解质类、醇类、酰胺类、羧酸类和酯类等等。下面按化妆品原料的分类方法对增稠剂进行分类,表l列出了目前使用的增稠剂。1.1 低分子增稠剂1.1.1 无机盐类 用无机盐来做增稠剂的体系一般是表面活性剂水溶液体系,最常用的无机盐增稠剂是氯化钠,增稠效果明显。表面活性剂在水溶液中形成胶束,电解质的存在使胶束的缔合数增加,导致球形胶束向棒状胶束转化,使运动阻力增大,从而使体系的黏稠度增加。但当电解质过量时会影响胶束结构,降低运动阻力,从而使体系黏稠度降低,这就是所说的“盐析”。因此电解质加入量一般质量分数为1%-2%,而且和其他类型的增稠剂共同作用,使体系更加稳定。1.1.2 脂肪醇、脂肪酸类 脂肪醇、脂肪酸是带极性的有机物,有文章把它们看成为非离子表面活性剂,因为它们既有亲油基团,又有亲水基团。少量的该类有机物的存在对表面活性剂的表面张力、omc及其他性质有显著影响,其作用大小是随碳链加长而增大,一般来说呈线,陛变化关系。其作用原理是脂肪醇、脂肪酸能插入(参加)表面活性剂胶团,促进胶团的形成,同时由于该极性有机物与表面活性剂的分子间有强烈的相互作用(碳氢链间的疏水作用加极性头间的氢键结合),使两分子在表面上定向排列得很紧密,大大改变了表面活性剂胶束性质,达到增稠的效果。表1 增稠剂的分类一、非离子SAA 1、无机盐 氯化钠、氯化钾、氯化铵、单乙醇胺氯化物、二乙醇胺氯化物、硫酸钠、磷酸钠、磷酸二钠和三磷酸五钠等2、脂肪醇和脂肪酸 月桂醇、肉豆蔻醇、C12-15醇、C12-16醇、癸醇、己醇、辛醇、鲸蜡醇、硬脂醇、山嵛醇、月桂酸、C18-36酸、亚油酸、亚麻酸、肉豆蔻酸、硬脂酸、山嵛酸等3、烷醇酰胺类 椰油二乙醇酰胺、椰油单乙醇酰胺、椰油单异丙醇酰胺、椰油酰胺、月桂酰-亚油酰二乙醇酰胺、月桂酰-豆蔻酰二乙醇酰胺、异硬脂二乙醇酰胺、亚油二乙醇酰胺、豆蔻二乙醇酰胺、豆蔻单乙醇酰胺、油二乙醇酰胺、棕榈单乙醇酰胺、蓖麻油单乙醇酰胺、芝麻二乙醇酰胺、大豆二乙醇酰胺、硬脂二乙醇酰胺、硬脂单乙醇酰胺、硬脂单乙醇酰胺硬脂酸酯、硬脂酰胺、牛脂单乙醇酰胺、小麦胚芽二乙醇酰胺、PEG(聚乙二醇)-3月桂酰胺、PEG-4油酰胺、PEG-50牛脂酰胺等4、醚类 鲸蜡醇聚氧乙烯(3)醚、异鲸蜡醇聚氧乙烯(10)醚、月桂醇聚氧乙烯(3)醚、月桂醇聚氧乙烯(10)醚、Poloxamer-n(乙氧基化聚氧丙烯醚)(n=105、124、185、237、238、338、407)等5、酯类 PEG-80甘油基牛油酯、PEC-8PPG(聚丙二醇)-3二异硬脂酸酯、PEG-200氢化甘油基棕榈酸酯、PEG-n(n=6、8、12)蜂蜡、PEG-4异硬脂酸酯、PEG-n(n=3、4、8、150)二硬脂酸酯、PEG-18甘油基油酸酯/椰油酸酯、PEG-8二油酸酯、PEG-200甘油基硬脂酸酯、PEG-n(n=28、200)甘油基牛油酯、PEG-7氢化蓖麻油、PEG-40霍霍巴油、PEG-2月桂酸酯、PEG-120甲基葡萄糖二油酸酯、PEG-150季戊四硬脂酸酯、PEG-55丙二醇油酸酯、PEG-160山梨聚糖三异硬脂酸酯、PEG-n(n=8、75、100)硬脂酸酯、PEG-150/癸基/SMDI共聚物(聚乙二醇-150/癸基/甲基丙烯酸酯共聚物)、PEG-150/硬脂基/SMDI共聚物、PEG-90。异硬脂酸酯、PEG-8PPG-3二月桂酸酯、鲸蜡豆蔻酯、鲸蜡棕榈酯、C18—36酸乙二醇酯、季戊四硬脂酸酯、季戊四山嵛酸酯、丙二醇硬脂酸酯、山嵛酯、鲸蜡酯、三山嵛酸甘油酯、三羟基硬脂酸甘油酯等6、氧化胺 肉豆蔻氧化胺、异硬脂氨基丙基氧化胺、椰油氨基丙基氧化胺、小麦胚芽氨基丙基氧化胺、大豆氨基丙基氧化胺、PEG—3月桂氧化胺等二、两性SAA 鲸蜡甜菜碱、椰油氨基羟磺基甜菜碱等三、阴离子SAA 油酸钾、硬脂酸钾等四、水溶性高分子 1、纤维素类 纤维素、纤维素胶、羧甲基羟乙基纤维素、鲸蜡羟乙基纤维素、乙基纤维素、羟乙基纤维素、羟丙基纤维素、羟丙基甲基纤维素、甲基纤维素、羧甲基纤维素等2、聚氧乙烯类 PEG-n(n=5M、9M、23M、45M、90M、160M)等3、聚丙烯酸类 丙烯酸酯/C10-30烷基丙烯酸酯交联聚合物、丙烯酸酯/十六烷基乙氧基(20)衣康酸酯共聚物、丙烯酸酯/十六烷基乙氧基(20)甲基丙烯酸酯共聚物、丙烯酸酯/十四烷基乙氧基(25)丙烯酸酯共聚物、丙烯酸酯/十八烷基乙氧基(20)衣康酸酯共聚物、丙烯酯酯/十八烷基乙氧基(20)甲基丙烯酸酯共聚物、丙烯酸酯/十八烷基乙氧基(50)丙烯酸酯共聚物、丙烯酸酯/VA交联聚合物、PAA(聚丙烯酸)、丙烯酸钠/乙烯异癸酸酯交联聚合物、Carbomer(聚丙烯酸)及其钠盐等 4、天然胶及其改性物 海藻酸及其(铵、钙、钾)盐、果胶、透明质酸钠、瓜尔胶、阳离子瓜尔胶、羟丙基瓜尔胶、黄蓍胶、鹿角菜胶及其(钙、钠)盐、汉生胶、菌核胶等5、无机高分子及其改性物 硅酸铝镁、二氧化硅、硅酸镁钠、水合二氧化硅、蒙脱土、硅酸锂镁钠、水辉石、硬脂铵蒙脱土、硬脂铵水辉石、季铵盐-90蒙脱土、季铵盐-18蒙脱土、季铵盐-18水辉石等6、其他 PVM/MA癸二烯交联聚合物(聚乙烯甲基醚/丙烯酸甲酯与癸二烯的交联聚合物)、PVP(聚乙烯吡咯烷酮)等1.1.4 表面活性剂类1.1.4.1 烷醇酰胺类 最常用的是椰油二乙醇酰胺。烷醇酰胺能与电解质相容共同进行增稠并且能达到最佳效果。烷醇酰胺增稠的机理是与阴离子表面活性剂胶束相互作用,形成非牛顿流体。各种不同的烷醇酰胺在性能上有很大差异,而且单独使用与复配使用其效果也不同,有文章报道了不同烷醇酰胺的增稠及泡沫性能。近来报道烷醇酰胺制成化妆品时有产生致癌物质亚硝胺的潜在危害。烷醇酰胺的杂质中有游离胺,它是亚硝胺的潜在来源。目前个人护理品工业对是否在化妆品中禁用烷醇酰胺还没有官方意见。1.1.4.2 醚类 在以脂肪醇聚氧乙烯醚硫酸盐(AES)为主活性物的配方中,一般仅用无机盐即能调成合适的黏度。研究表明这是由于

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制