当前位置: 仪器信息网 > 行业主题 > >

乙酸乙烯酯与乙烯磺酸钠的聚合物

仪器信息网乙酸乙烯酯与乙烯磺酸钠的聚合物专题为您提供2024年最新乙酸乙烯酯与乙烯磺酸钠的聚合物价格报价、厂家品牌的相关信息, 包括乙酸乙烯酯与乙烯磺酸钠的聚合物参数、型号等,不管是国产,还是进口品牌的乙酸乙烯酯与乙烯磺酸钠的聚合物您都可以在这里找到。 除此之外,仪器信息网还免费为您整合乙酸乙烯酯与乙烯磺酸钠的聚合物相关的耗材配件、试剂标物,还有乙酸乙烯酯与乙烯磺酸钠的聚合物相关的最新资讯、资料,以及乙酸乙烯酯与乙烯磺酸钠的聚合物相关的解决方案。

乙酸乙烯酯与乙烯磺酸钠的聚合物相关的论坛

  • 聚苯乙烯磺酸钠标样校正GPC

    请教大家,买入了一系列聚苯乙烯磺酸钠标样,但是不知道应该溶在什么溶液里、多大浓度进行校正。请大家赐教,不胜感激。

  • 利用紫外分光光度计测量苯乙烯中聚合物含量

    最近建立ASTMD D2121测试方法,测量苯乙烯聚合物含量,按照流程配制聚苯乙烯,但是建立标准曲线时,实测结果都是显示负数,试了好几次,不知道哪里出问题了,UV新买的,测量其他的的产品都没问题,难道是苯乙烯聚合反应没成功,请教各位大侠帮忙分析一下 ,小弟拜谢!

  • 【资料】中华人民共和国国家标准 GB 11175-89 聚乙酸乙烯酯乳液试验方法

    10.4 水溶物含量试验10.4.1 原理 所制备的薄膜经水浸泡,其可溶于水的物质从薄膜中溶解于水中,以此薄膜质量与浸水前薄膜质量的百分比表示试样耐水程度。10.4.2 仪器和装置 a. 恒温水浴; b. 分析天平:感量0.1 mg; c. 干燥器:用硅胶作干燥剂。10.4.3 试验步骤 准确称量10.3中制备的薄膜(玻璃载片的质量是制备薄膜前准确称量过的),将其置于30~0.5 ℃的水浴中(水浴的水为蒸馏水),浸泡24 h,取出晾干,再置于干燥器中放置24h后准确称量。10.4.4 试验结果计算 C=[(m[2]-m[1])/(m[0]-m[1])]×100 (3)式中:m[0]——浸水前原薄膜试样总质量,g;m[1]——载薄膜的玻璃片的质量,g;m[2]——溶水后薄膜试样的总质量,g;C——水溶物含量,%。 试验结果取两位有效数字。10.4.5 试验报告 a.试样规格、批号和生产、取样及试验日期; b.试验结果; c.如经水浸泡,薄膜发生乳化分散现象(即薄膜中含有的乳化剂或分散剂溶水后,使薄膜中聚合物再乳化再分散现象)也应注明。11 稳定性试验方法11.1 冻融稳定性11.1.1 方法提要 把试样在水的冰点下冻结,破坏聚合物乳液颗粒的水合层,然后在规定的条件下融化,检查样品是否能恢复乳液状态。11.1.2 仪器和装置 a.容器:为高密度聚乙烯塑料瓶,有盖,高70 mm、内径40 mm、壁厚2 mm的瓶子; b.低温箱:温度控制在-10±0.5 ℃; c.天平:感量0.5 g; d.恒温水浴; e.玻璃棒:直径8 mm左右、长200 mm左右; f.玻璃温度计:2支,一支为-50~0 ℃,精度1 ℃;一支为0~100 ℃,精度0.5 ℃。11.1.3 试验步骤11.1.3.1 冻结 用塑料瓶称取约50 g试样,盖好盖子,放到温度为-1010.5 ℃的低温箱中,冻结16h。11.1.3.2 融化 取出冻结的试样,放到温度控制为30±0.5 ℃的水浴中,融化1 h后,用玻璃棒搅动试样。11.1.3.3 高温融化 若经融化后的试样粘度增大失去流动性,或用玻璃棒搅不动,需在60±0.5 ℃的水浴中继续融化11.1.4 试验结果 按下列情况判断: a. 按11.1.3.1和11.1.3.2条规定进行,如试样无变化,或粘度稍有增大者,则冻融稳定性合格; b. 若按11.1.3.2条的规定进行试验的试样,不能恢复原状态,冻融稳定性不合格。 c. 需按11.1.3.3条的规定进行试验的试样或能融化,仍不失乳液的使用价值;或虽能融化而呈渣状,失去使用价值;或最终不能融化,完全破乳;以上各种现象均视为不合格。11.1.5试验报告 a.试样的规格、批号和生产、取样及试验日期; b.试验结果及融化、高温融化后的现象; c.试验中观察到的特殊现象。11.2 高温稳定性11.2.1 方法提要 试样在高温下放置,造成聚合物乳液颗粒融结,然后冷却到室温,观察试样外观变化情况。11.2.2 仪器和装置 a.容器、天平、玻璃棒应符合11.1.2条中a.、c.、e.的规定。 b.恒温干燥箱。11.2.3 试验步骤11.2.3.1 高温放置 用塑料瓶称取约50 g试样,盖好盖子,放入温度为60 ℃的恒温箱中,持续放置120 h。11.2.3.2 冷却 把试样从恒温箱中取出,室温下冷却3 h,然后用玻璃棒搅拌。11.2.3.3 外观试验 按4.3条的规定进行。11.2.4试验结果 根据4.3条的外观标准表征试样的高温稳定性,用合格或不合格表示。11.2.5试验报告 a.试样规格、批号和生产、取样及试验日期; b.试验结果; c.试验中观察到的现象。11.3 稀释稳定性11.3.1 方法提要 把试样稀释,降低聚乙酸乙烯酯乳液保护胶体浓度,试验乳液颗粒在重力场作用下沉淀的程度。11.3.2 仪器和装置 a.试管:平底,具塞,容积30 mL,刻度精度0.1 mL,由底部至30 mL刻度处的高度为20 cm; b.天平:感量0.5 g。11.3.3 试验步骤 取一定量试样于试管中,加水稀释到30 mL使其蒸发剩余物为2.5%~3.5%,盖塞后,上下摇动均匀,放置72 h后测定上层澄清液容积,试管底部沉淀物的容积。11.3.4 试验结果计算 U=(V[1]/30)×100 (4)P=(V[2]/30)×100 (5)式中:V[1]——上层澄清液容积,mL;V[2]——沉淀物容积,mL;U——上层清液容积比,%;P——沉淀物容积比,%。 计算结果取整数位。11.3.5 试验报告 a.试样规格、批号和生产、取样及试验时间; b.试验结果; c.试验中观察到的现象。12 残存单体试验方法12.1 试验原理 根据乙酸乙烯酯与溴素可进行加成反应的机理,以试样所消耗标准溴液量计算残存乙酸乙烯酯的含量,反应式为: CH[3]COOCH=CH[2]+Br[2] —→ CH[3]COOCHBr+CH[2]Br 12.2 试剂 溴—溴化钾标准溶液:c(Br[2]/2)=0.15 mol/L,按附录A制备。12.3 仪器和装置12.3.1 锥形瓶:150或200 mL,具塞,薄壁。12.3.2 滴定装置:25 mL棕色滴定管,滴定架。12.3.3 天平:感量0.1 g。12.4 试验步骤` 准确称取10.0 g试样于锥形瓶内,加25 mL水稀释试样,以溴—溴化钾标准溶液滴定,直至呈微黄色且颜色不消失,记下消耗溶液的体积(每次试验时,需重新标定溶液)。12.5 试验结果计算 残存单体(%)=(V• c×0.043/m)×100 (6)式中:V——试样消耗溴—溴化钾标准溶液体积,mL;c——溴—溴化钾标准溶液的浓度,mol/L;m——试样总质量,s; 0.043——与1.00 mL溴—溴化钾标准滴定溶液[c(Br[2]/2)=0.15 mol/L]相当的,以克表示的乙酸乙烯酯的质量,g。平均试验的两个滴定值绝对误差不得超过o.1 mL。试验结果以算术平均值表示,取一位有效数字12.6 试验报告 a.试样的规格、批号和生产、取样及试验日期; b.标准溶液浓度; c.试样消耗标准溶液的体积,mL; d.试验结果。13 粒径试验方法13.1 方法提要 利用显微镜观察样品微观下的状态,目测颗粒的平均直径。13.2仪器和设备13.2.1 显微镜:放大倍数不低于1 000倍。13.2.2 载物片:7.5 cm×2.5 cm;盖玻璃:2cm×2cm。13.2.3 天平:感量1 g。13.2.4 烧杯:100 mL。13.2.5 玻璃棒:直径约8 mm、长约200 mm。13.3 试验步骤13.3.1 制备蒸发剩余物为1%的试样 称取一定量试样,加适量水稀释后,使其蒸发剩余物为1%,用玻璃棒搅匀。13.3.2 测粒径 用玻璃棒沾一滴制备好的试样于载物片上,把盖玻片盖在试样上,不使气泡产生,放在显微镜下观察,目测50个以上的粒子直径,确定其平均直径。13.4 试验结果 平均粒径取一位有效数字。13.5 试验报告 a.试样的规格、批号和生产、取样及试验日期; b.试验结果及放大倍数; c.试验中能观察到的特殊现象,如单个粒子的聚集体。 附 录 A 溴—溴化钾[c(Br[2]/2)=0.15 mol/L)标准溶液制备方法 (补充件) A1 配制 称取60 g溴化钾(分析纯)及3.3 mL溴(分析纯)溶于100 mL蒸馏水中,再稀释至1 000 mL。 A2 标定 移取20.00 mL上述溴—溴化钾溶液,置于200 mL碘量瓶中,加入15%碘化钾水溶液10 mL,密封后于20—25 ℃下在暗处放置5 min,用浓度c(Na[2]S[2]O[3])=0.1 mol/L硫代硫酸钠标准溶液滴定至碘的颜色极浅时,加入1%淀粉指示剂1 mL,继续滴定至蓝色消失。 A5 计算 溴标准溶液浓度按式(A1)计算c=0.005V (A1)式中:c——溴标准溶液浓度,mol/L;V——消耗的硫代硫酸钠标准溶液体积,mL。 附加说明: 本标准由上海橡胶制品研究所归口。 本标准由天津市有机化i实验厂负责起草。 本标准主要起草人何乃谦、苏蕴诚、王明堂。 本标准参照采用日本工业标准JISK 6828—1977(80)《聚醋酸乙烯酯乳液试验方法》。 中华人民共和国化学工业部1989—03—10批准 1 990—01—01实施 ---------中国电子胶水论坛

  • 聚合物基质色谱柱的优缺点

    聚合物基质的色谱柱大家有接触过吗?聚合物填料多为聚苯乙烯-二乙烯基苯或聚甲基丙酸酯等,优点:PH值为1~14均可使用。相对与硅胶基质的C18填料,这类填料具有更强的疏水性;大孔的聚合物填料对蛋白质等样品的分离非常有效。缺点:相对硅胶基质填料,色谱柱柱效较低。

  • 一些聚合物英文简称

    ABS Acrylonitrile-Butadiene-Styrene(resin) 丙烯腈-丁二烯-苯乙烯树脂 AS Acrylonitrile-Styrene(resin) 丙烯腈-苯乙烯树脂 ASA Acrylic-styrene-acrylonitrile 丙烯酸-苯乙烯-丙烯腈 CA Cellulose Acetate 醋酸纤维素 CAP Cellulose Acetate Propionate 醋酸丙酸纤维素酯 CB Cellulose Butyrate 纤维素酪酸酯 CP Cellulose Propionate 丙酸纤维素酯 CN Collodion wool 硝酸纤维素CTFE Polychlorotrifluoroethylene 聚一氯三氟乙烯 EAA Ethylene Acrylic Acid 乙烯丙烯酸 EAE Ethylene Acrylic Ester copolymer 乙烯-丙烯酸乙酯 共聚物EC Ethyl cellulose 乙基纤维素ECTFE Ethylene-chlorotrifluoroeethylene 乙烯-一氯三氟乙烯共聚合物 EMA Ethylene Methyl Acrylate copolymer 乙烯-甲基丙烯酸酯 共聚物EMAA Ethylene Methacrylic Acid copolymer 乙烯丙烯酸甲酯 共聚物ENBA Ethylene N-Butyl Acrylate copolymer 乙烯-丙烯酸丁酯 共聚物EP Epoxy resin 环氧树脂ETFE Copolymer of ethylene and chlorotetrafluoroethylene 乙烯一氯四氟乙烯共聚物 EVA Ethylene Vinyl Acetate copolymer 乙烯-醋酸乙烯共聚物EVOH Ethylene-Vinyl alcohol copolymer 乙烯-乙烯醇共聚物FEP Fluorinated ethylene-propylene copolymer 氟化乙丙共聚物 HDPE High density Polyethylene 高密度聚乙烯 HDPE High density Polyethylene 高密度聚乙烯 LCP Liquid crystal polyester 液晶聚酯 LCP Liquid crystal polymer 液晶聚合物LDPE Low density Polyethylene 低密度聚乙烯 IONOMER ionomer 离子聚合物 LCP Liquid crystal polyester 液晶聚酯 LDPE Low density Polyethylene 低密度聚乙烯 LLDPE Linear Low density Polyethylene 线性低密度聚乙烯 MBS 甲基丙烯酸甲酯-丁二烯-苯乙烯 共聚物MDPE Medium density Polyethylene 中密度聚乙烯 PA Polyamide 聚酰胺 PA11 Polyamide 11 聚酰胺 11 PA12 Polyamide 12 聚酰胺 12 PA4/6 Polyamide 4/6 聚酰胺4/6 PA6 Polyamide 6 聚酰胺 6 PA6/10 Polyamide 6/10 聚酰胺 6/10 PA6/12 Polyamide 6/12 聚酰胺 6/12 PA6/6 Polyamide 6/6 聚酰胺 6/6 PA6/9 Polyamide 6/9 聚酰胺 6/9 PAI Polyamide-imide 聚酰胺酰亚胺 PBT Polybutylene terephathalate 聚对苯二甲酸二丁酯 PC Polycarbonate 聚碳酸酯 PCL Polyamide-6 layer sheet 聚己内酰胺PCT Polycarbonate hexandimethanol Terephthalate 聚环已醇二乙酯 PE Polyethylene 聚乙烯PEC Polyethylene-Chlorinated 氯化聚乙烯PEG Polyethylene glycol 聚乙二醇PEI Polyethyleneimineimpregnated 聚乙烯亚胺PEO Polyoxyethylenesorbitan 聚氧化乙烯PEEK Polyetheretherketone 聚醚醚酮 PEI Polyetherimide 聚醚酰亚胺 PES Polyethersulfone 聚醚砜 PET Polyethylene terephathalate 聚对苯二甲酸二乙酯 PFA Perfluoroalkoxy 过氟烷氧基 PI Polyimide 聚酰亚胺 PK Polyketone 聚酮 PMMA Polymethylmethacrylic 聚甲基丙烯酸甲酯 (有机玻璃)PMP Polymethylpentene 聚甲基戊烯 Polyolefin -- 聚烯烃 POM Polyoxymethylene 聚甲醛 PP Polypropylene 聚丙烯 PPE Polyphenylene Ether 聚苯醚 PPO Polypropylene Oxide 聚环氧丙烷 PPS Polyphenylene Sulfide 聚苯硫醚 PS Polystyrene 聚苯乙烯 PSF Polysulfone 聚砜 PTFE Polytetrafluorothylene 聚四氟乙烯 PU Polyurethane(TP) 聚氨基甲酸乙酯 PVA Polyvinylalcohol 聚乙烯醇PVB Polyvinylbutyral 聚乙烯醇缩丁醛PVC Polyvinyl Chloride(TP) 聚氯乙烯 PVDC Polyvinyl Dichloride 聚偏氯乙烯 PVDF Polyvin ylidene fluoride 聚偏氟乙烯 PVP Polyvinylpyrrolidone 聚乙烯吡咯烷酮SAN(AS) Styrene-Acrylonitrile 苯乙烯-丙烯腈 SBR Styrene-Butadiene Rubber 苯乙烯-丁二烯橡胶 SMA Styrene Maleic Anhydride 苯乙烯-马來酸酐 TPE Thermoplastic Elastomer (TPE) 热塑性弹性体 TPO Thermoplastic Polyolefin(TPO) 热塑性聚烯烃

  • 胶黏剂-丙烯酸酯聚合物标准

    根据GBT--13553-1996 胶黏剂分类,丙烯酸酯聚合物的编号是531,分在大类5 合成热塑性材料/小类 5.3丙烯酸酯聚合物类/组别 丙烯酸酯聚合物,是否有这一类产品的相关标准?国标/行标等?谢谢

  • 【原创大赛】pH 响应聚合物研究进展

    【原创大赛】pH 响应聚合物研究进展

    [font=宋体] pH [/font][font=宋体]响应聚合物研究进展[/font][font=宋体]1. pH [/font][font=宋体]响应聚合物概述[/font][font=宋体]一般而言,外界 pH 值的变化会导致生物大分子的水溶性或构象发生变化,因此具有类似结构的聚合物也能对环境的 pH 值变化做出相应的响应。该类聚合物具有 pH 响应的关键因素是一般主链上都含有大量对 pH 敏感的基团(弱电解质基团)如羧酸基、氨基、吡啶、咪唑基等。当外界环境的 pH 或离子浓度发生变化时,这些基团可以接受或释放质子来响应外界环境中 pH 的变化[76]。聚合物通过接受或给予质子导致其分子解离程度发生改变,造成聚合物分子的质子化或去质子化平衡发生移动,从而影响聚合物链的溶解性[77-78]。[/font][font=宋体]按照 pH 响应聚合物分子链中含有基团的性质 pH 响应聚合物可分为两大类:弱有机酸类和弱有机碱类[79]。弱有机酸类聚合物(如羧酸基)能在较低的 pH 值时接收质子呈正电性,而 pH 值较高时变成负电性,因为同种电荷间存在相互排斥作用使水与分子链之间的相互作用加强,进而提高了聚合物的亲水性,呈聚电解质状态,如聚甲基丙烯酸(PMAA)等[80-81];弱有机碱类聚合物则一般带有弱有机碱取代基,它能在低 pH 值件下得到质子变成亲水性基团,聚合物链之间因库仑排斥力而展开,而高 pH 条件下则是亲油性的,如聚甲基丙烯酸二甲氨基乙酯(PDMAEMA)、聚乙烯基吡啶等[82-84]。[/font][font=宋体]目前关于 pH 响应聚合物合成的研究不断被报道,其中大部分是利用含有乙烯基的单体为原料进行聚合。常见的聚合方法主要包括:自由基聚合、原子转移自由基聚合(ATRP)、基团转移聚合(GTP)、可逆加成-断裂链转移聚合(RAFT)等。自由基聚合是最常见的聚合方法,聚合产物通常为线性的高分子聚合物,相较于其它方法其合成条件相对简单,通常为一步反应,所得产物多为无规则共聚物。例如,Fan 等人[85]通过自由基聚合制备了一系列具有良好 pH 响应特性的聚合物,在低 pH 条件下,由于质子化叔胺单元的静电相互作用和亲水性,共聚物在水溶液中表现为溶解状态。而在高 pH 条件下,由于烷基上去质子化胺具有较强的疏水性,导致共聚物在水溶液中聚集沉淀。[/font][font=宋体]2 [/font][font=宋体]、pH 响应聚合物在分离富集领域的应用[/font][font=宋体]近年来,pH 响应聚合物在分离富集领域的应用潜力开始被众多研究者关注。基于pH 响应聚合物具有的溶解-沉淀 pH 响应特性,可以将目标物固定或吸附在 pH 响应聚合物上,通过调节环境的 pH 值使其形成共沉淀,实现对目标物的分离纯化。[/font][font=宋体]Bai [/font][font=宋体]等[86]开发了一种具有 pH 响应特性的聚合物,该聚合物是由 pH 反应型单体与糖基反应型单体共聚而成。所得的线性共聚物链与糖蛋白/糖肽样品在弱酸性 pH 条件下在水溶液中形成均相反应混合物,促进了聚合物基体与目标糖蛋白质/糖肽之间的偶联。只需降低体系 pH 值,即可使聚合物糖蛋白质/糖肽迅速自组装从溶液中析出大颗粒的团聚体,从而实现快速高效的样品回收。[/font][font=宋体]Ding[/font][font=宋体]等[87]以丙烯酸类化合物为功能单体通过自由基聚合制备了具有pH响应特性的聚合物,进一步将染料配基 Cibacron Blue 固定到聚合物上,利用 Cibacron Blue 和纤维素酶的亲和性使 pH 响应聚合物与纤维素酶共沉淀,实现了对纤维素酶的分离[/font]

  • 【原创】聚氯乙烯技术方案

    聚氯乙烯技术方案解密一聚氯乙烯的综述1.聚氯乙烯(PVC)树脂具有力学性能好、无毒、成本低等优点。属于无定形塑料,吸湿性小,为了提高流动性,防止产生气泡宜先进行干燥处理。2.pvc流动性差,极易分解,特别是在高温下与钢,铜金属接触更容易分解,分解温度200度,分解时排出腐蚀及刺激性的气体3.pvc成型温度范围很窄必须严格控制料温4.pvc用螺杆式注塑机,及直通喷嘴成型,孔径宜大,以防止死角滞料5.pvc模具浇注系统应粗短进料截面宜大6.用晶须增强聚氯乙烯,具有达到最高强度的潜力:因为晶须是在特殊的条件下以单晶形式生长形成的纤维,其直径极小,达亚微米或纳米级,具有高度有序的原子排列,因而不具有大晶体的缺陷,可接近材料的原子见价键的理论强度7.pvc在实际使用中经常加入稳定剂,润滑剂,辅助加工剂,色料,抗冲击剂及其它添加剂8.pvc具有不易燃性,高强度,耐候性变化性以及优良的几何稳定性9.pvc对氧化剂,还原剂和强酸都有很强的抵抗力10.pvc在加工时熔化温度是一个非常重要的工艺参数,如果此参数不当将导致材料分解11.pvc的流动性相当差,其工艺范围很窄,特别是大分子量的pvc材料更加难于加工,因此通常使用的都是小分子量的pvc材料,pvc的收缩率相当低,一般为0.2~0.6%二pvc改性原理1 增塑剂的增塑原理增塑剂是用以改善塑料塑性,增加成型加工时的流动性,降低制品的脆性,改善材料耐寒性的一种助剂。增塑剂对塑料的增塑机理主要是增塑剂分子可对树脂大分子起隔离作用,使不同分子链之间的距离增大,减小大分子之间的相互吸引力和缠结,是分子链的内旋转变得容易,从而增加分子链的柔曲性并使分子链相互滑移变得容易,从而增大材料流动性、改善耐塞性,减小脆性等。环氧大豆油对聚氯乙烯制品有交联增韧和耐折的作用,具有耐光、热、抗老化、耐冲击、耐折等性能。2填充剂改性聚氯乙烯机理经典的载荷传递机理认为,当聚合物基晶须复合材料受到外力时,应力可以通过界面层由基体传递给晶须,晶须承受部分应力,使基体所受应力得以分散此外还有很多其它强化机制,如:弥散强化、残余应力、结构差异等。 晶须增韧是把聚合物的断裂方式由脆性断裂转变为韧性断裂,通过应力场中晶须的共同作用,阻止裂纹扩展,使聚合物受到拉伸时有较高的断裂伸长率,在受到冲击时不易被破坏,一旦破坏也能吸收较多的断裂能,使材料在形变损伤至破坏的过程中消耗更多的能量。大量研究表明:晶须增韧聚合物的实现来源于两方面的贡献:其一是晶须导致基体局部应力状态改变,其二是晶须对基体结晶行为产生影响。晶须的存在能够发展定向结构,但又不产生各向异性,可减少缺陷形成,有效地传递应力,阻止裂纹扩展,可使聚合物内聚强度增大,薄弱环节减少,显著提高力学强度。3热稳定剂机理加入到塑料配料中,能改善树脂的热稳定性,抑制其热降解、热分解的助剂。由于聚氯乙烯的热稳定性问题特别突出,一般所述的热稳定剂,多是指对聚氯乙烯塑料的专用热稳定剂。热稳定剂的作用机理:热稳定剂加入到塑料配方中对塑料起到的热稳定剂作用大致有以下两种:a.吸收中和HCl,抑制它的自动催化作用盐基铅盐、金属皂类等热稳定剂,都是HCl的接受体,可以有效地捕捉HCl,并与之反应形成稳定产物。b.抑制自由基生成和脱HCl的过程有机锡类热稳定剂,可以与聚氯乙烯中不稳定的氯原子配位结合,使之形成稳定的络合物结构。4 润滑剂改性机理其功能是在塑料加工过程中,通过降低聚合物熔融体的粘度及防止聚合物粘结在模具表面,以改善加工性能,达到提高加工流动性、降低螺杆扭矩、提高制品表面光洁度,使加工过程顺利进行,这对提高机械加工效率、增加成

  • 【求助】乙酸乙烯酯标准

    哪位大侠有这些标准:SH/T 1628.1—1996 工业用乙酸乙烯酯SH/T 1628.2—1996 工业用乙酸乙烯酯纯度及有机杂质的测定 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法SH/T 1628.3—1996 工业用乙酸乙烯酯活性度的测定 发泡法SH/T 1628.4—1996 工业用乙酯乙烯酯酸度的测定 滴定法SH/T 1628.5—1996 工业用乙酯乙烯酯中醛含量的测定 容量法

  • 【求助】乙酸乙烯酯标准

    SH/T 1628.1—1996 工业用乙酸乙烯酯SH/T 1628.2—1996 工业用乙酸乙烯酯纯度及有机杂质的测定 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法SH/T 1628.3—1996 工业用乙酸乙烯酯活性度的测定 发泡法SH/T 1628.4—1996 工业用乙酯乙烯酯酸度的测定 滴定法SH/T 1628.5—1996 工业用乙酯乙烯酯中醛含量的测定 容量法

  • 常见聚合物的红外光谱一览

    常见聚合物的红外光谱一览最常见的几种聚合物Polyethylene 聚乙烯:http://ng1.17img.cn/bbsfiles/images/2011/10/201110302148_327284_1645275_3.gif

  • 苯乙烯-马来酸共聚物及其应用

    [align=center][font='times new roman'][size=16px]苯乙烯[/size][/font][font='times new roman'][size=16px]-[/size][/font][font='times new roman'][size=16px]马来酸共聚物[/size][/font][font='times new roman'][size=16px]及其应用[/size][/font][/align] 苯乙烯与马来酸酐的[back=#ffffff]共聚物[/back][back=#ffffff]苯乙烯[/back][back=#ffffff]-[/back][back=#ffffff]马来酸([/back][back=#ffffff]SMA[/back][back=#ffffff])[/back][back=#ffffff]首先由[/back][back=#ffffff]Alfred[/back][back=#ffffff]和[/back][back=#ffffff]Lavin[/back][back=#ffffff]在[/back][back=#ffffff]1945[/back][back=#ffffff]年制[/back][back=#ffffff]备。[/back][back=#ffffff]之后[/back][back=#ffffff],[/back][back=#ffffff]Mayo[/back][back=#ffffff]等提出[/back][back=#ffffff]S[/back][back=#ffffff]MA[/back][back=#ffffff]共聚体系是典型的交替共聚模型[/back][back=#ffffff],[/back][back=#ffffff]具有强吸电子基团的马来酸酐与具有给电子基团[/back][back=#ffffff]的[/back][back=#ffffff]苯乙烯是一对电荷转移复合物,在自由基引发体系中具有很好的交替共聚特征,但是传统的自由基聚合会导致[/back][back=#ffffff]S[/back][back=#ffffff]MA[/back][back=#ffffff]的聚合不可控且分子量分布较宽等问题,限制了[/back][back=#ffffff]S[/back][back=#ffffff]MA[/back][back=#ffffff]共聚物[/back][back=#ffffff]的应用,“活性”[/back][back=#ffffff]/[/back][back=#ffffff]可控自由基聚合法为[/back][back=#ffffff]S[/back][back=#ffffff]MA[/back][back=#ffffff]的合成提供了解决方案,[/back][back=#ffffff]但是也有着显著区别。[/back][back=#ffffff]对于[/back][back=#ffffff]A[/back][back=#ffffff]TRP[/back][back=#ffffff]法,马来酸酐会与催化剂中金属离子发生反应,导致催化剂失效,因此只能采取光引发等无金属[/back][back=#ffffff]A[/back][back=#ffffff]TRP[/back][back=#ffffff]法合成。对于[/back][back=#ffffff]N[/back][back=#ffffff]MP[/back][back=#ffffff]法,由于聚合所需的温度较高,只能得到[/back][back=#ffffff]S[/back][back=#ffffff]MA[/back][back=#ffffff]的无规[/back][back=#ffffff]则[/back][back=#ffffff]共聚物。利用[/back][back=#ffffff]R[/back][back=#ffffff]AFT[/back][back=#ffffff]法可以较好地进行共聚,并且可以得到交替共聚物。在实际的聚合反应体系中,苯乙烯与马来酸酐的交替共聚速率远大于苯乙烯的自聚速率,并且马来酸酐的自聚能力很低,因此在苯乙烯过量的情况下,会首先形成[/back][back=#ffffff]S[/back][back=#ffffff]MA[/back][back=#ffffff]交替共聚物,此后再是苯乙烯的自聚,最终可形成具有[/back][back=#ffffff]S[/back][back=#ffffff]MA[/back][back=#ffffff]交替和[/back][back=#ffffff]苯乙烯[/back][back=#ffffff]自聚的嵌段共聚物[/back][back=#ffffff]。[/back] [back=#ffffff]S[/back][back=#ffffff]MA[/back][back=#ffffff]的一个重要优势在于马来酸酐中酸酐基团的高反应活性,可以在较温和的条件下发生酯化、酰胺化等反应,因此可以引入新的功能性基团,得到改性的[/back][back=#ffffff]S[/back][back=#ffffff]MA[/back][back=#ffffff]衍生物,这大大拓展了其应用范围[/back][back=#ffffff]。[/back][back=#ffffff]由于[/back][back=#ffffff]S[/back][back=#ffffff]MA[/back][back=#ffffff]及其衍生物具有独特的两亲性和生物相容性,已经被大量应用于膜蛋白增溶提取、药物递送和新材料合成等领域。[/back] [align=center][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]MA[/size][/font][font='times new roman'][size=16px]与膜蛋白质[/size][/font][/align] 在多细胞生物中,膜蛋白约占总蛋白质的三分之一。它们在细胞间信号传导和跨细胞膜转运中发挥着重要作用。2009年Knowles等首次报道了SMA共聚物可以直接将生物膜溶解成脂质纳米圆盘(SMALPs),既保留了圆盘内的蛋白质,又确保了膜蛋白稳定的天然脂质环境。此后,使用SMA共聚物的无去污剂增溶方法被大量应用于从生物膜中直接提取蛋白质和脂质。 目前为止,研究人员发现对于苯乙烯与马来酸组成比为3:1或2:1的共聚物结构对于膜的溶解最有效。以3:1的SMA为例简要描述其增溶机制,首先在阶段1中,苯乙烯单元穿透到磷脂双分子层的疏水部分且马来酸酐与亲水性头基结合,此时SMA从一开始紧凑且聚集的构象转变为解聚、延伸的构象,SMA已经插入到磷脂双分子层中。在阶段2中,SMA在磷脂双层中达到饱和状态,此时SMALPs形成,并与SMA饱和的磷脂双层共存。在第3阶段,SMA饱和的磷脂双层完全转化为SMALPs,磷脂双层全部溶解,SMA分布在磷脂双层中,过量的SMA附着在双层周围,生物膜实现增溶。 [align=center] [/align][align=center][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]MA[/size][/font][font='times new roman'][size=16px]衍生物[/size][/font][/align] 随着对SMA增溶机制的深入研究发现,SMA的分子量、化学组成与衍生基团的类型等会影响膜蛋白的提取效率与选择性。此外,由于SMA中马来酸的存在,酸的质子化或者与金属阳离子的络合会导致SMA变得过于疏水而无法维持纳米圆盘的结构,比如Mg[font='times new roman'][sup][size=16px]2[/size][/sup][/font][font='times new roman'][sup][size=16px]+[/size][/sup][/font]的浓度高于10 mM或pH低于6时通常会导致SMA沉淀,从而导致SMALPs分解。为了解决上述问题,研究人员开发了大量SMA衍生物,增加了对于pH与金属阳离子(Cu[font='times new roman'][sup][size=16px]2[/size][/sup][/font][font='times new roman'][sup][size=16px]+[/size][/sup][/font]、Mg[font='times new roman'][sup][size=16px]2[/size][/sup][/font][font='times new roman'][sup][size=16px]+[/size][/sup][/font]、Ca[font='times new roman'][sup][size=16px]2[/size][/sup][/font][font='times new roman'][sup][size=16px]+[/size][/sup][/font])的耐受性,为膜蛋白与膜脂的研究提供了更多的选择。例如,Brady等发现2-丁氧基乙醇功能化的SMA衍生物可以促进膜蛋白从蓝藻类囊体膜的提取,而未功能化的SMA基本上是无效的,且较长的疏水性烷氧基乙氧基化物侧链可以提高增溶效率。Burridge等同时合成了SMA-Glu/AE/Neut/Pos四种衍生物,所有的SMA衍生物都能够与以棕榈酰油酰磷脂酰胆碱制备的脂质体反应,形成不同尺寸的SMALPs,都显示出稳定的物理特性,在较宽pH范围和高达100 mM Mg[font='times new roman'][sup][size=16px]2+[/size][/sup][/font]下也可以发挥作用。Lindhoud等通过2-氨基乙硫醇对SMA的部分衍生化,合成了SMA-SH,其可以溶解生物膜,同时SMA-SH中的巯基基团可以与其它活性基团进行衍生化得到新的功能化SMA衍生物,进而实现膜蛋白的选择性提取与纯化,为SMA的应用提供了新思路。 除了对SMA进行衍生化用于提高对膜蛋白的提取效率与选择性之外,部分研究人员也探索了SMA共聚物本身的性质,比如苯乙烯与马来酸酐的比例、链的长度与化学组成分布等,以提高形成SMALPs的能力与稳定性。例如,Cunningham等报道了一种迭代RAFT聚合法合成了具有窄分子量分布与化学组成分布的SMA共聚物。在深入研究之后发现分子量分布与化学组成是影响膜增溶的两个主要因素,宽分子量分布的SMA共聚物,往往具有较高的链长,影响SMA的活性。事实上,较短链长的SMA更有利于SMALPs的形成,因为长链SMA会导致聚合物自身的缠绕,此外长链会同时参与多个SMALPs的形成,进一步影响增溶效率。 [align=center][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]MA[/size][/font][font='times new roman'][size=16px]与膜脂[/size][/font][/align] SMA及其衍生物已经广泛应用于膜蛋白的提取与研究。事实上,SMALPs也是用于研究蛋白质周围局部脂质环境的优良体系,但是相关的报道较膜蛋白要少。 Juarez等[font='times new roman'][sup][size=16px][95][/size][/sup][/font]用SMA从两种菌株(野生型N2和细菌抗性菌株agmo-1)中提取脂质,然后通过薄层色谱法和质谱法进行表征,发现从细菌抗性菌株agmo-1中提取的脂质含有醚连接的(O-烷基链)脂质,与仅含有酯连接的(O-酰基)脂质的野生型N2菌株相反。这与细菌抗性菌株agmo-1中功能性烷基甘油单加氧酶(AGMO)的丧失保持一致。此外,与传统的脂质提取方法(需要有机溶剂的方法)相比,SMA可用于生物活体中脂质的提取而不影响其活性,证明了SMA在脂质组学的研究中具有良好潜力。 Rehan等采用电喷雾离子化质谱(ESI-MS)法分析了由SMA提取的人体平衡核苷转运蛋白-1(hENT1)中的脂质组成,因为hENT1是一种需要脂质膜来维持其结构和功能的蛋白质,其周围脂质双层的组成对其活性和稳定性至关重要。分析结果发现,每个hENT1-SMALPs中含有16个磷脂酰胆碱(PC)和2个磷脂酰乙醇胺(PE)脂质分子。除此之外,研究发现使用SMA比使用洗涤剂溶解的hENT1更加稳定。

  • 热降解对三类聚合物分子量分析的影响

    热降解对三类聚合物分子量分析的影响

    聚合物分子量分析,样品溶解是一个很重要的因素,溶解时间过长,可能会造成聚合物热降解,特别是氧化降解,下面我们来看一下热降解对聚丙烯PP、聚苯乙烯PS及高密度聚乙烯HDPE的GPC分析结果的影响:http://ng1.17img.cn/bbsfiles/images/2015/10/201510191001_570312_1664_3.jpg图一、热降解对不同聚合物的GPC分析结果的影响从上图我们可以看出,热降解对PP的影响更大,不同受热时间的同一样品分析结果差别较大,而对PS和HDPE影响较小,但是多少也会有一些影响,如何保证样品分析结果不受或者减少热降解的影响,是很多从业人员关心的问题,如果我们保证了同一样品的受热时间一致,那么分析结果的重复性自然会很好。

  • 聚合物的分类

    按来源分类按来源可把高分子分成天然高分子和合成高分子两大类。按性能分类可把高分子分成塑料、橡胶和纤维三大类。塑料按其热熔性能又可分为热塑性塑料(如聚乙烯、聚氯乙烯等)和热固性塑料(如酚醛树脂、环氧树脂、不饱和聚酯树脂等)两大类。前者为线型结构的高分子,受热时可以软化和流动,可以反复多次塑化成型,次品和废品可以回收利用,再加工成产品。后者为体型结构的高分子,一经成型便发生固化,不能再加热软化,不能反复加工成型,因此,次品和废品没有回收利用的价值。塑料的共同特点是有较好的机械强度(尤其是体形结构的高分子),作结构材料使用。纤维又可分为天然纤维和化学纤维。后者又可分为人造纤维(如粘胶纤维、醋酸纤维等)和合成纤维(如尼龙、涤纶等)。人造纤维是用天然高分子(如短棉绒、竹、木、毛发等)经化学加工处理、抽丝而成的。合成纤维是用低分子原料合成的。纤维的特点是能抽丝成型,有较好的强度和挠曲性能,作纺织材料使用。橡胶包括天然橡胶和合成橡胶。橡胶的特点是具有良好的高弹性能,作弹性材料使用。按用途分类可分为通用高分子,工程材料高分子,功能高分子,仿生高分子,医用高分子,高分子药物,高分子试剂,高分子催化剂和生物高分子等。塑料中的“四烯”(聚乙烯、聚丙烯、聚氯乙烯和聚苯乙烯),纤维中的“四纶”(锦纶、涤纶、腈纶和维纶),橡胶中的“四胶”(丁苯橡胶、顺丁橡胶、异戊橡胶和乙丙橡胶)都是用途很广的高分子材料,为通用高分子。工程塑料是指具有特种性能(如耐高温、耐辐射等)的高分子材料。如聚甲醛、聚碳酸酯、聚砚、聚酰亚胺、聚芳醚、聚芳酰胺和含氟高分子、含硼高分子等都是较成熟的品种,已广泛用作工程材料。离子交换树脂、感光性高分子、高分子试剂和高分子催化剂等都属功能高分子。医用高分子、药用高分子在医药上和生理卫生上都有特殊要求,也可以看作是功能高分子。按主链结构分类可分为碳链高分子、杂链高分子、元素有机高分子和无机高分子四大类。碳链高分子的主链是由碳原子联结而成的。杂链高分子的主链除碳原子外,还含有氧、氮、硫等其他元素,如:如聚酯、聚酰胺、纤维素等。易水解。元素有机高分子主链由碳和氧、氮、硫等以外其他元素的原子组成,如硅、铝、钛、硼等元素,但侧基是有机基团,如聚硅氧烷等。无机高分子是主链和侧链基团均由无机元素或基团构成的。天然无机高分子如云母、水晶等,合成无机高分子如玻璃。高分子化合物的系统命名比较复杂,实际上很少使用,习惯上天然高分子常用俗名。合成高分子则通常按制备方法及原料名称来命名,如用加聚反应制得的高聚物,往往是在原料名称前面加个“聚”字来命名。例如,氯乙烯的聚合物称为聚氯乙烯,苯乙烯的聚合物称为聚苯乙烯等。如用缩聚反应制得的高聚物,则大多数是在简化后的原料名称后面加上“树脂”二字来命名。例如,酚醛树脂、环氧树脂等。加聚物在未制成制品前也常有“树脂”来称呼。例如,聚氯乙烯树脂,聚乙烯树脂等。此外,在商业上常给高分子物质以商品名称。例如,聚己内酰胺纤维称为尼龙-6,聚对苯二甲酸乙二酯纤维称为涤纶,聚丙烯腈纤维称为腈纶等。

  • 【原创】聚氯乙烯技术方案

    聚氯乙烯技术方案解密一聚氯乙烯的综述1.聚氯乙烯(PVC)树脂具有力学性能好、无毒、成本低等优点。属于无定形塑料,吸湿性小,为了提高流动性,防止产生气泡宜先进行干燥处理。2.pvc流动性差,极易分解,特别是在高温下与钢,铜金属接触更容易分解,分解温度200度,分解时排出腐蚀及刺激性的气体3.pvc成型温度范围很窄必须严格控制料温4.pvc用螺杆式注塑机,及直通喷嘴成型,孔径宜大,以防止死角滞料5.pvc模具浇注系统应粗短进料截面宜大6.用晶须增强聚氯乙烯,具有达到最高强度的潜力:因为晶须是在特殊的条件下以单晶形式生长形成的纤维,其直径极小,达亚微米或纳米级,具有高度有序的原子排列,因而不具有大晶体的缺陷,可接近材料的原子见价键的理论强度7.pvc在实际使用中经常加入稳定剂,润滑剂,辅助加工剂,色料,抗冲击剂及其它添加剂8.pvc具有不易燃性,高强度,耐候性变化性以及优良的几何稳定性9.pvc对氧化剂,还原剂和强酸都有很强的抵抗力10.pvc在加工时熔化温度是一个非常重要的工艺参数,如果此参数不当将导致材料分解11.pvc的流动性相当差,其工艺范围很窄,特别是大分子量的pvc材料更加难于加工,因此通常使用的都是小分子量的pvc材料,pvc的收缩率相当低,一般为0.2~0.6%二pvc改性原理1 增塑剂的增塑原理增塑剂是用以改善塑料塑性,增加成型加工时的流动性,降低制品的脆性,改善材料耐寒性的一种助剂。增塑剂对塑料的增塑机理主要是增塑剂分子可对树脂大分子起隔离作用,使不同分子链之间的距离增大,减小大分子之间的相互吸引力和缠结,是分子链的内旋转变得容易,从而增加分子链的柔曲性并使分子链相互滑移变得容易,从而增大材料流动性、改善耐塞性,减小脆性等。环氧大豆油对聚氯乙烯制品有交联增韧和耐折的作用,具有耐光、热、抗老化、耐冲击、耐折等性能。2填充剂改性聚氯乙烯机理经典的载荷传递机理认为,当聚合物基晶须复合材料受到外力时,应力可以通过界面层由基体传递给晶须,晶须承受部分应力,使基体所受应力得以分散此外还有很多其它强化机制,如:弥散强化、残余应力、结构差异等。 晶须增韧是把聚合物的断裂方式由脆性断裂转变为韧性断裂,通过应力场中晶须的共同作用,阻止裂纹扩展,使聚合物受到拉伸时有较高的断裂伸长率,在受到冲击时不易被破坏,一旦破坏也能吸收较多的断裂能,使材料在形变损伤至破坏的过程中消耗更多的能量。大量研究表明:晶须增韧聚合物的实现来源于两方面的贡献:其一是晶须导致基体局部应力状态改变,其二是晶须对基体结晶行为产生影响。晶须的存在能够发展定向结构,但又不产生各向异性,可减少缺陷形成,有效地传递应力,阻止裂纹扩展,可使聚合物内聚强度增大,薄弱环节减少,显著提高力学强度。3热稳定剂机理加入到塑料配料中,能改善树脂的热稳定性,抑制其热降解、热分解的助剂。由于聚氯乙烯的热稳定性问题特别突出,一般所述的热稳定剂,多是指对聚氯乙烯塑料的专用热稳定剂。热稳定剂的作用机理:热稳定剂加入到塑料配方中对塑料起到的热稳定剂作用大致有以下两种:a.吸收中和HCl,抑制它的自动催化作用盐基铅盐、金属皂类等热稳定剂,都是HCl的接受体,可以有效地捕捉HCl,并与之反应形成稳定产物。b.抑制自由基生成和脱HCl的过程有机锡类热稳定剂,可以与聚氯乙烯中不稳定的氯原子配位结合,使之形成稳定的络合物结构。4 润滑剂改性机理其功能是在塑料加工过程中,通过降低聚合物熔融体的粘度及防止聚合物粘结在模具表面,以改善加工性能,达到提高加工流动性、降低螺杆扭矩、提高制品表面光洁度,使加工过程顺利进行,这对提高机械加工效率、增加成品率尤为重要。润滑剂在热塑性、热固性塑料加工中是必不可少的助剂,特别是在[font=DY40+ZGFJZt

  • 【求助】水溶液中苯乙烯低聚物用什么萃取较好?做质谱分析

    水溶液中苯乙烯低聚物用什么萃取较好?做质谱分析同事送来一些样品,深色的水溶液,据说是苯乙烯聚合装置的废液,可能含有分子量300-3000的聚合物。想让我用色质联用给分析一下。对水溶液的前处理不是很熟悉,求助:1、应该用什么溶剂萃取呢?正己烷?二硫化碳?苯?2、应该用什么色谱柱为佳?HP1?现在装的是pona柱。

  • 木质素磺酸钠的应用

    木质素磺酸钠的英文叫:sodium lignin sulfonate它是一种天然高分子聚合物。具有很大的分散性。它还有一种有基化学产品,,由于分子 量和官能团的不同而具有不同程度的公散性。是一种表面的活性物质,能吸附在各种固体质点的表面上,可进行金属离子交换作用,也因为其组织结构上存在各种活性基,因而能产生缩合作用或与其他化合物发生氢键作用。还是以木质素磺酸钠为主要原料复配的。用途: 木质素磺酸钠是竹子制浆过程提取物,经过浓缩改性反应并喷雾干燥而成。产品为浅黄色自由流动性粉末,易溶于水,化学性质稳定,长期密封储存不分解。木质素系列产品是一种表面活性剂,可以通过改性、加工、复配等方法生产多个产品。主要用于树指,水泥,农药,橡胶,等等一些物质上,它的主要性能:1、 混凝土减水剂:系粉状低引气性缓凝减水剂,属于阴离子表面活性物质,对水泥有吸附及分散作用,能改善混凝土各种物理性能。2、 水煤浆添加剂:在制备水煤浆过程中加入本产品,能提高高磨机产量、维持制浆系统状况正常、降低制浆电耗,使水煤浆提高浓度,在气化过程中,氧耗、煤耗下降,冷煤气效率提高,并能使水煤浆降低粘度且达到一定的稳定性和流动性。3、 耐火材料及陶瓷坯体增强剂:在大规格墙地砖及耐火砖制造过程中,可以使坯体原料微粒牢固粘结起来,可使干坯强度提高20%—60%以上。4、 染料工业和农药加工的填充剂和分散剂:在用作还原染料及分散染料的分散剂和填充剂时,可使染料色力增高,着色更均匀,缩短染料研磨的时间;在农药加工中可作为填充剂、分散剂和悬浮剂,大大提高可湿性粉剂的悬浮率和润湿性能。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制