当前位置: 仪器信息网 > 行业主题 > >

若丹明十八烷酯高氯酸盐

仪器信息网若丹明十八烷酯高氯酸盐专题为您提供2024年最新若丹明十八烷酯高氯酸盐价格报价、厂家品牌的相关信息, 包括若丹明十八烷酯高氯酸盐参数、型号等,不管是国产,还是进口品牌的若丹明十八烷酯高氯酸盐您都可以在这里找到。 除此之外,仪器信息网还免费为您整合若丹明十八烷酯高氯酸盐相关的耗材配件、试剂标物,还有若丹明十八烷酯高氯酸盐相关的最新资讯、资料,以及若丹明十八烷酯高氯酸盐相关的解决方案。

若丹明十八烷酯高氯酸盐相关的资讯

  • 赛默飞发布乳制品中氯酸盐、高氯酸盐的检测方案
    2015年3月27日,上海——近日,赛默飞发布乳制品中氯酸盐、高氯酸盐的检测方案,旨在为检测机构提供更具针对性的解决方案,确保消费者能够获得优质奶粉,进而维护广大婴幼儿的身体健康。近年来我国很多消费者对国产婴儿奶粉质量问题存在担心,而德国、新西兰等国生产的婴幼儿奶粉则成为了家长们的首选,尤其是一些知名品牌奶粉最受欢迎。今年 2月,多家国外媒体报道出德国质量检测机构的乳粉检测报告,其中关于乳品中氯酸盐、高氯酸盐超标的信息让不少消费者感到不安。测评结果指出,某品牌的奶粉 中氯酸盐、高氯酸盐超标,并且已经超过世界卫生组织在2007年制定的每日容许摄入量。牛奶在加工包装过程中可能涉及到各种器皿的清洗和消毒,而最常见的有害人体健康的消毒副产物氯酸盐和亚氯酸盐,存在于各种牛奶产品中。国际癌症 研究中心(IARC)已将亚氯酸盐列为致癌物,氯酸盐为中等毒性化合物。而高氯酸盐则是一种新型的持久性污染物质,其作为一种强力甲状腺毒素,会导致成人 新陈代谢功能紊乱。目前大量研究结果表明,饮用水、牛奶、鱼肉等都有可能受到这几种物质的污染。因此精确检测牛奶中的氯酸盐、高氯酸盐显得尤为重要。针对这一问题,赛默飞发布了乳制品中氯酸盐、亚氯酸盐的检测方案,采用离子色谱ICS-2100,配备串联质谱系统,建立了同时测定乳制品中氯酸盐和亚氯 酸盐的方法。样品经过前处理后进行分析,该方法极大地降低了基体干扰,提高了分析方法的信噪比和灵敏度。该方法应用于牛奶样品中亚氯酸盐和氯酸盐的同时测 定,取得了良好的测定效果。对于乳制品中高氯酸盐的检测,赛默飞同样采用离子色谱与质谱联用技术,检测限可达1 μg/kg,完全可以满足鲜牛奶、酸牛奶等其它乳制品中高氯酸盐的测定要求。ICS-2100 RFIC 离子色谱系统产品详情:www.thermo.com.cn/Product6474.html下载应用纪要:AN_C_IC-42_离子色谱-串联质谱法同时测定牛奶中氯酸盐和亚氯酸盐:http://www.thermo.com.cn/Resources/201503/191598140.pdfAB_C_IC-5_离子色谱-质谱法测定乳制品中的高氯酸盐:http://www.thermo.com.cn/Resources/201503/20161442921.pdf乳制品食品安全检测解决方案:http://www.thermo.com.cn/Resources/201503/20161313328.pdf有关ICS-2100 RFIC 离子色谱系统的更多信息,请访问:http://www.thermo.com.cn/Product6474.html ------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我 们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊 断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公 司,员工人数超过3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中 国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与 培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国 技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站 www.thermofisher.cn
  • 赛默飞发布茶叶中高氯酸盐的检测方案
    赛默飞世尔科技(以下简称:赛默飞)于近日发布茶叶中高氯酸盐的检测方案,旨在为检测机构提供更具针对性的解决方案,弥补国内茶叶中高氯酸盐检测空白。 高氯酸盐是一种持久性的有毒物质。由于人体的甲状腺会吸收高氯酸盐,并受其影响,减少对碘的吸收,进而扰乱新陈代谢,危害人的健康。欧洲食品安全局(EFSA)评估了长期和短期内暴露于高氯酸盐的风险,结果表明,单次摄入食品和水中的高氯酸盐对健康影响不大,但是长期摄入高氯酸盐,对人体的危害应当引起关注,尤其是孕妇、胚胎、婴儿最容易受到危害。 高氯酸盐污染的主要来源是航空航天、烟火制造、军火工业、橡胶制品、燃料涂料等。但高氯酸盐是如何通过上述源头进入茶叶,目前还没有科学结论。业内专家推测,茶树种植过程中使用的化学肥料、灌溉用水、工业废水或者自来水,食品加工过程中含氯消毒剂的使用以及包装材料的迁移,都可能成为茶叶高氯酸盐的污染来源。因此,茶叶及各项可能的污染源中高氯酸盐高灵敏度的检测方案显得尤为重要。 自1997年美国在加州饮用水中监测到较高含量的高氯酸根存在后,高氯酸盐已成为美国环境污染研究的热点。欧盟已考虑把食品中的高氯酸限量定在0.75 mg/Kg,同时,也正在酝酿一项针对来自中国茶叶的强制性标准,即规定茶叶中高氯酸盐的含量应在合理限值之下。 更严重的问题在于,这一拟定中的标准可能进一步收紧。欧洲食品安全局(EFSA)生物危害与污染研究部食物污染专题相关负责人曾表示,EFSA在评估报告建议茶叶中高氯酸盐含量是0.55—0.58 mg/Kg,拟发布的0.75 mg/Kg的标准较为宽松。欧盟将综合考虑各方科学意见后,公布正式适合欧盟全境的检测标准,预计强制性标准将于2016年正式颁布。一旦该标准制定实施,中国对欧盟的茶叶出口将严重受阻。针对上述情况,赛默飞发布了茶叶中高氯酸盐的检测方案,采用Thermo ScientificTM DionexTM ICS-5000+多功能离子色谱仪,配备Thermo ScientificTM MSQ PlusTM 单四极杆质谱,建立了茶叶中高氯酸盐的分析方法。茶叶粉末样品经浸提后过RP柱净化再进行离子色谱-质谱分析。相比于液质方法,离子色谱的流动相经过电解抑制器抑制后基本为水,且采用稳定的高分子聚合物交换色谱柱,均可大大降低质谱的基线噪音,从而获得更高的分析灵敏度。 该方法应用于茶叶中高氯酸盐的测定,方法前处理简单,准确性高,加标回收率可达95%以上。并且灵敏度高,检测限可达0.02 mg/kg或更低,完全满足欧盟拟定的限值0.75 mg/Kg,甚至更严苛的0.55-0.58 mg/Kg的检测要求。质谱端若选用Thermo ScientificTM TSQ系列三重四级杆质谱仪,将获得更高的检测灵敏度。茶叶实际样品质谱图(IC-MSQ)更多产品信息,请访问:DionexTM ICS-5000+ 多功能离子色谱仪www.thermoscientific.cn/product/dionex-ics-5000-capillary-hpic-system.html MSQ PlusTM 单四极杆质谱www.thermoscientific.cn/product/msq-plus-single-quadrupole-mass-spectrometer.html TSQ 系列三重四级杆质谱仪www.thermoscientific.cn/product/tsq-quantum-access-max-triple-quadrupole-mass-spectrometer.html---------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公 司,员工人数约3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应 用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成 立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com请扫码关注:赛默飞世尔科技中国官方微信
  • 【行业应用】赛默飞发布茶叶中高氯酸盐的检测方案
    赛默飞世尔科技(以下简称:赛默飞)于近日发布茶叶中高氯酸盐的检测方案,旨在为检测机构提供更具针对性的解决方案,弥补国内茶叶中高氯酸盐检测空白。 高氯酸盐是一种持久性的有毒物质。由于人体的甲状腺会吸收高氯酸盐,并受其影响,减少对碘的吸收,进而扰乱新陈代谢,危害人的健康。欧洲食品安全局(EFSA)评估了长期和短期内暴露于高氯酸盐的风险,结果表明,单次摄入食品和水中的高氯酸盐对健康影响不大,但是长期摄入高氯酸盐,对人体的危害应当引起关注,尤其是孕妇、胚胎、婴儿最容易受到危害。 高氯酸盐污染的主要来源是航空航天、烟火制造、军火工业、橡胶制品、燃料涂料等。但高氯酸盐是如何通过上述源头进入茶叶,目前还没有科学结论。业内专家推测,茶树种植过程中使用的化学肥料、灌溉用水、工业废水或者自来水,食品加工过程中含氯消毒剂的使用以及包装材料的迁移,都可能成为茶叶高氯酸盐的污染来源。因此,茶叶及各项可能的污染源中高氯酸盐高灵敏度的检测方案显得尤为重要。 自1997年美国在加州饮用水中监测到较高含量的高氯酸根存在后,高氯酸盐已成为美国环境污染研究的热点。欧盟已考虑把食品中的高氯酸限量定在0.75 mg/Kg,同时,也正在酝酿一项针对来自中国茶叶的强制性标准,即规定茶叶中高氯酸盐的含量应在合理限值之下。 更严重的问题在于,这一拟定中的标准可能进一步收紧。欧洲食品安全局(EFSA)生物危害与污染研究部食物污染专题相关负责人曾表示,EFSA在评估报告建议茶叶中高氯酸盐含量是0.55—0.58 mg/Kg,拟发布的0.75 mg/Kg的标准较为宽松。欧盟将综合考虑各方科学意见后,公布正式适合欧盟全境的检测标准,预计强制性标准将于2016年正式颁布。一旦该标准制定实施,中国对欧盟的茶叶出口将严重受阻。针对上述情况,赛默飞发布了茶叶中高氯酸盐的检测方案,采用Thermo ScientificTM DionexTM ICS-5000+多功能离子色谱仪,配备Thermo ScientificTM MSQ PlusTM 单四极杆质谱,建立了茶叶中高氯酸盐的分析方法。茶叶粉末样品经浸提后过RP柱净化再进行离子色谱-质谱分析。相比于液质方法,离子色谱的流动相经过电解抑制器抑制后基本为水,且采用稳定的高分子聚合物交换色谱柱,均可大大降低质谱的基线噪音,从而获得更高的分析灵敏度。 该方法应用于茶叶中高氯酸盐的测定,方法前处理简单,准确性高,加标回收率可达95%以上。并且灵敏度高,检测限可达0.02 mg/kg或更低,完全满足欧盟拟定的限值0.75 mg/Kg,甚至更严苛的0.55-0.58 mg/Kg的检测要求。质谱端若选用Thermo ScientificTM TSQ系列三重四级杆质谱仪,将获得更高的检测灵敏度。茶叶实际样品质谱图(IC-MSQ)更多产品信息,请访问:DionexTM ICS-5000+ 多功能离子色谱仪www.thermoscientific.cn/product/dionex-ics-5000-capillary-hpic-system.html MSQ PlusTM 单四极杆质谱www.thermoscientific.cn/product/msq-plus-single-quadrupole-mass-spectrometer.html TSQ 系列三重四级杆质谱仪www.thermoscientific.cn/product/tsq-quantum-access-max-triple-quadrupole-mass-spectrometer.html---------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公 司,员工人数约3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应 用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成 立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com请扫码关注:赛默飞世尔科技中国官方微信
  • 戴安公司提供奶粉中高氯酸盐检测方法
    近期有消息报导部分美国品牌婴幼儿奶粉中检测出高氯酸盐,这是继我国牛奶及奶制品的三聚氰胺事件后又一波引起关注的奶制品污染事件。 高氯酸盐是一种持久性环境污染物质,广泛用于火箭推进剂、导弹和烟火制造工业,使高氯酸盐很容易释放到环境中。研究表明,由于高氯酸盐和碘离子具有相似的电荷和离子半径,会与碘竞争进入人体甲状腺,抑制甲状腺对碘的吸收,从而减少甲状腺荷尔蒙的生成,影响甲状腺功能,导致成人新陈代谢功能紊乱、影响胎儿和婴儿神经中枢的正常生长和发展,高氯酸盐的高暴露还会导致甲状腺癌。2002年美国国家环保署(US EPA)规定饮用水中高氯酸盐的最大容许浓度为1&mu g/L。美国的一些州将高氯酸盐的限定浓度规定为1-18&mu g/L。高氯酸盐的分析已进入美国EPA系列标准方法中(EPA314.0、314.1、314.2、331、332、6850)。 需要关注的是,除了奶粉本身的污染外,冲调奶粉的水中如果被高氯酸污染,也会引起冲调牛奶的高氯酸超标。目前随着人们对环境与食品安全意识的加强,国内高氯酸盐的检测受到了各行业广泛的关注,对于水中高氯酸盐的离子色谱检测,戴安公司提供符合EPA314.0和314.1的成熟分析方法,专门推出了IonPacAS20和AS21色谱分析柱。目前戴安公司的IC/MS技术可以分别用于牛奶中的高氯酸盐检测;饮用水及环境水样中的痕量高氯酸盐以及污泥样品中的高氯酸盐的检测。为了满足大量科研分析人员对该项技术的需求,更大程度和范围推广该项检测技术,戴安公司可提供以下技术资料,欢迎索取。 一、戴安技术资料: 1、改进的离子色谱法检测环境样品中的高氯酸盐 2、离子色谱-质谱联用测定牛奶中的高氯酸盐、溴酸盐和碘离子 3、离子色谱-质谱联用测定瓶装水中的高氯酸盐、溴酸盐 4、离子色谱-质谱联用技术测定饮用水及环境水样中的痕量高氯酸盐 5、大体积进样离子色谱法测定环境水样品中的高氯酸根 6、离子色谱-质谱联用技术测定测定污泥样品中的高氯酸盐 7、《戴安公司离子色谱应用技术专辑》 二、美国国家环保署标准方法(EPA) 1、EPA314 离子色谱法检测饮用水中的高氯酸盐(戴安公司AS16色谱柱) 2、EPA314.1 在线柱浓缩/基体消除离子色谱抑制型电导检测饮用水中的高氯酸盐(戴安公司AS16色谱柱) 3、EPA314.2 二维离子色谱抑制型电导法检测饮用水中的高氯酸盐(戴安AS20和AS16色谱柱) 4、EPA331 LC-MS/MS法检测饮用水中的高氯酸盐(戴安AS21离子色谱柱) 5、EPA332 IC-MS 和IC-MS/MS法检测饮用水中的高氯酸盐(戴安AS16与AS20色谱柱) 6、EPA6850 IC/电喷雾/质谱法检测水、泥土、固体废弃物中的高氯酸盐 索取以上资料请联系戴安中国有限公司市场部: 010-64436740 戴安中国市场部 2009年4月7号
  • 食品(奶粉、牛奶、果蔬等)中高氯酸盐的检测
    食品(奶粉、牛奶、果蔬、矿泉水、玉米、小麦淀粉等)中高氯酸盐的检测 根据美国FDA以及EPA方法 高氯酸盐为无色晶体。在高温下,高氯酸盐有较强的氧化性。可由氯酸盐热分解或电解氧化氯酸盐制得。高氯酸镁和高氯酸钡的去水作用很强,可制高效脱水剂。高氯酸钠可做除草剂。高氯酸钾可制炸药。高氯酸盐是冷战时期火箭和导弹燃料常用的化学物质,多种研究显示,高氯酸盐是一种强力甲状腺毒素,可能影响胎儿和婴儿大脑发育。美国FDA和EPA方法采用IC-ESI/MS离子色谱-质谱检测各种食品中的高氯酸盐含量,内标法定量。 货号 名称 品牌 规格 报价(RMB) CFFD-ICCLO41-1# 高氯酸盐离子色谱标准溶液,1000ug/ml溶于水 进口 125ml 1060.00 CFFD-ICCLO41-5 高氯酸盐离子色谱标准溶液,1000ug/ml溶于水 进口 500ml 2180.00 SBAA-Ag# Ag离子小柱,1mL Anpel 10支/包 398.00 SBAA-H# H离子小柱,1mL Anpel 10支/包 298.00 SBAA-Ba# Ba离子小柱,1mL Anpel 10支/包 398.00 SBEQ-CA1654# CNWBOND Carbon-GCB石墨化碳黑SPE小柱,500mg/6mL CNW 30支/盒 1129.00 LAEB-F6995243 NI-424阴离子色谱柱100*4.6mm Shodex 根 13581.00 LBEB-F6709616 NI-G保护柱10*4.6mm Shodex 根 4415.00 DAAQ-6-1006-510 万通离子色谱柱,SUPP5-100, 4-mm I.D. X 100-mm length Metrohm 根 19975.80 DAAQ-6-1006-500# 万通离子色谱保护柱,ASUPP-4/5 Guard 4-mm I.D Metrohm 根 2792.40
  • 力合科技高氯酸盐水质分析仪新品上市
    水为生命之源,水质安全与人们的健康生活息息相关,2023年4月1日新版《生活饮用水卫生标准》(GB5749-2022)正式实施,相比《生活饮用水卫生标准》(GB5749-2006)旧版的标准,高氯酸盐为重要新增指标,规定标准限值为0.07mg/L。高氯酸盐来源广泛,是火药、烟花的主要原料之一,其化学性质稳定、迁移性强、潜在危害大、暴露途径多,对食品安全和人体健康构成巨大威胁,我国部分地区饮用水中存在高暴露情况;高氯酸根为正四面体结构,具有高度的化学稳定性,是一种持久性的有毒环境污染物质。研究表明,高氯酸盐作为一种内分泌干扰物,主要危害是影响机体甲状腺的正常功能,主要原因在于高氯酸盐的电荷和离子半径与碘离子非常接近,可以与碘离子竞争直接进入人体的甲状腺,阻碍人体对碘的吸收,从而造成甲状腺功能紊乱,因此研究高氯酸盐高灵敏监测技术与装备,支撑饮用水安全保障十分必要。01研发时间轴2013年,开始了高氯酸盐自动监测技术的研究。2014年,开发出了基于离子色谱法的高氯酸盐水质自动分析仪,但前处理过程复杂,且整体购置成本及运行成本相对较高。2019年,仪器设备安装于长江巡测示范站,开启了长江干流高氯酸盐浓度水平的研究之旅。2023年,公司研发团队基于前期积累的应用经验,成功开发出低成本、全自动以及稳定可靠的光学法的高氯酸盐自动分析仪,定量下限低于《生活饮用水卫生标准》(GB5749-2022)标准限值的十分之一,针对光学测量干扰问题专门配备抗干扰模块,整体性能媲美离子色谱法的仪器,可用于生活饮用水、地表水、地下水、工业废水以及企业废水排放监测。产品类型1:在线监测分析仪产品类型2:实验室自动分析仪02优势特点灵敏度高,检测限低选取具有高选择性、专一性强、灵敏度高的反应体系,配备自动化富集浓缩装置,可实现高氯酸盐的高精度实时连续监测。兼容性强,建设及运行成本低相对于传统离子色谱分析方案,仪器购置及运行成本均较低。仪器采用公司标准化外观设计,可直接接入已建的监测系统,经济性整体优势明显。分析速度快单次样品分析时间<30min。智能化运行可根据实际应用场景进行切换,对工作模式、仪器关键部件状态信息、辅助设备信息实时监控,实现仪器健康度自诊断与自修复,可获得极佳的稳定性和可靠性。
  • 上海安谱实验推出茶叶中高氯酸盐检测--离子色谱法整体解决方案
    16年初,各大媒体新闻报道,中国输欧茶叶大范围出现新型污染物,持久性的有毒物质高氯酸盐正在威胁中国的茶叶出口贸易,这个新的污染物如何进入茶叶的,目前还没有科学结论。 欧盟正在酝酿一项针对来自中国茶叶的强制性标准,即规定茶叶中高氯酸盐的含量应在合理限值之下。 高氯酸盐是一种持久性的有毒物质。由于人体的甲状腺会吸收高氯酸盐,并受其影响,减少对碘的吸收,进而扰乱新陈代谢,危害人的健康。欧洲食品安全局(EFSA)评估了长期和短期内暴露于高氯酸盐的风险,结果表明,单次摄入食品和水中的高氯酸盐对健康影响不大,但是长期摄入高氯酸盐,对人体的危害应当引起关注,尤其是孕妇、胚胎、婴儿最容易受到危害。 高氯酸盐污染的主要来源是航空航天、烟火制造、军火工业、橡胶制品、燃料涂料等。但高氯酸盐是如何通过上述源头进入茶叶的,目前还没有科学的结论。 业内专家推测,茶树种植过程中使用的化学肥料、灌溉用水、工业废水或者自来水,食品加工过程中含氯消毒剂的使用以及包装材料的迁移,都可能成为茶叶高氯酸盐的污染来源。 欧洲食品安全局(EFSA)生物危害与污染研究部食物污染专题负责人马可?比纳里亚曾表示,EFSA在评估报告中建议茶叶中高氯酸盐含量是0.55—0.58毫克/公斤,拟发布的0.75毫克/公斤的标准较为宽松。 欧盟将在综合考虑各方科学意见后,公布正式适合欧盟全境的检测标准,预计强制性标准将于2016年正式颁布。 未雨绸缪,建立茶叶中及其他可能的污染源中高灵敏度的高氯酸盐检测方法非常重要,上海安谱实验科技股份有限公司开发出茶叶中高氯酸盐检测--离子色谱法,可有效去除样品中共存的高浓度常见阴离子对高氯酸盐测定的干扰。方法前处理简单,能够得到较高的回收率和稳定性,并且灵敏度高,定量限能做到0.2毫克/公斤以下,完全满足欧盟拟定标准。若选用离子色谱-质谱法或者LC-MS/MS法,可获得更高的检测灵敏度。一.样品前处理 准确称取2g粉碎好的茶叶样品,放入50mL 离心管中,加入10mL 乙腈,漩涡混合1min,超声震荡10min后,再漩涡混合1min,4000 r/min离心6min,上清液待净化。SPE操作:GCB小柱(SBEQ-CA1654)串联IC-RP小柱(SBEQ-IC0410-RP):活化:10mL 乙腈以下开始收集:上样:取2mL上清液过小柱洗脱:2mL 乙腈共得到4mL乙腈溶液,加入4mL H2O,混合均匀后,取一定体积过0.22μ m亲水PTFE滤器(SCAA-114),供仪器测定。备注:出于对离子色谱的考虑,上机所使用溶剂为1:1的ACN:H2O;如果是液质检测,得到4mL乙腈溶液后,可以不必加水稀释注意事项:水及未清洗干净的容器极易引入ClO4-本底,建议实验开始前,对所用试剂及耗材做下本底测试,并且尽量使用一次性的塑料耗材。二.离子色谱法仪器:万通 940 professional IC 检测器:电导检测器 MSM 化学抑制器色谱柱:Metrosep A Supp 5 – 250/4.0 保护柱:Metrosep RP 2 Guard/3.5淋洗液:5 mmol/L 碳酸钠 + 20% 乙腈(V/V)的水溶液流速:0.7 mL/min定量环: 250 μ L柱温:40 ℃三.实验数据3.1 标准曲线绘制注意事项:CFGG-062009-01-01 高氯酸根离子标液,ClO4-(NaClO4),1000mg/L溶于 H2O标品中间液和工作液建议用乙腈稀释,会减少如果加标量体积过大,基质提取液不同造成的影响。3.2 绿茶中高氯酸盐检测图1 市售绿茶谱图图2 市售绿茶加标0.5ppm谱图图3 市售绿茶加标1 ppm谱图3.3 普洱茶中高氯酸盐检测图4 市售普洱茶谱图图5 市售普洱茶加标0.5ppm谱图图6 市售普洱茶加标1 ppm谱图3.4 红茶中高氯酸盐检测图7 市售红茶谱图图8 市售红茶加标1 ppm谱图3.5 回收率数据加标浓度回收率%基质绿茶普洱茶红茶0.5ppm96.9974.6281.872.551ppm104.12106.93115.15101.76106.7112.28四.实验中所需耗材 货号名称规格价格/元品牌SBEQ-CA1654CNWBOND Carbon-GCB石墨化碳黑SPE小柱500mg, 6mL/30 pcs1177CNWSBEQ-IC0410-RPCNW IC-Guard RP 净化小柱1mL,10只/包260CNWCFGG-062009-01-01高氯酸根离子标液,ClO4-(NaClO4),1000mg/L溶于 H2O100mL750o2siDAAQ-6-1006-530万通阴离子色谱柱,Metrosep A Supp 5 - 250/4.0250 x 4.0mm,5um19850万通SCAA-114亲水PTFE针式滤器13mm*0.22um,金色,100只/罐100AnpelQBAA-0020122mL无针注射器100只/包70AnpelSBEQ-CR1012CNW 12位固相萃取真空装置12位5885CNWCAEQ-4-003306-4000HPLC级乙腈4L420CNWABEQ-33000B2-500CNW 50ml 无菌尖底离心管、蓝盖、500/箱500/箱850CNWABEQ-33000B6-500CNW 15ml 无菌尖底离心管、蓝盖、500/箱500/箱720CNWSGEQ-7100301-1UnwireTM试管架ResMerTM制造技术,孔径30mm,红色1个,3*8孔,适用于50ml离心管149CNWADEQ-26001113ml 塑料巴斯德吸管、160mm、未灭菌500/箱110CNWVAAP-32009E-1232-100CNW 9mm 透明螺纹口自动进样瓶(带刻度、书写)100只/塑盒,50塑盒/纸箱120CNWVEAP-5394-09B-100蓝色有开孔拧盖,含白色PTFE/红色硅橡胶隔垫100个/包90CNWEOFO-945617Talboys数显型漩涡混合器,230V/150W外形尺寸:20.3×10.2×350px,包装重量:5.3kg4565TalboysEOFO-945066Talboys 数显型多管式漩涡混合器外形尺寸:24.1×38.4×1015px,包装重量:19.1kg36641Talboys
  • 北京预防医学会发布《母乳、血液和尿液中氯酸盐和高氯酸盐的测定》等6项团体标准征求意见稿
    由北京预防医学会批准立项的《母乳、血液和尿液中氯酸盐和高氯酸盐的测定》《韭菜中氯酸盐和高氯酸盐的测定 离子色谱-质谱/质谱法》《空气中16种多环芳烃的测定 气相色谱三重四级杆质谱法》《工作场所空气有毒物质测定乙醇胺的离子色谱法》《新型冠状病毒感染样本采集包装运输及检测规范》(修订)和《新型冠状病毒感染样本意外溢洒事故处理规范》(修订)等6项团体标准的征求意见稿已完成。根据《北京预防医学会团体标准管理办法(2023年版)》的要求,现在网上公开征求意见,欢迎提出宝贵意见。请将意见填入附件《意见反馈表》中,于2024年3月2日之前,以E-mail或电话的方式反馈至我会。若各单位了解到该标准内容涉及专利权/商标权,请将涉及专利权/商标权的相关情况一并反馈。联系人:侯宏电话:010-64407272E-mail:ttbz7272@163.com北京预防医学会2024年2月1日1-2编制说明-母乳血液和尿液中氯酸盐和高氯酸盐的测定编制说明.pdf1-1征求意见稿-母乳血液和尿液中氯酸盐和高氯酸盐的测定.pdf2-1征求意见稿-韭菜中氯酸盐和高氯酸盐的测定 离子色谱-质谱质谱法.pdf1-3验证报告1-母乳血液和尿液中氯酸盐和高氯酸盐的测定.pdf2-2编制说明-韭菜中氯酸盐和高氯酸盐的测定 离子色谱-质谱质谱法.pdf2-3验证报告1-韭菜中氯酸盐和高氯酸盐的测定 离子色谱-质谱质谱法.pdf1-4验证报告2-母乳血液和尿液中氯酸盐和高氯酸盐的测定.pdf3-2编制说明-空气中16种多环芳烃测定-?相?谱三重四级杆质谱法.pdf3-1征求意见稿-空气中16种多环芳烃测定-气相色谱三重四级杆质谱法.pdf3-3验证报告1-空气中16种多环芳烃测定-气相色谱三重四级杆质谱法(通州疾控).pdf2-4验证报告2-韭菜中氯酸盐和高氯酸盐的测定 离子色谱-质谱质谱法.pdf4-1征求意见稿-工作场所空气有毒物质测定 乙醇胺的离子色谱法.pdf4-2编制说明-工作场所空气有毒物质测定乙醇胺的离子色谱法.pdf4-3验证报告1-工作场所空气有毒物质测定(通州疾控).pdf3-4验证报告2-空气中16种多环芳烃测定-气相色谱三重四级杆质谱法(朝阳疾控).pdf5-2修订说明-新型冠状病毒感染样本采集包装运输及检测规范.pdf5-1征求意见稿-新型冠状病毒感染样本采集包装运输及检测规范.pdf4-4验证报告2-工作场所空气有毒物质测定(丰台疾控).pdf附件7 意见反馈表.docx6-2修订说明-新型冠状病毒感染样本意外溢洒事故处理规范.pdf6-1征求意见稿-新型冠状病毒感染样本意外溢洒事故处理规范.pdf
  • 湖南省生态环境厅关于公开征求《工业废水高氯酸盐污染物排放标准》《水质 高氯酸盐的测定 离子色谱法》意见的通知
    各有关单位:根据地方标准制修订项目计划,我厅组织编制了湖南省地方标准《工业废水高氯酸盐污染物排放标准》(征求意见稿)、《水质 高氯酸盐的测定 离子色谱法》(征求意见稿)。为确保标准的科学性和适用性,现公开征求意见。各机关团体、企事业单位和个人均可提出意见和建议,有关意见请书面反馈至我厅(电子文档同时发送至邮箱),并注明联系方式。征求意见截止时间2023年9月1日。?联系人:左莉娜、钟宇电 ?话:0731-85698179、18874256340邮 ?箱:zln85698179@163.com湖南省生态环境厅2023年8月1日相关附件: 附件2.《工业废水高氯酸盐污染物排放标准》(征求意见稿)编制说明.docx 下载相关附件: 附件1.工业废水高氯酸盐污染物排放标准(征求意见稿).docx 下载相关附件: 附件3.水质 高氯酸盐的测定 离子色谱法(征求意见稿).doc 下载相关附件: 附件4.《水质 高氯酸盐的测定 离子色谱法》(征求意见稿)编制说明.docx 下载
  • 安全“食”刻 | QSight LC-MSMS应对食品中氯酸盐和高氯酸盐含量的测定
    在当今食品行业的生产和检测中,氯酸盐和高氯酸盐是新型的具有高稳定性、高扩散性和持久性的污染物质,它们会影响机体的甲状腺正常功能,并可能在一定程度上造成血红细胞破坏和肝肾损伤。因此,食品中氯酸盐和高氯酸盐的测定对于保证人体健康具有重要意义。目前,国际国内都在积极开展相关研究,旨在深入了解这些污染物的来源、分布和影响,并寻求有效的控制和消除方法。参考BJS 201706标准,珀金埃尔默采用了QSight系列液质联用系统,成功开发了一种快速高效的液相色谱-质谱联用检测方法,能够准确分析食品中氯酸盐和高氯酸盐的含量,为保障食品安全提供了有力支持。图1 QSight系列液质联用系统实验采用了如下图2,图3所述的 QSight 220&trade 质谱参数图2 质谱离子源参数图3 化合物质谱参数用醋酸铵甲醇溶液(20mM醋酸铵:甲醇=1:2)稀释混合标准工作溶液,考察了不同添加浓度下的重复性情况,选取不同低中高浓度重复分析8次,发现所得峰面积的RSD均在2% 以内,可以获得非常好的重现性。该仪器具有优异的灵敏度,检出限远远低于标准的要求,可以轻松满足日常检测的需求,同时可以得到出色的峰形。图4 不同添加浓度的峰面积结果珀金埃尔默的QSight系列三重四极杆液质联用系统具有HSID热表面诱导去溶剂的专利技术,使其具有优异的自清洁功能,应对该类复杂基质样品分析时,可以起到抗污染免维护的作用,大大节省了仪器的维护成本和人员工作效率的提升。
  • 新疆理化所基于探针结构精细调控实现高氯酸盐可视化检测
    高氯酸盐具有强氧化性和高稳定性,是广泛应用于固体推进剂、军工生产、航天器材、烟花爆竹等领域的重要含能材料之一。据美国爆炸数据中心统计,以高氯酸盐/氯酸盐作为原料直接或间接参与的爆炸案达全球爆炸案总量的63.4%。因此,开展对痕量高氯酸盐固体的高灵敏、准确的现场检测对保障国家公共安全具有重要的现实意义。中国科学院新疆理化技术研究所爆炸物传感检测团队长期致力于痕量危化品检测方法研究,在危爆品、特别是非制式爆炸物的高灵敏、快速、识别检测原理和器件设计方面发展了系列新的解决方案(Adv. Mater. 2020, 32, 1907043、Adv. Sci. 2020, 2002991、Angew. Chem. Int. Ed. 2022,DOI: 10.1002/anie.202203358等)。近期在高氯酸盐现场可视化检测方面取得进展,提出了一种基于自组装配合物探针与水凝胶耦合作用协同调控的超高灵敏比色-荧光双模可视化传感新策略,成功实现了超痕量高氯酸盐的现场双模可视化检测。该团队以三联吡啶铂(II)辅助配体为切入口,结合量子化学计算,系统研究了不同辅助配体对水溶液中三联吡啶铂(II)自组装产物Pt-Pt金属作用导致的MMLCT态光谱能量和发光稳定性的影响,阐明了辅助配体调控高氯酸根诱导聚集产物发光性质的一般性规律。研究发现,异硫氰酸根为辅助配体时,高氯酸根诱导聚集的三联吡啶铂(II)自组装产物具有能量最低且最稳定的MMLCT吸收/发射光谱,而溴为辅助配体时,自组装产物的MMLCT发生强度最高。因此,结合反阴离子调控,获得了具有良好水溶性的三联吡啶铂(II)配合物高氯酸盐比色-荧光双模可视化探针,实现了对高氯酸盐的高灵敏、高特异、快速、双模可视化传感。在此基础上,该团队提出了利用水凝胶反应介质与探针之间的耦合效应对传感材料发光信号局域增强的提升策略。通过将该铂(II)配合物探针与具有均一网络结构的PVA水凝胶耦合,利用自组装生成的微米级一维纤维状聚集体与水凝胶网络的相互作用,实现了对发光产物的完全锚定,实现了对0.75 μm(0.73 fg)高氯酸盐单颗粒的比色-荧光双模传感信号的直接观测,对空气中高氯酸盐悬浮微粒的检测限低至0.02 fg。该研究提出的辅助配体精细调控提升自组装阴离子探针双模可视化传感性能的策略,不仅可为具有特异双模光学响应信号的阴离子探针设计提供指导,还发展了基于单颗粒响应信号直接观测的超灵敏嗅觉传感方法,可为其他超痕量难挥发化学物质传感提供借鉴。此外,爆炸物传感检测团队以该研究为核心,与新疆公安厅共同发布自治区地方标准1项(DB 65/T 4451-2021《氯酸盐和高氯酸盐的检测目视化学比色法》),为相关行业提供了高氯酸盐检验鉴定操作规范。系列研究成果分别发表在《Journal of Materials Chemistry A》(杂志封底)和《Sensors and Actuators B: Chemical》上,博士研究生苏珍为第一作者,导师窦新存研究员和李毓姝副研究员为共同通讯作者,相关理论计算部分与太原科技大学李坤教授合作完成。研究工作得到国家自然科学基金委、中国科学院及自治区相关项目的资助。论文链接:https://pubs.rsc.org/en/content/articlelanding/2022/ta/d2ta00843bhttps://www.sciencedirect.com/science/article/pii/S0925400521002975封底链接:https://pubs.rsc.org/en/content/articlelanding/2022/ta/d2ta90087d
  • 水中污染物高氯酸盐的测定方法-安捷伦科技和瑞士万通公司合作建立之最先进方法
    安捷伦科技(Agilent NYSE:A)和瑞士万通公司(Metrohm AG)今天公布了一种更为灵敏的测定方法,用于检测地表水和饮用水中高氯酸盐的含量。高氯酸盐,一种火箭燃料,是普遍、潜在的有害污染物,会破坏甲状腺功能。 美国环保署(EPA)已经制定了水中高氯酸盐含量1ppb的初期公共健康目标(PHG)。安捷伦&万通所建立的新方法,可以测定饮用水和地表水中低达100ppt的高氯酸盐,为法规制定机构和分析实验室提供了一种可靠的,且便于测定接近或超过PHG水平的供给水。 根据EPA公布,目前已经确认美国至少有20个洲释放高氯酸盐。据加利福尼亚洲健康服务部门报告,仅在加利福尼亚已经有超过340处水源检测出含有高氯酸盐。安捷伦科技化学分析解决方案小组负责人Mike McMullen认为:“安捷伦/瑞士万通的方法为法规制定机构和实验室定性定量的测定高氯酸盐,并确定潜在健康威胁的来源,提供一个有力的工具。该方法简单、可靠,且无需昂贵或复杂的仪器。安捷伦和瑞士万通公司的领先技术相结合,满足了用户对于低检测限的要求。” 该方法采用离子色谱和质谱(IC/MS)连用,即将瑞士万通万思得离子色谱技术(Advanced MIC)和安捷伦 1100系列质谱选择检测器结合起来,是一种理想的环境分析方法。这个应用的开发是两家公司市场合作协议的组成部分。 新方法相对于传统采用离子色谱-电导检测器测定高氯酸盐的方法,具有几个优势。最经常的方法最低只能测定饮用水中1~5ppb的高氯酸盐,且样品越复杂,测定的灵敏度越低。样品中其他离子的干扰会引起偏正或偏负的错误结果。另外,在测定复杂基体样品,如河水或废水时,重现性很差。 “通过采用相对简单的参数和稳定的仪器,该方法可以有效地减少离子的干扰,并消除了采用其他方法所引起的许多灵敏度和重现性问题。” 瑞士万通公司副总裁Helwig Schaefer认为,“这明显说明IC/MS连用,应用于高氯酸盐测定,以及其他环境问题的可行性和灵活性。” 更详细的信息可以查询安捷伦已经公布的应用报告5989-0816EN “The Analysis of Perchlorate by ion Chromatography/Mass Spectrometry”。可以向任何安捷伦的中国办事机构或登陆www.agilent.com/environmental免费索取该应用简报。也可以通过瑞士万通公司网站查看并下载转载的该简报 www.metrohm.com 。 关于瑞士万通集团公司 总部设在瑞士Herisau的万通集团公司,有遍布世界各国的分公司及代理商竭诚为你提供最适用于化学离子分析界中所有领域的分析仪器以及最完善的服务。详细信息可以浏览网站中文www.metrohm.com.cn, 英文www.metrohm.com 关于安捷伦科技有限公司 安捷伦科技有限公司(NYSE:A)是全球通信、电子、生命科学和化学分析领域的技术领导者。公司有28,000雇员遍布全世界110个国家。安捷伦科技2003年财政净收入达61亿美元。关于安捷伦公司的信息可以浏览网站www.agilent.com。
  • 宁夏化学分析测试协会立项《枸杞中氯酸盐和高氯酸盐的测定 液相色谱-质谱/质谱法》等2项团体标准
    各会员及相关单位:宁夏化学分析测试协会经研究审核,决定对宁夏农产品质量标准与检测技术研究所申报的《枸杞中氯酸盐和高氯酸盐的测定 液相色谱-质谱/质谱法》和《酿酒葡萄及葡萄酒中氯酸盐和高氯酸盐的测定液相色谱-质谱/质谱法》2项团体标准批准立项,现予以公示。欢迎与该团体标准有关的科研、生产单位加入该标准的编制工作,有意者请与协会秘书处联系。联系人:张小飞电话: 13995098931地址:宁夏银川市金凤区新田商务中心413室邮箱:1904691657@qq.com 宁夏化学分析测试协会2023年6月13日2023团标立项公示6.13.pdf
  • 宁夏化学分析测试协会发布《酿酒葡萄及葡萄酒中氯酸盐和高氯酸盐的测定 液相色谱-质谱/质谱法》团体标准征求意见稿
    各相关单位:按照宁夏化学分析测试协会团体标准工作程序,标准起草组已完成《酿酒葡萄及葡萄酒中氯酸盐和高氯酸盐的测定 液相色谱-质谱/质谱法》团体标准征求意见稿的编制工作。现按照我协会《团体标准制修订程序》要求,公开征求意见。请有关单位及专家提出宝贵意见,并将征求意见表(附件)于2024年3月23日前反馈给秘书处。联系人:张小飞 电 话:13995098931邮箱:1904691657@qq.com 宁夏化学分析测试协会2024年2月23日关于团标征求意见函 -2.23.pdf团标表格7-专家意见表.doc文本-酿酒葡萄及葡萄酒中氯酸盐和高氯酸盐的测定.pdf
  • 宁夏化学分析测试协会批准发布《枸杞中氯酸盐和高氯酸盐 的测定 液相色谱-质谱/质谱法》团体标准
    各有关单位:根据国家《团体标准管理规定》和《宁夏化学分析测试协会团体标准管理办法》,我协会对《枸杞中氯酸盐和高氯酸盐的测定 液相色谱-质谱/质谱法》团体标准进行了评审,已经通过了专家审查,现予以发布,自2023年11月15日起正式实施,特此公告。 宁夏化学分析测试协会2023年11月1日2023协会团体标准公告-11.1.pdf枸杞中氯酸盐和高氯酸盐的测定 液相色谱-质谱_质谱法.pdf
  • 浙江省分析测试协会发布《水中高氯酸盐的测定 离子色谱-质谱/质谱法》浙江测试团体标准
    根据国家标准化管理委员会、民政部《团体标准管理规定》和《浙江省分析测试协会“浙江测试”团体标准管理办法》的相关规定,《水中高氯酸盐的测定 离子色谱-质谱/质谱法》(标准编号:T/ZJATA 0023-2024)浙江测试团体标准经本协会批准,自2024年7月1日起实施。 特此公告。浙江省分析测试-协会关于发布《水中高氯酸盐的测定 离子色谱-质谱质谱法》标准的公告.pdf
  • 湖南省市场监督管理局征求地方标准《水质 高氯酸盐的测定 离子色谱法》(征求意见稿)等6项地方标准意见
    各有关单位:根据《湖南省市场监督管理局关于下达地方标准制修订项目计划的通知》的相关要求,由龙山县土家姑娘文化发展有限公司等单位制定的《土家族非遗乐器咚咚喹通用技术要求》等6项湖南省地方标准已完成征求意见稿。按照《地方标准管理办法》的规定,现面向社会公开征求意见,请有关单位讨论并填写《征求意见反馈表》。请于2023年10月6日前将意见反馈至相应标准起草单位。感谢您的参与和支持。相关标准基本信息见下表,标准征求意见稿见附件。征求意见地方标准清单序号标准名称起草单位联系人联系电话电子邮箱联系地址1《土家族非遗乐器咚咚喹通用技术要求》龙山县土家姑娘文化发展有限公司田剑英13574342016569184384@qq.com湖南省龙山县惹巴拉景区(苗儿滩镇捞车村一组66号)土家姑娘田剑英惹巴拉景区工作室2《重要信息系统具体范围和识别指南》中共湖南省委网络安全和信息化委员会办公室刘兰芳15999662185 llf@jdicsp.org湖南省长沙市岳麓区麓云路100号兴工国际产业园10栋5023《装配式混凝土结构钢筋错位连接技术规程》中国建筑第五工程局有限公司姚延化18570696662549558192@qq.com长沙市雨花区井圭路80号信和苑一区中建五局工程创新研究院4《工业废水高氯酸盐污染物排放标准》湖南省环境保护科学研究院周霜152749229431292848259@qq.com长沙市雨花区井湾子路889号5《水质 高氯酸盐的测定 离子色谱法》湖南省生态环境监测中心朱瑞瑞158025555821175579121@qq.com长沙市雨花区万家丽中路三段118号6《竹纤维复合波纹管材技术规范》湖南协成管业科技有限公司曹立伟155756558583447728925@qq.com湖南省郴州市苏仙区五里牌工业园附件:1.《土家族非遗乐器咚咚喹通用技术要求》(征求意见资料3)2.《重要信息系统具体范围和识别指南》征求意见稿-提交市监局3.《装配式混凝土结构钢筋错位连接技术规程》4.《工业废水高氯酸盐污染物排放标准》5.《水质 高氯酸盐的测定 离子色谱法》6.《竹纤维复合波纹管》湖南省市场监督管理局标准化处2023年9月6日
  • 赛默飞发布环境水样中碘,硫氰酸和高氯酸的检测方案
    2015年7月,北京——赛默飞发布环境水样中碘,硫氰酸和高氯酸的检测方案。高氯酸盐是能被人体吸收并且危害到人的身体的一种化合物,会导致饮用水和环境水的污染。硫氰酸盐属于有毒有害物质,过量摄入硫氰酸盐,可引起急性毒性。碘是人体所必需的一种微量元素,甲状腺组织合成甲状腺激素需要适量的碘作为原料,甲状腺激素在各个器官系统的代谢、生长和发育成熟中起着重要的作用。检查水体中的高氯酸盐,硫氰酸盐和碘离子,可以有效监控各种离子的比例,判断有毒有害物质对于自然环境的影响,从而减少环境对人类的危害。ICS-5000+高压离子色谱系统本检测方法采用二维毛细管离子色谱法,同时测定环境水中的碘离子、硫氰酸盐和高氯酸盐,为离子色谱的测定建立了新的方法。使一些在高含量基质中的痕量离子能实现测定,而无需衍生或萃取小柱去除杂质,保证了痕量离子的回收率,采用毛细管离子色谱进行测定,提高了痕量离子的灵敏度,成功实现了高基体样品中痕量离子的检测,可应用于食品、药品、生物等各个领域的检测。下载应用纪要请点击:www.thermoscientific.cn/content/dam/tfs/Country%20Specific%20Assets/zh-ch/CMD/Chrom/environment/documents/ion-chrom-testing-iodine-thiocyanate-perchlorate-in-water-sample.pdf-------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数约3700名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站www.thermofisher.cn
  • 百灵达ChlordioX Plus亚氯酸盐检测仪已获得美国EPA饮用水中测二氧化氯和亚氯酸盐方法的认证
    使用一次性安培电流传感器的新方法已经被EPA全面的审核通过,这种方法也是二氧化氯消毒剂检测方法的一个重大突破。ChlordioX PlusTM亚氯酸盐检测仪是唯一真正检测水中亚氯酸盐的便携式方法,同时这种简单并连续的检测方法设计的初衷也是为了加速在各领域监测二氧化氯的分析过程。它的姐妹产品ChlordioXenseTM二氧化氯检测仪也用了同样的方法,所以也包括在联邦的修正法案里面(Vol 179,No 118,pg 35084,section 3)。 ChlordioX PlusTM 亚氯酸盐检测仪方法的成功认证扩充了百灵达传感器技术的范围,传感器技术目前包括:ChlordioX PlusTM亚氯酸盐检测仪(监测二氧化氯和亚氯酸盐)、ChloroSense?余氯检测仪(监测游离余氯、总余氯)和SA1100重金属扫描分析仪(监测铅和铜)。所以,目前百灵达所有传感器技术都已经囊括在EPA认证的方法内。
  • 百灵达亚氯酸盐传感仪助力北京朝阳区农村供水改造工程
    近期,北京市朝阳区水务局向英国百灵达购买了五套ChlordioXense亚氯酸盐传感仪,用于在农村供水改造过程中。 为了农村供水安全,采用二氧化氯消毒的水厂需要准确监控和了解二氧化氯余量和副产物亚氯酸盐的浓度。百灵达亚氯酸盐传感仪可以精确快速地在现场检测出水中二氧化氯和亚氯酸盐的浓度值。近一百年来,百灵达一直在消毒剂的检测领域走在世界最前列,该产品也是百灵达在近两年推出的新型专利技术,它采用了最新的电化学法传感器技术,较传统方法更为精确可靠,操作也非常方便,测量不会受到余氯、水温、浊色度的干扰。 朝阳区农村供水改造项目是国内最早开展,并且开展进度最好的项目之一。保障该项目的成功运行不仅有利于保障首都人民的饮水安全问题,也为全国其它地区的农村供水改造工作提供学习模板。朝阳区水务局是在经过广泛比较、充份调研后选择百灵达亚氯酸盐传感仪的。与传统的检测方法比较,百灵达ChlordioXense亚氯酸盐传感仪有三大优势。第一,最低检出限可达到0.02mg/l,满足生活饮用水卫生标准的要求。第二,检测不受余氯、浊色度、等待时间等因素的干扰,检测工作无需任何专业技能。第三,最高可测到50mg/l,解决了药剂投加点现场无法准确测量二氧化氯和亚氯酸盐浓度的问题。 朝阳区水务局的工作人员通过前期的了解以及采购后的使用过程感受到,百灵达亚氯酸盐传感仪测量准确、重复性好、操作方便。
  • 江苏省城镇供水排水协会批准发布《次氯酸钠 溴酸盐 、氯酸盐的测定 离子色谱法》团体标准
    各会员单位、相关单位:根据《江苏省城镇供水排水协会团体标准管理办法》、《江苏省城镇供水排水协会团体标准制修定工作细则》的有关规定,经我会审定,现批准发布团体标准《次氯酸钠 溴酸盐 氯酸盐的测定 离子色谱法》,标准编号为T/JSWA 006-2023,自2023年4月10日起实施。本标准由江苏省城镇供水排水协会提出并归口,江苏省城镇供水排水协会标准化委员会组织制定,由昆山市供排水水质检测中心有限公司、昆山市疾病预防控制中心、江苏中法水务股份有限公司、江苏长江水务股份有限公司、泰州市水务有限公司、常州通用自来水有限公司共同参与起草。特此公告。江苏省城镇供水排水协会2023年4月10日
  • 岛津参加第十八届全国离子色谱学术报告会暨第六届离子色谱专家组成员大会
    第十八届全国离子色谱学术报告会暨第六届离子色谱专家组成员大会于2023年5月26-29日在海南大学国际学术交流中心酒店隆重召开。150多位国内外著名专家、学者,就离子色谱及相关技术领域的新成就、新进展进行了学术交流并展开了专题讨论。海南大学副校长曹宪忠、中国仪器仪表学会分析仪器分会荣誉副理事长刘长宽、浙江大学朱岩教授为本次大会致开幕辞。海南大学副校长曹宪忠中国仪器仪表学会分析仪器分会荣誉副理事长刘长宽浙江大学朱岩教授岛津发表【大会主题报告】中岛津企业管理(中国)有限公司王鑫先生做了题目为《不同应用场景下岛津针对性IC应对方案》的报告。离子色谱是高效液相色谱的一个重要分支,主要用于阴、阳离子的分析测定。广泛应用于环境、医疗、水质、生物制药等诸多领域。伴随离子色谱使用需求提升,使用范围拓展,在实际应用过程中产生较多分析难点。王老师在报告中介绍了离子色谱在不同领域应用场景下,通过常规IC、IC-MS/MS联用、IC-ICP-MS联用、二维离子色谱法、离子色谱-柱后衍生法等多种应用技术手段及典型分析案例,并提出岛津针对性分析解决方案。【大会主题报告和换届选举会议】中岛津企业管理(中国)有限公司石丹姝女士做了题目为《IC-MS/MS法测定饮用水中高氯酸盐、溴酸盐含量》的报告。溴酸根(BrO3-)是饮用水经臭氧消毒产生的一类副产物。研究表明当饮用水中 BrO3-的质量浓度大于0.05 μg/L时对人体有潜在的致癌作用。高氯酸盐(ClO4-)是环境中的主要无机污染物之一,随饮用水进入人体,对人体甲状腺的分泌有较大的影响,会导致成人新陈代谢功能紊乱、影响胎儿和婴儿神经中枢的正常生长和发育,因此,有必要建立可靠的分析方法,开展饮用水中高氯酸盐、溴酸盐的监测。目前高氯酸盐、溴酸盐的测定方法检测方法主要有比色法、离子色谱法、液相色谱柱后衍生法、液相色谱串联质谱法和离子色谱串联质谱法等。但目前液相色谱法的检出限不理想;离子色谱法的局限在于对测定的目标物只能依靠保留时间定性,且高含量的其他共存离子干扰测定结果;离子色谱-串联质谱法是近年来一种较为理想的检测方法。石老师在报告中介绍了采用岛津离子色谱仪HIC-ESP串联LCMS-8060NX特色系统建立的饮用水中高氯酸盐、溴酸盐含量测定的方法,本方法灵敏度高、重现性好,可用于饮用水中高氯酸盐、溴酸盐的快速检测。岛津展台本文内容非商业广告,仅供专业人士参考。
  • 阔别五年再聚首!第十八届全国离子色谱学术报告会暨第六届离子色谱专家组成员大会盛大开幕!
    仪器信息网讯5月27日,由中国仪器仪表学会分析仪器分会主办、海南大学分析测试中心承办、海南省高等学校实验室工作委员会协办的“第十八届全国离子色谱学术报告会暨第六届离子色谱专家组成员大会在海南省海口市成功召开。本次会议邀请了众多著名专家作专题报告,并开展了离子色谱及相关技术领域的新成就、新进展的学术交流和专题讨论。本次会议进一步促进我国离子色谱技术的快速发展,展示了我国在该领域取得的成绩以及增进同行间的学术交流。会议现场本次大会为期3天(5月27日-29日),共邀请超过20位专家做大会报告并开设主题为离子色谱柱、离子色谱检测器、离子色谱抑制器和淋洗液发生器、离子色谱应用、离子色谱样品前处理的沙龙研讨会。本次会议与广大科研人员及行业人士分享前沿技术和研究成果,搭建交流研讨的互动平台。仪器信息网作为合作媒体对本次大会进行系列报道。大会开幕式上,海南大学副校长曹宪忠、中国仪器仪表学会分析仪器分会秘书长刘长宽、浙江大学朱岩教授分别为大会致开幕词。大会开幕式由中科谱研(北京)科技有限公司董事长梁丽娜主持。海南大学副校长曹宪忠致辞中国仪器仪表学会分析仪器分会荣誉副理事长刘长宽致辞浙江大学朱岩教授致辞中科谱研(北京)科技有限公司董事长梁丽娜主持开幕式后是大会报告环节,华东理工大学杨丙成教授、哈尔滨工业大学(深圳)陈白杨教授、瑞士万通李致伯经理、赛默飞世尔郑洪国经理、皖仪科技龚婷婷产品经理、武昌理工学院崔海容教授等重量级专家分享前沿成果。报告人:华东理工大学 杨丙成教授报告主题:新型电渗析器件的研制及其应用拓展电渗析器件是使溶液中离子在电场和离子交换膜共同作用下的定向迁移,常应用在淋洗液发生器和抑制器中。杨丙成基于双极膜的电致淋洗液发生器的研究,对双极膜KOH发生器进行构建,突破了阴离子膜、脱气原材料的限制,同时对双极膜发生器进行性能评价。基于此研究,杨丙成也开展了双极膜MSA发生器-阳离子分析、双模碳酸根发生器-阴离子分析、双模碳酸根发生器拓展-全自动溶解无机碳分析、双模KOH发生器拓展-酸碱滴定分析等相关研究。报告人:哈尔滨工业大学(深圳)陈白杨教授报告主题:基于离子色谱测试水中卤乙酸的近期研究进展和重难点分析卤乙酸(HAAs)是氯化消毒副产物中检出的一类难挥发的弱酸性卤代有机物。由于HAAs大多具有急慢性毒性以及细胞毒性等,所以有必要对生活饮用水中的HAAs含量进行定量检测。HAAs的常用的检测方法为GC和IC,但GC方法前处理方法复杂,化合物高温热分解、不充分进样、干扰物质的转化等都会对HAAs的测定带来误差。IC前处理无需衍生化,可直接进样分析,但会受常见阴离子干扰。基于此陈白杨提出新的解决方法:液液双萃取技术,液液萃取后取出萃取液放入纯水中再次富集,氮吹除溶剂后进行离子色谱测定 。经过液液双萃取后,多种干扰离子去除,目标离子富集,待测离子的分离度和响应值都有显著较高。报告人:瑞士万通 李致伯经理报告主题:气态样品分析技术及应用进展介绍离子色谱分析目前研究主要集中于液体样品,但气体样本的检测需求也值得关注。此次瑞士万通为大家带来了空气样品分析解决方案,推出新产品室内空气采样设备MARS 。MARS由旋转液膜气蚀器、蒸汽发生式气溶胶收集器、可调速蠕动泵、温度控制器、空气泵等模块构成,与离子色谱联用可解决空气中阴阳离子分析检测难题。此次瑞士万通还带来了气体吸收和离子色谱检测的一体化方案,即使用920气体吸收模块与离子色谱联用实现气体中待测组分的检测。920气体吸收模块中配备了多种英蓝样品前处理技术,如单标多点进样技术、英蓝预浓缩技术和英蓝基体消除技术。报告人:赛默飞世尔 郑洪国经理报告主题:赋能增效—高压高效离子色谱的典型应用进展常见的离子色谱柱粒径填料直径在8um左右,赛默飞推出了4um粒径色谱柱,具有更高的柱效,理论塔板数达到40000+。进一步达成高压高效离子色谱快速分析,在离子色谱检测中达到高灵敏 、高分辨率、高效快速。郑经理也对高压高效离子色谱在海水分析、水质阴离子、水质中阳离子、糖醇类化合物、水质中高氯酸盐等典型应用案例进行介绍。在高压对水质中高氯酸盐的分析中,为防止高压导致IC PEEK漏液,赛默飞也对IC PEEK改进,推出IC PEEK Viper产品。报告人:安徽皖仪科技股份有限公司 龚婷婷 产品经理报告主题:不忘初心使命 深耕核心科技——国产离子色谱技术研究及应用拓展1983年,中国研制成功第一台国产离子色谱仪的原理样机ZIC-1,开启了国产离子色谱发展序幕;2000年后,中国离子色谱发展进入蓬勃发展的阶段。皖仪科技在2008年首次推出双极膜离子色谱系统后开始研发分体式离子色谱仪,多年来也一直致力于国产离子色谱仪器的研发。在此次的报告中,龚经理也详细的介绍了皖仪科技最新的三台离子色谱仪器:IC6600系列多功能离子色谱仪、IC6200系列离子色谱仪和IC6300智能离子色谱仪。多种型号的仪器能应对潜在的挑战以及多种应用场景,提高了工作效率,扩展了工作能力、提升了色谱性能。报告人:武昌理工学院 崔海容教授报告主题:Introduction to ISO and Development of ISO/TC 183/WG 24 and ISO/TC 102/SC 2/SG 36 Standards国际标准的制定对离子色谱行业具有深刻影响,推行统一的国际标准以后,相当于引进先进的技术和成果,加快促进本国的离子色谱技术进步和产品开发,提高产品质量,增强市场竞争力。崔海容详细的介绍了由他主持的ISO/TC183/WG24《铜、铅、锌精矿中氟和氯的测定 离子色谱法》和ISO/TC102/SC2/SG36《铁矿石中氟和氯的测定 离子色谱法》两项国际标准的研究工作和最新进展。最后崔海容也呼吁行业内的研究人员,共同努力推动离子色谱国际标准的制定。部分参展商此外,本次会议还得到瑞士万通、赛默飞、皖仪科技、东曹生物、岛津、青岛睿谱、广州谱临晟、青岛普仁、青岛盛瀚、德合创睿等十余家相关设备、服务、耗材厂商的鼎力支持,并在会议期间展示了他们的最新技术及产品。
  • 湖南省生态环境厅办公室关于征集湖南省地方生态环境标准制定项目承担单位的通知
    各有关单位:为贯彻落实《中华人民共和国环境保护法》《中华人民共和国长江保护法》等有关要求,根据我省实际,现将湖南省地方生态环境标准制定项目承担单位征集工作有关事项通知如下:一、项目内容1.制定工业废水高氯酸盐污染物排放标准;2.制定水质高氯酸盐监测方法标准。二、申报条件 (一)申报单位应具有与申报项目相关的工作背景和技术能力,熟悉国家和我省生态环境保护法律、法规、政策和标准。(二)拟任项目负责人应为申报单位的在职人员,具有扎实专业知识、丰富实践经验和较强的组织协调能力。(三)申报单位应于2023年11月30日前完成标准文本编制,并为配套标准实施的执法检查要点制定提供技术支撑。(四)鼓励申报单位组建技术团队,一体化承担制定项目。三、申报材料报送要求申报单位认真填写申报材料(见附件),由申请单位、合作单位(如有)签署意见并盖章,于2023年6月20日前报送省生态环境厅,申报材料应同时报送纸质文件(一式三份)和电子文档。四、承担单位确定方式承担单位采用公开征集、自愿申报、资格初审和会议评审等方式确定。答辩时间初步定于2023年6月底,具体时间和地点另行通知。请申报单位提前准备10分钟的PPT演示材料。根据评审结果,若某项目所有申报单位均不能达到承担该项目的要求,该项目暂不启动。五、联系人及联系方式联系人:左莉娜地  址:长沙市万家丽中路3段118号邮  编:410014电  话:0731-85698179邮  箱:zln85698179@163.com  附件:湖南省地方标准制修订项目申请书                湖南省生态环境厅办公室              2023年6月7日
  • 全日程公布|第十八届全国离子色谱学术报告会暨第六届离子色谱专家组成员大会邀您参加!
    第十八届全国离子色谱学术报告会暨第六届离子色谱专家组成员大会定于2023 年5 月26 日-5 月29 日在海南省海口市召开。5月16日,会议主办方发布第十八届全国离子色谱学术报告会日程安排。第十八届全国离子色谱学术报告会日程安排日 期内 容主 持 人地 点5月26日9:00---17:30报到会务组一楼大厅12:00-13:00中餐二楼和衷餐厅分会场一、沙龙主题:离子色谱柱14:00-15:20离子色谱柱发展现状及未来趋势(各厂家)刘世江/法芸三楼和逊厅15:20-16:00新能源、半导体、生物制药等行业对离子色谱柱发展的新的要求刘世江/法芸16:30-17:30自由讨论:国内离子色谱柱厂家如何提高技术实力刘世江/法芸分会场二、沙龙主题:离子色谱检测器14:00-15:30安培检测器的历史、原理、结构特点以及使用和维护(华东理工大学 施超欧 教授)(报告+讨论)钟新林三楼和怡厅15:30-16:30有机质谱检测器(宁波市CDC,金米聪 研究员) (报告+讨论)钟新林16:30-17:30光谱、无机质谱、盐转换替代检测及其他新检测器(广州谱临晟科技有限公司 钟新林 技术总监)(报告+讨论)钟新林分会场三、沙龙主题:离子色谱抑制器和淋洗液发生器13:30-14:30抑制器的发展历程及最新进展(广东省CDC,钟志雄 主任技师)(报告+讨论)代文彬/杨丙成三楼和辩厅14:30-15:30淋洗液发生器的发展历程及最新进展(青岛睿谱分析仪器有限公司 王存进 应用开发总监)(报告+讨论)代文彬/杨丙成15:30-16:10抑制器和淋洗液发生器的特殊应用(青岛睿谱分析仪器有限公司 代文彬 总经理)(报告+讨论)代文彬/杨丙成16:25-16:55现场活动代文彬/杨丙成18:30-20:30晚餐三楼和谐厅5月27日8:30---9:00开幕式梁立娜三楼和谐厅海南省大型仪器协作共用平台领导致辞海南大学领导致辞第六届离子色谱专家组主任委员致辞中国仪器仪表学会分析仪器分会领导致辞大会报告9:00---9:25新型电渗析器件的研制及其应用拓展(华东理工大学,杨丙成教授)朱岩三楼和谐厅9:25---9:50基于离子色谱测试水中卤乙酸的近期研究进展和重难点分析(哈工大深圳研究院,陈白杨教授)9:50---10:15气态样品分析技术及应用进展介绍(瑞士万通, 李致伯经理)10:15---10:45休息10:45---11:10赋能增效—高压高效离子色谱的典型应用进展(赛默飞世尔,郑洪国经理)丁明玉三楼和谐厅11:10---11:35过程在线离子色谱仪的研发和系统集成(皖仪公司,龚婷婷 产品经理)11:35---12:00离子色谱新技术发展及应用革新(武昌理工学院,崔海容教授)12:00---13:00午餐大会主题报告13:00---13:20离子色谱测定氨基糖苷类抗生素案例分析及其在各国药典中的应用(河南省食品药品检验所,刘英主任药师)崔海容三楼和谐厅13:20---13:40阴离子交换色谱固定相的研制与应用(青岛睿谱,王存进)13:40---14:00基于石墨碳柱的全新离子色谱体系的构建(华东理工大学,施超欧教授)14:00---14:20不同应用场景下岛津针对性IC应对方案(岛津公司,王鑫)14:20---14:40燃烧炉离子色谱系统用于无机材料中卤素的检测研究(上海硅酸盐所,汪正研究员)杨丙成14:40---15:00离子色谱及形态分析联用(广州谱临晟,钟新林技术总监)15:00---15:20单柱阀切换法测高基体水样中的碘离子(浙江树人大学,叶明立教授)15:20---15:40二维离子色谱法测定厄贝沙坦中叠氮化物含量(青岛普仁,)15:40---16:00休息陈白杨16:00---16:20复杂基质样品的高温裂解与离子色谱联用技术(华东理工大学,栾绍嵘教授)16:10---16:30二维离子色谱在半导体行业的应用(青岛盛翰,王晓娇)16:20---16:40酸溶-离子色谱法测定钴酸锂样品中氟离子含量(中国地质大学,黄维雄教授)16:40---17:00科技论文规范表达(中国无机分析化学 执行主编 章连香正高级工程师)17:00---17:30合影一楼大厅18:30---20:30晚餐三楼和谐厅5月28日分会场一、沙龙主题:离子色谱应用8:30-9:20食品方向的应用进展和展望(国家食品质量安全检验检测中心 林立 仪器分析室主任)(报告+讨论)郑洪国/韩春霞三楼和怡厅9:20-10:10药品方向的应用进展和展望(河南省药品医疗器械检验院 刘英 副院长)(报告+讨论)郑洪国/韩春霞10:10-11:00科研方向(含锂电、新材料)的应用进展和展望(华东理工大学分析测试中心 栾绍嵘 党支部书记)(报告+讨论)郑洪国/韩春霞11:00-11:50半导体、高纯试剂方向的应用进展和展望(浙江大学化学系朱岩 教授/离子色谱专家组主任)(报告+讨论)郑洪国/韩春霞11:50-12:00小结分会场二、沙龙主题:离子色谱样品前处理8:30-9:05离子色谱样品前处理概述(清华大学 丁明玉 教授)李致伯/丁明玉三楼和辩厅9:05-9:40基于PILS气体采样技术的大气颗粒物在线监测设备研发与应用(陕西科技大学 陈庆彩 教授)(报告+讨论)李致伯/丁明玉9:40-10:15紫外消解在离子色谱样品前处理中的应用(广东石油化工学院分析测试中心 马玉刚 副主任)(报告+讨论)李致伯/丁明玉10:35-11:10燃烧法测定总有机氟过程中PFAS热解研究现状与机理解析(加州大学河滨分校 王军利 博士后)李致伯/丁明玉11:10-11:55瑞士万通英蓝样品前处理技术介绍(瑞士万通 毕致丽)李致伯/丁明玉12:00-13:00午餐大会主题报告和换届选举会议13:00---13:20微样品前处理方法及其在高分子聚合物中含卤化合物分析中的应用(浙江工业大学,黄忠平副教授)叶明立三楼和谐厅13:20---13:40离子色谱法在火灾烟气毒性评价中的应用研究(成都市CDC, 甘子琼副主任技师)13:40---14:00抗骨质疏松中药药效物质高通量筛选研究(浙江中医药研究院,王娜妮研究员)14:00---14:20微波辅助加热萃取离子色谱法测定结石中的阴离子(广东CDC,钟志雄主任技师)14:20---14:40Separating daily PM2.5 inorganic composition in China since 2000 via deep learning combined with ground, satellite, and model data(中国CDC环境所,陈曦研究员)14:40---14:55基于多孔石墨碳柱测定电合成微量尿素及其相关离子(华东理工大学,沈睿)法芸三楼和谐厅14:55---15:10毛细管电泳方法标准复建工作进展(北京理化分析测试中心,赵新颖教授)15:10---15:25IC-MS/MS法测定饮用水中高氯酸盐、溴酸盐含量(岛津公司,石丹姝)15:25---15:40冷凝收集-离子色谱法的研究及应用(浙江省台州市CDC,倪承珠主管技师)15:40---15:55盐酸二甲双胍缓释片原辅料中亚硝酸盐测定及其对制剂中遗传毒性杂质的影响(河南省食品药品检验所,王立萍副主任药师)15:55---16:05‘色谱’杂志介绍(‘色谱’杂志社,刘琳)16:05---16:15‘理化检验-化学分册‘杂志介绍(‘理化检验-化学分册’杂志社,许文倩)16:15---17:0换届选举三楼和谐厅18:30---20:30晚餐三楼和谐厅5月29日8:30---12:00赴海南大学分析测试中心交流、研讨(第六、七届离子色谱专家组成员)午餐14:00---会议结束 会议报名方式:https://www.instrument.com.cn/news/20230511/664456.shtml2023年5月26-29日第十八届离子色谱会议具体日程安排.xls
  • 赛默飞 Dionex Inuvion离子色谱新品首次亮相第十八届全国离子色谱学术报告会
    由中国仪器仪表学会分析仪器分会主办、海南大学分析测试中心承办、海南省高等学校实验室工作委员会和海南省大型仪器协作共用平台共同协办的“第十八届全国离子色谱学术报告会暨第六届离子色谱专家组成员大会于2023 年5 月26 日-5 月29 日在海南省海口市召开。会议邀请多位国内外著名专家,精彩呈现了离子色谱及相关技术领域多个方向的专题报告,并开展新成就、新进展的学术交流和专题讨论。在本次大会上,赛默飞全球首发最新款Dionex Inuvion离子色谱系统,使离子分析比以往任何时候都更简单、更直观,能够满足分析测试实验室复杂需求,涵盖所有离子色谱常规检测。 中国制造 中国质量 中国速度万众期待之下,赛默飞Dionex Inuvion离子色谱系统终能揭开其神秘面纱,通过提升性能及用户体验,配置清晰,满足升级需求最终助力客户解决分析难题。Dionex Inuvion离子色谱系统将在中国生产制造,传承中国质量,以中国速度为客户提供优质服务。作为离子色谱界的先行者,赛默飞离子色谱的传奇仍在续写。此次新品发布也将为中国离子色谱的发展增添浓墨重彩的一抹亮色。 此次新品揭幕仪式也有幸邀请到中国仪器仪表学会分析仪器分会荣誉副理事刘长宽及中国仪器仪表学会分析仪器分会离子色谱专家组主任委员朱岩致辞,两位专家表达了对于赛默飞离子色谱长久以来的认可与支持,并对新品发布充满期待及祝福,同时也希望在赛默飞不断突破、寻求创新的推动下,促进离子色谱行业整体更进一步。△ 中国仪器仪表学会分析仪器分会荣誉副理事长刘长宽△ 中国仪器仪表学会分析仪器分会离子色谱专家组主任委员朱岩赛默飞色谱与质谱业务全球离子色谱/样品前处理产线 高级市场总监Katariina Majamaa专程出席本次全球首发仪式并致辞,赛默飞在中国进行大量投入用于研发及生产制造,离子色谱广州工厂产线全线扩能,为了更好地服务中国客户乃至全球客户,最新款Dionex Inuvion离子色谱系统在中国制造、中国质量的加持下,势必成为离子分析的理想选择。 Dionex Inuvion离子色谱系统优势简洁、直观的用户体验&bull 功能驱动的智能设计&bull 自动启动和关机程序&bull 内置操作视频 超可靠性能&bull 先进高性能泵技术和电解技术&bull 快速、灵活、方便的电解抑制&bull 免试剂离子色谱(RFIC&trade ) 易于配置和升级&bull 灵活应变的多功能平台&bull 多种选配件和外围设备扩展了离子色谱功能 第十八届全国离子色谱学术报告会成功举办 赛默飞亮点一:《赋能增效—高压高效离子色谱的典型应用进展》报告指出:高样品通量,高灵敏度,高准确度是实验室高效率的重要挑战因素。赛默飞成功将聚合物离子交换树脂填料粒径从常见的8-13um优化至4um,让离子色谱的色谱峰理论踏板数从几千提升至70000+,让离子色谱在简单进样基础上即可完成ppt至%级浓度范围的定量分析。赛默飞也提供了配套的高压淋洗液发生罐、高压连续再生捕获柱,高压脱气盒,完美应对了小粒径色谱柱的高系统压力难题;独家创新式peek材质viper连接管路,让零死体积、手拧管路连接成为现实。卓越应用范围:如环境水质乃至海水中阴阳离子的直接进样分析,稀释操作及潜在的操作误差。同时,赛默飞提供全方位的谱睿在线样品前处理方案,实现食品,环境,乃至高难度的半导体,高纯试剂的分析糖醇类化合物、痕量高氯酸盐等典型应用。这些应用中,通过高压离子色谱将分析时间从常见的半小时缩短至7分钟,并消除了繁琐操作,实现样品到结果的全自动仪器分析。 赛默飞亮点二:离子色谱应用沙龙赛默飞组织邀约了长期耕耘在食品,制药,科研和半导体行业的专家一起进行离子色谱迄今的成熟应用分享、对疑难样品分析方案的讨论、对各领域中离子色谱未来应用项目的展望。华东理工大学分析测试中心栾绍嵘老师反馈,赛默飞谱睿技术所用的在线前处理柱,不仅去除样品基质彻底;还能通过再生循环使用,降低长期使用成本;自动化的样品净化方式,消除了操作误差,简化了实验操作,让测定数据更加准确可靠。通过本次大会,离子色谱及相关技术领域的学术热情被推上一个新的高度,赛默飞将以 Dionex Inuvion 离子色谱系统全球首发为契机,以 “中国质量”为引领,通过“中国制造”,实现离子色谱及相关技术领域的“中国速度”,为行业发展提供飞凡力量。扫码留言您与赛默飞离子色谱的故事,将有机会获得限量款新品Inuvion冰箱贴
  • 1023万!北京食品检验所试剂及耗材采购大单曝光 多项拒绝进口
    5月29日,北京市食品安全监控和风险评估中心(北京市食品检验所)公布2019年第一批食品安全抽检监测试剂耗材采购项目,共包含9包817类化学试剂、实验和仪器耗材、生物培养基等品类的采购需求,这其中包含色谱柱34类(13类拒接进口)、前处理柱26类(16类拒绝进口)、163类实验和仪器耗材(48类拒绝进口)。本次招标文件发售的时间为即日起至2019年6月5日16:30(双休日及法定节假日除外),投标截至时间和开标时间为2019年6月19日09:00。详情汇总如下:项目名称:2019年第一批食品安全抽检监测试剂耗材采购项目化学试剂和助剂采购项目项目编号:SJHC-JY-201901-JH001-XM001采购单位联系方式:采购单位:北京市食品安全监控和风险评估中心(北京市食品检验所)地址:北京市海淀区丰德东路17号联系方式:孙婷,010-82479315代理机构联系方式:代理机构:中经国际招标集团有限公司代理机构联系人:王晓庆,010-68372937代理机构地址:中经国际招标集团有限公司,北京市东城区滨河路1号,航天信息大楼10层招标十五部需求详情:第一包化学试剂序号名称数量单位是否可以采购进口产品1弗罗里硅土3瓶是2氢氧化钡(八水)1瓶是3蔗糖酶(麦芽糖酶)(酵母)5瓶是4QuEChERS盐包1盒是5QuEChERS分散试剂盒4盒是6邻苯二甲醛(OPA)5瓶是7脂肪酶4盒是8分析纯甲醇100箱否9分析纯乙腈80箱否10甲醇10箱是11乙腈10箱是12分析纯乙酸乙酯40箱否13分析纯正丁醇2箱否14石油醚120箱否15分析纯无水乙醇10箱否16分析纯正己烷40箱否17分析纯丙酮2箱否18分析纯二氯甲烷5箱否19无水乙醚70箱否20色谱级甲醇100箱是21色谱级乙腈80箱是22色谱级无水乙醇2箱是23色谱级环己烷5箱是24色谱级正己烷10箱是25色谱级丙酮2箱是26色谱级甲苯2箱是27色谱级异丙醇1箱是28色谱级乙酸乙酯4箱是29色谱级二氯甲烷4箱是30α-淀粉酶10瓶否31乙酸锌5瓶否32亚铁氰化钾60瓶否33抗坏血酸VC20瓶否34氯化钠40瓶否35无水碳酸钠10瓶否36无水硫酸钠25箱否37硫酸锌5瓶否38碘化钾30瓶否39丁酮3瓶否40溴化钠2瓶否41溴化钾1瓶否42双氧水1瓶否43硫酸5瓶否44七氟丁酰基咪唑10瓶否4514%三氟化硼-甲醇溶液1瓶否46磷酸5瓶否47冰乙酸20瓶否48甲酸10瓶否49盐酸10瓶否50硝酸2瓶否51色谱纯乙酸铵5瓶否52柠檬酸5瓶否53β-葡糖醛苷酶20瓶否54甲酸铵5瓶否55氢氧化钾6箱否56盐酸二苯胺1瓶否57氯乙酰10瓶否58三甲基氯硅烷2瓶否59六甲基二硅胺烷1瓶否604-二甲基氨基吡啶1瓶否611-蒽腈1瓶否62二巯基乙醇10瓶是63四氢呋喃2箱是64乙酰辅酶A60瓶是65胆碱氧化酶20瓶是66过氧化物酶20瓶是67α淀粉酶10瓶是68葡萄糖苷酶10瓶是69乙醇酸1瓶是70碘1瓶否71苯酚3瓶否72硝酸银10瓶否73磺胺1瓶否74对氨基苯磺酸2瓶否75N-(1-萘基)乙二胺二盐酸盐3瓶否76异丙醇12箱否77三氯甲烷20箱否78冰醋酸20箱否79二甲苯2箱否80二水合乙酸锌3箱否81海砂1箱否82四硼酸钠50袋否83混合磷酸盐50袋否84邻苯二甲酸氢钾50袋否85磷酸氢二钠5瓶否86磷酸二氢钾5瓶否8795%乙醇10箱否88无水乙醇10箱否89硫代硫酸钠5瓶否90酒石酸10瓶否91环己烷1箱否92丙酮1箱否93甲酸1箱否94高氯酸1箱否95甲醛1箱否96盐酸10箱否97三水合乙酸铅3瓶否98α-萘酚苯基甲醇1瓶是99氢氧化钾1箱否100铬酸钾1箱否101乙酸丁酯2瓶否102浓硫酸10箱否103氢氧化钠15箱否104乙酸镁2瓶否105H酸一钠盐2瓶否第二包实验用气体序号名称数量单位是否可以采购进口产品1高纯氩气1200瓶否2高纯氮气200瓶否3高纯氧气30瓶否4高纯氦气130瓶否5高纯氦气212瓶否6高纯乙炔4瓶否7高纯氢气5瓶否8氩甲烷2瓶否9液氮5000升否10二氧化碳2瓶否11合成空气5瓶否第三包标准物质序号名称数量单位是否可以采购进口产品1安赛蜜5支否24-氨基间甲酚1支否3灭瘟素1支否4角黄素(斑蝥黄)2支否5甜蜜素5支否6乙基麦芽酚1支否7PABA乙基己酯1支否8格列波脲1支否96-羟基吲哚1支否10微囊藻毒素LR1支否11苯乙双胍1支否12水苏糖1支否13维生素A酸1支否14三氯甲烷(氯仿)1支否15三甲胺盐酸盐1支否16佐匹克隆1支否17脱羟基洛伐他丁1支否18洛伐他汀羟酸钠盐1支否19盐酸二氧丙嗪1支否202-氨基苯酚(邻氨基苯酚)1支是213-氨基苯酚(间氨基苯酚)1支是22L-阿拉伯糖1支是23盐酸金霉素1支是24甜蜜素1支是252.4-滴2支是262-硝基-1.4-苯二胺1支是273.4-二氨基甲苯1支是282.5-二氨基甲苯硫酸盐1支是292.4-二溴苯酚1支是30二氯乙酸(二氯醋酸)1支是311.1-二氯乙烷1支是32N.N-二乙基对苯二胺硫酸盐1支是33直接红281支是34盐酸强力霉素1支是35敌磺钠(敌克松)1支是36氟苯虫酰胺1支是37正庚烷1支是38氢醌1支是39隐性孔雀石绿1支是40孔雀石绿草酸盐1支是41D(+)甘露糖1支是421-萘酚1支是431.4-苯二胺(对苯二胺)1支是44邻苯二甲酸二烯丙酯1支是45间苯二酚1支是46盐酸四环素1支是47D(+)海藻糖1支是48三氯乙酸2支是49D(+)-木糖1支是502.6-二氨基吡啶1支是51N,N-二乙基甲苯-2,5-二胺1支是52缩水甘油(环氧丙醇)1支是53邻苯二胺1支是541.3-苯二胺(间苯二胺)1支是55PCB1981支是56盐酸芬氟拉明1支是57氟虫腈(非泼罗尼、锐劲特)1支是58氟甲腈1支是59氟虫腈硫化物(氟虫腈硫醚)1支是60氟虫腈砜1支是61奶粉9种元素基质标准物质2支是62左旋肉碱-D31支是63美金刚-d6盐酸盐1支是64芦丁2瓶否65甲磺酸酚妥拉明1瓶否66达那唑1瓶否67盐酸妥拉唑林1瓶否68盐酸特拉唑嗪1瓶否69富马酸福莫特罗1瓶否70美雄诺龙1瓶否71替勃龙1瓶否72十一酸甘油三酯1瓶否73棕榈酸缩水甘油酯1瓶是74酒石酸氢胆碱1瓶是754-氨基丁酸1瓶是76利血平1瓶否77盐酸可乐定1瓶否78香草醛/香兰素1瓶否79盐酸吡哆醇/维生素B61瓶否80阿替洛尔1瓶否81维生素D21瓶否82盐酸哌唑嗪1瓶否83尼莫地平1瓶否84格列喹酮2瓶否85格列吡嗪1瓶否86氢氯噻嗪1瓶否87盐酸吗啉胍1瓶否88盐酸文拉法辛1瓶否89尼索地平1瓶否90尼群地平1瓶否91洛伐他汀1瓶否92辛伐他汀1瓶否93那格列奈1瓶否94咪喹莫特1瓶否95盐酸吡格列酮2瓶否96盐酸二甲双胍2瓶否97格列美脲2瓶否98非洛地平1瓶否99瑞格列奈2瓶否100醋氯芬酸1瓶否101伏格列波糖1瓶否102盐酸苯乙双胍2瓶否103盐酸金刚乙胺1瓶否104大黄素1瓶否105大黄酚1瓶否106番泻苷A1瓶否107番泻苷B1瓶否108乙基香兰素1瓶否109阿昔洛韦1瓶否110呋虫胺1瓶是111甲苯磺丁脲1瓶是112(± )-α-生育酚1瓶是113青藤碱1瓶否114盐酸丁双胍2瓶否115美金刚1瓶否116维生素A(视黄醇)1瓶是117格列齐特1瓶否118阿昔洛韦-D41瓶是119藜芦醛/甲基香兰素1瓶是120氨氯地平1瓶否121醋磺己脲1瓶是1224-(氨甲基)环己甲酸1瓶是123盐酸苯氟雷司1瓶是124氯磺丙脲1瓶是125氯美扎酮1瓶是126格列苯脲2瓶是127对羟基苯甲酸乙酯1瓶是128褪黑素1瓶是129奥司他韦1瓶是130卡托普利1瓶是131维生素D3(胆骨化醇)1瓶是1321,3-二油酸-2-棕榈酸甘油三酯1瓶是133格列齐特1瓶是134格列吡嗪1瓶是135食用合成色素苋菜红标液3瓶否136食用合成色素亮蓝标液3瓶否137劳拉西泮1瓶是138美伐他汀1瓶是139妥拉磺脲1瓶是140硝苯地平1瓶是141硝西泮1瓶是142奥沙西泮1瓶是143盐酸吡哆醛1瓶是144吡哆胺二盐酸盐1瓶是145邻苯二甲酸二异壬酯1瓶是146罗格列酮1瓶是14716组分邻苯二甲酸酯混标1瓶是148磺胺间二甲氧基嘧啶-D61瓶是149磺胺邻二甲氧基嘧啶-D31瓶是150三唑仑溶液1瓶是151雷纳克铵盐一水合物1瓶是152灭瘟素S盐酸盐1瓶否1532,4-二氨基苯氧乙醇硫酸盐1瓶否154己二酸二乙酯1瓶是1552-羟基-4-甲氧基二苯甲酮2瓶是156D-(-)-核糖1瓶是157十四烷基二甲基苄基氯化铵水合物1瓶是158盐酸去甲乌头碱1瓶是159十六烷基苄基二甲基氯化铵水合物1瓶是160十二烷基二甲基苄基氯化铵二水合物1瓶是161阿托品1瓶是1625-胞苷酸1瓶是163二乙氨基羟苯甲酰基苯甲酸己酯1瓶是1642,3,5-混杀威1瓶是165盐酸妥布特罗1瓶是166维生素E醋酸酯1瓶是167二苯酮-32瓶是168乳铁蛋白1瓶是1692,3-二溴丙酰胺1瓶是170乙酸甲酯6瓶是171巯基乙酸1瓶是172盐酸奈比洛尔1瓶是173异麦芽酮糖水合物1瓶是174拉贝洛尔盐酸盐1瓶是175异维A酸1瓶是176九种ICP-MS混标2瓶是177亚油酸甘油三酯1瓶是178铬同位素标液1瓶是179五氯酚1瓶是180氯酸钠1支是181高氯酸钠1支是182氯酸盐-18O31支是183高氯酸盐-18O41支是1844-壬基酚1支是185双酚A1支是186双酚A-d41支是1873,5,3-壬基酚-13C61支是188对硫磷3支否189甲胺磷3支否190硫线磷3支否191特丁硫磷2支否192溴氰菊酯2支否193甲拌磷3支否194福美双2支否195灭线磷2支否196甲基毒死蜱2支否197马拉硫磷3支否198乙烯利2支否199苯醚甲环唑2支否200敌敌畏2支否201百菌清1支否202丙溴磷2支否203甲拌磷砜2支否204乙拌磷2支否205氧化乐果2支否206久效磷2支否207毒死蜱3支否208杀扑磷2支否209硫环磷2支否210倍硫磷2支否211甲基嘧啶磷2支否2123-氯-1,2-丙二醇3-MCPD1支是2132-氯-1,3-丙二醇2-MCPD1支是214D5-3-氯-1,2-丙二醇1支是215D5-2-氯-1,3-丙二醇1支是2162-氯-1,3-丙二醇二硬脂酸酯1支是217D5-2-氯-1,3-丙二醇二硬脂酸酯1支是2181,3-二氯-2-丙醇1,3-DCP1支是2192,3-二氯-1-丙醇2,3-DCP1支是220D5-1,3-二氯-2-丙醇1支是221D5-2,3-二氯-1-丙醇1支是222视黄醇2支是223α-生育酚2支是224β-生育酚2支是225δ-生育酚2支是226γ-生育酚2支是227维生素D22支是228维生素D32支是229维生素K13支是230β-胡萝卜素1支是231免疫球蛋白IgG1支是232盐酸吡哆醇1支是233盐酸吡哆醛1支是234双盐酸吡哆胺1支是235柠檬黄3支否236新红1支是237苋菜红3支否238胭脂红3支否239日落黄3支否240亮蓝3支否241赤藓红1支是242酸性红1支是243诱惑红1支是244靛蓝1支是245甲醛2支否246曲酸1支是247噻二唑1支是248苄青霉素1支是249苯咪青霉素1支是250甲氧苯青霉素1支是251苯氧乙基青霉素1支是252醋酸氟氢可的松1支是25316种多环芳烃混标1支是254三氯杀螨醇1支否255七氯1支否256艾氏剂1支否257狄氏剂1支否258草甘膦2支是259草甘膦同位素2支是260甜蜜素20支否2613-氨基-2-恶唑酮1支是2625-吗啉甲基-3-氨基-2-恶唑烷基酮1支是2631-氨基-乙内酰脲1支是264氨基脲1支是2653-氨基-2-恶唑酮的内标物(D4-AOZ)3支是2665-吗啉甲基-3-氨基-2-恶唑烷基酮的内标物(D5-AMOZ)3支是2671-氨基-乙内酰脲的内标物(13C-AHD)2支是268氨基脲的内标物(13C15N-SEM)2支是269丙烯酰胺1支是270丙烯酰胺内标(13C3丙烯酰胺)1支是271脱氢乙酸2支是272纽甜1支是2734-甲基咪唑1支是274涕灭威3支否275涕灭威砜3支否276涕灭威亚砜3支否277克百威8支否278三羟基克百威8支否279速灭威2支否280灭多威7支否281甲萘威3支否282异丙威2支否283仲丁威2支否284残杀威2支否285多菌灵7支否286吡虫啉7支否287啶虫脒7支否288烯酰吗啉7支否289氯唑磷3支否290邻苯二甲酸二异壬酯DINP1支是29116种邻苯二甲酸酯混标1支是292叶黄素2支是293阿维菌素2支否294氟甲腈1支否295内吸磷1支否296辛硫磷1支否297甲氨基阿维菌素苯甲酸盐1支否298哒螨灵1支否299噻虫啉1支否300霜霉威2支否301吡唑醚菌酯2支否302噁唑菌酮1支否303乙霉威1支否304嘧菌酯1支否305啶酰菌胺1支否306氟吡甲禾灵1支否307氟吡氯禾灵1支是308茚虫威1支否309氯吡脲1支否310戊唑醇1支否311多效唑1支否312天然辣椒素1支是313合成辣椒素1支是314二氢辣椒素1支是315α-硫丹1支否316β-硫丹1支否317硫丹硫酸盐1支否318顺-氯丹1支否319反-氯丹1支否320氧氯丹1支否3211,3-二油酸-2-棕榈酸甘油三酯1支是322BHA1支是323BHT1支是324TBHQ1支是325PG1支是326牛磺酸1支是327碘化钾1支是328三唑醇1支否329戊菌唑1支否330苯霜灵1支否331苯酰菌胺2支否332杀虫双1支否333甲霜灵1支否334嘧霉胺1支否335喹硫磷1支否336啶氧菌酯1支否337噻螨酮1支否338乙酰甲胺磷1支否339甲拌磷亚砜1支否340氟胺氰菊酯1支否341三氯乙酸1支否342氯氟氰菊酯(三氟氯氰菊酯)1支否343氯氰菊酯1支否344氟氰戊菊酯1支否345联苯菊酯1支否346邻苯基苯酚1支是347甲基异柳磷1支否348乐果1支否349甲基硫环磷1支否350甲氰菊酯1支否351腺嘌呤核苷酸(AMP)1支是352尿嘧啶核苷酸(UMP)1支是353次黄嘌呤核苷酸(IMP)1支是354三氯甲烷2支否355四氯化碳2支否356六号溶剂3支否357抗蚜威1支否358谷硫磷1支否359敌百虫1支否360三唑酮1支否361甲基立枯磷1支否362丁草胺1支否363氟酰胺1支否3648种有机氯混标1支否36537种脂肪酸甲酯3支是366月桂酸甘油三酯1支是367肉豆蔻酸甘油三酯1支是368a-亚麻酸甘油三酯1支是369花生四烯酸甘油三酯1支是370二十碳五烯酸甘油三酯1支是371二十二碳六烯酸甘油三酯1支是372反-9-十八碳一烯酸甲酯1支是373反,反-9,12-十八碳二烯酸甲酯1支是374氯霉素-D51支是375氟苯尼考胺1支是376左旋咪唑1支是377沙丁胺醇-D31支是378克伦特罗-D91支是379莱克多巴胺-D31支是380特布他林1支是381恩诺沙星-D51支是382诺氟沙星-D51支是383环丙沙星-D81支是384氯丙嗪-D61支是385氯丙嗪1支是386地塞米松-D41支是387地西泮1支是3883-甲基喹噁啉-2-羧酸1支是389氟甲喹1支是390喹噁啉-2-羧酸-D41支是391恩诺沙星1支是392环丙沙星1支是393土霉素2支是394丁硫克百威1支否395磺胺1支是396磺胺二甲异嘧啶钠1支是397磺胺对甲氧嘧啶1支是398磺胺甲基异恶唑内标-13C61支是399磷酸三苯酯2瓶是400磷脂酰胆碱1瓶否401磷脂酰乙醇胺1瓶是402磷脂酰肌醇1瓶是403鞘磷脂1瓶是第四包色谱柱序号名称数量单位是否可以采购进口产品1阴离子色谱柱SH-AC-3(含保护柱SH-G-1)2套否2阴离子色谱柱SH-AC-4(含保护柱SH-G-1)2套否3阴离子色谱柱SH-AC-5(含保护柱SH-G-1)2套否4阴离子色谱柱SH-AC-9(含保护柱SH-G-1)2套否5阴离子色谱柱SH-AC-11(含保护柱SH-G-1)2套否6阴离子色谱柱SH-AC-14(含保护柱SH-G-1)2套否7阴离子色谱柱SH-AC-15(含保护柱SH-G-1)2套否8阴离子色谱柱SH-AC-16(含保护柱SH-G-1)2套否9阴离子色谱柱SH-AC-17(含保护柱SH-G-1)2套否10阴离子色谱柱SH-AC-18(含保护柱SH-G-1)2套否11阳离子色谱柱SH-CC-1(含保护柱SH-G-1)2套否12阳离子色谱柱SH-CC-3(含保护柱SH-G-1)2套否13阳离子色谱柱SH-CC-4(含保护柱SH-G-1)2套否14液相色谱色谱柱1支是15SB-C18色谱柱1支是16CORTECSC18色谱柱2支是17CORTECSC18色谱柱2支是18BEHAmide色谱柱1支是19CORTECSUPLCC182支是20CORTECSUPLCC18+2支是21CORTECSC18+2支是22XbridgeBEHC181支是23XbridgeC181支是24XbridgeC181支是25XbridgeC181支是26CORTECSC18色谱柱2支是27色谱柱(染发剂用)4支是28BEHC18色谱柱1根是29BEH-C18色谱柱2支是30BEH-C18色谱柱2支是31SunfireC18色谱柱2支是32CAPCELLPAKCR色谱柱2支是33CAPCELLPAKCR色谱柱2支是34HILIC柱ObeliscR2支是第五包前处理柱序号名称数量单位是否可以采购进口产品1C18前处理柱5盒否2RP前处理柱5盒否3H前处理柱5盒否4Na前处理柱5盒否5HCO3前处理柱5盒否6Ba前处理柱5盒否7Ag前处理柱5盒否8BondElut-Accucat10盒是9ChemElut硅藻土柱5包是10AccellPlusQMA固相萃取柱2盒是11PRIMEHLB固相萃取柱10盒是12CORTECSUPLCC18保护住2盒是13固相萃取柱150盒是14固相萃取柱75盒是15混合填料净化柱3盒是16黄曲霉毒素总量免疫亲和柱(B1、B2、G1、G2)10盒否17玉米赤霉烯酮免疫亲和柱12盒否18黄曲霉毒素M1免疫亲和柱75盒否19双酚A亲和柱,2盒否204合1瘦肉精亲和柱(克伦特罗、沙丁胺醇、特布他林、莱克多巴胺)2盒否2116合1磺胺亲和柱2盒否22维生素B12亲和柱2盒否23喹乙醇亲和柱2盒否24固相萃取柱20盒是25GEHealthcare,HiTrapTMHeparinHP柱50盒是26锌粉还原柱5支否第六包实验和仪器耗材序号名称数量单位是否可以采购进口产品1坩埚钳(圆钢镀铬)300mm12英寸5把否2苦味酸试纸2盒否3白头塑料洗瓶20个否4高压消解罐20套否5阴离子抑制器2个否6阳离子抑制器2个否7密封塞40个否8融样杯40个否9泵模块1个是10六通阀1个是11进样针1个是12定量环1个是13石英舟10套是14双铂网雾化器3个是15水基同心雾化器3个是16同心雾化器适配器3个是17高盐旋流雾室(水平/双观测)3个是18水基中心管3个是19高效去湿管2个是20催化管2个是21金汞齐管2个是22防污外壳1个是23自动进样器进样针2根是24汞齐化器2个是25催化管2个是26石墨炉清洁棉棒5包是27自动进样器进样针2根是28THGA石墨管5盒是29Cr元素灯1个是30Cd元素灯1个是31进样泵管5包是32内标泵管5包是33调谐优化液1瓶是34ICP中心管1根是35超级截取锥1个是36超锥固定螺钉2个是37pp样品瓶100包是38PP样品盖100包是39高盐雾化器2个是40镍采样锥2个是41镍截取锥2个是42雾化室废液套管,FPM1套是43PTFE接头,用于雾化器*气体管线1套是44带接头的样品管线,PTFE1套是45端盖气体管线的接头1套是46用于提取透镜的螺钉工具包1套是47用于omega透镜的螺钉工具包1套是48FPMO形圈,用于端盖1套是49螺钉和垫片工具包,用于反应池1套是50Omega透镜的螺钉和垫片工具包1套是51螺纹口锥形灭菌离心管(架装)5箱是52高透明聚丙烯锥形离心管5箱是53高透明聚丙烯锥形离心管10箱是54一次性使用医用丁腈检查手套80盒否55一次性使用医用丁腈检查手套60盒否56绿色芦荟乳胶手套50盒否57绿色芦荟乳胶手套50盒否58一次性使用医用橡胶检查手套50盒否59一次性使用医用橡胶检查手套50盒否60一次性使用医用橡胶检查手套50盒否61预纯化柱3根是62紫外灯4个是63纯水柱2根是64空气过滤器2个是65预处理柱2根是66ICP超纯化柱3根是67终端过滤器3个是68终端过滤器4个是69紫外灯2个是70进样瓶瓶盖2包是71在线过滤器卡套和替换筛板2套是72柱塞杆4套是73柱塞杆密封垫2套是74高性能单向阀阀芯2套是75I-CLASS二元溶剂管理器性能维护包2套是76I-ClassSM-FTN性能维护备件包2套是77柱塞杆2套是78柱塞杆密封垫3套是79智能型主动是阀阀芯2套是80ACQUITY进样阀芯2套是81ACQUITY针密封圈1套是82AcquityH-ClassSM-FTN性能维护备件包2套是83在线过滤器滤芯5袋是84低压电源2套是85真空泵油2套是86在线过滤器滤芯2套是87高性能脱气包1套是88电路板,在线脱气机控制1套是89在线脱气机真空泵1套是90自动进样器密封垫组件3套是91取样针组件1套是92泵头基座1套是93柱塞清洗密封垫基座1套是94过滤头(柱后衍生)10个是95Millipore超滤离心管5盒是96NORELL核磁管10盒是97QuEChERS整合管10盒否98活性炭口罩10包否99GL14牙螺纹20个否100分液漏斗20个否101螺纹拧盖离心管10包否102氘代甲醇5瓶是103氘代丙酮110瓶是104氘代丙酮25盒是105坩埚式耐酸玻璃滤器10盒是106口罩150盒是107口罩2100盒是108手套150盒是109手套250盒是110手套350盒是111强力高效擦拭布-白色10箱是112pH三复合电极10支否113瓶口分配器5个是114充电支架3个是115枪头110包是116枪头210包是117枪头310包是118密封垫6个是119培养瓶1包是120单口烧瓶15个否121鸡心瓶200个否122移液器16盒否123注射器1盒否124具塞三角瓶180个否125具塞比色管1300支否126具塞比色管2302支否127三角瓶聚碳酸酯16个是128蜂蜜色值专用比色皿50支否129具塞比色管3100支否130玻璃漏斗50支否131磨口锥形瓶50个是132玻璃层析柱10个否133分液漏斗10个否134改良链接层析柱10个否135鸡心瓶10个否136标口筒锥滴液漏斗5个否137圆底烧瓶10个否138分液漏斗1个否139具塞三角瓶2100个否140具塞三角瓶3100个否141鸡心瓶100个否142塑料漏斗100个否143塑料滴管5箱否144圆底摁盖离心管10包否145尖底螺纹拧盖离心管10包否146定性滤纸5箱否147称量纸14包否148塑料洗瓶20个是149容量瓶茶色150个否150容量瓶茶色250个否151刻度吸量管124根是152刻度吸量管224根是153刻度吸量管324根是154刻度吸量管424根是155刻度吸量管524根是156大肚移液管124根是157大肚移液管224根是158大肚移液管324根是159大肚移液管424根是160大肚移液管524根是161玻璃量筒10个是162滴定管6根是163磨口锥形瓶50个是第七包分型血清和生物试剂盒序号名称数量单位是否可以采购进口产品1YersiniaenterocoliticaantiserumO:31瓶是2YersiniaenterocoliticaantiserumO:51瓶是3YersiniaenterocoliticaantiserumO:81瓶是4YersiniaenterocoliticaantiserumO:91瓶是5肠炎弧菌检测用诊断血清(K型套装)1套是6肠炎弧菌检测用诊断血清O群套装1套是7弯曲菌诊断血清1套是8诺如病毒核酸(GⅠ/GⅡ)检测试剂盒(RT-PCR探针法)10盒否9维生素B12检测试剂盒110盒否10生物素检测试剂盒15盒否11叶酸检测试剂盒15盒否12泛酸检测试剂盒15盒否13黄曲霉毒素M1酶联免疫法试剂盒40盒是14黄曲霉毒素B1酶联免疫法试剂盒20盒是15黄曲霉毒素B1酶联免疫法试剂盒20盒是16黄曲霉毒素B1酶联免疫法灵敏检测试剂盒10盒是17泛酸检测试剂盒210盒是18叶酸检测试剂盒210盒是19维生素B12检测试剂盒210盒是20生物素检测试剂盒210盒是21B6检测试剂盒2盒是22烟酸检测试剂盒2盒是23肌醇检测试剂盒2盒是24金黄色葡萄球菌肠毒素总量5盒是25金黄色葡萄球菌肠毒素分型2盒是26无内毒素质粒小提中量试剂盒(DP118)5盒否27universalDNA纯化回收试剂盒5盒否28RNA纯化试剂盒5盒否29体外转录试剂盒3盒是30PCR产物纯化试剂盒3盒是31磁珠法DNA/RNA提取试剂盒2盒是32病毒DNA/RNA提取试剂盒2盒否33磁珠法病毒DNA/RNA提取试剂盒50盒否34酵母基因组DNA提取试剂盒5盒否第八包生物培养基序号名称数量单位是否可以采购进口产品1一次性培养皿400箱否2Baird-Parker琼脂平板3500盒否3缓冲蛋白胨水(BPW)300袋否4叶酸测定培养基150瓶否5生物素测定培养基100瓶否6维生素B12测定培养基100瓶否7泛酸测定培养基100瓶否8月桂基硫酸盐蛋白胨肉汤(LST)-单料150盒否9李氏菌增菌肉汤-LB2100盒否10亚硒酸盐胱氨酸增菌液(SC)100盒否11四硫磺酸盐煌绿增菌液(TTB)100盒否12生物素测试肉汤100瓶是13B12测试肉汤100瓶是14泛酸测试肉汤100瓶是15缓冲蛋白胨水培养基20桶是16平板计数琼脂100瓶是17牛心浸粉5瓶否第九包生物试剂耗材序号名称数量单位是否可以采购进口产品1萘啶酮酸(C2)20盒否2丫啶黄素(C2)20盒否3木糖b30盒否4鼠李糖30盒否5耐高温高压分注管10包是63M压力灭菌指示胶带30卷是7灭菌取样袋20箱是8一次性采样拭子10箱是9一次性防护服10箱否10滤膜30盒是11革兰氏染色质控玻片2盒是12革兰氏染色液2盒是13厌氧产气袋30盒是14厌氧指示剂2盒是15接种环50箱是16TRNzolUniversal总RNA提取试剂4瓶否17Pgm-simple-TFast克隆试剂盒-VT3084盒否18T-fast感受态细胞(CB109)15盒否19柠檬酸钠(无水)5瓶是20丙酮酸钠10瓶是21多粘菌素B4盒是22亚硫酸钠2瓶是23亚碲酸钾4瓶否24氯化锂4瓶是25几丁质(甲壳素)50瓶是26壳聚糖5瓶是27无水海藻糖1瓶否28氯化铵1瓶是29乙酸钠6瓶是30硫酸铵6瓶是31牛胆粉1瓶否32柠檬酸铁1瓶否33胆酸钠10瓶是34硫代硫酸钠(无水)10瓶是35PCR八联排管20箱是36PCR八联排盖荧光定量专用20箱是37PCR薄壁管10箱是38光学96孔板30盒是39PrimeScriptOneStepRT-PCRKit5盒是40碱性磷酸酶CIAP2盒是41XbaI限制性内切酶2盒是42吸头15箱是43吸头25箱是44吸头短白5箱是45离心管15箱是46带滤芯吸头150盒是47带滤芯吸头250盒是48带滤芯吸头350盒是49吸头33箱是50吸头43箱是51离心管220包是52深孔板(圆底)10箱是53吸头510盒是54吸头65盒是55研磨钢珠20瓶否56电动分样器吸头5盒是57自封袋10包否58灭菌自封袋10包否59离心管320盒否60离心管410盒是61离心管55盒是6296孔快速反应板,半裙边,带条码40盒是63荧光定量PCR96孔板50盒是64耗材研磨钢珠10瓶否65PBS10瓶否66透明平顶无裙边96孔PCR板5箱是67平盖八联管(含盖)5箱是68管MicroAmpFast8-TubeStrip5盒是69盖MicroAmpOptical8-CapStrip5盒是70VetMAXXenoDNA内部阳性对照2支是71CHARGESWITCHPROPCR2盒是72微孔板迷你离心机配件1件否73CONDITIONINGREAGENT3盒是74溶壁酶5支否具体招标需求详见招标文件
  • 生而卓然 日夜相承 | 赛默飞 Dionex Inuvion离子色谱新品首次亮相第十八届全国离子色谱学术报告会
    由中国仪器仪表学会分析仪器分会主办、海南大学分析测试中心承办、海南省高等学校实验室工作委员会和海南省大型仪器协作共用平台共同协办的“第十八届全国离子色谱学术报告会暨第六届离子色谱专家组成员大会于2023 年5 月26 日-5 月29 日在海南省海口市召开。会议邀请多位国内外著名专家,精彩呈现了离子色谱及相关技术领域多个方向的专题报告,并开展新成就、新进展的学术交流和专题讨论。在本次大会上,赛默飞全球首发最新款Dionex Inuvion离子色谱系统,使离子分析比以往任何时候都更简单、更直观,能够满足分析测试实验室复杂需求,涵盖所有离子色谱常规检测。中国制造 中国质量 中国速度万众期待之下,赛默飞Dionex Inuvion离子色谱系统终能揭开其神秘面纱,通过提升性能及用户体验,配置清晰,满足升级需求最终助力客户解决分析难题。Dionex Inuvion离子色谱系统将在中国生产制造,传承中国质量,以中国速度为客户提供优质服务。作为离子色谱界的先行者,赛默飞离子色谱的传奇仍在续写。此次新品发布也将为中国离子色谱的发展增添浓墨重彩的一抹亮色。此次新品揭幕仪式也有幸邀请到中国仪器仪表学会分析仪器分会荣誉副理事刘长宽及中国仪器仪表学会分析仪器分会离子色谱专家组主任委员朱岩致辞,两位专家表达了对于赛默飞离子色谱长久以来的认可与支持,并对新品发布充满期待及祝福,同时也希望在赛默飞不断突破、寻求创新的推动下,促进离子色谱行业整体更进一步。中国仪器仪表学会分析仪器分会荣誉副理事长刘长宽中国仪器仪表学会分析仪器分会离子色谱专家组主任委员朱岩赛默飞色谱与质谱业务全球离子色谱/样品前处理产线 高级市场总监Katariina Majamaa专程出席本次全球首发仪式并致辞,赛默飞在中国进行大量投入用于研发及生产制造,离子色谱广州工厂产线全线扩能,为了更好地服务中国客户乃至全球客户,最新款Dionex Inuvion离子色谱系统在中国制造、中国质量的加持下,势必成为离子分析的理想选择。Dionex Inuvion离子色谱系统优势简洁、直观的用户体验• 功能驱动的智能设计• 自动启动和关机程序• 内置操作视频超可靠性能• 先进高性能泵技术和电解技术• 快速、灵活、方便的电解抑制• 免试剂离子色谱(RFIC™)易于配置和升级• 灵活应变的多功能平台• 多种选配件和外围设备扩展了离子色谱功能第十八届全国离子色谱学术报告会成功举办赛默飞亮点一:《赋能增效—高压高效离子色谱的典型应用进展》 报告指出:高样品通量,高灵敏度,高准确度是实验室高效率的重要挑战因素。赛默飞成功将聚合物离子交换树脂填料粒径从常见的8-13um优化至4um,让离子色谱的色谱峰理论踏板数从几千提升至70000+,让离子色谱在简单进样基础上即可完成ppt至%级浓度范围的定量分析。赛默飞也提供了配套的高压淋洗液发生罐、高压连续再生捕获柱,高压脱气盒,完美应对了小粒径色谱柱的高系统压力难题;独家创新式peek材质viper连接管路,让零死体积、手拧管路连接成为现实。卓越应用范围:如环境水质乃至海水中阴阳离子的直接进样分析,稀释操作及潜在的操作误差。同时,赛默飞提供全方位的谱睿在线样品前处理方案,实现食品,环境,乃至高难度的半导体,高纯试剂的分析糖醇类化合物、痕量高氯酸盐等典型应用。这些应用中,通过高压离子色谱将分析时间从常见的半小时缩短至7分钟,并消除了繁琐操作,实现样品到结果的全自动仪器分析。赛默飞亮点二:离子色谱应用沙龙赛默飞组织邀约了长期耕耘在食品,制药,科研和半导体行业的专家一起进行离子色谱迄今的成熟应用分享、对疑难样品分析方案的讨论、对各领域中离子色谱未来应用项目的展望。华东理工大学分析测试中心栾绍嵘老师反馈,赛默飞谱睿技术所用的在线前处理柱,不仅去除样品基质彻底;还能通过再生循环使用,降低长期使用成本;自动化的样品净化方式,消除了操作误差,简化了实验操作,让测定数据更加准确可靠。通过本次大会,离子色谱及相关技术领域的学术热情被推上一个新的高度,赛默飞将以 Dionex Inuvion 离子色谱系统全球首发为契机,以 “中国质量”为引领,通过“中国制造”,实现离子色谱及相关技术领域的“中国速度”,为行业发展提供飞凡力量。
  • 蒸汽吸附分析仪在气溶胶吸湿性研究中的应用
    大气气溶胶是指悬浮在大气中的固体和液体颗粒共同组成的多相体系。人们所处的大气环境实际就是由不同相态的颗粒物均匀分散在空气中形成的一个气溶胶体系。常见的大气气溶胶包括直接排放至大气的沙尘、道路扬尘和黑炭等一次颗粒物,以及通过化学反应形成的二次颗粒物,例如二氧化硫和氮氧化物通过大气氧化形成的硫酸盐和硝酸盐等。由于大气气溶胶的环境、气候及健康效应,在过去几十年里,对它的理化性质的研究正日益受到包括化学家、环境学家等科学家等的重视。吸湿性是气溶胶最重要的物理化学性质之一(Tang et al., 2019a)。例如对于研究大气化学来说,吸湿性会影响实际环境条件下大气颗粒物的含水量,从而会影响颗粒物的大气化学反应活性;从大气能见度和直接辐射强迫的角度来看,在实际大气环境中,颗粒物吸水会导致其粒径增大,从而影响颗粒物的光学性质,继而影响气溶胶的消光系数、对能见度的影响以及对直接辐射强迫的影响;另外,气溶胶的吸湿性也与气溶胶颗粒物的云凝结核活性和冰核活性密切相关。1. 已有吸湿性测量技术的局限性现有研究中常用的吸湿性测量技术主要有吸湿性分级差分迁移率分析仪(H-TDMA)、电动力天平、显微镜以及红外光谱等(Tang et al., 2019a)。目前最常用的吸湿性测量技术为H-TDMA,该仪器是通过测定不同相对湿度下气溶胶的电迁移率直径来研究其吸湿性。使用该仪器对气溶胶的吸湿性进行表征时,必须假设气溶胶为球形,但某些颗粒物的形貌并不规则,例如花粉、烟炱以及矿质颗粒物等。另外,H-TDMA的测量精度较为有限,仅可测定颗粒物大于1%的直径变化。电动力天平是通过测量单个颗粒物的质量变化来研究其吸湿性,虽然它对颗粒物的形貌没有要求,但该仪器的灵敏度同样比较有限,一般只能测量大于1%的质量变化。此外,显微镜也常用于测量颗粒物的吸湿性,它可以通过测量颗粒物的形貌变化来直接观察颗粒物粒径的大小变化从而研究其吸湿性。然而该技术同样基于球形颗粒物的假设,且灵敏度有限。另外,红外光谱是一个非常灵敏的吸湿性测量方法,该方法通过测量颗粒物中水的红外光谱来研究吸湿性,但把颗粒物中水的红外吸收光谱定量转换为颗粒物的含水量时存在一定的限制。2. 蒸汽吸附分析仪虽然目前用于颗粒物吸湿性的测量手段较为丰富,但准确测定非球形的或者吸湿性较弱的颗粒物的吸湿性仍然是一个很大的挑战。本课题组自主开发和建立了使用蒸汽吸附分析仪测量大气颗粒物吸湿性的新方法,相关研究成果由Atmospheric Measurement Techniques发表(Gu et al., 2017a)。该方法通过测定不同相对湿度下颗粒物的质量变化来研究其吸湿性,其原理如图1所示。图1. 蒸汽吸附分析仪的装置示意图(Gu et al., 2017a)该仪器对颗粒物的形貌没有要求,且具有卓越的灵敏度,能够准确测定小于千分之一的质量变化;在温湿度控制方面性能突出,所能研究的相对湿度最高可达98%。由于上述卓越性能,这项测量技术非常适用于研究形貌不规则或吸湿性较弱的大气颗粒物(比如矿质颗粒物、烟炱和生物气溶胶等),目前已被成功用于研究花粉颗粒物(Chen et al., 2019 Tang et al., 2019b)、矿质颗粒物(Guo et al., 2019 Tang et al., 2019c Chen et al., 2020)、高氯酸盐(Gu et al., 2017b Jia et al., 2018)等的吸湿性,大幅度提高了我们对上述几类物质吸湿性的科学认识水平。下文将介绍蒸汽吸附分析仪的几个典型应用。2.1 花粉颗粒物花粉颗粒物是最重要的生物气溶胶之一,其年排放量为 47-84 Tg,对大气环境、人体健康和气候变化具有重要影响,同时也在植物繁衍和和生态系统演化中起着关键作用。吸湿性是花粉颗粒物最重要的理化性质之一,其会影响花粉颗粒物的质量与形貌,从而影响花粉在大气环境和呼吸道中的迁移和传输。由于花粉颗粒物的形貌不规则,且吸湿性较弱,因此先前已有的吸湿性测量技术较难准确测定花粉颗粒物的吸湿性,而我们的方法对颗粒物的形貌无要求且非常灵敏,所以非常适合用于研究花粉颗粒物的吸湿性。图2. 花粉颗粒物的产生、传输及其环境、气候及生态效应在我们已经发表的两项工作中(Chen et al., 2019 Tang et al., 2019b),我们研究了25和37摄氏度下共17种国内外代表性花粉(12种风媒、5种虫媒)的吸湿性。我们发现这些花粉颗粒具有相对较强的吸湿性。例如,当相对湿度从0%升高至90%时,花粉颗粒物的质量增加了30%-50%,当相对湿度达到95%时,花粉颗粒物的质量基本接近于干燥条件下的2倍,如图3所示。另外就目前已有的数据(包括本研究和前人的研究)来看,风媒花粉和虫媒花粉的吸湿性似乎没有系统差异,而中国常见花粉与欧洲/北美常见花粉的吸湿性也非常相似。此外,两个温度下(25和37摄氏度)花粉颗粒物吸湿性的差异比较小。本研究对于深入认识花粉颗粒物的环境行为具有重要意义,尤其是37摄氏度下的实验结果,为模拟花粉颗粒物在呼吸系统内的传输和沉降以及评估其对人体健康的影响提供了关键基础数据。图3. (a)松树花粉与(b)梨树花粉分别在25和37摄氏度下的吸湿性2.2 矿质颗粒物由干旱和半干旱地区地表排放进入大气的矿质气溶胶是一种非常常见的大气颗粒物,其年排放量居于全球第二位,大气含量则居于全球第一位。图4展示了一次典型的沙尘暴事件。矿质气溶胶作为对流层中最重要的气溶胶之一,显著影响全球大气污染、气候变化以及生物地球化学循环。吸湿性在很大程度上决定了矿质气溶胶对大气化学和气候的影响。我们使用蒸汽吸附分析仪测量了21种矿质气溶胶的质量随相对湿度(0-90%)的变化,从而定量阐明矿质气溶胶的吸湿性(Chen et al., 2020)。这21种矿质气溶胶包括14种常见矿物(如石英、长石、石灰石和伊利石等)以及7种来自全球不同地区的实际沙尘。图4. 一次典型的沙尘暴事件我们发现矿质气溶胶的吸湿性普遍较弱,如图5所示。除了蒙脱石以外,当相对湿度从0%增加至90%时,矿质气溶胶的质量增加了不到10%,表明绝大部分的矿质气溶胶的吸湿性较低。另外,我们发现矿质气溶胶的吸湿性与其比表面积密切相关,这表明矿质气溶胶的吸湿性可能是由水在颗粒物表面的吸附所决定的。例如对于蒙脱石,其比表面积较大,吸湿性也远远强于其他矿质气溶胶。上述研究结果可显著提高矿质气溶胶吸湿性的科学认识,从而有助于更好地阐明矿质气溶胶在大气化学和气候变化中的作用。图5. 矿物样品的吸湿性与(a)BET比表面积的关系以及(b)粒径的关系2.3 盐尘暴颗粒物最近几年的外场观测表明,矿质颗粒物,尤其是从干盐湖和盐碱地表面排放进入大气的矿质颗粒物,除了吸湿性很弱的矿物之外,往往还含有一定量的水溶性盐(如氯化钠和硫酸钠等)。这类矿质颗粒物常被俗称为盐尘暴颗粒物。然而,目前关于盐尘暴大气颗粒物吸湿性的科学认识还基本上处于空白阶段。在近几年发表的一项研究工作中(Tang et al., 2019c),我们在东起黄河三角洲,西至新疆罗布泊的干旱和半干旱盐碱地采集了13个地表土壤样品,采样点的地理分布如图6所示。我们使用X射线衍射仪测定了这些样品的矿物组分,使用离子色谱仪分析了它们的水溶性离子成分,并使用蒸汽吸附分析仪研究了这些样品的吸湿性。图6. 土壤样品采样点的地理分布研究发现,不同样品的吸湿性存在着很大的差异,如图7所示。对于某些盐尘暴样品,其吸湿性较弱,当相对湿度升高至90%时,其质量仅增加了10%左右,然而对于某些盐尘暴样品,当相对湿度升高至90%时,其质量已增加至干燥状态下的5倍,这基本接近于氯化钠或硫酸钠的吸湿性。随后我们又探讨了颗粒物的吸湿性与其水溶性离子含量的关系。我们发现当水溶性离子的含量越高,颗粒物的吸湿性越强。此外,我们还将颗粒物水溶性离子含量的数据输入至气溶胶热力学模型(ISORROPIA-II)中来计算颗粒物的吸湿性,结果表明该热力学模型并不能很好的模拟实际盐尘暴样品的吸湿性。以上研究结果将改变我们对于矿质颗粒物吸湿性的科学认识,进而帮助我们更好地了解矿质颗粒物在大气化学和气候系统中的作用。图7. (a)新疆自治区吐鲁番市艾丁湖表层盐土与(b)内蒙古杭锦后旗盐碱土样品的吸湿性2.4 蒸汽吸附分析仪与其他表征仪器的联用由于蒸汽吸附分析仪仅可得到颗粒物随相对湿度的质量变化,因此我们通常还会将蒸汽吸附分析仪与其他表征仪器进行联用,从而深入认识颗粒物的吸湿性。例如,在花粉颗粒物吸湿性的研究工作中(Tang et al., 2019b),除蒸汽吸附分析仪以外,我们还使用了透射傅立叶变换红外光谱仪测定样品的红外吸收,以获得花粉颗粒物的化学成分的信息。测量结果表明,花粉颗粒物的吸湿性在很大程度上决定于颗粒物中羟基的相对含量。这一研究结果揭示了花粉颗粒物的化学成分与吸湿性的关系,进一步增强了我们对花粉颗粒物的环境、健康和气候效应的认识。在代表性钙盐镁盐颗粒物吸湿性的研究工作中,我们使用蒸汽吸附分析仪与H-TDMA系统分析了八种钙盐镁盐的吸湿特性,直接得到了颗粒物在不同相对湿度(0-90%)下的液态水含量及粒径变化数据,并讨论了不同初始相态对颗粒物吸湿性的影响以及环境意义。以Ca(NO3)2为例,其在蒸汽吸附分析仪实验中观察到明显的潮解行为,表明初始相态下该颗粒物为结晶态;而在H-TDMA实验中,Ca(NO3)2气溶胶颗粒呈现连续吸湿行为,表明其初始相态为无定形态。但是,颗粒物潮解之后两种手段得到的吸湿性参数均与气溶胶热力学模型模拟值吻合,呈现出良好的一致性。结果表明,两种手段的联用能够互为补充地系统研究颗粒物在不同粒径、不同初始相态下的吸湿特性,并为气溶胶热力学模型的验证提供有效的基础物化数据。2.5 火星上的液态水我们开发的大气颗粒物吸湿性的新方法还可以用来帮助我们认识火星中的液态水。2018年,来自意大利宇航局的团队通过雷达在火星南极附近冰层的地下发现了一个液态水湖。一般来说,由于火星环境条件极度寒冷和干燥,纯净液态水很难在火星环境中稳定存在。而土壤中存在的高氯酸盐可以降低水的冰点,并可在亚饱和条件下通过吸收水蒸气形成水溶液,这可以解释为什么火星这种极度干旱的条件下可能存在液态水。目前一些研究认为,火星土壤中所含的高氯酸盐能够在相对湿度远低于100%时通过吸收大气中的水蒸气发生潮解从而形成稳定的溶液,但关于不同温度和相对湿度下高氯酸盐液态水含量的实验数据仍十分匮乏。图8. 火星液态水湖(来源于网络)我们使用蒸汽吸附分析仪测定了几种常见的高氯酸盐(无水高氯酸镁、六水合高氯酸镁、无水高氯酸钠、一水合高氯酸钠等)在不同温度下的相变和吸湿性 (Gu et al., 2017b Jia et al., 2018)。我们发现,高氯酸盐可在较低的相对湿度下吸水形成稳定的水溶液。如图9所示,对于高氯酸钠盐,在相对湿度低于20%时,其主要以无水高氯酸钠颗粒物稳定存在;当相对湿度升高至30%时,则主要以结晶态的一水合高氯酸钠稳定存在;当相对湿度进一步升高时,结晶态的一水合高氯酸钠将吸收大量水形成稳定的高氯酸钠溶液。另外,我们还发现高氯酸盐的潮解点会随着温度的升高而降低。例如一水合高氯酸钠的潮解点从5摄氏度时的∼51.5%降至30摄氏度时的∼43.5%。这项研究工作大大加深了我们对不同条件下高氯酸盐在土壤中的吸湿性的认识,并在一定程度上揭示了为什么火星上可能存在液态水背后的物理化学机制。图9 (a)高氯酸镁盐与(b)高氯酸纳盐随温度和相对湿度变化的相态图参考文献【1】Chen, L. X. D., Chen, Y. Z., Chen, L. L., Gu, W. J., Peng, C., Luo, S. X., Song, W., Wang, Z., and Tang, M. J.: Hygroscopic properties of eleven pollen species in China, ACS Earth Space Chem., 3, 2678-2683, 2019.【2】Chen, L. X. D., Peng, C., Gu, W. J., Fu, H. J., Jian, X., Zhang, H. H., Zhang, G. H., Zhu, J. X., Wang, X. M., and Tang, M. J.: On mineral dust aerosol hygroscopicity, Atmos. Chem. Phys., 20, 13611-13626, 2020.【3】Gu, W. J., Li, Y. J., Zhu, J. X., Jia, X. H., Lin, Q. H., Zhang, G. H., Ding, X., Song, W., Bi, X. H., Wang, X. M., and Tang, M. J.: Investigation of water adsorption and hygroscopicity of atmospherically relevant particles using a commercial vapor sorption analyzer, Atmos. Meas. Tech., 10, 3821-3832, 2017a.【4】Gu, W. J., Li, Y. J., Tang, M. J., Jia, X. H., Ding, X., Bi, X. H., and Wang, X. M.: Water uptake and hygroscopicity of perchlorates and implications for the existence of liquid water in some hyperarid environments, RSC Adv., 7, 46866-46873, 2017b.【5】Guo, L. Y., Gu, W. J., Peng, C., Wang, W. G., Li, Y. J., Zong, T. M., Tang, Y. J., Wu, Z. J., Lin, Q. H., Ge, M. F., Zhang, G. H., Hu, M., Bi, X. H., Wang, X. M., and Tang, M. J.: A comprehensive study of hygroscopic properties of calcium- and magnesium-containing salts: implication for hygroscopicity of mineral dust and sea salt aerosols, Atmos. Chem. Phys., 19, 2115-2133, 2019.【6】Jia, X. H., Gu, W. J., Li, Y. J., Cheng, P., Tang, Y. J., Guo, L. Y., Wang, X. M., and Tang, M. J.: Phase transitions and hygroscopic growth of Mg(ClO4)2, NaClO4, and NaClO4∙H2O: implications for the stability of aqueous water in hyperarid environments on Mars and on Earth, ACS Earth Space Chem., 2, 159-167, 2018.【7】Tang, M. J., Chan, C. K., Li, Y. J., Su, H., Ma, Q. X., Wu, Z. J., Zhang, G. H., Wang, Z., Ge, M. F., Hu, M., He, H., and Wang, X. M.: A review of experimental techniques for aerosol hygroscopicity studies, Atmos. Chem. Phys., 19, 12631-12686, 2019a.【8】Tang, M. J., Gu, W. J., Ma, Q. X., Li, Y. J., Zhong, C., Li, S., Yin, X., Huang, R. J., He, H., and Wang, X. M.: Water adsorption and hygroscopic growth of six anemophilous pollen species: the effect of temperature, Atmos. Chem. Phys., 19, 2247-2258, 2019b.【9】Tang, M. J., Zhang, H. H., Gu, W. J., Gao, J., Jian, X., Shi, G. L., Zhu, B. Q., Xie, L. H., Guo, L. Y., Gao, X. Y., Wang, Z., Zhang, G. H., and Wang, X. M.: Hygroscopic Properties of Saline Mineral Dust From Different Regions in China: Geographical Variations, Compositional Dependence, and Atmospheric Implications, J. Geophys. Res.-Atmos, 124, 10844-10857, 2019c.作者简介:唐明金,中国科学院广州地球化学研究所研究员,博士生导师。本科和硕士毕业于北京大学,博士毕业于马普化学研究所,并先后在英国剑桥大学和美国爱荷华大学从事博士后研究。主要研究方向为气溶胶化学及地球化学,已在Chemical Reviews、Atmospheric Chemistry and Physics和Journal of Geophysical Research-Atmospheres等国际知名期刊上发表SCI论文60余篇,并自2017年起担任国际SCI期刊Atmospheric Measurement Techniques副主编。曾获第18届侯德封矿物岩石地球化学青年科学家奖、第8届中国颗粒学会气溶胶青年科学家奖。
  • "凤凰"号火星探测新发现:火星土壤可能有害
    东方网8月6日消息:“凤凰”号火星探测器在火星上发现水和冰的消息令人惊喜,但目前它又传来不好的消息:在火星土壤样本中发现了一种对生命有害的物质。   据美国媒体8月5日报道,亚利桑那大学的首席科学家彼得史密斯4日发表声明指出:第一次实验结果显示火星土壤与地球类似,但是经过进一步的检验发现了火星土壤成分中与地球土壤不同的方面。“凤凰”号将火星土壤样本和地球水放在烧杯中搅拌,并通过24个烧杯内置传感器检测土壤的pH值,寻找各种矿物质的痕迹。第一次检测结果显示火星土壤呈弱碱性,含有生命必需的镁、钠和氯化钾等成分,但第二次检验就发现了高活性的高氯酸盐。   高氯酸盐是一种有毒化学物质,是火箭固体燃料的主要成分,烟花爆竹和其他爆炸物中也有它。目前,还不清楚火星上高氯酸盐的成因和含量。美国宇航局正在调查高氯酸盐是否是由凤凰 ”号着陆前的外来污染所致。“凤凰”号的动力系统燃料是联氨,而非高氯酸盐。   这次发现需要进一步证实,因为“凤凰”号的另一个仪器8月3日在对土壤样本进行烘烤试验时并没有发现高氯酸盐的踪影。   不过,美国布朗大学地质学家约翰马斯特德认为,在得到所有数据前,断言火星土壤能够支持生命存在还为时尚早。   “凤凰”号于今年5月25日登陆红色火星,已经成功地证实了火星北极冰的存在,现在它的主要任务是分析火星环境是否能够支持原始生命形成,美国宇航局已经将“凤凰”号3个月的任务延长了5周。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制