当前位置: 仪器信息网 > 行业主题 > >

二乙烯三胺五亚甲基膦酸钠

仪器信息网二乙烯三胺五亚甲基膦酸钠专题为您提供2024年最新二乙烯三胺五亚甲基膦酸钠价格报价、厂家品牌的相关信息, 包括二乙烯三胺五亚甲基膦酸钠参数、型号等,不管是国产,还是进口品牌的二乙烯三胺五亚甲基膦酸钠您都可以在这里找到。 除此之外,仪器信息网还免费为您整合二乙烯三胺五亚甲基膦酸钠相关的耗材配件、试剂标物,还有二乙烯三胺五亚甲基膦酸钠相关的最新资讯、资料,以及二乙烯三胺五亚甲基膦酸钠相关的解决方案。

二乙烯三胺五亚甲基膦酸钠相关的资讯

  • 千呼万唤始出来,测定N-二甲基亚硝胺的新标准终于上线啦!
    测定N-二甲基亚硝胺的新标准!本次标准更新,新增了QuEChERS法测定,Detelogy带你一起解读!亚硝酸盐广泛存在于食品之中,很容易与胺化合,生成亚硝胺。亚硝胺与苯并(α)芘、黄曲霉素是世界公认的三大强致癌物质。N-二甲基亚硝胺是N-亚硝胺类化合物的一种,食品中天然存在的N-亚硝胺类化合物含量极微,但其前体物质亚硝酸盐和胺类广泛存在于自然界中,在适宜的条件下可以形成N-亚硝胺类化合物。N-二甲基亚硝胺是国际公认的毒性较大的污染物,具有肝毒性和致癌性。N-二甲基亚硝胺在啤酒、肉制品及鱼类腌制品等食品和环境中广泛存在。肉制品加工过程中会使用亚硝酸盐添加剂,使其产生理想的粉红色,增加风味,且还具有抗氧化的效果。但是,亚硝酸盐在腌肉中可以转化为亚硝酸,极易反应生成致癌性物质:N-亚硝胺类化合物;水产品腌制过程中使用的粗盐通常含有硝酸盐、亚硝酸盐,加上微生物能将硝酸盐还原成亚硝酸盐,从而蓄积亚硝酸盐。在适宜的条件下,亚硝酸盐与胺类发生亚硝基化作用,最终生成N-二甲基亚硝胺。2023年9月25日,国家卫生健康委员会发布了85项食品安全国家标准和3项修改单(卫健委2023年第6号公告),其中就有GB 5009.26-2023《食品中N-亚硝胺类化合物的测定》。此次更新,大家的目光都聚焦在新增的第二法:QuEChERS-气相色谱-质谱/质谱法上,相比起其他实验方法,不仅精简了实验设备,在一定程度上也加快了实验的效率。下面一起来看看!实 验 步 骤 提 取 干制品称取5g于50mL离心管,加入5mL水,振荡混匀(鲜样品称取10g置于50 mL离心管中),加入N-二甲基亚硝胺内标中间液(1μg/mL)50μL,向其准确加入10mL乙腈,MultiVortex多样品涡旋混合器调节3000rpm,涡旋振荡2min后置于-20℃冰箱冷冻20min,取出后加入陶瓷研磨珠1粒以及4g硫酸镁和1g氯化钠,放入MGS-24高通量智能动植物研磨均质仪振荡2min,置于冷冻离心机中,转速9000r/min,10℃离心5min,上清液待净化。 净 化 称取150mgPLS-A粉末(或1g增强型脂质去除EMR-Lipid萃取粉剂或同级品)于15mL离心管中,加入5mL水于MultiVortex多样品涡旋混合器涡旋振荡,立即加入5mL待净化上清液涡旋振荡1min,置于冷冻离心机,9000r/min,10℃离心5min,待除水。 除 水 称取1.6g硫酸镁和0.4g氯化钠于另一15mL离心管,加入上述待除水净化液于MultiVortex多样品涡旋混合器涡旋振荡2min,置于冷冻离心机中,转速9000r/min,10℃离心5min。取上层有机相经0.22μm微孔滤膜过滤后。上机测定。“PreferenceDetelogy优选仪器
  • 解密“N-二甲基亚硝胺”,浅谈基因毒性杂质
    2018年中旬,长春长生的疫苗案还未彻底了结,缬沙坦原料药事件让N-二甲基亚硝胺(NDMA)又一次上了热搜。 时至今日,风波犹存,欧盟范围内对所有沙坦类药物进行审查。之后EMA通报,分别在印度药企Hetero Labs和Aurobindo Pharma生产的氯沙坦及厄贝沙坦原料药中,同样发现了含量极低的亚硝胺类化合物。美国FDA 仍在继续评估含缬沙坦的药物,并将获得的新信息持续更新「召回范围内的药物清单」和「不在召回范围内的药物清单」。 “治病”?“致病”!众所周知,药品是特殊的商品,它可以预防、治疗、诊断人的疾病。近年来,多种新药例如PD1/PD-L1免疫抑制剂的问世,让攻克癌症不再是梦想。 同时,药品的副作用及其安全性很大程度上决定其使用效果,有时不仅不能“治病”,还可能“致病”,甚至危及生命安全,所以药品生产商和监管部门对药品追溯和管理承担着不可或缺的责任。 揭开“基因毒性杂质”真面目NDMA是亚硝胺化合物的一种,而亚硝胺化合物、甲基磺酸酯、烷基-氧化偶氮等又均为常见的基因毒性杂质。基因毒性杂质(或遗传毒性杂质, Genotoxic Impurity, GTI)一般指能直接或间接损伤细胞DNA,产生致突变和致癌作用的物质,具有致癌可能或者倾向。 基因毒性杂质向来受到了严格的监控,2006年爆发甲磺酸奈非那非(维拉赛特锭)事件后,欧洲药品管理局( EMA)随即颁布了《基因毒性杂质限度指南》,人用药品注册技术要求国际协调会议(ICH)与美国食品与药品监督管理局( FDA)出台了相应的法规,中国国家食品药品监督管理总局也密切跟踪国际药品质量控制技术要求,不断完善现有药典收载技术指南,包括方法学验证、药品稳定性评价指导原则以及药品基因毒性杂质评价技术指南等。 药物合成、纯化和储存运输(与包装物接触)等过程中,多个环节均有产生或有可能产生基因毒性杂质。在工艺研究中采用“避免-控制-清除(ACP)”的策略能够最大限度减少基因毒性杂质对原料药物的影响,从而快速灵敏的监测分析手段变得尤为重要。 这时候,飞飞在此!今天赛默飞借助全新一代LC-QQQ技术,让我们一起助力“解密N-二甲基亚硝胺”。 赛默飞针对药品中基因毒性杂质液质检测解决方案 飞飞芳基磺酸酯类基因毒性解决方案Thermo Scientific™ 全新液相色谱三重四极杆质谱TSQ Fortis™ 平台建立了检测8种磺酸酯类的方法(苯磺酸酯类3个、对甲苯磺酸酯类3个、1,5-戊二醇单苯磺酸酯、 1,5-戊二醇二苯磺酸酯)。本方法灵敏度高、专属性强、稳定性好,可以满足各药企对此类基因毒性杂质的检测要求,可为基因毒性杂质风险监控提供有效的技术支持。结果如下:图1. 8种芳基磺酸酯提取离子流图(点击查看大图) 图2. 部分化合物标准曲线图(点击查看大图) 可以看出实验建立了三重四极杆液质联用仪(TSQ Fortis)分析8种芳基磺酸酯类的检测方法。实验结果表明,基于Thermo Scientific™ TSQ Fortis™ 建立的检测方法不仅具有优异的灵敏度和线性范围,同时具备良好的重现性。本方法可用于芳基磺酸酯类基因毒性化合物的日常分析检测。 飞飞N-亚硝基类基因毒性解决方案Thermo Scientific™ TSQ Fortis™ 针对基因毒性物质10个N-亚硝基化合物建立了稳定灵敏的分析方法。该方法在电喷雾离子化(ESI)条件下即可进行有效检测分析,试验结果优异,该方法稳定,快速,满足日常微量基因毒性物质N-亚硝胺类化合物的分析要求。图3. 10个N-亚硝基化合物的色谱图(5ng/mL)(点击查看大图) 图4. 部分化合物标准曲线图(点击查看大图) 从上图中可以看出建立的方法灵敏,快速和稳定性,色谱峰形良好,同时具备优异的重现性,可以满足药品中日常分析N-亚硝基类基因毒性杂质的检测要求。 飞飞总结语此次的应用案例就分享到这里了,不过难道只有这些?不!后续赛默飞更会带来应对基因毒性杂质的多平台解决方案,令“NDMA们” 无所遁形,敬请期待!扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯
  • 应用丨N-二甲基亚硝胺检测前处理解决方案
    亚硝酸盐在腌肉中转化为亚硝酸,极易生成致癌性物质:N-亚硝胺类化合物。在适宜的条件下,亚硝酸盐与胺类发生亚硝基化作用,最终生成N-二甲基亚硝胺。N-二甲基亚硝胺广泛存在于啤酒、肉制品及鱼类腌制品等食品和环境中,可溶于水、乙醇、乙醚、二氯甲烷,用于制造二甲基肼,是国际公认的毒性较大的污染物,具有肝毒性和致癌性。2023年9月25日,国家卫生健康委员会发布了85项食品安全国家标准和3项修改单(卫健委2023年第6号公告),其中就有GB5009.26-2023《食品中N-亚硝胺类化合物的测定》。此次增加QuEChERS-气相色谱-质谱/质谱法(第二法),QuEChERS方法相较于其他前处理方法操作更简单,更容易实现批量前处理,试剂使用量更少,更环保。 样品前处理步骤提取 干制品称取5g于50mL离心管(RC-50004M,50mL尖底) 加入5mL水,振荡混匀(鲜样品称取10g置于50mL离心管中) 加入N-二甲基亚硝胺内标中间液(1μg/mL)50μL,向其准确加入10mL乙腈 MTV3000多管涡旋混合仪2500rpm,涡旋振荡2min,置于-20℃冰箱冷冻20min 取出后加入1颗陶瓷均质子(RC-5003C)以及提取盐包(RC-50106M,内含4g硫酸镁和1g氯化钠) 置于V20垂直振荡器,1300rpm振荡2min 置于冷冻离心机中,转速9000r/min,10℃离心5min 上清液待净化净化 量取5mL水加入15mL净化管(RC-15164M含有150mgHLB-2粉末或RC-15165M,含有1gHolipid) 置于MTV 3000多管涡旋混合仪,2500rpm 涡旋混匀,立即加入5mL待净化上清液涡旋振荡1min 取出置于冷冻离心机,9000r/min,10℃离心5min 待除水除水 取上述待除水净化液加入15mL除水净化管中(RC-15166M,含有1.6g硫酸镁和0.4g氯化钠) 置于MTV3000多管涡旋混合仪,2500rpm涡旋振荡2min 置于冷冻离心机中,转速9000r/min,10℃离心5min 取上层有机相经0.22μm微孔滤膜过滤后 上机测定前处理仪器及耗材推荐Raykol V20垂直振荡器 振荡方式:垂直振荡 振荡速度:500-1800rpm 振幅:32mm样品数量:50mL*20,15mL*38,100mL*10,2mL*52等,96孔板*6,可定制 7寸彩色触摸屏,实时显示速度、工作时间及倒计时等 预约启动,预约时间0-840minRaykol MTV3000多管涡旋混合仪 振荡方式:偏芯振荡 振荡速度:最高速度3000rpm 操作简单,适配各种管架 7寸彩色触摸屏,实时显示速度、工作时间及倒计时等耗材RC-50004M50mL螺口尖底管,PP材质,25支/包,2包RC-50106M萃取盐包:4g MgSO4+1g NaCl,50/盒RC-5003C陶瓷均质子,用于50mL萃取管,100个/瓶RC-15164M15mL净化管:150mg HLB-2,25支/盒RC-15165M15mL净化管:1g Holipid,25支/盒RC-15166M15mL净化管:400mg NaCl+1600mg MgS04, 50支/盒
  • 应用速递:药物安全—缬沙坦制剂中亚硝胺杂质的测定
    背景介绍缬沙坦是血管紧张素II受体阻滞剂(ARB)、联苯四氮唑结构的沙坦类化合物,用于各类轻中度高血压的治疗,尤其适用于ACE抑制剂不耐受的患者。2018年7月,药品监管部门首次在含有缬沙坦的产品中发现亚硝胺杂质——N二甲基亚硝胺(NDMA)。随后在沙坦类其他药物和雷尼替丁中都检测到各类亚硝胺杂质,例如N-二乙基亚硝胺(NDEA)、N-二异丙基亚硝胺(NDIPA)、N-乙基异丙基亚硝胺(NEIPA)和N-亚硝基二丁胺 (NDBA)。因此,对使用缬沙坦原料药的药品进行了全球召回,导致缬沙坦药品暂时短缺。 图1 N-亚硝胺的分子结构 根据世界卫生组织 (WHO) 的国际癌症研究机构 (IARC)的研究,大多数亚硝胺会对动物和人类具有致癌和遗传毒性。沙坦类药物大多含有四唑环,四唑环的形成需要亚硝酸钠;药物的生产设备、生产用试剂和溶剂(例如普通溶剂DMF中的二甲胺)也可能会带来污染,都有可能形成亚硝胺。欧洲药典 (Ph. Eur.) 委员会将 API 中亚硝胺的临时限值设定为低于 1 ppm,且于2020年底降至30 ppb。 低限值设定就需要使用灵敏度高和选择性好的分析方法。本应用参照美国FDA指南的方法进行优化,通过GC/MS/MS在EI源 MRM模式下痕量检测缬沙坦药品中的5种亚硝胺杂质 (NDMA、NDEA、NEIPA、NDIPA 和 NDBA),并根据USP要求进行方法学验证。 实验条件GC-MS/MS 方法检测不同的亚硝胺化合物,使用液体直接进样方式。与FDA方法相比,选择了膜厚更薄(0.5µm而不是1µm)的Supelcowax® 柱,符合USP通则中色谱法的规定。色谱条件以及质谱条件见表1-3。 表1 色谱条件色谱柱SUPELCOWAX® 10, 30 m x 0.25 mm I.D., 0.5µm (24284)检测器MS/MS进样口温度250℃柱温箱程序40℃保持0.5min,20℃/min至200℃, 60℃/min 至250℃保持3min载气及流速氦气,1.0mL/min衬管4 mm单径锥衬管带玻璃棉进样量2 µL进样模式脉冲不分流样品稀释剂二氯甲烷样品制备使用切片工具,取药片的四分之一放入15mL离心管,加入5mL二氯甲烷。将样品涡旋1分钟,并置于离心机中以4000 rpm离心2.5min。取二氯甲烷层上清液2mL,用0.45µm PVDF膜过滤。取续滤液0.5mL到2mL样品小瓶中并加盖。标准溶液二氯甲烷作为溶剂,配制得到浓度分别2.5、5.0、10、20、40、80、100ng/mL的5种亚硝胺(NDMA/NDEA/NEIPA/NDIPA/NDBA)校准溶液。 表2 质谱条件调谐自动调谐离子源及采集模式EI源,MRM碰撞气体氮气 @ 1.5mL/min淬灭气体氦气@ 4.0mL/min 溶剂延迟7 min离子源温度230°C四极杆温度150°C电离电压70 eV驻留时间50 ms 表3 MRM 离子对参数列表峰化合物Transition保留时间1N二甲基亚硝胺MRM274→426.952N二甲基亚硝胺MRM174→446.9522N-二乙基亚硝胺MRM 1102→857.533N-二乙基亚硝胺MRM2102→567.5283N-乙基异丙基亚硝胺MRM1116→997.784N-乙基异丙基亚硝胺MRM271→567.7874N-二异丙基亚硝胺MRM1130→427.971N-二异丙基亚硝胺MRM2130→887.9765N-亚硝基二丁胺MRM1158→999.497N-亚硝基二丁胺MRM284→569.494 五种亚硝胺化合物在10分钟内完全分离,且目标峰与溶剂和基质杂质得到了很好的分离(图 2)。由于使用了0.5µm膜厚的色谱柱,与 FDA 方法相比,分离时间更短。图2:40 ng/mL系统适用性溶液色谱图,峰表见表3.实验得出:N-二乙基亚硝胺(NDEA)和N-二异丙基亚硝胺(NDIPA)的多反应监测MRM Transition最低检测限浓度为2.5ppb,如图3所示。图3 NDEA(上图)和 NDIPA(下图)最低检测限谱图 方法适用性经验证的 FDA-OTR 方法要求 40 ng/mL 标准品六次重复进样的 RSD%≤ 5%。 使用我们的方法,连续6次进样 40 ng/mL 的5种亚硝胺杂质,在两种 MRM 下的 RSD%远小于 5,如表4所示。化合物MRM1 RSD%MRM2 RSD% N二甲基亚硝胺1.81.3N-二乙基亚硝胺1.11.1N-乙基异丙基亚硝胺4.21.5N-二异丙基亚硝胺0.92.2N-亚硝基二丁胺4.33.0表4 40ng/mL 亚硝胺标准品连续六次进样的精密度此外,线性校准曲线的相关系数R2应≥ 0.998。本方法中五种亚硝胺杂质的两个 MRM都超过了这一标准(表 5)。杂质MRM 1MRM 2N二甲基亚硝胺0.99940.9995N-二乙基亚硝胺0.99910.9995N-乙基异丙基亚硝胺0.99950.9995N-二异丙基亚硝胺0.99960.9994N-亚硝基二丁胺0.99830.9981表5 两种MRM定量中两种亚硝胺的相关系数 (R2)缬沙坦制剂中亚硝酸胺的检测在药店购买的缬沙坦药品中加入亚硝胺杂质,浓度为10 ppb(NDBA为40 ppb),5种亚硝胺的回收率在94.5%~105.7%之间。(表6)。杂质10ppb回收率NDMA99 %NDEA103.5 %NEIPA94.5 %NDIPA103.9 %NDBA105.7 %表6缬沙坦药品中5种亚硝胺的加标回收率对于缬沙坦药品中5种亚硝胺的检测,OTR 方法的定量限 (LOQ) 范围是 8 – 40 ppb,本实验方法的 LOQ见表 7。 LOQ 是根据每种化合物校准曲线信噪比 (S/N) 为 10 浓度计算得出的,并且通过缬沙坦片剂的标准添加实验进行了验证。 检出限LOD是信噪比 (S/N) 为 3 的浓度计算得到 。杂质FDA方法 LOQ [ppb]本实验方法LOQ [ppb]NDMA133NDEA85NEIPA83NDIPA85NDBA4032表7 OTR和实验方法LOQ结果结论综上,参考FDA 建议方法,使用 SUPELCOWAX® 色谱柱通过 GC-MS/MS在 MRM 模式下可以轻松实现亚硝胺杂质的测定。所有亚硝胺化合物之间以及与溶剂和基质峰的分离良好,满足所有系统适用性要求。 该方法已成功应用于缬沙坦药物中亚硝胺类杂质的分析。 相关产品描述货号链接SUPELCOWAX® 10 气相毛细管柱30 m × 0.25 mm,0.50 μm24284 https://www.sigmaaldrich.cn/CN/zh/product/supelco/24284 SupraSolv® GC-MS二氯甲烷 1.00668 https://www.sigmaaldrich.cn/CN/zh/product/mm/100668 N二甲基亚硝胺NDMA认证参考物质 5000 µg/mL甲醇溶液CRM40059 https://www.sigmaaldrich.cn/CN/zh/product/supelco/crm40059N-二乙基亚硝胺NDEA 认证参考物质 5000 µg/mL甲醇溶液40334 https://www.sigmaaldrich.cn/CN/zh/product/supelco/40334N-亚硝基二丁胺NDBA 分析标准品442685 https://www.sigmaaldrich.cn/CN/zh/product/supelco/442685 N-乙基异丙基亚硝胺NEIPA EP标准品Y0002262 https://www.sigmaaldrich.cn/CN/zh/product/supelco/y0002262N-二异丙基亚硝胺NDIPA EP 标准品Y0002263 https://www.sigmaaldrich.cn/CN/zh/product/supelco/y0002263
  • 中国兽医药品监察所就《动物性食品中二苯乙烯类药物残留量的测定 液相色谱-串联质谱法》等7项食品安全国家标准公开征求意见
    各相关单位:  根据《中华人民共和国食品安全法》和《中华人民共和国农产品质量安全法》有关要求,我办组织起草了《动物性食品中二苯乙烯类药物残留量的测定 液相色谱-串联质谱法》等7项食品安全国家标准。现公开征求意见,如有修改意见,请于2022年7月10日前反馈至全国兽药残留专家委员会办公室。  联系人:张玉洁  联系电话:010-62103930  E-mail:syclyny@163.com  地址:北京中关村南大街8号科技楼206  邮编:1000811. 动物性食品中二苯乙烯类药物残留量的测定 液相色谱-串联质谱法   本标准规定了猪、牛、羊、鸡组织(肌肉、肝脏、肾脏和脂肪)、鸡蛋、牛奶中己烯雌酚、己烷雌酚和己二烯雌酚残留量检测的制样和液相色谱-串联质谱测定方法。方法原理为:试样中残留的药物经酶解后用乙腈提取(脂肪样品先经乙腈提取,吹干复溶后再酶解),加入正己烷和乙酸乙酯后进行液-液-液三相体系净化,取中间层氮吹复溶后通过碳酸钠溶液液液萃取和硅胶柱固相萃取进行净化,液相色谱-串联质谱仪测定,基质匹配内标法定量。   2.牛可食性组织中盐霉素残留量的测定 液相色谱-串联质谱法   本标准规定了牛可食性组织中盐霉素残留量检测的制样和液相色谱-串联质谱测定方法,适用于牛肌肉、肝脏、肾脏和脂肪组织中盐霉素残留量的测定。方法原理为:试样中的药物残留用乙腈提取,提取液过滤膜后用液相色谱-串联质谱仪测定,基质匹配外标法定量。   3. 动物性食品中碘醚柳胺残留量的测定 高效液相色谱法   本标准规定了动物性食品中碘醚柳胺的制样和高效液相色谱测定方法。适用于牛、羊的肌肉、肝脏、肾脏和脂肪组织中碘醚柳胺残留量的测定。方法原理为:试样中残留的碘醚柳胺,经乙腈-丙酮溶液提取,混合型阴离子交换固相萃取柱净化,高效液相色谱-荧光法测定,外标法定量。   4. 禽蛋中β内酰胺类药物残留量的测定 液相色谱-串联质谱法   本标准规定了禽蛋中青霉素V、青霉素G、氨苄西林、氯唑西林、阿莫西林、头孢氨苄、头孢喹肟残留量检测的制样和液相色谱-串联质谱测定方法。方法原理为:试样中残留的青霉素 V、青霉素 G、氨苄西林、氯唑西林、阿莫西林、头孢氨苄、头孢喹肟,经 80%乙腈水溶液提取,固相萃取柱净化浓缩,液相色谱-串联质谱测定,基质匹配标准溶液内标法定量。   5. 禽蛋中头孢噻呋残留量的测定 液相色谱-串联质谱法   本标准规定了禽蛋中头孢噻呋代谢物去呋喃甲酰基头孢噻呋残留量检测的制样和液相色谱-串联质谱测定方法。方法原理为:试样中残留的头孢噻呋及代谢物,加入 0.4%二硫赤藓醇溶液混匀,用 14%碘乙酰胺溶液衍生化,生成稳定的乙酰胺衍生物,水饱和正己烷除脂,固相萃取柱净化浓缩,液相色谱-串联质谱测定,内标法定量。   6. 禽蛋中卡巴氧和喹乙醇的代谢物残留量的测定 液相色谱-串联质谱法   本标准规定了禽蛋中卡巴氧代谢物喹噁啉-2-羧酸(QCA)和喹乙醇代谢物 3-甲基喹噁啉-2-羧酸(MQCA)残留量检测的制样和液相色谱-串联质谱测定方法。方法原理为:试料中QCA和MQCA残留经偏磷酸溶液水解提取,叔丁基甲醚萃取后,用磷酸盐缓冲液反萃取,混合型强阴离子交换柱净化,酸性甲醇洗脱,液相色谱-串联质谱法测定,内标法定量。   7. 水产品中邻苯二甲酸酯类物质的测定 液相色谱-串联质谱法   本标准规定了水产品中邻苯二甲酸二甲酯、邻苯二甲酸二乙酯、邻苯二甲酸二烯丙酯等21种邻苯二甲酸酯(PAEs)含量检测的制样和液相色谱-串联质谱测定方法。方法原理为:水产品中的邻苯二甲酸酯经乙腈提取,分散固相萃取净化,反相液相色谱柱分离,以甲醇和0.1%甲酸水溶液为流动相进行洗脱,应用高效液相色谱-串联质谱法测定和确证,基质匹配外标法定量。
  • 南昌客户通过仪器信息网成功订购远慕甲基红酸钠
    上海远慕生物科技公司是国内elisa试剂盒优质供应商,代理销售不同elisa试剂盒品牌的进口/国产elisa试剂盒,专业供应科研实验所需的培养基,抗体,动物血清血浆,标准品对照品,化学试剂,酶联免疫试剂盒,白介素试剂盒,金标检测试剂盒,微生物,蛋白质,ELISA种属涵盖广,凭借多年行业经验,完善的售后服务,高质量的产品。欢迎来电咨询。 南昌客户通过仪器信息网成功订购远慕甲基红酸钠,下面是跟客户的聊天记录: 中文名称: 甲基红钠盐 中文别名: 2-[4-(二甲基氨基)苯基偶氮]苯甲酸钠盐; 甲基红钠 英文名称: Methyl Red sodium salt CAS号: 845-10-3 分子式: C15H14N3O2 分子量: 268.2911 熔点: -98℃ 沸点: 479.5°C at 760 mmHg 闪点: 243.8°C 蒸汽压: 5.27E-10mmHg at 25°C 远慕生物,专业供应科研实验所需的培养基,抗体,动物血清血浆,标准品对照品,化学试剂,酶联免疫试剂盒,白介素试剂盒,金标检测试剂盒,微生物,蛋白质,ELISA种属涵盖广,凭借多年行业经验,完善的售后服务,高质量的产品,赢得客户一致好评,欢迎来电咨询与订购!
  • 全自动乌氏粘度仪-甲基乙烯基硅橡胶粘均分子量测定
    甲基乙烯基硅橡胶简称乙烯基硅橡胶,是由二甲基硅氧烷与少量乙烯基硅氧烷共聚而成,乙烯基含量一般为0.1%~0.3% (摩尔分数)。少量不饱和乙烯基的引入使它的硫化工艺及成品性能,特别是耐热老化性和高温抗压缩变形有很大改进。甲基乙烯基硅氧烷单元的含量对硫化作用和硫化胶耐热性有很大影响,含量过少则作用不显著,含量过大【达0.5% (摩尔分数)】 会降低硫化胶的耐热性。甲基乙烯基硅橡胶具有很好的耐高、低温性,可在-50~250℃下长期工作,防潮、电绝缘性,耐电弧,电晕性。耐老化、耐臭氧性。表面不粘性和憎水性。压缩变形小,耐饱和蒸汽性。广泛应用于耐高、低温密封管、垫圈、滚筒、按键胶辊、瓷绝缘子的更新换代。按照GB/T 28610粘均分子量测定方法。粘度法是测定聚合物分子量较为简捷的方法。特性粘度[η]是高分子溶液浓度趋近于零时的粘数值或对数粘数值(ηsp/C或Inηr/C)。在甲苯溶剂中,高分子物质的分子量和特性粘度的关系用下式表示: [η]=KMα式中:K-----常数,K=9.46×10-3;M----粘均分子量; α-----特性常数值;α=0.71用此计算公式计算得到分子量。实验所需仪器:卓祥全自动粘度仪、多位溶样器、自动配液器、万分之一电子天平。实验所需试剂:甲苯、无水乙醇。(AR级)溶剂粘度的测定:卓祥全自动粘度仪设置到实验目标温度值并且稳定后,加入甲苯,软件中启动测试任务待结束。粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。样品制备:在万分之一天平上精准称量精确到0.0001g,通过自动配液器将溶液浓度精准配制,再将样品瓶放置到多位溶样器室温中溶解,待溶解完毕取出待用(室温静置需N小时以上)。样品粘度的测定:加入样品,启动软件中特定公式测试,待任务结束。粘度管的清洗:再次启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。按照以下公式1-5计算:ηr=t/t0---------------------------------------------------1ηsp=ηr-1--------------------------------------------------2c=m/v---------------------------------------------------3[η]=KMα-------------------------------------------------5式中:ηr------相对粘度;t ------溶液时间值,单位为秒(s);t0-----溶剂时间值,单位为秒(s);ηsp-----增比粘度;c------样品的浓度,单位为克每毫升g/ml;m----样品质量,单位为g;v---溶剂体积,单位为ml;[η]------特性粘度;M----粘均分子量; K-----常数,K=9.46×10-3; α-----特性常数值,α=0.71;
  • 曝光!“副”产物生产N,N-二甲基乙酰胺,难道这是新工艺?
    前言:聚四氢呋喃生产过程中产生副产物生产N,N-二甲基乙酰胺新工艺研究报道一、背景介绍精细化工生产过程中常常会产生副产物。处理或有效利用副产物是生产企业非常关注的问题。将副产物深度加工,生产出更有价值的产品-“变副为宝",既可减少三废,又能为企业创造更多价值。今天,小编来分享一个利用上游工艺副产物作为原料,通过康宁G1反应器生产N,N-二甲基乙酰胺工艺研究成果。在聚四氢呋喃生产过程中产生副产物乙酸甲酯甲醇溶液。但由于该溶液易形成二元共沸物,常规的乙酸甲酯精馏或萃取提纯,很难得到高纯度的乙酸乙酯,且操作复杂、能耗很高。将副产物直接用于反应生产高附加值的产品,那是一条更加经济的解决方案。研究者决定将该副产物溶液用于N,N-二甲基乙酰胺(缩写为DMAC)的生产。TipsN,N-二甲基乙酰胺( 缩写为DMAC),是一种重要的精细化工产品,主要被应用在塑料、化妆品、制药、纤维、有机合成等多个领域。预计到2025年,DMAC产能达到22万吨。目前,乙酸甲酯法合成DMAC 采用传统间歇釜式。连续流技术是未来的发展方向,可以减少占地和人员,提高生产效率和自动化的程度,对传统工艺有着巨大的冲击。因此,传统工艺的连续流技术改造有着非常重要的意义。此外,釜式工艺的连续流改造升级,可以创造新的知识产权,为未来的发展获得竞争力。作者使用康宁G1反应器,对DMAC 的连续流工艺进行了研究。考察了反应温度、停留时间、催化剂含量等对反应结果的影响,优化工艺条件,形成一种以微通道反应器合成DMAC 的合成工艺技术。图1. 工艺流程图二、研究过程1、釜式实验研究者进行了釜式工艺的实验,结果如表1。经过分析,在釜式反应时间4h时选择性最高是96.2%。2、连续流工艺简介研究者结合微通道反应器的特点,可模块化设计,对反应器进行设计及改装如图2所示,选择9个模块组建成反应区。乙酸甲酯甲醇溶液与甲醇钠混合形成进料1,无水二甲胺液体储存于密封容器( 压力使无水二甲胺保持液相) 为进料2,两股物料泵入微通道反应器,然后在反应器进行液-液均相反应。调节仪器温度和压力,待反应温度和压力稳定,以及物料流速都达到测试要求时,开始计时。当运行时间达到为3 ~ 5 倍停留时间进行取样,用于气相色谱分析。3、连续流工艺条件优化作者研究了反应温度、 催化剂量、 原料配比、 停留时间等主要因素对乙酸甲酯转化率、 DMAC 选择性的影响,其实验结果及分析如下。如上图结果经过分析,该连续流工艺最佳反应条件为:反应温度 140 ℃,停留时间 72 s,反应压力为 1. 5 MPa,n(甲醇钠) ∶ n( 乙酸甲酯)= 0. 02∶ 1,乙酸甲酯与二甲胺摩尔比例为 1∶ 1. 1。在最佳条件下乙酸甲酯单程转化率 97. 5% ,DMAC选择性达到 100%。从连续流结果可以看出:对于均相反应,在不需要工艺强化的条件下,微反应取得了比釜式反应更好的结果,尤其是在微通道反应器内停留时间只有72秒。三、实验总结以聚四氢呋喃装置副产物乙酸甲酯甲醇溶液、无水二甲胺为原料、甲醇钠为催化剂,应用微通道反应器得到了新的 DMAC连续流新工艺。通过实验筛选获得较优的工艺条件和较佳实验结果,乙酸甲酯单程转化率 97. 5%,DMAC 选择性达到 100% 均优于釜式工艺。与传统间歇高压釜工艺相比,微通道反应器内乙酸甲酯转化率和DMAC选择性更高,且明显缩短反应时间。四、编者语微通道反应器常用于解决化学工艺中的安全问题被人熟知。实际上对于平时一般的釜式反应,即使是不需要强混合的均相反应,微通道连续流技术也是可行的。这对于化工的连续化,智能化以及多步反应的全连续至关重要;釜式工艺的连续流改造升级,可以创造新的知识产权,为未来的发展获得竞争力; 康宁反应器无缝放大的技术特性有助于快速实现工业化生产。参考文献:《广 州 化 工》,2019 年 10 月,第 47 卷第 20 期
  • 合川一工厂实验室亚硝酸钠爆炸
    工厂实验室亚硝酸钠爆炸   12日18时20分许,合川区工业园区一工厂实验室内一装有亚硝酸钠的容器发生爆炸,并造成泄漏,工厂二楼冒出滚滚白烟,区公安消防支队接到报警后迅速出动,历经近一个半小时成功处置,事故未造成人员伤亡。   18时22分左右,合川区消防支队接到群众报警:合川区工业园区一工厂车间内冒出白烟,请求消防官兵到场处置。支队接到报警后,迅速出动南津街中队3台消防车,调集特勤中队1台抢险救援车赶赴现场,支队羊绍庭政委、李明副支队长、颜太平副主任、罗献红副处长立即遂行出动,深入一线靠前指挥。   中队官兵到场后,发现工厂车间二楼窗口有白烟不断的向外涌出。中队指挥员立即根据现场泄漏情况,安排人员组成疏散警戒小组对现场群众进行疏散,并设置警戒。随后,指挥员又向该工厂的技术人员进一步了解情况。据技术人员介绍,泄漏的物质为亚硝酸钠,发生泄漏的原因是操作人员在进行试验时容器罐突然发生爆炸。当时,室内存放有4桶亚硝酸钠,1桶发生爆炸造成泄漏。中队指挥员得知泄漏危险品为亚硝酸钠后,立即利用化学灾害处置决策系统,进一步查询其理化性质、处置方法及注意事项。随后,指挥员迅速下令组成侦检组、化危品输转组、洗消组,并安排专人对已泄漏的亚硝酸钠用雾状水进行稀释降毒。   经过近一个半小时的稀释、输转,泄漏的亚硝酸钠得到了成功处置,参战官兵及周围群众无一人发生误吸、中毒情况。
  • 三鹿事件:三聚氰胺检测方法汇总
    三鹿奶粉事件沸沸扬扬,各地致病患儿的致命成分——三聚氰胺检测方法汇总   检测方法   GC-MS法测定动物食品中的三聚氰胺   Spectra-Quad实现三聚氰胺含量在线检测   超高效液相色谱_电喷雾串联质谱法测定饲料中残留的三聚氰胺   反相高效液相色谱法测定饲料中三聚氰胺的含量   高效液相色谱-二极管阵列法测定高蛋白食品中的三聚氰胺   高效液相色谱法(HPLC)测定饲料中三聚氰胺的含量   高效液相色谱-四极杆质谱联用测定饲料中三聚氰胺含量   固相萃取与高效液相色谱联用测定宠物食品中三聚氰胺   液相色谱串联质谱法(LC-MSMS)分析宠物食品中三聚氰胺   液相色谱-串联质谱法测定饲料中三聚氰胺残留   GC-MS法测定动物食品中的三聚氰胺   附:三聚氰胺检测方法示例   仪器与条件   高效液相色谱仪;二极管阵列检测器(DAD),检测波长240nm,柱温:40℃。   (1)AgelaVenusilTMASBC18(4.6×250mm) 缓冲液:10mM柠檬酸,10mM庚烷磺酸钠 流动相:缓冲溶液:乙腈=85:15 流速:1.0mL/min。   (2)AgelaVenusilTMASBC8(4.6×250mm) 流动相:缓冲液:乙腈=85:15 缓冲液:10mM柠檬酸,10mM辛烷磺酸钠,调pH为3.0 流速:1.0mL/min   离子交换固相萃取柱AgelaClearnertTMPCX   试剂与样品   宠物饲料样品(农业部饲料供应中心提供) 甲醇、乙腈为北京艾杰尔科技有限公司提供 氨水、乙酸铅、三氯乙酸、均购于北京化学试剂公司 三聚氰胺标准品、柠檬酸、辛烷磺酸钠(Sigma公司) 甲醇为色谱纯,其他均为化学纯。   实验方法   1、样品前处理方法   (1)标准样品配制:   取50mg三聚氰胺标准品,以20%甲醇溶解定容至50mL得到1000ppm的标准溶液,使用时,以提取液(0.1%三氯乙酸)稀释至所要的浓度。   (2)提取:   称取饲料样品5g,加入50ml0.1%三氯乙酸提取液,充分混匀,加入2mL2%乙酸铅溶液,超声20min。   然后取部分溶液转移至10mL离心管中,8000rpm/min离心10min,取上清液3mL过混合型阳离子交换小柱(PCX)。   (3)净化(PCX小柱,60mg/3mL):   a)活化及平衡:3mL甲醇,3mL水   b)上样:加入提取液3mL   c)淋洗:3mL水 3mL甲醇 弃去淋洗液并将小柱抽干。   d)洗脱:5mL5%氨化甲醇(v/v)洗脱。(5%氨化甲醇的配制:5mL氨水+95mL甲醇)。   e)浓缩:50℃,氮气吹干,20%甲醇/水定容至2mL,HPLC分析或衍生后GC/MS分析。   2、三聚氰胺被立案   2.1三聚氰胺HPLC-UV检测方法   三聚氰胺是强极性化合物,在传统的反相C18柱上保留很差,需要用离子对试剂色谱方法才能有良好的保留与分离,按照美国食品药品监督管理局(FDA)的三聚氰胺检测方法和中国农业部公布的三聚氰胺检测方法,采用艾杰尔(Agela)ASB系列亲水色谱柱,可以得到良好的分离效果:   (a)色谱柱:VenusilASBC84.6×250mm 标准:FDA方法 流动相:缓冲液:乙腈=85:15 缓冲液:10mM柠檬酸,10mM辛烷磺酸钠,调pH为3.0 流速:1.0mL/min 柱温:40oC 波长:240nm   (b)色谱柱:VenusilASB-C184.6×250mm 标准:中国农业部颁标准方法 缓冲液:10mM柠檬酸,10mM庚烷磺酸钠 流动相:缓冲溶液:乙腈=85:15 流速:1.0mL/min 柱温:40℃ 波长:240nm   空白加水平(mg/L)回收率0.01116%0.1108%0.592%296%   2.2三聚氰胺LC-MS检测方法   由于FDA公布的HPLC-UV方法中,流动相添加了离子对试剂,因此限制了液质联用方法的使用 但不用离子对试剂色谱方法,三聚氰胺在传统的C18柱上保留很差,不能得到较好的分离定量〔3〕。   基于此问题,艾杰尔科技公司自主开发了新的方法,采用艾杰尔(Agela)ASB系列亲水色谱柱,不用离子对试剂也能得到有效的保留与分离。因此方法中流动相不含离子对试剂,可以用于质谱检测。   与FDA2007年4月公布的《UpdatedFCCDevelopmentalMelamineQuantitation(HPLC-UV)》相比较,该方法大大降低了最低检测限(MSD:0.5ppm UV:2ppm),提高了检测灵敏度。   以该方法分别在ASB-C84.6×250mmASB-C184.6×250mm得到很好的谱图。   缓冲液:10mM的NH4AC 流动相:Buffer::ACN=95:5 流速:1.0mL/min 进样量:样品先用70%ACN溶解成约1mg/mL,用ACN稀释成0.1mg/mL,进10uL 柱温:40℃ 波长:240nm   结果与讨论   1、阳离子交换柱(PCX)   三聚氰胺呈弱碱性(弱阳离子化合物),净化过程一般应选择阳离子交换柱。混合型的阳离子交换柱(PCX)通过将磺酸基团(-SO3H)键合在极性高聚物聚苯乙烯/二乙烯苯(PEP)吸附剂上,具有阳离子交换和反相吸附两种机理,并具有以下优点:   a)可通过两种不同溶液的洗涤(水/一定pH值的缓冲溶液和有机溶剂),使样品更干净,提高检测的灵敏度。   b)批次重复性好。   c)回收率高,重现性好,即使小柱跑干也可以得到较高回收率。   2、LC-MS方法优点:   (1)检测过程简便:无须添加离子对试剂,三聚氰胺就可得到良好的保留与分离,避免了配制离子对流动相的复杂过程。   (2)提高了检测的灵敏度:无离子对试剂,可以用于质谱检测器,大大降低了最低检测限(MSD:0.5ppm UV:2ppm)。   (3)降低了检测成本:不用离子对试剂,就不再需要买价格较贵的离子对试剂了,从而降低了检测成本。   (4)延长了色谱柱的使用寿命:避免了使用离子对试剂减少色谱柱寿命的影响。   (5)该方法所使用的色谱柱具有通用性:无论是用FDA方法、中国农业部部颁标准方法和本公司开发的LC-MS方法,使用艾杰尔(Agela)ASB系列亲水色谱柱均能得到一个很好的检测结果,从而给客户提供了多种选择空间。   国家食品质量监督检测中心有关人士说,在现有的国家标准奶粉检测中,主要进行蛋白质、脂肪、细菌等检测。三聚氰胺属于化工原料,是不允许添加到食品中的,所以现有标准不会包含相应内容。也就是说,三聚氰胺不属于常规检测项目,正常情况下,很少有人会想到去检测它。
  • 欧洲严管三氯乙烯等对人体有害物质
    欧洲化学品管理局(ECHA)3月8日发布公告称,将对三氯乙烯等8种化学品实施严格管制。   据了解,要求对三氯乙烯和3种含硼化学物硼酸、无水四硼酸钠、十水四硼酸钠,及4种铬酸盐包括铬酸钠、铬酸钾、重铬酸铵和重铬酸钾共8种化学品归入“高度关注物质”中进行严格控制的提议,最早由丹麦、法国和德国发起,这三国称有证据证明这8种物质对人类健康具有潜在危害。欧洲化学品管理局在公告中称,这8种化学品具有致癌性和基因诱变性,对人的生殖系统会造成危害。   欧洲化学品管理局表示,如果欧盟成员国同意将这些化学品归入“高度关注物质”目录的话,该局将把它们列入严控物质中,这类化学物质的应用必须得到欧洲化学品管理局的特定授权。
  • 禾工发布三聚氰胺检测方法和整套仪器配置
    固相萃取(SPE)方法介绍 1、固相萃取(SPE)柱的选择: 三聚氰胺呈弱碱性(弱阳离子化合物),净化过程一般选择阳离子交换柱。混合型的阳离子交换柱(PCX)通过将磺酸基团(-SO3H)键合在极性高聚物聚苯乙烯/二乙烯苯(PEP)吸附剂上,具有阳离子和反相两种吸附机理,并具有以下优点: 1)、可通过两种不同溶液的洗涤(水/一定pH值的缓冲溶液和有机溶剂),使样品更干净,提高检测的灵敏度。 2)、批次重复性好。 3)、回收率高,重现性好,即使小柱跑干也可以得到较高回收率。 五、HPLC-UV检测方法(GB/T&hellip &hellip ..) 一、 检测方法 1、试剂与材料: 除另有规定外,试剂为分析纯,水符合GB/T6682规定的三级水,色谱用水符合一级水的规定。 1.1 乙腈:色谱纯 1.2 甲醇:色谱纯 1.3 氨水:浓度25%~28% 1.4 混合型阳离子交换固相萃取小柱:60mg/3mL 1.5 三氯乙酸溶液10g/L :称取10g三氯乙酸加水至1000mL。 1.6 乙腈水溶液:乙腈:水为50:50 1.7 盐酸溶液:0.1mol/L 1.8 氨水-甲醇溶液:量取5mL 氨水,溶解于100mL 甲醇中。 1.9 乙酸锌溶液219 g/L:取219g乙酸锌用300mL 水溶解后,定溶至1L。 1.10 20%甲醇溶液:200mL 甲醇,溶解于800mL 水中。混匀。 1.11 缓冲液:10mmol/L辛烷磺酸钠,10mmol/L柠檬酸,调pH3.0。 1.12 标准溶液: 1.12.1 标准贮备液1mg/mL :称取100.0mg 与小烧杯中,加少量乙腈: 水40:60 溶解并转入100mL 容 量瓶中定容。 1.12.2 标准工作液10&mu g/mL :准确吸取标准贮备液1mL 于100mL 容量瓶中,用乙腈: 水40:60定容。 2 仪器设备 实验室常用仪器及: 2.1 液相色谱仪 2.2 超声波振荡器 3 操作步骤 3.1 试样提取: 称取5g试样(精确到0.01g)与150mL 三角瓶中,加入50mL三氯乙酸溶液(1.5)或乙腈水溶液溶解 样品,放于超声波振荡器中超声萃取30min。取出加入5mL 乙酸锌溶液(1.9),前者采用三氯乙酸溶液 (1.5)、后者采用盐酸溶液(1.7)将试样转入100mL 容量瓶中定容至刻度,混匀后用滤纸过滤。 3.2 净化 分别用3mL 水,3mL 甲醇活化混合型阳离子交换固相萃取小柱后。取2mL 滤液上柱,然后分别用3mL 甲醇和3mL 水淋洗,将淋洗液全部抽干后,用3mL 氨水-甲醇(1.8)洗脱,洗脱液于50℃水浴中旋转蒸发至干。用20%甲醇溶液定容至1mL ,漩涡震荡1min,过0.45um滤膜过滤,上机测定。 3.3 测定 3.3.1 色谱条件 色谱柱:极性 C8柱(4.6mmi.d.× 250mm,5&mu m)或C18柱(4.6mmi.d.× 250mm,5um); 流 速:1.0mL /min; 进样量:50&mu l; 柱 温:35℃; 波 长:240nm. 流动相:C8柱使用的为缓冲液(3.11):乙腈=95:5; C18柱使用的为缓冲液(3.11):乙腈=90:10; 3.3.2 标准曲线绘制 分别吸取标准工作液(3.12.2)0.5、2.0、4.0、7.5、10.0mL于50mL 容量瓶中,用乙腈: 水40:60 分别定容混匀,该标准系列浓度分别为0.10、0.40、0.80、1.50、2.00&mu g/mL。将该标准系列溶液分别 注入仪器中,测定峰高(或峰面积)。以标准系列浓度为横坐标,峰高(或峰面积)为纵坐标绘制标准 曲线。或计算回归方程。3.3.3 测定 分别吸取试液(3.2)注入仪器中,测定峰高(或峰面积)。由标准曲线查得试液中三聚氰胺的浓度或通过回归方程计算出试液中三聚氰胺的浓度。 4 结果表示 4.1 试样中三聚氰胺的含量X,以质量分数毫克每千克(mg/kg)表示 式中: Cs&mdash 试液中三聚氰胺的浓度,(&mu g/mL ); V&mdash 试液体积,(100mL ); m&mdash 试样的质量,(g); n&mdash 稀释倍数; 6.2 平行测定结果用算术平均值表示,结果保留小数点后两位有效数字。 六、HPLC-DAD检测方法(GB/T&hellip &hellip ..) (婴幼儿配方奶粉和牛奶中三聚氰胺的高效液相色谱筛选法) 一、检测方法 1、方法来源 本方法是在参考FCC三聚氰胺检测方法[Updated FCC Development MelamineQuantitation(HPLC&mdash UV),April2,2007],FDA三聚氰胺检测方法 [GC-MS Screen for the Presence of Melamine ,(Adapted from FDA/ORA Forensic Chemistry Center SOP T015) Revised April 10, 2007]的基础上,综合制定而成的 婴幼儿配方奶粉和牛奶中三聚氰胺高效液相色谱筛选方法。 2、试剂 1.1 磺基水杨酸:分析纯; 1.2 柠檬酸:分析纯; 1.3 辛烷磺酸钠:高效液相色谱离子对试剂; 1.4 乙腈:色谱纯; 1.5 盐酸:分析纯; 1.6 超纯水:18.2M&Omega ; 1.7 60g/L磺基水杨酸:称取60g磺基水杨酸用水定容至1L; 1.8 0.1N HCl:量取8.3mL盐酸用水稀释至1L; 1.9 标准储备液:精密称取三聚氰胺0.0100g,用甲醇配制成浓度为1mg/mL 标准储备液。 2.0 标准使用液:将标准储备液用甲醇逐级稀释至适宜浓度。 3、仪器 高效液相色谱,附二极管阵列检测器 4、样品处理 2.1 配方奶粉:称取0.5g样品,加入0.1N HCl约15mL,涡旋混匀,超声提取30min后加入60g/L磺基 水杨酸3~4mL,用0.1N HCl定容至25mL,混匀后离心,上清液经0.45&mu m的微孔滤膜过滤后进样。 2.2 牛奶:称取15g左右样品,加入60g/L磺基水杨酸3~4mL,用0.1N HCl 定容至25mL,混匀后离心, 上清液经0.45&mu m的微孔滤膜过滤后进样。 5、参考色谱条件 4.1 色谱柱:ODS C8,250mm× 4.6mm 4.2 流动相:缓冲液:乙腈=85:15,等度洗脱 4.3 缓冲液:10mM柠檬酸+10mM辛烷磺酸钠,调pH为3.0 4.4 流 速:1.0mL/min 4.5 柱 温:40 ℃ 4.6 波 长:240nm 6 计算公式 式中:X&mdash 样品中三聚氰胺含量,mg/kg; C&mdash 从标准曲线上查出的含量,&mu g/mL; V&mdash 定容体积,mL; M&mdash 称样量,g 7 定量限 本方法的定量限为1mg/kg 8 参考色谱图和光谱图 高效液相色谱仪三聚氰胺检测配置 1) STI 5000型液相色谱仪系统 1 P5000 型高压恒流输液泵 1台 2 UV5000紫外检测器 1台 3 Rheohyne 7725i 手动进样阀 1支 4 三聚氰胺分析专用液相色谱柱 1支 5 25/50ul微量注射器 1支 6 N2000色谱工作站(SP1版) 1套 7 液相启动工具包 1套 2) 液相附助设备 1 KQ-2200 超声波清洗器 3L 1台 2 HP-01袖珍式真空泵 0.80MP 1台 3 FB-10T溶剂过滤器 1000mL 1台 4 HG-330色谱柱温箱 室温-100℃ / 0.1℃ 1台 6 有机过滤膜 &phi 50× 0.45mm 1盒 7 水系过滤膜 &phi 50× 0.45mm 1盒 8 有机针式过滤器 &phi 13× 0.45mm 1盒 9 水系针式过滤器 &phi 13× 0.45mm 1盒 10 RO DI反渗透超纯水机 15L/H  1台 VERTEX系列液相色谱仪主要指标 一、P5000高压恒流输液泵 技术指标 产品说明 等度泵 流速精度:0.1% 流速范围:0.001~10ml/min/0.001ml增量 最高耐压:6000psi(0~10ml/min) 压力脉冲:1% 特点说明 双柱塞串联式往复泵,自动脉冲抑制系统 输液泵开机自检,自动判断故障 泵头各部件单独设计,便于拆装维护 内置高低压报警和保护功能 多种泵头选择:微量泵、分析泵、半制备/制备泵 自动检测泵头类型,智能修正参数设置 程序化溶剂压缩因子,能自动补偿流量 梯度由内部软件实现自动控制,可编辑、存贮60个梯度方法,能运行复杂的梯度程序 可以通过外部接点闭合控制。 独特优点: 独特的柱塞杆自动清洗装置,使P5000系列高压输液泵不需要花钱购买在线清洗装置,也无须担心盐类晶体的析出对柱塞杆造成损伤; 专利设计的&ldquo 浮动式泵柱塞杆密封圈&rdquo 技术,可设定溶剂相应的压缩因子,泵头可以自动排空,无须手动排空即可输液;可延长密封圈使用寿命; P5000型输液泵使用的&ldquo 自吸式单向阀&rdquo ,是世界上最好的单向阀,阀球能在溶剂通过单向阀后回流之前回到阀座将之密封,保障了泵流量超常的稳定。 优秀的单向阀设计与先进的&ldquo 浮动式泵柱塞杆密封圈&rdquo 技术,使P5000输液泵在0-10ml/min的流量范围内都能耐压6000Psi,且压力波动远小于10Psi,成为国内外压力波动最小的泵之一。 拥有用户至关重要的两大功能 ①自动排空 ②自动清洗 二元梯度泵 流速精度:0.1% 流速范围:0.001~10ml/min(等度), 0.001~10ml/min(梯度)/0.001ml增量 延迟体积:150uL 最高耐压:6000psi(0-10ml/min) 压力脉冲:1% 比例精度:± 0.2%, 2ml/min 四元梯度泵 流速精度:0.1% 流速范围:0.001~10ml/min,0.001ml增量 延迟体积:400uL 最高耐压:6000psi(具高低压保护功能) 压力脉冲:1% 外置4流路在线真空脱气机 制备泵 流速精度:0.1% 流速范围:0.2~80ml/min(等度), 0.2~100ml/min(梯度),0.001ml增量 延迟体积:150uL 压力脉冲:1.5% 比例精度:± 0.2%, 5ml/min 自吸式单向阀-世界上最为优秀的单向阀 高压输液泵所使用的ASI自吸式单向阀是目前世界上最好的单向阀,它产生的流量有非常好的可重复性与准确性,这意味着单向阀能保持非常好的重复性。下图是Waters公司的单向阀与ASI公司的单向阀的使用比较,显而易见,ASI的自吸式单向阀的性能效果要优于Waters的单向阀。(Data Certified by: Baseline Services, Mercerville, NJ May 21, 1997, Bodman Chromatography Aston, PA May 21, 1997)
  • 科晓推荐三聚氰胺检测方法包
    由于&ldquo 三鹿奶粉事件&rdquo 导致三聚氰胺这个词一夜间成为了街头巷尾相传的流行。而对于它的检测手段在分析仪器色谱行业内的诸多厂商与科研人员也随之推出了一系列的检测方法,科晓在关注这一事件的同时通过对各种方法的比较验证,推荐来自爱杰尔的方法,为三聚氰胺检测提供一定的参考价值。 三聚氰胺分析方法包组件清单 包括: 1 VenusilASB-C8色谱柱(4.6*250mm,5&mu m,150Å )1支 2混合型的阳离子交换柱(Cleanert PCX 60mg/3mL)50支 3三聚氰胺标准品1瓶(500mg,&ge 99.5%) (可选) 4三聚氰胺分析方法手册1份 5庚烷磺酸钠(25g/瓶) (可选) 6 固相萃取装置(12位)一套 (可选) 理化性质 三聚氰胺:英文名&ldquo melamine&rdquo ,简称三胺, 学名三氨三嗪, 别名蜜胺、氰尿酰胺、三聚酰胺。分 子 式:C3N6H6、 C3N3(NH2)3 ;分 子 量:126.12 物理性能:白色结晶粉末,无毒,无味;相对密度:1570kg/m³ ;熔点:在常压下,354℃分解;升华温度:300℃;溶 解 性:能溶于甲醇、甲醛、乙酸、热乙二醇、甘油、吡啶;微溶于水、乙醇;不溶于乙醚、苯和四氯化碳,水溶液呈弱碱性 化学性能:三聚氰胺是一种重要的氮杂环有机化工原料,显弱碱性,能够与各种酸反应生成三聚氰胺盐;在强酸或强碱液中,三聚氰胺发生水解,胺基逐步被羟基取代,生成三聚氰酸二酰胺、三聚氰酸一酰胺和三聚氰酸;三聚氰胺与醛类反应生成加成化合物;三聚氰胺与甲醛反应制成树脂,三聚氰胺树脂是一种多种用途的材料,防火耐热且有很高的稳定性,用于生产塑料、地板砖,厨房用具,防火纤维,商业滤膜,胶水和阻燃剂。 固相萃取(SPE)方法 1 固相萃取(SPE)柱的选择: 三聚氰胺呈弱碱性(弱阳离子化合物),净化过程一般选择阳离子交换柱。混合型的阳离子交换柱(PCX)通过将磺酸基团(-SO3H)键合在极性高聚物聚苯乙烯/二乙烯苯(PEP)吸附剂上,具有阳离子和反相两种吸附机理,并具有以下优点: 1) 可通过两种不同溶液的洗涤(水/一定pH值的缓冲溶液和有机溶剂),使样品更干净,提高检测的灵敏度。 2) 批次重复性好。 3) 回收率高,重现性好,即使小柱跑干也可以得到较高回收率。 图1 PCX结构式 2 样品前处理步骤: 2.1标准样品配制: 取50mg三聚氰胺标准品,以20%甲醇溶解定容至50mL得到1000ppm的标准溶液,使用时,以提取液(1%三氯乙酸)稀释至所要的浓度。 2.2提取: 称取饲料/奶粉样品5g (或牛奶10ml),加入50ml 1%三氯乙酸提取液,充分混匀,加入2mL 2%乙酸铅溶液,超声20min。然后取部分溶液转移至10mL离心管中,8000rpm/min离心10min,取上清液3mL过混合型阳离子交换小柱(PCX)。 2.3净化(PCX小柱,60mg/3mL) : 1) 活化及平衡:3mL甲醇,3mL水 2) 上样:加入提取液3mL 3) 淋洗:3mL水;3mL 甲醇;弃去淋洗液并将小柱抽干。 4) 洗脱:5mL 5%氨化甲醇(v/v)洗脱。(5%氨化甲醇的配制:5mL氨水+95mL甲醇)。 5) 浓缩:50℃,氮气吹干,20%甲醇/水定容至2mL。 2.4检测: 用HPLC-UV中国农业部颁标准检测方法分析,测得PCX柱的回收率结果如下: 添加水平 回收率 空白 0.01 116% 0.1 108% 0.5 92% 2 96% 由上表可以看出:用PCX柱净化样品,可以得到满意的回收率。 HPLC-UV检测方法 三聚氰胺在传统的C18柱上保留很差,需要用离子对试剂色谱方法才能有良好的保留与分离,按照美国食品药品监督管理局(FDA)的三聚氰胺检测方法和中国农业部颁部的三聚氰胺检测方法,采用艾杰尔(Agela) Venusil ASB系列亲水色谱柱,均能得到良好的结果,分析色谱图如下: 1、 三聚氰胺的FDA检测方法 色谱柱:Venusil ASB C8 4.6× 250mm 缓冲液:10mM柠檬酸,10mM辛烷磺酸钠,调pH为3.0。 流动相:缓冲液:乙腈=85:15 进样量:样品用缓冲液溶解成约0.1mg/mL,进10uL 流 速:1.0mL/min 柱 温:40 oC 波 长:240nm 2、三聚氰胺的中国农业部颁标准检测方法 色谱柱:Venusil ASB-C18 4.6× 250mm 缓冲液:10mM柠檬酸, 10mM庚烷磺酸钠 流动相:缓冲溶液:乙腈=85:15 进样量:样品用缓冲液溶解成约0.1mg/mL,进10uL 流 速:1.0mL/min 柱 温:40℃ 波 长:240nm LC-MS参考方法 由于HPLC-UV方法中,流动相添加了离子对试剂,限制了液质联用方法的使用;但不用离子对试剂色谱方法,三聚氰胺在传统的C18柱上保留很差,没有良好的保留与分离。 源于此问题,艾杰尔科技公司自主开发了新的方法,采用艾杰尔(Agela) Venusil ASB系列亲水色谱柱,不用离子对试剂也能得到有效的保留与分离,参考方法如下: 缓冲液:10mM NH4AC 流动相:缓冲液:ACN=95:5 流 速:1.0mL/min 进样量:先用70%ACN溶解成约1mg/mL,用ACN稀释成0.1mg/mL,进10uL 柱 温:40℃ 波 长:240nm ASB-C8 4.6× 250mm (Rt=3.839min TF(5%)=1.00 ASB-C18 4.6× 250mm (Rt=3.651min TF(5%)=1.05 备注:色谱柱可选择我公司经营的C8(250*4.6/5um) 作为色谱仪器的专家,科晓将始终为顾客提供最优质的产品与最全面的服务
  • 再度出击,聊聊亚硝胺类和磺酸酯类遗传毒性杂质检测方案
    遗传毒性(Genotoxicity)是指遗传物质中任何有害变化引起的毒性,而不参考诱发该变化的机制,又称为基因毒性。遗传毒性杂质(Genotoxic Impurities, GTIs)是指能引起遗传毒性的杂质,包括致突变型杂质和其他类型的无致突变性杂质。致突变型杂质(Mutagenic Impurities)指在较低水平时也有可能直接引起DNA损伤,导致NDA突变,从而可能引发癌症的遗传毒性杂质[1]。目前遗传毒性列表中有1574种致癌物质,亚硝胺类、磺酸酯类和苯并芘类等属于高遗传毒性物质。近年来,出现多起已上市的药品中发现遗传毒性,继而被召回的案例。  例如某制药企业在欧洲推出的抗艾滋药物Viracept(nelfinavir mesylate),EMA在2007年7月暂停了它在欧洲的所有市场活动,因为在其产品中发现甲基磺酸乙酯超标。经自查,发现存储罐中乙醇残留,放置3个月导致甲磺酸乙酯达到2300ppm,去掉存储罐,增加对甲磺酸乙酯的控制要求低于0.5ppm,EMA对新工艺重新评估,对工厂进行现场检查,2007年10月重新获得上市许可。2018年7月,欧盟药品管理局报道在其对某企业含有ARB药物缬沙坦原料药的药物抽查汇总发现了杂质NDMA,其平均含量达66.5ppm,超过欧盟标 准0.3ppm。随后全球已有包括美国,加拿大,挪威,德国等22个国家召回共2300批该企业的含有沙坦类原料药的降压药。相关药企沙坦原料药中的NDMA经推断疑似来源于药物合成过程中使用的溶剂N,N-二甲基甲酰胺(DMF)与亚硝酸钠在酸性条件下反应产生的微量副产物,即NDMA。随后FDA发布了GCMS测定NDMA和NDEA的方法。2019年3月,又一种亚硝胺类杂质(NMBA)在ARB药物氯沙坦中被发现,但是该物质不能直接被GCMS测定。 9月FDA发表声明,在雷尼替丁中发现NDMA,但是不适用于GCMS方法测定。原因是雷尼替丁结构中,硝基和二甲胺在高温下从母核解离,结合成NDMA,对GCMS法测定产生干扰。  岛津中国创新中心,不仅致力于科研领域,同时时刻关注各行业的发展和社会的需求,秉承着以科学技术向社会做贡献的宗旨不断前行。本项目针对部分亚硝胺类和磺酸酯类遗传毒性杂质在药品原料药中的测定提供检测方法,为行业客户提供参考。针对客户比较关心的几种遗传毒性杂质分别建立了方法,并完成完整的方法学验证。  2019年6月,创新中心率先推出遗传毒性杂质NMBA(N-亚硝基-N-甲基-4-氨基丁酸)LC-MS/MS解决方案。与此同时,对NDMA和NDEA的研究也已在《分析试验室》2020年39卷2期上发表杂质上发表;关于NMBA的研究已在《中国药学杂志》2020年55卷3期上发表。如下将上述研究报告分别简述,供行业客户参考。 1. HS-GC-MS检测原料药厄贝沙坦中N-亚硝基二甲胺和N-亚硝基二乙胺   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,建立了原料药厄贝沙坦中N-亚硝基二甲胺和N-亚硝基二乙胺的同时测定方法。在10~500ng/mL浓度范围内各组分线性关系良好,相关系数均达到0.999以上,100ng/mL标准品溶液连续进样6针,各组分峰面积RSD均小于2.40%。阴性空白样品在40,80,160ng/mL加标浓度时,回收率为100.6%-104.6%,阳性空白样品回收率为101.8%-108.7%。该方法简单方便,顶空进样不污染气化室,能够有效的检测原料药厄贝沙坦中N-亚硝基二甲胺和N-亚硝基二乙胺的含量。 2. 岛津中国推出氯沙坦钾中N-亚硝基-N-甲基-4-氨基丁酸(NMBA)解决方案   本文利用岛津公司LCMS-8050高效液相色谱-三重四极杆质谱联用仪,建立了原料药中氯沙坦钾中NMBA的测定方法。该方法中NMBA在0.1 ~ 50.0 ng/mL范围内线性关系良好,日内和日间的精密度保留时间和峰面积的重复性良好(RSD均小于1.10%,n = 6和n = 18),在低中高3个浓度的平均回收率在94.40 ~ 98.04%之间。该方法简单方便,能够快速有效的检测氯沙坦钾原料药中NMBA的含量。 3. GC-MS内标法测定甲磺酸中甲磺酸甲酯、甲磺酸乙酯、甲磺酸异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标测定甲磺酸中甲磺酸甲酯(MMS)、甲磺酸乙酯(MES)和甲磺酸异丙酯(IMS)的方法并完成方法学验证。在1~10000ng/mL浓度范围内甲磺酸甲酯线性关系良好,在1~100ng/mL内甲磺酸乙酯和甲磺酸异丙酯线性关系良好,相关系数均达到0.999以上,样品平行测定6次,计算各组分含量RSD均小于3.33%。样品在650,850,1000ng/mL加标浓度时,MMS回收率为91.85%-103.09%,在10ng/mL加标浓度时,EMS、IMS回收率为92.21%-105.93%。该方法灵敏度和准确度高,能够有效的检测甲磺酸中MMS、EMS和IMS的含量。 4. GC-MS内标曲线法测定甲磺酸中甲磺酰氯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标测定甲磺酸中甲磺酰氯的方法并完成方法学验证。在1~5000ng/mL浓度范围内甲磺酰氯线性关系良好,相关系数达到0.999,样品平行测定6次,计算组分含量RSD为1.19%。样品在320,400,480ng/mL加标浓度时,甲磺酰氯回收率为100.09%-109.84%。该方法灵敏度和准确度高,能够有效的检测甲磺酸中甲磺酰氯的含量。 5. HS-GC-MS法测定甲磺酸倍他司汀中甲磺酸甲酯、甲磺酸乙酯、甲磺酸异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标,通过碘化钠衍生化,测定甲磺酸倍他司汀原料药中甲磺酸甲酯(MMS)、甲磺酸乙酯(MES)和甲磺酸异丙酯(IMS)的方法并完成方法学验证。在1~250ng/mL浓度范围内MMS和EMS线性关系良好,在1.5~250ng/mL内IMS线性关系良好,相关系数均达到0.999以上,样品加标平行测定6次,计算各组分含量RSD均小于2.40%。样品在80,100,120ng/mL加标浓度时,MMS、 EMS和IMS回收率在93.86%~112.21%之间。该方法操作简单,灵敏度和准确度高,能够有效的检测甲磺酸倍他司汀中MMS、EMS和IMS的含量。 6. HS-GC-MS法测定甲苯磺酸舒他西林中甲苯磺酸甲酯、乙酯、异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标,通过碘化钠衍生化,测定甲苯磺酸舒他西林原料药中甲苯磺酸甲酯(MTS)、甲苯磺酸乙酯(ETS)和甲苯磺酸异丙酯(ITS)的方法并完成方法学验证。在1.5~250ng/mL浓度范围内MTS和ETS衍生化后的碘甲烷(MeI)和碘乙烷(EtI)线性关系良好,在3~250ng/mL内ITS衍生后的(iPrI)线性关系良好,相关系数均达到0.998以上,样品加标平行测定6次,计算各组分含量RSD均小于4.50%。样品在20,40,60ng/mL加标浓度时,MTS、 ETS和ITS回收率在92.50 %~108.13%之间。该方法操作简单,灵敏度和准确度高,能够有效的检测甲苯磺酸舒他西林中MTS、ETS和ITS的含量。 7. HS-GC-MS法测定苯磺酸氨氯地平中苯磺酸甲酯、乙酯、异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标,通过碘化钠衍生化,测定苯磺酸氨氯地平原料药中苯磺酸甲酯(MTS)、苯磺酸乙酯(ETS)和苯磺酸异丙酯(ITS)的方法并完成方法学验证。在1.5~250ng/mL浓度范围内MBS和EBS衍生化后的碘甲烷(MeI)和碘乙烷(EtI)线性关系良好,在3~250ng/mL内IBS衍生后的(iPrI)线性关系良好,相关系数均达到0.999以上,样品加标平行测定6次,计算各组分含量RSD均小于5.46%。样品在5,10,15ng/mL加标浓度时,MBS、 EBS和IBS回收率在85.4 %~104.70%之间。该方法操作简单,灵敏度和准确度高,能够有效的检测苯磺酸氨氯地平MBS、EBS和IBS的含量。 [1] 《中国药典》2020年版四部通则增修订内容:遗传毒性杂质控制指导原则审核稿(新增)
  • 【知识分享】有关有机胺类化合物的HPLC方法开发
    有机胺类化合物1.有机胺类化合物氮元素最外层有5个电子,3个成单电子和一对孤电子对。不同于碳的最外层就4个成单电子,成键后就没有多余的了,就只能老老实实的呆着。比如甲烷CH4已经圆满,不会有再给出电子和获得电子的动力。氮元素的3个成单电子成键后,多出了一对孤电子对,如果NH3其中的一个或者以上的氢换成有机基团变成了有机胺类化合物。氮元素中多出的孤电子对,也造就了我们HPLC方法开发最常见的碱性有机化合物。2.有机胺分类有机胺类化合物分为3类:碱性化合物、中性化合物和酸性化合物。酸性化合物:如果N连接的是吸电子基团,比如羰基,化合物对电子的约束增强,它们就会安分很多,即碱性减弱,如果连接的吸电子基团继续增多或者增强,N上的电子被被这些强盗抢走了,那么它甚至不但不会有多余的电子出去浪,它还要抢别人的电子,即华丽变身为路易斯酸。比如邻苯二甲酰亚胺,它N上的氢有很强的电离倾向,化合物显酸性。常见吸电子基团有:硝基(-NO2)、三卤甲基(-CX3)X=F、Cl、氰基(-CN)、磺酸基(-SO3H)、甲酰基(-CHO)、酰基(-COR)、羧基(-COOH)。在有机胺类化合物中不饱和建可以和N的孤电子对形成p-π共轭效应,也表现出吸电子基团的现象,如苯胺的碱性弱于氨水,就是因为N上的孤电子对跑到苯的大π键上去浪了,整个化合物给电子的倾向减弱。中性化合物:有机胺类化合物呈中性的状态,可以理解为N上连着吸电子基团,强度刚好满足约束N上的多余的想要出去浪的电子,于是N即没有给电子的倾向,也没有获得电子的倾向。当然需要说明的是这是一个区间,在这个区间内有机胺类化合物电离倾向非常弱,我们可以认为是中性化合物,例如苯并嘧啶。3. 胺类的合成:(1)硝基还原:最干净和简便的方法是采用Pd/C或Raney Ni加氢还原硝基。当分子内存在对加氢敏感的官能团时,如卤素,双键,三键等,催化加氢不适用。其它化学还原方法,包括Fe,SnCl2, Na2S2O4等。一般而言,硝基化合物不用LiAlH4还原,因其无法将硝基彻底还原,从而得到混合物。(2)酰胺还原:一般将酰胺还原到胺最常见的方法就是通 过LiAlH4在加热回流下进行。但当分子内有对LiAlH4还原敏感的官能团存在时,如芳环上有卤原子存在时,容易造成脱卤。一些温和的还原条件:BH3原,NaBH4-Lewis酸体系还原,DIBAL-H还原等。(3)腈基还原: 一般腈基还是较为容易还原为相应的伯胺, 催化加氢或化学试剂还原都可以用于这类还原。催化加氢的方法最为常用的催化剂为RaneyNi, 在使用RaneyNi 做催化剂加氢成胺时,若用乙醇作溶剂,一般需要加入氨水,主要由于在此条件下,有时有微量的乙醇会氧化为乙醛,其与产品发 生还原胺化得乙基化的产物,加入氨水或液氨可抑制该副反应。其它方法则以LiAlH4和硼烷较为多用。(4)叠氮还原:催化加氢和化学还原法均可用于叠氮的还原。催化加氢常用的催化剂为Pd/C,Raney Ni, 当分子内有对氢化敏感的卤素时,可用PtO2作催化剂。化学还原最温和的条件是使用三苯基膦在湿的四氢呋喃中还原,当然LiAlH4也可用于该还原。(5)还原胺化:由醛或酮与胺反应形成亚胺,再通过硼氢化钠或三乙酰氧基硼氢化钠还原,得到烷基取代的胺类结构。HPLC方法开发有机胺类化合物并不是都显碱性,有可能是中性也可能显酸性,需要根据结构式进行综合判断其性质并拟定适合的色谱条件。1. 中性有机胺类化合物该类化合物的HPLC方法开发和普通中性有机物并无区别,因其电离倾向很弱,所以无需使用缓冲盐,流动相用水-有机相系统即可,色谱柱可以根据保留情况使用纳谱分析ChromCore C18或者ChromCore C8液相色谱柱。2. 酸性有机胺类化合物该类化合物因具有较强的电离倾向,需要使用缓冲盐,一般来说酸性化合物对缓冲盐的缓冲能力要求都不是太高,所以缓冲盐的浓度可以略低,如0.01-0.02mol/L,在特定情况下,缓冲盐的pH值也可以偏离pka±1的范围,如0.02mol/L磷酸二氢钾溶液(不调节pH,约为4.6)。缓冲盐的pH值需要偏离待测化合物pka±2的范围外,以获得较好的pH值耐用性,因此如果酸性有机胺类化合物酸性较弱,即pka较大(5以上)推荐使用较低pH值缓冲盐抑制其解离,如果使用高pH值缓冲盐,pH值需要在7以上,不利于色谱柱寿命。如果酸性有机胺类化合物酸性较强,即pka较小(4以下)可能难以使用低pH值缓冲盐抑制其解离,如果极性较小可以尝试高pH值缓冲盐;但是一般这种情况该化合物极性都非常强,保留非常弱,使用高pH值很可能无法获得适当的保留时间,在这种情况可能需要用到离子对试剂如四丁基铵盐或者采用HILIC、离子交换柱等方法。如纳谱分析ChromCore HILIC-Amide色谱柱。3. 碱性有机胺类化合物碱性有机胺类化合物是反相HPLC方法开发中最常见又最让人痛苦的一类化合物,有相关经历的读者应该立刻心领神会心有戚戚。最常见的是这类化合物的峰拖尾、很宽,然后和相邻峰分离非常差。所以该类化合物的HPLC方法开发是本文中重点阐述的内容。首先要说明的是开发该类化合物反相HPLC方法所使用的色谱柱强烈建议使用封尾处理过的色谱柱,尽量选择封尾处理比较好的品牌与型号。一般来说,说明书上说明了采用二次封尾或者三次封尾的色谱柱,在碱性化合物峰拖尾上表现较好,如纳谱分析ChromCore 120 C18色谱柱。同上文的酸性有机胺类化合物,碱性有机胺类化合物因具有较强的电离倾向,需要使用缓冲盐。碱性化合物对缓冲盐的缓冲能力要求较高,一般来说缓冲盐浓度建议0.02mol/L以上。缓冲盐的pH值需要偏离待测化合物pka±2的范围外,以获得较好的pH值耐用性,因此如果碱性有机胺类化合物碱性较弱,即pka较小(4以下)推荐使用较高pH值缓冲盐抑制其解离,如果使用低pH值缓冲盐,pH值需要在2以下,不利于色谱柱寿命。如果碱性有机胺类化合物碱性较强,即pka较大(5以上)可能难以使用高pH值缓冲盐抑制其解离;一般这种情况该化合物极性都非常强,保留非常弱,使用低pH值很可能无法获得适当的保留时间,在这种情况可能需要用到离子对试剂如烷基磺酸钠或者采用HILIC、离子交换柱等方法,如纳谱分析ChromCore HILIC-Amide色谱柱。分享一个可以查询化合物pKa:https://www2.chem.wisc.edu/areas/reich/pkatable/index.htm
  • 中旺全自动乌氏黏度仪在聚偏氟乙烯PVDF行业中的应用
    前言聚偏氟乙烯PVDF,是一种高度非反应性热塑性含氟聚合物,溶于二甲基乙酰胺等强极性溶剂。相对分子质量为40~60万,PVDF生产工艺主要包括乳液聚合法、悬浮聚合法、溶液聚合法以及超临界聚合法等。它除了具有良好的耐化学腐蚀性、耐高温性、耐氧化性、耐气候性、耐紫外线、耐辐射性能,还有压电性、热电性等特殊性能,其广泛应用于涂料、注塑、锂电池、水处理、光伏等领域。其中PVDF的特性黏度是其非常重要的一项技术指标,是企业鉴别PVDF合格与否的手段之一。就目前PVDF产能情况而言,随着下游需求的增长,尤其是新能源汽车带来锂电池的爆发式增长,国内企业纷纷扩产,开工率保持高位。鉴于这样的背景和企业需求,杭州中旺科技生产的全自动乌氏黏度仪有效地应用了聚偏氟乙烯PVDF特性黏度的检测。某PVDF厂家的IVS400-6全自动黏度仪全自动IVS400全自动黏度仪以乌氏黏度计为核心,依据ISO/GB/DIN相关标准,实现自动测试、自动计算、自动排废、自动干燥等功能,乌氏黏度管固定无需拆装,有效地减少了配件损耗。主要组成部分:▂高精密恒温水槽(控温25.00±0.01℃);▂自动黏度测量单元(自动计时:精度0.001S,自动清洗,自动排废等);▂主控制器(最多可同时控制6个测试单元);▂乌氏黏度计(符合ISO3105规定);▂流经式制冷器(连续不间断工作);▂Viscobee软件:覆盖大部分测试结果(特性黏度、分子量、黏数、聚合度等),并且可免费添加其他特殊公式。某企业PVDF特性黏度检测:测试流程▂称样用万分之一天平称取PVDF样品,放入到溶样瓶中,用DP25自动配液器移取溶剂到溶样瓶中;▂溶样将溶样瓶放入P12中旺聚合物溶样器中,按照规定的温度、时间溶样;▂黏度测试打开IVS400黏度仪,水槽温度设定为25℃±0.01℃,将溶液经过滤后加入乌氏黏度计中,打开软件,自动测试、计算;▂测试结果特性黏度:某一厂家PVDF黏度测量数据▂清洗乌氏黏度管自动清洗、自动排废、自动干燥。
  • 饲料中三聚氰胺检测的全套解决方案
    饲料中三聚氰胺检测的全套解决方案 续&ldquo 三鹿奶粉三聚氰胺&rdquo 事件、&ldquo 韩伟鸡蛋&rdquo 事件之后,饲料中三聚氰胺检测又成为人们关注的一大焦点,大连依利特分析仪器有限公司作为国内知名厂家,参照NY/T 1372-2007《饲料中三聚氰胺的测定》,又及时地为您提供饲料中三聚氰胺检测的分析方法及推荐仪器配置在内的全套解决方案。 【样品前处理】 称取饲料样品0.40g(精确到0.01g),置于10mL具塞刻度试管中,加入7mL 1%三氯乙酸,涡旋混匀,超声提取10min;再加入0.5mL 10%乙酸锌溶液和0.5mL 10%亚铁氰化钾溶液,涡旋混匀,用1%三氯乙酸定容至满刻度线;样品经10000rpm,离心5min;取5mL上清液作为待净化液。 依次用3mL 甲醇和5mL 水活化SPE柱;将待净化液用水稀释至10mL,转移至固相萃取柱,依次用3mL 水和3mL 甲醇洗涤,抽至近干后,用6mL 5%氨化甲醇溶液洗脱。整个过程控制流速不超过1mL/min。洗脱液50℃下用氮气吹干,残留物用1mL流动相溶解,涡旋混合,过0.45µ m 油系滤膜,供HPLC分析。 【仪器与试剂】 UV1201紫外-可见检测器;P1201高压恒流泵;ZWII型色谱柱温箱;Elite MSP色谱柱(5µ m,I.D.4.6mm× 150mm);三聚氰胺标准品(99%);阳离子交换固相萃取柱(Thermo Retain-CX, 60mg, 3mL);氢氧化钠、柠檬酸(分析纯)、辛烷磺酸钠(色谱纯)、甲醇(色谱纯)、乙腈(色谱纯)、乙酸锌(分析纯)、亚铁氰化钾(分析纯)、三氯乙酸(分析纯)、氨水(25%)、超纯水(二次过滤),各种饲料样品。 【试剂配制】 ① 三聚氰胺标准储备液 称取50.0mg(精确到0.1mg)三聚氰胺标准品,用20%甲醇溶解并定容至50mL容量瓶中,该溶液浓度为1mg/L,于4℃冰箱储存,有效期3个月。 使用时,用流动相将储备液分别稀释到不同浓度即可。标准系列工作曲线包括1mg/mL、5mg/mL、10mg/mL、25mg/mL、50mg/mL。 ② 1% 三氯乙酸溶液 称取10.0g三氯乙酸,加水定容到1000mL。 ③ 10%乙酸锌溶液 称取10.0g乙酸锌,加水定容到100mL。 ④ 10%亚铁氰化钾溶液 称取10.0g亚铁氰化钾,加水定容到100mL。 ⑤ 氨水甲醇溶液 量取5mL氨水溶液,加入100mL甲醇混合均匀。 【分析方法】 色谱柱:Elite MSP 5µ m(ID4.6mm× 150mm) 流动相:乙腈/缓冲盐=10/90(缓冲盐&mdash &mdash 含10mM柠檬酸和10mM辛烷磺酸钠,调节pH至3.0) 流速:1.5mL/min 波长:240nm 室温:控制在22~28℃之间 进样量:20µ L 【实验结果】 1. 标准品谱图 10mg/L的三聚氰胺标准品的实验谱图如下: 图1 10mg/L标准溶液谱图 2. 重现性 采用此方法分析三聚氰胺,连续进样重现性良好。 图2 5mg/L标准溶液连续进样11次重现性 表1 5mg/L标准溶液连续进样11次重现性数据 编号 保留时间/min 峰面积/mV&bull sec 1 14.687 207.21 214.679 206.85 3 14.665 206.28 4 14.637 205.23 5 14.638 206.12 6 14.616 206.36 7 14.586 207.66 8 14.620 207.55 9 14.627 207.84 10 14.659 207.83 11 14.689 207.71 平均值 14.65 206.97 RSD/% 0.23 0.42 3. 线性相关性测试 如图3、4,在所测试浓度范围内,三聚氰胺标准品具有良好的线性相关性,相关系数均为0.9999。 图3 不同浓度标准品叠加谱图 图4 实验的校准曲线 4. 加标回收率 图5对比可知,在标准品出峰位置,样品没有明显出峰,故该样品为阴性样品或三聚氰胺含量低于该系统的方法检出限,用此样品做加标回收率实验,结果见表2。 图5 未知样品、空白及样品加标叠加谱图 表2 饲料样品的加标回收率结果 加标量(mg/kg) 平行实验一 (mg/kg) 平行实验二 (mg/kg) 平均值 (mg/kg) 回收率% 1.0 1.05 1.03 1.04 104.0% 5.0 4.36 4.51 4.44 88.8% 10.0 9.63 9.25 9.44 94.4% 25.0 21.97 21.77 21.87 87.5% 如表2结果,在4个不同的加标水平下,该方法三聚氰胺的加标回收率在87.5%~104.0%之间,说明方法准确性良好。 5. 检测限、定量限 依据噪声值,按3倍信噪比,计算其理论检出限,按10倍信噪比,计算其理论定量限如下: 计算方法 检出限(mg/kg) 定量限(mg/kg) 校正曲线方法 0.046 0.153 6. 系统稳定性测试 同一饲料加标样品,一分为三,采用所述方法连续处理三次,并测试谱图计算结果,如图6和表3所示。 图6 样品分析叠加谱图 表3 平行样品测试结果 平行实验一 (mg/kg) 平行实验二 (mg/kg) 平行实验三 (mg/kg) 平均值 (mg/kg) RSD% 4.36 4.51 4.42 4.43 1.47 同一样品,平行测试3次,测试三聚氰胺结果RSD值为1.47%,说明该系统稳定性良好。 7. 实际样品定性和定量结果 采用所述方法,对饲料样品进行了分析,谱图如下,结果如表4。 表4 饲料实际样品测试结果 样品编号 一 二 三 四 五 六 七 三聚氰胺含量(mg/kg) 未检出 未检出 0.6325.07 770.47 1.41 未检出 图7 饲料样品一分析谱图 图8 饲料样品二分析谱图 图9 饲料样品三分析谱图 图10 饲料样品四分析谱图 图11 饲料样品五分析谱图 图12 饲料样品六分析谱图 图13 饲料样品七分析谱图 附件1:HyperSep Retain-CX产品介绍 产品名称: HyperSep Retain-CX 填料基质: 磺酸基功能化的聚苯乙烯/二乙烯基苯萃取柱 规格型号:60mg/3mL 产品货号:60107-303 产品图片: 生产商: Thermo Fisher Scientific 产品特点:  三聚氰胺前处理  碱性、非极性分析物的均可保留  从生物样品中萃取碱性药物的理想选择 附2:饲料中三聚氰胺检测依利特全套配置清单 测试用分析方法包 序号 名称 规格级别 数量 产地 1 柠檬酸 分析纯 50g 国产 2 辛烷磺酸钠 色谱纯 60g 国产 3 三聚氰胺标准品 纯度&ge 99.0% 1克 美国 4 一次性注射器(200支/包) 2mL 1包 国产 5 水系滤膜(100片/盒) &phi 50mm,0.45&mu m 1盒 上海 6 有机系滤膜(100片/盒) &phi 50mm,0.45&mu m 1盒 上海 7 针筒式有机相过滤器(100支/包) &phi 13mm,0.45&mu m 2包 天津 8 Elite MSP 三聚氰胺专用柱 ID:4.6× 250mm,5&mu m 1支 依利特 9 混合型阳离子固相萃取柱(50支/盒) HyperSep Retain-CX,60mg/3mL 4盒 进口 测试用前处理配置包 序号 名称 规格级别 数量产地 1 超声波水浴 AS3120型,3L,功率:120W 1台 天津 2 隔膜真空泵 GM型 1台 天津 3 溶剂过滤器 1000mL 1套 天津 4 分析天平 AL104,感量0.0001g 1台 进口 JD60-4,0.0001g 1台 沈阳 5 离心机 TG16G,16000转,6× 50mL 1台 湖南 TD5G,5000转,12× 10mL 1台 湖南 6 PH计 FE20K酸度计 1台 进口 6010酸度计 1台 上海 7 涡旋混合器 QL-861 1台 江苏 8 固相萃取仪 SPE-12 1套 天津 9 氮气吹干仪 PGC-01D 1台 天津 液相色谱仪标准配置包 序号 名称 数量 1 P1201三聚氰胺测试用液相色谱系统 1套 ⑴P1201高压恒流输液泵 1台 ⑵UV1201紫外可变波长检测器 1台 ⑶ZWII型色谱柱恒温箱 1套 ⑷Rheodyne 7725i 高压六通进样阀 1支 ⑸Elite MSP 三聚氰胺专用柱 1支 ⑹25µ L微量进样器 1支 ⑺100µ L微量进样器 1支 ⑻ZJ-1阀及色谱柱安装支架 1套 ⑼EC2006色谱数据处理系统软件V1.0版 1套 ⑽专用工具包 1套 2 高级配置(更多功能,人性化配置,工作效率更高) ⑴P1201S柱塞清洗单元 1套 ⑵P1201溶剂管理器(含进口二元脱气机) 1套 ⑶AS230固定体积型自动进样器 1套 3 升级配置(升级后,可在以后工作中检测多种样品,适用面更广,节约成本) ⑴P1201等度升级梯度配置包 1套 ⑵AS230可变体积型自动进样器 1套 备注:如需分析饲料中的三聚氰胺,以上三个配置包所列仪器、试剂,都需配备,缺一不可。
  • 酱油标准存漏洞国标无亚硝酸钠检测
    近日有媒体曝出某调味品企业竟用工业盐替代食用盐生产酱油的消息,一时引发了轩然大波。专家指出,用工业盐替代食用盐酿造酱油,除了造价较低外,国家标准检测上的漏洞,也是驱使企业使用工业盐的重要原因。   价格差异工业盐便宜一半   佛山市高明区政府5月22日通报,高明区杨和镇某食品公司涉嫌用工业盐制作酱油,65箱问题老抽流入市场。   环保专家董金狮告诉记者,国家已经明确规定,工业用料不得用于食品生产,工业盐和食用盐的价格差,是导致企业使用工业盐的主要原因。据介绍,目前纯度为99%以上的工业盐,其售价仅450-500元/吨之间,而正规食盐的价格则高居1000元/吨左右。   另外,董金狮也指出,这一事件的发生和我国的盐业体制也不无关系。在酱油生产过程中,用盐量非常大,如果酱油中盐水不足,酱油容易变酸变臭。而我国的盐业体制决定了市场并未全部放开,企业需要大量用盐,但如果采购不足,就会转而去找工业盐。   国标漏洞不检测亚硝酸钠   据介绍,工业盐广泛应用于制纯碱、氯碱等化工产品,虽然巨大的价差是刺激不法调味品厂铤而走险违规使用的主要原因,但现行的酱油标准中不涉及工业盐关键性指标亚硝酸钠的检测,在一定程度上也促进了商家的不法行为。   董金狮告诉记者,工业盐中有很多杂质,最普遍的就是亚硝酸钠和重金属离子。其中,重金属含量可能比食用盐更高,但并不一定会超标。更为危害人体健康的亚硝酸钠,却在现行的酱油标准检测中缺失。“因为食用盐经过处理,已经不含有或只含有极少的亚硝酸钠,因此国标不检测这一项,而这恰恰让不法商家钻了空子。”   记者了解到,亚硝酸钠主要用于染料、医药、印染、漂白等方面,由于有增色、抑菌防腐作用,在食品工业中多用作熟肉食品的发色添加剂。我国《食品添加剂使用卫生标准》规定,亚硝酸钠在肉食中最大使用量是0.15克/千克,其残留量在肉制品中不得超过0.03克/千克 在肉制品罐头中不得超过0.05克/千克。一般而言,人体只要摄入0.2~0.5克的亚硝酸钠,就会引起中毒 摄入3克亚硝酸钠,就可致人死亡。
  • 福斯轻松测 | 食品中的N-亚硝胺类化合物
    福斯轻松测 | 食品中的N-亚硝胺类化合物新的标准实施GB 5009.26-2023《食品安全国家标准 食品中N-亚硝胺类化合物的测定》新版国家标准,今年3月正式实施了。新国标的主要变化如下,其中增加的第一法和第三法都会用到水蒸气蒸馏装置。N-亚硝胺在腌制和熏制肉类制品中普遍存在,GB 2762-2022 《食品安全国家标准 食品中污染物限量》标准中规定肉及肉制品中N-二甲基亚硝胺的限量为3 μg/kg,为了保证方法检出限能符合限量要求,检测仪器的重复性和准确性是至关重要的。福斯解决方案(水蒸气蒸馏部分)使用客户:某省食检院实测样品:腌制肉类食品所用仪器:福斯 Kjeltec 自动蒸馏装置应用要点:考虑到样品量,蒸馏需用400ml或750ml大管将三角烧瓶置于冰浴自动蒸馏装置蒸汽功率设置为50%考虑到安全性,建议整套仪器放入通风橱内操作用户感受:快速-自动蒸馏过程用时仅需7-8分钟重复性好&准确度高-经标准品验证后,对检测结果非常满意,能够帮助企业更好的承担相关产品的市场抽检任务福斯助您一臂之力兵马未动,粮草先行,建立 GB 5009.26-2023《食品中 N-亚硝胺类化合物的测定》专属检测能力,福斯祝您一臂之力!KjeltecTM 9 自动蒸馏装置 样品类型:食品、农产品、饲料、土壤、肥料等检测项目:氮、蛋白质、阳离子交换量等功能特点:自动的蒸馏过程,包括:稀释、加碱、蒸馏和消化管排空,操作简便可调的蒸汽发生器输出功率,拓宽了应用领域,可测定其它挥发性组分完善的监控设计,确保操作精度与安全性
  • 担心农残标准不合格?甲胺磷、甲基对硫磷等高毒农残标准现状
    目前我国农产品农药残留现状,可以用三句话来概括,即近年不断好转,总体现状较好,但仍存在隐患。具体来说,一是全国每年3-5次的农产品质量安全例行监测显示逐年好转和大为改善的结果,不仅表现于农药残留超标率逐年持续下降,已从十年前的超过50%到目前的10%以下;而且表现在残留检出值也是明显降低,十年前检出超过1 mg/kg农药残留量的蔬菜数量较多,但现已很少见,仅偶有检出超过1 mg/kg的。二是目前农产品农药残留监测合格率总体较高,如稻米和水果高达98%以上,蔬菜和茶叶也达95%以上。 三是目前农药残留状况尚不稳定,仍然存在着一些风险隐患,如南方地区或其他地区的夏季由于病虫害发生重、农药使用量大、易造成农产品农药残留超标,又如在设施反季节栽培情况下由于农药用量大并且不易降解、也易引起农药残留超标,还有随着国内外残留限量标准的提高或监测农药种类的增加、原来不超标的农产品变成了超标;特别是由于我国农业生产的产业规模太小,有众多千家万户的农民分散生产和经营,加上生产技术较为落后,基地准出和市场准入难以真正做到,造成监管更加困难。 同时,人们往往喜欢比较我国与欧美发达国家的标准。在农药残留标准数量方面,由于欧美农药管理历史长,我国农药残留的标准数量相对还比较少,因此,加快制定和完善农药残留标准是十分重要的工作。但有一点要明白,在标准的水平方面,很难比较各国残留标准的高低。从技术层面讲,各国的农业生产、农药使用情况和食物结构等不同,因此,残留标准会存在一定差异。从管理层面讲,尽管制定残留标准的主要目的是为了确保食品安全,但现在各国越来越将农药残留作为农产品国际贸易的技术壁垒,必要时进而用作政治筹码。各国农药残留标准差异还受以下几个因素的影响。一是对于本国不生产不使用的农药,往往制定最严格的标准,而本国使用的农药特别是在出口农产品上使用的农药,残留标准在安全范围内尽可能松。如美国、欧盟和日本对本国没有登记使用的农药按照一律限量标准(即0.01~0.05mg/kg)执行,而这个浓度许多发展中国家的仪器都难以检测;但是在本国登记使用的农药,即使农药毒性高,其标准却松。如美国规定高毒农药甲胺磷在芹菜上的标准为1mg/kg,花椰菜上为0.5mg/kg,日本规定芹菜上为5mg/kg,花椰菜上为1mg/kg。 二是本国没有或主要依靠进口的作物上的标准严。如氯虫苯甲酰胺是个新杀虫剂,欧盟在葡萄上的标准为1mg/kg,而在大米等粮谷上却为0.01mg/kg,茶叶上为0.02mg/kg,按理葡萄可鲜食,标准应该更高,但葡萄是欧洲的优势作物,因此制定的标准松;再如常用的杀菌剂百菌清,欧盟在直接食用的苹果、梨上标准为1mg/kg,而在大米等粮谷上却为0.01mg/kg,在茶叶上为0.1mg/kg。 三是同一作物,各国标准也不同,如安全性不很高的杀菌剂克菌丹在稻谷中的残留标准,日本是5mg/kg,欧盟为0.02mg/kg,相差100倍;又如高毒农药甲基对硫磷,日本为1mg/kg,欧盟为0.02mg/kg,相差50倍。 为了协调和统一残留标准,国际食品法典委员会负责制定农药残留国际标准,但即使有国际残留标准,大部分发达国家都执行自己的本国标准,而绝大部分发展中国家因为制定残留标准能力弱,往往只能执行国际标准。 我国是国际食品法典农药残留标准委员会的主席国,因此,我国的农药残留标准尽可能与国际食品法典标准(而不是欧美日标准)接轨,有的标准比发达国家低,但有的标准比发达国家高。 如新农药甲氧虫酰肼我国在甘蓝中的标准为2mg/kg,而美国和日本的为7mg/kg;马拉 硫磷是老农药,我国在柑橘、苹果、菜豆中的标准为2mg/kg,在糙米中为1mg/kg,在萝卜中为0.5mg/kg,均严于美国8mg/kg的标准;嗪草酮在大豆中标准为0.05mg/kg,而美国的为0.3mg/kg、欧盟和日本为0.1mg/kg的标准;常用杀菌剂噻菌灵我国在蘑菇中的标准为5mg/kg,美国为40mg/kg、欧盟10mg/kg、日本60mg/kg,分别比他们严格8、2、和12倍。 我国制定农药残留标准主要考虑安全,很少涉及贸易保护问题。由此可知,不管各国残留标准水平是否存在差异,残留标准都是根据安全风险评价而制定的,只要符合残留标准,农产品是安全的,不能用别国的标准来判断是否存在安全,不能用一国标准否定别国的标准,这缺乏科学性。因为农药残留标准是不仅仅根据安全风险评估结果来制定,也综合考虑产业发展、国际贸易等各方面因素。 如果不能确定或者过分担心农药残留标准不合格,还可以自行进行检测。 BePure专注于标准物质的研发和生产已有20多年,对于农药残留检测有着丰富的经验,满足国内检测实验室在农残领域的要求。配套的营运中心和售前售后团队保证产品品质和服务可靠快速。现在是很多政府实验室、制药企业、第三方机构和科研单位“指定供应商”。
  • 全自动乌氏粘度计在聚丙烯酸钠中的应用
    聚丙烯酸钠(PAAS),化学式为(C3H3NaO2)n,是一种新型功能高分子材料和重要化工产品,固态产品为白色或浅黄色块状或粉末,液态产品为无色或淡黄色粘稠液体。由丙烯酸及其酯类为原料,经水溶液聚合而得,无味,溶于氢氧化钠水溶液,在氢氧化钙、氢氧化镁等水溶液中沉淀。常被用作水处理剂、盐水精制及胶乳增稠,也可用作食品增粘、乳化。聚丙烯酸钠(PAAS)材料的相对分子质量因生产条件会有较大的波动,某些性质会随着相对分子质量的变化产生较大的差别,当聚丙烯酸钠(PAAS)材料相对分子量较小时,其状态为稀溶液,常用作水处理剂和油田助剂,当相对分子量增大时,聚丙烯酸钠(PAAS)材料的状态变为弹性凝胶,这时更多被用于絮凝剂或增稠剂之中。工业上使用乌氏粘度法测试特性黏度对聚丙烯酸钠(PAAS)材料加以规范,例如聚丙烯酸钠(PAAS)材料作为水处理剂时特性黏度被规定应处于(0.060~0.10dl/g,30℃)的区间之内,偏离这个范围的聚丙烯酸钠(PAAS)材料的水处理性能会大幅度下降。精准,高效的测试特性黏度是整个聚丙烯酰胺(PAAS)材料质量控制环节的重中之重。全自动乌氏粘度仪IV8000X系列具有操作方便,分子量适用范围广泛,数据重复性良好等优点,所以成为聚丙烯酸钠(PAAS)等高分子材料化验分析中的常用实验仪器,为聚丙烯酸钠(PAAS)材料的研发及生产提供更精准的实验数值参照。以杭州卓祥科技有限公司的IV8000X系列全自动在线稀释型乌氏粘度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例。 IV8000X系列全自动在线稀释型乌氏粘度仪相较于传统的手动测试方法:⑴ 拥有更高的温控精度以及均匀度:IV8000X系列乌氏粘度仪所使用的HCT系列高精度恒温浴槽的温控精度优于“±0.01℃”,让实验得出的数据更精准,数据重复性更稳定。⑵ 特殊的检测方式:采用不锈钢铠装光纤,可满足测试不同颜色的样品,耐腐蚀,且使用寿命长。⑶ 粘度管不再是耗材:仪器自动排废液、清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。⑷ 实验流程自动化:IV8000X系列自动稀释型乌氏粘度仪在 “单点法”的测量过程中能实现自动测量-自动排液-自动清洗-自动干燥的自动化实验流程,在“多点法”的测量过程中每个测量位都具有连续测量、在线自动稀释样品、自动混匀、自动清洗、自动干燥等功能,在多次测量及清洗干燥整个过程中无需人员看管。
  • 9种亚硝胺混标现货供应!更多亚硝胺混标可预订
    水中亚硝胺的检测近期引起人们关注,First Standard® 迅速推出9种亚硝胺混标,配合实验室老师开展相关项目,9种亚硝胺混标目前现货供应,随订随发!除饮用水之外,地下水,食品,玩具,化妆品,卷烟中都可能含有亚硝胺,相关标准及First Standard® 对应产品见下,详情请查看阿尔塔科技公司网站。订货信息产品名称适用标准适用范围1ST50013-2000M9种亚硝胺混标, 甲醇溶液, 2000ppmEPA 8270C Semi Volatile Organic Compounds by GAS Chromatography/MASS Spectrometry (GC/MS)水,土壤,固体废弃物GC/MS 方法测定水中半挥发性有机物1ST50028-2000L7种亚硝胺混标, 二氯甲烷溶液, 2000ppmEPA 521 Determination of Nitrosamines in Drinking Water by Solid Phase Extraction and Capillary column GAS Chromatography with Large Volume Injection and Chemical Ionization Tandem Mass Spectrometry (MS/MS)饮用水大体积固相萃取-毛细管气相色谱-化学电离串联质谱法测定饮用水中亚硝胺化合物1ST50030-2000L4种亚硝胺混标-1, 二氯甲烷溶液, 20000ppmHJ 809-2016水质 亚硝胺类化合物的测定 气相色谱法地表水、地下水、工业废水和生活污水1ST50029-200M3种亚硝胺混标, 甲醇溶液, 200ppmGB/T 5009. 26食品中亚硝胺类的测定酒类1ST50035-500L4种亚硝胺混标-2, 二氯甲烷溶液, 500ppm肉及肉制品、蔬菜、豆制品、茶叶等1ST50031-200M12种亚硝胺类混标, 200ppmEN 12868: 1999 Method for Determining the Release of N-Nitrosamines and N-Nitrosatable Substances from Elastomer or Rubber Teats and Soothers橡胶制品,儿童玩具GB/T 24153-2009橡胶及弹性体材料 N-亚硝基胺的测定1ST50034-1000L4种亚硝胺混标-3, 二氯甲烷溶液, 1000ppmGB/T 23228-2008烟草卷烟主流烟气总粒相物中烟草特有N-亚硝胺的测定气相色谱-热能分析联用法1ST4924-100L内标:N-戊基-(3-甲基吡啶基)亚硝胺 (NNPA)YC/T184-2004烟草及烟草制品烟草特有N-亚硝胺的测定1ST50032-100M10种亚硝胺混标, 甲醇溶液, 100ppmGB/T 29669-2013化妆品中N-亚硝基二甲基胺等10种挥发性亚硝胺的测定气相色谱-质谱/质谱法膏霜、散粉、唇膏
  • 解决反应中的固体,可放大的端到端三步反应全合成!
    个康宁用“心”做反应让阅读成为习惯,让灵魂拥有温度摘要莫达非尼是一种抗发作性睡病药物,用于治疗与睡眠呼吸暂停和轮班工作障碍相关的白天过度嗜睡并且无副作用或成瘾性。本文将向您介绍如何通过康宁Lab Reactor反应器无需中间纯化步骤,三步串联合成USP级莫达非尼。该工艺可以在单个串联工艺中进行,是构建端到端药物连续生产的一次非常有意义的尝试。[1]图1. 报道的典型的莫达非尼合成路线Bicherov[3]在Maurya的基础上做了改进的三步反应研究:利用硫代硫酸钠和2-氯乙酰胺制备氨甲酰甲基硫酸钠(SCS,图2)SCS与二苯甲醇反应生成 2-(苯甲酰硫代)乙酰胺中间体6中间体6氧化合成莫达非尼(图1)该合成路线,虽然避免使用昂贵的Nafion催化剂和含有巯基的试剂(有强刺激性气味)。但是产率和产能的问题依然没有很好的解决。图2. 适用于连续流技术三步合成莫达非尼研究者受到Bicherov的启发,通过仔细选择低毒性试剂和FDA3级溶剂,研究连续流反应条件。研究过程:一、初步连续流工艺研究图3. 3步连续合成流程图研究者尝试了3步连续合成莫达非尼。该工艺系统在不到6分钟内获得标准剂量莫达非尼(100毫克)。可运行1.5小时以上,产能为23克/天。经过研究3步串联基本反应条件和关键点如下:第一步:为了避免硫代硫酸钠与步骤二中甲酸反应堵塞通道,使用略微过量的2-氯乙酰胺。第二步:反应需保持中间产物6(熔点为110℃)为液体状态,实验选择115℃为反应温度。反应结束后,向反应液加入甲基丙酮(简称MEK)作为溶剂溶解反应物避免管道堵塞。在此步骤中随着反应时间变长选择性降低。第三步:在20℃使用钨酸钠作为催化剂(4 mol%),加入苯基膦酸作为稳定剂,背压7巴,反应时间大大缩短。【编者】作者利用自制微反应器可以做一些连续流反应的初步研究。为了进行更好的工艺条件优化和得到可放大的连续流工艺条件,作者使用康宁Lab反应器进行了实验。康宁反应器可以实现从实验室工艺到大生产的无缝放大,有利于迅速实现工业化生产。二、康宁Lab Reactor 三步连续合成莫达非尼利用康宁Lab反应器,研究者将第一步和第二步的停留时间减少到1分钟。在第二步反应温度调整到150°C,相较于自制微反应器,转化率从78%升高到97%,选择性也从86%增加到88%,纯度99%。采用高温进料方式,可以解决反应过程中的固体析出的难题。康宁反应器可以精确控制反应条件,如物料比和温度,最大程度上减少副产物的生成。图4. 康宁Lab Reactor连续流工艺流程图最终三步合成工艺:第一步:将2-氯乙酰胺和硫代硫酸钠溶液注入康宁Lab Reactor第一个模块,停留时间为1分钟。反应液与二苯甲醇甲酸溶液在第二单元模块混合,反应物流经第三单元模块保持温度150℃,停留时间为1 分钟。第二步:第一步输出溶液连接到Y型混合器与甲基丙酮混合。输出溶液进入第四个Lab Reactor模块。泵入钨酸钠(4 mol%)、苯基膦酸(4.5 mol%)和1.5当量的15%过氧化氢溶液,反应温度20℃,停留时间1.25分钟。Zaiput背压阀背压7巴。冰浴收集粗品,搅拌后通过饱和碳酸钠水溶液来溶解羧酸副产物,用甲基叔丁基醚(MTBE)清洗固体,去除剩余的中间体6,通过HPLC-DAD分析。获得77%的总收率,纯度99 %,符合USP要求。同时,研究者在选用溶剂的时候考虑了毒性问题,选择的都是符合FDA要求的低毒性溶剂。还从经济可行性考虑测算了成本,最后测算结果每片莫达非尼的成本为0.03欧元(每片100毫克)。较Maurya合成法成本7.30欧元相比降低了200多倍。结果与讨论本文报告的工艺展示了流动化学在合成领域的优势:反应时间短,可以精确地控制反应量,以减少杂质的形成,提高再现性;应用康宁AFR反应器串联在3分钟内即可完成整个3步反应,中间产物6的输出量为17.8克/小时,莫达非尼的输出量为5.3克/小时,纯度99%;该三步连续流工艺比目前任何工业化工艺E因子都低。不仅选用的溶剂环保而且产生副产物也是无害的(例如NaCl、NaHSO4);康宁反应器无缝放大的特性有助于未来实现连续工业化生产;药物端到端的多步合成的连续化,为药物的智能制造打开了大门。参考文献:[1]Green Chem., 2022,24, 2094-2103[2]Green Chem.,2017, 19, 629–633.[3]Chem. Bull., 2010, 59, 91–101.
  • CEM Discover 2.0:微波技术下的惰性反应环境
    01 引言 微波加热技术在众多合成转化中得到了应用,这些转化包括纳米材料组装、聚合反应以及小分子合成。1-3几乎任何传统的加热转化都可以适应微波辐射,包括那些使用敏感的合成单元和过渡金属催化剂的反应。4微波加热的好处包括减少废物产生、提高产品纯度以及缩短反应时间。图1:从二苄基取代的醛亚胺(或二苯甲酮取代的酮亚胺)生成2-氮杂烯丙基阴离子微波辐射所带来的提高的反应速率使得快速反应优化和化合物库筛选成为可能。当与自动进样器配件配合使用时,如 CEM 的 Discover® 2.0 配备 12 位或 48 位自动进样器,可以同时准备多个实验并排队依次运行,从而进一步提高了生产效率。然而,对于使用敏感试剂的实验来说,自动进样器的成功应用依赖于反应容器在排队等待和反应后保持惰性气氛的能力。为了证明 Discover® 2.0 的 10 毫升和 35 毫升容器保持惰性气氛的能力,进行了一项使用2-氮杂烯丙基阴离子的研究。2-氮杂烯丙基阴离子是通过二苄基取代的醛亚胺(和二苯甲酮取代的酮亚胺)去质子化生成的(图1),由于其在胺组装中的实用性而受到了广泛关注。5-8 形成后,2-氮杂烯丙基阴离子呈现出鲜艳的颜色(通常是紫色),并且在淬灭后变为无色透明(图2)。这种显著的颜色变化使得可以方便地观察容器的气氛条件。图2:2-氮杂烯丙基阴离子溶液在形成时呈现鲜艳的颜色(通常为紫色),在淬灭后变为无色透明 02 材料与方法 试剂双(三甲基硅基)氨基钾(KHMDS)和无水四氢呋喃(THF)均购自西格玛奥德里奇(Sigma Aldrich,密苏里州圣路易斯)。α-苯基-N-(亚苄基)苯甲胺(醛亚胺)根据已建立的文献步骤制备5,所用到的二苄胺、苯甲醛、硫酸钠、二氯甲烷和己烷均购自西格玛奥德里奇(Sigma Aldrich,密苏里州圣路易斯)。程序5暴露于大气中在预热至 180°C 的干燥 10 毫升反应容器中,配备搅拌磁子,加入α-苯基-N-(亚苄基)苯甲胺(亚胺,27.1毫克,0.100毫摩尔,1.00等量)和双(三甲基硅基)氨基钾(KHMDS, 21.9毫克,0.110毫摩尔,1.10等量)。然后,向反应容器中加入无水四氢呋喃(THF, 2.0毫升),并将溶液在室温下搅拌,直至深紫色溶液变为无色(使用35毫升反应容器的实验操作相同,但反应规模加倍)。穿刺硅胶帽在预热至 180°C 的干燥 10 毫升反应容器中,配备搅拌磁子,加入α-苯基-N-(亚苄基)苯甲胺(亚胺,27.1毫克,0.100毫摩尔,1.00等量)和双(三甲基硅基)氨基钾(KHMDS, 21.9毫克,0.110毫摩尔,1.10等量)。然后,用一个带有聚四氟乙烯衬垫的硅胶帽密封小瓶,并用氮气冲洗。迅速用一个新的、未被针刺的聚四氟乙烯衬垫硅胶帽替换原来的帽子,并通过注射器(20G)向反应容器中加入无水四氢呋喃(THF, 2.0毫升)。将溶液在室温下搅拌,直至深紫色溶液变为无色(使用35毫升反应容器的实验操作相同,但反应规模加倍)。未穿刺的硅胶帽在预热至 180°C 的干燥 10 毫升反应容器中,配备搅拌磁子,加入α-苯基-N-(亚苄基)苯甲胺(亚胺,27.1毫克,0.100毫摩尔,1.00等量)和双(三甲基硅基)氨基钾(KHMDS, 21.9毫克,0.110毫摩尔,1.10等量)。然后,用一个带有聚四氟乙烯衬垫的硅胶帽密封小瓶,并用氮气冲洗。在氮气冲洗的同时,通过注射器向反应容器中加入无水四氢呋喃(THF, 2.0毫升),并迅速用一个新的、未被针刺的聚四氟乙烯衬垫硅胶帽替换原来的帽子。将溶液在室温下搅拌,直至深紫色溶液变为无色(使用35毫升反应容器的实验操作相同,但反应规模加倍)。带穿刺硅胶帽的微波加热在预热至 180°C 的干燥 10 毫升反应容器中,配备搅拌磁子,加入α-苯基-N-(亚苄基)苯甲胺(亚胺,27.1毫克,0.100毫摩尔,1.00等量)和双(三甲基硅基)氨基钾(KHMDS, 21.9毫克,0.110毫摩尔,1.10等量)。然后,用一个带有聚四氟乙烯衬垫的硅胶帽密封小瓶,并用氮气冲洗。迅速用一个新的、未被针刺的聚四氟乙烯衬垫硅胶帽替换原来的帽子,并通过注射器(20G)向反应容器中加入无水四氢呋喃(THF, 2.0毫升)。然后将容器放入Discover 2.0微波腔体中,将溶液加热至 100°C。加热 20分 钟后,让溶液冷却至室温并继续搅拌,直至深紫色溶液变为无色(使用 35 毫升反应容器的实验操作相同,但反应规模加倍)。未穿刺硅胶帽的微波加热在预热至 180°C 的干燥 10 毫升反应容器中,配备搅拌磁子,加入α-苯基-N-(亚苄基)苯甲胺(亚胺,27.1毫克,0.100毫摩尔,1.00等量)和双(三甲基硅基)氨基钾(KHMDS, 21.9毫克,0.110毫摩尔,1.10等量)。然后,用一个带有聚四氟乙烯衬垫的硅胶帽密封小瓶,并用氮气冲洗。在氮气冲洗的同时,通过注射器向反应容器中加入无水四氢呋喃(THF, 2.0毫升),并迅速用一个新的、未被针刺的聚四氟乙烯衬垫硅胶帽替换原来的帽子。然后将容器放入 Discover® 2.0 微波腔体中,将溶液加热至 100°C。加热 20 分钟后,让溶液冷却至室温并继续搅拌,直至深紫色溶液变为无色(使用35毫升反应容器的实验操作相同,但反应规模加倍)。03 结果2-氮杂烯丙基阴离子溶液在形成后 4-6 分钟内暴露于大气中搅拌时会被淬灭。正如所预期的,当2-氮杂烯丙基阴离子溶液在惰性气氛(无水无氧)下搅拌时,2-氮杂烯丙基阴离子的寿命大大延长(表1)。虽然使用了穿刺硅胶帽,但在室温下,35 毫升容器中的2-氮杂烯丙基阴离子持续了 1 小时,而在 10 毫升容器中则持续了 4 小时。在 100°C 加热 20 分钟后,使用穿刺硅胶帽的两个容器都能够使2-氮杂烯丙基阴离子溶液维持更长时间:35 毫升容器为 1.5 小时,而 10 毫升容器则超过 6 小时。当使用未穿刺的硅胶帽时,尤其成功,无论加热程序和容器大小如何,2-氮杂烯丙基阴离子都被维持了 6 小时以上。表1:不同大气和温度条件下2-氮杂烯丙基阴离子的寿命实验微波加热时间阴离子猝灭:10 ml 容器阴离子猝灭:35 ml 容器暴露于大气中N/A6 min4 min穿刺硅胶盖N/A4 h1 h未穿刺硅胶盖N/A6+ h6+ h穿刺硅胶盖+微波20 min,100℃6+ h1.5 h未穿刺硅胶盖+微波20 min,100℃6+ h6+ h04 结论Discover® 2.0 10 毫升和 35 毫升容器能够维持惰性气氛超过 6 小时。虽然使用穿刺硅胶帽的容器在室温下静置和/或搅拌时可能会降低效果,但在微波辐射后,这种影响被抵消了。然而,使用未穿刺硅胶帽的容器能够保持敏感合成子和试剂的寿命,无论加热程序如何。这种能力促进了敏感反应条件与自动进样技术的配合使用,从而提高了工作流程效率和生产力。参考文献(1)Zhu, Y.-J. Chen, F. Chem. Rev. 2014, 114, 6462–6555.(2)Kempe, K. Becer, C. R. Schubert, U. S. Macromolecules 2011, 44, 5825–5842.(3)Hayes, B. L. Aldrichimica ACTA 2004, 37, 66–76.(4)Lahred, M. Moberg, C. Hallberg, A. Acc. Chem. Res. 2002,35, 717–727.(5)Li, K. Weber, A. E. Malcolmson, S. J. Org. Lett. 2017, 19,4239–4242.(6)Wu, Y. Hu, L. Li, Z. Deng, L. Nature 2015, 523, 445–450.(7)Zhu, Y. Buchwald, S. L. J. Am. Chem. Soc. 2014, 136,4500–4503.(8)Chen, Y.-J. Seki, K. Yamashita, Y. Kobayashi, S. J. Am.Chem. Soc. 2010, 132, 3244–3245.
  • 三聚氰胺HPLC检测方法之固相萃取(SPE)法
    1. 依据:GB/T 22388&mdash 2008 2. 原理:试样用三氯乙酸溶液-乙腈提取,经阳离子交换固相萃取柱净化后,用高效液相色谱测定,外标法定量。 3. 试剂与材料:除非另有说明,所有试剂均为分析纯,水为GB/T 6682规定的一级水。 3.1甲醇:色谱纯; 3.2乙腈:色谱纯; 3.3氨水:含量为25%~28%; 3.4三氯乙酸; 3.5柠檬酸。 3.6辛烷磺酸钠:色谱纯; 3.7甲醇水溶液:准确量取50 mL 甲醇和50 mL 水,混匀后备用; 3.8三氯乙酸溶液(1%):准确称取10 g 三氯乙酸于1 L 容量瓶中,用水溶解并定容至刻度,混匀后备用; 3.9氨化甲醇溶液(5%):准确量取5 mL 氨水和95 mL 甲醇,混匀后备用; 3.10离子对试剂缓冲液:准确称取2.10 g 柠檬酸和2.16 g 辛烷磺酸钠,加入约980 mL 水溶解,调节pH 至3.0 后,定容至1L 备用。 3.11三聚氰胺标准品:CAS 108-78-01,纯度大于99.0%; 3.12三聚氰胺标准储备液:准确称取100 mg(精确到0.1 mg)三聚氰胺标准品于100 mL 容量瓶中,用甲醇水溶液(3.7)溶解并定容至刻度,配制成浓度为1 mg/mL 的标准储备液,于4℃避光保存。 3.13 阳离子交换固相萃取柱:混合型阳离子交换固相萃取柱,基质为苯磺酸化的聚苯乙烯-二乙烯基苯高聚物,60 mg,3 mL,或相当者。 3.14 定性滤纸。 3.15 微孔滤膜:0.2 &mu m,有机相。 3.16 氮气:纯度大于等于99.999% 4. 仪器和设备 4.1 高效液相色谱(HPLC)仪:配有紫外检测器或二极管阵列检测器。 4.2 分析天平:感量为0.00001 g和0.01 g。 4.3 离心机:转速不低于10000 r/min。 4.4 天津恒奥超声波提取器。HS,HU系列 4.5 天津恒奥固相萃取装置。HSE-12D 4.6 天津恒奥氮吹仪。HGC,HSC系列 4.7 天津恒奥涡旋振荡器。HMS-350 4.8 天津恒奥真空泵。HPD-25 4.9 天津恒奥精密气体稳流调节阀。 4.10 具塞塑料离心管:50 mL。 5. 样品处理 5.1 提取 称取(液态奶、奶粉、酸奶、冰淇淋和奶糖等)2 g(精确至0.01 g)试样于50 mL具塞塑料离心管中,加入15 mL三氯乙酸溶液(3.8)和5 mL乙腈,超声提取10 min,再振荡提取10 min后,以不低于10000 r/min离心30 min。上清液经三氯乙酸溶液润湿的滤纸过滤后,用三氯乙酸溶液定容至25 mL,移取5 mL滤液,加入5 mL水混匀后做待净化液。 注:若样品中脂肪含量较高,可以用三氯乙酸溶液饱和的正己烷液-液分配除脂后再用SPE柱净化。 5.2 活化 依次用3 mL 甲醇、5 mL 水活化(3.13)阳离子交换固相萃取柱。旋转固相萃取装置前的精密气体稳流调节阀使洗液流速不超过1 mL/min 5.3 上样 将5.1中的待净化液转移至固相萃取柱(5.2)中。 5.4 淋洗 依次用3 mL水和3 mL甲醇洗涤,抽至近干后, 5.5 洗脱 用6 mL氨化甲醇溶液(3.9)洗脱,用试管收集洗脱液。整个固相萃取过程流速不超过1 mL/min。5.6 浓缩 洗脱液于50℃下用氮气吹干,残留物(相当于0.4 g样品)用1 mL流动相定容,涡旋混合1 min,过微孔滤膜后,供HPLC测定。 6. 高效液相色谱测定 HPLC 参考条件 a) 色谱柱:C8柱,250 mm× 4.6 mm(i.d.),5 &mu m,或相当者; C18柱,250 mm× 4.6 mm(i.d.),5 &mu m,或相当者。 b) 流动相:C8柱,离子对试剂缓冲液(3.2.10)-乙腈(85+15,体积比),混匀。 C18柱,离子对试剂缓冲液(3.2.10)-乙腈(90+10,体积比),混匀。 c) 流速:1.0 mL/min。 d) 柱温:40℃。 e) 波长:240 nm。 f) 进样量:20 &mu L。 7. 分析 用GB/T 22388&mdash 2008标准检测方法分析,使用天津恒奥的设备测得样品的回收率结果如下: 添加水平(mg/Kg) 回收率 空白 2 116% 4 108% 6 92% 8 96% 由上表可以看出:使用天津恒奥设备处理样品,不仅可以提高分析样品的速度而且还可以得到满意的回收率。
  • USP亚硝胺新通则<1469>大局已定,来了解一下吧
    美国药典(USP)拟定新通则NITROSAMINE IMPURITIES,用于对制药行业可能存在亚硝胺杂质进行风险评估和控制。该标准的目的是为控制亚硝胺杂质、消除或减少亚硝胺杂质在药物产品中的存在提供一种基于科学的方法。目前该通则已结束修订,预计今年下半年正式出版。 建议相关的原料药/制剂/辅料生厂商和供应商、合同制生产组织、药品检测和监管机构、QA/QC专家参考该通则。 USP与FDA亚硝胺杂质指南基本一致,并且都主张采用基于风险的方法进行评估。USP确定的应在药品中检测的六种亚硝胺包括:N-亚硝基二甲胺(NDMA)、N-亚硝基二乙胺(NDEA)、N-亚硝基二异丙胺(NDIPA)、N-亚硝基乙基异丙胺(NEIPA)、N-亚硝基二丁胺(NDBA)和N-亚硝基甲基氨基丁酸(NMBA)。USP 清单与 FDA 清单的不同之处在于 FDA 清单中的化合物N-亚硝基甲基苯胺(NMPA)不在 USP 清单中。 与FDA一样,USP要求对潜在的亚硝胺进行风险评,在风险评估中应充分考虑可能引入亚硝胺的所有潜在来源,包括:原料药工艺过程:原料、试剂、溶剂、加工助剂等原料药降解物溶剂降解物来自于原料、溶剂(回收溶剂)、试剂、催化剂的杂质来自于中间体和中间体生产带来的杂质来自于水、辅料、加工助剂的杂质制剂加工或包装材料引入或产生的杂质 亚硝胺杂质的产生机理 此外USP还遵循 FDA 指南,确保药物中的亚硝胺杂质每日摄入量不超过可接受摄入量(Acceptable Intake,简称AI)。FDA 规定 NDMA 和 NMBA 的AI为 96 ng/day,NDEA、NMPA、NIPEA 和 NDIPA 的AI为 26.5 ng/day。再结合药品活性成分的每日最大服用剂量(Maximum Daily Dose,简称MDD)确定亚硝胺杂质的在该药品中的(浓度)限度(AI/MDD)。 通则要求单个亚硝胺杂质不超过AI对应的限度,同时对检出浓度超过LOQ但不超过AI对应限度的多个杂质需咨询权威机构。笔者注:建议参考FDA的要求。 为了帮助供应商更好地检测亚硝胺杂质,USP提出了四种分析方法,生产商可以使用这些方法来检测其产品中是否存在亚硝胺。 与EP 2.5.42仅限于原料药不同,USP 适用于原料药以及制剂,同时要求生厂商对辅料、制剂生产工艺、包装系统做评估。下表简单列出二者的差异,供读者参考。 岛津可以为客户提供USP通则中的所有4种方法: 关于USP方法2,原文“Procedure 2: Quantitation of NDMA, NDEA, NDIPA, and NEIPA in selected sartans by GC–MS”,其实看接下来的条件,我们发现分析条件:“Injector: Headspace”,“Acquisitionmode:multiple reaction mode (MRM)”,顶空进样+MRM质谱模式,其实是HS+GC-MS/MS。 应用案例1岛津海外应用工程师参考USP方法2,对氯沙坦中的亚硝胺杂质进行了研究,在第二法适用的4种亚硝胺(NDMA、NDEA、NDiPA、NEiPA)进行了扩充,增加NDBA、NDPA和NMPrZ。设定MDD为880mg/day,计算代表性的亚硝胺杂质限度,如下表: 使用岛津HS-20和GC-MS/MS对方法进行研究,考察线性、准确度(回收率)、LOQ等参数,结果如下:实验结果表明,岛津仪器性能超越了USP通则方法的要求,并且扩充了方法的适用范围,可以为制药企业风险评估提供精准的帮助! 应用案例2参考方法3,使用岛津三重四极杆液质联用仪对奥美沙坦制剂中的六种亚硝胺(NDMA、NDEA、NDIPA、NDBA、NEIPA和NMBA)进行检测。 0.1ng/mL亚硝胺的MRM质量色谱图 数据展示:0.1 ng/mL 标准溶液的MRM色谱图如上图(该浓度是FDA要求的定量限值的 1/10)。在0.1 - 10 ng/mL浓度范围内的线性系数0.99,该浓度范围内的精密度在80 - 120%,结果优异。 更多应用信息请联络岛津工作人员!
  • 解读《关于假肠膜明串珠菌等28种“三新食品”的公告》
    一、新食品原料假肠膜明串珠菌(Leuconostoc pseudomesenteroides)属于明串珠菌属,从传统发酵乳制品中分离得到。该菌种已被列入欧洲食品安全局资格认定(QPS)名单的推荐生物制剂列表以及国际乳品联合会公报(BulletinoftheIDF514/2022)的“在发酵食品中证明安全的微生物品种目录”,并在丹麦、加拿大、韩国等国家已被批准使用。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对假肠膜明串珠菌的安全性评估材料进行审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。该菌种的使用范围包括发酵乳、风味发酵乳、干酪、发酵型含乳饮料和乳酸菌饮料(非固体饮料),不包括婴幼儿食品。该原料的食品安全指标须符合以下规定:铅(以Pb计,干基计)≤1.0 mg/kg,总砷(以As计,干基计)≤1.5 mg/kg,微生物限量为沙门氏菌0/25 g(mL),金黄色葡萄球菌0/25 g(mL),单核细胞增生李斯特氏菌0/25 g(mL)。待食品加工用菌种制剂的食品安全国家标准发布后,按照食品加工用菌种制剂的标准执行。二、食品添加剂新品种(一)聚天冬氨酸钾1.背景资料。聚天冬氨酸钾申请作为食品添加剂新品种。本次申请用于葡萄酒(食品类别15.03.01)。美国食品药品管理局、欧盟委员会、澳大利亚和新西兰食品标准局允许其作为食品添加剂用于葡萄酒。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量“不作具体规定”。2.工艺必要性。该物质作为稳定剂和凝固剂用于葡萄酒(食品类别15.03.01),改善产品稳定性。其质量规格按照公告的相关要求执行。(二)氨基肽酶1.背景资料。米曲霉(Aspergillus oryzae)来源的氨基肽酶申请作为食品工业用酶制剂新品种。法国食品安全局、丹麦兽医和食品局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化蛋白质氨基端氨基酸的水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(三)蛋白酶1.背景资料。李氏木霉(Trichoderma reesei)来源的蛋白酶申请作为食品工业用酶制剂新品种。丹麦兽医和食品局、法国食品安全局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化蛋白水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(四)磷脂酶A21.背景资料。李氏木霉(Trichoderma reesei)来源的磷脂酶A2申请作为食品工业用酶制剂新品种。美国食品药品管理局允许其用于食品。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化磷脂的水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(五)麦芽糖淀粉酶1.背景资料。酿酒酵母(Saccharomyces cerevisiae)来源的麦芽糖淀粉酶申请作为食品工业用酶制剂新品种。澳大利亚和新西兰食品标准局允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化淀粉的水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(六)木聚糖酶1.背景资料。地衣芽孢杆菌(Bacillus licheniformis)来源的木聚糖酶申请作为食品工业用酶制剂新品种。美国食品药品管理局、法国食品安全局、丹麦兽医和食品局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化木聚糖水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(七)乳糖酶(β-半乳糖苷酶)1.背景资料。Papiliotrema terrestris来源的乳糖酶(β-半乳糖苷酶)申请作为食品工业用酶制剂新品种。丹麦兽医和食品局、澳大利亚和新西兰食品标准局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化乳糖水解和转糖基反应。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(八)羧肽酶1.背景资料。米曲霉(Aspergillus oryzae)来源的羧肽酶申请作为食品工业用酶制剂新品种。法国食品安全局、丹麦兽医和食品局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化蛋白质羧基端氨基酸的水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(九)脱氨酶1.背景资料。米曲霉(Aspergillus oryzae)来源的脱氨酶申请作为食品工业用酶制剂新品种。美国食品药品管理局、日本厚生劳动省允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化5’-腺嘌呤核苷酸(5’-AMP)的水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(十)2-己基吡啶1.背景资料。2-己基吡啶申请作为食品用香料新品种。美国食用香料和提取物制造者协会、国际食品用香料香精工业组织、欧盟委员会等允许其作为食品用香料在各类食品中按生产需要适量使用。2.工艺必要性。该物质配制成食品用香精后用于各类食品(《食品安全国家标准食品添加剂使用标准》表B.1食品类别除外),改善食品的味道。该物质的质量规格按照公告的相关内容执行。(十一)富马酸1.背景资料。富马酸作为酸度调节剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于胶基糖果、面包、糕点、果蔬汁(浆)类饮料等食品类别,本次申请扩大使用范围用于腌腊肉制品类(如咸肉、腊肉、板鸭、中式火腿、腊肠)(食品类别08.02.02),熏、烧、烤肉类(食品类别08.03.02),油炸肉类(食品类别08.03.03),肉灌肠类(食品类别08.03.05),冷冻挂浆制品(食品类别09.02.02),经烹调或油炸的水产品(食品类别09.04.02),熏、烤水产品(食品类别09.04.03)。美国食品药品管理局、日本厚生劳动省、加拿大卫生部等允许其作为酸度调节剂用于食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量“不作具体规定”。2.工艺必要性。该物质作为酸度调节剂用于上述食品类别,调节食品的酸碱度。其质量规格执行《食品安全国家标准 食品添加剂 富马酸》(GB 25546)。(十二)乙酸钠(又名醋酸钠)1.背景资料。乙酸钠作为酸度调节剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于复合调味料和膨化食品的食品类别,本次申请扩大使用范围用于腌腊肉制品类(如咸肉、腊肉、板鸭、中式火腿、腊肠)(食品类别08.02.02),熏、烧、烤肉类(食品类别08.03.02),油炸肉类(食品类别08.03.03),肉灌肠类(食品类别08.03.05),冷冻挂浆制品(食品类别09.02.02),经烹调或油炸的水产品(食品类别09.04.02),熏、烤水产品(食品类别09.04.03)。美国食品药品管理局、日本厚生劳动省、加拿大卫生部等允许其作为酸度调节剂用于食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量“不作具体规定”。2.工艺必要性。该物质作为酸度调节剂用于上述食品类别,调节食品的酸碱度。其质量规格执行《食品安全国家标准 食品添加剂 乙酸钠》(GB 30603)。(十三)环己基氨基磺酸钠(又名甜蜜素)1.背景资料。环己基氨基磺酸钠(又名甜蜜素)作为甜味剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于冷冻饮品、果酱、面包、糕点、饮料类、果冻等食品类别。本次申请扩大使用范围用于焙烤食品馅料及表面用挂浆(仅限焙烤食品馅料)(食品类别07.04)和膨化食品(食品类别16.06)。国际食品法典委员会允许其作为甜味剂用于焙烤制品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为0-11 mg/kg bw。2.工艺必要性。该物质作为甜味剂用于焙烤食品馅料及表面用挂浆(仅限焙烤食品馅料)(食品类别07.04)和膨化食品(食品类别16.06),赋予食品甜味。其质量规格执行《食品安全国家标准 食品添加剂 环己基氨基磺酸钠(又名甜蜜素)》(GB 1886.37)。(十四)维生素E1.背景资料。维生素E作为抗氧化剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于油炸面制品、方便米面制品、复合调味料、膨化食品等食品类别。本次申请扩大使用范围用于面糊(如用于鱼和禽肉的拖面糊)、裹粉、煎炸粉(食品类别06.03.02.04)。美国食品药品管理局、日本厚生劳动省等允许其作为抗氧化剂用于食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为0.15-2 mg/kg bw。2.工艺必要性。该物质作为抗氧化剂用于面糊(如用于鱼和禽肉的拖面糊)、裹粉、煎炸粉(食品类别06.03.02.04),减缓食品氧化褪色。其质量规格执行《食品安全国家标准 食品添加剂 维生素E》(GB 1886.233)。(十五)聚二甲基硅氧烷及其乳液1.背景资料。聚二甲基硅氧烷及其乳液作为食品工业用加工助剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于肉制品、啤酒、焙烤食品、饮料、薯片等加工工艺。本次申请扩大使用范围用于胶原蛋白肠衣加工工艺。澳大利亚和新西兰食品标准局等允许其作为食品工业用加工助剂用于食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为0-1.5 mg/kg bw。2.工艺必要性。该物质作为食品工业用加工助剂用于胶原蛋白肠衣加工工艺,消除胶原蛋白肠衣加工过程中产生的泡沫。其质量规格执行《食品安全国家标准 食品添加剂 聚二甲基硅氧烷及其乳液》(GB 30612)。(十六)硬脂酸镁1.背景资料。硬脂酸镁作为乳化剂、抗结剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于蜜饯凉果类、可可制品、巧克力和巧克力制品以及糖果的食品类别。本次申请作为食品工业用加工助剂用于泡腾片压片工艺。美国食品药品管理局、澳大利亚和新西兰食品标准局等允许其作为食品工业用加工助剂用于食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量“不作具体规定”。2.工艺必要性。该物质作为食品工业用加工助剂用于泡腾片压片工艺,可减少压制泡腾片过程中物料与模具表面的摩擦力,使片面光滑,避免出现裂片。其质量规格执行《食品安全国家标准 食品添加剂 硬脂酸镁》(GB 1886.91)。三、食品相关产品新品种(一)环己胺封端的1,1'-亚甲基二(4-异氰酸基环己烷)均聚物1.背景资料。该物质常温下为淡黄绿色粉末,不溶于水、乙醇和丙酮,可溶于氯仿。欧盟委员会和日本厚生劳动省均允许该物质用于食品接触用PCN塑料材料及制品。2.工艺必要性。该物质用作PCN材料的添加剂,可以提高其抗冲击性。(二)2-[2-(2,4-二氨基-6-羟基-5-嘧啶)二氮烯基]-5-甲基苯磺酸1.背景资料。该物质在常温下为黄色粉末,微溶于水。美国食品药品管理局和日本化学研究检验所均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性。该物质是一种黄色着色剂,在各类塑料中具有较高的着色力。(三)丙烯酰胺与甲基丙烯酰氧乙基三甲基氯化铵、衣康酸和N,N'-亚甲基双丙烯酰胺的共聚物1.背景资料。该物质常温下为浅黄色液体,可溶于水。美国食品药品管理局和德国联邦风险评估研究所均允许该物质用于食品接触用纸和纸板材料及制品。2.工艺必要性。该物质作为干强剂用于食品接触用纸和纸板材料及制品,可增强纸张的拉伸强度、内结合强度和耐破强度。(四)β-(3,5-二叔丁基-4-羟基苯基)丙酸十八醇酯1.背景资料。该物质常温下为白色结晶性粉末,不溶于水。《食品安全国家标准 食品接触材料及制品用添加剂使用标准》(GB 9685-2016)已批准该物质作为添加剂用于食品接触用橡胶、油墨、黏合剂以及聚乙烯(PE)、聚丙烯(PP)和聚苯乙烯(PS)等多种塑料材料及制品。本次申请将其使用范围扩大至涂料及涂层。欧洲委员会、日本厚生劳动省和南方共同市场均允许其用于食品接触用涂料及涂层。2.工艺必要性。该物质是一种抗氧化剂,用于涂料时,可避免环境中的氧气和其他化学物质导致的降解;也可用于涂布过程,避免涂膜收缩起皱。(五)萘磺酸与甲醛聚合物的钠盐1.背景资料。该物质常温下为淡黄棕色粉末,可溶于水。GB 9685-2016已批准该物质作为添加剂用于食品接触用涂料及涂层、黏合剂以及纸和纸板。本次申请将其使用范围扩大至丙烯腈-丁二烯-苯乙烯共聚物(ABS)塑料材料及制品。美国食品药品管理局和德国联邦风险评估研究所均允许该物质用于食品接触用ABS塑料材料及制品。2.工艺必要性。该物质作为乳化剂用于ABS塑料材料及制品,可减少凝结物的形成。(六)C1~C18单、多元脂肪醇的脂肪酸酯1.背景资料。该物质在常温下为白色固体。GB 9685-2016已批准该物质作为添加剂用于食品接触用纸和纸板材料及制品。本次申请将其使用范围扩大至食品接触用塑料材料及制品。美国食品药品管理局、欧盟委员会、日本厚生劳动省和南方共同市场均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性。该物质能够改善加工过程中塑料材料的流动性,提高整体加工速度或改善表面性能。(七)二氯二甲基硅烷与二氧化硅的反应产物1.背景资料。该物质为白色粉末,不溶于水。GB 9685-2016、原国家卫生计生委2017年第9号公告和国家卫生健康委2018年第11号公告中已批准该物质作为添加剂用于食品接触用聚对苯二甲酸乙二酯(PET)、PP和聚偏氟乙烯(PVDF)等多种塑料材料及制品和涂料及涂层。本次申请将其使用范围扩大至食品接触材料及制品用黏合剂和油墨。欧盟委员会和日本厚生劳动省允许该物质用于食品接触材料及制品用黏合剂;瑞士联邦食品安全和兽医办公室和欧洲油墨协会均允许该物质用于食品接触材料及制品用油墨。2.工艺必要性。该物质用作黏合剂的消泡剂,利于黏合剂的生产及使用;用作油墨的分散剂,达到提高粘度的效果。(八)一氧化碳-乙烯-丙烯三元聚合物1.背景资料。该物质在常温下为白色固态颗粒,不溶于水。美国食品药品管理局和欧盟委员会均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性。该物质主要用于复合包装,具有较高的阻隔性能,可有效阻隔氧气渗透,防止内容物氧化。(九)4-乙基苯酚与间甲酚、对甲酚、对叔丁基苯酚和甲醛的聚合物1.背景资料。该物质常温下为深琥珀色固体,不溶于水,溶解于醇类、酮类溶剂。欧洲委员会和美国食品药品管理局均允许该物质用于食品接触用涂料及涂层。2.工艺必要性。该物质为涂料的主要成膜物质,可增加涂层的柔韧性和延展性。(十)乙二醇与2,2-二甲基-1,3-丙二醇、对苯二甲酸、间苯二甲酸、己二酸和衣康酸的聚合物1.背景资料。该物质常温下为透明固体,不溶于水,可溶于酯类溶剂。欧洲委员会和日本厚生劳动省均允许该物质用于食品接触用涂料及涂层;南方共同市场和日本黏合剂行业协会均允许该物质用于食品接触材料及制品用黏合剂。2.工艺必要性。以该物质为原料生产的涂料具有较高的表面张力,可提升涂层的防污性能;以该物质为原料生产的黏合剂则具有较高密封强度和易揭等性能。(十一)间苯二甲酸与间苯二甲胺和己二酸的聚合物1.背景资料。该物质常温下为无色透明颗粒,不溶于水。国家卫生健康委2022年第2号公告已批准该物质用于食品接触用塑料材料及制品,使用温度不得超过100℃,本次申请将其使用温度限值提高至121℃。欧盟委员会和日本厚生劳动省均允许该物质在使用温度不超过121℃时用于食品接触用塑料材料及制品。2.工艺必要性。以该物质为原料生产的塑料薄膜,具有良好的氧气阻隔性能、热稳定性能和热成型性能。
  • ​【诺华新案例】重氮-叠氮-环合,三步全连续制备药物中间体
    欢迎您关注“康宁反应器技术”微信公众号,点击图片报名一、早期药物发现一个自身免疫性疾病的治疗药物发现项目中,2H-吲唑类化合物被鉴定为高效的选择性TLR 7/8拮抗剂。在先导化合物发现阶段,化合物12被确定可进一步进行体内药效实验研究。图1. 微克级样品的合成路线药物的早期发现使得化合物12和作为关键中间体的化合物5(2H-吲唑)的需求迅速增加。项目团队认识到,该微克级的合成路线可能会在进一步批量放大中产生问题。分离不稳定、潜在危险的叠氮化物中间体4及其在热环化为2H-吲唑5的工艺过程中有安全性的隐患。【考虑到连续工艺在处理高活性、不稳定化合物方面具有的优势,从间歇反应切换到连续流工艺的多个驱动因素中,安全性是最重要的一个因素。在需要快速合成化合物的早期临床前阶段,流动化学作为一种新技术可以大大加快开发过程。】二、连续流工艺探讨针对100克及以上规模的合成,团队启动了流动化学的工艺研究,其主要目标是保持反应体积尽可能小,精确控制反应条件,并避免在任何时间内反应混合物中危险且不稳定中间体的积累。1. 间歇式工艺的连续流技术评估图2. 2H-吲唑类化合物5a的三步合成将氨基醛2a转化为叠氮化物4a,间歇式工艺采用了在酸性条件下使用亚硝酸钠的重氮化方案,然后在0°C下添加叠氮化钠。该反应通常在三氟乙酸(TFA)作为酸性介质和溶剂的存在下进行,可以获得高收率的结果,并常规用于小规模合成。【但含有叠氮化物4a的反应混合物形成的悬浊液明显不适合流动化学筛选。而当该反应在水和盐酸的混合物中进行时,观察到明显较低的产率和大量副产物的形成。考虑到下一步反应,叠氮化合物4与氨基哌啶化合物6在Cu(I)催化的热环化反应仍然面临不适合连续流工艺的固体溶解问题。】研究团队首先需要找到合适的反应溶剂和试剂,对这两步反应来说,合适的溶剂既要溶解所有的物料,又要保持高的转化率。其次,作为另一个重点考虑的事项,需要避免叠氮化合物中间体4的分离。2. 叠氮化合物4a生成的连续流工艺开发 1)溶剂的选择研究者首先用亚硝酸叔丁酯和三甲基叠氮硅烷来代替无机物亚硝酸钠和叠氮化钠,但仅得到了20%的转化率。接着,研究者发现利用二氯乙烷和水的两相混合溶剂与三氟乙酸组合,可以将反应体系中的物质完全溶解,并得到了很高的转化率。而其它酸的应用,如乙酸、盐酸、硫酸和四氟硼酸等,仍会造成沉淀的生成或者反应的转化率降低。2)工艺条件筛选对该反应仔细的研究揭示,需当亚硝酸钠完全消耗后再向反应混合物中添加叠氮化钠,如果过早加入叠氮化钠,它将立即被第一反应步骤中剩余的未反应的亚硝酸钠所消耗。图3. 叠氮化合物4a的连续流工艺流程【Entry 3的实验条件连续稳定运行60分钟,可产中间体16g/h,完全满足下游实验的需要。】3. 2H-吲唑5a连续流工艺开发在完成重氮化及叠氮取代的连续流工艺开发之后,研究团队继续研究铜催化环化的连续流工艺。1)间歇式工艺缺陷间歇式反应中,10% mol的氧化亚铜在体系中悬浮性差,不适合用于连续流工艺。对于流动反应而言,80°C下反应90分钟的时间太长,会导致不可接受的低生产率。这种环化反应的收率通常合理的范围在70−80%,研究团队使用LC-MS鉴定了两种主要副产物氨基亚胺8a和氨基醛2a。图4. 2H-吲唑 5a反应路径及副产物确认2)对铜催化剂和配体的筛选研究者发现,在1当量TMEDA存在下,0.1当量的碘化铜可溶于二氯乙烷中。经反应筛选后,研究者确定了流动条件下环化的合适参数。含有0.1当量碘化铜(I)和1当量TMEDA的0.45M 4a 二氯乙烷溶液,在120°C下,在20分钟的停留时间内,完全转化为吲唑5a。使用LC-MS分析反应混合物表明,叠氮化物4a被完全消耗,得到产物5a、氨基醛2a和亚胺8a,其比例分别为91.5%、3.4%和5.1%,与之前使用的间歇式工艺相比,有了显著的改进。3)停留时间及铜盘管催化为了缩短停留时间和提高生产率,研究者在寻求用更具反应性的催化剂代替碘化铜(I)和TMEDA过程中发现,内径为1mm的铜线圈也有效地催化了该环化反应。推断在铜线圈的内表面上形成了少量的氧化铜(I),起到有效催化该反应的作用。图5. 铜盘管反应器催化反应作为概念证明,制备了0.32M的4a溶液,该溶液已与1.2当量的胺6在甲苯中混合,并在120°C下泵送通过铜盘管,停留时间为20分钟。使用色谱法进行处理和纯化后,分离出5.6g吲唑5a,产率为85%,纯度为98%(图5)。4. 重氮-叠氮-环合三步全连续合成2H-吲唑类化合物图6. 2H-吲唑 5b的连续流工艺结果利用上述研究结果,研究者同样进行了类似物5b的连续流工艺开发。与最初使用的间歇合成相比,新的替代连续工艺不仅避免了危险叠氮化物4a和4b的分离,而且为叠氮化物形成和热环化这两个关键步骤提供了更高的纯度和产率。总结报道了三步反应的连续工艺开发,在100克的规模上制备了两个关键的药物中间体2H-吲唑化合物5a和5b。与最初使用的间歇合成相比,新的替代连续工艺不仅避免了危险叠氮化物4a和4b的分离,而且为叠氮化物形成和热环化这两个关键步骤提供了更高的纯度和产率。通过减小反应器的持液体积,避免固体叠氮化合物的分离,并确保精确控制反应参数,特别是反应温度和试剂的比例,改进了工艺的安全性。将两个连续流步骤整合到化合物12的多步合成中导致更安全地制备和处理叠氮化物中间体,并显著促进了高效和选择性TLR 7/8拮抗剂项目的加速开发。随后,连续流工艺从研究部门转移到化学开发部门,仅对工艺进行了少量的修改,便用于制备千克规模的5b。参考文献:Org.Process Res. Dev. 2022,26, 1308−1317
  • HJ1076-2019环境空气中氨、甲胺、二甲胺、三甲胺的测定
    随着工业文明和城市发展,工业在为人类创造巨大财富的同时,也把数十亿吨计的废气和废物排入大气之中,人类赖以生存的大气圈却成了空中垃圾库和毒气库。我们的生存环境污染日趋严重,尤其是空气污染几乎危及到每个人。世界卫生组织和联合国环境组织发表的一份报告说:“空气污染已成为全世界城市居民生活中一个无法逃避的现实。”如果人类生活在污染十分严重的空气里,那就将在几分钟内全部死亡。因此,大气中的有害气体和污染物达到一定浓度时,就会对人类和环境带来巨大灾难。空气污染物中的许多物质对人有严重的损害,例如其中的氨、甲胺、二甲胺、三甲胺可对人体造成严重损伤。氨能引起喷嚏、流涎、咳嗽、恶心、头痛、出汗、脸面充血、胸部痛、呼吸急促、尿频、眩晕、窒息感、不安感、胃痛、闭尿等症状。刺激眼睛引起流泪、眼疼、视觉障碍。皮肤接触后引起皮肤刺激、皮肤发红、可致灼伤和糜烂。慢性中毒时出现头痛、恶梦、食欲不振、易激动、慢性结膜炎、慢性支气管炎、血痰、耳聋等。甲胺具有强烈刺激性和腐蚀性。吸入后,可引起咽喉炎、支气管炎、重者可因肺水肿、呼吸窘迫综合征而死亡;极高浓度吸入引起声门痉挛、喉水肿而很快窒息死亡,或致呼吸道灼伤。二甲胺对眼和呼吸道有强烈的刺激作用。液态二甲胺接触皮肤可引起坏死,眼睛接触可引起角膜损伤、混浊。三甲胺主要是刺激人的眼、鼻、咽喉和呼吸道。长期接触会感到眼、鼻、咽喉干燥不适。盛瀚解决方案为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,保护生态环境,保障人体健康,测定环境空气和固定污染源无组织排放监控点空气中氨、甲胺、二甲胺SH和三甲胺,盛瀚色谱推出了相关解决方案。采用盛瀚CIC-D120型离子色谱仪,使用盛瀚SH-CC-3(4.6×250)阳离子色谱柱和甲烷磺酸淋洗液对氨、甲胺、二甲胺、三甲胺检测,能够满足《HJ1076-2019环境空气氨、甲胺、二甲胺和三甲胺的测定离子色谱法》的检测要求。SH-CC-3 型色谱柱是青岛盛瀚色谱技术有限公司生产的一种弱酸型阳离子色谱柱。基质为交联度 55%的苯乙烯-二乙烯苯聚合物,表面接枝羧基。SH-CC-3 型色谱柱可用非抑制或抑制电导法完成常规阳离子分析,可同时分析 6 种常见阳离子:Li+、Na+、NH4+、K+、Mg2+、 Ca2+,在特定条件下,可直接电导分析部分过渡金属阳离子。盛瀚一直致力于研究开发高精度、高灵敏度和高智能的离子色谱仪,目前CIC系列产品已广泛应用于环保、疾控、自来水、质检、水文、地质、高校、科研院所、企业等众多领域,并出口到韩国、印度等34个国家和地区。“保障人类生存环境,促进生态良性发展”是盛瀚所属集团新光智源集团的企业宗旨,集团一直在为“成为环境生态文明安全管理的推动者”的伟大愿景不懈奋斗,期望我们共同缔造蓝天白云、绿水青山,让环境更美好!
  • 南京麒麟分析仪器—矿石的分析方法
    南京麒麟分析仪器&mdash 矿石的分析方法 一;母液的制备 称取100mg试样过100母筛于50ml容量瓶中,加20ml盐酸,5&mdash 10ml氟化铵,视硅的含量而定,低温加热溶解,若不完全,滴加氯化亚锡至溶解,冷却,稀至刻度。 二;分析 1,铁的测定 吸取5ml于100ml量瓶中,加10mlEdta,加热煮沸,趁热加入氨水15ml,流水冷却,加2ml过氧化氢,定容。特定波长处比色。 2,二氧化硅的测定 吸取2ml于量瓶中,加15ml钼酸铵,放20分钟,或水浴40秒,加草酸10ml,速加硫酸亚铁铵2ml。特定波长处比色。(做参比) 3,锰的测定 吸取20ml于50ml量瓶中,加10ml硝酸,10ml过硫酸铵,煮沸30秒,冷却,定容。特定波长处比色。 4,磷的测定 吸取10ml于60ml的分液漏斗中,加数滴硫酸亚铁铵6%,用塑料滴管滴加2-3滴氢氟酸,1ml硫代硫酸钠,摇匀,放1-2分钟,25度时放2&mdash 5分钟,加5ml钼酸铵4%,摇匀,立即加入20ml乙酸丁酯,振荡萃取1分钟,静止分层后,将水相分出于另一分液漏斗中(测砷用),在有机相中加入抗坏血酸5%,及5滴硝酸铋10%(1+9硝酸),振荡2分钟,25度3分钟,静止分层后弃去水相,加10ml乙醇摆动至水相下沉弃去,特定波长处比色。 5,砷的测定 在萃取磷的水相中,滴加高锰酸钾(4%)时摇动使红色保持30秒,加入20ml正丁醇,振荡1&mdash 2分钟,静止分层后弃去水相,在有机相中加2ml抗坏血酸及5滴硝酸铋,摇摆2分钟,静止分层后弃去相在有机相中加入1ml乙醇,摆动至水相凝基下沉后,弃水相在特定波长处比色。 6,三氧化二铝的测定 分取1.0ml于100ml瓶中,加约50ml水,4ml混合显色剂,摇匀后加10ml缓冲液,摇匀,特定波长处比色。 混合显色剂; 1),铬天青S溶液 2),Zn&mdash Edta溶液, 混合显色剂;将两者等体积混匀。 3),六次甲基四胺缓冲液,取100克用适量水溶解后,加入5ml 1+1的盐酸后,稀至500ml。 此分析方法请在专业技术员指导下完成,可询问市场部025-57339283杨经理 南京麒麟分析仪器有限公司 2011年6月10日
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制