当前位置: 仪器信息网 > 行业主题 > >

五甲基五乙烯基环五硅氧烷

仪器信息网五甲基五乙烯基环五硅氧烷专题为您提供2024年最新五甲基五乙烯基环五硅氧烷价格报价、厂家品牌的相关信息, 包括五甲基五乙烯基环五硅氧烷参数、型号等,不管是国产,还是进口品牌的五甲基五乙烯基环五硅氧烷您都可以在这里找到。 除此之外,仪器信息网还免费为您整合五甲基五乙烯基环五硅氧烷相关的耗材配件、试剂标物,还有五甲基五乙烯基环五硅氧烷相关的最新资讯、资料,以及五甲基五乙烯基环五硅氧烷相关的解决方案。

五甲基五乙烯基环五硅氧烷相关的论坛

  • 【资料】环氧乙烯基酯树脂简介!

    环氧乙烯基酯树脂从20世纪60年代开发以来,在众多工业领域得到推广应用,并逐步被用户接纳、认可,到90年代基本成为国际认可的新型耐蚀材料的代表,其应用范围逐步取代早期的传统耐蚀树脂。随着科研力度的加大更有不少性能及用途独特的乙烯基酯树脂得到推广或被进一步改性。该产品既然性能如此好,那么其性能到底由哪些因素决定?业界很多人不知所以然,为此中国环氧树脂行业协会(www.epoxy-e.cn)专家专门作了介绍。目前环氧乙烯基酯树脂应用量最大、范围最广的要算甲基丙烯酸型双酚A环氧乙烯基酯树脂(国内牌号相当于MFE-2)、甲基丙烯酸酚醛环氧型乙烯基酯树脂(国内牌号相当于W2-1)。在树脂产品中工程上曾对相当的材料及性能进行比较。不同品种的乙烯基酯树脂之间的性能差异较大,一般都是针对不同的使用要求而设计的。比起双酚A反丁烯二酸聚酯树脂来说,同属耐化学树脂的乙烯基酯树脂不但耐化学性优于聚酯,而且各项机械性能及耐热性能也都可能超过聚酯。在成型工艺上乙烯基酯树脂吸取了不饱和聚酯便于固化成型的优点,可以采取同样的交联固化工艺成型,从而显示了乙烯基酯树脂明显的优越性。据中国环氧树脂行业协会(www.epoxy-e.cn)专家介绍,环氧乙烯基酯树脂手糊玻璃钢的机械性能大大超过美国标准局为防腐用板材规定的PSl5-69标准,乙烯基酯树脂玻璃钢不仅具有较好的机械强度而且有较高的高温强度,适于制造高温下操作的防腐设备,已固化的乙烯基酯树脂具有较高的断裂延长率。这是这类树脂优于其他树脂的重要特征之一,这样不仅可以提高玻璃钢层板第一次出现裂纹时的应变量,而且可以显著提高层板的耐冲击能力。由此环氧乙烯基酯树脂以其优良的性能在各行各业中已经得到广泛应用。

  • 常用高分子聚合物名称缩写(对常用化学品中英文名称大全的补充!!)

    常用高分子聚合物名称缩写(希望对大家有用!认为有用帮忙顶下!!)PA 聚酰胺(尼龙)PA-1010 聚癸二酸癸二胺(尼龙1010)PA-11 聚十一酰胺(尼龙11)PA-12 聚十二酰胺(尼龙12)PA-6 聚己内酰胺(尼龙6)PA-610 聚癸二酰乙二胺(尼龙610)PA-612 聚十二烷二酰乙二胺(尼龙612)PA-66 聚己二酸己二胺(尼龙66)PA-8 聚辛酰胺(尼龙8)PA-9 聚9-氨基壬酸(尼龙9)PAA 聚丙烯酸PAAS 水质稳定剂PABM 聚氨基双马来酰亚胺PAC 聚氯化铝PAEK 聚芳基醚酮PAI 聚酰胺-酰亚胺PAM 聚丙烯酰胺PAMBA 抗血纤溶芳酸PAMS 聚α-甲基苯乙烯PAN 聚丙烯腈PAP 对氨基苯酚PAPA 聚壬二酐PAPI 多亚甲基多苯基异氰酸酯PAR 聚芳酰胺PAR 聚芳酯(双酚A型)PAS 聚芳砜(聚芳基硫醚)PB 聚丁二烯-[1,3]PBAN 聚(丁二烯-丙烯腈)PBI 聚苯并咪唑PBMA 聚甲基丙烯酸正丁酯PBN 聚萘二酸丁醇酯PBR 丙烯-丁二烯橡胶PBS 聚(丁二烯-苯乙烯)PBS 聚(丁二烯-苯乙烯)PBT 聚对苯二甲酸丁二酯PC 聚碳酸酯PC/ABS 聚碳酸酯/ABS树脂共混合金PC/PBT 聚碳酸酯/聚对苯二甲酸丁二醇酯弹性体共混合金PCD 聚羰二酰亚胺PCDT 聚(1,4-环己烯二亚甲基对苯二甲酸酯)PCE 四氯乙烯PCMX 对氯间二甲酚PCT 聚对苯二甲酸环己烷对二甲醇酯PCT 聚己内酰胺PCTEE 聚三氟氯乙烯PD 二羟基聚醚PDAIP 聚间苯二甲酸二烯丙酯PDAP 聚对苯二甲酸二烯丙酯PDMS 聚二甲基硅氧烷PE 聚乙烯PEA 聚丙烯酸酯PEAM 苯乙烯型聚乙烯均相离子交换膜PEC 氯化聚乙烯PECM 苯乙烯型聚乙烯均相阳离子交换膜PEE 聚醚酯纤维PEEK 聚醚醚酮PEG 聚乙二醇PEHA 五乙撑六胺PEN 聚萘二酸乙二醇酯PEO 聚环氧乙烷PEOK 聚氧化乙烯PEP 对-乙基苯酚聚全氟乙丙烯薄膜PES 聚苯醚砜PET 聚对苯二甲酸乙二酯PETE 涤纶长丝PETP 聚对苯二甲酸乙二醇酯PF 酚醛树脂PF/PA 尼龙改性酚醛压塑粉PF/PVC 聚氯乙烯改性酚醛压塑粉PFA 全氟烷氧基树脂PFG 聚乙二醇PFS 聚合硫酸铁PG 丙二醇PGEEA 乙二醇(甲)乙醚醋酸酯PGL 环氧灌封料PH 六羟基聚醚PHEMA 聚(甲基丙烯酸-2-羟乙酯)PHP 水解聚丙烯酸胺PI 聚异戊二稀PIB 聚异丁烯PIBO 聚氧化异丁烯PIC 聚异三聚氰酸酯PIEE 聚四氟乙烯PIR 聚三聚氰酸酯PL 丙烯PLD 防老剂4030PLME 1:1型十二(烷)酸单异丙醇酰胺PMA 聚丙烯酸甲酯PMAC 聚甲氧基缩醛PMAN 聚甲基丙烯腈PMCA 聚α-氧化丙烯酸甲酯PMDETA 五甲基二乙烯基三胺PMI 聚甲基丙烯酰亚胺PMMA 聚甲基丙烯酸甲酯(有机玻璃)PMMI 聚均苯四甲酰亚胺PMP 聚4-甲基戊烯-1PNT 对硝基甲苯PO 环氧乙烷POA 聚己内酰胺纤维POF 有机光纤POM 聚甲醛POP 对辛基苯酚POR 环氧丙烷橡胶PP 聚丙烯PPA 聚己二酸丙二醇酯PPB 溴代十五烷基吡啶PPC 氯化聚丙烯PPD 防老剂4020PPG 聚醚PPO 聚苯醚(聚2,6-二甲基苯醚)PPOX 聚环氧丙烷PPS 聚苯硫醚PPSU 聚苯砜(聚芳碱)PR 聚酯PROT 蛋白质纤维PS 聚苯乙烯PSAN 聚苯乙烯-丙烯腈共聚物PSB 聚苯乙烯-丁二烯共聚物PSF(PSU) 聚砜PSI 聚甲基苯基硅氧烷PST 聚苯乙烯纤维PT 甲苯PTA 精对苯二甲酸PTBP 对特丁基苯酚PTFE 聚四氟乙烯PTMEG 聚醚二醇PTMG 聚四氢呋喃醚二醇PTP 聚对苯二甲酸酯PTX 苯(甲苯、二甲苯)PTX 苯(甲苯、二甲苯)PU 聚氨酯(聚氨基甲酸酯)PVA 聚乙烯醇PVAC 聚醋酸乙烯乳液PVAL 乙烯醇系纤维PVB 聚乙烯醇缩丁醛PVC 聚氯乙烯PVCA 聚氯乙烯醋酸酯PVCC 氯化聚氯乙烯PVDC 聚偏二氯乙烯PVDF 聚偏二氟乙烯PVE 聚乙烯基乙醚PVF 聚氟乙烯PVFM 聚乙烯醇缩甲醛PVI 聚乙烯异丁醚PVK 聚乙烯基咔唑PVM 聚烯基甲醚PVP 聚乙烯基吡咯烷酮

  • 二甲基乙酰胺的化学物简介

    [font=&][size=18px]N,N-二甲基乙酰胺又称乙酰基二甲胺、乙酰二甲胺,简称DMAC,是一种非质子高极性溶剂,有微氨气味,溶解力很强,可溶解的物质范围很广,能与水、芳香族化合物、酯、酮、醇、醚、苯和三氯甲烷等任意混溶,且能使化合物分子活化,因此广泛用作溶剂及催化剂。在溶剂方面作为高沸点、高闪点、热稳定性高、化学性稳定的溶剂,可用于聚丙烯腈的抽丝溶剂、合成树脂及天然树脂、甲酸乙烯酯、乙烯基吡啶等共聚物及芳烃羧酸的溶剂;在催化剂方面可用于尿素加热制氰尿酸、卤代烷与金属氰化物反应制腈、乙炔钠与卤代烷反应制烷基炔、有机卤化物与氰酸盐反应制异氰酸酯等过程。N,N-二甲基乙酰胺还可用作电解溶剂及摄影用成色剂的溶剂、脱油漆剂、有机合成原料、农药及医药原料。从C8馏分中分离苯乙烯的萃取蒸馏溶剂等。[/size][/font]

  • 【求助】2-甲基-1,3-二氧环戊烷分解产物?

    谁帮下忙。。2-甲基-1,3-二氧环戊烷分解后可以产生乙醛和什么??这种物质子在我的填充柱色谱中在乙二醇后面很临近。我猜的环氧乙烷肯定不在这个位置,丙二醇的话化学式好像写不出平衡~!谁能帮我分析下。。。非常感谢

  • 【转帖】乙烯基单体改性水性聚氨酯的研究

    乙烯基单体改性水性聚氨酯的研究关键字:乙烯,单体,聚氨酯,研究 0引言 聚氨酯具有突出的力学性能,但水性聚氨酯的耐水性、耐化学品性等性能有待提高,而乙烯基树脂具有较好的耐水性、耐化学品性等,因此,聚氨酯和乙烯基树脂两者的有机结合,可使材料的力学性能有显著提高。本文采用种子聚合的方法,用甲基丙烯酸甲酯和苯乙烯对聚氨酯进行共混接枝改性,并用红外光谱分析了聚氨酯及改性聚氨酯中的微相分离和氢键,揭示结构与性能的关系。 1实验部分 1.1原料 甲苯二异氰酸酯(TDI):上海化学试剂厂 聚醚多元醇(PPG):上海高桥石化三厂 二羟甲基丙酸(DMPA):国产 三乙胺(TEA):广州化学试剂厂 乙二胺(EDA):广州化学试剂厂 苯乙烯(St):广州化学试剂厂 N-甲基-2-吡咯烷酮(NMP):Nacalal.TesqueInc 甲基丙烯酸甲酯(MMA):广州化学试剂厂。 1.2水溶性聚氨酯树脂(PUR)分散体的合成 将聚醚多元醇装入配有温度计、搅拌器的250mL三口烧瓶中,在120℃,660Pa真空下脱气脱水2h。通入氮气并加入计量好的甲苯二异氰酸酯于65℃左右反应1.5h左右,用正丁胺滴定法判断反应终点。加入溶有适量DMPA的NMP反应1.5h左右。降温至40℃,加入TEA和适量NMP溶剂,反应40min。降温并向体系中加入去离子水,然后加入TEA扩链。制得呈微蓝光的水乳液。 1.3甲基丙烯酸甲酯(MMA)改性 取一定量的PUR分散体、MMA和溶有引发剂的水溶液,加入三口烧瓶中,升温到65℃,反应2.5h,然后补加一定量的引发剂水溶液并升温至75℃,反应0.5h。 1.4苯乙烯(St)改性 过程同1.3甲基丙烯酸甲酯改性。 1.5性能测试 1.5.1分散体黏度测试 用NDJ-79型旋转式黏度计,测得各分散体在(25±1)℃下的黏度。 1.5.2拉伸强度测试 将制备好的聚氨酯乳液胶膜用80×4型的裁剪刀裁好,放在真空干燥器中真空干燥24h,然后在XLL-100A型拉力试验机上测定其拉伸强度及延伸率。延伸率的计算公式如下: E=(L2-L1)/L1×100% 式中:E——延伸率/%,L1——试样的原长,L2——试样断裂时的拉伸长度,拉伸速度为室温下300mm/min。 1.5.3粘接强度的测定试片采用PVC薄片,尺寸为100mm×25mm,粘合部分为12.5mm×25mm,表面先用砂纸打磨,再用工业丙酮处理表面污物,粘合的试片在接触压力下于45℃热烘48h,然后在室温下真空干燥24h,用XLL-100A型拉力试验机测定T型剥离强度,室温下拉伸速率为100mm/min。1.5.4吸水率的测定 把样品膜在真空下干燥24h,室温测定样品膜的质量,然后把样品膜浸泡于室温下的去离子水中,24h后再称其质量,两者的质量差即为吸水率(Ω)。其计算公式如下: Ω=(m2-m1)/m1×100% 式中:Ω——样品膜的吸水率,m1——样品膜的原来质量,m2——样品膜浸泡后的质量。 1.5.5FTIR实验 实验装置为PERKIN-ELMER-1700红外光谱仪,扫描方式,噪音过滤。红外样品的制备是将样品制成薄膜,在60℃下真空除水。实验数据由仪器上的微机处理。 2结果与讨论 2.1甲基丙烯酸甲酯共混接枝改性的影响MMA改性水性分散体的配方及性能见表1。 表1 MMA改性水性PU分散体的配方及性能 由表1可见,随着MMA用量的增加,分散体的黏度呈现下降趋势。根据内乳化聚合机理分析:MMA含量的增加能更有效地抑制离子化作用,这一作用使得一些键卷曲,分散粒子膨胀,分散颗粒单位面积的离子数目减少,使体系的黏度下降。 由表1还可看出,在固含量基本不变的情况下,用MMA改性水性PU能较大程度地降低体系的黏度。这意味着可以通过用MMA改性的方法来提高水性PU的固含量,同时保证体系稳定。MMA改性PU对膜的机械性能影响见表2。 表2 MMA改性PU对膜的机械性能的影响注:-因脆性太大,无法成膜。 1—拉伸强度 2—延伸率图1MMA/PU的比值与膜的拉伸强度和延伸率的关系 图2MMA/PU的比值与T型剥离强度和吸水率的关系 1—T型剥离强度 2—吸水率 图1和图2表明,由于PMMA本身有较强的粘附性能,与水的亲合能力比PU材料低,硬度比PU材料大,用MMA对PU进行改性处理后,膜的拉伸强度、T型剥离强度以及吸水率都得到明显的改善。制品膜的延伸率随着MMA的用量增加而降低。2.2苯乙烯共混接枝改性的影响 St改性水性PU分散体的配方及性能见表3。 表3 St改性水性PU分散体的配方及性能注:St/PU为固含量比 表3显示:用St对PU改性对体系黏度的影响与用MMA改性PU的影响相同。这也证明了应用内乳化机理解释该现象的合理性。 值得注意的是,用MMA和St分别对PU分散体改性,均在乙烯基单体/PU的比值为0.5的时候,观察到分散体的黏度出现一个较大的值,这可能是由于乙烯基单体与PU水分散体在种子聚合的条件下,提高了粒子的粒径和分散性。因为粒子表面存在着—COOH和三乙胺中和后形成的盐基离子对存在,并且由于总表面积增大,使原来包埋在分散体颗粒内部的盐基分布到分散体颗粒的表面,导致分散体颗粒和水的缔合作用增强,使自由水减少,从而使黏度升高。当乙烯基单体用量多到一定程度时,分散体颗粒粒子表面的盐基离子对数量相对单位表面积减少较多,而且乙烯基单体的极性相对PU较低,其含量的增加会使分散体粒子与水的缔合作用减弱,同时由于粒径增大,黏度下降。 1—拉伸强度 2—延伸率图3 St/PU的比值与拉伸强度和延伸率的关系 1—T型剥离强度 2—吸水率图4St/PU的比值与膜的T型剥离强度和吸水率的关系 从图3和图4可见,用St对PU改性和用MMA对PU改性的影响大致相同,不同的是用St对PU改性在St/PU为0.6和0.8之间时,拉伸强度和T型剥离强度都出现一个最大值,然后减小。这是由于当St用量较小时,接枝-共混的共聚组成在同步互穿网络中起内增塑剂的作用,固化收缩诱发产生的内应力能较低[6],使强度提高 随着用量的增大,根据Gnaffith理论,如St、MMA一类的刚性分散相在结构上存在缺陷,而且分布不均匀,在受到应力时,起应力集中剂的作用,产生大量的小裂纹及剪切带,使强度降低。然而在用MMA改性时未出现这种现象,可能的原因是MMA中的羰基的存在使它与PU之间的界面相容性好,降低了应力集中作用。2.3红外光谱分析 对MMA改性、St改性和未改性的样品进行FTIR分析,谱图如图5、6、7所示。 图5 未改性膜的红外光谱 图6 MMA改性膜的红外光谱 图7 St改性膜的红外光谱 本文主要研究3个特征谱带,即VNH、VCO、VO吸收带,VNH的吸收峰在3460cm-1处,氢键化的VNH-B约在3310cm-1左右而且为反式结构,VCO的吸收峰在1660~1780cm-1处,氢键化约在1724cm-1而且为无序区的氢键化 1000~1110cm-1处吸收峰属于C—O—C的伸缩振动(VO),氢键化约在1050cm-1处,2856~2960cm-1处的峰归属于VCH(对称和反对称)。 从以上3个谱图上可以看出,在3300cm-1左右处有强的吸收峰,而在3460cm-1处几乎看不到吸收峰存在,这说明脲基上的NH已几乎完全氢键化。St改性的谱图在3306cm-1处的氢键化吸收峰相对于PU来说向波数低的方向移动,在图6的红外图谱中也看到了同样的现象,这说明在改性材料中—NH—形成的氢键作用力比PU更大。其原因可能是:St和MMA的分子极性与脲基的极性相去甚远,相对于脲键而言,与聚醚软段的极性更接近,并且由于St和MMA在聚氨酯软段上接枝,“埋没”大量的醚氧键和软段微区中的部分羰基,St和MMA的加入将导致—NH—与—O—之间形成的氢键数目相对减少,因为—NH—与—O—之间形成的氢键要弱于—NH—与—CO—之间形成的氢键,所以导致吸收峰向低波数移动。 另外还可以看到,在1724cm-1左右处有一明显的吸收峰,说明硬段相溶有一定数量的软段,这表明乙烯基聚合物与PU中的硬段链有一定的相容性,使得PU硬段有序程度降低。这种有序程度的降低,反映了PU与乙烯基聚合物之间形成了化学键能,提高了它们之间的相容性与共混程度。3结语 采用种子聚合的方法,乙烯基单体改性水性聚氨酯能提高水性PU的力学性能、降低吸水率。改性后的水性聚氨酯材料中均存在着氢键行为,其中甲基丙烯酸甲酯的氢键作用强,有较好的相容性,苯乙烯的氢键作用小,相分离程度最大。 涂料附着力不理想,本文就此问题进行了研究,分析了影响附着力的因素,并提出了相应的解决方法。 目前,关于树脂在金属表面附着的原理很多。如机械咬合粘接理论、静电理论、吸附理论、扩散理论、酸碱使用理论和化学键理论等[1]。总的说,附着力是机械连接、静电吸引和化学键合共同作用的结果。附着力强度是润湿程度、两表面的相对表面力学能和润湿动力学的函数,在附着力的定义上,附着力应该是指涂装金属暴露在高湿环境或溶液中的附着力,俗称湿附着力,即指将涂装金属置于介质环境后,表现出来的附着力,目前通用的一些测定涂层附着力的方法,大多测试的是干涂层体系的数值,本实验所描述的附着力数值是用划圈法所测定的干涂层数值。

  • 岛津气质联用跑出来很多十四甲基环七硅氧烷这类物质,还每五分钟出一次峰怎么办。

    几个月前用还没啥问题,突然后边跑什么物质都是很少的风味物质,然后还有大量十四甲基环七硅氧烷这类物质,也老化过柱子,但是没啥效果。求大神指导啊,柱子是Rtx-5ms的用了有一段时间了。老板又买了一根新柱子同型号,我嫌老化麻烦没换,但是旧柱子就是这个情况。岛津的仪器[img=,690,518]https://ng1.17img.cn/bbsfiles/images/2019/12/201912261907382463_4597_4081549_3.png[/img]

  • 【求助】面积归一法测环戊烷的纯度

    我现在用GC-2014C FID测定环戊烷,我买了环戊烷标准品先进样,对环戊烷定性,然后我取了一点环戊烷样品测了一下,在方法中选了面积归一化法,结果显示为98%。请问一下,在做面积归一化法测含量的时候是不是用不到标准品的,我买的标准品只是起到定性的作用,定量上面是不是用不到的呀?谢谢

  • 【求助】甲基硅氧烷的测试,我的峰好怪异啊!请教各位大虾,谢谢!

    如题,测试六甲基环三硅氧烷(d3)——保留时间为5.06min-6min,八甲基环四硅氧烷(d4)——保留时间为8.38min,十甲基环五硅氧烷(d5)——保留时间为10.58min和十二甲基环六硅氧烷(d6)——保留时间为13.26min时,发现前面两种物质(d3和d4)时,峰很怪异,d3的峰是个土包,d4的峰前面突出一块,而d5和d6的峰非常好!我改变了进样口温度,离子源温度,初温等,均未改善!我使用的GC/MS条件如下:进样口温度140℃,离子源和传输线温度为160℃,升温程序:40℃(保持3分钟),以10℃/min升至150℃,再以30℃/min升至300℃(保持4分钟)。我降低进样口温度至120℃时情况改善一点,但是d5和d6没法汽化了,昨天还截了柱头,换了衬管、隔垫均无济于事!请各位大虾帮忙解决,谢谢!附件为scan扫描的谱图。

  • 【“仪”起享奥运】刺五加

    刺五加,又称五加皮、刺拐棒[i][/i],其茎干上布满细密的针刺,故而得名。它的叶子呈掌状复叶,小叶椭圆形或卵形,边缘有锯齿。春季开花,花色淡黄,秋季结果,果实球形,成熟时呈黑色。刺五加喜欢生长在温暖湿润、土壤肥沃且排水良好的环境中,常分布于我国东北、华北等地的山林间。 抗疲劳与增强免疫力:刺五加被誉为“抗疲劳专家”,其含有的多种活性成分如刺五加苷[i][/i]、多糖等,能有效提高人体的耐力和抗疲劳能力。同时,刺五加还能增强机体的免疫功能,提高身体抵抗力,预防疾病的发生。 安神益智与改善睡眠:刺五加具有安神益智的功效,能够缓解紧张情绪,改善睡眠质量。对于失眠多梦、健忘等神经衰弱症状[i][/i]有良好的改善作用。 调节血压与改善心血管功能:现代药理研究表明,刺五加还具有调节血压、改善心血管功能的作用。它能扩张血管,降低血液粘稠度,预防血栓形成,对高血压、冠心病等心血管疾病有一定的辅助治疗作用。 抗氧化与延缓衰老:刺五加富含多种抗氧化物质,如维生素C、E及黄酮类化合物[i][/i]等,这些物质能够清除体内自由基,抑制细胞老化过程,从而达到延缓衰老的目的。 刺五加不仅可入药,还可作为食材用于烹饪。其嫩叶可制成刺五加茶,具有提神醒脑、消除疲劳的功效;其根茎则可炖煮成汤或泡酒饮用,具有滋补强身、安神益智的作用。此外,刺五加还可提取制成保健品和药品供人们服用。 刺五加具有诸多优点和广泛的应用价值,但在使用时也需要注意一些事项和禁忌。孕妇应避免食用刺五加及其制品,因为刺五加具有一定的药理作用,可能影响胎儿的正常发育。患者在服用刺五加保健品或药品时应遵循医嘱,避免自行增加药量或长期大量服用,以免产生不良反应。另外,对于过敏体质的人群来说,在食用刺五加前应谨慎考虑,以免引发过敏反应。

  • 基于聚倍半硅氧烷微球的亲水/反相混合模式色谱填料的制备与评价

    [color=#333333]亲水/反相混合模式色谱应用广泛,但pH使用范围有限,不利于碱性药物的分离。该工作利用巯基-烯基点击化学合成了单分散多孔的半胱氨酸改性乙烯基功能化聚甲基倍半硅氧烷(C-V-PMSQ)微球。元素分析表明半胱氨酸成功键合在微球表面。C-V-PMSQ微球为介孔结构,单分散性好且具有优良的化学稳定性。以几种常见的核苷和核酸碱基作为测试样品,考察其色谱保留行为,溶质的保留因子随流动相中水相含量的变化呈现典型的U型曲线,表明C-V-PMSQ固定相具有亲水/反相的双重保留特征。使用该固定相可以分离苯的同系物及一系列亲水性与疏水性化合物。另外在高碱性流动相条件下利用亲水和反相模式成功分离了中药苦参中的3种主要活性成分,表明它在分离碱性药物方面具有较大的优势。 [/color]

  • 十二甲基环六硅氧烷

    最近进了个样品,固相微萃取进的样。有点脏。就用乙醇进了下空白针。结果发现,除了之前带的杂质外还有一个十二甲基环六硅氧烷峰。不知道是什么,有没有可能是柱流失?柱子是HP-5MS。

  • GCMS 打八甲基环四硅氧烷的问题

    我用GC-ms, 柱是HP-35MS,打八甲基环四硅氧烷的时候发现,就是在溶剂中也会有很高的响应,不知道是什么原因?我用的溶剂是乙酸乙酯,发现溶剂 M/Z 281有很大的响应,最初怀疑是溶剂有问题,后来用LC的甲醇,发现也有同样的问题,说明不是溶剂的原因,大家有什么好的办解决吗?、

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制