当前位置: 仪器信息网 > 行业主题 > >

脱甲氧基脱乙酰土槿皮乙酸

仪器信息网脱甲氧基脱乙酰土槿皮乙酸专题为您提供2024年最新脱甲氧基脱乙酰土槿皮乙酸价格报价、厂家品牌的相关信息, 包括脱甲氧基脱乙酰土槿皮乙酸参数、型号等,不管是国产,还是进口品牌的脱甲氧基脱乙酰土槿皮乙酸您都可以在这里找到。 除此之外,仪器信息网还免费为您整合脱甲氧基脱乙酰土槿皮乙酸相关的耗材配件、试剂标物,还有脱甲氧基脱乙酰土槿皮乙酸相关的最新资讯、资料,以及脱甲氧基脱乙酰土槿皮乙酸相关的解决方案。

脱甲氧基脱乙酰土槿皮乙酸相关的资讯

  • Acclaim Organic Acid—脱氢乙酸峰型拖尾“终结者”
    Acclaim Organic Acid—脱氢乙酸峰型拖尾“终结者”胡金胜食品安全国家标准修订2021年3月26日,国家卫生健康委员会食品安全国家标准审评委员会秘书处发函,对组织起草的《食品添加剂使用标准》等12项食品安全国家标准(征求意见稿)公开征求意见。备受关注的GB 2760时隔多年再次修订,变更的内容涉及到多个常用的食品添加剂,其中防腐剂“脱氢乙酸及其钠盐” 使用规定的修改引发了热议。左右滑动查看GB 2760中脱氢乙酸及其钠盐修订细节 脱氢乙酸及其钠盐作为一种广谱食品防腐剂,毒性较低,对霉菌和酵母菌的抑制能力强,按标准规定的范围和使用量使用是安全可靠的。然而通过汇总近些年来全国各地食品安全监督抽检结果,我们不难发现脱氢乙酸及其钠盐超限量、超范围使用的情况屡有发生。由于脱氢乙酸及其钠盐能被人体完全吸收,并能抑制人体内多种氧化酶,长期过量摄入脱氢乙酸及其钠盐会危害人体健康。随着GB 2760征求意见稿的发布,针对食品添加剂脱氢乙酸及其钠盐,收窄了使用范围,降低了最大使用量,释放了监管部门将进一步加强监管的信号。由于政策信息传递的延迟及生产工艺革新的滞后,部分食品企业可能会面临因脱氢乙酸及其钠盐超限量、超范围使用而被监管部门处罚的风险。 目前,食品检测实验室参照GB 5009.121-2016开展脱氢乙酸的测定也会遇到一系列的难题,其中最突出的问题就是脱氢乙酸峰型拖尾,影响定性和定量结果的准确性。脱氢乙酸属于非羧基酸类,分子结构存在烯醇互变,导致在普通C18 上峰型容易出现拖尾。相关文献显示,通过调节缓冲盐pH(调酸或调碱)和有机相比例可以在一定程度上抑制脱氢乙酸的拖尾,但是在食品安全监督抽查中对于实验室方法的偏离及变更有着较为严格的审核流程,这也是实验室体系管理难以回避的问题。 基于此,赛默飞实验室筛选了一款特色色谱柱—Acclaim Organic Acid,在不变更标准色谱条件的前提下,开展了一系列的验证工作,完美解决了脱氢乙酸峰型拖尾的问题,并且在实际样品分析过程中有着出色的表现。Acclaim Organic Acid有机酸分析专用柱,极性嵌入,专利封端技术,可耐受 100% 水相,PEEK 柱管,可有效消除硅胶表面残余硅羟基及金属柱管内壁与有机酸分子次级作用导致的拖尾。 实验谱图及数据色谱条件液相色谱仪:Vanquish™ Core HPLC 液相色谱系统色谱柱:Acclaim Organic Acid, 5 μm, 4.0×250 mm (P/N: 062902)柱温:30 ℃;进样量:5 µL;流动相:A为20 mM 乙酸铵溶液,B为甲醇洗脱程序:A:B=90:10,等度洗脱流速:0.8 mL/min检测波长:293 nm采样频率:5 Hz采集时间:15 min 分离谱图 脱氢乙酸标准品溶液5.00 μg/mL,保留时间为7.107 min,不对称因子为1.04,理论塔板数为13830。脱氢乙酸在 Acclaim Organic Acid 色谱柱上获得了出色的峰型和优异的灵敏度。图1. 脱氢乙酸标准品溶液色谱图(5.00 μg/mL) 脱氢乙酸标准工作液线性范围为0.50-50.0 μg/mL,线性方程y=0.6283x-0.0141,线性相关系数r2=0.99990,线性关系良好。图2. 脱氢乙酸线性方程图及标准曲线点叠加色谱图(0.50-50.0 μg/mL)以脱氢乙酸峰高为 S,选取 4-6 min 基质噪音的平均值为 N,采用 Chromeleo 数据处理软件计算信噪比 S/N,脱氢乙酸线性低点 0.50 μg/mL信噪比S/N为181.8。实验室可根据实际情况设置合适的线性最低点,以满足方法检出限的要求。图3. 脱氢乙酸线性低点 0.50 μg/mL 色谱图及信噪比脱氢乙酸标准品溶液 1.00 μg/mL 重复进样,保留时间RSD为0.04%,峰面积RSD为0.28%,不对称因子RSD为0.34%,重现性良好。图4. 脱氢乙酸标准品溶液 1.00 μg/mL 6次重复进样叠加谱图在实际样品分析中,面对各种复杂基质的干扰,Acclaim Organic Acid 表现出了非常出色性能。以下谱图分别展示了Acclaim Organic Acid 应用于鸡蛋挂面、猪肉脯、肉松面包、法式小面包及芒果汁中脱氢乙酸的测定。样品前处理方法采用标准推荐的直提法,其中芒果汁样品基质复杂,对流动相比例和柱温进行了适当调整。图5. 鸡蛋挂面中脱氢乙酸的测定图6. 猪肉脯中脱氢乙酸的测定图7. 肉松面包中脱氢乙酸的测定图8. 法式小面包中脱氢乙酸的测定图9. 芒果汁中脱氢乙酸的测定 本试验基于Vanquish™ Core HPLC液相色谱系统,采用Acclaim Organic Acid有机酸分析专用柱,对多种食品基质中脱氢乙酸的测定开展了验证。实验结果表明,Acclaim Organic Acid能够完美解决脱氢乙酸峰型拖尾的问题,有效排除各种复杂样品基质的干扰,为食品实验室准确定性和定量分析脱氢乙酸,提供了一个高效便捷的方法。 那么,有请我们的主角闪亮登场… … 此处应有掌
  • 北京市场部分化妆品汞、巯基乙酸含量不合格
    北京市药监局昨天公布了第三季度全市药品质量监督抽验结果,其中17种药品抽检不合格,不合格率为1.43%。   此次,药监部门共进行监督性抽验1185批次。抽检不合格的药品包括:度米芬含片、复方乙酰水杨酸片、补肾明目颗粒、仙鹿益肾颗粒、紫苏梗、女宝胶囊、橘红、款冬花、川贝母、丹参、瓜蒌、法半夏、柴胡、银黄颗粒、珍菊降压片、双氯芬酸钠缓释胶囊、清火栀麦片。   市药监局昨天同时公布了今年上半年化妆品的抽检结果,共完成抽检335批次,其中有2批次产品不合格,分别是中法合资深圳市星孜化妆品有限公司生产的医圣牌美白祛斑霜和广州兰皙化妆品有限公司生产的澳桃美牌速效防敏脱毛膏。不合格原因分别是汞含量不合格、巯基乙酸含量不合格。
  • 日加大对中国产荔枝中对氯苯氧乙酸检测频率
    近日,日本厚生劳动省医药食品局食品安全部监视安全课发布食安输发0606第1号:加强对中国产荔枝中对氯苯氧乙酸的监控检查。根据2013年度进口食品等的监控检查计划,按2013年6月5日发布的食安输发0605第1号,对中国产生鲜荔枝实施检查时,发现其违反了食品卫生法。因此,将对其残留农药对氯苯氧乙酸的监控检查频率提高到30%。   对氯苯氧乙酸,又叫防落素,为白色针状粉末结晶,基本无臭无味,是一种苯酚类植物生长调节剂。可用于番茄、蔬菜、桃树等,也用作医药中间体。该物质对眼睛、皮肤、黏膜和上呼吸道有刺激作用,对环境有危害,对水体和大气可造成污染。   检验检疫部门提醒相关企业:要详细了解日本厚生劳动省发布相关通报详细内容,尽快核实荔枝中是否使用了对氯苯氧乙酸,且所使用的剂量是否有超标风险 要配合检验检疫部门,加强对出口荔枝中对氯苯氧乙酸残留量的检测,特别是要加大检测对氯苯氧乙酸的频率,避免造成不必要的贸易风险,确保产品符合进口国标准。
  • 爱拓发布ATAGO(爱拓)便携式过氧乙酸检测仪新品
    过氧乙酸消毒剂是一种强氧化剂,为无色液体,有强烈刺激性气味,具有酸性腐蚀性,必须稀释后使用。过氧乙酸可分解为乙酸、氧气,与还原剂、有机物等接触会发生剧烈反应,有燃烧爆炸的危险。临床医学上,过氧乙酸水溶液可用以对物块表层、皮肤、黏膜、餐具、蔬菜水果、新鲜水果、自然环境的消毒杀菌。依据临床医学认证说明,过氧乙酸水溶液的使用方法使用量是黏膜消毒杀菌用0.02%浓度值,皮肤和环境污染的物件表层、水果蔬菜等消毒杀菌用0.2%浓度值,1.5%水溶液可用以厨具、纺织物、电子温度计等的侵泡消毒杀菌。喷雾器或加温挥发蒸熏用以环境消毒,日用量1~3g/m3(按过氧乙酸计)。ATAGO(爱拓)全新推出“过氧乙酸检测仪 PAL-Peracetic Acid (COVID-19)”仅需少量样品,3秒就能快速检过氧乙酸浓度!钛电极,耐用性更好,抗腐蚀性更高!型号PAL-Peracetic Acid (COVID-19)货号1557测量范围10-1000ppm电源2 x AAA 碱性电池 国际防护等级IP 65尺寸和重量5.5 x 3.1 x10.9cm,100g创新点:临床医学上,过氧乙酸水溶液可用以对物块表层、皮肤、黏膜、餐具、蔬菜水果、新鲜水果、自然环境的消毒杀菌。依据临床医学认证说明,过氧乙酸水溶液的使用方法使用量是黏膜消毒杀菌用0.02%浓度值,皮肤和环境污染的物件表层、水果蔬菜等消毒杀菌用0.2%浓度值,1.5%水溶液可用以厨具、纺织物、电子温度计等的侵泡消毒杀菌。喷雾器或加温挥发蒸熏用以环境消毒,日用量1~3g/m3(按过氧乙酸计)。 ATAGO(爱拓)便携式过氧乙酸检测仪
  • 福建省食品企业商会发布《食品中安赛蜜的测定 液相色谱法》、《食品中苯甲酸、山梨酸、糖精钠和脱氢乙酸 的测定》等3项团体标准征求意见稿
    福建省食品企业商会发布《食品中安赛蜜的测定 液相色谱法》、《食品中苯甲酸、山梨酸、糖精钠和脱氢乙酸 的测定》、《非即食薯类粉》团体标准征求意见稿《非即食薯类粉》团体标准征求意见函.pdf《食品中安赛蜜的测定 液相色谱法》团体标准征求意见函.pdf《食品中苯甲酸、山梨酸、糖精钠和脱氢乙酸的测定》团体标准征求意见函.pdf
  • 泡椒凤爪用工业防腐剂? 企业称脱氢醋酸标识有误
    泡椒凤爪又酸又辣,想起来都会流口水,这么好吃的东西竟然传出“有毒”。近日,一条关于泡椒凤爪添加剂有毒的消息在网络里迅速传开。一网友称在一款泡椒凤爪的包装上发现了用于工业防腐剂的“脱氢醋酸”,并质疑这种化学物质对人体健康有害。   【事发】   包装标注出工业防腐剂   近日,网民赵先生在网站发帖称,他在商场购买了一款成都产的泡椒凤爪。而在该食品的包装袋上,他无意间居然看到了用于工业防腐剂和兽药中间体的“脱氢醋酸”。   赵先生专门查询了“脱氢醋酸”的危害,他称这种工业用防腐剂,可快速被人或动物机体吸收,并分布在血浆和各个器官中,抑制多种酶的氧化作用 它在尿排泄的速度相当慢,不应作为“食品防腐剂”使用。   泡椒凤爪用上了工业防腐剂,这可不是闹着玩的。昨日,记者赶紧在杭城几家超市里查看各种泡椒凤爪的配料表。   在杭州体育场路一家小超市里看到,货架上堆放着几十包待售的“有友”牌山椒泡凤爪。翻看包装袋,在配料一栏里标注了十多种食品添加剂,其中同样出现“脱氢醋酸”字样。   而在世纪联华超市望江店,记者看到包括有友、永健、凤巢等牌子的泡椒凤爪标注有“脱氢乙酸钠”,还有些牌子未有标注。   【释疑】   “脱氢乙酸”俗称“脱氢醋酸”   工业用防腐剂怎么跑进食物里了?昨日,记者采访了浙江省食品添加剂协会专家组委员唐家寰。   唐家寰告诉记者,“脱氢醋酸”确实是一种防腐剂,用来抑制霉菌和酵母菌的生长。但是,“脱氢醋酸”难溶于水,一般食品行业都用它的盐类来做防腐剂。   另外,唐家寰称,“脱氢醋酸”是“脱氢乙酸”俗称,今年6月实施的食品添加剂新国标(GB2760-2011)中,“脱氢乙酸及其钠盐”已经列入新国标之中,属于国家允许的食品添加剂,准许添加在熟肉、腌制品等食品内。   随后,记者联系到“有友”牌山椒泡凤爪的生产厂家重庆有友实业有限公司,该公司质检部的龙经理告诉记者,他已经获悉网上盛传关于泡椒凤爪的消息。龙经理解释说,在行业内,企业在食品包装上标注俗名“脱氢醋酸”,但实际上采用的都是脱氢醋酸钠,用作防腐剂。   “脱氢醋酸是一种游离态的物质,单物质存在具有不稳定性,所以食品行业99%都会用它的盐类来当防腐剂。现在消费者出现这样的误区,是我们企业在标识上不够重视导致的。” 龙经理如是说。   【回应】   标注有误纷纷更换包装   “同样这个问题几个月前就有消费者向我们反映了。” 龙经理告诉记者,早有消费者对此产生了质疑,该企业已经在一两个月前就更换了产品包装,新包装袋上标注的是“脱氢醋(乙)酸钠”。   “杭州地区的销售量不及我们本地,本地的新包装基本已经更换完毕,杭州可能还需要两三个月来消化老包装产品。所以,杭州买到的部分有友牌泡椒鸡爪包装袋上可能还会有标脱氢醋酸。”龙经理说,消费者仍可放心食用。   此外,记者了解到,成都当地质监部门对上述网友质疑的厂家进行了检查,发现其生产泡凤爪产品使用的食品添加剂是天润牌“脱氢醋(乙)酸钠”,在其产品包装上标注为“脱氢醋酸”。经检该企业不存在非法添加和滥用食品添加剂的违法行为。但由于没有按标准进行食品添加剂名称标注,该局已经要求企业限期整改。目前已开始更换新的包装。来源:今日早报
  • 冷烫液、染发剂巯基乙酸等超标
    冷烫液、染发剂质量监测抽查结果播报视频链接 哈尔滨市工商局2009年第三季度头发用冷烫液定向监测合格产品名单 经 销 单 位 经销地点 样品名称 品牌 规格 生产 生 产 企 业 检测结论 名称 型号 批次 哈尔滨市南岗区华尔姿美容美发用品商行 哈尔滨市南岗区巴陵街99号 小四郎冷烫液 ------ 120m×2+10ml 20111017 广州市白云区小四郎化妆品厂 合格 哈尔滨市南岗区伯村兴辉美容美发用品商店 哈尔滨市南岗区光芒街49号 艾尼尔丝蛋白光速烫 ------ 120×2+25ml 20100918 广州市美度化妆品有限公司 合格 哈尔滨市南岗区华尔姿美容美发用品商行 哈尔滨市南岗区巴陵街99号 艾斯迪尔植物修复电发水 艾斯迪尔 120ml×2 20080321 广州市星海岸精细化工有限公司 合格 简爱形象设计 哈尔滨市南岗区和兴路 黄金水能烫(热塑升级版) ------ 100ml×2 20111011 广州市嘉倩化妆品有限公司 合格 22-4号 乐强剪业哈尔滨市道里区北安街124号 安妮丝茵多澜烫发水 ------ 100ml×2 20090417 广州茵多澜精细化工有限公司 合格 广仔发型设计室 哈尔滨市道里区红霞街25号 JOVIAL乔薇尔烫发液(氨基酸生化烫) JOVIAL 1剂110ml、2剂100ml 20081214 吴江兴博隆日用化学品有限公司 合格 时尚理容中心 哈尔滨市和平路41号 阿丽德新星波浪烫发液 ------ 100ml×2 20081112 韩国一珍化妆品株式会社 合格 哈尔滨市工商局2009年第三季度头发用冷烫液定向监测不合格产品名单 经 销 单 位 经销地点 样品名称 品牌 规格 生产 生 产 企 业 检测 不合格项 名称 型号 批次 结论 哈尔滨市南岗区梦之美美发用品店 哈尔滨市南岗区光芒街72-2号 宝露美瞬间计时烫 ----- 120ml×2 20090321 广州市白云区卡淇日用化妆品厂 不合格 巯基乙酸含量超标 哈尔滨市南岗区伯村兴辉美容美发用品商店 哈尔滨市南岗区光芒街49号 世纪畅想闪电生化烫 ------ 120ml×2 20111027 广州白云雅力化妆品厂 不合格 巯基乙酸含量超标、执行标准错误、超项生产、许可证附表未提供 四海美容美发用品商行 哈尔滨市南岗区光芒街59-1号 超速智能生化烫 ----- 100ml 20090309 广州姿采化妆品厂 不合格 巯基乙酸含量超标、执行标准错误、超项生产、许可证附表未提供 哈尔滨市南岗区丽丽美容美发用品商行 哈尔滨市南岗区巴陵街99号 欧莱雅生化抛光烫 欧莱雅 120ml×2 20081018   不合格 执行标准错误、PH值超标 哈尔滨市南岗区兰羽东田洋美容美发仪器设备商行 哈尔滨市南岗区光芒街74-1号 DIWEI生化中性烫 DIWEI 120ml×2 20111219 广州白云区荻薇日用化妆品厂 不合格 巯基乙酸含量超标 哈尔滨市南岗区华威美发用品商店哈尔滨市南岗区光芒街51-3号 荻薇烫发水 ------ 120ml×2 20090314 广州白云区黄石荻薇日用化妆品厂 不合格 巯基乙酸含量超标 毫末时尚造型 哈尔滨市道里区通江街9号 BEAVER维妮B.H.T智能电发水 BEAVER A剂100ml、B剂110ml、C剂60ml 20111022 广州博氏化妆品有限公司 不合格 巯基乙酸含量超标 秀色形象设计 哈尔滨市道里区经纬六道街15号 晨彩冷烫液(3D幻魅烫) ----- 120ml×2 20111201 鹤山金辉美发美容用品有限公司 不合格 巯基乙酸含量超标 型男塑女时尚沙龙 哈尔滨市道里区红霞街7号 瑞缤梨菲酸性冷烫精 瑞缤 A剂82ml、B剂18ml、C剂100ml 20080411 吴江兴博隆日用化学品有限公司 不合格 巯基乙酸含量低 张昕美发 哈尔滨市南岗区花园街256号 宝美奇蓝波曲线烫发剂 ------ 100ml×2 ------ 美国强保罗米契尔公司、洛杉矶比佛利山庄、进口商:肯信贸易(上海)有限公司 不合格 巯基乙酸含量超标、无生产日期 芙蓉理容名店 哈尔滨市南岗区花园街371号 沸蓝露新兰全能冷烫精 沸蓝 100ml×2 20120406 吴江兴博隆日用化学品有限公司 不合格 巯基乙酸含量超标 好心情专业烫染形象店 哈尔滨市法院街33号 博柔3D立体电发剂 博柔 120ml×2 20110108 广州至尚日用化妆品厂 不合格 巯基乙酸含量超标、生产企业与许可证号不符合 四海美容美发用品商行 哈尔滨市南岗区光芒街59-1号 浩鑫欧米伽速效生化烫 浩鑫 120ml×2 20120103 广州市浩鑫精细化工有限公司 不合格 查无XK16-108 6006许可证 哈尔滨市南岗区丽丽美容美发用品商行 哈尔滨市, 南岗区巴陵街99号 莎萱梅香元素香水烫 ------ 120ml×2 20120308 广州市白云区莱丹精细化工厂 不合格 生产企业与许可证号不符合、超项生产 哈尔滨市南岗区超越美容美发用品商店 哈尔滨市南岗区光芒街49号1栋1单元一层1号 可立雅半胱胺植物电发水 ------ 120ml×2 20090102 广州柏仙奴化妆品有限公司 不合格 执行标准错误、超项生产 哈尔滨市南岗区华顺泰美容美发用品商店 哈尔滨市南岗区光芒街59-1号 雅丝兰黛生化烫 ------ 120ml×2 20120318 (中外合资)谊发精细化工有限公司 不合格 执行标准错误、超项生产 哈尔滨市南岗区经典美容美发用品商行 哈尔滨市南岗区光芒街80号 花粉生化烫 ------ 120ml×2 20111129 中国广州市鑫锦化妆品有限公司 不合格 超项生产 哈尔滨市南岗区兰羽东田洋美容美发仪器设备商行 哈尔滨市南岗区光芒街74-1号 莎圣纳米无氨香水烫 莎圣 110ml×2 20081008 广州奥雅化妆品有限公司 不合格 超项生产 哈尔滨市南岗区经典美容美发用品商行 哈尔滨市南岗区光芒街80号 鑫锦烫发水 鑫锦 120ml×2 201204 中国广州市鑫锦化妆品有限公司 不合格 超项生产 哈尔滨市南岗区华威美发用品商店 哈尔滨市南岗区光芒街51-3号 香薰香水烫 ------ 120ml×2 20090108 广州市白云区新莉雅化妆品厂、雅丹尔美发用品有限公司 不合格超项生产 哈尔滨市南岗区华顺泰美容美发用品商行 哈尔滨市南岗区光芒街59-1号 黑人头贵族香熏香水烫 ------ 110ml×2 20120608 广州市白云区石井新莉雅化妆品厂、雅丹尔美发用品有限公司 不合格 超项生产 哈尔滨市南岗区梦之美美发用品店 哈尔滨市南岗区光芒街72-2号 威拉基因再生疗发冷烫液 ------ 120ml×2 20120328 广州市景红达精细化工有限公司 不合格 超项生产、许可证附表未提供 哈尔滨市南岗区超越美容美发用品店 哈尔滨市南岗区光芒街49号1栋1单元一层1号 国色天香氨基酸低温快速生化烫 ------ 120ml×2 20120525 广州市景红达精细化工有限公司 不合格 超项生产、许可证附表未提供 哈尔滨市工商局2009年第三季度染发剂定向监测合格产品名单 经 销 单 位 经销地点 样品名称 品牌 规格 生产 生 产 企 业 检测结论 名称 型号 批次 哈尔滨家乐福超市有限公司新阳店 哈尔滨市道里区新阳路365号 三精植物染发 三精 50g×2 20090218 样品名称 品牌 规格 生产 生 产 企 业 检测 不合格项 名称
  • 新版工业冰乙酸国家标准即将实施
    近日,应国家标准化管理委员会邀请,国泰公司参加了国家工业冰乙酸质量标准修订工作,国泰公司工作人员结合醋酸质量管理工作的先进做法,针对工业冰乙酸标准在实施过程中存在的问题提出大量修改建议并得到采纳,该公司醋酸产品多项质量指标被确定为国家工业冰乙酸质量标准。   新版工业冰乙酸国家标准(标准号GB/T1628-2008)已在全国发行并将从2009年2月1日起实施,国泰公司名列参加起草的单位行列。国泰公司醋酸质量指标进入国家标准,标志着兖矿集团醋酸产品质量管理和分析试验研究工作走在了国内同行业的前列。
  • 环境部征求意见 《环境空气 颗粒物中甲酸、乙酸和乙二酸的测定 离子色谱法》
    有机酸对水体、大气、土壤、建筑物、人体等都可能产生危害,在环境空气颗粒物中,有机酸的来源有以下几种方式。有机酸颗粒物排放源在有机物含量测定研究中,人们发现甲酸和乙酸的比值与人类污染对大气有机酸的贡献量有一定的联系,因而可以用来判断大气有机酸的主导来源是自然源还是人类污染源。多数已知的有机酸来源可以同时向大气中释放数种低分子有机酸,因此,通过测定多种低分子有机酸,可以在不同来源的有机酸贡献量之间建立多元方程,从而计算出不同来源对大气有机酸的贡献比例。因此,开展关于有机酸在大气化学中的监测研究是非常有必要的,该结果对于了解大气颗粒物中有机物的变化规律与来源解析具有重要的科学意义。目前有机酸含量的测定方法主要有电位滴定法、分光光度法、酶分析法、毛细管电泳法、气相色谱法、液相色谱法、质谱法和离子色谱法等。有机酸分析方法的比较而目前国内标准中,有机酸的分析标准有:国内有机酸测定相关标准综合考虑有机酸含量、对颗粒物源解析支撑作用以及离子色谱的检测能力,本次制定的标准最终确定了甲酸、乙酸、乙二酸三种目标化合物。在方法验证报告中,本标准使用了9家单位的11台离子色谱仪,详情如下:单位序号仪器厂家仪器型号性能状况(计量/校准状态、量程、灵敏度等)备注A赛默飞ICS-5000+良好氢氧根体系B赛默飞AQUION良好氢氧根体系C赛默飞ICS-5000良好氢氧根体系/碳酸盐体系D瑞士万通940Professional良好碳酸盐体系赛默飞Integrion HPIC良好氢氧根体系E赛默飞ICS-2000良好氢氧根体系F赛默飞ICS-5000+良好氢氧根体系瑞士万通925型良好碳酸盐体系G青岛普仁PIC-10良好碳酸盐体系H瑞士万通940良好碳酸盐体系I青岛盛瀚CIC-D100良好碳酸盐体系在颗粒物源解析领域,离子色谱仪以前主要用于颗粒物中水溶性阴阳离子的测定,如果此标准发布,那么离子色谱仪在颗粒物源解析领域将发挥更大作用。不过从参与验证的仪器来看,国产仪器还需要多多努力。除离子色谱仪外,此标准涉及的仪器还包括大气采样器、超声波清洗仪。征求意见稿全文如下:《环境空气 颗粒物中甲酸、乙酸和乙二酸的测定 离子色谱法》(征求意见稿).pdf
  • 工业和信息化部批准《工业用乙二胺四乙酸》等586项行业标准
    工业和信息化部批准《工业用乙二胺四乙酸》等586项行业标准(见附件1)。其中,化工行业32项、石化行业13项、黑色冶金行业9项、有色金属行业51项、机械行业71项、汽车行业43项、船舶行业8项、轻工行业141项、纺织行业35项、包装行业2项、电子行业16项、通信行业165项。批准《水处理剂混凝性能的评价方法》等53项行业标准外文版(见附件2)。其中,化工行业16项、有色金属行业4项、稀土行业3项、建材行业8项、机械行业7项、轻工行业2项、纺织行业3项、通信行业10项。现予公布。以上化工行业标准(含外文版)由化学工业出版社出版,石化行业标准由中国石化出版社出版,黑色冶金行业标准、有色金属行业标准(含外文版)及稀土行业标准外文版由冶金工业出版社出版,建材行业标准外文版由中国建材工业出版社出版,机械行业标准(含外文版)由机械工业出版社出版,汽车行业标准及包装行业标准由北京科学技术出版社出版,船舶行业标准由中国船舶工业综合技术经济研究院组织出版,轻工行业标准(含外文版)由中国轻工业出版社出版,纺织行业标准(含外文版)由中国纺织出版社出版,电子行业标准由中国电子技术标准化研究院组织出版,通信行业标准(含外文版)由人民邮电出版社出版,通信行业工程建设标准由北京邮电大学出版社出版。附件:1.586项行业标准编号、名称、主要内容等一览表.doc   2.53项行业标准外文版名称及主要内容等一览表.doc工业和信息化部 2023年4月21日
  • 生态环境部公开征求《固定污染源废气 一氯乙酸等9种卤代乙酸的测定 气相色谱法(征求意见稿)》等5项国家生态环境标准意见
    为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,我部组织编制了《固定污染源废气 一氯乙酸等9种卤代乙酸的测定 气相色谱法》等5项国家生态环境标准征求意见稿,现公开征求意见。标准征求意见稿及其编制说明,可登录我部网站(http://www.mee.gov.cn)“意见征集”栏目检索查阅。  各机关团体、企事业单位和个人均可提出意见和建议。请于2024年1月20日前将意见建议书面反馈我部,并注明联系人及联系方式,电子文档请同时发送至联系人邮箱。  联系人:生态环境部监测司陈春榕、滕曼  电话:(010)65646262  传真:(010)65646236  邮箱:zhiguanchu@mee.gov.cn  地址:北京市东城区东安门大街82号  邮编:100006  附件:  1.征求意见单位名单  2.固定污染源废气 一氯乙酸等9种卤代乙酸的测定 气相色谱法(征求意见稿)  3.《固定污染源废气 一氯乙酸等9种卤代乙酸的测定 气相色谱法(征求意见稿)》编制说明  4.固定污染源废气 氯甲基甲醚和二氯甲基醚的测定 气相色谱法(征求意见稿)  5.《固定污染源废气 氯代甲基醚和二氯甲基醚的测定 气相色谱法(征求意见稿)》编制说明  6.固定污染源废气 硫化氢的测定 亚甲基蓝分光光度法(征求意见稿)  7.《固定污染源废气 硫化氢的测定 亚甲基蓝分光光度法(征求意见稿)》编制说明  8.环境空气和废气 三氟甲烷、四氟甲烷、六氟乙烷和六氟化硫的测定 气相色谱-质谱法(征求意见稿)  9.《环境空气和废气 三氟甲烷、四氟甲烷、六氟乙烷和六氟化硫的测定 气相色谱-质谱法(征求意见稿)》编制说明  10.环境空气和废气 臭气的测定 动态稀释嗅辨法(征求意见稿)  11.《环境空气和废气 臭气的测定 动态稀释嗅辨法(征求意见稿)》编制说明  生态环境部办公厅  2023年12月15日  (此件社会公开)
  • 【新案例】重氮乙酸乙酯微反应连续流新工艺
    重氮乙酸乙酯是重要的合成片段,在有机合成中具有非常重要的作用,主要应用在C-H键的插入反应和不饱和键上的环化反应。 重氮乙酸乙酯在路易斯酸催化剂的存在下,与醛发生的C-H键插入反应具有十分重要的应用价值,因为产物 β-酮酸乙酯是多种原料药的中间体。 重氮乙酸乙酯试剂在加热情况下会引起分解和爆炸,还会自动分解出有毒物质,储存和运输都需要特别注意。 目前重氮乙酸乙酯的生产主要采用间歇釜式滴加工艺,即向釜内反应体系滴入亚硝酸钠水溶液,由于该滴加过程伴随着剧烈的热量释放,若不能及时有效地移走这些热量,将会造成局部飙温,导致产物分解,严重时甚至引起安全事故。 与传统釜式反应器相比,微通道反应器 面积/体积比提高了上千倍,反应传热快速且稳定,避免局部温度过高造成爆炸。 此外,由于采用连续化操作方式,生成的产物能够及时移出反应器进行冷却处理,从而最大限度地避免产物分解。 本文将向读者介绍今年6月份常州大学张跃教授研究团队发表在《现代化工》上的“重氮乙酸乙酯的连续合成工艺研究”研究成果。 该研究以甘氨酸乙酯盐酸盐和亚硝酸钠、硫酸为原料,合成重氮乙酸乙酯,采用微通道连续流反应器系统研究重氮乙酸乙酯的连续合成工艺。该工艺提高了产品收率并具有系统结构简单、操作简便、安全性高、易于自动化控制等优点。 研究介绍 一、微通道反应器模块结构通道反应系统由一系列特定的模块以及连接件组成,通过微通道模块、连接配件、物料输送装置的组合,形成适用于本反应的反应器系统。二、实验步骤1. 在室温下,将甘氨酸乙酯盐酸盐溶于定量的水记为原料1。2. 按照物料配比将亚硝酸钠溶于水记为原料2。3. 再按照物料配比将浓硫酸配制成5% 硫酸记为原料3。4. 在进行实验前将原料1和原料3混合在一起记为混合原料,待换热器系统温度稳定后,混合原料与原料2分别通过质量计量泵进入预冷模片,在2股物料分别充分预冷后,进入反应区中进行重氮化反应。5. 产物从出口连续出料,系统运行稳定后取样进行分析检测。反应装置及流程如图2所示。三、反应条件研究 研究者对重氮乙酸乙酯的微通道连续合成工艺多个影响因素进行了考察,探究亚硝酸钠用量、反应温度、酸用量和停留时间对反应的影响,研究过程分别如下图。最终研究者获得了该合成工艺的最佳条件:取用 n(甘氨酸乙酯盐酸盐):n(亚硝酸钠):n(5%硫酸) = 1 : 1.1 : 2,反应停留时间120 s,反应体系温度为10℃,此时收率可达92.8%。结果讨论与小结 研究者成功应用微通道反应器进行重氮乙酸乙酯的合成,大大缩短了反应时间,扩大工艺条件选择区间,实现对重氮化反应的有效控制,增加了安全系数,提高了反应效率并得到较高的收率 从乙酸乙酯的重氮化反应工艺研究过程来看,连续流技术充分发挥了其技术优势 连续流微反应器持液量小、高效的传热传质特点,保证了反应快速平稳的进行及反应安全性 康宁反应器无缝放大的优势为后续工业化应用提供了研究基础 该工艺可以实现重氮乙酸乙酯的连续化生产,为在其它反应中该产物现制现用提供了可能性,降低了储存和运输的安全风险 参考文献[1]岳家委,辜顺林,刘建武,朱佳慧,李孟金,张跃,严生虎.重氮乙酸乙酯的连续合成工艺研究[J].现代化工,2021,41(06):205-208.
  • 国家药监局发布《化妆品中氯倍他索乙酸酯的测定》化妆品补充检验方法
    根据《化妆品监督管理条例》,国家药监局批准《化妆品中氯倍他索乙酸酯的测定》化妆品补充检验方法,予以发布。此条例起草单位为湖北省药品监督检验研究院;主要起草人为李丽霞、刘红、杨飘飘、曹全胜;验证单位为浙江省食品药品检验研究院、深圳市药品检验研究院、北京市药品检验研究院。本方法规定了化妆品中氯倍他索乙酸酯的测定方法,适用于液体(水、油)类、膏霜乳类、凝胶类、泥类和贴膜类化妆品中氯倍他索乙酸酯的定性和定量测定。样品以乙腈为溶剂提取,采用高效液相色谱仪分离,质谱检测器检测。根据保留时间和特征离子对的相对丰度比定性,定量离子对峰面积定量,以标准曲线法计算含量。附:化妆品中氯倍他索乙酸酯的测定.docx
  • 什么是唾液酸,婴幼儿乳粉中的唾液酸如何检测
    唾液酸具有促进新生儿大脑发育的功能,中国科学家刚刚研发了一项新的测定婴儿配方乳粉中唾液酸的量的方法。   N-乙酰神经氨酸(N-acetylneuraminic acid,Neu5Ac)是大多数哺乳动物组织中最重要的唾液酸。它与婴儿记忆力和智力的发育非常相关。Neu5Ac在肝脏中合成,而新生儿肝脏合成唾液酸速度较慢。因此,一些婴幼儿乳粉厂家在乳粉中添加Neu5Ac以达到唾液酸自然水平。   最近,《国际乳品技术期刊》(International Journal of Dairy Technology)发表了中国科学家研发的有关测定婴儿配方乳粉中Neu5Ac含量的新方法。此方法是超高效色谱与质谱的结合技术,有助于婴儿配方乳粉中唾液酸的质量控制。   婴儿配方乳粉样品中的Neu5Ac以游离态和结合态两种形式存在。在前处理过程中,通过糖类和蛋白质的水解作用可以得到结合态的唾液酸。得到的两种形式的Neu5Ac需要通过固相萃取柱的净化和色谱柱的分离后,最终采用质谱检测。   该方法测定范围涵盖了一般乳基婴儿配方食品中唾液酸的浓度范围。前处理过程需要一个多小时的时间,但是检测过程仅需5分钟左右。&ldquo 该方法不仅适用于乳品工业,也可满足实验室内产品评估控制。&rdquo 研究小组公开表示。 编译:郭浩楠
  • 【瑞士步琦】利用SFC系统纯化利多卡因与乙酰氨基酚
    步琦SFC系统纯化利多卡因与乙酰氨基酚SFC应用”1简介药物是一种由化学或生物来源制成的产品,用于人类或动物的医疗治疗,这些药物往往以化学合成的形式来生产。化学合成是一种通常伴随着杂质存在的过程,因为产率很少是 100%。这些杂质可能会对最终产品的疗效、安全性和质量产生重大影响。因此,对药物进行纯化以确保合成化合物的纯度和完整性是至关重要的,药物的纯化可以通过色谱法等多种方法进行。最近,超临界流体色谱(SFC)已经作为一种替代反相液相色谱(RP-HPLC)的方法出现。SFC 使用超临界二氧化碳作为流动相的一部分,这是一种清洁且环保的溶剂,很容易从最终产品中去除。此外,SFC 结合了气相色谱和液相色谱的优点,在提供高分辨率的同时也能以更快的速度分离样品。在 SFC 的方法开发过程中,最大的难点在于没有一种通用的固定相。因此需要在不同的固定相上进行筛选,以确定要分离的样品的最佳选择性。CO2 的低极性溶剂特性允许在色谱柱筛选时同时考虑非极性和强极性的固定相。在确定最佳固定相后,就可以进一步放大到制备规格。在本次应用中,我们会例举利多卡因和乙酰氨基酚的合成案例,利用 SFC 系统来高效去除合成过程中的杂质,获取高纯度目标化合物。在这一过程中,需要先进行合适色谱柱的筛选,再放大至制备色谱的规格。2设备BUCHI Sepmatix 8x SFC 8通道平行色谱系统BUCHI Sepiatec SFC-50 超临界制备色谱系统BUCHI PrepPure 硅胶,5um,250×4.6mm BUCHI PrepPure 二醇基,5um,250×4.6mm BUCHI PrepPure 氨基,5um,250×4.6mm BUCHI PrepPure 2-EP,5um,250×4.6mm HILIC柱,5um,250×4.6mm (Dr. Maisch GmbH)BUCHI PrepPure PEI,5um,250×4.6mm BUCHI PrepPure CBD,5um,250×4.6mm 氰基柱,5um,250×10mm ,(Dr. Maisch GmbH)BUCHI PrepPure PEI,5um,250×10mm BUCHI PrepPure 氨基,5um,250×10mm3化学品与样品化学品:二氧化碳 (99.9%)甲醇 (≥99%)甲醇溶液中2M的氨溶液甲酸(99%)去离子水为了安全处理,请注意所有相应的MSDS!样品:乙酰氨基酚合成产物利多卡因合成产物4程序设定BUCHI Sepmatix 8x SFC平行色谱系统流动相:A= 二氧化碳;B= 甲醇柱尺寸:250×4.6mm流速:3mL/min(每根色谱柱)检测:DAD 紫外扫描 200 nm - 600 nm流动相条件:0&minus 0.5min5%B0.5 – 8.0 min5 – 50 % B8.0 – 9.4 min50 % B9.4 – 9.5 min50 – 5 % B9.5 – 10 min5 % B筛选过程完全自动运行,流速设置为 3mL/min 每通道,使用流控单元,平衡每一根色谱柱。样品自动注入(V = 5 μL),并开始平行筛选(运行时间 =10min)。背压调节器设置为 150 bar,柱子加热至 32℃,可按需往改性剂中加入添加剂改善峰型。BUCHI Sepiatec SFC-50超临界制备色谱系统流动相:A= 二氧化碳;B= 甲醇柱尺寸:250×10mm流动相条件:等度运行条件检测:紫外所有 10mm ID 色谱柱都在预设流速下平衡 3 分钟,使用自动进样器上样,并开始运行。背压调节器设置为 150 bar,柱子加热至 40℃,可按需往改性剂中加入添加剂改善峰型。5结果5.1 乙酰氨基酚乙酰氨基酚(下称 AA),也常被称为对乙酰氨基酚,是一种镇痛剂、解热剂和手性药物。它属于非阿片类镇痛剂这一类。在化学上,它可以通过对氨基苯酚(下称 AP)与乙酸酐的反应来合成,在此过程中发生 N-乙酰化(见图1)。为了确定乙酰氨基酚合成产物的最佳纯化分离固定相,首先进行了柱筛选(见图1)。▲ 图 1:顶部:乙酰氨基酚合成的反应方程式,底部:Sepmatix 8x SFC 仪器色谱柱筛选结果;从左到右:硅胶,氨基,二醇基,氰基,2-EP,HILIC,PEI和CBD;运行时间 = 10分钟。图1显示,二醇基和 2-EP 相并未表现出分离度,硅胶相、CBD 相、氰基相和氨基相未显示出理想的分离度,因为它们无法实现基线分离。HILIC 和 PEI 相具有良好的选择性和分辨率,且分辨率始终远高于 1.5(见表1)。1.5 的分辨率意味着可以很好地分离 2 个峰。表1 还显示了洗脱顺序,氰基相显示出相反的洗脱趋势,对氨基苯酚先洗脱,然后是对乙酰氨基酚。筛选结果表明,反应并非百分之百完全,因为产物中仍含有大量对氨基苯酚。▲ 表1:样品在不同固定相色谱柱条件下的分辨率值和洗脱顺序选择 PEI 相色谱柱放大至制备规格,因为它具有最高的分辨率(见图2)。根据筛选时的色谱图,我们可以确定 AA 和 AP 在甲醇为 35&minus 40% 之间洗脱。图2(顶部)显示了在 40% 甲醇等度条件下,在10 x 250mm 的PEI 色谱柱上对 AA 进行纯化的情况,结果显示 AA 和 AP 可以非常良好地分离。因此在相同的条件下,可以实施一个堆叠注射方法,用于自动纯化并收集 AA (见图2,底部)。▲ 图2:单次注射(顶部)和堆叠注射(底部)用于AA的纯化;运行条件:流速=30 mL/min, 甲醇= 40 %,温度 = 40 ℃,压力BPR = 150 bar,注射 = 250 µ L,UV波长 = 254 nm;堆叠注射条件:注射次数 = 10,堆叠时间 = 1.8 min,Fractions = 1(基于时间的)。5.2 利多卡因利多卡因(下称 L),化学名为 2-二乙基氨基 -N-(2,6-二甲基苯)乙酰胺,是一种用作局部麻醉剂和抗心律失常药物的药物,它作为钠通道阻断剂起作用。利多卡因可以通过两步合成过程生产(见图3)。第一步中,2,6-二甲基苯胺(下称 X)的氨基组团被酰化 。第二步中,中间产物(下称 IP)通过与二甲胺的亲核取代反应转化为利多卡因。因此,需要进行两步纯化过程。色谱柱筛选的结果如图3所示,筛选过程中,在改性剂甲醇中始终添加 20 毫摩尔氨水作为碱性添加剂。▲ 图 3:顶部:利多卡因合成的反应方程式,底部:Sepmatix 8x SFC 仪器色谱柱筛选IP与利多卡因结果;从左到右:硅胶,氨基,二醇基,氰基,2-EP,HILIC,PEI 和 CBD;运行时间 = 10分钟。从结果来看,所有色谱柱都可用于中间体 IP 的第一步纯化分离,因为都具有基线分离的效果。其中氨基相具有最高的分辨率,且在甲醇比例较低时就能出峰(见图3)。对于第二步利多卡因的纯化,氰基和CBD相无法实现基线分离,而氨基再次表现出最佳的分离度(见表2)。在洗脱顺序上,第一步中间体的纯化出峰顺序都是先 X 再 IP,而第二步的利多卡因的纯化除了硅胶相之外都是先 L 再 IP(见表2)。▲ 表2:样品在不同固定相色谱柱条件下的分辨率值和洗脱顺序最终选择 10 x 250mm 的氨基色谱柱进行制备纯化,因为它的分辨率总是最高的(见表2)。氨基柱筛选结果显示,X 和 IP 出峰时的甲醇比例约为 10 - 19%,L 和 IP 出峰时的甲醇比例约为 11 - 19%。图 4 a) 显示的是甲醇比例为 16% 等度条件下的 IP 的单次纯化分离图谱,图 4 b) 显示的是甲醇比例为 20% 等度条件下的 L 的单次纯化分离图谱。在相同的条件下,可以进行叠层进样分离,分别自动纯化 IP 和 L,并进行馏分收集(见图 4 c) 和 d))。▲ 图4:中间体 IP 的单次进样(a)和叠加进样(c);运行条件:流速 = 20 mL/min,改性剂 = 甲醇 + 20 mM 氨水,改性剂 % = 16 %,温度 = 40 °C,压力 BPR = 150 bar,进样量 = 170 μL,紫外波长 = 254 nm;叠加进样条件:进样次数 = 15,叠加时间 = 0. 75 min, Fractions = 1 (基于时间) 利多卡因L的单次进样 (b) 和叠加进样 (d) 运行条件:流速 =20 mL/min, 改性剂 = 甲醇 + 20mM 氨水, 改性剂 % = 20 %, 温度 = 40 °C 和压力 BPR = 150 bar, 进样 = 170 μL, 紫外波长 = 254 nm 叠加进样条件:进样次数 = 20, 叠加时间 = 0.65 min, Fractions = 1 (基于时间)。6结论在进行有机合成后,由于副反应或转化率未达到 100%,通常仍会存在杂质,这些杂质必须去除,尤其是在药品生产中。在药物合成研发领域,时间与效率至关重要。BUCHI 的 SFC 色谱解决方案为研发人员提供了强大的工具,通过 Sepmatix 8x SFC 色谱柱筛选系统与 Sepiatec SFC-50 制备色谱系统相结合,可快速筛选出合适的色谱柱并线性放大至制备规格。SFC-50 的叠层进样功能,不仅能实现无人值守自动分离,还可显著提高分离效率,从而加快药物合成研发的速度。7参考文献Medikamente & Medizinprodukte (admin.ch) (Status 23.11.2023).https://doi.org/10.1016/j.chroma.2011.09.029https://doi.org/10.1016/j.chroma.2012.06.029https://doi.org/10.1016/j.chroma.2005.03.073https://doi.org/10.1016/j.jpba.2007.08.013.PRACTICAL APPLICATION OF SUPERCRITICAL FLUID CHROMATOGRAPHY FOR PHARMACEUTICAL RESEARCH AND DEVELOPMENT, Vol. 14, M. Hicks and P. Ferguson, 2022 Elsevier Inc.Th. Eicher und H. J. Roth Synthese, Gewinnung und Charakterisierung von Arzneistoffen, Georg Thieme Verlag, Stuttgart (1986).The synthesis of Lidocaine (University of San Diego).Winterfeld, K. – Praktikum der organisch-prä parativen Pharmazeutischen Chemie, 6. Auflage, Steinkopff Verl., Darmstadt (1965).Axel Kleemann, Jürgen Engel, Bernd Kutscher und Dietmar Reichert: Pharmaceutical Substances, 4. Auflage, Georg Thieme Verlag, Stuttgart (2000).
  • 日立高新推出测定维C银翘片中对乙酰氨基酚和马来酸氯苯那敏的数据
    2013年6月18日,香港卫生署呼吁市民不应购买或服用一种标示为&ldquo 维C银翘片&rdquo 的口服产品。涉事药品含有两种未标示及已被禁用的西药成分非那西丁和氨基比林。但在产品包装标示的成份,包括国家药监局允许添加的维生素C、对乙酰氨基酚及马来酸氯苯那敏却并未被验出,也就是说涉事药品根本就没有维C银翘片应有的成分和药效。  维C银翘片作为常见的感冒药,其中的对乙酰氨基酚有解热镇痛作用,马来酸氯苯那敏主要用于鼻炎、皮肤黏膜过敏及缓解流泪、打喷嚏、流涕等感冒症状。除此以外,在感冒药中常见的成分还有起解热镇痛的乙柳酰胺。在次日立高新将分别介绍使用常规液相和超高速液相对感冒药中的常见成分对乙酰氨基酚、马来酸氯苯那敏、乙柳酰胺的同时测定,详细信息请参考:http://www.instrument.com.cn/netshow/SH102446/newsolution.asp?id=1304&ref=4.app.3.0  关于日立高新技术公司:  日立高新技术公司是一家全球雇员超过10,000人,有百余处经营网点的跨国公司。企业发展目标是&ldquo 成为独步全球的高新技术和解决方案提供商&rdquo ,即兼有掌握最先进技术水准的开发、设计、制造能力和满足企业不同需求的解决方案提供商身份的综合性高新技术公司。日立高新技术公司的生命科学系统本部,通过提供高端的科学仪器,提高了分析技术和工作效率,有力推进了生命科学领域的研究开发。我们衷心地希望通过所有的努力,为实现人类光明的未来贡献力量。  更多信息请关注日立高新技术公司网站:http://www.hitachi-hitec.cn
  • 坛墨标样-甲醇中16种挥发性有机物-TVOC混标(含乙酸正丁酯)/GB50325-2020
    坛墨标样-甲醇中16种挥发性有机物-TVOC混标(含乙酸正丁酯)/GB50325-2020产品编号BWT900637-100-ACAS号规格1mL标准值100μg/mL序号名称CAS号1正己烷110-54-32苯71-43-23三氯乙烯79-01-64甲苯108-88-35辛烯111-66-06乙酸丁酯123-86-47乙苯100-41-48对二甲苯106-42-39间二甲苯108-38-310邻二甲苯95-47-611苯乙烯100-42-512壬烷111-84-213异辛醇104-76-714十一烷1120-21-415十四烷629-59-416十六烷544-76-3
  • “渐冻症”患者的福音——连续流工艺生产依达拉奉
    研究背景依达拉奉是一类能清除自由基的脑保护剂,2001年在日本获批用于改善急性脑梗死引起的神经及功能障碍。2017年,FDA批准依达拉奉用于治疗肌萎缩性脊髓侧索硬化(ALS,俗称“渐冻症”)患者。因此,当前市场对依达拉奉的需求不断增加。传统的生产方式是将乙酰乙酸乙酯及苯肼在乙醇中回流得到依达拉奉粗品,通过重结晶来提升产物纯度。这个方法的缺点是收率低,在进行100g规模的制备过程中发现文献报道的杂质3~6出现在粗品产物中(如图1所示),粗品纯度只有82.1%,虽然可以通过重结晶提高产物纯度但收率下降很多。图1 依达拉奉合成路线和文献报道杂质(3-6)近年来有文献报道采用微波法和超声波法合成依达拉奉,收率高,杂质少,但工业化放大有难度。来自沈阳药科大学制药工程学院的孙铁民教授课题组开发了一种连续流合成依达拉奉的新方法。该方法采用两步连续反应、一次重结晶的方法,终产品纯度可达99.95%,收率88.4%(较釜式工艺提高6.2个百分点),产能可达11.3 kg/d。与传统间歇法相比,连续流通过减少反应过程中的水分、氧气和光照的暴露,最大限度地减少了苯肼的分解,有利于提高产品的纯度和收率。本文将详细介绍该方法的开发过程,以期为您连续流工艺研究提供有效参考。 研究过程一、初步研究在初步实验中,以乙醇为溶剂溶解(图1)1和2,在微反应器中反应,最终得到反应液经液相色谱检测,结果表明未得到目标产物依达拉奉,但生成了中间体7。经过反应条件优化后,通过升高反应温度得到了目标产物依达拉奉,但杂质含量却比较高(见图2)。这样的结果显然不够理想。图2. 高温反应液HPLC图谱 通过分析前期的研究数据及反应的机理,研究者提出了一个两步法的解决方案。在早期的研究中在温度较低的情况下主要得到中间体7,此时反应条件温和,杂质较少,且避免了高温下烯醇互变异构产生的杂质6。根据相关文献分析了环化反应的可能反应机理(如图3),作者认为有必要添加碱以使反应容易完成。因此研究者也对碱及重结晶条件浓度、停留时间和反应温度等进行了优化。图3. 可能的反应机理 小贴士反应机理分析整个过程是胺进攻羰基进行亲核加成得到四面体中间态,然后脱去乙氧基得到依达拉奉。加成得到的四面体中间态可以以多种形式存在,质子化的程度和位置不同,如中间体8~10。由于中间体8乙氧基阴离子的离去能力很差,直接从中间体8生成依达拉奉的速度很慢,而更多的是从中间体10生成依达拉奉。当有碱存在时,中间体8会迅速转化成更稳定的中间体10,即使在较低的温度下,反应速度也会比以前快。最后,中间体10定量地产生依达拉奉。应当注意,当使用碱时,也可以避免杂质5,因为中间体10的形成很快,抑制了不希望的消除(脱水)反应。 二、两步连续流合成实验完成了上述研究后,将两步反应按顺序连接到一套装置(图4),将苯肼和乙酰乙酸乙酯输送至微反应器R1(25°C,0.5min,1bar),流速均为10mL/min。然后,反应液通过预热装置使溶液保持在60°C后流入微反应器R2,同时,以10mL/min的速度将氢氧化钠溶液输送至微反应器R2(60°C,1min,1bar),完成第二步环化反应。从R2流出的反应液用6M盐酸调节为中性并过滤后得到粗品依达拉奉。最后,用乙醇−水进行一次重结晶,得到纯度为99.95%的依达拉奉,收率88.4%,较釜式工艺提高6.2个百分点。图4 连续流合成依达拉奉的工艺流程图 结果与讨论: 研究者研究开发了一种两步法连续流生产依达拉奉的新工艺,降低了杂质含量,提高了收率; 与间歇实验相比,该工艺效率更高、速度更快,工艺运行稳定,进行工业化生产的可能性高; 在该方法第二步中,氢氧化钠更容易催化反应,通过调节pH值,使反应液在流出后直接沉淀,得到产物; 研究者两步反应的方法是基于对整个反应过程以及反应机理的理解和研究基础之上的,因此开发连续流工艺深入理解化学反应原理非常重要。 参考文献: https://doi.org/10.1021/acs.oprd.1c00228
  • 日立:药典明确氨基酸分析检测方法 市场将以15%以上速度增长
    近日,国家药监局发布公告,《中国药典》2020年版第一增补本已编制完成,将于3月12日正式实施,此次增补本,在通则和指导原则部分,对多个分析测定方法进行了新增和修订,在药典四部中,新增了9120氨基酸分析指导原则,并对0713脂肪与脂肪油测定法、0832水分测定法、1421灭菌法、2341农药残留量测定法、2351真菌毒素测定法、9001原料药物与制剂稳定性试验指导原则以及9205药品洁净实验室微生物监测和控制指导原则等做出修订。为了全面了解《中国药典》中分析方法的新进展,促进药物检测检测工作的交流与合作,仪器信息网特别发起“《中国药典》分析方法新进展”主题约稿,欢迎各位行业协会/学会、高校/科研院所的专家老师,以及相关仪器厂商们积极投稿。本文特别邀请日立一起分享,关于氨基酸分析指导原则修订相关内容的解读和解决方案。问题1: 《中国药典》2020年版第一增补本已编制完成,本次增订,对9120氨基酸分析指导原则有哪些方面的更新? 与之前的版本相比,该变化对于制药行业或相关用户会带来哪些影响?目前美国药典、日本药典、欧洲药典等都已经收录了氨基酸分析指导原则,部分药企出口到相应国家的产品也参考这些药典进行氨基酸含量测定或者对原料进行杂质筛查。我国药典也收录了复方氨基酸注射液、多肽类药物和中药等品种都需要采用适宜的氨基酸分析方法进行质控,但之前药典没有收录氨基酸测定指导原则,此次新增氨基酸分析指导原则明确了药典标准的执行过程中如何选择适宜的方法。指导原则要求柱前衍生检测通常使用高效液相色谱仪,柱后衍生法检测一般使用商品化的氨基酸分析仪。指导原则收录了盐酸水解法、碱水解法、氧化水解法、二硫代二乙酸或二硫代二丙酸还原酸水解法、双(1,1-三氟乙酰氧基)碘苯还原酸水解法共计5中样品前处理法。收录了柱前PITC衍生氨基酸测定法、柱前AQC衍生氨基酸测定法、柱前OPA和FMOC衍生氨基酸测定法、柱前DNFB衍生氨基酸测定法、柱后茚三酮衍生氨基酸锂离子交换系统测定法、柱后茚三酮衍生氨基酸钠离子交换系统测定法共计4种柱前衍生法和2种柱后衍生法。按外标法或内标法以峰面积计算样品中的各种氨基酸含量。问题2:新标准实施是否会对相关仪器市场产生拉动?预估市场变化规模有多大?根据相关市场预测,从2020年到2025年,氨基酸分析仪市场每年大概增长10%左右,新的指导原则的实施将有助于药厂明确产品检测方法,有助于产生新的氨基酸分析仪的采购需求,市场需求大概以15%以上的速度增长。2022年日立LA8080高速氨基酸分析仪销售台数实现了超30%大幅增长了,2023年在2022年高速增长的基础上销售台数又实现了双位数增长,同时日立Chromaster全功能氨基酸分析仪销售台数也相应的快速增长。问题3:目前贵公司在氨基酸检测方面有哪些特色的应用方案或仪器产品?具有怎样的技术优势?针对氨基酸检测,日立科学仪器(北京)有限公司可以提供指导原则所列的柱前衍生和柱后衍生两种不同的方案,方便药企和药检所根据实际需求选择。1、日立日立Chromaster高效液相色谱仪柱前衍生法日立Chromaster高效液相色谱仪可以根据用户的实际需求提供灵活的配置:• 10 ml/min双柱塞串联往复泵可以选择40 Mpa或60 Mpa• 紫外可见检测器、荧光检测器、DAD检测器等• 可选配衍生单元进行柱后茚三酮法检测。• 标配第1代700-1500cm的反应盘管衍生技术日立Chromaster全功能氨基酸分析仪以下是使用日立日立Chromaster高效液相色谱仪部分测试示例:1.1、PITC法柱前衍生测氨基酸1.2、依据日本药典测定Val/Ile/Leu样品1.3、测定乙酰半胱氨酸1.4 选配柱后衍生单元后,可以进行柱后茚三酮法测定氨基酸2、日立LA8080高速氨基酸分析仪柱后衍生法日立LA8080高速氨基酸分析仪日立公司也提供LA8080高速氨基酸分析仪测定方法,主要配置:• 1 ml/min双柱塞串联往复半微量泵• 3µm高理论塔板数阳离子交换树脂色谱柱• 全自动色谱柱自行装填程序• 光栅分光检测器• 高压全体积直接进样• 衍生单元提供3种方式可选(第3.5衍生技术灵敏度最高,使用寿命最长):研发于1997年的第2代反应柱研发于2011年第3代TDE2研发于2017年第3.5代TDE3(研发于1962年的第1代700-1500cm反应盘管技术可供对检测结果准确性要求不高的用户选配)日立LA8080高速氨基酸分析仪可选配色谱柱全自动自行装填程序,可实现用户自行装填色谱柱,且柱效可达到原厂色谱柱柱效。以下是使用日立LA8080高速氨基酸分析仪测定样品的示例:2.1、18AA-II复方氨基酸注射中氨基酸测定样品测定难度在于Cys含量非常低,非常考验仪器灵敏度和噪音,LA8080噪音值验收承诺小于25 µV,实测噪音值会比25 µV更小,针对这种含量差异非常大的样品检测对低含量氨基酸检测结果更准确。在前几年的抽检中,在被抽检到的药企中,使用日立LA8080的药企都顺利的通过了抽检,部分抽检未通过的药企重新采购了1-5台日立LA8080。2.2、根据指导原则,部分药企可能会选内标法测定氨基酸,日立LA8080可提供正亮氨酸和正缬氨酸做内标两种方法。2.2.1 正亮氨酸(Nle)做内标正亮氨酸做内标标准分析法仅需要通过调整分析程序即可获得更大分离度正亮氨酸做内标高分离分析法2.2.2 正缬氨酸(Nval)做内标可以在30分钟内实现包含CySO3H/MetSON/Orn/Hypro等氨基酸在内的25种氨基酸分析2.3、指导原则提到“在蛋白质或多肽水解之前,用过氧甲酸氧化样品中的半胱氨酸或胱氨酸和甲硫氨酸,使其转化为稳定的磺基丙氨酸和甲硫氨酸砜,防止半胱氨酸或胱氨酸和甲硫氨酸在水解过程中被破坏”,日立LA8080提供含硫氨基酸测定标准分析和快速分析两种方法。2.3.1 含硫氨基酸标准分析法:2.3.2 含硫酸氨基酸快速分析法:2.4、含丙氨酰谷氨酰胺复方氨基酸注射液的测定,日立LA8080可提供更加多样化的分析方法,仅需调整分析方法即可实现不同目的的测定需求,显示出LA8080洗脱模式的优异性。2.4.1标准60 mm色谱柱的标准分析法2.4.2、标准60 mm色谱柱的快速分析法,仅需要调整分析程序即可2.4.3标准60 mm色谱柱的高分离分析法,仅需要调整分析程序即可2.4.3、80 mm色谱柱的标准高分离分析法2.5、复方氨基酸注射液中氨基酸测定2.6、复方氨基酸注射液中氨基酸测定2.7、脑蛋白水解氨基酸测定2.8、3-氨基丙醇测定2.9、有关物质筛查2.9.1 SST2.9.2 原料如果LA8080色谱柱柱效下降后,可以使用全自动色谱柱装填程序实现一键式自行装填。进口色谱柱对照品图谱自行装填色谱柱对照品图谱通过比较对照品图谱,可以发现LA8080自行装填色谱柱柱效可以达到甚至优于进口色谱柱的柱效。综上,日立公司不仅可以提供指导原则所列柱前衍生法测定方案,也可以提供灵活多样的柱后衍生测定方案,更多的分析示例和方法请联系日立科学仪器(北京)有限公司。
  • SICS法催化氧化脱硫脱硝工艺
    p   有机催化法脱硫脱硝原理: /p p   有机催化法脱硫是利用有机催化剂L中的分子片段与亚硫酸结合形成稳定的共价化合物,有效地抑制不稳定的亚硫酸的逆向分解,并促进它们被持续氧化成硫酸,催化剂随即与之分离。生成的硫酸在塔底与加入的碱性物质如氨水等快速生成高品质的硫酸铵化肥,其反应原理和过程与工业硫酸铵化肥的生产相似。 /p p   脱硝与脱硫原理相类似,当加入强氧化剂时,NO转化为易溶于水的高价氮氧化物生成亚硝酸。有机催化剂促进它们被持续氧化成硝酸,随即与之分离。加入碱性中和剂后可制成硝酸铵化肥。 /p p   该工艺流程: /p p   焦炉烟气先经过臭氧氧化,烟气温度小于150℃,然后进入脱硫塔,烟气中的SO2和NOx溶解在水里分别生成H2SO3和HNO2。有机催化剂捕捉以上两种不稳定物质后形成稳定的络合物L?H2SO3和L?HNO2,并促使它们被持续氧化成H2SO4和HNO3,催化剂随即与之分离。生成的H2SO4和HNO3很容易被碱性溶液吸收,这样就在一个吸收塔内同时完成了脱硫和脱硝,该工艺采用氨水做吸收剂,涤后的烟气通过填料层、二级除雾器除去水滴后,回送至焦炉烟囱直接排放至大气。 /p p   该工艺主要由以下系统组成: /p p   烟气系统:由焦炉引出焦炉烟气,经过化肥液体及喷水降温,由200℃降低到150℃以下,以适应臭氧反应温度低于150℃的要求。 /p p   吸收系统:烟气自下而上进入吸收塔,循环浆液自上而下喷淋,烟气和循环浆液直接接触,完成捕捉过程,处理后的洁净气体经过除雾器除雾后,排至烟囱。 /p p   脱硝氧化系统:脱硝氧化系统提供能氧化NO气体的氧化剂——臭氧。臭氧经过烟道内混合器后与烟气中的NO充分混合,将其氧化成易溶解的氮氧化物,进入吸收塔后被吸收得以去除。 /p p   盐液分离及化肥回收系统:吸收塔里浆液化肥浓度达到30%左右时,开启浆液排出泵,将其送入过滤器,分离出其中的灰尘。然后浆液进入分离器,将有机催化剂和盐液分开。催化剂返回吸收系统循环利用,盐液则进入化肥回收系统。 /p p   催化剂供给系统:捕捉浆液中不稳定的H2SO3和HNO2后形成稳定的络合物,在氧化空气下被持续氧化成H2SO4和H2NO3,被碱性溶液吸收,生成硫酸铵和硝酸铵。 /p p   该工艺主要特点: /p p   1)脱硫效率& gt 99%,脱硝效率& gt 85%,氨回收利用率& gt 99.0% 通过增加催化剂,提高亚硫酸铵的氧化效率,运行pH值低于氨法脱硫,能有效抑制氨的逃逸,氨逃逸率& lt 1%。 /p p   2)在同一系统中可同时实现脱硫、脱硝、脱重金属汞、二次除尘等多种烟气减排效果 整个过程无废水和废渣排放,不产生二次污染,同时净烟气中NH3含量小于8mg/Nm。 /p p   3)对烟气硫分适应强,可用于150-10000mg/Nm3甚至更高的硫分,因此,可使用高硫煤降低成本 对烟气条件的波动性有较强的适应能力。 /p p   4)可实现焦炉烟气低温脱硝,减少对设备的腐蚀 副产品硫铵质量达标,且稳定。 /p
  • SCIEX公司宣布乳制品中氟乙酸筛查的新方法
    生命科学分析技术和解决方案的全球领导者SCIEX公司,于2015年5月20日宣布其应用团队正在积极开发针对氟乙酸(MFA)的筛查方法(注MFA也被称为&ldquo 1080&rdquo 。)   2008年,三聚氰胺食品安全事件在中国乳制品市场爆发出时,SCIEX公司与业界科学家合作并在第一时间提供了三聚氰胺和三聚氰酸的检测方法。2013年,新西兰牛奶样品被检测出含有低含量化合物&ldquo 双氰胺&rdquo (又为DCD), 对此,SCIEX公司也开发了相应的检测方法。近期,另一个重大食品安全事件最近正在亚太地区发酵。新西兰全国养殖协会和一些乳品公司于2014年年底收到来源不明的恐吓电子邮件,声称部分牛奶和婴幼儿配方奶粉已被人工添加了具高毒性的氟乙酸。新西兰政府将此次事件定义为&ldquo 生态恐怖主义&rdquo 。警方报告说,该威胁邮件旨在迫使新西兰停止使用含有氟乙酸成分的农药。这种农药广泛运用于保护植物免受啮齿动物,哺乳动物的和昆虫的侵害 摄入人体内后可能会引起食物中毒,心脏异常,肌肉抽搐,痉挛和昏迷等不良反应。该农药在许多其他国家已被禁止使用。   新西兰是世界上最大的牛奶生产国和出口国之一,该事件威胁到全球食品安全。在事件爆发后,新西兰乳制品业、政府以及上下游产业合作伙伴一起,开始研发可快速检测1080的方法。出于对检测效率的考虑,科学界需要一种快速和易于实施的检测方法。   SCIEX公司致力于帮助应对全球食品安全问题。对此,公司投入大量人力物力,已经初步开发了利用QTRAP® 4500系统在牛奶和婴幼儿配方奶粉筛查1080的方法。 该方法包括一种不需要衍生作用的简化样品制备过程,大大消减了试验的时间,并且可以在食品基质中检测到低于10纳克/毫升的1080成分,同时满足优异的精准度和再现性。在初步的研究中,我们发现该方法的定量动态范围可覆盖0.1至100纳克/毫升,实现在广泛的浓度范围内进行精准的定量分析。目前SCIEX正在计划进一步的实验来提高灵敏度,简化样品制备并加入内部标准品来纠正低回收率和基质效应的问题。   &ldquo 氟乙酸威胁可能会损害全球食品安全,因此,我们的专家团队以最快的速度开发了这样一个容易使用的方法 。利用这个方法,实验室的科学家能在短时间内快速地对大量样品进行污染物筛查。&ldquo 来自SCIEX公司的高级业务总监文森特· 派斯如是说。&ldquo 作为全球食品检测团队的一部分,快速开发新的分析解决方案来应对食品安全事件是我们的使命。&rdquo   登陆SCIEX官网可了解详情并下载应用报告。
  • 解决方案 | 自来水中总硬度-乙二胺四乙酸二钠滴定法的测定
    水中总硬度原系指沉淀肥皂的程度,使肥皂沉淀的原因主要由于水中的钙、镁离子,此外,铁、铝、锰、锶及锌也有同样的作用。长期饮用高硬度水的人会增加肾结石的发病率,硬度越高,发病率越高。《GB/T 5750.4-2006 生活饮用水标准检验方法 感官性状和物理指标》中规定了饮用水及其水源水的测定方法,睿科根据其方法提供自动化样品整体解决方案,代替人工进行水质总硬度的测定,保证检测的快速高效。仪器、耗材与试剂仪器睿科Auto Titra 08全自动滴定仪分析天平:感量为1mg鼓风干燥箱耗材试剂瓶:50X160mm、60X160mm试剂氯化铵氨水(ρ20=0.88g/mL)硫酸镁(MgSO47H2O)乙二胺四乙酸二钠(Na2EDTA2H2O)铬黑T硫化钠(Na2S9H2O)盐酸羟胺(NH2OHHCl)锌粒、盐酸分析步骤样品测定1吸取50mL自来水样(硬度过高的样品,可取适量水样,用纯水稀释至50mL,硬度过低的样品,可取100mL)置于试剂瓶中。2立即将样品全部放置于睿科Auto Titra 08全自动滴定仪的样品槽中,仪器自动加入1mL缓冲溶液和5滴指示剂,用Na2EDTA标准溶液滴定至溶液从紫红色变成纯蓝色即为终点,仪器自动判定。睿科Auto Titra 08全自动滴定仪空白试验按以上相同步骤以50.0mL试剂水代替水样进行空白试验,记录下空白滴定时消耗Na2EDTA标准溶液的体积V0。实验结果结果计算将标定浓度、空白值输入到软件界面中,仪器内置计算公式,根据每个样品滴定体积自动计算结果。计算参数界面质控样测试
  • 色谱检测新标准来啦——HJ 1271-2022 环境空气 颗粒物中甲酸、乙酸、乙二酸的测定 离子色谱
    有机酸极易富集在大气颗粒物上,不仅对城市环境和人体健康造成诸多影响,还关系到全球大气系统能量平衡。有机酸在一定条件下可明显增加酸雨强度,降低城市大气能见度,影响区域和全球的气候。最常见的有机酸为甲酸、乙酸和乙二酸,对其含量的检测不仅是未来环保规范的迫切需要,同时也为大气颗粒物中化合物的示踪及其来源解析提供依据,是大气颗粒物环境治理工作的重要需求。为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治生态环境污染,改善生态环境质量,生态环境部组织制定了《HJ 1271-2022 环境空气 颗粒物中甲酸、乙酸、乙二酸的测定 离子色谱法》,规范环境空气颗粒物中甲酸、乙酸和乙二酸的测定方法。本文内容非商业广告,仅供专业人士参考。
  • 超短链全氟烷基化合物“三氟乙酸”分析利器——超临界流体色谱质谱联用技术
    近年来,以三氟乙酸(TFA)为代表的超短链全氟烷基化合物(超短链PFAS)大量赋存于城市河水中这一问题已对城市生态及饮用水生产带来了巨大挑战,监测和精确定量饮用水源中的超短链PFAS已经迫在眉睫。针对高极性的超短链PFAS,高效环保的超临界流体色谱质谱联用技术可以提供良好保留和高灵敏度检测结果。背景介绍PFAS是一类广泛用于消费品和工业生产的含氟有机化合物。全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA)是两种含八个碳的全氟烷基酸类化合物(PFAA),因具有较高的环境持久性和毒性,已在全球范围内逐步淘汰。然而,取而代之的是一些超短链(C1&minus C3)(图1)和短链(C4&minus C7)PFAA,其在环境、血液及尿液样本中正在被广泛检出【1,2】,引发了人们对健康影响的担忧。图1 超短链(C1&minus C3)全氟烷基化合物特别是含量较高的三氟乙酸被认为含有损坏生育能力和儿童发育毒性,正在全球范围内引起广泛关注。据欧洲新闻网报道,欧洲农药行动网络(PAN Europe)及其成员于5月27日联合发布了一项研究报告,对来自10个欧盟国家的23个地表水样本和6个地下水样本的联合调查发现,所有检测的水样中均检测到PFAS,其中23个样本(79%)的TFA浓度超过了欧盟饮用水指令中“PFAS总量”的拟议限值;而在检测到的总PFAS中,TFA占总量的98%以上【3】。TFA是含有两个碳的全氟羧酸,属于超短链(C1&minus C3)全氟烷基化合物。其在环境中普遍存在,主要来源包括PFAS农药、氢氟碳化物制冷剂、污水处理和工业污染(图2)。尽管目前对TFA的生物毒性效应研究有限,考虑到其持久性和全球传播特性,正在引起全球多国的密切关注【4,5】。图2 杀虫剂、杀菌剂和药品中的碳键全氟甲基在环境条件下通过氧化裂解转化为TFA特色应用方案使用高效环保的超临界流体色谱(SFC)分离技术,结合超高灵敏度三重四级杆质谱检测器,岛津中国创新中心开发了包括TFA在内的五种超短链PFAS快速分析方法。与反相液相色谱不同,SFC可以充分保留仅有一到三个碳的超短链PFAS,有效降低基质的干扰(图3)。图3 SFC-MS/MS和LC-MS/MS分析超短链PFAS色谱对比图(1ng/mL标液)使用SFC-MS/MS对纯水配置的系列标准溶液进行分析,可得到良好线性和较低检测限(见表1),进一步,对不同地表水样品进行检测,结果发现,均检测到一定量TFA,使用内标法定量,分别为几百个到几千个ppt,说明TFA在城市水体都存在较为严重的污染(图4、图5)。图4 SFC-MS/MS分析地表水样品1中超短链PFAS图5 SFC-MS/MS分析地表水样品2中超短链PFAS表1 SFC-MS/MS分析水样中超短链PFAS线性和检出限总结采用超临界流体色谱串联三重四极杆质谱仪(SFC-MS/MS)建立超短链(C1&minus C3)全氟烷基化合物的快速分析方法。由于超临界流体色谱独特的分离选择性,使用SFC-MS/MS分析种类繁多的PFAS,可以得到与反相色谱截然不同的溶出顺序和出峰行为。SFC-MS/MS可作为反相液相色谱质谱联用技术一种有力补充,对超短链PFAS进行更准确定量。随着对PFAS及其降解产物(TFA等)认识的不断深入,全球各国需要加强对这些持久性化学品的监管和限制, 旨在减少PFAS污染,保护生态系统和人类健康。超临界流体色谱串联三重四极杆质谱仪(SFC-MS/MS)注解*:超临界流体色谱(SFC):使用超临界流体作为流动相的色谱分离技术。以超临界流体CO2为流动相的SFC分离技术不仅高效而且节能环保,作为一种绿色分离技术在制药、食品和石油领域得到越来越广泛的应用。参考文献1. Guomao Zheng, Stephanie M. Eic, Amina Salamova. Elevated Levels of Ultrashort- and Short-Chain Perfluoroalkyl Acids in US Homes and People. Environ. Sci. Technol. 2023, 57, 42, 15782–15793.2. Isabelle J. N., Daniel H., Hanna L. W., Vassil V., Ulrich B., Karsten N., Marco S., Sarah E. H, Hans P. H. A., and Daniel Z., Ultra-Short-Chain PFASs in the Sources of German Drinking Water: Prevalent, Overlooked, Difficult to Remove, and Unregulated. Environ. Sci. Technol. 2022 56, 10, 6380-6390.3. 欧洲水体中的PFAS污染引发关注:塞纳河等河流中令人惊讶的三氟乙酸浓度.【微信公众号:新污染物监测与分析】4. Cahill, T. M. Increases in Trifluoroacetate Concentrations in Surface Waters over Two Decades. Environmental Science & Technology, 2022, 56,9428-9434.5. Thomas M. Cahill. Assessment of Potential Accumulation of Trifluoroacetate in Terminal Lakes. Environ. Sci. Technol. 2024, 58, 6, 2966–2972.本文内容非商业广告,仅供专业人士参考。
  • 国图古籍保护实验室:让典籍文献摆脱“酸化危机”
    走进位于北京市西城区文津街7号的国家图书馆古籍馆,转几个弯,绕到文津楼后,看到一扇单门。正值雨季,门口摞着两个防水用的沙袋。单门是通向一个半地下室的。即使是老读者,很多人也都没注意到,近几年,这里多了一个古籍保护实验室。  不久前,国内首个成型的文献脱酸设备在这个实验室研制成功。全国上千万册正处于“酸化危机”中的典籍文献,将有机会因此延年增寿。古籍保护实验室内的文献脱酸设备。  “酸化危机”:全球性问题  实验室摆着一册1936年出版的《宋元明清四朝学案》,书页已经泛黄。工作人员张铭正在对它进行检测。结果不出意料,纸张的pH值仅为4.5。  在酸碱度检测中,pH值等于7为中性,大于7为碱性,小于7为酸性。在文献保护领域,pH值如果小于5,就意味着纸张已严重酸化。而酸化,是加速文献纸张脆化变质的罪魁祸首。  “纤维素是纸张的主要组成成分,也是纸张强度的主要来源。在酸性条件下,纤维素很容易发生水解,这就会使纸张老化。”实验室负责人、国家图书馆古籍馆文献保护组组长田周玲介绍,木材、竹子、稻草等造纸原料,有的本身就是酸性物质,有的则通过长期的氧化、水解产生酸性物质,再加上日益严重的环境污染更加速了纸张的酸化。现在,纸张酸化已经成为影响文献保存的世界性问题,全世界三分之二的历史文献和珍贵图书都受到酸化的威胁。  十几年前,国家图书馆馆员李景仁、周崇润对馆藏各个历史时期的文献酸度进行了全面检测。他们得出的结论是:我国的善本古籍特藏文献大部分已呈现酸化迹象。由于在近现代造纸工艺中,常常会使用酸性添加剂,这使得民国文献的酸化程度比以往更为严重。  基于这样的现状,研发针对民国文献的脱酸液和脱酸设备,成为这个实验室的当务之急。张铭手上的民国版《宋元明清四朝学案》,是旧书市场买来的样品。经过脱酸处理后,他又对这册书的纸张酸度进行检测:pH值为8,达到了预期的效果。  “脱酸工艺能否完全中和纸张的强酸和弱酸,pH值是最直观也是最基础的评价指标。如果脱酸后的pH值不达标,其他各项指标性能再好也是妄谈。”田周玲查阅过国外的相关文献,美国国会图书馆等机构的模拟老化试验研究显示,脱酸后,文献的寿命可以延长3到5倍。  批量处理:与时间赛跑  试管、试剂、显微镜、电脑,乍看起来,这个实验室与其他生物、化学实验室似乎也没有太大不同。直到走进最里面的房间,才发现一个与众不同的“大家伙”,不锈钢结构,两米多高,长、宽在一米左右——这就是我国首个自主研发的批量文献脱酸设备。  文献保护是一场与时间的赛跑。常常是还没来得及保护,文献就发生了无可挽回的残损。对海量酸化严重的文献,一页一页地脱酸甚至一本一本地脱酸,无疑都太慢了。美国、德国、法国、英国、加拿大、意大利等国家早已进入规模化脱酸阶段。  曾有国外厂商找到国家图书馆古籍馆副馆长陈红彦,一台脱酸设备报价3000万元人民币。一旦购买了国外的脱酸设备,就要购买相应的脱酸液,每公斤折合人民币1100元,价格同样十分高昂。自主研发纸张脱酸技术,成为中国古籍保护工作迫在眉睫需要解决的课题。  “20世纪80年代中期,南京博物院、中国人民大学先后研制成功纸张气相脱酸技术,但由于所用脱酸剂对环境存在安全隐患,推广应用受到了限制。国家档案局、上海图书馆等单位对纸张也进行过脱酸应用的研究,但只限于单页纸张脱酸处理。”田周玲说,该实验室2009年正式投入使用后,就把脱酸工艺作为重要研究方向。2015年,在民国时期文献保护计划的支持下,还承担了“民国时期文献脱酸研究与脱酸设备研制”项目。  仅仅花费了30多万元,这个实验室就设计制造了这样一台集储液系统、脱酸系统、冷凝系统和控制系统于一体的脱酸设备,填补了国内相关领域的空白。与此同时,自主研制的脱酸液成本也下降为进口产品的十分之一。  “这个设备有一个脱酸提篮,一次能放入20到50本书图书。不需要拆装订,随着提篮缓慢摇摆,文献的纸张就可以与脱酸液密切接触,达到比较好的脱酸效果。”田周玲说,提篮的摇摆频率还可以根据纸张的脆化程度进行调节,最大限度地避免对文献造成二次伤害。  田周玲预计,再经过一段时间的检测,这个脱酸设备就能应用到馆藏民国文献的脱酸工作中。随着这种脱酸设备在全国推广开来,古籍特别是民国文献保护的困局将得到进一步缓解。
  • 干货分享~卡巴氧、喹乙醇及代谢物前处理方法
    喹噁啉类药物的危害及检测目的喹噁啉类药物是一类化学合成类的抗菌促生长剂,它们的基本结构是喹噁啉-1,4-二氧化物,即喹噁啉环。主要包括喹乙醇、卡巴氧、喹喔啉、喹赛多、喹多辛、西诺喹多、德那资多(肼多司)、乙酰甲喹和喹烯酮等药物。研究表明,喹噁啉类药物对DNA致突变、致损伤,破坏细胞抗氧化作用系统,可以引起细胞自由基的产生,导致细胞DNA发生氧化性损伤,还会引起细胞周期阻滞和细胞凋亡。传统喹噁啉类药物喹乙醇和卡巴氧,由于其对人体危害最/大,世界各国和国际组织对这两种兽药制定了严格的残留限量规定。欧盟1998年发文禁止喹乙醇和卡巴氧在食品动物生产中作为促生长添加剂使用。2020年我国生效实施的GB 31650-2019《食品安全国家标准食品中兽药zui/大残留限量》中规定了猪肌肉和猪肝脏组织中喹乙醇残留标志物的zui/大残留限量。同年我国农业农村部公告第250号规定卡巴氧及其盐、酯为食品动物中禁止使用的药品。但是,这些药物在生产实践中被大量地非法使用或滥用,其残留对消费者健康造成了巨大的潜在威胁。喹乙醇和卡巴氧进入动物体内后,能够在短时间内代谢成十多种产物,研究表明,3-甲基-喹噁啉-2-羧酸(MQCA)是喹乙醇在动物体内代谢后的主要产物,喹噁啉-2-羧酸(QCA)是卡巴氧在动物体内代谢后的主要产物,且该产物在动物体内滞留时间较长,因其含量与总残留关系稳定,所以将MQCA定为喹乙醇在动物体内代谢的残留标示物,将QCA定为卡巴氧在动物体内代谢的残留标示物。本文阐述了如何将卡巴氧、喹乙醇及代谢物从样品基质中分离提取出来,并经过净化后,转化成液质联用仪可以检测的形式。以提取、净化为重点,依据国标GB/T 20746-2006,为检测人员和相关领域研究人员提供一定的参考。检测项目:卡巴氧、脱氧卡巴氧、喹噁啉-2-羧酸(QCA)、3-甲基-喹噁啉-2-羧酸(MQCA)应用范围:牛、猪肝脏和肌肉液相色谱-串联质谱法方法原理:卡巴氧:用乙腈+乙酸乙酯(1+1)溶液提取肌肉和肝脏组织中的卡巴氧,提取液经正己烷脱脂后,旋转蒸发至干,残渣用甲酸(0.1 %)+甲醇(19+1)溶液溶解。样液供液质测定,内标法定量。脱氧卡巴氧、QCA、MQCA:用甲酸溶液消化试样,使组织中天然存在的酶失活,然后加入蛋白酶水解,盐酸酸化,离心过滤后,过Oasis MAX固相萃取柱或相当者净化。先用二氯甲烷洗脱脱氧卡巴氧,再用2 %甲酸乙酸乙酯溶液洗脱QCA和MQCA,氮气吹干洗脱液,残渣用甲酸+甲醇(19+1)溶液溶解,样液供液质测定,内标法定量。 前处理仪器:固相萃取装置;氮气浓缩仪;液体混匀器;分析天平(感量0.1 mg和0.01 g);真空泵;均质器;移液器(10 μL~100 μL和100 μL~1000 μL);聚丙烯离心管(50 mL具塞);pH计(测量精度±0.02 pH单位);低温离心机(可制冷到4 ℃);玻璃离心管(15 mL)。检测仪器:HPLC-MS/MS+ESI源试样制备与保存将牛、猪肝脏和肌肉组织样品充分搅碎,均质,分出0.5 kg作为试样,置于清洁样品容器中,密封,并做上标记。将制备好的试样于-18 ℃以下保存。前处理方法1. 卡巴氧的前处理步骤称取5 g试样(精确至0.01 g),置于50 mL聚丙烯离心管中,加入5 g中性氧化铝,加入25 mL乙腈+乙酸乙酯(1+1)溶液,于液体混匀器上充分混合5 min,以5000 r/min离心5 min,将上清液移取至另一干净的50 mL离心管,加入10 mL正己烷到管中,振荡2 min,以5000 r/min离心5 min,弃去上层正己烷,将下层清液转移至150 mL鸡心瓶中。加入25 mL乙腈+乙酸乙酯(1+1)溶液,重复提取一次,正己烷除脂后合并两次提取液于同一鸡心瓶中,加入一定量的喹噁啉-2-羧酸-d4(QCA-d4)标准溶液,使其浓度为2.0 ng/g,40 ℃水浴减压旋转蒸发至干。准确加入1.0 mL 0.1 %甲酸-甲醇(19+1)溶液溶解残渣,过0.2 μm滤膜后,供液质测定。2. 脱氧卡巴氧、喹噁啉-2-羧酸、3-甲基-喹噁啉-2-羧酸的前处理步骤称取5 g试样(精确至0.01 g),置于50 mL聚丙烯离心管中,加入10 mL 0.6 %甲酸溶液,混匀后,置于(47±3)℃振荡水浴中振摇1 h;先加入3 mL1.0 mol/LTris溶液混匀,再加入0.3 mL 0.01 g/mL蛋白酶水溶液,充分混匀后,置于(47±3)℃振荡水浴中酶解16 h~18 h。加入20 mL 0.3 mol/L盐酸溶液,振荡5 min,在10 ℃以5000 r/min离心15 min,上清液过滤。将滤液移入Oasis MAX固相萃取柱(3 mL甲醇和3 mL水活化)中,待样液全部流出后,用30 mL 0.05 mol/L乙酸钠-甲醇(19+1)溶液淋洗固相萃取柱,真空抽干15 min。在一支干净的玻璃管内加入一定量的喹噁啉-2-羧酸-d4(QCA-d4)标准溶液,使其浓度为2.0 ng/g,再用4×3 mL二氯甲烷将脱氧卡巴氧洗脱至管内,在45 ℃用氮气浓缩仪吹干。固相萃取柱再用3×3 mL甲醇、3 mL水、3×3 mL 0.1 mol/L盐酸溶液和2×3 mL甲醇-水(1+4)溶液分别淋洗,真空抽干15 min,然后用2 mL乙酸乙酯再淋洗固相萃取柱,弃去全部淋出液,最后用3 mL 2 %甲酸乙酸乙酯溶液洗脱喹噁啉-2-羧酸(QCA)和3-甲基-喹噁啉-2-羧酸(MQCA)到上述吹干的试管中,在45 ℃用氮气浓缩仪吹干。准确加入1.0 mL 0.1 %甲酸-甲醇(1.标准物质分别用甲醇配制成100 m-d4)同位素内标进行回收率的校正,也可以配合使用各个化合物相对应的同位素内标。
  • 国产化妆品如何在昙花一现的行业现状中,脱颖而出......
    最近跟日化圈里朋友探讨广东化妆品企业的现状,也是中国化妆品的现状。众所周知广东的日化企业占全国的70%左右,而一直以来国产化妆品品牌都是让人诟病的。因为很少有品牌能够坚持10年以上,更多的是昙花一现。作为日化行业实验室设备供应商,绿百草的客户遍及日化行业的整个系统。既有好来、高露洁这样的外资企业,也有环亚、丸美这样的知名民族品牌企业,还包括花安堂、三好、中通这样的研发能力很强的代工企业,更多是数量巨大的中小品牌企业和OEM代工厂。通过跟他们的合作,我们能够看到企业文化的差异和管理模式的不同。知名的外企,比如好来,他们对于基础研究和基础创新的重视是国内企业无法比拟的,并且他们在质量控制方面更是精益求精,这也是他们能够保持持久领先最主要的原因。可喜的是随着国际化程度的加深,政府、企业、科研对于基础研究和创新的重要性逐渐清晰。特别是我们看到广东省化妆品学会这样的组织,为日化行业搭建平台,扮演更重要的角色,我们也希望它能承担一部分基础研究,并且服务于企业客户。对于企业本身,更多的是避免同质化竞争,打造自己独特的产品竞争力。也许下面的故事会让日化企业们找到前进的路。巴斯夫、拜耳和赫希斯特公司是德国化学产业的“三巨头”企业,为德国成为世界化学工业的垄断者和领先者立下了汗马功劳,它们是德国化学产业发展的缩影,却代表着产业发展的不同路径。合成染料:“三巨头”企业的共同起点。在世界化学工业史上,德国是后来者。1862年,英法科学家开启了化学工业的合成染料时代,而德国人只能模仿,相继成立了一批生产合成染料的企业。其中就有后来成为德国化学制造“三巨头”的拜尔、巴斯夫和赫希斯特公司。1863年,拜耳公司创建于德国的勒沃库森,主要研制和生产苯胺合成染料,同时开始了自主创新。1869年,拜耳公司实验室的科学家格雷贝和李普曼成功合成了茜素染料。1872年,公司开始生产茜素染料,并将其作为拳头产品,此举结束了德国企业对英法合成染料生产工艺的仿制。 1878年,科学家和企业家拜耳以靛红染料为起点,实现了靛蓝染料的实验合成。1880年,注册了合成靛蓝染料专利。1883年,拜耳通过实验揭开了靛蓝分子的原子结构。1885年,拜耳公司的科学家杜斯堡发明并申请注册了苯紫红素染料专利,随后还研制出其它可供工业化生产的新染料。1865年,巴斯夫公司的前身——巴登苯胺碱厂创建于德国西南小镇曼海姆。1869年,巴斯夫公司的化学家卡洛与拜耳公司格雷贝和李普曼合作,人工合成了茜素染料,为巴斯夫公司打开了通往世界市场的大门。随后,巴斯夫公司又发明了曙红、槐黄和偶氮等新染料,奠定了它在染料产业的领先地位。1876年,在巴斯夫公司的努力下,德国化学家成功研制并率先推出各种偶氮染料。同年,巴斯夫公司成功合成甲基蓝,并注册了专利。1880年开始,巴斯夫公司斥巨资集中研发靛蓝染料,终于在1897年获得成功,并实现了工业化生产。1901年,化学家邦恩发明了醌还原新染料,为缤纷的染料世界增添了更多的色彩,巴斯夫公司由此成为世界上最大的以染料为核心的化学品制造商。1863年,赫希斯特公司的前身——迈斯特尔鲁齐乌斯公司成立于法兰克福附近的赫希斯特镇,主要生产品红、合成茜素和偶氮染料。80年代以后,赫希斯特公司投入巨资开发合成靛蓝染料,于1901年获得成功,与拜耳和巴斯夫一起开创了靛蓝染料的工业化生产时代。依靠合成染料系列产品起家的“三巨头”企业,先后成功合成了茜素染料、偶氮染料和靛蓝等染料,同时,也从竞争走向了合作。例如在合成茜素染料的研发和生产中,为了避免无谓的竞争,1881年,由赫希斯特公司、巴斯夫公司和拜耳公司等9家德国企业与一家英国企业,围绕价格和市场份额进行了协商和谈判,最终签订了“茜素条约”,形成初级卡特尔。1885年,“茜素条约”卡特尔解体。后经多次商讨,1900年4月,赫希斯特、巴斯夫和拜耳三家公司又缔结了新茜素条约,组成新的卡特尔组织,以垄断价格获得高额利润。人工合成染料,不仅使“三巨头”企业成功起家,也使德国掌握了该领域绝大多数的技术专利和生产工艺,为德国染料产业的发展添上了腾飞的翅膀。1880年,德国的合成染料占当时世界总产量的50%,1900年,占世界总量的90%左右。至1914年,德国取代英法成为化学工业中心,控制全球染料产业88%的份额,几乎达到独家垄断的情形。 差异化的合作、竞争和垄断。20世纪前半期,德国化学产业的“三巨头”企业进入到一个非常特殊的发展阶段。竞争与合作,战争与垄断一直相伴而行。首先,企业从竞争合作走向了高级垄断。前述的卡特尔组织,只是垄断组织的初级形式,只涉及独立企业的某个部门或某类产品,企业之间的相互依存度很低,难免存在恶性竞争。为此,拜耳公司倡导建立更高层级的垄断组织——辛迪加。参加的企业虽然在生产和法律上仍保持各自的独立性,但在商业营运上已完全受制于总办事处。1904年,拜耳、巴斯夫和爱克发公司组成辛迪加性质的“利益同盟”,即小I.G.集团,三方共享利润,其中巴斯夫和拜耳公司各占43%,爱克发占14%。赫希斯特公司通过收购或联合一些中小型企业,形成以其为绝对核心的集团组织。这两大染料集团几乎垄断全世界90%的染料市场。1914年,德国发起第一次世界大战后,出于军事和战争的考虑,大力支持小I.G.集团和赫希斯特集团合并,以建立更大规模的垄断组织。1916年,大I.G集团诞生,它几乎兼并了德国化学制造领域所有独立的小企业。大I.G.集团建立后,出现了机构臃肿、产品重复、效率低下等问题,改革势在必行,走向高级垄断组织——托拉斯成为最佳选择。1925年元旦,德国I.G.法本工业公司(即托拉斯集团)正式成立,总部设在柏林。其中巴斯夫、赫希斯特、拜耳各占27.4%的原始资金份额,成为最大的三家创立公司,所有的德国化学制造企业都合并到这一个企业中。原来独立营运的“三巨头”企业,现在却变成了一个托拉斯集团下的三个组成部分。I.G.法本公司是一个巨大的企业集团,是由“营运共同体”来进行管理的,但各公司仍然保持着各自的独立性,每个共同体仍然围绕着一组类似技术的多产品部门,形成差异化的合作、竞争和垄断的市场格局。以巴斯夫公司为主体形成了莱茵河上游共同体,虽然继续生产染料类产品、中间产品、其它化学品,以及煤变油和合成材料的化学创造,但主要经营活动集中于合成氨和含氮类农业肥料的生产。以赫希斯特公司为主体组成了莱茵河中游共同体,虽然仍是药品生产中心,但同时也生产还原染料类产品、乙炔和醋酸盐类产品等,还负责开发合成橡胶。以拜耳公司为主体则建立了莱茵河下游共同体,继续制造精细染料类产品、药品、摄影化学类产品和纸张。原来拜尔公司的总部勒弗库森发展成为基础化学品和中间化学品的生产基地,以及最大的染料产地,合成橡胶和高分子聚合物成为主要的研发领域。每一个营运共同体都在中央办公室的监督之下,尽可能实行自治式管理,自我控制,与其他营运共同体开展合作和竞争。I.G.法本工业公司属于康采恩性质的大型垄断集团,不仅垄断了全德国的染料、炸药和合成氨等产品的生产,控制了德国化学制造业85%的份额,而且也是当时欧洲最庞大的康采恩、世界化学制造业的“巨无霸”企业,形成了全球性垄断。二战期间,I.G.法本公司不可避免地卷入了战争的漩涡。如其子公司巴斯夫公司,几乎把所有的“化学创造”用于满足纳粹政府的各种军事需求上。二战结束时,巴斯夫公司损失惨重,据统计,其工厂33%被完全毁坏、61%被严重损坏。德国在二战中的失败,意味着I.G.法本公司垄断时代的结束。1950年,盟军占领当局决定将I.G.法本公司拆解,位于莱茵河畔的拜尔公司、赫希斯特公司和巴斯夫公司成为其三大继承公司。1951年12月,拜尔公司重新成立,恢复了1925年之前原拜尔公司的四个生产基地,即勒弗库森、多马根、埃尔伯菲尔德和乌丁根,集中精力扩大其药品系列的生产,凝聚于药品研发的核心竞争力。1952年,巴斯夫公司以“巴登苯胺苏打股份公司”的名称得以重建,但也只能回过头来重新营运其1925年以前的设施。战前建立的农业站和农业化肥的研制技术,这时却发挥了巨大作用,巴斯夫公司沿着这一研究路径重新开发了一系列的农业化学产品。同时,利用战前在高分子聚合物,如贝纶和尼龙的技术研发优势,巴斯夫公司在开发包装用聚乙烯薄膜等塑料制品方面获得了巨大成功。聚乙烯的原材料是当时成本较低的石油和天然气,通过上下游产业的连接,巴斯夫公司顺势进入了石油化工领域。1953年,赫希斯特公司完成了重新组建。除了药品和精细化学产品业务以外,它还保留了制药、玻璃纸、纤维素衍生物类产品、中间化学品等业务。后来,赫希斯特公司又同美国企业合作,由此进入聚合物日用品的生产领域。就这样,德国化学制造业的“三巨头”企业从战争废墟中重新起步,在20世纪下半期踏上了新的发展之路。巴斯夫集团:从染料走向化学品的创造。20世纪后半期,凭借对各种合成染料的研发技术和基础,巴斯夫公司开始了化学品创造的新征程。在50年代,聚苯乙烯树脂的生产为巴斯夫公司的海外“化学创造”铺平了道路。通过与英美企业的合资和合作,巴斯夫公司不仅开拓了美国、法国、巴西和阿根廷市场,而且还进入了以聚合物为基础的纺织纤维类产品制造领域。从60年代中后期开始,巴斯夫公司通过并购和合资等方式,先后进入到欧洲、北美、亚太和非洲等地。80年代以后,巴斯夫公司重点开发了发展中国家市场。1965年,巴斯夫公司开始了多元化经营,逐渐活跃在印刷业领域。1970年,巴斯夫公司开始生产印刷油墨、绝缘涂料和电气材料,为其后来成为汽车涂料和抛光材料生产商奠定了技术基础。1975年,巴斯夫公司增加了在药品和医药物资等方面的研发活动。1987年,巴斯夫公司的研究人员发现了维生素B2的生产新技术,便尝试用生物技术开发了饮料和牛奶制品的天然添加剂。在70年代的石油和经济危机中,巴斯夫公司再次调整发展战略,把一体化作为不断进行化学创造的力量源泉。一体化是指集团内部智能化的生产车间、能量流和基础设施等相互联系的网络,同时还有彼此联系的技术诀窍和客户,包括生产、技术、客户和员工的一体化。根据一体化战略,巴斯夫公司有6个协作生产平台和390多个生产点,形成全球范围的生产网络,在世界每一个地方都能给顾客和合作伙伴提供支持。在一体化战略中,巴斯夫公司纵向发展核心化学业务,包括基础类和中间类化学品,通过兼并上下游企业,形成庞大的“生产链”,同时开始将眼光投向一个远离化学及其核心业务的领域——化学与技术、化学与生物融合的边缘领域,如生物和纳米技术,逐渐发展成为综合的大型化学品生产集团。
  • “毒腐竹”中乌洛托品的检测方法
    近日,全国多个地方均出现使用化工原料制作“毒腐竹”的案例。吊白块、硼砂、乌洛托品均属于禁止在食品中添加的有毒有害物质。不法分子使用这些化工原料使腐竹增重、漂白、防腐、增强韧性,以牟取非法利益。乌洛托品化学名称为六亚甲基四胺,属于工业原料,可以起到增白保鲜,增加口感,防腐效果。误食可导致人体过敏,致癌,致畸等危害。2010年被我国列为第四批《食品中可能违法添加的非食用物质添加剂名单》,明令禁止用于食品生产。基于行标《SN/T 2226-2008进出口动物源性食品中乌洛托品残留量的检测方法液相色谱-质谱/质谱法》中乌洛托品的液质分析方法,沃特世用户已经针对豆制品中的乌洛托品开发出专门的前处理方法。本方法使用具有反相及离子交换双重功能的MCX小柱,可以最大程度保留目标物,同时去除掉提取液中的植物蛋白干扰物,得到最洁净的样本。采用HILIC模式的色谱柱,可以提高化合物在酸性流动相中的保留及灵敏度。试验方法(适用于腐竹,豆皮等豆制品及米粉):提取:准确称取1.0 g样品,置于50 mL具塞比色管中,加入5mL 80℃的热水,摇匀后静置10 min;用1.5%三氯乙酸水溶液定容到25 mL,匀浆后超声提取5 min;提取液转移到50 mL离心管,10000 r/min 离心10 min(温度低于15 ℃),取上清液5 mL待净化。净化:Oasis MCX小柱(3CC/60mg,Part No.186000253)活化,平衡:3 mL甲醇,3 mL水;上样:5 mL提取液;清洗:3 mL水,3 mL甲醇;洗脱:3 mL 5% 氨化甲醇;氮气下挥干,用1 mL 0.1%乙酸/乙腈(2+8)溶解残渣后过0.22 μm滤膜上机。LC/MS/MS分析方法(SN/T 2226-2008)色谱柱:UPLC柱:ACQUITY BEH HILIC 2.1*50 mm 1.7 μm (Part No.186003460)*流动相:0.1%乙酸/乙腈(2/8)流 速:0.25 mL/min进样量:5 μL柱 温:30 ℃质 谱:正离子,多反应监测模式 母离子141.1 子离子112.2/98.2*HPLC方法可使用XBridge HILIC 2.1*100 mm 3.5 μm (Part No.186004433)HPLC柱,其它实验条件做相应调整。
  • 中国科大研制出勘探拖缆采集工程化样机
    据中国科学技术大学消息,该校已成功研制出海洋石油地震勘探拖缆采集工程化样机。在科技部组织的国家863重点项目“深水高精度地震勘探技术”验收会上,中国科大展示了该工程化样机探查得到的蓬莱19-3油田地震剖面图,获得了验收专家的充分肯定。样机由中国科大核探测与核电子学国家重点实验室宋克柱课题组自主研制完成。   地震勘探采集技术是地质勘探,尤其油气、煤田资源勘探领域的核心技术。科技部围绕该技术组织了数十项863课题,如高精度地震数字采集系统、地震勘探采集系统等。2002年,中国科大就承担了“十五”863子课题“时移地震数据采集与记录系统”,研制出具有自主知识产权的高分辨、高精度、大容量的海洋物探数据采集与记录系统的实验样机。作为该课题的延续,2007年,中国科大又承担了“十一五”863子课题“高精度地震拖缆采集系统工程化样机研制”。其任务是研制出具有自主知识产权的海上油藏地震监测系统,实现目标油田在开发过程中储层剩余油分布的动态监测,从而为优化油田开发方案和海洋油藏勘探提供准确数据。   经过多年努力,中国科大研制出了海洋石油地震勘探拖缆采集工程化样机,实现了具有我国自主知识产权的深水高分辨勘探的关键技术。该工程化样机于 2009年11月在渤海成功进行了三维海试,随后于2009年12月装配在中海油田服务股份有限公司的“滨海521”物探船上进行海上物探作业。   2011年蓬莱19-3油田漏油事故发生后,该工程化样机随“滨海521”物探船进行地质勘探,采集到了蓬莱19-3油田高精度、高分辨的地震资料,为准确定位漏油位置和分析事故原因提供了地质剖面关键数据,为挽回环境和经济的巨额损失做出了重要贡献。
  • 1023万!北京食品检验所试剂及耗材采购大单曝光 多项拒绝进口
    5月29日,北京市食品安全监控和风险评估中心(北京市食品检验所)公布2019年第一批食品安全抽检监测试剂耗材采购项目,共包含9包817类化学试剂、实验和仪器耗材、生物培养基等品类的采购需求,这其中包含色谱柱34类(13类拒接进口)、前处理柱26类(16类拒绝进口)、163类实验和仪器耗材(48类拒绝进口)。本次招标文件发售的时间为即日起至2019年6月5日16:30(双休日及法定节假日除外),投标截至时间和开标时间为2019年6月19日09:00。详情汇总如下:项目名称:2019年第一批食品安全抽检监测试剂耗材采购项目化学试剂和助剂采购项目项目编号:SJHC-JY-201901-JH001-XM001采购单位联系方式:采购单位:北京市食品安全监控和风险评估中心(北京市食品检验所)地址:北京市海淀区丰德东路17号联系方式:孙婷,010-82479315代理机构联系方式:代理机构:中经国际招标集团有限公司代理机构联系人:王晓庆,010-68372937代理机构地址:中经国际招标集团有限公司,北京市东城区滨河路1号,航天信息大楼10层招标十五部需求详情:第一包化学试剂序号名称数量单位是否可以采购进口产品1弗罗里硅土3瓶是2氢氧化钡(八水)1瓶是3蔗糖酶(麦芽糖酶)(酵母)5瓶是4QuEChERS盐包1盒是5QuEChERS分散试剂盒4盒是6邻苯二甲醛(OPA)5瓶是7脂肪酶4盒是8分析纯甲醇100箱否9分析纯乙腈80箱否10甲醇10箱是11乙腈10箱是12分析纯乙酸乙酯40箱否13分析纯正丁醇2箱否14石油醚120箱否15分析纯无水乙醇10箱否16分析纯正己烷40箱否17分析纯丙酮2箱否18分析纯二氯甲烷5箱否19无水乙醚70箱否20色谱级甲醇100箱是21色谱级乙腈80箱是22色谱级无水乙醇2箱是23色谱级环己烷5箱是24色谱级正己烷10箱是25色谱级丙酮2箱是26色谱级甲苯2箱是27色谱级异丙醇1箱是28色谱级乙酸乙酯4箱是29色谱级二氯甲烷4箱是30α-淀粉酶10瓶否31乙酸锌5瓶否32亚铁氰化钾60瓶否33抗坏血酸VC20瓶否34氯化钠40瓶否35无水碳酸钠10瓶否36无水硫酸钠25箱否37硫酸锌5瓶否38碘化钾30瓶否39丁酮3瓶否40溴化钠2瓶否41溴化钾1瓶否42双氧水1瓶否43硫酸5瓶否44七氟丁酰基咪唑10瓶否4514%三氟化硼-甲醇溶液1瓶否46磷酸5瓶否47冰乙酸20瓶否48甲酸10瓶否49盐酸10瓶否50硝酸2瓶否51色谱纯乙酸铵5瓶否52柠檬酸5瓶否53β-葡糖醛苷酶20瓶否54甲酸铵5瓶否55氢氧化钾6箱否56盐酸二苯胺1瓶否57氯乙酰10瓶否58三甲基氯硅烷2瓶否59六甲基二硅胺烷1瓶否604-二甲基氨基吡啶1瓶否611-蒽腈1瓶否62二巯基乙醇10瓶是63四氢呋喃2箱是64乙酰辅酶A60瓶是65胆碱氧化酶20瓶是66过氧化物酶20瓶是67α淀粉酶10瓶是68葡萄糖苷酶10瓶是69乙醇酸1瓶是70碘1瓶否71苯酚3瓶否72硝酸银10瓶否73磺胺1瓶否74对氨基苯磺酸2瓶否75N-(1-萘基)乙二胺二盐酸盐3瓶否76异丙醇12箱否77三氯甲烷20箱否78冰醋酸20箱否79二甲苯2箱否80二水合乙酸锌3箱否81海砂1箱否82四硼酸钠50袋否83混合磷酸盐50袋否84邻苯二甲酸氢钾50袋否85磷酸氢二钠5瓶否86磷酸二氢钾5瓶否8795%乙醇10箱否88无水乙醇10箱否89硫代硫酸钠5瓶否90酒石酸10瓶否91环己烷1箱否92丙酮1箱否93甲酸1箱否94高氯酸1箱否95甲醛1箱否96盐酸10箱否97三水合乙酸铅3瓶否98α-萘酚苯基甲醇1瓶是99氢氧化钾1箱否100铬酸钾1箱否101乙酸丁酯2瓶否102浓硫酸10箱否103氢氧化钠15箱否104乙酸镁2瓶否105H酸一钠盐2瓶否第二包实验用气体序号名称数量单位是否可以采购进口产品1高纯氩气1200瓶否2高纯氮气200瓶否3高纯氧气30瓶否4高纯氦气130瓶否5高纯氦气212瓶否6高纯乙炔4瓶否7高纯氢气5瓶否8氩甲烷2瓶否9液氮5000升否10二氧化碳2瓶否11合成空气5瓶否第三包标准物质序号名称数量单位是否可以采购进口产品1安赛蜜5支否24-氨基间甲酚1支否3灭瘟素1支否4角黄素(斑蝥黄)2支否5甜蜜素5支否6乙基麦芽酚1支否7PABA乙基己酯1支否8格列波脲1支否96-羟基吲哚1支否10微囊藻毒素LR1支否11苯乙双胍1支否12水苏糖1支否13维生素A酸1支否14三氯甲烷(氯仿)1支否15三甲胺盐酸盐1支否16佐匹克隆1支否17脱羟基洛伐他丁1支否18洛伐他汀羟酸钠盐1支否19盐酸二氧丙嗪1支否202-氨基苯酚(邻氨基苯酚)1支是213-氨基苯酚(间氨基苯酚)1支是22L-阿拉伯糖1支是23盐酸金霉素1支是24甜蜜素1支是252.4-滴2支是262-硝基-1.4-苯二胺1支是273.4-二氨基甲苯1支是282.5-二氨基甲苯硫酸盐1支是292.4-二溴苯酚1支是30二氯乙酸(二氯醋酸)1支是311.1-二氯乙烷1支是32N.N-二乙基对苯二胺硫酸盐1支是33直接红281支是34盐酸强力霉素1支是35敌磺钠(敌克松)1支是36氟苯虫酰胺1支是37正庚烷1支是38氢醌1支是39隐性孔雀石绿1支是40孔雀石绿草酸盐1支是41D(+)甘露糖1支是421-萘酚1支是431.4-苯二胺(对苯二胺)1支是44邻苯二甲酸二烯丙酯1支是45间苯二酚1支是46盐酸四环素1支是47D(+)海藻糖1支是48三氯乙酸2支是49D(+)-木糖1支是502.6-二氨基吡啶1支是51N,N-二乙基甲苯-2,5-二胺1支是52缩水甘油(环氧丙醇)1支是53邻苯二胺1支是541.3-苯二胺(间苯二胺)1支是55PCB1981支是56盐酸芬氟拉明1支是57氟虫腈(非泼罗尼、锐劲特)1支是58氟甲腈1支是59氟虫腈硫化物(氟虫腈硫醚)1支是60氟虫腈砜1支是61奶粉9种元素基质标准物质2支是62左旋肉碱-D31支是63美金刚-d6盐酸盐1支是64芦丁2瓶否65甲磺酸酚妥拉明1瓶否66达那唑1瓶否67盐酸妥拉唑林1瓶否68盐酸特拉唑嗪1瓶否69富马酸福莫特罗1瓶否70美雄诺龙1瓶否71替勃龙1瓶否72十一酸甘油三酯1瓶否73棕榈酸缩水甘油酯1瓶是74酒石酸氢胆碱1瓶是754-氨基丁酸1瓶是76利血平1瓶否77盐酸可乐定1瓶否78香草醛/香兰素1瓶否79盐酸吡哆醇/维生素B61瓶否80阿替洛尔1瓶否81维生素D21瓶否82盐酸哌唑嗪1瓶否83尼莫地平1瓶否84格列喹酮2瓶否85格列吡嗪1瓶否86氢氯噻嗪1瓶否87盐酸吗啉胍1瓶否88盐酸文拉法辛1瓶否89尼索地平1瓶否90尼群地平1瓶否91洛伐他汀1瓶否92辛伐他汀1瓶否93那格列奈1瓶否94咪喹莫特1瓶否95盐酸吡格列酮2瓶否96盐酸二甲双胍2瓶否97格列美脲2瓶否98非洛地平1瓶否99瑞格列奈2瓶否100醋氯芬酸1瓶否101伏格列波糖1瓶否102盐酸苯乙双胍2瓶否103盐酸金刚乙胺1瓶否104大黄素1瓶否105大黄酚1瓶否106番泻苷A1瓶否107番泻苷B1瓶否108乙基香兰素1瓶否109阿昔洛韦1瓶否110呋虫胺1瓶是111甲苯磺丁脲1瓶是112(± )-α-生育酚1瓶是113青藤碱1瓶否114盐酸丁双胍2瓶否115美金刚1瓶否116维生素A(视黄醇)1瓶是117格列齐特1瓶否118阿昔洛韦-D41瓶是119藜芦醛/甲基香兰素1瓶是120氨氯地平1瓶否121醋磺己脲1瓶是1224-(氨甲基)环己甲酸1瓶是123盐酸苯氟雷司1瓶是124氯磺丙脲1瓶是125氯美扎酮1瓶是126格列苯脲2瓶是127对羟基苯甲酸乙酯1瓶是128褪黑素1瓶是129奥司他韦1瓶是130卡托普利1瓶是131维生素D3(胆骨化醇)1瓶是1321,3-二油酸-2-棕榈酸甘油三酯1瓶是133格列齐特1瓶是134格列吡嗪1瓶是135食用合成色素苋菜红标液3瓶否136食用合成色素亮蓝标液3瓶否137劳拉西泮1瓶是138美伐他汀1瓶是139妥拉磺脲1瓶是140硝苯地平1瓶是141硝西泮1瓶是142奥沙西泮1瓶是143盐酸吡哆醛1瓶是144吡哆胺二盐酸盐1瓶是145邻苯二甲酸二异壬酯1瓶是146罗格列酮1瓶是14716组分邻苯二甲酸酯混标1瓶是148磺胺间二甲氧基嘧啶-D61瓶是149磺胺邻二甲氧基嘧啶-D31瓶是150三唑仑溶液1瓶是151雷纳克铵盐一水合物1瓶是152灭瘟素S盐酸盐1瓶否1532,4-二氨基苯氧乙醇硫酸盐1瓶否154己二酸二乙酯1瓶是1552-羟基-4-甲氧基二苯甲酮2瓶是156D-(-)-核糖1瓶是157十四烷基二甲基苄基氯化铵水合物1瓶是158盐酸去甲乌头碱1瓶是159十六烷基苄基二甲基氯化铵水合物1瓶是160十二烷基二甲基苄基氯化铵二水合物1瓶是161阿托品1瓶是1625-胞苷酸1瓶是163二乙氨基羟苯甲酰基苯甲酸己酯1瓶是1642,3,5-混杀威1瓶是165盐酸妥布特罗1瓶是166维生素E醋酸酯1瓶是167二苯酮-32瓶是168乳铁蛋白1瓶是1692,3-二溴丙酰胺1瓶是170乙酸甲酯6瓶是171巯基乙酸1瓶是172盐酸奈比洛尔1瓶是173异麦芽酮糖水合物1瓶是174拉贝洛尔盐酸盐1瓶是175异维A酸1瓶是176九种ICP-MS混标2瓶是177亚油酸甘油三酯1瓶是178铬同位素标液1瓶是179五氯酚1瓶是180氯酸钠1支是181高氯酸钠1支是182氯酸盐-18O31支是183高氯酸盐-18O41支是1844-壬基酚1支是185双酚A1支是186双酚A-d41支是1873,5,3-壬基酚-13C61支是188对硫磷3支否189甲胺磷3支否190硫线磷3支否191特丁硫磷2支否192溴氰菊酯2支否193甲拌磷3支否194福美双2支否195灭线磷2支否196甲基毒死蜱2支否197马拉硫磷3支否198乙烯利2支否199苯醚甲环唑2支否200敌敌畏2支否201百菌清1支否202丙溴磷2支否203甲拌磷砜2支否204乙拌磷2支否205氧化乐果2支否206久效磷2支否207毒死蜱3支否208杀扑磷2支否209硫环磷2支否210倍硫磷2支否211甲基嘧啶磷2支否2123-氯-1,2-丙二醇3-MCPD1支是2132-氯-1,3-丙二醇2-MCPD1支是214D5-3-氯-1,2-丙二醇1支是215D5-2-氯-1,3-丙二醇1支是2162-氯-1,3-丙二醇二硬脂酸酯1支是217D5-2-氯-1,3-丙二醇二硬脂酸酯1支是2181,3-二氯-2-丙醇1,3-DCP1支是2192,3-二氯-1-丙醇2,3-DCP1支是220D5-1,3-二氯-2-丙醇1支是221D5-2,3-二氯-1-丙醇1支是222视黄醇2支是223α-生育酚2支是224β-生育酚2支是225δ-生育酚2支是226γ-生育酚2支是227维生素D22支是228维生素D32支是229维生素K13支是230β-胡萝卜素1支是231免疫球蛋白IgG1支是232盐酸吡哆醇1支是233盐酸吡哆醛1支是234双盐酸吡哆胺1支是235柠檬黄3支否236新红1支是237苋菜红3支否238胭脂红3支否239日落黄3支否240亮蓝3支否241赤藓红1支是242酸性红1支是243诱惑红1支是244靛蓝1支是245甲醛2支否246曲酸1支是247噻二唑1支是248苄青霉素1支是249苯咪青霉素1支是250甲氧苯青霉素1支是251苯氧乙基青霉素1支是252醋酸氟氢可的松1支是25316种多环芳烃混标1支是254三氯杀螨醇1支否255七氯1支否256艾氏剂1支否257狄氏剂1支否258草甘膦2支是259草甘膦同位素2支是260甜蜜素20支否2613-氨基-2-恶唑酮1支是2625-吗啉甲基-3-氨基-2-恶唑烷基酮1支是2631-氨基-乙内酰脲1支是264氨基脲1支是2653-氨基-2-恶唑酮的内标物(D4-AOZ)3支是2665-吗啉甲基-3-氨基-2-恶唑烷基酮的内标物(D5-AMOZ)3支是2671-氨基-乙内酰脲的内标物(13C-AHD)2支是268氨基脲的内标物(13C15N-SEM)2支是269丙烯酰胺1支是270丙烯酰胺内标(13C3丙烯酰胺)1支是271脱氢乙酸2支是272纽甜1支是2734-甲基咪唑1支是274涕灭威3支否275涕灭威砜3支否276涕灭威亚砜3支否277克百威8支否278三羟基克百威8支否279速灭威2支否280灭多威7支否281甲萘威3支否282异丙威2支否283仲丁威2支否284残杀威2支否285多菌灵7支否286吡虫啉7支否287啶虫脒7支否288烯酰吗啉7支否289氯唑磷3支否290邻苯二甲酸二异壬酯DINP1支是29116种邻苯二甲酸酯混标1支是292叶黄素2支是293阿维菌素2支否294氟甲腈1支否295内吸磷1支否296辛硫磷1支否297甲氨基阿维菌素苯甲酸盐1支否298哒螨灵1支否299噻虫啉1支否300霜霉威2支否301吡唑醚菌酯2支否302噁唑菌酮1支否303乙霉威1支否304嘧菌酯1支否305啶酰菌胺1支否306氟吡甲禾灵1支否307氟吡氯禾灵1支是308茚虫威1支否309氯吡脲1支否310戊唑醇1支否311多效唑1支否312天然辣椒素1支是313合成辣椒素1支是314二氢辣椒素1支是315α-硫丹1支否316β-硫丹1支否317硫丹硫酸盐1支否318顺-氯丹1支否319反-氯丹1支否320氧氯丹1支否3211,3-二油酸-2-棕榈酸甘油三酯1支是322BHA1支是323BHT1支是324TBHQ1支是325PG1支是326牛磺酸1支是327碘化钾1支是328三唑醇1支否329戊菌唑1支否330苯霜灵1支否331苯酰菌胺2支否332杀虫双1支否333甲霜灵1支否334嘧霉胺1支否335喹硫磷1支否336啶氧菌酯1支否337噻螨酮1支否338乙酰甲胺磷1支否339甲拌磷亚砜1支否340氟胺氰菊酯1支否341三氯乙酸1支否342氯氟氰菊酯(三氟氯氰菊酯)1支否343氯氰菊酯1支否344氟氰戊菊酯1支否345联苯菊酯1支否346邻苯基苯酚1支是347甲基异柳磷1支否348乐果1支否349甲基硫环磷1支否350甲氰菊酯1支否351腺嘌呤核苷酸(AMP)1支是352尿嘧啶核苷酸(UMP)1支是353次黄嘌呤核苷酸(IMP)1支是354三氯甲烷2支否355四氯化碳2支否356六号溶剂3支否357抗蚜威1支否358谷硫磷1支否359敌百虫1支否360三唑酮1支否361甲基立枯磷1支否362丁草胺1支否363氟酰胺1支否3648种有机氯混标1支否36537种脂肪酸甲酯3支是366月桂酸甘油三酯1支是367肉豆蔻酸甘油三酯1支是368a-亚麻酸甘油三酯1支是369花生四烯酸甘油三酯1支是370二十碳五烯酸甘油三酯1支是371二十二碳六烯酸甘油三酯1支是372反-9-十八碳一烯酸甲酯1支是373反,反-9,12-十八碳二烯酸甲酯1支是374氯霉素-D51支是375氟苯尼考胺1支是376左旋咪唑1支是377沙丁胺醇-D31支是378克伦特罗-D91支是379莱克多巴胺-D31支是380特布他林1支是381恩诺沙星-D51支是382诺氟沙星-D51支是383环丙沙星-D81支是384氯丙嗪-D61支是385氯丙嗪1支是386地塞米松-D41支是387地西泮1支是3883-甲基喹噁啉-2-羧酸1支是389氟甲喹1支是390喹噁啉-2-羧酸-D41支是391恩诺沙星1支是392环丙沙星1支是393土霉素2支是394丁硫克百威1支否395磺胺1支是396磺胺二甲异嘧啶钠1支是397磺胺对甲氧嘧啶1支是398磺胺甲基异恶唑内标-13C61支是399磷酸三苯酯2瓶是400磷脂酰胆碱1瓶否401磷脂酰乙醇胺1瓶是402磷脂酰肌醇1瓶是403鞘磷脂1瓶是第四包色谱柱序号名称数量单位是否可以采购进口产品1阴离子色谱柱SH-AC-3(含保护柱SH-G-1)2套否2阴离子色谱柱SH-AC-4(含保护柱SH-G-1)2套否3阴离子色谱柱SH-AC-5(含保护柱SH-G-1)2套否4阴离子色谱柱SH-AC-9(含保护柱SH-G-1)2套否5阴离子色谱柱SH-AC-11(含保护柱SH-G-1)2套否6阴离子色谱柱SH-AC-14(含保护柱SH-G-1)2套否7阴离子色谱柱SH-AC-15(含保护柱SH-G-1)2套否8阴离子色谱柱SH-AC-16(含保护柱SH-G-1)2套否9阴离子色谱柱SH-AC-17(含保护柱SH-G-1)2套否10阴离子色谱柱SH-AC-18(含保护柱SH-G-1)2套否11阳离子色谱柱SH-CC-1(含保护柱SH-G-1)2套否12阳离子色谱柱SH-CC-3(含保护柱SH-G-1)2套否13阳离子色谱柱SH-CC-4(含保护柱SH-G-1)2套否14液相色谱色谱柱1支是15SB-C18色谱柱1支是16CORTECSC18色谱柱2支是17CORTECSC18色谱柱2支是18BEHAmide色谱柱1支是19CORTECSUPLCC182支是20CORTECSUPLCC18+2支是21CORTECSC18+2支是22XbridgeBEHC181支是23XbridgeC181支是24XbridgeC181支是25XbridgeC181支是26CORTECSC18色谱柱2支是27色谱柱(染发剂用)4支是28BEHC18色谱柱1根是29BEH-C18色谱柱2支是30BEH-C18色谱柱2支是31SunfireC18色谱柱2支是32CAPCELLPAKCR色谱柱2支是33CAPCELLPAKCR色谱柱2支是34HILIC柱ObeliscR2支是第五包前处理柱序号名称数量单位是否可以采购进口产品1C18前处理柱5盒否2RP前处理柱5盒否3H前处理柱5盒否4Na前处理柱5盒否5HCO3前处理柱5盒否6Ba前处理柱5盒否7Ag前处理柱5盒否8BondElut-Accucat10盒是9ChemElut硅藻土柱5包是10AccellPlusQMA固相萃取柱2盒是11PRIMEHLB固相萃取柱10盒是12CORTECSUPLCC18保护住2盒是13固相萃取柱150盒是14固相萃取柱75盒是15混合填料净化柱3盒是16黄曲霉毒素总量免疫亲和柱(B1、B2、G1、G2)10盒否17玉米赤霉烯酮免疫亲和柱12盒否18黄曲霉毒素M1免疫亲和柱75盒否19双酚A亲和柱,2盒否204合1瘦肉精亲和柱(克伦特罗、沙丁胺醇、特布他林、莱克多巴胺)2盒否2116合1磺胺亲和柱2盒否22维生素B12亲和柱2盒否23喹乙醇亲和柱2盒否24固相萃取柱20盒是25GEHealthcare,HiTrapTMHeparinHP柱50盒是26锌粉还原柱5支否第六包实验和仪器耗材序号名称数量单位是否可以采购进口产品1坩埚钳(圆钢镀铬)300mm12英寸5把否2苦味酸试纸2盒否3白头塑料洗瓶20个否4高压消解罐20套否5阴离子抑制器2个否6阳离子抑制器2个否7密封塞40个否8融样杯40个否9泵模块1个是10六通阀1个是11进样针1个是12定量环1个是13石英舟10套是14双铂网雾化器3个是15水基同心雾化器3个是16同心雾化器适配器3个是17高盐旋流雾室(水平/双观测)3个是18水基中心管3个是19高效去湿管2个是20催化管2个是21金汞齐管2个是22防污外壳1个是23自动进样器进样针2根是24汞齐化器2个是25催化管2个是26石墨炉清洁棉棒5包是27自动进样器进样针2根是28THGA石墨管5盒是29Cr元素灯1个是30Cd元素灯1个是31进样泵管5包是32内标泵管5包是33调谐优化液1瓶是34ICP中心管1根是35超级截取锥1个是36超锥固定螺钉2个是37pp样品瓶100包是38PP样品盖100包是39高盐雾化器2个是40镍采样锥2个是41镍截取锥2个是42雾化室废液套管,FPM1套是43PTFE接头,用于雾化器*气体管线1套是44带接头的样品管线,PTFE1套是45端盖气体管线的接头1套是46用于提取透镜的螺钉工具包1套是47用于omega透镜的螺钉工具包1套是48FPMO形圈,用于端盖1套是49螺钉和垫片工具包,用于反应池1套是50Omega透镜的螺钉和垫片工具包1套是51螺纹口锥形灭菌离心管(架装)5箱是52高透明聚丙烯锥形离心管5箱是53高透明聚丙烯锥形离心管10箱是54一次性使用医用丁腈检查手套80盒否55一次性使用医用丁腈检查手套60盒否56绿色芦荟乳胶手套50盒否57绿色芦荟乳胶手套50盒否58一次性使用医用橡胶检查手套50盒否59一次性使用医用橡胶检查手套50盒否60一次性使用医用橡胶检查手套50盒否61预纯化柱3根是62紫外灯4个是63纯水柱2根是64空气过滤器2个是65预处理柱2根是66ICP超纯化柱3根是67终端过滤器3个是68终端过滤器4个是69紫外灯2个是70进样瓶瓶盖2包是71在线过滤器卡套和替换筛板2套是72柱塞杆4套是73柱塞杆密封垫2套是74高性能单向阀阀芯2套是75I-CLASS二元溶剂管理器性能维护包2套是76I-ClassSM-FTN性能维护备件包2套是77柱塞杆2套是78柱塞杆密封垫3套是79智能型主动是阀阀芯2套是80ACQUITY进样阀芯2套是81ACQUITY针密封圈1套是82AcquityH-ClassSM-FTN性能维护备件包2套是83在线过滤器滤芯5袋是84低压电源2套是85真空泵油2套是86在线过滤器滤芯2套是87高性能脱气包1套是88电路板,在线脱气机控制1套是89在线脱气机真空泵1套是90自动进样器密封垫组件3套是91取样针组件1套是92泵头基座1套是93柱塞清洗密封垫基座1套是94过滤头(柱后衍生)10个是95Millipore超滤离心管5盒是96NORELL核磁管10盒是97QuEChERS整合管10盒否98活性炭口罩10包否99GL14牙螺纹20个否100分液漏斗20个否101螺纹拧盖离心管10包否102氘代甲醇5瓶是103氘代丙酮110瓶是104氘代丙酮25盒是105坩埚式耐酸玻璃滤器10盒是106口罩150盒是107口罩2100盒是108手套150盒是109手套250盒是110手套350盒是111强力高效擦拭布-白色10箱是112pH三复合电极10支否113瓶口分配器5个是114充电支架3个是115枪头110包是116枪头210包是117枪头310包是118密封垫6个是119培养瓶1包是120单口烧瓶15个否121鸡心瓶200个否122移液器16盒否123注射器1盒否124具塞三角瓶180个否125具塞比色管1300支否126具塞比色管2302支否127三角瓶聚碳酸酯16个是128蜂蜜色值专用比色皿50支否129具塞比色管3100支否130玻璃漏斗50支否131磨口锥形瓶50个是132玻璃层析柱10个否133分液漏斗10个否134改良链接层析柱10个否135鸡心瓶10个否136标口筒锥滴液漏斗5个否137圆底烧瓶10个否138分液漏斗1个否139具塞三角瓶2100个否140具塞三角瓶3100个否141鸡心瓶100个否142塑料漏斗100个否143塑料滴管5箱否144圆底摁盖离心管10包否145尖底螺纹拧盖离心管10包否146定性滤纸5箱否147称量纸14包否148塑料洗瓶20个是149容量瓶茶色150个否150容量瓶茶色250个否151刻度吸量管124根是152刻度吸量管224根是153刻度吸量管324根是154刻度吸量管424根是155刻度吸量管524根是156大肚移液管124根是157大肚移液管224根是158大肚移液管324根是159大肚移液管424根是160大肚移液管524根是161玻璃量筒10个是162滴定管6根是163磨口锥形瓶50个是第七包分型血清和生物试剂盒序号名称数量单位是否可以采购进口产品1YersiniaenterocoliticaantiserumO:31瓶是2YersiniaenterocoliticaantiserumO:51瓶是3YersiniaenterocoliticaantiserumO:81瓶是4YersiniaenterocoliticaantiserumO:91瓶是5肠炎弧菌检测用诊断血清(K型套装)1套是6肠炎弧菌检测用诊断血清O群套装1套是7弯曲菌诊断血清1套是8诺如病毒核酸(GⅠ/GⅡ)检测试剂盒(RT-PCR探针法)10盒否9维生素B12检测试剂盒110盒否10生物素检测试剂盒15盒否11叶酸检测试剂盒15盒否12泛酸检测试剂盒15盒否13黄曲霉毒素M1酶联免疫法试剂盒40盒是14黄曲霉毒素B1酶联免疫法试剂盒20盒是15黄曲霉毒素B1酶联免疫法试剂盒20盒是16黄曲霉毒素B1酶联免疫法灵敏检测试剂盒10盒是17泛酸检测试剂盒210盒是18叶酸检测试剂盒210盒是19维生素B12检测试剂盒210盒是20生物素检测试剂盒210盒是21B6检测试剂盒2盒是22烟酸检测试剂盒2盒是23肌醇检测试剂盒2盒是24金黄色葡萄球菌肠毒素总量5盒是25金黄色葡萄球菌肠毒素分型2盒是26无内毒素质粒小提中量试剂盒(DP118)5盒否27universalDNA纯化回收试剂盒5盒否28RNA纯化试剂盒5盒否29体外转录试剂盒3盒是30PCR产物纯化试剂盒3盒是31磁珠法DNA/RNA提取试剂盒2盒是32病毒DNA/RNA提取试剂盒2盒否33磁珠法病毒DNA/RNA提取试剂盒50盒否34酵母基因组DNA提取试剂盒5盒否第八包生物培养基序号名称数量单位是否可以采购进口产品1一次性培养皿400箱否2Baird-Parker琼脂平板3500盒否3缓冲蛋白胨水(BPW)300袋否4叶酸测定培养基150瓶否5生物素测定培养基100瓶否6维生素B12测定培养基100瓶否7泛酸测定培养基100瓶否8月桂基硫酸盐蛋白胨肉汤(LST)-单料150盒否9李氏菌增菌肉汤-LB2100盒否10亚硒酸盐胱氨酸增菌液(SC)100盒否11四硫磺酸盐煌绿增菌液(TTB)100盒否12生物素测试肉汤100瓶是13B12测试肉汤100瓶是14泛酸测试肉汤100瓶是15缓冲蛋白胨水培养基20桶是16平板计数琼脂100瓶是17牛心浸粉5瓶否第九包生物试剂耗材序号名称数量单位是否可以采购进口产品1萘啶酮酸(C2)20盒否2丫啶黄素(C2)20盒否3木糖b30盒否4鼠李糖30盒否5耐高温高压分注管10包是63M压力灭菌指示胶带30卷是7灭菌取样袋20箱是8一次性采样拭子10箱是9一次性防护服10箱否10滤膜30盒是11革兰氏染色质控玻片2盒是12革兰氏染色液2盒是13厌氧产气袋30盒是14厌氧指示剂2盒是15接种环50箱是16TRNzolUniversal总RNA提取试剂4瓶否17Pgm-simple-TFast克隆试剂盒-VT3084盒否18T-fast感受态细胞(CB109)15盒否19柠檬酸钠(无水)5瓶是20丙酮酸钠10瓶是21多粘菌素B4盒是22亚硫酸钠2瓶是23亚碲酸钾4瓶否24氯化锂4瓶是25几丁质(甲壳素)50瓶是26壳聚糖5瓶是27无水海藻糖1瓶否28氯化铵1瓶是29乙酸钠6瓶是30硫酸铵6瓶是31牛胆粉1瓶否32柠檬酸铁1瓶否33胆酸钠10瓶是34硫代硫酸钠(无水)10瓶是35PCR八联排管20箱是36PCR八联排盖荧光定量专用20箱是37PCR薄壁管10箱是38光学96孔板30盒是39PrimeScriptOneStepRT-PCRKit5盒是40碱性磷酸酶CIAP2盒是41XbaI限制性内切酶2盒是42吸头15箱是43吸头25箱是44吸头短白5箱是45离心管15箱是46带滤芯吸头150盒是47带滤芯吸头250盒是48带滤芯吸头350盒是49吸头33箱是50吸头43箱是51离心管220包是52深孔板(圆底)10箱是53吸头510盒是54吸头65盒是55研磨钢珠20瓶否56电动分样器吸头5盒是57自封袋10包否58灭菌自封袋10包否59离心管320盒否60离心管410盒是61离心管55盒是6296孔快速反应板,半裙边,带条码40盒是63荧光定量PCR96孔板50盒是64耗材研磨钢珠10瓶否65PBS10瓶否66透明平顶无裙边96孔PCR板5箱是67平盖八联管(含盖)5箱是68管MicroAmpFast8-TubeStrip5盒是69盖MicroAmpOptical8-CapStrip5盒是70VetMAXXenoDNA内部阳性对照2支是71CHARGESWITCHPROPCR2盒是72微孔板迷你离心机配件1件否73CONDITIONINGREAGENT3盒是74溶壁酶5支否具体招标需求详见招标文件
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制