当前位置: 仪器信息网 > 行业主题 > >

乙酸乙烯酯与乙烯磺酸钠的聚合物

仪器信息网乙酸乙烯酯与乙烯磺酸钠的聚合物专题为您提供2024年最新乙酸乙烯酯与乙烯磺酸钠的聚合物价格报价、厂家品牌的相关信息, 包括乙酸乙烯酯与乙烯磺酸钠的聚合物参数、型号等,不管是国产,还是进口品牌的乙酸乙烯酯与乙烯磺酸钠的聚合物您都可以在这里找到。 除此之外,仪器信息网还免费为您整合乙酸乙烯酯与乙烯磺酸钠的聚合物相关的耗材配件、试剂标物,还有乙酸乙烯酯与乙烯磺酸钠的聚合物相关的最新资讯、资料,以及乙酸乙烯酯与乙烯磺酸钠的聚合物相关的解决方案。

乙酸乙烯酯与乙烯磺酸钠的聚合物相关的资讯

  • HORIBA前沿用户报道 | 了解低聚聚苯乙烯侧链分布排列对全聚合物太阳能电池性能的影响
    转自 | 材料人引 言近年来,共轭聚合物给体材料和受体材料的显著发展促使着研究人员在不断地开发更高性能的全聚合物太阳能电池器件。聚合物太阳能电池为有机太阳能电池中的一种,其光敏层主要由共轭聚合物和富勒烯及衍生物组成,而全聚合物太阳能电池则是将聚合物太阳能电池中的富勒烯材料换成聚合物材料,也就是说在光敏层中全部使用的是聚合物材料,这也使得全聚合物太阳能电池具有制造工艺简单,成本低,太阳能光谱覆盖良好,化学性质和形态稳定等诸多优点。许多全聚合物太阳能电池都具有较低的短路电流(JSC)和填充因子(FF),这是由聚合物的低载流子迁移率所引起的。因此,研究人员一直寻求在有机场效应晶体管器件测量下具有高电荷载流子迁移率的给体-受体(D-A)型共轭聚合物。成果简介近日,来自斯坦福大学的鲍哲南教授(通讯作者)团队在Advanced Eenergy Materials上发表了一篇题为“Understanding the Impact of Oligomeric Polystyrene Side Chain Arrangement on the All-Polymer Solar Cell Performance”的文章,文中报道了该研究团队有关光敏层中聚合物的分子形态对全聚合物太阳能电池性能影响的新研究成果。在该文中,低聚聚苯乙烯(PS)侧链引入共轭主链被证明可以增强半导体聚合物的加工性和电子性能。研究者制备两种具有不同摩尔百分比的PS侧链的给体和受体聚合物,以研究阐明它们的取代分布排列对于全聚合物太阳能电池性能的影响。当PS侧链在给体聚合物上被取代时,观察到的电池器件性能较低,当PS侧链在受体聚合物上被取代时,观察到的电池器件性能较高。研究表明,将PS侧链引入受体聚合物有助于共混聚合物膜中相分离畴尺寸的降低,然而减小的畴尺寸仍然比典型的激子扩散长度大一个数量级。详细的分子形态学研究以及原始PS、给体和受体聚合物的溶解度参数的估计显示,每个组分的溶解度的相对值主要对相分离结构域的纯度有正向作用,这强烈影响了光电流的的数量和太阳能电池的整体性能。图文导读图1D-PSX和A-PSX的合成路线合成D-PSX时,Pd(PPh3)4为催化剂;合成A-PSX时,Pd2(dba)3CHCl3为催化剂。图2电池性能表征(a)D-PSX/A-PSX全聚合物太阳能电池效率 (b)D-PSX/A-PSX全聚合物太阳能电池短路电流密度JSC(c)D-PSX/A-PSX全聚合物太阳能电池开路电压VOC(d)D-PSX/A-PSX全聚合物太阳能电池填充因子图3共混膜的RSoXS数据(a-c)PS侧链在受体聚合物中的数量分别为0%、5%和10%;(d-f)在给体聚合物中具有固定量的PS侧链的散射曲线。所有RSoXS数据是在287 eV下测试获得的,其中不同聚合物之间的散射对比度与不同量的PS侧链附着相似。图4共混膜的荧光猝灭行为(a-c)PS侧链在受体聚合物中的数量分别为0%、5%和10%;(d-f)不同PS侧链数量的给体聚合物的PL猝灭行为。补充内容图4共混膜荧光猝灭行为的表征是使用的HORIBA Fluorolog系列荧光光谱仪,具有超高灵敏度,特别适用于荧光强度逐渐降低的猝灭实验。利用荧光猝灭方法,可以有效确认相态分离结构与复合行为的关系。其中,通过测试共混膜的荧光猝灭谱,发现当PS侧链在给体聚合物上被取代时,发生更多复合;当PS侧链在受体聚合物上被取代时,发生更高效的激子解离。从而可以得到结论,共混膜中相分离结构域的纯度和粒径影响了光电流的的数量和太阳能电池的整体性能。 图5相互作用和溶解度参数确定D-PSX/A-PSX共混膜中相分离行为的示意图和各聚合物溶解度参数的假设顺序。小结在本文研究中,研究者使用活性阴离子聚合和缩合的组合制备了一系列具有不同数量的PS侧链的给体和受体聚合物。标准表征显示PS侧链对给体和受体聚合物的光吸收和能级特征的影响可以忽略不计。从全聚合物太阳能电池性能可以看出,在给体聚合物上引入PS侧链能导致JSC值和PEC的降低,而在受体聚合物上引入PS侧链可以增强电池性能。文献链接Understanding the Impact of Oligomeric Polystyrene Side Chain Arrangement on the All-Polymer Solar Cell Performance (Adv. Energy Mater, 2017, DOI: 10.1002/aenm.201701552)免责说明HORIBA Scientific公众号所发布内容(含图片)来源于文章原创作者提供或互联网转载。文章版权、数据及所述观点归原作者原出处所有,HORIBA Scientific 发布及转载目的在于传递更多信息及用于网络分享,供读者自行参考及评述。如果您认为本文存在侵权之处,请与我们取得联系,我们会及进行处理。HORIBA Scientific 力求数据严谨准确,如有任何失误失实,敬请读者不吝赐教批评指正。我们也热忱欢迎您投稿并发表您的观点和见解。HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 麦克仪器给力科学研究-用于脂化生物柴油合成中游离酸的超高交联聚苯乙烯磺酸催化剂
    随着美国麦克仪器的市场份额的逐步壮大,美国麦克仪器已经成为行业科学研究必备仪器,日前英国哈德斯菲尔德大学教授发表了一篇题为&ldquo 用于脂化生物柴油合成中游离脂肪酸的超高交联聚苯乙烯磺酸催化剂 &rdquo 学术文章,已经被Applied Catalysis B: Environmental(115&ndash 116 (2012) 261&ndash 268)收录,在该项研究中,美国麦克仪器ASAP 2020与DVS Advantage仪器成为表征催化剂最强有力的工具,为其研究提供了最具可信度的分析结果。以下列举该文章的摘要以及链接供参考: 链接:http://www.sciencedirect.com/science/article/pii/S0926337311006102 标题:Hypercrosslinked polystyrene sulphonic acid catalysts for the esterification of free fatty acids in biodiesel synthesis 摘要: New sulphonic acid catalysts supported on hypercrosslinked polystyrene have been studied in the esterification of oleic acid with methanol and in the rearrangement of &alpha -pinene to camphene and limonenes. The catalysts have been characterised in terms of specific surface areas and porosities, affinities for water and for cylcohexane vapours, and both concentrations and strengths of acid sites. They have been compared with conventional macroporous polystyrene sulphonic acids (Amberlysts 15 and 35) and SAC-13, a composite between Nafion and silica. The results show that the hypercrosslinked polystyrene sulphonic acids, despite exhibiting relatively low concentrations of acid sites and acid site strengths below those of Amberlysts 15 and 35, are very much more catalytically active than conventional resins in reactions such as the esterification in which high acid site strengths are not required. It is thought that this is due to the highly accessible acid sites throughout the catalyst particles. Reusability studies are reported and it appears that the temperature at which the catalyst is used is important in controlling and minimising catalyst deactivation. 美国麦克仪器公司是世界上第一家将自动表面积分析仪、压汞仪以及沉降式粒度分析仪投放市场的公司。公司主营产品为研究级全自动比表面积与孔隙度分析仪、多站比表面积与孔隙度分析仪、快速比表面积与孔隙度分析仪、流动气体法比表面分析仪、程序升温化学吸附仪、化学吸附仪、压汞仪、高压吸附气体吸附仪、蒸汽吸附仪、密度测量、颗粒技术和颗粒形态分析仪等各种材料表征仪器。 美国麦克仪器产品在1979年进入中国市场,成为中美建交后最早进入中国市场的分析仪器。在为中国用户服务30多年后,于2011年3月在上海成立了麦克默瑞提克(上海)仪器有限公司,专业为中国市场提供美国麦克仪器公司的产品。公司总部设在上海,并在北京、广州、西安分别设有办公室,并设有应用实验室提供各类仪器的演示与操作培训并提供对外做样服务,为广大用户提供完整的实验室解决方案与疑难样品的分析。
  • 全自动高温乌氏粘度计在聚乙烯PE、聚丙烯PP行业的应用
    聚乙烯(polyethylene ,简称PE)是乙烯经聚合制得的一种热塑性树脂。化学式为:(C2H4)n,在工业上,也包括乙烯与少量α-烯烃的共聚物。在工业上,也包括乙烯与少量α-烯烃的共聚物。聚乙烯无臭,无毒,手感似蜡,具有优良的耐低温性能(最低使用温度可达-100~-70°C),化学稳定性好,能耐大多数酸碱的侵蚀(不耐具有氧化性质的酸)。常温下不溶于一般溶剂,吸水性小,电绝缘性优良。聚丙烯,(简称PP)是丙烯通过加聚反应而成的聚合物。化学式为(C3H6)n,密度为0.89~0.91g/cm3, 易燃,熔点189℃,在155℃左右软化,使用温度范围为-30~140℃ 。聚丙烯是一种性能优良的热塑性合成树脂,为无色半透明的热塑性轻质通用塑料。在80℃以下能耐酸、碱、盐液及多种有机溶剂的腐蚀,能在高温和氧化作用下分解。聚丙烯具有耐化学性、耐热性、电绝缘性、高强度机械性能和良好的高耐磨加工性能等。主要应用于应用在食品包装、家用物品、汽车、光纤等领域。聚乙烯和聚丙烯的应用面非常广泛,近年来发展也很迅速,许多企业也在不断增加对新技术研发的投入,其中粘度测试是一项非常重要的检测项目。国标GB/T 1632.3-2010规定聚乙烯和聚丙烯使用毛细管黏度计测定聚合物稀溶液黏度。关于PP/PP粘度标准的解读:使用毛细管乌氏粘度计,在135℃下测定溶剂以及规定浓度的聚合物溶液的流出时间,根据这些测定的流出时间和聚合物溶液的已知浓度计算比浓黏度和特性黏度。在室温下,聚乙烯和等规聚丙烯不溶于任何目前所知的溶剂。因此在试验中必须采取措施以防止因聚合物析出而导致溶液浓度发生改变。中旺全自动高温乌氏粘度计IVS800H在PP/PE中的解决方案许多企业一般使用半自动或手动的粘度仪,在135℃的油槽上进行粘度的测试,对人员以及环境都存在着安全隐患。IVS800H它是一款全自动的高温乌氏粘度计,实现自动恒温、自动进样、自动测试、自动清洗、自动干燥的操作流程,有效地避免了高温操作下引起的意外。另外它还能规避样品的析出,确保了数据的准确性。那么我们来详细的介绍下一个完整的PP/PE的粘度流程:仪器的配置:中旺DP25自动配液器、中旺聚合物溶样器、中旺全自动高温乌氏粘度计IVS800H。测试流程:配液:用万分之一天平称取聚丙烯PP样品,放入到溶样瓶中,用DP25自动配液器(移液精度≤0.1%)移取定量剂到溶样瓶中;溶样:中旺聚合物溶样器溶解PP/PE样品,采用金属浴,多孔位,转速、溶样时间、溶样温度可按要求设定。温度最高可达185℃。黏度测试:将彻底溶解好的PP/PE样品置入全自动高温乌氏粘度计IVS800H样品仓中,启动仪器,实现自动进样,采用进口不锈钢光纤可自动测试,计时精度可达0.001S,确保了数据的准确性,全程无需人员值守,并且系统自带软件,自动得出测试结果;测试结果IVS800H全自动高温乌氏粘度计连接电脑端,可自动得出测试结果并进行数据储存,便于多样化粘度数据分析;并且出分析报告。清洗黏度管乌氏粘度管固定在IVS800H高温乌氏粘度仪中,客户无需拆装取出,可自动清洗、自动排废、自动干燥。告别了乌氏粘度管耗材的时代。
  • 全球聚乙烯市场现状与展望
    据美国《化学周刊》近期报道 由于中国、印度、拉美、中欧等新兴经济体的驱动,预计2011年至2014年聚合物需求快于全球GDP增速,年增长率超过5%。   CMAI(休斯顿)统计数据显示,2009年全球聚合物消费量约为1.76亿吨,其中聚乙烯消费量占38%,接近6700万吨。按年增长率超过5%推算,2014年,聚乙烯需求将超过8700万吨。高密度聚乙烯(HDPE)占全球聚合物需求总量的17%,约为3000万吨 线性低密度聚乙烯(LLDPE)和低密度聚乙烯(LDPE)分别占11%和10%。LLDPE和HDPE需求的强劲增长归因于包装用品和非耐用品的用量增加,全球新投产的LDPE产能中,大多数产品为LLDPE和HDPE。2010年经济触底反弹,需求增长较快。目前美国市场聚乙烯供应趋紧,开工率达到90%。欧洲市场情况与美国相近,德国国内市场将继续增长,出口市场也将逐渐走强,土耳其市场年增长超过10%,全球所有地区都将高于2009年水平。预计2011年聚乙烯需求增长不会与今年一样显著,更接近GDP增长水平,将增长4.5%至5.5%。   2009年,美国的聚乙烯产品大部分出口到正在进行大规模基础设施建设的中国。今年,多出口到加拿大和墨西哥。美国出口中国产品减少是因为中国经济增速放缓,同时更多新增产能进入中国市场参与竞争。中东新增产能的冲击比预期要弱,因为一些中东生产能力没有按期投产,产能增长步伐比预期要慢。明年,随着新增产能投产,新产品投入市场,全球市场将需更长时间达到供需平衡。北美生产商不会与以中国、拉美、欧洲为主要目标市场的中东生产商展开竞争。一些生产商已宣布关闭部分亏损产能以应对激烈的市场竞争。利安德巴塞尔关闭位于英国Carrington的18.5万吨/年LDPE装置,去年道达尔石化关闭位于法国Carling和Gonfreville的2套LDPE装置,今年北欧化工将关闭位于Stenungsund的15万吨/年LDPE产能,最近沙特基础工业公司关闭了位于荷兰Geleen的12万吨/年LDPE装置。   埃克森美孚扩大丁基橡胶产能据美国今日下游网近期报道 埃克森美孚化工子公司日本埃克森美孚有限会社宣布,旗下的日本丁基橡胶有限公司已完成川崎丁基橡胶装置扩能,产能增加1.8万吨/年,使其丁基橡胶总产能达到9.8万吨/年,以满足亚太市场日益增长的丁基橡胶需求。公司此次扩能采用埃克森美孚化工最近开发的新工艺技术。例如,其中一项新专利技术可使丁基聚合物的聚合反应温度达到-75摄氏度,而常规技术的反应温度为-95摄氏度,该新技术可大幅降低能耗并节省投资。埃克森美孚化工在高端丁基橡胶聚合物的开发和应用方面处于业内领先地位,其产品具有更长的寿命、可节约能源、减少温室气体排放,从而带来更高的附加值。为了满足丁基橡胶行业需求的不断增长,日本丁基橡胶有限公司近期内已有过多次扩能,本次扩能也是进一步服务日益增长的丁基橡胶市场。2008年,埃克森美孚化工将其得克萨斯州贝城丁基橡胶装置的产能提高了60%。在此之前,日本丁基橡胶有限公司已在2006年将其鹿岛卤化丁基橡胶装置产能增加1.7万吨/年。
  • 应用解读|光伏组件封装用乙烯-醋酸乙烯酯共聚物(EVA)胶膜的热分析标准解读
    1. 技术背景图1. 晶体硅太阳能电池结构晶体硅太阳能电池结构由钢化玻璃板/EVA膜/太阳能电池板/EVA膜/背板构成,如图1所示。其中,太阳能电池封装用EVA是以乙烯/醋酸乙烯共聚物(醋酸乙烯含量为30%-33%)为基料,辅以数种改性剂,经成膜设备热轧成薄膜型产品,厚度约0.4 mm。封装过程中EVA受热,交联剂(通常为过氧化物)分解产生自由基,引发EVA分子之间的结合,形成三维网状结构,导致EVA胶层交联固化,交联机理如图2 所示。固化后的胶膜具有相当高的透光率、粘接强度、热稳定性、气密性及耐老化性能。图2. EVA加热过程中在交联剂过氧化物下的交联机理EVA固化不足可直接导致光伏组件在其近20年的使用中性能恶化,这将意味着重大的经济风险。因此为实现经济有效的层压,快速可靠的EVA交联度分析方法至关重要。以往的化学法测交联度耗时长(30小时左右),结果重复性差,并且使用有毒的溶剂(甲苯或二甲苯),无法准确测试较低交联度和较高交联度的EVA。根据国家标准:1)GB/T 29848-2018:光伏组件封装用乙烯-醋酸乙烯酯共聚物(EVA)胶膜2)GB/T 36965-2018:光伏组件用乙烯-醋酸乙烯共聚物交联度测试方法--差示扫描量热法(DSC)采用差示扫描量热法(DSC)是目前较为可靠的分析方法,应用DSC测定光伏组件在层压过程中已交联的EVA的交联度,仅需1小时时间即可获得重复性良好的结果,是一种快速简便的产品质量控制方法。2.方法设计1)DSC:称取未交联和交联EVA样品5~10mg至40μL铝坩埚内,以10 K/min从−60℃加热到250°C,后以20 K/min的速度从250℃冷却至-60℃,再以10 K/min进行第二次升温,全程惰性氩气氛围。交联EVA的交联度可由以下方程计算获得:梅特勒-托利多差示扫描量热仪 DSC2)此外,醋酸乙烯组分的分解机理如下所示:根据上述计算公式,可通过热重法(TGA)分析计算得到EVA中VA的百分含量,从而帮助对EVA来料进行质检,以判定EVA的优劣。TGA/DSC:称取优质和劣质的交联EVA样品至陶瓷坩埚内,以10 K/min从30℃加热到600°C,全程惰性氩气氛围。3.数据分析1)DSC分析计算EVA的交联度图3为未交联EVA样品的升降升循环DSC测试曲线。在第一次升温曲线上可观察到明显的三个热效应,从低温至高温,依次是未交联EVA的玻璃化转变、结晶部分的熔融以及高温处的固化交联放热峰,所呈现的固化放热焓值为ΔH1(17.49 J/g)。由第二次升温曲线在高温处所表现处的平直基线可以得出结论,ΔH1为未交联EVA完全固化所释放出的热焓。图3. 未交联EVA样品的DSC测试曲线图4为交联EVA样品的DSC第一次升温曲线,第二次升温在高温处同样为平直的基线,故未呈现。温度从室温开始,可观察到结晶部分的熔融以及高温处的后固化交联放热峰,所呈现的后固化放热焓值为ΔH2(8.47 J/g)。因此,该交联EVA样品的交联度根据上述计算公式为51.55%。图4. 交联EVA样品的DSC第一次升温曲线1)TGA分析计算EVA中VA的百分含量图5为优质与劣质EVA的TGA/DSC测试曲线。根据EVA的分解机理,TGA曲线上的第一个失重台阶为醋酸乙烯分解产生醋酸的过程,因此失重量为醋酸的质量。第二个失重台阶为EVA中原有的乙烯组分和醋酸乙烯分解产生的乙烯的分解。因此,EVA中醋酸乙烯的含量可由第一个失重台阶即醋酸的失重百分含量的1.43倍计算而得。如图所示,优质EVA的VA含量为29.5%(太阳能电池封装用EVA的醋酸乙烯含量为30-33%),劣质EVA的VA含量仅为16.6%。与此同时,同步的DSC曲线上亦可找到相关判断依据。由于劣质EVA含有更高含量的乙烯组分,因此其结晶能力更强,所呈现的结晶熔融过程表现在更高的温度范围。图5. 优质与劣质EVA的TGA/DSC测试曲线4.小结由此可见,光伏组件封装用EVA胶膜的相关热性能的鉴定可由DSC、TGA或同步热分析TGA/DSC快速给出判断依据。此外,工艺上EVA固化通常采用层压实现,而层压的温度和时间作如何优化可由DSC动力学模块给出科学且精准的预测,为层压工艺提供数据和理论指导。
  • 未来五年全球聚乙烯需求将快速增长
    据美国析迈(CMAI)称,2009年全球聚合物消费量达到1.76亿吨,其中聚乙烯(PE)占到消费总量的约38%。2009年全球PE需求接近6700万吨,预计未来五年将以年均逾5%的速度增长,到2014年的需求量将超过8700万吨。2009年高密度聚乙烯(HDPE)需求量约占到聚合物总需求量的17%,或约3000万吨,而线性低密度聚乙烯(LLDPE)和低密度聚乙烯(LDPE)的需求量分别占到约11%和10%。
  • 流变仪与热分析在聚合物加工与表征方面应用技术交流会
    尊敬的先生/女士:   2010年3月1日,全球服务科学领域的领导者赛默飞世尔科技公司与热分析仪器和热物性分析仪的主要供应商德国耐驰仪器公司宣布,双方将携手进一步拓展中国地区的销售业务,并将举办各种流变学和热分析领域的应用技术交流会。   作为重要的应用领域,双方将首先携手在聚合物加工和表征技术方面为广大用户提供更广泛全面的支持,兹定于2010年4月为大家呈现一系列精彩的技术交流会。交流会由两个公司的资深技术专家进行深入全面的讲解,内容丰富实用、图例精彩,相信一定会为您的工作提供有效的帮助,我们真诚的邀请您的参与。交流会的具体内容及详细安排如下: [交流会内容]:  ■聚合物实验设置和准备 ■ 聚合物在实验室测试用样品的共混  ■微量混合与注射技术 ■ 样品制备与优化  ■毛细管挤出流变学 ■ 聚合物熔体与溶液拉伸流变学  ■稳态测试与蠕变回复 ■ 动态振荡测试  ■热分析技术在聚合物表征方面的应用 [技术交流会时间、地点]:  4月1日 杭州,浙江大学玉泉校区 上午9:00~下午 3:30  4月8日 青岛,青岛科技大学 上午9:00~下午 3:30  4月15日 南京,中国林业科学研究院 上午9:00~下午 3:30 为了更好地为您服务,请填妥报名表并传真或Email给我们: 姓名 电话/手机 拟参加交流会 场次 □ 4月1日 杭州 □ 4月8日 青岛 □ 4月15日 南京 其它参加 人员姓名 单位 传真 地址 邮政编码 Email [详情咨询]: 赛默飞世尔科技(中国)有限公司 耐驰科学仪器商贸(上海)有限公司 联系人:冯敏 联系人:李静 电话:021-68654588-2257 电话:021-51089255-686 传真:021-64451101 传真:021-58663120 Email:info.mc.china@thermo.com Email: jing.li@netzsch.com
  • 脂溶性聚合物环氧树脂及甲基硅油分子量分布测定
    脂溶性聚合物环氧树脂及甲基硅油分子量分布测定刘兴国 熊亮 曹建明 金燕美丽而寒冷的冬天又到了,室外大雪纷飞,喜欢运动的小伙伴们由户外转战室内,场馆内羽毛球、乒乓球、篮球大战相继上演,运动的身姿和蓝绿色地面、明亮的篮板构成了一道道靓丽的风景线。你可知道这漂亮的场地和器材是用什么材料制造的吗?学化学的你可能回答:“有机材料。”其实这些都是聚合物材料,绿色和蓝色的防滑地面材料为环氧树脂,有机玻璃的篮板材料为聚甲基丙烯酸甲酯。这些均为脂溶性聚合物材料的产品,它们已渗透到日常生活和高端科技的方方面面,从每天要用到的塑料袋到航天材料都可看见它们的身影。 今天,飞飞给大家重点介绍两种脂溶性聚合物。一种是低分子型环氧树脂,是由双酚A和环氧丙烷在氢氧化钠作用下缩聚而成,室温下为黄色液体或半固体,耐热、耐化学药品、电气绝缘性好,广泛用于绝缘材料、玻璃钢、涂料等领域,是常用的基础化工材料。另外一种为甲基硅油,它具有突出的耐高低温性、极低的玻璃化温度、很低的溶解度参数和介电常数等,在织物整理剂、皮革涂饰剂、化妆品、涂料和光敏材料等领域广泛应用。 分子量分布是表征聚合物的重要指标,对聚合物材料的物理机械性能和成型加工性能影响显著。常用测定方法有:粘度法、激光光散射法、质谱法和体积排阻色谱法 (SEC法),其中凝胶渗透色谱法(GPC法)作为体积排阻色谱法的一类,方便快捷、设备普及,具有广泛适用性。通过本文,飞飞给大家介绍以聚苯乙烯为标样,GPC法测定低分子量环氧树脂以及甲基硅油分子量的方法,通过对分子量分布的准确控制可以很好地保证产品的质量。变色龙软件GPC扩展包可以非常方便地将采集的GPC数据进行处理,快速地得到分子量分布的信息,而且该扩展包完全免费。 本实验仪器配置如下:仪器:赛默飞 U3000高效液相色谱仪泵:ISO3100 Pump自动进样器:WPS 3000SL Autosampler柱温箱:TCC3000 Column Compartment检测器:ERC 521示差检测器变色龙色谱管理软件 Chromeleon CDS 7.2 1. 环氧树脂分子量测定双酚A型环氧树脂基本结构及以它为材料制造的体育馆环氧地坪见图1:图1 双酚A型环氧树脂基本结构及体育馆环氧地坪色谱条件如下:分析柱:TSKgel G2500HXL 300*7.8mm,P/N:0016135(适用分子量范围100-20000);TSKgel G3000HXL 300*7.8mm,P/N:0016136(适用分子量范围500-60000);TSKgel G5000HXL 300*7.8mm,P/N:0016138(适用分子量范围1000-4000000);三根色谱柱串联分析。柱温:25℃RI检测器:过滤常数:2s,温度:35℃流动相:四氢呋喃,流速1.0mL/min进样量:15µL 对照品为聚苯乙烯,分子量分别为162,370,580,935,1250,1890,3050和4910;称取适量对照品用四氢呋喃超声溶解,浓度0.02mg/mL。样品用四氢呋喃溶解,浓度0.1mg/mL,测定谱图见图2。 图2不同分子量聚苯乙烯对照品测定谱图注:580和370两个对照品出厂报告上polydispersity多分散系数分别为1.13和1.15,分子量集中度差,所以峰形呈现为多簇小峰。其余对照品多分散系数均小于1.05,峰形呈对称单峰。 校正曲线及相关系数如下: 图3 校正曲线校正曲线方程y=-0.0006x3+0.0502x2-1.5496x+20.4439,相关系数R=0.9998。不同厂家不同批次环氧树脂样品测定结果如下: 表1 环氧树脂样品测定结果样品名称 重均分子量Mw样品-1 387样品-2 401样品-3 396 2. 甲基硅油分子量测定测试甲基硅油的分子量及其分布,常用的GPC方法是采用甲苯或四氢呋喃作为流动相,但是由于甲苯属于管制类试剂,不易购买,因此飞飞采用四氢呋喃(THF)作为流动相来测定硅油的分子量及其分布,结果显示分离与色谱峰形均较好。对照品为聚苯乙烯,分子量分别为1210,2880,6540,22800,56600和129000;称取适量对照品用四氢呋喃超声溶解,浓度约1.0mg/mL。样品用四氢呋喃溶解,浓度1mg/mL。色谱条件如下:分析柱:Shodex KF-805L 8.0*300mm(适用分子量范围300-2000000);柱温:30℃RI检测器温度:31℃流动相:四氢呋喃,流速0.8mL/min进样量:100µL 对照品测定谱图及校正曲线如下:图4 对照品测定谱图及校正曲线 校正曲线方程y=-0.0182x3+0.5987x2-7.1522x+34.6655,相关系数R=0.9996。甲基硅油样品测定结果数均分子量为20727,重均分子量为36273,Z均分子量为59280,Z+1均分子量为91320。总结到这里,飞飞给大家介绍了采用U3000液相结合变色龙软件采集和处理数据,分析低分子量环氧树脂和甲基硅油分子量的方法,由于两者分子量范围差异较大,实验采用了两组不同分子量的聚苯乙烯标准品作为对照品。对于环氧树脂由于需要测定的是低分子量聚合物且对照品分子量接近,所以采用了三根截留分子量不同的凝胶柱串联进行测定,结果更为准确。变色龙GPC分子量计算扩展包功能强大,导入和使用方便,为广大变色龙工作站用户扩展使用GPC功能带来便利。本文介绍的为脂溶性聚合物的分子量测定,对于水溶性聚合物的分子量分布测定,飞飞这里有较多应用文章供大家参考,感兴趣的朋友可联系我索取,这里给大家提供一篇最常用的,右旋糖酐40的分子量分布测定,扫描以下二维码既可查阅。
  • 高分子表征技术专题——透射电子显微镜在聚合物不同层次结构研究中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题 高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!透射电子显微镜在聚合物不同层次结构研究中的应用Applications of Transmission Electron Microscopy in Study of Multiscale Structures of Polymers作者:王绍娟,辛瑞,扈健,张昊,闫寿科 作者机构:青岛科技大学 橡塑材料与工程省部共建教育部重点实验室,青岛,266042 北京化工大学材料科学与工程学院 化工资源有效利用国家重点实验室,北京,100029作者简介:辛瑞,女,1990年生. 青岛科技大学高分子科学与工程学院副教授,2018年在北京化工大学获得博士学位,2014~2018年在中国科学院化学研究所进行联合培养,2018~2020年在青岛科技大学从事博士后研究并留校任教. 获“国家青年科学基金”资助. 主要研究方向是多晶型聚合物的晶型调控与相转变研究.摘要聚合物材料的性能与功能取决于各级结构,其中化学结构决定材料的基本功能与性能,而不同层次聚集态结构能够改变材料的性能和赋予材料特殊功能,如高取向超高分子量聚乙烯的模量比相应非取向样品提高3个数量级,聚偏氟乙烯的β和γ结晶结构则能赋予其压电、铁电等特殊功能. 因此,明确聚合物不同层次聚集态结构的形成机制、实现各层次结构的精准调控和建立结构-性能关联具有非常重要的意义,致使对聚合物各级结构及其构效关系的研究成为高分子物理学的一个重要领域. 本文将着重介绍透射电子显微镜在聚合物不同层次结构研究中的应用,内容包括仪器的工作原理、样品的制备方法、获得高质量实验数据的仪器操作技巧、实验结果的正确分析以及能够提供的相应结构信息.AbstractThe performance and functionality of polymeric materials depend strongly on the multiscale structures. While the chemical structure of a polymer determines its basic property and functionality, the structures at different scales in solid state can change the performance and even enable the polymer special functions. For example, the modulus of highly oriented ultrahigh molecular weight polyethylene is three orders of magnitude higher than that of its non-oriented counterpart. For the polymorphic poly(vinylidene fluoride), special piezoelectric and ferroelectric functions can be endowed by crystallizing it in the β and γ crystal modifications. Therefore, it is of great significance to disclose the structure formation mechanism of polymers at all levels, to realize the precise regulation of them and to correlate them with their performance. This leads to the study of polymer structure at varied scales and the related structure-property relationship a very important research field of polymer physics. Here in this paper, we will focus on the application of transmission electron microscopy in the study of different hierarch structures of polymers, including a brief introduction of the working principle of transmission electron microscopy, special techniques used for sample preparation and for instrument operation to get high-quality experimental data, analysis of the results and correlation of them to different structures.关键词聚合物   透射电子显微镜   样品制备   仪器操作   结构解释 KeywordsPolymer   Transmission electron microscopy   Sample preparation   Instrument operation   Structure explanation  聚合物是一类重要的材料,其市场需求日益增长,说明聚合物材料能够满足使用要求的领域越来越广,这应归因于聚合物材料性能和功能的各级结构依赖性. 首先,包括组成成分、链结构及构型、分子量及分布等的化学结构决定材料的基本性能和功能. 例如:高密度聚乙烯(即直链型聚乙烯)的热稳定和机械性能明显优于低密度聚乙烯(支化型聚乙烯),而分子链的共轭双键结构则能赋予聚合物导电能力[1~5]. 对化学结构固定的同一聚合物材料而言,不同形态结构可以展示出完全不同的物理、机械性能. 以超高分子量聚乙烯为例,其非取向样品的模量与强度分别为90 MPa和10 MPa,分子链高度取向后,模量增加到90 GPa,增幅为3个数量级,强度(3 GPa)也增加了近300% [6]. 另外,有机光电材料的性能也与分子链排列方式密切相关[7~12]. 对结晶性聚合物材料而言,聚集态结构调控不仅影响性能,而且可以实现特殊功能,如常规加工获得的α相聚偏氟乙烯属于普通塑料,特殊控制形成的β或γ相聚偏氟乙烯则具有压电、铁电等功能[13~20]. 由此可见,揭示聚合物不同层次聚集态结构的形成机制,明确各级结构的影响因素,发展聚合物多层次聚集态结构的可控方法,对发掘聚合物材料的特殊功能和提高性能进而拓展其应用领域具有十分重要意义,致使对聚合物各级结构及其构效关系的研究一直是高分子物理学的一个重要领域.高分子不同层次结构既与高分子的链结构有关,又与加工过程有关. 因此,高分子形态结构的研究内容十分丰富,且对形态结构的研究不仅是深入理解聚合物结构-性能的基础,而且能为聚合物加工过程结构控制提供依据. 经过长期研究积累,目前已经发展了针对聚合物不同层次聚集态结构表征的多种成熟技术手段,如光谱技术[21~28]、散射与衍射技术[29~37]、显微技术[38~50]以及理论计算模拟[51]等,这些方法在聚合物聚集态结构表征中各有优势. 如光谱技术的长处在于表征高分子链结构、晶区与非晶区的链取向和晶态中分子链相互作用等.散射和衍射可用于表征聚合物的结晶态结构、结晶程度与取向和微区结构尺寸等. 相对于光谱、散射和衍射技术,显微术的优势在于能够直观地展示微观尺度结构,如光学显微镜用来展示聚合物的微米尺度结构、跟踪球晶的原位生长过程等[38,39],而原子力显微镜能显示纳米尺度结构及片晶的生长行为,甚至给出聚合物的单链结构信息[42]. 当然,大多数情况下,需不同技术相结合来准确揭示一些聚合物的不同层次结构[52~59]. 例如:聚(3-己基噻吩)(P3HT)因其b-轴(0.775 nm)和c-轴(0.777 nm)的晶面间距基本相同,无法用衍射技术精准确定其分子链取向,而衍射与偏振红外光谱结合可以明确其晶体取向[54]. 透射电子显微镜(本文中简称为电镜)是集明场(BF)和暗场(DF)显微术以及电子衍射(ED)技术于一体的设备,能够直接关联各类晶体的不同形态结构[60]. 例如:对聚乙烯单晶的电镜研究[61~63],证明了片晶仅有十几个纳米厚,但分子链沿厚度方向排列,根据这一电镜结果提出了高分子结晶的链折叠模型,对推动结晶理论的迅速发展做出了巨大贡献. 然而,电镜对观察样品要求苛刻,且样品在高压电子束轰击下不稳定,导致电镜研究高分子形态结构具有很大挑战性.针对电镜研究高分子形态结构面临的挑战,本文将着重介绍电镜在聚合物不同层次结构研究应用中的一些技巧,主要内容包括电镜的工作原理、不同类型样品的制备方法以及稳定手段、获得高质量实验数据的仪器操作技术、实验结果的正确分析,并结合具体示例解释相关数据对应的聚合物结构信息.1电镜工作原理显微术是将微小物体放大实现肉眼观察的技术. 实际上,人们常用放大镜对细小物体的直接观察就是一种最原始的显微手段,只是受限于放大能力仅能实现对几百微米以上物体的观察. 为观察更细小物体,人们通过透镜组合来提高放大能力,从而诞生了光学显微镜. 如图1所示,光学显微镜是通过对中间像的投影放大提升了放大本领,其两块透镜组合的放大能力是两块透镜的放大率之积. 基于这一原理,增加透镜数目可进一步提高光学显微镜的放大能力,而透镜本身缺陷造成的求差、色差、象散、彗差、畸变等象差会使图像随透镜数目增加变得不清晰. 另外,考虑到人眼的分辨本领大概为0.1 mm,而光学显微镜的极限分辨率为0.2 μm,500倍是光学显微镜有效放大倍率,即500倍就能使一个尺寸为0.2 μm放大到人眼能分辨的 0.1 mm. 由此可见,要观察更细微结构需要提高显微镜的分辨率. 根据瑞利准则,光学显微镜的分辨本领可表示为:Fig. 1Sketch illustrating the working principle of optical microscope.其中,λ为光源的波长,NA为数值孔径,其值是透镜与样品间的介质折射率(n)与入射孔径角(α)正弦的乘积,即NA = nsinα. 可见,减少波长能有效提高光学显微镜的分辨能力,例如以紫外光为光源的显微镜分辨率可提高到0.1 μm,欲进一步提高显微镜分辨能力须选择波长更短的光源.电子波的波长与加速电压(V)相关,可用λ=12.26 × V−−√式表示,根据该公式,100 kV和200 kV电压加速电子束的波长分别为0.00387 nm和0.00274 nm,经相对论修正后变为0.0037 nm和0.00251 nm,如以高压加速电子束为光源,能使显微镜的分辨率得到埃的量级,这就促使了电子显微镜的开发. 如图2所示,电子显微镜工作原理与光学显微镜相似,只是使用高压技术的电子束为光源,而相应的玻璃聚光镜(condenser)、物镜(objective lens)以及投影镜(projection lens)均由磁透镜替代了光学显微镜的玻璃透镜. 另外,电子束能与样品中原子发生多种不同作用(图3),除部分电子束被样品吸收生热外,还产生不同种类的电子,如透过电子、弹性和非弹性散射电子、背散射电子、X-射线、俄歇电子以及二次电子等,采用不同特征的电子成像就产生了不同类型的电子显微镜. 例如:扫描电子显微镜用二次电子和背散射电子成像,透射电子显微镜用弹性和非弹性散射电子成像,借助具有能量特征的X-射线或具有电子能量损失特征非弹性散射电子可使扫描电子显微镜或透射电子显微镜具备材料成分分析功能.Fig. 2Sketch illustrating the working principle of electron microscope.Fig. 3Sketch shows different electrons generated after interaction of the incident electrons with the atoms in the sample.2样品制备由于电子的穿透能力非常差,只能穿透几毫米的空气或约1 µm的水. 因此,要求电镜观察用样品非常薄,在200 nm以内,最好控制在30~50 nm. 用于高分辨成像的样品需更薄,最好为10 nm左右. 因此,电镜样品的制备十分困难但非常重要,需要一定的技巧性. 一方面,要求样品足够薄,能使电子束透过成像;另一方面,要确保制备过程不破坏样品的内在微细结构. 另外,尽管电镜样品用不同目数的铜网支撑(通常为400目),如此薄的样品在上百万伏电压加速的电子束下并不稳定,如电子束轰击破碎、电子束下抖动等,从而需进一步加固样品. 基于需观察材料的品性和形态不同,甚至是同一种材料因不同的研究目的,制样方法也各不相同,从而发展了各种各样的制样方法. 下面将重点介绍一些常用的不同类型聚合物材料的电镜样品制备方法.2.1支撑膜制备支撑膜在电镜实验中十分常用,在纳米胶囊与颗粒等本身无法成膜样品的形态结构观察时,是必须使用的. 支撑膜的厚度一般为10 nm左右,要求稳定且无结构,常用的支撑膜有硝化纤维素(又称火棉胶)、聚乙烯醇缩甲醛和真空蒸涂的无定型碳,针对这些常用材料的薄膜制备方法如下.2.1.1硝化纤维素支撑膜制备硝化纤维素支撑膜可通过沉降和滤纸捞膜2种方法获得.沉降制膜法相对简单,初学者容易实现. 如图4(a)所示,用一个制膜器,在底部放置网格,将电镜铜网置于网格上方,然后注入蒸馏水,在蒸馏水表面滴加硝化纤维素的乙酸戊酯溶液,待乙酸戊酯溶液挥发成膜后,打开底部阀门排尽蒸馏水,硝化纤维素支撑膜便覆盖在铜网上,由此得到的带有硝化纤维素支持膜的铜网烘箱中50~60 ℃干燥后便可投入使用. 根据所需膜的厚度要求,硝化纤维素的乙酸戊酯溶液浓度可设定在0.5 wt%~1.5 wt%范围内. 对有经验的学者而言,滤纸捞膜法更简洁. 如图4(b)所示,用浓度为0.5 wt%~1.5 wt%的硝化纤维素乙酸戊酯溶液直接浇注在蒸馏水表面成膜后,将铜网整齐地放置在膜上,然后用滤纸平放在硝化纤维素膜的上面,并快速反转捞起带有硝化纤维素支撑膜的铜网,干燥后即可备用.Fig. 4Sketch illustrating the ways for preparing nitro cellulose (NC) supporting membrane used in electron microscopy experiments. (a) Sedimentation of the NC membrane on copper grids. (b) Filter paper fishing of copper grids supported by the NC membrane.2.1.2聚乙烯醇缩甲醛支撑膜制备硝化纤维素支撑膜制备方法也同样适用于聚乙烯醇缩甲醛(PVF)支撑膜的制备,但考虑到PVF的溶剂为氯仿,挥发速率很快,还可以通过玻片蘸取的方法获得. 如图5(a)所示,将沉浸于0.1 wt%~0.2 wt% PVF氯仿溶液中的表面光洁的载玻片(图5(a)左半部分)缓慢提起,并在充满这种溶液饱和气体的气氛中干燥(图5(a)右半部分),干燥后用刀片将载玻片边缘的PVF薄膜划破,通过漂浮的方法将PVF薄膜转移到蒸馏水表面(图5(b)),放置铜网后用滤纸捞起干燥即可获得含PVF薄层支撑膜的铜网.Fig. 5A diagram illustrating the preparation of PVF support film through dipping a clean glass slide into its chloroform solution (a) and then floating the thin PVF layer onto the surface of distilled water (b).2.1.3无定型碳支撑膜制备用电镜研究微粒状材料的结构、形状、尺寸和分散状态时,根据微粒材料的分散状况,主要有如下几种电镜样品的制备方法.(a) 悬浮法. 对在液体里分散均匀、沉降速度慢且无丝毫溶解能力的微粒,可制备浓度适当的均匀分散悬浮液,用微量滴管将悬浮液滴到有支撑膜的铜网上,干燥后使用.(b) 微量喷雾法. 用悬浮法将悬浮液直接滴在支撑膜上,在干燥过程中可能会引起微粒间的聚集. 为避免这种情况,可将悬浮液装入微量喷雾器,利用洁净的压缩气体使其产生极细雾滴,直接喷到带支撑膜的铜网上. 微量喷雾法能获得单分子分散的样品,是研究聚合物单分子结晶行为理想制样方法.(c) 干撒法. 对在干燥状态,相互间凝聚力不强且无磁性的微粒材料,可直接撒在带硝化纤维素或聚乙烯醇缩甲醛支撑膜的铜网上,用吸耳球吹掉未很好附着的微粒后即可使用.
  • 使用超高效聚合物色谱系统对低分子量聚合物进行快速高分辨率分析
    使用超高效聚合物色谱(APC)系统对低分子量聚合物进行快速高分辨率分析 Mia Summers和Michael O&rsquo Leary 沃特世公司(美国马萨诸塞州米尔福德) 应用优势 ■ 既能对聚合物进行快速表征又不会降低性能水平 ■ 与常规GPC分析相比,可提高对低分子量低聚物的分辨率 ■ 与常规GPC分析相比,可提高校准水平并由此对低分子量低聚物进行更准确的测定 ■ 可对聚合物进行快速监测,从而能提早发现产品开发过程中出现的变化 沃特世提供的解决方案 ACQUITY® 超高效聚合物色谱(APC&trade )系统 ACQUITY APC XT色谱柱 沃特世聚合物标准品 带有GPC选项的Empower® 3色谱数据软件关键词 聚合物、SEC、GPC、APC、聚合物表征、低分子量聚合物、低聚物、环氧树脂 引言 凝胶渗透色谱(GPC)是一种广泛认可并行之有效的聚合物表征方法。然而,尽管使用此技术可获得大量信息,但这类分析本身仍存在缺陷。色谱柱通常填充苯乙烯-二乙烯基苯,同时需要进行适当老化并应在低背压下运行以确保其长期稳定。填充颗粒通常较大(&ge 5 &mu m),分辨率一般会因此而受影响。填充较小颗粒(行校正。综合使用这些技术能够更稳定、更精确地测定低分子量聚合物样品的分子量参数。提早识别某种聚合物所出现的甚至比较细微的改变都能明显加快化学和生物材料应用中聚合物的开发速度。 实验 Alliance® GPC系统条件 检测器: 2414 RI (示差折光检测器) RI流通池: 35 ℃ 流动相: THF 流速: 1mL/min 色谱柱: Styragel 4e,2和0.5,7.8 x 300 mm(3根串联) 柱温: 35 ℃ 样品稀释剂: THF 进样量: 20 &mu L ACQUITY APC系统条件 检测器: ACQUITY RI(示差折光检测器)RI流通池: 35 ℃ 流动相: THF 流速: 1 mL/min 色谱柱: ACQUITY APC XT 200 Å 柱和两根45 Å 柱,4.6 x 150 mm(3根柱串联) 柱温: 35 ℃ 样品稀释剂: THF 进样量: 20 &mu L 数据管理 Empower 3色谱数据软件 样品 1 mg/mL的沃特世聚苯乙烯标准品(100K、10K和1K)环氧树脂(2 mg/mL) 结果与讨论 为了使用SEC对聚合物进行适当表征,重要的是要使用适当的标准品生成一条校准曲线以确定当前所用色谱柱的分离范围。使用常规GPC分析标准品和样品相当耗时,运行时间可长达1小时(或更长)。由于样品所产生的数据将与经校准的标准品进行比较以确定分子量,因此标准品分析结果的准确度对获得关于聚合物样品的准确结果而言具有至关重要的作用。除了GPC本身的运行时间较长之外,常规GPC系统的额外柱体积较大也会导致峰展宽,从而降低分辨率并由此降低校准数据点的准确度。与常规GPC系统相比,ACQUITY APC系统的扩散度更低,因此产生的峰展宽就更少,并且窄分布标准品的色谱峰也明显更清晰,如图1所示。此外,低扩散性APC系统与支持更高流速和背压的稳定的亚3 &mu m APC色谱柱柱技术相结合也能提高对1K聚苯乙烯标准品的分辨率,并使分析时间缩短至原来的1/5。 图1. 比较在常规GPC系统和ACQUITY APC系统中分析聚苯乙烯标准品(Mp:100K、10K和1K)的运行时间和分辨率 使用APC系统所提高的分辨率为确定1K聚苯乙烯标准品分子量增添了更多可识别的色谱峰。如图2所示,通过使用标准品供应商提供的数值或根据外部方法得出的标准品测定值而确定的分子量信息,更多的数据点由此可被添加到校准曲线上,从而为根据这条曲线所计算出的样品结果增加了可信度。 图2. 使用ACQUITY APC系统时,因对1K低分子量标准品的分辨率提高而在校准曲线上得出关于聚苯乙烯标准品(100K、10K和1K)的更多数据点 一般说来,需要运行一系列标准品以得出用来生成校准曲线的数据点。使用常规GPC时,平衡、配制并分析每种标准品可能需要数小时至数天的时间。因此,通常不进行校准并根据原有校准曲线确定分析结果。ACQUITY APC系统因其系统滞留体积低而使平衡速度明显加快,并且因在更高流速下使用更小的颗粒而使运行时间明显缩短。运行时间的缩短使得平衡和校准操作可在一小时内轻松完成。最后,得益于分辨率的提高,可能只需要配制并进样检测更少的标准品,就能获得一条可用来进行校准的稳定曲线。分析样品时,校准操作的稳定性提高使得对低分子量低聚物的分子量测定具有更高的可信度。 图3显示出一份环氧树脂样品相对于用聚苯乙烯标准品校准的分析结果。该结果表明使用三根ACQUITY APC XT 4.6 x 150 mm串联柱可在不到5分钟的运行时间内分辨出不同低聚物。 图3. 使用配有ACQUITY RI检测器的三根ACQUITY APC XT 4.6 x 150 mm串联柱对溶于四氢呋喃的一份环氧树脂样品进行分析。低分子量低聚物(显示为峰尖分子量)可在不到5分钟的时间内被分辨开来。 APC可缩短运行时间的特点有助于在工艺开发过程中进行反应监测。分辨率提高能够促进对合成应用或降解研究中可能出现的聚合物改变进行更快速的鉴别。通过监测各种分子量而提早发现工艺改变有助于更好地了解聚合物及其预期属性,从而可促进新型聚合物的开发并加快产品上市进程。 结论 由于超高效聚合物色谱系统的扩散度更低并能承受更高的背压以允许使用更小的杂化颗粒,因此该系统明显优于常规GPC系统。通过与最新的色谱柱技术相结合,APC系统与常规GPC相比也提高了对低分子量低聚物的分辨率。APC在性能方面的优点包括校准结果更可靠,这对生成用于聚合物表征的准确测定值而言是必不可少的。低分子量聚合物检测速度和分辨率的同时提高可在开发过程中实现对聚合物的快速且可靠的表征,从而促进对新型聚合物进行密切的上市跟踪。
  • 钱义祥——高分子物理与聚合物热分析
    p style=" text-align: center " strong span style=" font-size: 24px " 高分子物理与聚合物热分析 /span /strong /p p style=" text-align: right " 热分析老人 钱义祥 /p p style=" text-align: right " 2018-05-10 /p p   « 高分子物理» 、« 高分子物理的近代研究方法» 、« 新编高聚物的结构与性能» 、« 聚合物结构分析» 、« 聚合物量热测定» 、« 热分析与量热学» 手册、« 高聚物与复合材料的动态力学热分析» 等专著中,论述了高分子物理理论和近代研究方法。聚合物热分析是高分子物理的近代研究方法之一,高分子物理是高聚物热分析的理论基础,用高分子物理的概念解析热分析曲线,探索聚合物结构与性能的关系。 /p p   一、高分子物理与聚合物热分析 /p p   1.聚合物热分析 /p p   热分析是在程序控温(和一定气氛)下,测量物质的某种物理性质与温度或时间关系的一类技术。热分析是研究物质变化和变化规律及调控变化的近代研究方法。聚合物热分析的研究对象是高聚物。聚合物热分析最常用的热分析方法是差示扫描量热仪DSC和动态热机械分析DMA。在特别情况下,也采用热机械分析(TMA)和热分析联用技术(TG/气体分析)。差示扫描量热仪DSC是在程序控温(和一定气氛)下,测量输入给试样和参比物之间的热流速率或加热功率(差)与温度或时间关系的技术。DSC在高聚物研究中的应用有: /p p   研究结构及动态变化 /p p   表征玻璃化转变和熔融行为 /p p   分析多组分高聚物体系的组成 /p p   研究高聚物链缠结及化学交联 /p p   研究高聚物的结晶行为 /p p   表征高聚物的微相结构 /p p   研究高聚物共混相溶性 /p p   反映共混高聚物中组分间的相互作用 /p p   研究聚合物的热历史和处理条件对高聚物结构的影响。 /p p   动态热机械分析DMA是用来测量样品在周期交变应力作用下,其动态力学性能与时间、温度、频率等函数关系的一种仪器。动态力学热分析测定高分子材料(非晶高聚物、结晶聚合物、交联聚合物、共混高聚物)在一定条件(温度、频率、应力或应变水平、气氛和湿度)下的刚度与阻尼 测定材料的刚度与阻尼随温度、频率或时间的变化,得到高聚物的温度谱、频率谱和时间谱。用高分子物理理论解读DMA的温度谱、频率谱和时间谱,获得与材料的结构、分子运动、加工与应用有关的特征参数。 /p p   聚合物热分析是高分子物理的近代研究方法之一,是近几十年中热分析发展最活跃的领域。它已经应用到聚合物结构与性能研究的几乎所有领域。运用聚合物热分析研究(测试)聚合物的非晶态(玻璃化转变及ΔTg) 聚合物的结晶态(结晶-熔融过程、熔点和熔融晗ΔH、结晶温度和结晶晗、温度对结晶速度的影响、结晶温度对熔点的影响、、高分子的链结构对熔点的影响、共聚物的熔点、杂质对聚合物熔点的影响、结晶度测定) 聚合物液晶态 高分子共混物的相容性、嵌段共聚物的微相分离、聚合物的高弹性与黏弹性(聚合物的力学松弛-蠕变、应力松弛、滞后现象、力学损耗、黏弹性与时间、温度的关系-时温等效)、表征力学松弛和分子运动对温度和频率的依赖性等。上述热分析研究的问题都是高分子物理所关注的问题。 /p p   热分析是高分子物理的近代研究方法,它辅以其它近代研究方法,如光谱、波谱、色谱、激光光散射、X射线和电子显微技术等方法,运用高分子物理理论,弄清高聚物的一级、二级和聚集态结构,并研究结构与材料功能和性能之间的关系。由此合成具有预定性能的高分子材料,或根据需要通过物理和化学方法改性合成高聚物或天然高分子以创建新的材料。同时,研究高聚物结构对材料加工流动性的影响,确定材料加工成型工艺。研究高聚物分子运动,弄清材料的力学性能、流变性、电学性能。由此,在高分子物理指导下不断制备出预期的高分子材料。 /p p   热分析方法是在不断发展的。如示差扫描量热仪DSC 技术,自20世纪60年代以来,DSC技术的快速发展使其成为高分子物理尤其是高分子结晶学相关问题研究的常规实验手段。然而随着对高分子结晶和熔融研究的进一步深入,研究者们对DSC 的温度扫描速率提出了更高的要求。首先,对于结晶速率较快的半结晶高分子而言,在不够快的冷却速率条件下从熔体降温至较低温度的过程总是能够发生结晶成核,从而干扰了在较低温度区域对高分子结晶成核行为的研究。 /p p   其次,高分子材料在诸如注射、吹拉膜和纺丝等实际加工过程中发生结晶时的冷却速率均大于常规DSC 所能提供的降温速率,因此很难利用常规DSC 模拟研究高分子在实际加工过程中所经历的结晶环境。第三,大多数半结晶高分子折叠链片晶都处于亚稳状态。在常规DSC 的升温扫描过程中将不可避免地伴随高分子片晶由亚稳态向更稳定状态的转变,从而干扰最终的熔融实验结果,使得我们难以获得最初的高分子晶体内部聚集态结构相关信息。 /p p   近年来,出现了商业化的闪速示差扫描量热仪Flash DSC。推动了高分子结晶研究的进展。因为高分子结晶与熔融问题的研究不仅对高分子科学的发展至关重要,与高分子材料在生产生活中的实际应用也密切相关。随着对相关问题的深入研究,高分子结晶与熔融行为的表征对实验手段提出了新的、更高水平的要求。闪速示差扫描量热仪Flash DSC所具备的快速升降温能力、超高的时间分辨率、易于操作等特点,在高分子结晶与熔融问题的研究上已经得到了广泛的应用。 /p p   Flash DSC在高分子的结晶方面的应用有:Flash DSC 可以实现对熔体降温过程中结晶成核和生长的精确控制,甚至可以得到大多数半结晶高分子的无定形态,从而为大过冷度下高分子等温结晶的研究创造了有利条件。同时,Flash DSC 所具备的超快速降温能力可与加工过程中的冷却速率相匹配,这为加工过程中结晶行为的模拟研究提供了更多的可能。 /p p   Flash DSC 研究高分子结晶问题的实例有:等温总结晶动力学 等温晶体成核动力学 非等温结晶峰比较 成核剂和填料对结晶行为的影响 共聚单元对高分子结晶的影响。 /p p   Flash DSC用于高分子晶体的熔融研究:快速升温可精确地判断高分子晶体的升温退火行为,并且时间窗口与分子模拟相互衔接,在一定程度上可了解亚稳态原生高分子晶体的信息。通过进一步的应用与拓展,诸如多尺度下高分子晶体的熔融行为和极性大分子热降解温度之上的熔融行为都可以得到有益的探讨。 /p p   Flash DSC 研究高分子晶体熔融问题的实例有:升温扫描过程中多重熔融峰的鉴别 高分子片晶不可逆熔融 高分子片晶可逆熔融 极性大分子晶体的熔融。 /p p   总之,Flash DSC 在高分子结晶和熔融行为相关问题的研究上有望发挥更加重要的作用,有助于推动高分子结晶学相关基础理论的进一步深化与完善。[1] /p p   2.高分子物理 /p p   高分子物理物理学是探讨物质的结构和运动基本规律的学科。高分子物理属于物理学的一个分支。高分子物理从分子运动的观点阐明高分子的结构和性能的关系。通过分子运动揭示分子结构与材料性能之间的内在联系及基本规律。 /p p   高分子物理的内容主要由三个方面组成。第一方面是高分子的结构,包括单个分子的结构和凝聚态结构。结构对材料的性能有着决定性性的影响。第二方面是高分子材料的性能,其中主要是黏弹性,这是高分子材料最可贵之处,也是低分子材料所缺乏的性能。研究黏弹性可以借助于力学方法(DMA方法)。结构和性能之间又是通过什么内在因素而连接起来的呢?这就是分子运动。因为高分子是如此庞大,结构又如此复杂,它的运动形式千变万化,用经典力学研究高分子的运动有着难以克服的困难,只有用统计力学的方法才能描述高分子的运动。通过分子运动的规律,把微观的分子结构与宏观的物理性能联系起来。因此,分子运动的统计学是高分子物理的第三个方面。 /p p   高分子结构、高分子材料的性能和分子运动统计学三部分组成高分子物理。高分子物理涉及高聚物结构表征、分子运动、物理改性及理论研究。在高分子科学的发展历程中,高分子化学是基础。高分子化学研究高分子化合物的分子设计、合成及改性,它担负着高分子科学研究提供新化合物、新材料及合成方法的任务。高分子物理是高分子科学的理论基础,它指导着高分子化合物的分子设计和高聚物作为材料的合理使用。高分子物理涉及高分子及其凝聚态结构、性能、表征,以及结构与性能、结构与外场力的影响之间的相互关系。另一方面高分子工程研究涉及聚合反应工程、高分子成型工艺及聚合物作为塑料、纤维、橡胶、薄膜、涂料等材料使用时加工成型过程中的物理、化学变化及以此为基础而形成的高分子成型理论、成型新方法等内容。当前的高分子科学已形成高分子化学、高分子物理、高分子工程三个分支领域互相交融、互相促进的整体学科。[2] /p p   高分子科学是一门新兴科学。它经历了漫长的历程才艰难诞生。高分子物理也就在这个过程产生,并且为高分子科学的诞生和发展起了重要作用。高分子科学领域诺贝尔奖获得者H.Staudinger(1953年),Ziegler和Natta(1963年)、P.J.Flory(1974年)、A.J.Heeger,GacDiarrnid及H.Shirakawa(2000年)的重大贡献主要是建立在可靠的高分子表征基础上。我国老一辈高分子科学家钱人元、唐敖庆、冯新德、钱保功、徐 僖、程镕时等均具有坚实的高分子物理理论基础,他们为高分子科学与教育事业的发展做出了巨大贡献。[3] /p p   3. 高分子物理与聚合物热分析 /p p   高分子物理的基本理论、研究领域及研究方法是高分子物理的基本内容。聚合物热分析研究对象辖于高分子,是高分子物理的近代研究方法之一。聚合物热分析的研究领域和高分子物理的研究领域常常是相叠的,热分析研究的问题常常就是高分子物理所关注的问题。下面从四个方面讨论高分子物理与聚合物热分析的关系。 /p p   1)« 高分子物理» 关于高分子物理的研究方法的论述 /p p   何曼君编著的« 高分子物理» 一书的内容提要中,特别指出该书较为系统全面地介绍了高分子物理的基本理论及研究方法。表明高分子物理的基本理论及研究方法是高分子物理的基本内容。 /p p   « 高分子物理近代研究方法» 一书基于高分子物理基本原理和理论,介绍了如何测定和研究高聚物的近代研究方法。高分子物理近代研究方法很多,热分析是高分子物理近代研究方法之一。 /p p   2)高分子物理是一门理论和实验结合的精确科学 /p p   高分子物理是一门理论和实验结合的精确科学。为了有效地研究和开发高聚物新材料,常常运用高分子物理和近代研究方法(热分析)研究聚合物结构与性能和功能的关系。 /p p   3)高分子物理理论解析热分析曲线 /p p   热分析是高分子近代物理研究方法之一。热分析实验得到高聚物的热分析曲线,仅显示真理,却不证明真理。高分子物理是聚合物热分析的理论基础。只有用高分子物理理论对热分析曲线进行解析才能阐明高分子的性能与结构之间的关系。 /p p   用热分析方法研究新材料,通常步骤是:材料的热分析测试—用高分子物理理论解析热分析曲线—改进后的材料再进行热分析测试和热分析曲线解析。如此循环往复直至开发得到性能优异的新材料。当然,研发过程中辅以其它近代研究方法是必不可少的。 /p p   4)运用高分子物理和近代研究方法研发新材料 /p p   新材料的研发是建立在可靠的表征上。高分子物理在高分子科学中的地位体现在运用近代研究方法(热分析)表征高聚物的结构与性能,研究高分子结构与功能和性能之间的关系,在高分子物理指导下制备出预期的高分子材料。表征高聚物结构与性能和功能关系的近代研究方法有光谱、波谱、激光光散射、X射线、电子显微技术和热分析。热分析是表征高聚物结构、性能和功能的重要方法之一。运用高分子物理近代研究方法(热分析)研究高分子结构和性质的关系离不开高分子物理理论的指导。 /p p   由上表明:高分子物理的基本理论及研究方法是高分子物理的基本内容。高分子物理与聚合物热分析的关系是:热分析是高分子物理的近代研究方法,高分子物理是高聚物热分析的理论基础。运用高分子物理理论解析热分析曲线,关联转变与高聚物结构与性能的关系。高分子物理与热分析是相辅相佐的学科。许多学者进行两栖跨界研究。如中科院长春应化所刘振海长期从事高分子物理和热分析工作。编著了十八本热分析著作。他师从唐敖庆、冯之榴, 在高分子物理方面也很有建树。1962年,在中科院长春应化所举办的全国高分子学术论文报告会上,发表的论文“聚丁二烯吸氧动力学”评为优秀论文 在上世纪60年代初,从苏联杂志“高分子化合物”翻译的译文,有关聚丁二烯结构与性能的文章发表在« 化学通报» 上,另外,还有多篇有关高分子物理的译文发表在四川主办的一份快报上。 /p p   在上世纪50年代末60年代初,常常是利用手头现有的设备亲自动手制备线膨胀仪、应力松弛仪等,为实现自动记录,迫切需要将变量转换成电信号,这其中的关键部件就是差动变压器。刘振海最先绕制了零点低、对称性好的差动变压器,这在当年的科学报上曾有过报道。北京航天航空大学过梅丽跨界高分子物理和热分析两个领域,既教授« 高分子物理» 课程,又从事热分析,特别是DMA的实验研究。她编著了« 高分子物理» 、« 高聚物与复合材料的动态力学热分析» 的著作。 /p p   南京大学胡文兵编著了« 高分子物理» ,参加翻译出版了斯特罗伯著的高分子物理教材。他的最新研究是高分子结晶和熔融行为的Flash DSC研究。在张建军教授承办的中国化学会第四届全国热分析动力学与热动力学学术会议上发表了Flash DSC研究聚丙烯的结晶和熔融行为的论文。陆立明:1985年就读华东理工大学获得聚合物材料工学硕士,后又前往德国柏林技术大学攻读高分子物理三年。在上海市合成树脂研究所工作期间,从事聚合物开发研究,运用热分析等近代研究方法表征高分子塑料合金的特性和特征。2009年,陆立明等人编译出版热分析应用手册丛书,这套丛书汇集梅特勒-托利多公司瑞士总部和梅特勒-托利多(中国)公司科技人员的智慧而潜心编著的。有热塑性聚合物、热固性树脂、弹性体、热重-逸出气体分析、食品和药物、无机物、化学品、认证等分册。其中塑性聚合物、热固性树脂、弹性体等分册通过大量实例深入地介绍和讨论了热分析在聚合物方面的应用,并用高分子物理解析聚合物的热分析曲线。 /p p   4.用高分子物理解析高聚物热分析曲线 /p p   论述« 热分析曲线解析» 的文章初见于2006年的热分析专业会议上。十多年过去了,热分析曲线解析的现状还是像« 热分析法与药物分析» 一书中所说的那样,至今还没有一本通用的专著可查考,也没有一套完整的解析方法可借鉴,各种物质的热分析表征散见于有关学术期刊与著作中。聚合物热分析曲线解析的现状亦如此。 /p p   下面说说用高分子物理解析高聚物热分析曲线的问题。在科学研究中,实验和解析是认知学中的两个元素。用高分子物理解析高聚物热分析曲线具有探索性和研讨性。热分析曲线是热变化时物理量变化的轨迹。解析热分析曲线就是循着物理量变化的轨迹逆向追溯热变化的物理-化学归属。用高分子物理理论解析高聚物的热分析曲线,探索结构与材料功能和性能之间的关系,是热分析曲线的价值体现。用实验的真实数据作图得到热分析曲线。物质变化的现象在热分析曲线上显现是对事物本质和规律反映的一种形象,是显性信息。显性信息显示真理,却不证明真理。简单地说出曲线的变化情况,即看图说话而缺乏深度分析,它是不能揭示变化规律的。唯有用高分子物理理论对高聚物的热分析曲线进行解析,曲线才具有价值。 /p p   用高分子物理理论对热分析曲线进行解析,进行分子运动-高聚物结构-性能与加工之间的关联 解析热分析曲线时,既要解析显性信息,还要解析隐性信息,如变化的规律性、与热变化同时发生的结构变化及蕴含在曲线内的曲线(如DMA曲线中隐藏的李萨如曲线),追问曲线的内涵,诠释曲线,揭示变化的本质和规律,对曲线进行深层次的探索和关联,这就是热分析曲线的解释学。用高分子物理理论解析热分析曲线完成了“存在→价值”的转换过程。热分析曲线是存在,当热分析曲线同你的研究(需要)发生联系时,曲线便产生了价值!愿你踏上解析热分析曲线的实践活动之旅,使热分析曲线由存在转变为价值的曲线。 /p p   为了要解析高聚物的热分析曲线,热分析工作者要通晓高分子物理,要像物理学家那样思考高分子物理问题。用高分子物理理论解析热分析曲线就是将高聚物的转变与高聚物结构-性能-加工进行关联的过程。关联是一种受经验、知识、理论支配的活动,不同的人由于其具备的经验、知识、理论的背景不同,关联的深度和宽度不尽相同。 /p p   下面列举一个用高分子物理解析典型非晶态聚合物的DMA曲线实例:高分子材料黏弹性是高分子物理研究的主要内容,通常选用动态热机械分析DMA来研究高分子材料黏弹性(动态模量和力学损耗)。典型非晶态聚合物的DMA曲线(温度谱)如图所示: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/949131bc-639b-4526-bf50-e274436c8e6b.jpg" title=" 典型非晶态聚合物的DMA曲线(温度谱).jpg" / /p p style=" text-align: center " 典型非晶态聚合物的DMA曲线(温度谱) /p p   由图可以看到,随温度升高,模量逐渐下降,并有若干段阶梯形转折,Tanδ在谱图上出现若干个突变的峰,模量跌落与Tanδ峰的温度范围基本对应。温度谱按模量和内耗峰可以分成几个区域,不同区域反映材料处于不同的分子运动状态。转折的区域称为转变,分主转变和次级转变。这些转变和较小的运动单元的运动状态有关,各种聚合物材料由于分子结构与聚集态结构不同,分子运动单元不同,因而各种转变所对应的温度不同。玻璃态与高弹态之间的转变为玻璃化转变,转变温度用Tg表示 高弹态与黏流态之间的转变为流动转变,转变温度用Tf表示。 /p p   玻璃化转变反映了聚合物中链段由冻结到自由运动的转变,这个转变称为主转变或α转变,这段模量急趋下降外,Tanδ急剧增大并出现极大值后再迅速下降。在玻璃态,虽然链段运动已被冻结,但是比链段小的运动单元(局部侧基、端基、极短的链节等)仍可能有一定程度的运动,并在一定的温度范围发生由冻结到相对自由的转变,所以在DMA温度谱的低温区,E’-T曲线上可能出现数个较小的台阶,同时在E”-T和Tanδ曲线上有数个较小的峰,这些转变称为次级转变,从高温到低温依次命名为β、γ、δ转变,对应的温度分别记为Tβ、Tγ、Tδ。每一种次级转变对应于哪一种运动单元,则随聚合物分子链的结构不同而不同,需根据具体情况进行分析。据文献报道,β转变常与杂链高分子中包含杂原子的部分(如聚碳酸脂主链上的-O-CO-0-、聚酰胺主链上的-CO-NH-、聚砜主链上的-SO2-)的局部运动,较大的侧基(如聚甲基丙烯酸甲酯上的侧酯基)的局部运动,主链上3个或4个以上亚甲基链的曲柄运动有关。γ转变往往与那些与主链相连体积较小的基团如α-甲基的局部内旋转有关。δ转变则与另一些侧基(如聚苯乙烯中的苯基、聚甲基丙烯酸甲酯中酯基内的甲基)的局部扭振运动有关。 /p p   当温度超过Tf时,非晶聚合物进入黏流态,储能模量和动态黏度急剧下降,Tanδ急剧上升,趋向于无穷大,熔体的动态黏度范围为10~106Pa.s。从DMA温度谱上得到的各种转变温度在聚合物材料的加工与使用中具有重要的实际意义:对非晶态热塑性塑料来说,Tg是它们的最高使用温度以及加工中模具温度的上限 Tf是它们以流动态加工成型(如注塑成型、挤出成型、吹塑成型等)时熔体稳定的下限 Tg~Tf是它们以高弹态成型(如真空吸塑成型)的温度范围。对于未硫化橡胶来说,Tf是它们与各种配合剂混合和加工成型的温度下限。此外,凡是具有强度较高或温度范围较宽的β转变的非晶态热塑性塑料,一般在Tβ~Tg的温度范围内能实现屈服冷拉,具有较好的冲击韧性,如聚碳酸脂、聚芳砜等。在Tβ以下,塑料变脆。因此,Tβ也是这类材料的韧-脆转变温度。另一方面,正是由于在Tβ~Tg温度范围内,高分子链段仍有一定程度的活动能力,所以能通过分子链段的重排而导致自由体积的进一步收缩,这正是所谓物理老化的本质。[4] /p p   以上实例说明,动态力学热分析是研究材料黏弹性的重要手段,非晶态聚合物的玻璃化转变和次级转变准确地反映了聚合物分子运动的状态,每一特定的运动单元发生“冻结”?自由转变(α、β、γ、δ)时,均会在动态力学热分析的温度谱和频率谱上出现一个模量突变的台阶和内耗峰。高分子物理从分子运动的观点出发解析非晶态聚合物的DMA曲线,揭示材料结构与材料性能之间的内在联系及基本规律。 /p p   二. 高分子物理著作 /p p   五十年代未,高分子物理学基本形成。自六十年代以来,高分子研究重点转移到高分子物理方面,并出版了很多高分子物理的著作。何平笙所著的« 新编高聚物的结构与性能» 书未的附录详细地介绍了有关高分子物理的教学参考书。本文特将此附录列于文后,供参考。并把其中几本高分子物理的著作做一简单的介绍。 /p p   1. 胡文兵 « 高分子物理» 英文版 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/1aa4cea4-6b0f-494d-a8a3-5ee692a50104.jpg" title=" Polymer Physics.jpg" width=" 400" height=" 597" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 597px " / /p p style=" text-indent: 2em " A molecular view on the fundamental issues in polymer physics is provided with an aim at students in chemistry, chemical engineering, condensed matter physics and material science courses. An updated translation by the author, a renowned Chinese chemist, it has been proven to be an effective source of learning for many years. Up-to-date developments are reflected throughout the work in this concise presentation of the topic. The author aims at presenting the subject in an efficient manner, which makes this particularly suitable for teaching polymer physics in settings where time is limited, without having to sacrifice the extensive scope that this topic demands. /p p   该书受欢迎程度继续位列2017斯普林格出版社电子图书的前四分之一。胡文兵教授的另一本高分子物理译作是: /p p   StroblG. 1997. ThePhysics of Polymers. 2nd Ed. Berlin:Springer /p p   这是一本近十年来有影响的高分子物理教材,Strobl本人多次来国内讲授有关他提出的高聚物结晶的理论,中文译本是斯特罗伯著,胡文兵,蒋世春,门永锋,王笃金 译《高分子物理学》,北京:科学出版社,2009。 /p p   胡文兵教授最新研究:高分子结晶和熔融行为的Flash DSC研究。 /p p   2. 何平笙编著 « 新编高聚物的结构与性能» 科学出版社2009 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/88e02164-b40b-4d8a-855b-151089d39859.jpg" title=" 新编高聚物的机构与性能.jpg" width=" 400" height=" 506" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 506px " / /p p 前言 /p p   自中国科学技术大学1958年成立高分子化学和高分子物理系以来,由已故的钱人元院士开设的& quot 高聚物结构与性能& quot 课程已50余年了,根据钱先生讲课笔记整理出版的《高聚物的结构与性能》一书(科学出版引,1981年第二版)被许多高校选做教材。近10年来、编者不但在授课时添加了高分子物理的新成果、新发现,更重要的是对课程进行了深入的教学研究,加深了对已有体系、知识点的全新理解,深受学生好评,因而在2005年获得安徽省教学成果奖一等奖和国家级教学成果奖二等奖,“高聚物结构与性能”也被评为国家级精品课程。本书就是在上述教学研究的基础上新编而成的。 /p p   高分子科学由高分子化学、高分子物理和高分子加工三大部分组成。高分子化学主要是研究如何从小分子单体合成(聚合)得到高分子化合物——高聚物,高分子加工则是研究如何把高聚物制成实用的制品,而高分子物理则包含有以高聚为对象的全部物理内容。 /p p   作为大学本科生的课程,“高分子物理”实在难以承担这个“包含有以高聚物为对象的全部物理内容”的重任。这一方面是由于“高分子物理”目前还达不到通常物理学各分支的成熟程度,另一方面是由于仍隶属于化学大框架下的高分子专业学生也难以接受更多、更深的物理和数学知识。事实上,“高分子物理”目前还主要是讲述高聚物材料的结构与性能,以及它们之间的相互关系,因此,我们仍然采用“新编高聚物的结构与性能”作为书名。依据相对分子质量的大小,高分子化合物大致可分为低聚物和高聚物,但作为材料来使用的大多是相对分子质量很高的高聚物。低聚物主要用作黏合剂、高能燃料等,不包含在本书的范围之内。因此,全书仍然使用“高聚物”这个名称。 /p p   本课程的基本任务就是探求高聚物的结构与性能,揭示结构与性能之间的内在联系及其基本规律,以期对高聚物材料的合成、加工、测试、选材和开发提供理论依据。编者认为,高聚物结构与性能的关系有三个层次,即通过分子运动联系“分子结构与材料性能”关系、通过产品设计联系“凝聚态结构与制品性能”关系和通过凝聚态物理知识联系“电子态结构与材料功能”关系。由于历史的原因,无论是国内教材,还是国外教材大都只涉及上述的第一个结构层次,内容基本上只是“分子结构与材料性能”的关系,要详细理解第二和第三个结构层次,需要开设正规的“流变学”和“凝聚态物理”的专门课程,尽管这已经超出了本书的范围,但上述高聚物结构与性能关系三个层次的理念,已牢牢树立在编者心中,并力求在本书编写中体现出来。 /p p   值得指出的是,我国高分子物理学家以高分子链单元间的相互作用,特别是从链单元间的相互吸引在凝聚态形成过程中的作用这一国际上独创的观点出发,纵观高聚物的全部相态——高聚物溶液、非晶态、晶态和液晶态中存在的问题,开展了深入系统的研究工作、取得了若干国际前沿性的研究成果。在高分子物理领域提出了一些新概念,形成了有我国特色的高分子物理学派,还独创了全新的电磁振动塑化挤出加工方法等,编者都尽量在本书中反映这些成果。此外,本书还增添了高聚物宏观单晶体、可能的二维橡胶态等新内容,指出了不同结晶方式(先聚合、后结晶,还是先结晶、后聚合)会得到完全不同的高聚物晶体、重新考虑了Williams-Landel-Ferry(WLF)方程的意义,认为它是高聚物特有分子运动所服从的特殊温度依赖关系等,全面介绍了编者对已有体系和知识点的新理解。 /p p   如前辈所言,编书如造园,取他山之石,引他池之水,但一山一水如何排布却彰显造园者的构思。书中引用了众多国内外公开出版的教材和专著中的论述或研究成果,谨向所有作者致以深切的谢意,不及面询允肯,敬请海涵。感谢朱平平教授、杨海洋副教授对书稿所提的宝贵意见,感谢李春娥高工为本书打录和校订文稿 本书内容在中国科学技术大学高分子科学与工程系连年讲授,也在中国科学院长春应用化学研究所讲授过7次,校、所多届学生对课程内容和安排都提过不少好的建议,在此一并表示感谢。书后附录中列出了有关高分子物理详细的教材和参考书目录,以供读者查询和进一步阅读。附录中还列出了编者近十年来公开发表的三十余篇有关高分子物理教学研究论文的目录,读者可参考阅读并分享编者教学研究的心得。由于编者水平有限,书中难免存在缺漏和不足之处,敬请读者和专家不吝批评、斧正。 /p p style=" text-align: right "   何平笙 2009年4月 /p p 内容简介 /p p   本书是国家级精品课程“高聚物的结构与性能”的新编教材,是2005年“全面提升高分子物理重点课程的教学质量”国家级教学成果奖二等奖内容的全面体现。全书系统讲述高聚物的近程、远程和凝聚态结构,以及高聚物的力学、电学、光学、磁学、热学、流变和溶液性能,通过分子运动揭示“分子结构与材料性能”之间的内在联系及基本规律,更进一步提出包括“凝聚态结构与制品性能”关系和“电子态结构与材料功能”关系在内的三个层次的结构与性能关系理念,以期对高聚物材料的合成、加工、测试、选材、使用和开发提供理论依据。全书还介绍了我国学者的研究成果及编者多年教学研究的心得和对已有体系、知识点的新理解、新认识。 /p p   本书可作为高等学校理科化学类、化工、轻工纺织、塑料、纤维、橡胶、复合材料等工科材料类本科学生的教材,也可作为有关专业研究生的参考教材、对从事高聚物材料工作的有关工程技术人员和科研人员也是一本有用的参考书。 /p p   3. 何曼君 张红东 陈维孝等. « 高分子物理» 第三版 复旦大学出版社2007 /p p   是国内有代表性的高分子物理教材,为多所高校所选用。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/8d4bba6b-93c0-4f52-be05-deb5b6a543d9.jpg" title=" 高分子物理.jpg" width=" 400" height=" 519" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 519px " / /p p 序 /p p   本书自1983年出版以来,是国内高分子物理教学的首选用书,虽在1990年作了修订,到现在也达十多年了。为了反映高分子科学的飞速发展,需要更新。编者们结合多年来的教学经验,参考了大量的国内外新教材和有关文献,删繁就简,推陈出新,将本书重新编写,使之更能符合当前教学和科研的需要。相信本书会得到广大教师和学生们的欢迎。当然,还会有不尽完善的地方,欢迎使用者对编者提出宝贵意见与建议。 /p p style=" text-align: right "   于同隐 /p p style=" text-align: right "   2006年10月 /p p style=" text-align: left " 1990年修订版序 /p p   高分子科学的发展,以20世纪30年代H.Staudinger建立高分子学说为开端。此后高分子的化学,特别是高分子的合成方面,有了飞跃的发展,现代的大型高分子合成材料工业,大都肇始于这一时期的研究。其中最突出的成就,是W.H.Carothers的缩合聚合,K.Ziegler和G.Natta的定向聚合,对理论和生产都是巨大的贡献。与此同时,高分子物理化学也有相应的发展,主要是研究高分子的溶液,为测定高分子的分子量莫定了基础。 /p p   60年代以来,研究重点转移到高分子物理方面,逐渐阐明了高分子结构和性质的关系,为高分子的理论和实际应用建立了新的桥梁。这一时期的著名代表是P.J.Flory,他对高分子物理化学和高分子物理都作出了很多贡献。Staudinger ,Ziegler,Natta和Flory都因此获得诺贝尔化学奖金。 /p p   本书的内容主要从分子运动的观点,来阐明高分子的结构和性能,着重在力学性质和电学性质方面,同时也兼顾到物理化学和近代的研究方法,可以供大专学校作为教材,也可供有关的高分子工作者参考。 /p p   本书由何曼君、陈维孝、董西侠编写,于同隐校订。最初以油印讲义的形式,在复旦大学试用,得到南京大学、四川大学、中国科技大学、交通大学、兰州大学、厦门大学、黑龙江大学、南开大学、华南工学院等单位有关同志的鼓励,特别是顾振军、王源身、史观一等同志提出宝贵意见,在此表示衷心的感谢。复旦大学高分子教研室的许多同志和复旦大学出版社协助本书的出版,也一并表示感谢。 /p p   由于高分子物理正处在蓬勃发展的阶段,本书内容有很多值得商讨的地方 加上编者的水平和技术上的原因,本书还存在很多错误,望读者不吝指正。 /p p style=" text-align: right "   于同隐 /p p 第三版前言 /p p   本书是为高等学校理科高分子专业高年级本科生编写的,也适用于低年级研究生和其他与高分子相关专业的学生。本书的内容涉及面较宽,阐述深入浅出,便于自学,还附有习题和详细的参考资料,也可供广大科技工作者阅读和参考。 /p p   建国初期,我国高分子方面的工作起步较晚,由于钱人元等老一辈科学家纷纷回国,在国内开创了高分子的教学和科研事业,在他们的带领下,少数高校中建立了课题小组或科研组,开始培养高分子方面的人才,并为教育事业打下扎实的基础,一批批的优秀人才脱颖而出,其中有些人已晋升为院士。 /p p   随着时代的前进、科技的进步,尤其是改革开放以来、高等教育突飞猛进,大部分商校都设有高分子专业,有的已发展成为一个系甚至一个学院,并设立了很多相关的专业,它们大都把高分子物理作为必修的课程。1983年我和陈维孝、董西侠合编的《高分子物理》一书编印出版,并在1990年作了修订,该书在国内被广泛采用,当时满足了广大师生的需求,得到了好评。此书曾获得国家教委颁发的优秀教材奖。然而,高分子物理这门学科近年来有较大的进展,理论在发展,观念在更新,国内外新的专著也很多。自从我翻阅了2005年全国高分子学术年会的论文后,更加感觉到,我们需要将这些新的内容介绍给读者。为此,本人特邀请陈维孝和董西侠两位抽出时间来和我一起在1990版教材的基础上,重新编写此书,同时还邀请了复旦大学在第一线从事教学工作的张红东教授参加本书的编写。 /p p   首先,在本书内加入“第一章概论”。使初学者对高分子物理有一初步的认识,并将相对分子质量及其分布的内容也写入这一章内 在第二章中引入了Kuhn链段的概念,并在高分子构象中介绍了末端距的概率分布函数的另一种推导方法 在第三章的高分子溶液性质中增加了de Gennes的标度概念、θ温度以下链的塌陷,以及溶液浓度和温度对高分子链尺寸的影响等 在新增加的第四章高分子多组分体系中,介绍共混聚合物和嵌段共聚物的相分离和界面 关于高分子的凝聚态分设为非晶态和晶态两章,在非晶态章中删去了与高分子成型加工课程中有重复的部分,并在其黏流态中介绍了高分子链运动的蛇行理论 原先聚合物的力学性质内容较多,现也分设为第七、第八两章,在第八章中增加了高弹性的分子理论 在第九章中除了介绍聚合物的电学性能外,还介绍了聚合物的光学性质、透气性以及高分子的表面和界面等 在本书的最后一章中,除原先介绍的近代研究方法和有关的一些仪器、它们的原理和应用实例外,还介绍了各种仪器的近代发展情况,如测相对分子质量及其分布的绝对方法——飞行时间质谱,小角中子散射、激光共聚焦显微镜、原子力显微镜等。 /p p   本书的分工是:第一章由董西侠编写,本人修改 第二章由张红东编写,本人修改 第三、四、九、十章由我和张红东合编 第五、六、七、八章由陈维孝编写,本人修改 全书由我主审并定稿。 /p p   在编写此书时,我总是怀念起老一辈科学家们对我的教导和指点,谨以此书表示对他们的敬意和怀念。在编写过程中还得到了不少专家和学生们的支持和帮助,在此表示感谢。 /p p style=" text-align: right "   何曼君 /p p style=" text-align: right "   2006平10月1日 /p p 内容提要 /p p   本书于1983年首次出版,1990年出版了修订版,曾获得过国家教委颁发的“优秀教材奖”等奖项、二十多年来一直是国内高分子物理教学的首选用书。为了反映高分子科学的飞速发展,编者们结合了多年的教学与科研经验,参考了大量的国内外新教材和有关文献,删繁就简,推陈出新、重新编写了本书,使之更能符合当前教学和科研的需要。 /p p   全书较为系统全面地介绍了高分子物理的基本理论及研究方法。共分十章,包括高分子的链结构,高分子的溶液性质,高分子的聚集态结构,高分子多组分体系,聚合物的结晶态、非晶态,聚合物的力学、电学、光学等性质,以及聚合物的分析与研究方法等等。从分子运动的观点出发,阐述高分子的性能与结构之间的关系。 /p p   本书内容涉及面较宽,阐述深入浅出,还附有详细的参考资料,适合作为高等学校高分子专业的教材某些较深入的内容可供教师参考和学有余力的学生阅读,也可供广大科技工作者和研究人员参考。 /p p   4. 过梅丽 赵得禄 主编 « 高分子物理» 北京航空航天大学 2005 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/2ff9663c-26c9-48de-97e6-13af091fd610.jpg" title=" 高分子物理2.jpg" width=" 400" height=" 494" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 494px " / /p p 序 /p p   处于知识爆炸时代,信息如原子裂变一样快速增长:处于改革年代,人们有更多的选择与机会。 /p p   与20世纪50年代我国高分子物理专业初创时期缺乏教材的情况不同,目前仅国内出版的《高分子物理》教材就已有多个版本。不论深浅,全都包括高聚物结构、分子运动及性能三大部分。但作为业基础课教材,各编者又自然而然地按所在专业后续课程的需要选择了具体内容,各具特色。 /p p   自我国改革开放以来,北京航空航天大学的高分子物理课程经历了较大的变更,1987年以前,与大多数工科院校一样,该课程定位为高分子材料专业的专业基础课,课堂教学约80学时,自1987年起,该校材料科学工程系在拓宽专业面的思想指导下,率先开设了全系公共专业基础课程——材料科学与工程导论。它以金属物理和高分子物理的部分内容为主,综述了金属、陶瓷和高分子材料在结构和性能上的共性与特性。与此同时,相应削减了高分子材料专业中高分子物理的教学时数。此后,随着教改的深人,不断调整教学计划。在2000年制定的教学计划中,高分子物理(54学时)与高分子化学、金属物理、电化学原理及近代测试技术等课程一起,被定位为材料科学与工程大类专业的公共基础课。 /p p   本教材就是在上述背景下,根据高分子物理在大类专业中的地位、作用和具体要求编写的。与国内大多数高分子物理教材相比,本教材的主要特点如下: /p p   普及与提高相结合。全书由基础部分和提高部分(带*号)两大模块组成。在基础部分,主要通过与金属、陶瓷材料的对比,阐明高聚物在结构、分子运动和性能方面的基本特点、内在联系及基本研究方法 在提高部分,适度引进了理论推导、研究新方法与最新进展,为有兴趣深入高分子材料领域的学生提供必要的基础知识。 /p p   紧密结合高分子材料及成型加工的实践与应用,重点放在高聚物的凝聚态结构、力学状态、高弹性、粘弹性和熔体流变性方面 除结合热塑性高分子材料以外、较多地涉及热固性树脂体系与复合材料 除结合通用高分子材料以外,较多地涉及航空航天用高分子材料 此外,适当涉及功能材料的功能性。适当结合高分子科学发展史引入概念。简化已在其他课程中涉及的基础知识和基本研究方法,如晶体结构与研究方法、相图分析、波谱分析原理与方法及一般力学性能等。 /p p   本书所涉及量的名称和单位符合国标规定,但有下列例外: /p p   聚合物的分子量:按照国标,应该用相对分子质量替换传统名称分子量。但由于聚合物的相对分子质量范围可以很宽,不像小分子物质那样有一个确定的值 对于一个具体的聚合物样品,其相对分子质量又具有多分散性,须用各种统计平均值表示,如数均相对分子质量、重均相对分子质量等 在聚合物-性能关系中,还涉及临界相对分子质量等。为简明起见,本书仍沿用分子量这一名称。 /p p   高分子溶液浓度按照国标,应该用溶液中溶质的摩尔分数表示。但在未知聚合物样品确切的平均分子量之前,无法从溶质质量计算其摩尔分数,因此,通常多以溶液中溶质的质量百分数表示浓度。本书也采用这一习惯表示法。 /p p   温度按照国标,T代表热力学温度,单位为K。但在本书引用的插图中,有相当一部分都以摄氏度为坐标,如果改为热力学温度,可能会改变曲线形状,为读者参考原文带来不便 如果用t代表摄氏温度,则又有悖于高分子物理中以T x表示各种特征温度的规则。为此,本书同时采用了T/K和T/℃这两种表示温度的方法。 /p p   本教材第2、9章由过梅丽和赵得禄(中国科学院化学研究所高分子物理和化学国家重点实验室研究员)合作编写。其他章由过梅丽编写。 /p p   在本教材编写过程中,还得到北京化工大学高分子材料系华幼卿教授的热情帮助,在此表示诚挚感谢。同时也非常感谢北京航空航天大学材料科学与工程学院高分子材料系杨继萍副教授在教材整理中的细致工作和良好建议。 /p p   编者希望本教材更适用于材料科学和工程大类专业。效果如何,尚待实践检验。诚请老前辈、同仁和学生们提出批评和建议。 /p p style=" text-align: right "   编者 /p p style=" text-align: right "   2005年3月14日 /p p 内容简介 /p p   本书系统地介绍高分子物理的基本理论,即高聚物的结构、分子运动与性能和行为之间的关系,突出高聚物区别于金属、陶瓷和其他低分子物质的特点。内容涉及力、热、电及光学等性能,但从航空航天材料科学与工程的需要出发,以力学性能为主,兼顾其他性能。本书由基础和提高(带*号)两大部分构成,以适应不同层次专业对高分子物理的教学要求。基础部分重在基本概念、基本理论及基本研究方法 提高部分涉及一些理论推导。 /p p   本书可作材料科学和工程类专业的教材,也可供高分子材料科学与工程技术人员参考。 /p p   5.过梅丽 « 高聚物与复合材料的动态力学热分析» 化工出版社2002,是一本很好的有关高聚物东台力学测试的著作。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/4208e7e3-d019-4baa-ac7f-eeab1bb30bb7.jpg" title=" 高聚物与复合材料的动态力学热分析.jpg" width=" 400" height=" 571" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 571px " / /p p 前言 /p p   著名高分子物理学家A.Tobolsky曾说过:“如果对一种聚合物样品只允许你做一次实验,那么所做的选择应该是一个固体试样在宽阔温度范围内的动态力学试验(If you are allowed to run onlyone test on a polymer sample, the choice should be a dynamic mechanical test of a solid sample over a wide temperature range)”。 /p p   材料的动态力学行为是指材料在振动条件下,即在交变应力(或交变应变)作用下做出的响应。它不同于材料的静态力学行为,后者是指材料在恒定或单调递增应力(或应变)作用下的行为。材料的疲劳行为也属动态力学行为之一,但疲劳测试通常是在较高的应力水平(例如在材料断裂强度的5O%以上)下进行的,而本书所述的动态力学分析则一般在很低的应力水平(远低于材料的屈服强度)下进行,所得到的基本性能参数是材料的动态刚度与阻尼。 /p p   测定材料在一定温度范围内动态力学性能的变化就是所谓的动态力学热分析(dynamicmechanical thermal analysis}简称DM-TA)。动态力学热分析是研究材料粘弹性的重要手段。在20世纪50~60年代,由于缺乏商品仪器,大多数实验室都用自行研制的设备进行研究。70年代以来,商品仪器一一问世,迅速更新换代。仪器的功能、控制与测试的精度、数据采集与处理的速度不断提高,在材料研究特别在高聚物与复合材料的研究中应用越来越广泛。 /p p   推动动态力学热分析技术迅速发展的根本动力无疑是该项技术在材料科学与工程中的重要意义。具体地说,主要表现在以下几方面。 /p p   ①于任何材料,不论结构材料或功能材料,力学性能总是最基本的性能。对于在振动条件下使用的材料或制品,它们的动态力学性能比静态力学性能更能反映实际使用条件下的性能。 /p p   ②聚物及其复合材料是典型的粘弹性材料。动态力学试验能同时提供材料的弹性与粘性性能。 /p p   ③态力学热分析通常只需要用很小的试样就能在宽阔的温度和/或频率范围内进行连续测试,因而可以在较短的时间内获得材料的刚度与阻尼随温度、频率和/或时间的变化。这些信息对检验原材料的质量、确定材料的加工条件与使用条件、评价材料或构件的减振特性等都具有重要的实用价值。 /p p   ④ 态力学热分析在测定高分子材料的玻璃化转变和次级转变方面,灵敏度比传统的热分析 技术如DTA、DSC之类的高得多,因而在评价材料的耐热性与耐寒性、共混高聚物的相容性与混溶性、树脂-固化剂体系的固化过程、复合材料中的界面特性和高分子的运动机理等方面具有非常重要的实用与理论意义。 /p p   目前,先进的动态力学热分析仪已拓展到能兼测材料的静态粘弹性,如蠕变、应力松弛等。 /p p   但是,与静态力学测试技术和传统的热分析技术相比,动态力学热分析技术的发展历史毕竟较短,因而人们对它的原理与应用潜力还认识不足。虽然在国内已出版过一些有关动态力学分析的译著,但一方面,其中所涉及的数学与物理理论较深,另一方面,所涉及的仪器已明显跟不上动态力学热分析仪蓬勃发展的趋势。而在有关热分析的著作中,则对动态力学分析技术的介绍一般都相对单薄。 /p p   笔者所在的北京航空航天大学高分子物理实验室,于20世纪70年代学习、仿制并改进了振簧仪和悬线式动态粘弾谱仪,从此开始了动态力学热分析技术的应用研究。80年代引进了杜邦公司的DuPont DMA 982/1090B,在多项研究工作的基础上,汇集了数十幅DMA温度谱,纳入《高分子材料热分析曲线集》,由科学出版社于1990年正式出版。同时,也开展了超声传播法测定各向异性复合材料动态刚度的研究。但是上述动态力学试验法均主要适用于刚性材料,且不便于测定材料的动态力学性能频率谱。为适应品种繁多、性能范围宽阔、试样形式多样和应用目标各异的高分子材料与复合材料的研究,本实验室于90年代引进了Rheometric Scientific DMTA Ⅳ,并在研究工作的基础上,编制了中华人民共和国航空工业标准《塑料与复合材料动态力学性能的强迫非共振型试验方法》(HB 7655~1999)。在近30年的实践中,笔者对动态力学热分析技术及其应用有了一些体会,也获得了一些经验,遂萌生了总结一下的想法,以便与同行交流共勉。 /p p   动态力学热分析是一门理论性和应用性都很强的科学与技术。但对大多数同行而言,更侧重于应用。因此,本书撰写的指导思想是实用。目的是阐明几个普遍关注的问题。 /p p   动态力学热分析能提供哪些信息? /p p   这些信息的物理意义是什么? /p p   如何处理与应用这些信息了? /p p   为此在撰文中坚持下列几项原则。避免过于深奥的理论与数学推导重点阐明物理概念。 /p p   在全面阐述自由衰减振动法、强迫共振法、强迫非共振法和声波传播法的基础上,介绍目前应用越来越广泛的强迫非共振法。紧密结合最新的ISO和ASTM标准讨论试验方法。结合典型实例(但无意作文献综述〉阐明动态力学热分析的应用性突出在新材料与新工艺中的应用。结合实践讨论动态力学热分析数据的相对性与绝对性。提供较多图谱,提高直观性与可读性。但不同于手册,不求全。原理部分,给出示意图谱实例部分,给出实测图谱。 /p p   但是,囿于本实验室的仪器类型有限,笔者只可能主要围绕所使用过的仪器进行讨论,难免有挂一漏万之嫌。所幸者,目前国际上许多先进的商品动态力学热分析仪,尤其是强迫非共振仪,尽管在结构、外形上各具特色,规范、明细上略有差异,但它们的基本原理与功能正日趋一致。因此,相信“解剖麻雀”的哲学思想定会被同行所理解与接受。 /p p   在本实验室动态力学热分析技术的建设与发展中,刘士昕先生曾做出重要贡献,虽然他目前不再从事该项工作。在本书撰写过程中,得到了他的热忱支持,并获得他的同意,引用我们曾经的合作成果,在此谨表示诚挚的感谢。 /p p   在动态力学热分析技术的应用与推广中,笔者的研究生孙永明、刘贵春、阳芳、王志、范欣愉、汪少敏和董伟等做了许多实验工作,笔者深切地体会到师生合作、教学相长的愉悦。 /p p   在本书撰写过程中,美国Rheometric Scientific有限公司及其中国总代理北京瑞特恩科技公司在提供资料、联络同行专家、养护设备等方面都给予了大力支持,在此一并感谢。 /p p   在本书图谱绘制过程中,笔者的丈夫,陈寿祜先生,以惊人的毅力和耐心,帮助笔者完成了细致繁琐的工作,笔者的感激之情难于言表。鉴于笔者水平有限,书中难免有误,诚请读者批评指正。 /p p   内容提要 /p p   本书分三角部分。介绍了动态力学热分析的基本原理、试验方法及其在高分子材料、工艺研究中的应用。在原理部分,介绍了高分子材料的粘弹性在动态力学行为上的反映、主要参数的物理意义及时-温叠加原理。在式验方法中,结合ISO、ASTM和GB试验标准,全面介绍了自由衰减振动法、强迫共振法、强迫非共振法和超声传播法的仪器与计算分析,并以强迫非共振法为重点,详细讨论了形变模式与试验模式的选择原则、可能获得的信息及影响试验结果的因素。在应用部分,列举了大量研究实例,说明动态力学热分析技术在塑料、橡胶、纤维、复合材料的评价、设计和工艺研究中的实用性,还给出了数十幅典型材料(包括部分金属材料在内)的典型动态力学性能温度谱,或频率谱,或时间谱。本书可供大专院校的学生和研究测试人员参考。 /p p   6. 朱诚身 « 聚合物结构分析» 科学出版社2010 /p p style=" text-align: left text-indent: 2em " 该书用101页的篇幅介绍了热分析方法。 /p p style=" text-align: center text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201807/insimg/84c55c0a-7579-43f9-b5fe-e1dd74957aef.jpg" title=" 聚合物结构分析.jpg" width=" 400" height=" 506" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 506px " / /p p 第一版序 /p p   聚合物是重要的结构与功能材料。随着当代科学的发展,合成高分子材料在工农业生产、国防建设和日常生活的各个领域发挥着日益重要的作用,21世纪将成为高分子的世纪。以前那种仅停留在研究合成方法、测试其性能、改善加工技术、开发新用途的模式已远不能适应现代科学技术对聚合物材料发展的需要,而代之以通过研究合成反应与结构、结构与性能、性能与加工之间的各种关系,得出大量实验数据,从而找出内在规律,进而按照事先指定的性能进行材料设计,并提出所需的合成方法与加工条件。在此研究循环中,对聚合物结构分析提出了越来越高的要求,从而使之成为高分子科学各个领域中必不可少的研究手段。因此聚合物结构分析已成为高分子材料科学与工程学科的重要组成部分,熟练掌握高聚物结构分析技术不仅对学术研究至为重要,也将为生产实际提供必要的技术保证。 /p p   由华夏英才基金资助、郑州大学朱诚身教授主编的《聚合物结构分析》一书,正是为从事高分子材料科学与工程研究的学者、教师、学生、工程技术人员提供的一本有关聚合物分析方面的专著与参考书。本书主要内容是关于现代仪器分析技术在聚合物结构分析中的应用,以及结构分析中所涉及的理论、思维方式、实验方法等。有关材料来源于最新出版的学术专著、学术期刊中的有关论文,以及作者多年从事该领域研究的成果与经验。 /p p   与目前已出版的国内外同类著作相比,本书具有以下特点:①内容全面。本书是目前已出版著作中内容相对最完备,介绍方法最多的著作 ②操作与思维方法并重。本书一改同类著作中仅介绍方法原理与操作方法的传统,通过对各种方法发展历史、现状与展望,全面介绍其发展历程与趋势,在方法介绍的同时使读者学到系统的思维方法,使之从发展的角度掌握各种研究方法,指出了创新之路 ③应用性强。通过对各种应用实例,特别是作者亲自研究体会的介绍,使读者能更容易掌握各种结构分析方法的应用。因此本书是一本内容完整,体例新颖,富有特色的学术著作。 /p p   相信本书的出版,将对我国高分子材料科学与工程学科的发展做出积极的贡献。 /p p style=" text-align: right "   程镕时 /p p style=" text-align: right "   中国科学院 院士 /p p 第一版前言 /p p   随着高分子材料科学与工程的迅猛发展,对高聚物结构的认识愈加深人和全面的同时,对聚合物结构分析提出了更为繁重的任务,掌握现代分析技术,测定高分子各层次的结构,探讨结构与性能之间的关系,已成为每位从事高分子科学与工程工作、研究与学习的人士必备的基本功。本书正是为从事高分子物理、高分子化学、高分子材料、高分子合成、高分子加工等领域的学者、教师、学生、工程技术人员等提供的一本有关聚合物结构分析方面的专著与参考书。 /p p   本书是在作者多年来从事高分子科学研究,并吸取该领域最新研究成果的基础上集体完成的。其中第一章绪论由朱诚身执笔 第二章振动光谱与电子光谱由王红英、孙宏执笔 第三章核磁共振由孙宏、王红英执笔 第四章热分析由朱诚身、任志勇、何素芹执笔 第五章动态热力分析与介电分析由何索芹、朱诚身执笔 第六章气相色谱与凝胶色谱由汤克勇执笔 第七章裂解色谱与色质联用由汤克勇执笔 第八章透射电镜与扫描电镜由何家芹、朱诚身执笔 第九章广角X射线衍射和小角X射线散射由毛陆原、李铁生执笔 第十章液态与固态激光光散射由李铁生、毛陆原执笔。全书由朱诚身统稿。 /p p   本书的出版得到了华夏英才基金的资助,以及北京化工大学金日光教授、四川大学吴大诚教授的热情推荐。在此表示衷心的感谢。在编辑过程中,本书责任编辑、科学出版社杨震先生给予多方指导,杨向萍女士在立项过程中给予热情帮助 在撰写过程中郑州大学材料工程学院王经武教授、曹少魁教授对本书内容的确定提供了宝贵意见!郑州大学材料学专业硕士生陈红、张泉秋、刘京龙、历留柱在文字打印和插图绘制等方面作了许多具体工作,在此一并表示衷心地感谢。 /p p   特别要感谢中国科学院院士程镕时先生,百忙中为本书写序,给予热情推介。最后还要感谢作者的家人,在事业与写作方面给予的理解与支持。 /p p   由于作者学识、经验方面的局限,和学科方面的飞速发展,本书内容与行文方面难免存在欠妥之处,敬请读者不吝赐教。 /p p style=" text-align: right "   朱诚身 /p p 第二版前言 /p p   本书自2004年出版以来,受到读者的欢迎与支持,很快被第二次印刷、被许多学校选做教材和考研参考书,并在2007年获得河南省科技进步三等奖。由于近年来高分子科学的飞速发展,聚合物结构分析方面的研究对象日益增多,深度与广度越来越大,研究方法与手段日新月异,因此在本书库存几乎告罄之际,责任编辑杨震先生建议作者修订再版,就有了本书,即《聚合物结构分析》的第二版。 /p p   参加第一版撰写的作者,除王红英不幸英年早逝,任志勇、孙红因其他工作没有参加编写外,其余都参加了修订 刘文涛、申小清、郑学晶、周映霞、朱路也参加了修订工作。 /p p   与第一版相比,第二版主要删除了每种研究方法中一些较老、目前已不采用的研究内容与制样手段,补充了最新的研究成果和每种研究方法的最新发展趋势。每章参考文献删除了一些较早文献,补充了最新研究文献。 /p p   修订较大的章节有: /p p   第四章热分析。删除了部分由仪器本身误差造成的影响,增加了近年来受关注的操作条件影响因素 增加了若干近年来出现的新型仪器,以及新近出现的各种仪器之间的联用技术。 /p p   第八章考虑到涉及的各种分析方法,将题目由。“透射电镜与扫描电镜”改为“显微分析” 删除了透射电镜制样技术,增加了电子能谱和扫描隧道显微镜的内容。 /p p   第十章在第一版中的体例与其他章有些不一致,第二版中第九、十两章作了较大的调整:第九章题目由“广角X射线衍射和小角X射线散射”改为“广角X射线衍射” 原来小角X射线散射的内容调到第十章,该章题目由“液态与固态激光光散射”改为“小角激光散射和小角X射线散射”。 /p p   全书由朱诚身策划,其中第一章绪论由朱诚身执笔 第二章振动光谱与电子光谱由刘文涛、申小清、周映霞执笔 第三章核磁共振与顺磁共振由毛陆原、申小清、郑学晶执笔 第四章热分析由申小清、刘文涛、朱诚身执笔 第五章动态热机械分析与介电分析由何素芹、申小清、刘文涛执笔 第六章气相色谱与凝胶色谱由汤克勇、郑学晶、朱诚身执笔 第七章裂解色谱与色质联用由郑学晶、汤克勇、周映霞执笔 第八章显微分析由何素芹、刘文涛、朱诚身执笔 第九章广角X射线衍射由毛陆原、朱路、李铁生执笔 第十章 小角激光散射和小角X射线散射由李铁生、朱路、毛陆原执笔,全书由朱诚身统稿。 /p p   本书责任编辑科学出版社杨霞、周强先生在修订过程中给予多方指导,在此表示衷心地感谢。 /p p   鉴于学科方面的发展之迷,而作者见闻之携、本书桀误之处势所难免,尚请读者不吝赐教。 /p p style=" text-align: right "   朱诚身 /p p style=" text-align: right "   2009年7月16日 /p p 内容简介 /p p   本书系统介绍了现代仪器分析技术在高聚物结构分析中的应用以及结构分析中所涉及的理论、思维方式、实验方法等。内容包括:振动光谱、电子光谱、核磁共振、顺磁共振、热分析、动态热机械分析、动态介电分析、气相色谱、凝胶色谱、裂解色谱、色质联用、显微分析、广角X射线衍射、小角激光散射、小角X射线散射等方法的基本原理、仪器结构、发展历史、发展趋势,在聚合物结构分析中的应用实例及解析方法等。 /p p   本书可供高分子科学与工程专业本科生、硕士生、博士生以及从事有关高分子物理、高分子化学、高分子材料合成与加工研究和生产方面的专家、学者和工程技术人员参考。 /p p   7.现代高分子物理学(上、下册) 殷敬华 莫志深主编 科学出版社 2001 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/f9697a33-0ebd-4e17-9955-760bc0976eeb.jpg" title=" 现代高分子物理学上.jpg" width=" 400" height=" 571" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 571px " / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/220cdbe7-135f-46c5-b68e-0ccd89169b70.jpg" title=" 现代高分子物理学下.jpg" width=" 400" height=" 571" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 571px " / /p p 内容简介: /p p   本书为中国科学院研究生教学丛书之一。本书全面介绍高分子物理的主要发展领域和现代高分子物理的主要研究方法和手段。全书共二十六章,分上、下两册出版,上册,主要介绍高分子物理的主要研究领域包括高分子链结构和聚集态结构、高分子的形态学、晶体结构和液晶态、高分子杂化材料、导电高分子和生物降解高分子结构特点和应用、高聚物共混体系的界面和增容及统计热力学、高聚物的物理和化学改性等。下册主要介绍现代高分子物理的主要研究方法和手段,包括原子力显微镜、X射线衍射、质谱学基础、电子显微镜、热分析、表面能谱、顺磁共振、电子自旋共振波谱、振动光谱和光学显微镜等的基本原理及其在高聚物中的应用。各章既有基础理论、基本原理深入浅出的介绍,也有翔实的应用实例。本书可作为高等院校和研究院所攻读高分子科学硕士和博士学位研究生的教学用书,也可供从事高分子科学研究和高分子材料生产的研究人员、工程技术人员参考。 /p p   8. 张俐娜 薛奇 莫志深 金熹高编著 « 高分子物理的近代研究方法» 武汉大学出版社2003 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/4e055736-d49c-48ed-a4cc-f7992a9da969.jpg" title=" 高分子物理近代研究方法.jpg" width=" 400" height=" 541" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 541px " / /p p style=" text-indent: 2em " 该书的第五章高聚物热分析和热-力分析,详细介绍了热分析在高聚物研究中的应用。DSC在高聚物研究中的应用研究结构及动态变化表征玻璃化转变和熔融行为分析多组分高聚物体系的组成研究高聚物链缠结及化学交联研究高聚物的结晶行为表征高聚物的微相结构研究高聚物共混相溶性反映共混高聚物中组分间的相互作用研究热历史和处理条件对高聚物结构的影响DMA动态力学分析在高聚物研究中的应用评价高聚物材料的使用性能研究材料结构与性能的关系表征高聚物材料的微相结构研究高聚物的相互作用表征高聚物的共混相容性研究高聚物的溶液-凝胶转变行为。 /p p   序言 /p p   高分子化学是一门迅速发展起来的基础和应用科学,并且高聚物材料及产品的迅速增长已经对世界经济产生了巨大影响。进入21世纪后高分子科学与技术将发生更大变革和突破,而且对人类生存、健康与发展起更大作用。为适应高分子科学的发展,要求在该领域的工作者对高分子物理的理论、实验方法和原理以及实际应用有足够的了解和认识。尤其对于很多高分子科学工作者而言,他们需要知道运用哪些高分子物理近代仪器和方法以及如何得到可靠的数据和信息采指导他们的科研。 /p p   同时,为了培养一大批从事高分子科学与技术的高级科技人才,必须全面提高研究生培养的质量。研究生教材建设是提高研究生培养质量的重要工作之一,为此武汉大学研究生院组织了国内一批在高分子物理前沿工作而且又具有丰富教学经验的教授和科学家以及该校青年教师编写《高分子物理近代研究方法》一书。环顾近年高分子化学与物理方面的教科书及专著,都力求包含最新成果,因而内容越来越广,深度越来越深,篇幅也越来越长。为此,这本书采用了创新的格式把研究生必修的内容用简明的语言和图表阐明,同时列举大量的最新研究成果作为实例帮助读者理解、记忆和正确运用高分子物理理论和方法。因此,这本书具有简单、明确、知识新和学习效率高的特点。我衷心祝愿新一代高分子学子能从书中受益,并为我国高分子科学发展作出重大贡献。 /p p style=" text-align: right "   中国科学院院士 /p p style=" text-align: right "   南京大学教授 /p p style=" text-align: right "   2002年5月 /p p 内容简介 /p p   本书基于高分子物理基本原理和理论,简要介绍了如何测定和研究高聚物的分子量及其分布、链构象、化学结构及其组成、结晶度及取向、熔点、玻璃化转变温度、分子运动及力学松弛、热性能、界面及表面、复合物粘接、力学性能、电学性能及生物降解性等方面的先进方法,以及光谱、波谱、色谱、激光光散射、X射线和电子显微技术。本书收集了大量具有创新思想和科学价值的实例,以指导读者更有效地应用先进仪器和方法从事高分子科学与技术的基础研究和应用开发。全书共收集约400篇参考文献,内容丰富、新颖、简明易懂,是一本较全面、深入的高分子物理教材,适合高分子化学和物理、橡胶、塑料及高聚物材料工程等方面的研究生、教师、科技人员及企业管理人员参考。 /p p   9. 刘振海 « 聚合物量热测定» 化工出版社2002 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/84786940-732a-4fb5-999e-aa7cb65e5742.jpg" title=" 聚合物量热测定.jpg" width=" 400" height=" 548" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 548px " / /p p 前言 /p p   自1963年差示扫描最热法(differential scanning calorimetry,DSC)产生以来,在高分子材料的研究和表征中这种方法一直扮演着重要角色,虽然DSC仅是诸多热分析方法中的一种,可从近年高分子热分析的发展趋向来看,DSC这种方法构成了高分子热分析的主要组成部分。近年高分子科学出现了一系列以DSC为主或仅基于此种方法的学术著作,诸如《聚合物材料的热表征》(E.A. Turi ed. Thermal Characterization of Polymeric Materials. NewYork:Academic Press, 1981 2nd Edition, 1997), 该书由第1版的970页发展到第2版的2420页《热分析基础及其在聚合物科学中的应用》(T. Hatakeyama, F. X. Quin, Thermal AnalysisFundamentals and Applications to Polymer Science, Chichester:JohnWiley & amp Sons,1994 2ndEdition, 1999) 《高分子DSC》(V. A.Bershtein, V. M. Egorov. Differential Scanning Calorimetry ofPolymers. New York:Ellis Horwood, 1994) 国际刊物Journal ofThermal Analysis and Calorimetry于2000年第1期出版专辑Advances in Thermal Characterization of polymeric Materials。 /p p   尤应注意到,就在近年(1992年)在DSC的基础上推出一种更新的热分析方法——调制式差示扫描量热法(temperaturemodulated differential scanning calorimetry, TMDSC ), 这种方法一出现,就引起了人们的极大兴趣,就1998年的不完全统计已有300多篇论文发表,并很快出版了专辑【JTherm Anal,1998,54(2)】。预计这种调制技术可用于各种热分析方法,将引起热分析技术一系列新变革。 /p p   作者长期从事高分子热分析科研、教学和学会工作,近年还各自主持了一段学术期刊工作,我们有着几乎完全相同的业务经历。我们合著有中、英文版《热分析手册》(中文版,北京化学工业出版社, 1999 英文版, Chichester: John Wiley & amp Sons, 1998)。并分别出版了《热分析导论》(北京:化学工业出版社,1991)与& quot Thermal Analysis Fundamentals and Applications to PolymerScience& quot (详见上述),主编《应用热分析》(东京:日刊工业新闻社,1996)。我们合著这本《聚合物量热测定》,连同上述著作,望能描绘出热分析一个较为完整的轮廓。 /p p   这本书系统介绍高分子DSC的基础(如热力学基础,DSC和MDSC的基本原理及其产生与发展,高分子的结晶、熔融和玻璃化转变等及由此而引申的各项应用,如相图、单体纯度的测定),及其在该领域在国内外取得的最新成就(如高分子合金的相容性、液晶的多重转变、水在聚合物中的存在形式及其相互作用、联用技术等)。热力学和量热学分别是热分析的理论与技术基础,Wunderlich教授所著由Academic Press(New York)出版的学术专著: Macromolecular Physics Vol 3 Crystal Melting (1980),ThermalAnalysis (1990)和 Thermal Characterization of Polymeric Materials(2nd Edn,Turi E D ed,1997)一书的第二章对热分析的热力学基础做了十分精辟和系统的论述 G.W.H.Hohne,W.Hemminger, H. J. Flammersheim所著Differential ScanningCalorimetry An Introduction for Practitioners ( Berlin:Springer,1996)堪称在阐述量热学(量热仪的传热过程)方面的佳作。作为国际热分析协会教育委员,我们愿将上述著作的有关内容介绍给国内的广大读者,本书基础部分——第一、三章和第二章的编写,分别参考了上述著作,以飨读者。 /p p   本书的第一、二、三章及附表由刘振海参考上述学术专著编写,第四、六、七、十章由畠山立子(T.Hatakeyama)编写,第五章由刘振海、陈学思、宋默编写,第八章由刘振海、陈学思编写,第九章由张利华编写。 /p p   借此机会,对于此书撰写和出版过程中给予我们鼎力相助的热分析与量热学杂志主编J.Simon教授、国际热分析协会教育委员会主席E.A.Turi教授、福井工业大学畠山兵衞教授、中科院长春应用化学研究所黄葆同院士、汪尔康院士、中科院长春分院黄长泉研究员、吉林大学陈欣方教授、中科院长春应用化学研究所王利祥研究员、唐涛研究员、化学工业出版社任惠敏编审、杜进祥编辑,以及对给予出版资助的国家科学技术学术著作出版基金委员会和精工电子有限公司一并表示衷心感谢。 /p p   受篇幅所限,本书侧重于原理的叙述,而对于浩如烟海的大量文献资料未能充分收入,日后如有机会出增订版,乐于做进一步的增补。也因时间仓促,本书定有许多疏漏,望读者不吝指正。 /p p style=" text-align: right "   刘振海(长春)畠山立子(东京)2001年9月 /p p 内容提要 /p p   本书系统地介绍了聚合物材料量热分析的基本原理和各类应用,着重介绍差示扫描量热法和近年出现的调制式差示扫描量热法,突出反映了该领域国内外最新成果与研究进展。全书分为两部分,共10章:第1-3章为基础部分,介绍热分析的热力学基础知识、差示扫描量热法、调制式差示扫描量热法以及结晶聚合物的熔融与结晶过程 第4~9章介绍DSC在聚合物分析方面的应用,包括在聚合物的玻璃化转变、热焓松弛、多相聚合物体系、液晶性质、水与高分子的作用、高分子合成、聚合物辐射效应等方面的研究与应用 第10章介绍热分析与其他分析方法的联用技术。 /p p   本书资料翔实,内容丰富,语言精炼,可供从事聚合物热分析、高分子材料研究及其相关专业技术人员学习参考。 /p p   近年来,国内又出版了几本新的高分子物理著作,如马德柱主编 « 聚合物结构与性能» (结构篇、性能篇)科学出版社2013。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/b8d46319-7149-4855-9981-f1bc2f4732d9.jpg" title=" 聚合物结构与性能结构篇.png" width=" 400" height=" 571" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 571px " / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/8ab8609d-34fd-45b9-b521-9b7c8af3bcd2.jpg" title=" 聚合物结构与性能性能篇.png" width=" 400" height=" 519" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 519px " / /p p style=" text-indent: 2em " 华幼卿 金日光 2013,« 高分子物理» ,第四版,北京:化学工业出版社 /p p style=" text-indent: 0em text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/01683dd6-bae7-4b66-8ee0-953320ede7f3.jpg" title=" 高分子物理3.png" width=" 400" height=" 556" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 556px " / /p p   焦 剑主编 2015 高分子物理 西北工业大学出版社 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/61354d67-bc56-4530-8714-c418d24e384f.jpg" title=" 高分子物理4.png" width=" 400" height=" 606" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 606px " / /p p   本文编撰过程中,参阅了上述高分子物理著作并作为文献引用,在此表示感谢! /p p style=" text-indent: 0em "   参考文献 /p p style=" text-indent: 0em "   [1] « 高分子结晶和熔融行为的Flash DSC 研究进展» 李照磊1,2周东山1胡文兵1 /p p style=" text-indent: 0em "   [2] 何曼君 张红东 陈维孝. « 高分子物理» 第三版 复旦大学出版社2007 /p p style=" text-indent: 0em "   [3] 张俐娜 薛奇 莫志深 金熹高编著 « 高分子物理的近代研究方法» 武汉大学出版社2003 /p p style=" text-indent: 0em "   [4] 朱诚身 « 聚合物结构分析» 科学出版社2010 /p p style=" text-indent: 0em "   [5] 何平笙编著 « 新编高聚物的结构与性能» 科学出版社2009 /p p style=" text-indent: 0em "   附录 /p p style=" text-indent: 0em "   有关高分子物理的教学参考书 (按出版时代排列) /p p style=" text-indent: 0em "   Alfrey. 1948.Mechanical Properties of High Polymers. New York:Interscience Publishers /p p style=" text-indent: 0em "   是早期有关高聚物力学性能的专著、至今仍有参考价值。 /p p style=" text-indent: 0em "   Flory P J. 1953. Principle of Polymer Chemistry. Ithaca: Cornell University Press /p p style=" text-indent: 0em "   是高分子科学的经典教材,被誉为高分子科学的”圣经”,一直到现在仍被美国众多大学选为教材,Flory也是高分子界获得诺贝尔化学奖的科学家。 /p p style=" text-indent: 0em "   钱人元,1958,高聚物的分子量测定,北京:科学出版社 /p p style=" text-indent: 0em "   是我国科学家自己的科研成果和撰写的有关专著,被翻译成英文和俄文出版,至今仍有现实的参考价值。 /p p style=" text-indent: 0em "   柯培可Ⅱ Ⅱ,1958,非晶态物质。钱人元,钱保功等译,北京:科学出版社 /p p style=" text-indent: 0em "   介绍原苏联学者的研究成果和观点,对我国有相当影响。 /p p style=" text-indent: 0em "   Mason P. Wookey N. 1958. The Rheology of Elastomers. Paris:Pergamon Press /p p style=" text-indent: 0em "   是为数不多专门讲授弹性体力学性能的著作。 /p p style=" text-indent: 0em "   徐僖,1960,高分子物化学原理。北京:化学工业出版社 /p p style=" text-indent: 0em "   为国内高校工科院校早期的高分子专业教科书,有一定影响。 /p p style=" text-indent: 0em "   Tobolsky A V. 1960. Properties and Structure of Polymers. New York: John Wiley & amp Sons lnc /p p style=" text-indent: 0em "   是一本比较经典的高分子物理教材性质的书,对我国高分子物理教学有相当的影响。其中有关化学应力松弛的内容仍然具有权威性。 /p p style=" text-indent: 0em "   Tanford C. 1961. Physical Chemistry of Macromolecules. New York: John Wiley & amp Sons Inc /p p style=" text-indent: 0em "   是一本在高分子溶液方面写得较好的教材。 /p p style=" text-indent: 0em "   卡尔金,斯洛尼姆斯基,1962。聚合物物理化学概论、郝伯林等译。北京:科学出版牡 /p p style=" text-indent: 0em "   是前苏联学者的一本著作,对我国高分子物理起步有较大影响。 /p p style=" text-indent: 0em "   Bueche F. 1962. Physical Properties of Polymers. New York: Interscience Publishers /p p style=" text-indent: 0em "   是一本比较经典的高分子物理教材性质的书,对我国高分子物理教学有相当的影响。 /p p style=" text-indent: 0em "   Nielsen L.E. 1962. Mechanical Properties of Polymers. New York: Reinhold Publishing Corporation /p p style=" text-indent: 0em "   也是一本比较经典的高分子物理教材性质的书,对我国高分子物理教学有较大的影响,有中文翻译本,即1965年冯之榴等译《高聚物的力学性能》,上海科学技术出版社。 /p p style=" text-indent: 0em "   Volkenstein M V. 1963. Configutational Statistics of Polymeric Chains. New York :Interscience /p p style=" text-indent: 0em "   是原苏联学者的专著,俄丈原书系1959年莫斯科苏联科学院出版社出版· 有很高价值, /p p style=" text-indent: 0em "   卡尔金等,1964,高分子物理进展(论文集),钱人元等译,北京:科学出版社 /p p style=" text-indent: 0em "   是一本较全面介绍原苏联学者成果的书。 /p p style=" text-indent: 0em "   高分子学会,1965,レオロジーハンドブック (流变学手册),东京:丸善株式会社 /p p style=" text-indent: 0em "   有很多早期的实验教据图。 /p p style=" text-indent: 0em "   MandelkernL. 1965. Crystallization of Polymers. New York:McGraw-Hill Book Company /p p style=" text-indent: 0em "   Andrews E. H. 1968. Fracture in Polymers. Edinburgh: Oliver & amp Boyd /p p style=" text-indent: 0em "   是有关高聚物断裂和强度的专著,因为是文革期同出的书,国内图书馆较少有收藏。 /p p style=" text-indent: 0em "   Alexander L E.1970. X-ray Diffraction Methods in Polymer Science. New York: John Wiley & amp .Sons Inc /p p style=" text-indent: 0em "   和田八三久.1971.高分子的固体物性,东京:培风馆 /p p style=" text-indent: 0em "   日本学者撰写的内容比较深的高分子物理著作。国内没有流行。 /p p style=" text-indent: 0em "   Billmeyer F W. 1971. Textbook of Polymer Science. New York,:Wiley Inierscience Inc /p p style=" text-indent: 0em "   这是一本在西方影响很大的教材,但一直没有再版, /p p style=" text-indent: 0em "   Peebols J J H. 1971. Molecular Weight Distributions in Polymers. New York,:John Wiley & amp SonsInc /p p style=" text-indent: 0em "   有不少关于聚合反应动力学统计理论的内容, /p p style=" text-indent: 0em "   Tobolsky A V, Mark H F. 1971. Polymer Science and Materials. New York,:Wiley Interscience /p p style=" text-indent: 0em "   有中文译本,即1977年托博尔斯基AV,马克HF编,聚合物科学与材料翻译译组译《聚合物科学与材料》,北京:科学出版社。 /p p style=" text-indent: 0em "   Kakudo M. Kasai N. 1972. X-ray Diffraction Methods in Polymer Science. New York: Wiley Interscience /p p style=" text-indent: 0em "   Jenkins A D. 1972. Polymer Science,A materials science handbook, 1 and 2. Amsterdam: North-Holland Publishing Company /p p style=" text-indent: 0em "   这是一本上下两册大部头著作,内容极为丰富。 /p p style=" text-indent: 0em "   TreloarL R G. 1958. The Physics of Rubber Elasticity. 3rd Ed. Oxford: University Press /p p style=" text-indent: 0em "   一本最详细介绍有关橡胶高弹性的专著。国内有中文译本,20世纪60年代的第一版就翻译成中文,第三版由王梦蛟,王培国,薛广智译,吴人洁校,北京:化学工业出版社,1982。 /p p style=" text-indent: 0em "   高分子学会,1972,高分子的分子设计3:分子设计和高分子材料的展望,东京:培风馆 /p p style=" text-indent: 0em "   论述通过分子设计来制备高分子材料的设想· 在当时有相当的影响。 /p p style=" text-indent: 0em "   小野木重治,1973,高分子材料科学,东京:诚文堂新光社 /p p style=" text-indent: 0em "   是来自日本的一本教材,也有一定影响, /p p style=" text-indent: 0em "   Kausch H H, Hassell J A, Jaffee R I. 1973. Deformation and Fracture of High Polymers,NewYork: Plenum Press /p p style=" text-indent: 0em "   内容较专一。 /p p style=" text-indent: 0em "   Haward R N. 1973. The Physics of Glassy Polymers.London: Applied Science Publishers Ltd /p p style=" text-indent: 0em "   对玻璃态高聚物的力学性能有详细介绍, /p p style=" text-indent: 0em "   晨光化工厂,1973,塑料测试,北京:燃料化学工业出版社 /p p style=" text-indent: 0em "   这是一本有管高聚物性能测试早期的著作,当时有相当的影响。 /p p style=" text-indent: 0em "   Wunderlich B. 1973. Macromolecular Physics. Vol. Ⅰ, Ⅱ,Ⅲ. New York:Academic Press /p p style=" text-indent: 0em "   三卷的大著,专门讲述高聚物的结晶行为,很有参考价值。 /p p style=" text-indent: 0em "   Samuels R J. 1974. Structured Polymer Properties. New York: Wiley Interscience /p p style=" text-indent: 0em "   莫特N等.1975.材料——微观结构及物理性能的概述.中国科学技术大学《材料》翻译组译, /p p style=" text-indent: 0em "   北京:科学出版社 /p p style=" text-indent: 0em "   该书有关“高聚物材料的本质& quot 和& #39 & #39 复合材料的本质”两章有很好的参考价值,其中Mark提出的提高高聚物性能的三角形原理有参考价值。 /p p style=" text-indent: 0em "   Arridge R G C. 1975. Mechanics of Polymers. Oxford:Clarendon Press /p p style=" text-indent: 0em "   是一本从力学观点讲述的高聚物力学性能的专著。 /p p style=" text-indent: 0em "   Tager A. 1978. Physical Chemistry of Polymers. Moscow: MIP Publisher /p p style=" text-indent: 0em "   是一本由原苏联学者撰写的高分子物理教材,用英文出版,从中可了解不少原苏联学者的科研成果。 /p p style=" text-indent: 0em "   Andrews E H. 1979. Developments in polymer Fracture-1. London: Applied Science Publishers /p p style=" text-indent: 0em "   是Andrews又一本关于高聚物断裂和强度的编著,有相当参考价值。 /p p style=" text-indent: 0em "   Tadokoro H. 1979. Structure of Crystlline Polymers. New York:John Wiley & amp . Sons Inc /p p style=" text-indent: 0em "   Blythe A R 1979. Electrical Properties of Polymers. Cambridge: Cambridge University Press /p p style=" text-indent: 0em "   是剑桥大学& quot Cambridge Solid State Science Series& quot 系列中的一本书。 /p p style=" text-indent: 0em "   中国科学院上海有机化学研究所十二室,1980,压电高聚物,上海:上海科学技术文献出版社 /p p style=" text-indent: 0em "   Cherry B W. 1980. Polymer Surface Cambridge: Cambridge University Press /p p style=" text-indent: 0em "   是剑桥大学”Cambridge Solid State Science Series”系列中的一本书。 /p p style=" text-indent: 0em "   Williams J G. 1980. Stress Analysis of Polymers. 2nd Ed. New York: John Wiley & amp Sons Inc /p p style=" text-indent: 0em "   是一本从力学观点讲述的专著,书中数学内容较深。 /p p style=" text-indent: 0em "   Ferry J D. 1980. Viscoelastic Properties of Polymers. New York:John Wiley & amp Sons Inc /p p style=" text-indent: 0em "   是一本高聚物黏弹性的专著,有很好的参考价值。 /p p style=" text-indent: 0em "   林尚安,陆耘,粱兆熙,1980,高分子化学,北京:科学出版社 /p p style=" text-indent: 0em "   由于全书既有高分子化学又有高分子物理内容,不便使用,影响不大。 /p p style=" text-indent: 0em "   施良和,1980,凝胶色谱法,北京:科学出版社 /p p style=" text-indent: 0em "   对普及凝胶色谱法有很好作用。 /p p style=" text-indent: 0em "   Bailey R T, North A M, Pethrick R A. 1981. Molecular Motion in High polymers. Oxford: Clar- /p p style=" text-indent: 0em "   endon Press /p p style=" text-indent: 0em "   Young R J. 1981. Introduction to Polymers. London: Chapman and Hall /p p style=" text-indent: 0em "   这是一本非常简明的高分子教材,其中有不少有关作者本人的研究成果,如聚双炔类宏观单晶体的结构与性能。英文也非常通顺易读。 /p p style=" text-indent: 0em "   Bassett D C. ] 981. Principles of Polymer Morphology, Cambridge: Cambridge University press /p p style=" text-indent: 0em "   是剑桥大学”Cambridge Solid State Science Series”系列中的一本书。有中文译本,即1987 /p p style=" text-indent: 0em "   年巴西特著,张国耀,梨书樨译《聚合物形态学原理》,北京:科学出版社。 /p p style=" text-indent: 0em "   潘鉴元,席世平,黄少慧.1981.高分子物理,广州:广东科技出版社 /p p style=" text-indent: 0em "   该书介绍的有关形变-温度曲线的论述仍有参考价值。 /p p style=" text-indent: 0em "   彼得· 赫得维格,1981,聚合物的介电谱,第一机械工业部桂林电器科学研究所译,北京:机械工业出版社 /p p style=" text-indent: 0em "   范克雷维伦D W.1981.聚合物的性质:性质的估算及其与化学结构的关系,许元泽,赵得禄,吴大诚译,北京:科学出版社 /p p style=" text-indent: 0em "   至今仍有参考价值。 /p p style=" text-indent: 0em "   尼尔生L E.1981,高分子和复合材料的力学性能.丁佳鼎译,北京:轻工业出版杜 /p p style=" text-indent: 0em "   赵华山,姜胶东,吴大诚等,1982,高分子物理学,北京:纺织工业出版社 /p p style=" text-indent: 0em "   是为化学纤维专业写的教材。 /p p style=" text-indent: 0em "   沈得言.1982、红外光谱法在高分子研究中的应用.北京科学出版社 /p p style=" text-indent: 0em "   是我国学者写的较早的有关高分子物理的专著。 /p p style=" text-indent: 0em "   Seanor D A. 1982. Electrical Properties of Polymers. New York: Academic Press /p p style=" text-indent: 0em "   Ward I M. 1982. Developments in Oriented Polymers. London: Applied Science Publishers /p p style=" text-indent: 0em "   Bohdanecky M, Ková rJ. 1982. Viscosity of Polymer Solutions. New York: Elsevier Scientific /p p style=" text-indent: 0em "   Burchard W, Patterson G D. 1983. Light cattering from Polymers. New York: Springer-Verlag /p p style=" text-indent: 0em "   尼尔生L E.1983,聚合物流变学。范庆荣,宋家琪译,北京:科学出版社。 /p p style=" text-indent: 0em "   WilliamsDJ.1983.Nonlinear Optical Properties of Organic and Polymeric Materials.WashingtonD. C. :American Chemical Society /p p style=" text-indent: 0em "   是一本以编著形式撰写的书。 /p p style=" text-indent: 0em "   Ward IM 1983. Mechanical Properties of Solid Polymers. 2nd Ed. New York: Wiley-Interscience /p p style=" text-indent: 0em "   这是一本Ward写的英国研究生教材,国内曾前后两次把它的第一版和第二版翻译成中文出版,即1988年沃德著,徐懋,漆宗能等译校《固体高聚物的力学性能》,第二版,北京:科学出版社。仍有相当的参考价值。 /p p style=" text-indent: 0em "   斯坦R S.1983.散射和双折射方法在高聚物织态研究中的应用,徐懋等译.北京:科学出版社 /p p style=" text-indent: 0em "   Kinloch A J, Young R J. 1983. Fracture Behavior of Polymers. London:Applied Science Publishers /p p style=" text-indent: 0em "   内容比较全面的有关高聚物断裂的专著。 /p p style=" text-indent: 0em "   北京大学化学系高分子化学教研室,1983,高分子物理实验,北京:北京大学出版社 /p p style=" text-indent: 0em "   Williams J G. 1984. Fracture Mechanics of Polymers. New York:John Wiley & amp Sons lnc /p p style=" text-indent: 0em "   塞缪尔斯R J.1984.结晶高聚物的性质,徐振森译。北京:科学出版社 /p p style=" text-indent: 0em "   Elias H G. 1984. Macromolecules I, structure and Properties. 2nd Ed. New York: Plenum Press /p p style=" text-indent: 0em "   韩CD、1985.聚合物加工流变学、徐僖,吴大诚等译,北京:科学出版社 /p p style=" text-indent: 0em "   Aklonis J. MacKnight W J. 1972. Minchel Shen, Introduction to Polymer Viscoelasticity. NewYork:Wiley-Interscience /p p style=" text-indent: 0em "   这是一本很好的有关高聚物黏弹性的入门书,1983年第二版,并由吴立衡翻译为中文,即吴立衡译,徐懋校《聚合物粘弹性引论》,北京:科学出版社,1986。可惜的是作者之一的华人科学家沈明琦英年早逝,没有能参加这第二版的写作。位沈明琦1979年在复旦大学讲课为后来出版的《高聚物的粘弹性》一书打下了基础,即于同隐,何曼君,卜海山,胡加聪,张炜编著《高聚物的粘弹牲》,上海:上海科学技术出版社,1986。 /p p style=" text-indent: 0em "   冯新德,唐敖庆,钱人元等,1984,高分子化学与物理专论,广东:中山大学出版社 /p p style=" text-indent: 0em "   其中钱人元和于同隐有关高分子凝聚态基本物理问题和玻璃化转变的章节很有参考价值。奥戈凯威斯R M.1986,热塑性塑料的性能和设计,何平笙等译,北京:科学出版社 /p p style=" text-indent: 0em "   是钱人无院士推荐翻译的有关材料性能与制品关系的专著,是高聚物结构与性能的进一步深入。 /p p style=" text-indent: 0em "   吴大诚,1985,高分子构象统计理论导引,成都:四川教育出版社 /p p style=" text-indent: 0em "   可供有关专业研究生阅读。 /p p style=" text-indent: 0em "   唐敖庆等,1985,高分子反应统计理论,北京:科学出版社 /p p style=" text-indent: 0em "   卓启疆,1986,聚合物自由体积,成郁:成都科技大学出版社 /p p style=" text-indent: 0em "   是一本专门讲述高聚物中自由体积的小册子。 /p p style=" text-indent: 0em "   钱保功,许观藩,余赋生等,1986,高聚物的转变与松弛,北京:科学出版社 /p p style=" text-indent: 0em "   是中国科学院长春应用化学研究所多年工作的总结,有大量的实验数据。 /p p style=" text-indent: 0em "   考夫曼H S,法尔西塔J J.1986,聚合物科学与工艺学引论,吴景诚,钱文藻,杨淑兰译,北京:科学出版社 /p p style=" text-indent: 0em "   郑昌仁,1986,高聚物分子量及其分布,北京:化学工业出版社 /p p style=" text-indent: 0em "   Doi M, Edwards S F. 1986. The Theory of Polymer Dynamics. Clarendon: Oxford University /p p style=" text-indent: 0em "   Press /p p style=" text-indent: 0em "   有机玻璃疲劳和断口图谱编委会.1987,有机玻璃疲劳和断口图谱,北京:科学出版社 /p p style=" text-indent: 0em "   夏炎.1987.高分子科学简明教程,北京:科学出版社 /p p style=" text-indent: 0em "   是为师范生写的教材。 /p p style=" text-indent: 0em "   拉贝克JF. 1987,高分子科学实验方法,物理原理与应用,吴世康,漆宗能等译,北京:化学工业出版社 /p p style=" text-indent: 0em "   提供大量的高分子实验,是一本高分子实验方面的权威性著作。 /p p style=" text-indent: 0em "   何家骏,1987,高分子溶液理论导论,兰州:兰州大学出版社 /p p style=" text-indent: 0em "   斯珀林L H.1987,互穿聚合物网络和有关材料,黄宏慈,欧玉春译,佟振合校、北京:科学出版社 /p p style=" text-indent: 0em "   吴大诚,1987~1989,现代高分子科学丛书,成都:四川教育出版社 /p p style=" text-indent: 0em "   共十本书,其中与高分子物理有关的是: /p p style=" text-indent: 0em "   (1)孙鑫,《高聚物中的孤子和极化子》,1987。 /p p style=" text-indent: 0em "   (2)吕锡慈,《高分子材料的强度与破坏》,1988。 /p p style=" text-indent: 0em "   (3)吴大诚,谢新光,徐建军,《高分子液晶》,1988。 /p p style=" text-indent: 0em "   (4)许元泽,(高分子结构流变学》,1988。 /p p style=" text-indent: 0em "   (5)古大治。《高分子流体动力学》,1988。 /p p style=" text-indent: 0em "   (6)江明,《高分子合金的物理化学》,1988。 /p p style=" text-indent: 0em "   (7)赵得禄,吴大诚,《高分子科学中的Monte Carlo方法》,1988。 /p p style=" text-indent: 0em "   (8)吴大诚,Hsu S L,《高分子的标度和蛇行理论》,1989。 /p p style=" text-indent: 0em "   日本纤维机械学会,纤维工学出版委员会,1988,纤维的形成、结构及性能、丁亦平译,北京:纺织工业出版社 /p p style=" text-indent: 0em "   朱永群,1988,高分子物理基本概念与问题,北京:科学出版社 /p p style=" text-indent: 0em "   是第一本有关高分子物理习题的书。 /p p style=" text-indent: 0em "   鲁丁J A.1988,聚合物科学与工程学原理,徐支祥译,北京:科学出版社 /p p style=" text-indent: 0em "   潘道成,鲍其鼎,于同隐,1988,高聚物及其共混物的力学性能,上海:上海科学技术出版社 /p p style=" text-indent: 0em "   朱善农等,1988,高分子材料的剖析,北京:科学出版社 /p p style=" text-indent: 0em "   穆腊亚马,1988,聚合物材料的动态力学分析,福特译,北京:轻工业出版社 /p p style=" text-indent: 0em "   李斌才,1989,高聚物的结构与物理性质,北京:科学出版社 /p p style=" text-indent: 0em "   周贵恩,1989,聚合物X射线衍射、合肥:中国科学技术大学出版社 /p p style=" text-indent: 0em "   Campbell D, WhiteJ R 1989. Polymer Characterization: Physical Techniques. London: Chapman& amp Hall /p p style=" text-indent: 0em "   国内少有人拥有此书。 /p p style=" text-indent: 0em "   王正熙,1989,聚合物红外光谱分析和鉴定,成都:四川大学出版社 /p p style=" text-indent: 0em "   林师沛,1989,塑料加工流变学,成都:成都科技大学出版社 /p p style=" text-indent: 0em "   雀部博之,1989,导电高分子材料,曹镛,叶成,朱道本译,北京:科学出版社 /p p style=" text-indent: 0em "   克里斯坦森R M.1990,粘弹性力学引论,郝松林,老亮译,北京:科学出版社 /p p style=" text-indent: 0em "   杨挺青,1990,粘弹性力学,武汉:华中理工大学出版社 /p p style=" text-indent: 0em "   胡徳,1990,高分子物理与机械性质(上、下册),台北:渤海堂文化公司 /p p style=" text-indent: 0em "   是我国台湾学者编写的高分子物理教材,内容偏重高聚物本体的性能,不涉及凝聚态以及溶液和相对分子质量等。 /p p style=" text-indent: 0em "   Fujita H. 1990. Polymer Solutions. Amsterdam:Elsevier /p p style=" text-indent: 0em "   Schmitz K S.1990. An Introduction to Dynamic Light Scattering by Macromolecules. San Diego,Academic Press /p p style=" text-indent: 0em "   弗洛里PJ.1990,链状分子的统计力学,吴大诚,高玉书,许元泽等译,吴大诚校,成都:四川科学技术出版社 /p p style=" text-indent: 0em "   是弗洛里又一本大著,是高分予理论最重要的经典著作之一。 /p p style=" text-indent: 0em "   朱锡雄,朱国瑞,1992,高分子材料强度学,杭州:浙江大学出版社 /p p style=" text-indent: 0em "   JoachimD E.1992,Relaxation and Thermodynamics in Polymers Glass Transition. Berlin: Akademie Verlag /p p style=" text-indent: 0em "   郑武城,安连生,韩娅娟等,1993,光学塑料及其应用.北京:地质出版社 /p p style=" text-indent: 0em "   周其凤,王新久,1994,液晶高分子,北京:科学出版社 /p p style=" text-indent: 0em "   有不少作者自己的研究成果。 /p p style=" text-indent: 0em "   Grosberg A Y, Khokhlov A R. 1994. Statistical Physics of Macromolecules. Woodbury: AIP Press /p p style=" text-indent: 0em "   黄维垣,闻建勋,1994,高技术有机高分子材料进展,北京:化学工业出版社 /p p style=" text-indent: 0em "   是当年的一本进展性质的汇编。 /p p style=" text-indent: 0em "   左渠,1994,激光光散射原理及在高分子科学中的应用,郑州:河南科学技术出版社 /p p style=" text-indent: 0em "   谢缅诺维奇,赫拉莫娃,1995,聚合物物理化学手册,闫家宾,张玉昆译,北京:中国石化出版社 /p p style=" text-indent: 0em "   薛奇,1995,高分子结构研究中的光谱方法,北京:高等教育出版社 /p p style=" text-indent: 0em "   Gedde U W. 1995. Polymer Physics. London: Chapman & amp Hall /p p style=" text-indent: 0em "   叶成,习斯 J.1996,分子非线性光学的理论与实践,北京:化学工业出版社 /p p style=" text-indent: 0em "   大柳康,1996,实用高分子合金,吴忠文等译,长春:吉林科学技术出版社 /p p style=" text-indent: 0em "   周光泉,刘孝敏,1996,粘弹性理论,合肥:中国科学技术大学出版社 /p p style=" text-indent: 0em "   这是一本由力学专家写的书,对数学的推导有独特之处。 /p p style=" text-indent: 0em "   吴培熙,张留成,1996,聚合物共混改性,北京:中国轻工业出版社 /p p style=" text-indent: 0em "   朱善农等,1996,高分子链结构,北京:科学出版社 /p p style=" text-indent: 0em "   Doi M. 1996.Introduction to Polymer Physics. Clarendon: Oxford University Press /p p style=" text-indent: 0em "   复旦大学高分子科学系,高分子科学研究所,1996,高分子实验控术,修订版,上海:复旦大学出版社 /p p style=" text-indent: 0em "   已出第二版。 /p p style=" text-indent: 0em "   Hans-Georg E. 1997, An Introduction toPolymer Science. New York: VCH Press /p p style=" text-indent: 0em "   刘凤歧,汤心颐,1997,高分子物理,北京:高等教育出版社 /p p style=" text-indent: 0em "   2004年出了第二版。 /p p style=" text-indent: 0em "   何天白,胡汉杰,1997,海外高分子科学的新进展,北京:化学工业出版社 /p p style=" text-indent: 0em "   StroblG. 1997. ThePhysics of Polymers. 2nd Ed. Berlin:Springer /p p style=" text-indent: 0em "   这是一本近十年来有影响的高分子物理教材,Strobl本人多次来国内讲授有关他提出的高聚物结晶的理论,中文译本是斯特罗伯著,胡文兵,蒋世春,门永锋,王笃金译《高分子物理学》,北京:科学出版社,2009。 /p p style=" text-indent: 0em "   Shi L H, Zhu D B. 1997. Polymers and Organic Solids, Beijing: Science Press /p p style=" text-indent: 0em "   这是为纪念钱人元院士80寿辰而汇编的文集,由国内外著名学者介绍当今最新科技成果,钱人元,1998,无规与有序——高分子凝聚态的基本物理问题研究,长沙:湖南科学技术出版社 /p p style=" text-indent: 0em "   是钱人元院士带领开展的国家攀登项目“高分子凝聚态的基本物理问题研究”的研究成果的通俗介绍,我国很多科学家对高分子物理的贡献都有深入浅出的论述。 /p p style=" text-indent: 0em "   蔡忠龙,冼杏娟,1997,超高模量聚乙烯纤维增强材料,北京:科学出版社 /p p style=" text-indent: 0em "   该书中有关聚乙烯热学性能的介绍很有参考价值。 /p p style=" text-indent: 0em "   邵毓芳,嵇根定,1998,高分子物理实验,南京:南京大学出版社 /p p style=" text-indent: 0em "   江明,府寿宽,1998,高分子科学的近代论题,上海:复旦大学出版社 /p p style=" text-indent: 0em "   是纪念于同隐教授和钱人元院士80寿辰而汇编的文集,由国内外著名学者介绍当今最新科技成果。 /p p style=" text-indent: 0em "   吴人洁等,1998,高聚物的表面与界面,北京:科学出版社 /p p style=" text-indent: 0em "   吴培熙,张留成,1998,聚合物共混改性,北京:中国轻工业出版社 /p p style=" text-indent: 0em "   沈家瑞,贾德民,1999,聚合物共混物与合金,广州:华南理工大学出版社 /p p style=" text-indent: 0em "   托马斯EL. 1999,聚合物的结构与性能,北京:科学出版社 /p p style=" text-indent: 0em "   是一本详细介绍高分子物理近年成果的专著,适合作为进一步深造的参考书。 /p p style=" text-indent: 0em "   朱道本,王佛松,1999,有机固体,上海:上海科学技术出版社 /p p style=" text-indent: 0em "   介绍导电高聚物的专著,有许多我国科学家的研究成果。 /p p style=" text-indent: 0em "   王国全,王秀芬等,2000,聚合物改性,北京:中国轻工业出版社 /p p style=" text-indent: 0em "   梁伯润,屈凤珍等,2000,高分子物理学,北京:中国纺织出版社 /p p style=" text-indent: 0em "   是为合成纤维专门化的学生写的教材。 /p p style=" text-indent: 0em "   顾国芳,浦鸿汀,2000,聚合物流变学基础,上海:同济大学出版社 /p p style=" text-indent: 0em "   金日光,华幼卿,2000,高分子物理,第二版,北京:化学工业出版社 /p p style=" text-indent: 0em "   工科院校所用教材,2007年已出第三版。 /p p style=" text-indent: 0em "   闻建勋,2001,诺贝尔百年鉴——奇妙的软物质,上海:上海科学教育出版社 /p p style=" text-indent: 0em "   是一本有关高分子学界诺贝尔奖获得者的通俗介绍,对了解高分子科学的发展轨迹有启发。 /p p style=" text-indent: 0em "   杨玉良,胡汉杰,2001,跨世纪的高分子科学丛书——高分子物理(分册),北京:化学工业出版社 /p p style=" text-indent: 0em "   何天白,胡汉杰,2001,功能高分子与新技术,北京:化学工业出版社 /p p style=" text-indent: 0em "   平郑骅,汪长春,2001,高分子世界,上海:复旦大学出版社 /p p style=" text-indent: 0em "   是一本有关高分子科学的高级通俗读本。 /p p style=" text-indent: 0em "   Sperling L H. 2001. Introduction of Physical Polymer Science. 3rd Ed. New York: Wiley /p p style=" text-indent: 0em "   布里格,2001,聚合物表面分析,曹立礼,邓宗武译,北京:化学工业出版社 /p p style=" text-indent: 0em "   殷敬华,莫志深,2001,现代高分子物理学(上、下册),北京:科学出版社 /p p style=" text-indent: 0em "   名为研究生教材,实际上是一本很好的进展性专著。 /p p style=" text-indent: 0em "   韩哲文,张得震,杨全兴等,2001,高分子科学教程,上海:华东理工大学出版社 /p p style=" text-indent: 0em "   既有高分子化学内容也有高分子物理内容。 /p p style=" text-indent: 0em "   Bower D I. 2002. An Introduction to Polymer Physics. Cambridge: Cambridge University Press /p p style=" text-indent: 0em "   化学工业出版社2004年以”国外名校名著”系列影印出版了该书。 /p p style=" text-indent: 0em "   刘振海,2002,聚合物量热测定,北京:化学工业出版社 /p p style=" text-indent: 0em "   杨小震,2002,分子模拟与高分子材料,北京:科学出版社 /p p style=" text-indent: 0em "   附有软件光盘,很实用,其软件可利用来开设高分子物理实验。 /p p style=" text-indent: 0em "   过梅丽,2002,高聚物与复合材料的动态力学热分析,北京:化学工业出版社 /p p style=" text-indent: 0em "   是一本很好的有关高聚物动态力学测试的著作。 /p p style=" text-indent: 0em "   吴其晔,巫静安,2002,高分子材料流变学、北京:高等教育出版社 /p p style=" text-indent: 0em "   是一本详细介绍聚合物流变学的研究生教材。内容详尽,很有参考价值。 /p p style=" text-indent: 0em "   Qian R Y (钱人元),2002. Perspectives on the Macromolecular Condensed State. Singapore: World Scientific /p p style=" text-indent: 0em "   这是钱人元院士把自己在& #39 & #39 高分子凝聚态物理中若干基本问题”国家攀登项目中的成果介绍给世人的一本专著,包括很多我国科学家对高分子物理的贡献。 /p p style=" text-indent: 0em "   Colby R B. 2002. Polymer Physics. Oxford: Oxford University Press /p p style=" text-indent: 0em "   TeraokaI. 2002. Polymer Solutions: An Introduction to Physical Properties. New York: John /p p style=" text-indent: 0em "   Wiley & amp Sons Inc /p p style=" text-indent: 0em "   非常好的有关高分子溶液的专著,内容较深。 /p p style=" text-indent: 0em "   张祖德,朱平平等,2001,中国科学院一中国科学技术大学硕士研究生入学考试化学类科目考试纲要,合肥:中国科学技术大学出版社 /p p style=" text-indent: 0em "   是中国科学院各研究所和中国科大研究生必读参考书,2002第二版。 /p p style=" text-indent: 0em "   de Gennes. 1979. Scaling Concepts in Polymer Physics. Ithaca:Cornell University PressGennes /p p style=" text-indent: 0em "   Gennes是又一位高分子界获得诺贝尔奖的科学家,他把理论物理中的许多概念用在了高分子科学上,创立了高分子物理中著名的“标度理论“。该书已由吴大诚等翻译成中文、即德让 /p p style=" text-indent: 0em "   摘自« 新编高聚物的结构与性能» 何平笙编著 科学出版社 /p
  • 自动粘度仪用毛细管法测定聚乙烯(PE)的分子量
    聚乙烯(polyethylene ,简称PE)是乙烯经聚合制得的一种热塑性树脂。在工业上,也包括乙烯与少量α-烯烃的共聚物。聚乙烯无臭,无毒,手感似蜡,具有优良的耐低温性能(最低使用温度可达-100~-70°C),化学稳定性好,能耐大多数酸碱的侵蚀(不耐具有氧化性质的酸)。常温下不溶于一般溶剂,吸水性小,电绝缘性优良。产品用途:高压聚乙烯:一半以上用于薄膜制品,其次是管材、注射成型制品、电线包裹层等。中低、压聚乙烯:以注射成型制品及中空制品为主。超高压聚乙烯:由于超高分子聚乙烯优异的综合性能,可作为工程塑料使用。 目前毛细管法测定聚乙烯分子量是行业内作为控制产品质量重要的指标之一实验方法如下实验所需仪器:卓祥全自动超高温粘度仪、多位溶样块、自动配液器、万分之一电子天平。实验所需试剂1:十氢萘、抗氧剂溶剂的配置:在十氢萘中加入一定比例(质量比)的抗氧剂,并搅拌致抗氧剂完全溶解溶剂粘度的测定:卓祥全自动超高温粘度仪将实验温度设置成135度并且稳定后,加入溶剂,软件中启动测试任务待结束。连续测三次时间之差在0.2秒内粘度管的清洗:启动卓祥全自动超高温粘度仪干燥程序,仪器自动将粘度管清洗干燥后待用。PE样品溶液的制备:在万分之一天平上精准称量精确到O.0055g,通过卓祥自动配液器将溶液浓度精准配制到0.0002g/ml,具体可参考GBT1632.3中7.31表格,放在卓祥多位溶样块中溶解。样品粘度的测定:加入样品,启动软件中特定公式测试,待任务结束。连续测三次时间之差与其平均值在0.2秒内。粘度管的清洗:再次启动卓祥超高温全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。按照公式(1)计算样品的粘数(比浓粘度)I: 式中:t/t0-----分别代表的是样品流经平均时间/溶剂流经平均时间,单位为秒(S);C ----135度时溶液质量浓度的数值,单位为克每毫升(g/ml);公式(2): γ——20度和135度下溶剂的膨胀系数,等于相对应的密度之比,约等与1.107公式(3)特性粘度 [n]的计算 K —— 同聚合物浓度和结构有关的计算,可用K=0.27计算公式(4)分子量M的计算 以上内容未经过原作者或者现发布者的同意,任何个人或者单位都不可以转载和使用上述内容
  • 沃特世与陶氏隆重推出新型聚合物分析技术-ACQUITY APC系统
    此项突破性技术将开创聚合物探索的新时代 美国马萨诸塞州米尔福德市&ndash 2013年3月18日&ndash 沃特世公司(纽约证券交易所代码:WAT)今日推出的这套系统提供了一种新型的聚合物色谱分析技术,能够更加快速地获取更准确的聚合物分子量信息。该系统将明显提高聚合物峰的分辨率,尤其是在分析低分子量聚合物和低聚物时,其速度比传统凝胶渗透色谱(GPD)要快20倍。 超高效聚合物色谱(ACQUITY® Advanced Polymer Chromatography&trade , APC&trade )系统在费城召开的本年度Pittcon会议(业界最重要的实验室科学应用会议暨展览年会)上首度现身,由沃特世公司与陶氏化学公司(纽约证券交易所代码:DOW)合作开发。 APC系统包含一个创新的示差检测器,针对低扩散进行了优化,即便在低聚合物浓度的条件下也能达到精确表征所需的低噪音和漂移性能。 等度溶剂管理器的精确流速可确保经过校准的系统日复一日地持续提供准确的分子量数据。此外,系统还配备有最新的色谱柱技术,采用亚3 µ m的刚性大孔径亚乙基桥杂化颗粒,显著提高了稳定性和分离速度。 沃特世公司分离科技副总裁Ian King提出:传统方法中用于聚合物分析的软质凝胶色谱柱会在溶剂中发生膨胀,从而影响最终的分析结果,此次推出的APC将在这方面带来前所未有的全新改变。 &ldquo 有了APC,科学家们可以通过一系列包含多种溶剂的色谱柱,在单个系统上运行不同的聚合物应用,&rdquo Ian King说,&ldquo 现在我们的客户能够大幅提升实验室效率和资产利用率,与陶氏公司的这项合作让我们看到&mdash &mdash 领先的尖端技术与卓越的创新精神以及高效的合作融合在一起,碰撞出了如此耀眼的智慧之光!&rdquo 陶氏公司核心R&D分析科学研发副总监Jim Alexander也说道:&ldquo 工业的发展在不断追求新材料属性的认知和了解中持续推进,创新技术的开发将更加快速、简便和可持续。这一全新功能将有助于解决研发过程中的关键性难题,以更加优质的数据帮助科学家们快速获得解决方案。&rdquo 在Pittcon展会中,Alexander与沃特世团队的成员共同向大家介绍了此项新型分析技术。此次发布会由匹兹堡分析化学和应用光谱学展览会组织召开,这是一家位于宾夕法尼亚州的非营利性教育公司,由匹兹堡光谱学学会(SSP)和匹兹堡分析化学协会(SACP)组成。 APC的开发是沃特世公司和陶氏化学公司长达50年合作关系中的一座里程碑。1963年,陶氏公司将其GPC专利授予沃特世公司,后者推出了世界上第一台商业高压液相色谱系统&mdash &mdash GPC 100。GPC 100带领实验室科学进入一个划时代的转折阶段,为无数新发现敞开了大门,帮助它们迅速通过实验阶段,进入生产、质量控制和临床试验环节。 关于沃特世公司(www.waters.com) 50多年来,沃特世公司(纽约证券交易所代码:WAT)通过提供实用、可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2012年沃特世拥有18.4亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 联系人: Chris Orlando 沃特世公司公共关系经理 508-482-2623 Chris_Orlando@waters.com
  • 全自动乌氏黏度计在聚偏二氯乙烯PVDC材料中的应用
    聚偏二氯乙烯(Polyvinylidene chloride)简称PVDC,是以偏二氯乙烯(VDC)单体为主要成分的共聚物。一种软化温度在160-200℃的热塑性聚合物,具有头尾相连的线性聚合链结构。PVDC是一种阻湿、阻氧皆优的高阻隔性能包装材料,由于其对称的分子结构和疏水基氯的存在,是一种高结晶性聚合物,阻隔性能好且不会随湿度而改变。PVDC最大优点是对众多的气体或水汽有很高的阻隔性,是当今世界上塑料包装中综合阻隔性能较好的包装材料。基于PVDC的优良特性,其应用领域十分广泛。所以在生产质量控制方面的要求也非常严格。不管是PVDC材料的黏度、水分等项目的检测上,其检测数据的重复性,准确性要求甚高。乌氏黏度计一直以来都是测试黏度的最常用的经典测试工具。现在的全自动乌氏黏度计不仅在操作流程上实现全自动化的模式,其在测试数据上也更加精确。IVS800全自动黏度测量系统测试流程称样用万分之一天平称取聚偏二氯乙烯(PVDC)样品,放入到溶样瓶中,用DP25自动配液器(移液精度≤0.1%)移取定量四氢呋喃溶液到溶样瓶中;融样将溶样瓶放入P12中旺聚合物溶样器中(可多个溶样同时进行溶解),采用磁力搅拌的方式,按照规定的温度、时间溶样;黏度测试将装置聚偏二氯乙烯(PVDC)试样的溶样瓶放入已设置好所需水槽温度(25±0.01℃)的IVS800全自动乌氏黏度计样品盘中,启动测试功能,自动得出测试结果; 测试结果IVS800全自动乌氏黏度计连接电脑端,可自动得出测试结果并进行数据储存,便于多样化黏度数据分析; 清洗黏度管黏度管固定在IVS800全自动乌氏黏度计恒温水槽中,无需拆装取出,可自动清洗、自动排废、自动干燥。
  • 中旺全自动乌氏黏度仪在聚偏氟乙烯PVDF行业中的应用
    前言聚偏氟乙烯PVDF,是一种高度非反应性热塑性含氟聚合物,溶于二甲基乙酰胺等强极性溶剂。相对分子质量为40~60万,PVDF生产工艺主要包括乳液聚合法、悬浮聚合法、溶液聚合法以及超临界聚合法等。它除了具有良好的耐化学腐蚀性、耐高温性、耐氧化性、耐气候性、耐紫外线、耐辐射性能,还有压电性、热电性等特殊性能,其广泛应用于涂料、注塑、锂电池、水处理、光伏等领域。其中PVDF的特性黏度是其非常重要的一项技术指标,是企业鉴别PVDF合格与否的手段之一。就目前PVDF产能情况而言,随着下游需求的增长,尤其是新能源汽车带来锂电池的爆发式增长,国内企业纷纷扩产,开工率保持高位。鉴于这样的背景和企业需求,杭州中旺科技生产的全自动乌氏黏度仪有效地应用了聚偏氟乙烯PVDF特性黏度的检测。某PVDF厂家的IVS400-6全自动黏度仪全自动IVS400全自动黏度仪以乌氏黏度计为核心,依据ISO/GB/DIN相关标准,实现自动测试、自动计算、自动排废、自动干燥等功能,乌氏黏度管固定无需拆装,有效地减少了配件损耗。主要组成部分:▂高精密恒温水槽(控温25.00±0.01℃);▂自动黏度测量单元(自动计时:精度0.001S,自动清洗,自动排废等);▂主控制器(最多可同时控制6个测试单元);▂乌氏黏度计(符合ISO3105规定);▂流经式制冷器(连续不间断工作);▂Viscobee软件:覆盖大部分测试结果(特性黏度、分子量、黏数、聚合度等),并且可免费添加其他特殊公式。某企业PVDF特性黏度检测:测试流程▂称样用万分之一天平称取PVDF样品,放入到溶样瓶中,用DP25自动配液器移取溶剂到溶样瓶中;▂溶样将溶样瓶放入P12中旺聚合物溶样器中,按照规定的温度、时间溶样;▂黏度测试打开IVS400黏度仪,水槽温度设定为25℃±0.01℃,将溶液经过滤后加入乌氏黏度计中,打开软件,自动测试、计算;▂测试结果特性黏度:某一厂家PVDF黏度测量数据▂清洗乌氏黏度管自动清洗、自动排废、自动干燥。
  • 美国聚合物泡沫需求将增至86亿磅
    美国商用通讯公司最新研究称,美国聚合物泡沫需求将从2010年的56亿磅增至2015年时的86亿磅,复合年增长率为2.5%。   其中,最大市场为聚氨酯,预计2015年市场需求将达到44亿磅,2010年为39亿磅,复合年增长率为2.6% 聚苯乙烯泡沫需求将从2010年的22亿磅增至2015年的25亿磅,复合年增长率为2.1%。
  • 全自动乌氏粘度计在PVP(聚乙烯吡咯烷酮)材料中的应用
    聚乙烯吡咯烷酮(polyvinyl pyrrolidone),简称PVP,是一种非离子型高分子化合物,是N-乙烯基酰胺类聚合物中独具特色的精细化学品。已发展成为非离子、阳离子、阴离子3大类,工业级、医药级、食品级3种规格,相对分子质量从数千至一百万以上的均聚物、共聚物和交联聚合物系列产品,并以其独特的性能获得广泛应用。PVP(聚乙烯吡咯烷酮)材料作为一种合成水溶性高分子化合物,具有水溶性高分子化合物的一般性质,胶体保护作用、成膜性、粘结性、吸湿性、增溶或凝聚作用,其受到人们重视的独特性质是其优异的溶解性能及生理相容性。在合成高分子中像PVP(聚乙烯吡咯万通)材料这样既溶于水,又溶于大部分有机溶剂、毒性很低、生理相溶性好的并不多见,特别是在医药、食品、化妆品这些与人们健康密切相关的领域中,随着其原料丁内酯价格的降低,展示出发展的良好前景。PVP(聚乙烯吡咯烷酮)材料按其平均分子量大小分为四级,习惯上常以K值表示,不同的K值分别代表相应PVP(聚乙烯吡咯烷酮)材料的平均分子量范围。K值实际上是与PVP水溶液的相对粘度有关的特征值,而粘度又是与高聚物分子量有关的物理量,因此可以用K值来表征PVP的平均分子量。通常K值越大,其粘度越大,粘接性越强。在PVP(聚乙烯吡咯烷酮)材料的生产和研发中,K值通常使用乌氏毛细管法进行测量,乌氏毛细管法实验操作简单,数据重复性好,在大多数高分子材料研发及相关质量控制中都起到关键作用,尤其是ZVISCO自动乌式粘度仪因其自动化程度高,节省人力的同时进一步提高了实验数据的可靠性。以IV2000系列全自动乌式黏度计、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度可达180℃。3. 测试过程IV2000系列全自动乌式黏度计可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间的精度可到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV2000系列全自动乌式黏度计连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。
  • 全自动乌氏粘度计在PVF(聚氟乙烯)材料中的应用
    PVF又名聚氟乙烯( polyvinyl fluoride )是一种热塑性高强度树脂,是含氟聚合物同系物中所含氟原子较少的聚合物,通常情况下呈无臭、无毒的白色粉末。密度为1.38,在240℃以上分解,具有晶体结构、高透明度(可透过紫外线)、高电绝缘性能、高坚韧性、优良耐化学品、抗老化和耐腐蚀性能。PVF(聚氟乙烯)通常作为薄膜和涂料应用于建筑装饰、电子电路、太阳能等领域。PVF(聚氟乙烯)材料独特的结构使他对日照、化学溶剂、酸碱腐蚀、湿气和氧化作用的有优秀抵抗力和耐久性,在室外阳关暴晒25年以上仍能保持良好的外貌和物理性能,制成的薄膜,既可用作农用薄膜、材料的保护膜、包装油脂和腐蚀性物质,也可用作电绝缘材料等。乌氏毛细管法是PVF(聚氟乙烯)材料质量控制中常用的分析方法之一,由乌氏毛细管法测量得出的特性黏度也是PVF(聚氟乙烯)材料的核心指标之一。乌氏毛细管法实验操作简单,数据重复性好,在大多数高分子材料研发及相关质量控制中都起到关键作用,尤其是ZVISCO自动乌式粘度仪因其自动化程度高,节省人力的同时进一步提高了实验数据的可靠性。以ZVISCO IV6000H系列全自动乌式黏度计、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度可达180℃。3. 测试过程IV6000H系列全自动乌式黏度计可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间的精度可到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV6000H系列全自动乌式黏度计连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。5. 粘度管清洗干燥过程:IV6000H系列仪器可自动排废液,自动加清洗液干燥液、自动清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。清洗模式可多种选择,同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。IV6000H系列全自动乌式黏度计可实现自动测试、自动排废液、自动加清洗液和干燥液、自动清洗,自动干燥,告别了粘度管是耗材的时代。
  • 全自动乌式黏度计在PVDC(聚偏二氯乙烯中的应用)
    聚偏二氯乙烯(Polyvinylidene Chloride,简称PVDC)是由偏二氯乙烯(VDC)单体聚合而成的聚合物,结构单元以头尾形式键接,结构对称,极性大,易形成氢键,具有显著的阻水、阻气、阻氧性能,同时还具有优异的耐燃、耐腐蚀、耐化学品性能。PVDC(聚偏二氯乙烯)材料可制成片材、管材、模塑件、薄膜和纤维。其中主要的应用领域是食物和药品的包装。PVDC(聚偏二氯乙烯)材料良好的阻气性能,能够延缓食品氧化变质现象的发生,避免内装物的香味散失和防止外部不良气味的侵入,同时PVDC(聚偏二氯乙烯)材料还具有优异的阻水性,避免了食品因失水而导致的口感降低,是公认的在阻隔性方面综合性能极佳的塑料包装材料。应用于食品包装领域的PVDC(聚偏二氯乙烯)相较于其他工业领域有更严格的质量要求,要求厂家在生产时应具备相对粘度、水分等项目的检测仪器和设备,进行原材料的管控和产品出厂的检测,相对粘度是其核心指标之一。全自动乌式粘度计具有操作方便,分子量适用范围广泛,数据重复性良好等优点,所以成为PVDC(聚偏二氯乙烯)等高分子材料化验分析中的常用实验仪器,为PVDC(聚偏二氯乙烯)材料的研发及生产提供更精准的实验数值参照。以杭州卓祥科技有限公司的IV8000X系列全自动在线稀释型乌式粘度计为例: IV8000X系列全自动在线稀释型乌式粘度计相较于传统的手动测试方法:⑴ 拥有更高的温控精度以及均匀度:IV8000X系列乌氏粘度仪所使用的HCT系列高精度恒温浴槽的温控精度优于“±0.01℃”,让实验得出的数据更精准,数据重复性更稳定。⑵ 特殊的检测方式:采用不锈钢铠装光纤,可满足测试不同颜色的样品,耐腐蚀,且使用寿命长。⑶ 粘度管不再是耗材:仪器自动排废液、清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。⑷ 实验流程自动化:IV8000X系列自动稀释型乌氏粘度仪在 “单点法”的测量过程中能实现自动测量-自动排液-自动清洗-自动干燥的自动化实验流程,在“多点法”的测量过程中每个测量位都具有连续测量、在线自动稀释样品、自动混匀、自动清洗、自动干燥等功能,在多次测量及清洗干燥整个过程中无需人员看管。
  • 食品中双乙酸钠含量研究等课题通过鉴定
    近日,由山东潍坊市质检所承担的“食品中双乙酸钠含量检验方法的研究”和“纺织品中烷基酚(AP)和烷基酚聚氧乙烯醚(APEO)气相色谱/质谱测定方法的研究”两项国家质检总局立项课题通过专家的鉴定。与会专家一致认为这两项项目各项技术经济指标均达到了任务书规定的要求,整体技术居国内领先水平。   据悉,“食品中双乙酸钠含量检验方法的研究”在国内首次建立了采用高效液相色谱测定食品中双乙酸钠含量的方法。同时,研究建立了硝酸镧试法对醋酸根离子进行定性鉴别、醋酸铀锌酰试法对钠离子进行定性鉴别和等离子体发射光谱法对钠离子含量进行定量分析的方法,最终形成了科学、快速、准确的系列检验方法,填补了国内食品中双乙酸钠含量检验方法的空白。   “纺织品中烷基酚(AP)和烷基酚聚氧乙烯醚(APEO)气相色谱/质谱测定方法的研究”对保护我国纺织品消费安全、应对贸易壁垒、提升国内纺织服装企业国际竞争力、丰富我国纺织品实验室测试方法、提高国内实验室检测能力具有重要意义,整体技术居国内领先水平。
  • 全自动粘度测量仪测聚苯乙烯的特性粘度及分子量
    聚苯乙烯(Polystyrene,缩写PS)是指由苯乙烯单体经自由基加聚反应合成的聚合物。苯乙烯侧基的苯环加强了分子的刚性,也使聚苯乙烯相较于其他聚合物拥有更优良的性能和更广泛的用途,是四大通用塑料之一。聚苯乙烯(PS)在外观上呈无色透明状,可以自由着色,并具有优良的绝热和绝缘性能。它的玻璃态转变温度高于100℃,因此经常被用来制作各种需要承受开水的温度的一次性容器,以及一次性泡沫饭盒等。鉴于聚苯乙烯(PS)材料优良的性能和使用的广泛性,选用合理精准的产品质量检测手段就显得十分重要。乌氏粘度法是一种操作简便、精准度高且应用广泛的高分子材料检测方法,在聚苯乙烯(PS)材料研发和质量控制中用黏均分子量来表征相关数据准确性。以杭州卓祥科技有限公司的IV6000系列全自动乌氏粘度仪、MSB系列多位溶样块、 ZPQ智能配液器一整套黏度测试设备为例。 实验流程:1. 称取所需克数的样品,并使用ZPQ智能配液器进行智能配液,点击配液按键,直接输入需求浓度和样品称取质量即可完成配液。也可以连接天平直接获取样品质量,智能计算出所需移取溶剂的目标体积,减少样品精确称量的繁琐步骤,移液精度可达0.1%。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 将移取好的溶液放入MSB系列多位溶样块之中。MSB多位溶样块采用金属浴的方式进行加热并具有自动搅拌功能,最多同时可溶解15个样品,转速、温度、溶样时间可在屏幕上自行设置,溶样温度最高可达180℃3. 测试过程IV6000系列乌氏粘度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可精确到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV6000系列全自动粘度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表和外推分析等多种功能。5. 粘度管清洗干燥过程:仪器自动排废液、清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。清洗模式可多种选择,同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。IV6000系列乌氏粘度仪可实现自动测试、自动排废液、自动清洗及干燥过程的自动化,告别粘度管是耗材的时代。
  • 沃特世携手怀雅特,助力聚合物分析及生物制药表征研究
    通过技术整合,以五倍于传统体积排阻色谱(SEC)的分析速度提供有价值的信息 沃特世公司(纽约证券交易所代码:WAT)近日宣布与怀雅特技术公司(Wyatt Technology)签订联合营销协议,携手推进合成聚合物及生物治疗性蛋白质分析技术发展。通过将沃特世超高效液相色谱(Waters ACQUITY UPLC)和超高效聚合物色谱(Waters ACQUITY Advanced Polymer Chromatography, APC)系统与怀雅特μDAWN多角度光散射(MALS)检测器相结合,研发科学家们可以以5倍于传统方法的速度获得高质量的数据和信息。 在SEC分离中,高分离度和快速分析往往不可兼得。然而,沃特世UPLC系统的创新型低扩散系统设计结合兼容多种溶剂的小颗粒色谱柱技术,能赋予SEC/GPC分离无可比拟的高分离度。此外,如与低扩散多角度光散射(MALS)检测器(例如怀雅特技术公司的μDAWN MALS检测器)配合使用,这种分析速度快且分离度高的技术优势将得到更加淋漓尽致的体现。将两种系统联用时,用户可直接测定聚合物、肽或蛋白质的绝对分子量和尺寸,而无需完全依赖色谱柱校准或参比标准。 沃特世全球市场高级副总裁Mike Harrington表示:“能与怀雅特技术公司这样的创新型企业携手攻克棘手的分子表征难题,沃特世深感荣幸。作为各自领域的领军企业,我们将以此次合作为契机,整合并优化双方技术,协助科学家们更好地实现其分析目标。” “无论研究人员是想要探索和预测聚合物材料属性,还是要在生物制剂表征分析中测定绝对分子量和分子大小,此次合作必将提升研究者通过SEC-MALS实验获取准确、可靠结果的信心。” “对于沃特世UPLC仪器而言,μDAWN是一项非常独特的检测技术。用户只需在ACQUITY APC系统中添加μDAWN检测器即可测定绝对分子量,无需再依赖繁琐且准确性往往欠佳的色谱柱校准参比标准。”怀雅特技术公司的执行副总裁Cliff Wyatt表示:“我们很高兴能与业界一流的沃特世产品联手,切实提升双方共同客户的分析准确性和分析通量。” 关于沃特世公司沃特世公司(纽约证券交易所代码:WAT)专注于为实验室相关机构开发和生产先进的分析和材料科学技术。50多年来,公司开发出一系列分离科学、实验室信息管理、质谱分析和热分析技术。 关于怀雅特技术公司怀雅特技术公司致力于开发多角度光散射和动态光散射检测器,迄今为止已经积累了40余年的丰富经验。它与生物技术、化学、石化、制药、研究院所和政府等领域的客户建有广泛的合作关系。企业家精神及其产品的独特性是公司引以为傲的资本。凭借突破性的技术和卓越的客户服务,怀雅特技术公司为全球业界同行树立了标杆。
  • 我国学者在近红外吸光聚合物太阳电池领域取得重要进展
    p style=" text-align: justify "    /p p style=" text-align: center " img title=" tpxw2019-01-08-09.jpg" alt=" tpxw2019-01-08-09.jpg" src=" https://img1.17img.cn/17img/images/201901/uepic/8f85fe5b-35ad-4005-9e82-3608bdf73b66.jpg" / /p p style=" text-align: center "   图. 近红外吸光电子受体分子设计与合成、吸光和荧光谱图、叠层太阳能电池器件结构、能级和光伏特性曲线 /p p style=" text-indent: 2em " 在国家自然科学基金项目科学部前沿导向重点项目和国家优秀青年科学基金项目(项目编号:21722404,21734008)等资助下,我国学者在近红外吸光聚合物太阳电池研究中取得进展。研究成果以“Near-Infrared Electron Acceptors with Fluorinated Regioisomeric Backbone for Highly Efficient Polymer Solar Cells”(具有氟化骨架异构的近红外电子受体实现高效聚合物太阳电池)为题,于2018年11月06日发表在Advanced Materials(《先进材料》)上。 /p p style=" text-indent: 2em " 论文链接: a href=" https://doi.org/10.1002/adma.201803769" target=" _blank" https://doi.org/10.1002/adma.201803769 /a 。 /p p style=" text-align: justify "   聚合物太阳电池近年取得了不断突破,很大程度得益于新型有机半导体分子和聚合物的快速发展。有机分子和聚合物通过结构裁剪可大范围调制其光、电和薄膜性质,从而实现区别于传统无机太阳电池的多功能性的太阳电池器件,例如可见区透过,近红外区高光谱响应度的半透明器件和全光谱吸收的叠层器件等。其中,发展新型近红外吸光的有机半导体材料(带隙Eg& lt 1.4 eV)成为领域关注热点。 /p p style=" text-align: justify "   浙江大学高分子科学与工程学系的有机半导体实验室已发展一系列基于非稠合或稠合骨架的近红外电子受体分子。最近,该实验室的李昌治研究员和陈红征教授等设计发展了一类近红外电子受体分子,通过非对称桥连基团的区域异构化和调控氟原子取代数目,改善分子共轭结构和轨道能级,获得了性能优异的近红外电子受体分子并成功建构响应波长可达1000 nm光谱的高效率聚合物太阳电池。通过进一步与吸光带边800 nm的前电池搭配,制备得到高效率聚合物叠层太阳电池。该工作得到华南理工大学叶轩立教授和香港中文大学路新慧教授在光学模拟和薄膜形貌测试方面的支持。这一成果从分子骨架结构设计入手,通过探索理解其分子结构-薄膜特性-器件性能之间的构效关系,为发展近红外电子受体分子和近红外区高光谱响应度的聚合物太阳电池提供了新方法和新途径。 /p p style=" text-align: justify " 附件: /p p style=" line-height: 16px " img style=" margin-right: 2px vertical-align: middle " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a title=" chen2018.pdf" href=" https://img1.17img.cn/17img/files/201901/attachment/a4dc0b99-2bf7-4de1-8fa0-11d21bce1737.pdf" target=" _blank" textvalue=" Near-Infrared Electron Acceptors with Fluorinated Regioisomeric Backbone for Highly Efficient Polymer Solar Cells" Near-Infrared Electron Acceptors with Fluorinated Regioisomeric Backbone for Highly Efficient Polymer Solar Cells /a /p p & nbsp /p
  • 三聚氰胺HPLC检测方法之固相萃取(SPE)法
    1. 依据:GB/T 22388&mdash 2008 2. 原理:试样用三氯乙酸溶液-乙腈提取,经阳离子交换固相萃取柱净化后,用高效液相色谱测定,外标法定量。 3. 试剂与材料:除非另有说明,所有试剂均为分析纯,水为GB/T 6682规定的一级水。 3.1甲醇:色谱纯; 3.2乙腈:色谱纯; 3.3氨水:含量为25%~28%; 3.4三氯乙酸; 3.5柠檬酸。 3.6辛烷磺酸钠:色谱纯; 3.7甲醇水溶液:准确量取50 mL 甲醇和50 mL 水,混匀后备用; 3.8三氯乙酸溶液(1%):准确称取10 g 三氯乙酸于1 L 容量瓶中,用水溶解并定容至刻度,混匀后备用; 3.9氨化甲醇溶液(5%):准确量取5 mL 氨水和95 mL 甲醇,混匀后备用; 3.10离子对试剂缓冲液:准确称取2.10 g 柠檬酸和2.16 g 辛烷磺酸钠,加入约980 mL 水溶解,调节pH 至3.0 后,定容至1L 备用。 3.11三聚氰胺标准品:CAS 108-78-01,纯度大于99.0%; 3.12三聚氰胺标准储备液:准确称取100 mg(精确到0.1 mg)三聚氰胺标准品于100 mL 容量瓶中,用甲醇水溶液(3.7)溶解并定容至刻度,配制成浓度为1 mg/mL 的标准储备液,于4℃避光保存。 3.13 阳离子交换固相萃取柱:混合型阳离子交换固相萃取柱,基质为苯磺酸化的聚苯乙烯-二乙烯基苯高聚物,60 mg,3 mL,或相当者。 3.14 定性滤纸。 3.15 微孔滤膜:0.2 &mu m,有机相。 3.16 氮气:纯度大于等于99.999% 4. 仪器和设备 4.1 高效液相色谱(HPLC)仪:配有紫外检测器或二极管阵列检测器。 4.2 分析天平:感量为0.00001 g和0.01 g。 4.3 离心机:转速不低于10000 r/min。 4.4 天津恒奥超声波提取器。HS,HU系列 4.5 天津恒奥固相萃取装置。HSE-12D 4.6 天津恒奥氮吹仪。HGC,HSC系列 4.7 天津恒奥涡旋振荡器。HMS-350 4.8 天津恒奥真空泵。HPD-25 4.9 天津恒奥精密气体稳流调节阀。 4.10 具塞塑料离心管:50 mL。 5. 样品处理 5.1 提取 称取(液态奶、奶粉、酸奶、冰淇淋和奶糖等)2 g(精确至0.01 g)试样于50 mL具塞塑料离心管中,加入15 mL三氯乙酸溶液(3.8)和5 mL乙腈,超声提取10 min,再振荡提取10 min后,以不低于10000 r/min离心30 min。上清液经三氯乙酸溶液润湿的滤纸过滤后,用三氯乙酸溶液定容至25 mL,移取5 mL滤液,加入5 mL水混匀后做待净化液。 注:若样品中脂肪含量较高,可以用三氯乙酸溶液饱和的正己烷液-液分配除脂后再用SPE柱净化。 5.2 活化 依次用3 mL 甲醇、5 mL 水活化(3.13)阳离子交换固相萃取柱。旋转固相萃取装置前的精密气体稳流调节阀使洗液流速不超过1 mL/min 5.3 上样 将5.1中的待净化液转移至固相萃取柱(5.2)中。 5.4 淋洗 依次用3 mL水和3 mL甲醇洗涤,抽至近干后, 5.5 洗脱 用6 mL氨化甲醇溶液(3.9)洗脱,用试管收集洗脱液。整个固相萃取过程流速不超过1 mL/min。5.6 浓缩 洗脱液于50℃下用氮气吹干,残留物(相当于0.4 g样品)用1 mL流动相定容,涡旋混合1 min,过微孔滤膜后,供HPLC测定。 6. 高效液相色谱测定 HPLC 参考条件 a) 色谱柱:C8柱,250 mm× 4.6 mm(i.d.),5 &mu m,或相当者; C18柱,250 mm× 4.6 mm(i.d.),5 &mu m,或相当者。 b) 流动相:C8柱,离子对试剂缓冲液(3.2.10)-乙腈(85+15,体积比),混匀。 C18柱,离子对试剂缓冲液(3.2.10)-乙腈(90+10,体积比),混匀。 c) 流速:1.0 mL/min。 d) 柱温:40℃。 e) 波长:240 nm。 f) 进样量:20 &mu L。 7. 分析 用GB/T 22388&mdash 2008标准检测方法分析,使用天津恒奥的设备测得样品的回收率结果如下: 添加水平(mg/Kg) 回收率 空白 2 116% 4 108% 6 92% 8 96% 由上表可以看出:使用天津恒奥设备处理样品,不仅可以提高分析样品的速度而且还可以得到满意的回收率。
  • 全自动乌氏粘度计-用毛细管法测定聚乙烯基吡咯烷酮的k值
    聚乙烯吡咯烷酮(polyvinyl pyrrolidone)简称PVP,是一种非离子型高分子化合物,是N-乙烯基酰胺类聚合物中最具特色,且被研究得最深、广泛的精细化学品品种。已发展成为非离子、阳离子、阴离子3大类,工业级、医药级、食品级3种规格,相对分子质量从数千至一百万以上的均聚物、共聚物和交联聚合物系列产品,并以其优异独特的性能获得广泛应用。PVP按其平均分子量大小分为四级,习惯上常以K值表示,不同的K值分别代表相应的PVP平均分子量范围。K值实际上是与PVP水溶液的相对粘度有关的特征值,而粘度又是与高聚物分子量有关的物理量,因此可以用K值来表征PVP的平均分子量。通常K值越大,其粘度越大,粘接性越强。测定K值最常用的方法是用毛细管粘度计测的PVP水溶液的相对粘度n,再根据公式计算出K值。 实验方法如下实验所需仪器:卓祥全自动粘度仪、自动配液器、万分之一电子天平。实验所需试剂1:溶剂:纯水,无水乙醇为清洗剂。溶剂粘度的测定:卓祥全自动粘度仪设置到实验目标温度值并且稳定后,加入纯水,软件中启动测试任务待结束,测的溶剂时间T0。粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。样品溶液的制备:在万分之一天平上精准称量精确到*g,溶解在**ml溶剂中,通过自动配液器将溶液浓度精准配制到**g/ml,溶解条件:常温搅拌。样品粘度的测定:加入**ml样品,测量样品时间**,计算粘度结果粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。
  • 禾工发布三聚氰胺检测方法和整套仪器配置
    固相萃取(SPE)方法介绍 1、固相萃取(SPE)柱的选择: 三聚氰胺呈弱碱性(弱阳离子化合物),净化过程一般选择阳离子交换柱。混合型的阳离子交换柱(PCX)通过将磺酸基团(-SO3H)键合在极性高聚物聚苯乙烯/二乙烯苯(PEP)吸附剂上,具有阳离子和反相两种吸附机理,并具有以下优点: 1)、可通过两种不同溶液的洗涤(水/一定pH值的缓冲溶液和有机溶剂),使样品更干净,提高检测的灵敏度。 2)、批次重复性好。 3)、回收率高,重现性好,即使小柱跑干也可以得到较高回收率。 五、HPLC-UV检测方法(GB/T&hellip &hellip ..) 一、 检测方法 1、试剂与材料: 除另有规定外,试剂为分析纯,水符合GB/T6682规定的三级水,色谱用水符合一级水的规定。 1.1 乙腈:色谱纯 1.2 甲醇:色谱纯 1.3 氨水:浓度25%~28% 1.4 混合型阳离子交换固相萃取小柱:60mg/3mL 1.5 三氯乙酸溶液10g/L :称取10g三氯乙酸加水至1000mL。 1.6 乙腈水溶液:乙腈:水为50:50 1.7 盐酸溶液:0.1mol/L 1.8 氨水-甲醇溶液:量取5mL 氨水,溶解于100mL 甲醇中。 1.9 乙酸锌溶液219 g/L:取219g乙酸锌用300mL 水溶解后,定溶至1L。 1.10 20%甲醇溶液:200mL 甲醇,溶解于800mL 水中。混匀。 1.11 缓冲液:10mmol/L辛烷磺酸钠,10mmol/L柠檬酸,调pH3.0。 1.12 标准溶液: 1.12.1 标准贮备液1mg/mL :称取100.0mg 与小烧杯中,加少量乙腈: 水40:60 溶解并转入100mL 容 量瓶中定容。 1.12.2 标准工作液10&mu g/mL :准确吸取标准贮备液1mL 于100mL 容量瓶中,用乙腈: 水40:60定容。 2 仪器设备 实验室常用仪器及: 2.1 液相色谱仪 2.2 超声波振荡器 3 操作步骤 3.1 试样提取: 称取5g试样(精确到0.01g)与150mL 三角瓶中,加入50mL三氯乙酸溶液(1.5)或乙腈水溶液溶解 样品,放于超声波振荡器中超声萃取30min。取出加入5mL 乙酸锌溶液(1.9),前者采用三氯乙酸溶液 (1.5)、后者采用盐酸溶液(1.7)将试样转入100mL 容量瓶中定容至刻度,混匀后用滤纸过滤。 3.2 净化 分别用3mL 水,3mL 甲醇活化混合型阳离子交换固相萃取小柱后。取2mL 滤液上柱,然后分别用3mL 甲醇和3mL 水淋洗,将淋洗液全部抽干后,用3mL 氨水-甲醇(1.8)洗脱,洗脱液于50℃水浴中旋转蒸发至干。用20%甲醇溶液定容至1mL ,漩涡震荡1min,过0.45um滤膜过滤,上机测定。 3.3 测定 3.3.1 色谱条件 色谱柱:极性 C8柱(4.6mmi.d.× 250mm,5&mu m)或C18柱(4.6mmi.d.× 250mm,5um); 流 速:1.0mL /min; 进样量:50&mu l; 柱 温:35℃; 波 长:240nm. 流动相:C8柱使用的为缓冲液(3.11):乙腈=95:5; C18柱使用的为缓冲液(3.11):乙腈=90:10; 3.3.2 标准曲线绘制 分别吸取标准工作液(3.12.2)0.5、2.0、4.0、7.5、10.0mL于50mL 容量瓶中,用乙腈: 水40:60 分别定容混匀,该标准系列浓度分别为0.10、0.40、0.80、1.50、2.00&mu g/mL。将该标准系列溶液分别 注入仪器中,测定峰高(或峰面积)。以标准系列浓度为横坐标,峰高(或峰面积)为纵坐标绘制标准 曲线。或计算回归方程。3.3.3 测定 分别吸取试液(3.2)注入仪器中,测定峰高(或峰面积)。由标准曲线查得试液中三聚氰胺的浓度或通过回归方程计算出试液中三聚氰胺的浓度。 4 结果表示 4.1 试样中三聚氰胺的含量X,以质量分数毫克每千克(mg/kg)表示 式中: Cs&mdash 试液中三聚氰胺的浓度,(&mu g/mL ); V&mdash 试液体积,(100mL ); m&mdash 试样的质量,(g); n&mdash 稀释倍数; 6.2 平行测定结果用算术平均值表示,结果保留小数点后两位有效数字。 六、HPLC-DAD检测方法(GB/T&hellip &hellip ..) (婴幼儿配方奶粉和牛奶中三聚氰胺的高效液相色谱筛选法) 一、检测方法 1、方法来源 本方法是在参考FCC三聚氰胺检测方法[Updated FCC Development MelamineQuantitation(HPLC&mdash UV),April2,2007],FDA三聚氰胺检测方法 [GC-MS Screen for the Presence of Melamine ,(Adapted from FDA/ORA Forensic Chemistry Center SOP T015) Revised April 10, 2007]的基础上,综合制定而成的 婴幼儿配方奶粉和牛奶中三聚氰胺高效液相色谱筛选方法。 2、试剂 1.1 磺基水杨酸:分析纯; 1.2 柠檬酸:分析纯; 1.3 辛烷磺酸钠:高效液相色谱离子对试剂; 1.4 乙腈:色谱纯; 1.5 盐酸:分析纯; 1.6 超纯水:18.2M&Omega ; 1.7 60g/L磺基水杨酸:称取60g磺基水杨酸用水定容至1L; 1.8 0.1N HCl:量取8.3mL盐酸用水稀释至1L; 1.9 标准储备液:精密称取三聚氰胺0.0100g,用甲醇配制成浓度为1mg/mL 标准储备液。 2.0 标准使用液:将标准储备液用甲醇逐级稀释至适宜浓度。 3、仪器 高效液相色谱,附二极管阵列检测器 4、样品处理 2.1 配方奶粉:称取0.5g样品,加入0.1N HCl约15mL,涡旋混匀,超声提取30min后加入60g/L磺基 水杨酸3~4mL,用0.1N HCl定容至25mL,混匀后离心,上清液经0.45&mu m的微孔滤膜过滤后进样。 2.2 牛奶:称取15g左右样品,加入60g/L磺基水杨酸3~4mL,用0.1N HCl 定容至25mL,混匀后离心, 上清液经0.45&mu m的微孔滤膜过滤后进样。 5、参考色谱条件 4.1 色谱柱:ODS C8,250mm× 4.6mm 4.2 流动相:缓冲液:乙腈=85:15,等度洗脱 4.3 缓冲液:10mM柠檬酸+10mM辛烷磺酸钠,调pH为3.0 4.4 流 速:1.0mL/min 4.5 柱 温:40 ℃ 4.6 波 长:240nm 6 计算公式 式中:X&mdash 样品中三聚氰胺含量,mg/kg; C&mdash 从标准曲线上查出的含量,&mu g/mL; V&mdash 定容体积,mL; M&mdash 称样量,g 7 定量限 本方法的定量限为1mg/kg 8 参考色谱图和光谱图 高效液相色谱仪三聚氰胺检测配置 1) STI 5000型液相色谱仪系统 1 P5000 型高压恒流输液泵 1台 2 UV5000紫外检测器 1台 3 Rheohyne 7725i 手动进样阀 1支 4 三聚氰胺分析专用液相色谱柱 1支 5 25/50ul微量注射器 1支 6 N2000色谱工作站(SP1版) 1套 7 液相启动工具包 1套 2) 液相附助设备 1 KQ-2200 超声波清洗器 3L 1台 2 HP-01袖珍式真空泵 0.80MP 1台 3 FB-10T溶剂过滤器 1000mL 1台 4 HG-330色谱柱温箱 室温-100℃ / 0.1℃ 1台 6 有机过滤膜 &phi 50× 0.45mm 1盒 7 水系过滤膜 &phi 50× 0.45mm 1盒 8 有机针式过滤器 &phi 13× 0.45mm 1盒 9 水系针式过滤器 &phi 13× 0.45mm 1盒 10 RO DI反渗透超纯水机 15L/H  1台 VERTEX系列液相色谱仪主要指标 一、P5000高压恒流输液泵 技术指标 产品说明 等度泵 流速精度:0.1% 流速范围:0.001~10ml/min/0.001ml增量 最高耐压:6000psi(0~10ml/min) 压力脉冲:1% 特点说明 双柱塞串联式往复泵,自动脉冲抑制系统 输液泵开机自检,自动判断故障 泵头各部件单独设计,便于拆装维护 内置高低压报警和保护功能 多种泵头选择:微量泵、分析泵、半制备/制备泵 自动检测泵头类型,智能修正参数设置 程序化溶剂压缩因子,能自动补偿流量 梯度由内部软件实现自动控制,可编辑、存贮60个梯度方法,能运行复杂的梯度程序 可以通过外部接点闭合控制。 独特优点: 独特的柱塞杆自动清洗装置,使P5000系列高压输液泵不需要花钱购买在线清洗装置,也无须担心盐类晶体的析出对柱塞杆造成损伤; 专利设计的&ldquo 浮动式泵柱塞杆密封圈&rdquo 技术,可设定溶剂相应的压缩因子,泵头可以自动排空,无须手动排空即可输液;可延长密封圈使用寿命; P5000型输液泵使用的&ldquo 自吸式单向阀&rdquo ,是世界上最好的单向阀,阀球能在溶剂通过单向阀后回流之前回到阀座将之密封,保障了泵流量超常的稳定。 优秀的单向阀设计与先进的&ldquo 浮动式泵柱塞杆密封圈&rdquo 技术,使P5000输液泵在0-10ml/min的流量范围内都能耐压6000Psi,且压力波动远小于10Psi,成为国内外压力波动最小的泵之一。 拥有用户至关重要的两大功能 ①自动排空 ②自动清洗 二元梯度泵 流速精度:0.1% 流速范围:0.001~10ml/min(等度), 0.001~10ml/min(梯度)/0.001ml增量 延迟体积:150uL 最高耐压:6000psi(0-10ml/min) 压力脉冲:1% 比例精度:± 0.2%, 2ml/min 四元梯度泵 流速精度:0.1% 流速范围:0.001~10ml/min,0.001ml增量 延迟体积:400uL 最高耐压:6000psi(具高低压保护功能) 压力脉冲:1% 外置4流路在线真空脱气机 制备泵 流速精度:0.1% 流速范围:0.2~80ml/min(等度), 0.2~100ml/min(梯度),0.001ml增量 延迟体积:150uL 压力脉冲:1.5% 比例精度:± 0.2%, 5ml/min 自吸式单向阀-世界上最为优秀的单向阀 高压输液泵所使用的ASI自吸式单向阀是目前世界上最好的单向阀,它产生的流量有非常好的可重复性与准确性,这意味着单向阀能保持非常好的重复性。下图是Waters公司的单向阀与ASI公司的单向阀的使用比较,显而易见,ASI的自吸式单向阀的性能效果要优于Waters的单向阀。(Data Certified by: Baseline Services, Mercerville, NJ May 21, 1997, Bodman Chromatography Aston, PA May 21, 1997)
  • 解读《关于假肠膜明串珠菌等28种“三新食品”的公告》
    一、新食品原料假肠膜明串珠菌(Leuconostoc pseudomesenteroides)属于明串珠菌属,从传统发酵乳制品中分离得到。该菌种已被列入欧洲食品安全局资格认定(QPS)名单的推荐生物制剂列表以及国际乳品联合会公报(BulletinoftheIDF514/2022)的“在发酵食品中证明安全的微生物品种目录”,并在丹麦、加拿大、韩国等国家已被批准使用。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对假肠膜明串珠菌的安全性评估材料进行审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。该菌种的使用范围包括发酵乳、风味发酵乳、干酪、发酵型含乳饮料和乳酸菌饮料(非固体饮料),不包括婴幼儿食品。该原料的食品安全指标须符合以下规定:铅(以Pb计,干基计)≤1.0 mg/kg,总砷(以As计,干基计)≤1.5 mg/kg,微生物限量为沙门氏菌0/25 g(mL),金黄色葡萄球菌0/25 g(mL),单核细胞增生李斯特氏菌0/25 g(mL)。待食品加工用菌种制剂的食品安全国家标准发布后,按照食品加工用菌种制剂的标准执行。二、食品添加剂新品种(一)聚天冬氨酸钾1.背景资料。聚天冬氨酸钾申请作为食品添加剂新品种。本次申请用于葡萄酒(食品类别15.03.01)。美国食品药品管理局、欧盟委员会、澳大利亚和新西兰食品标准局允许其作为食品添加剂用于葡萄酒。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量“不作具体规定”。2.工艺必要性。该物质作为稳定剂和凝固剂用于葡萄酒(食品类别15.03.01),改善产品稳定性。其质量规格按照公告的相关要求执行。(二)氨基肽酶1.背景资料。米曲霉(Aspergillus oryzae)来源的氨基肽酶申请作为食品工业用酶制剂新品种。法国食品安全局、丹麦兽医和食品局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化蛋白质氨基端氨基酸的水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(三)蛋白酶1.背景资料。李氏木霉(Trichoderma reesei)来源的蛋白酶申请作为食品工业用酶制剂新品种。丹麦兽医和食品局、法国食品安全局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化蛋白水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(四)磷脂酶A21.背景资料。李氏木霉(Trichoderma reesei)来源的磷脂酶A2申请作为食品工业用酶制剂新品种。美国食品药品管理局允许其用于食品。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化磷脂的水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(五)麦芽糖淀粉酶1.背景资料。酿酒酵母(Saccharomyces cerevisiae)来源的麦芽糖淀粉酶申请作为食品工业用酶制剂新品种。澳大利亚和新西兰食品标准局允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化淀粉的水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(六)木聚糖酶1.背景资料。地衣芽孢杆菌(Bacillus licheniformis)来源的木聚糖酶申请作为食品工业用酶制剂新品种。美国食品药品管理局、法国食品安全局、丹麦兽医和食品局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化木聚糖水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(七)乳糖酶(β-半乳糖苷酶)1.背景资料。Papiliotrema terrestris来源的乳糖酶(β-半乳糖苷酶)申请作为食品工业用酶制剂新品种。丹麦兽医和食品局、澳大利亚和新西兰食品标准局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化乳糖水解和转糖基反应。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(八)羧肽酶1.背景资料。米曲霉(Aspergillus oryzae)来源的羧肽酶申请作为食品工业用酶制剂新品种。法国食品安全局、丹麦兽医和食品局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化蛋白质羧基端氨基酸的水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(九)脱氨酶1.背景资料。米曲霉(Aspergillus oryzae)来源的脱氨酶申请作为食品工业用酶制剂新品种。美国食品药品管理局、日本厚生劳动省允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化5’-腺嘌呤核苷酸(5’-AMP)的水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(十)2-己基吡啶1.背景资料。2-己基吡啶申请作为食品用香料新品种。美国食用香料和提取物制造者协会、国际食品用香料香精工业组织、欧盟委员会等允许其作为食品用香料在各类食品中按生产需要适量使用。2.工艺必要性。该物质配制成食品用香精后用于各类食品(《食品安全国家标准食品添加剂使用标准》表B.1食品类别除外),改善食品的味道。该物质的质量规格按照公告的相关内容执行。(十一)富马酸1.背景资料。富马酸作为酸度调节剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于胶基糖果、面包、糕点、果蔬汁(浆)类饮料等食品类别,本次申请扩大使用范围用于腌腊肉制品类(如咸肉、腊肉、板鸭、中式火腿、腊肠)(食品类别08.02.02),熏、烧、烤肉类(食品类别08.03.02),油炸肉类(食品类别08.03.03),肉灌肠类(食品类别08.03.05),冷冻挂浆制品(食品类别09.02.02),经烹调或油炸的水产品(食品类别09.04.02),熏、烤水产品(食品类别09.04.03)。美国食品药品管理局、日本厚生劳动省、加拿大卫生部等允许其作为酸度调节剂用于食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量“不作具体规定”。2.工艺必要性。该物质作为酸度调节剂用于上述食品类别,调节食品的酸碱度。其质量规格执行《食品安全国家标准 食品添加剂 富马酸》(GB 25546)。(十二)乙酸钠(又名醋酸钠)1.背景资料。乙酸钠作为酸度调节剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于复合调味料和膨化食品的食品类别,本次申请扩大使用范围用于腌腊肉制品类(如咸肉、腊肉、板鸭、中式火腿、腊肠)(食品类别08.02.02),熏、烧、烤肉类(食品类别08.03.02),油炸肉类(食品类别08.03.03),肉灌肠类(食品类别08.03.05),冷冻挂浆制品(食品类别09.02.02),经烹调或油炸的水产品(食品类别09.04.02),熏、烤水产品(食品类别09.04.03)。美国食品药品管理局、日本厚生劳动省、加拿大卫生部等允许其作为酸度调节剂用于食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量“不作具体规定”。2.工艺必要性。该物质作为酸度调节剂用于上述食品类别,调节食品的酸碱度。其质量规格执行《食品安全国家标准 食品添加剂 乙酸钠》(GB 30603)。(十三)环己基氨基磺酸钠(又名甜蜜素)1.背景资料。环己基氨基磺酸钠(又名甜蜜素)作为甜味剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于冷冻饮品、果酱、面包、糕点、饮料类、果冻等食品类别。本次申请扩大使用范围用于焙烤食品馅料及表面用挂浆(仅限焙烤食品馅料)(食品类别07.04)和膨化食品(食品类别16.06)。国际食品法典委员会允许其作为甜味剂用于焙烤制品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为0-11 mg/kg bw。2.工艺必要性。该物质作为甜味剂用于焙烤食品馅料及表面用挂浆(仅限焙烤食品馅料)(食品类别07.04)和膨化食品(食品类别16.06),赋予食品甜味。其质量规格执行《食品安全国家标准 食品添加剂 环己基氨基磺酸钠(又名甜蜜素)》(GB 1886.37)。(十四)维生素E1.背景资料。维生素E作为抗氧化剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于油炸面制品、方便米面制品、复合调味料、膨化食品等食品类别。本次申请扩大使用范围用于面糊(如用于鱼和禽肉的拖面糊)、裹粉、煎炸粉(食品类别06.03.02.04)。美国食品药品管理局、日本厚生劳动省等允许其作为抗氧化剂用于食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为0.15-2 mg/kg bw。2.工艺必要性。该物质作为抗氧化剂用于面糊(如用于鱼和禽肉的拖面糊)、裹粉、煎炸粉(食品类别06.03.02.04),减缓食品氧化褪色。其质量规格执行《食品安全国家标准 食品添加剂 维生素E》(GB 1886.233)。(十五)聚二甲基硅氧烷及其乳液1.背景资料。聚二甲基硅氧烷及其乳液作为食品工业用加工助剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于肉制品、啤酒、焙烤食品、饮料、薯片等加工工艺。本次申请扩大使用范围用于胶原蛋白肠衣加工工艺。澳大利亚和新西兰食品标准局等允许其作为食品工业用加工助剂用于食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为0-1.5 mg/kg bw。2.工艺必要性。该物质作为食品工业用加工助剂用于胶原蛋白肠衣加工工艺,消除胶原蛋白肠衣加工过程中产生的泡沫。其质量规格执行《食品安全国家标准 食品添加剂 聚二甲基硅氧烷及其乳液》(GB 30612)。(十六)硬脂酸镁1.背景资料。硬脂酸镁作为乳化剂、抗结剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于蜜饯凉果类、可可制品、巧克力和巧克力制品以及糖果的食品类别。本次申请作为食品工业用加工助剂用于泡腾片压片工艺。美国食品药品管理局、澳大利亚和新西兰食品标准局等允许其作为食品工业用加工助剂用于食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量“不作具体规定”。2.工艺必要性。该物质作为食品工业用加工助剂用于泡腾片压片工艺,可减少压制泡腾片过程中物料与模具表面的摩擦力,使片面光滑,避免出现裂片。其质量规格执行《食品安全国家标准 食品添加剂 硬脂酸镁》(GB 1886.91)。三、食品相关产品新品种(一)环己胺封端的1,1'-亚甲基二(4-异氰酸基环己烷)均聚物1.背景资料。该物质常温下为淡黄绿色粉末,不溶于水、乙醇和丙酮,可溶于氯仿。欧盟委员会和日本厚生劳动省均允许该物质用于食品接触用PCN塑料材料及制品。2.工艺必要性。该物质用作PCN材料的添加剂,可以提高其抗冲击性。(二)2-[2-(2,4-二氨基-6-羟基-5-嘧啶)二氮烯基]-5-甲基苯磺酸1.背景资料。该物质在常温下为黄色粉末,微溶于水。美国食品药品管理局和日本化学研究检验所均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性。该物质是一种黄色着色剂,在各类塑料中具有较高的着色力。(三)丙烯酰胺与甲基丙烯酰氧乙基三甲基氯化铵、衣康酸和N,N'-亚甲基双丙烯酰胺的共聚物1.背景资料。该物质常温下为浅黄色液体,可溶于水。美国食品药品管理局和德国联邦风险评估研究所均允许该物质用于食品接触用纸和纸板材料及制品。2.工艺必要性。该物质作为干强剂用于食品接触用纸和纸板材料及制品,可增强纸张的拉伸强度、内结合强度和耐破强度。(四)β-(3,5-二叔丁基-4-羟基苯基)丙酸十八醇酯1.背景资料。该物质常温下为白色结晶性粉末,不溶于水。《食品安全国家标准 食品接触材料及制品用添加剂使用标准》(GB 9685-2016)已批准该物质作为添加剂用于食品接触用橡胶、油墨、黏合剂以及聚乙烯(PE)、聚丙烯(PP)和聚苯乙烯(PS)等多种塑料材料及制品。本次申请将其使用范围扩大至涂料及涂层。欧洲委员会、日本厚生劳动省和南方共同市场均允许其用于食品接触用涂料及涂层。2.工艺必要性。该物质是一种抗氧化剂,用于涂料时,可避免环境中的氧气和其他化学物质导致的降解;也可用于涂布过程,避免涂膜收缩起皱。(五)萘磺酸与甲醛聚合物的钠盐1.背景资料。该物质常温下为淡黄棕色粉末,可溶于水。GB 9685-2016已批准该物质作为添加剂用于食品接触用涂料及涂层、黏合剂以及纸和纸板。本次申请将其使用范围扩大至丙烯腈-丁二烯-苯乙烯共聚物(ABS)塑料材料及制品。美国食品药品管理局和德国联邦风险评估研究所均允许该物质用于食品接触用ABS塑料材料及制品。2.工艺必要性。该物质作为乳化剂用于ABS塑料材料及制品,可减少凝结物的形成。(六)C1~C18单、多元脂肪醇的脂肪酸酯1.背景资料。该物质在常温下为白色固体。GB 9685-2016已批准该物质作为添加剂用于食品接触用纸和纸板材料及制品。本次申请将其使用范围扩大至食品接触用塑料材料及制品。美国食品药品管理局、欧盟委员会、日本厚生劳动省和南方共同市场均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性。该物质能够改善加工过程中塑料材料的流动性,提高整体加工速度或改善表面性能。(七)二氯二甲基硅烷与二氧化硅的反应产物1.背景资料。该物质为白色粉末,不溶于水。GB 9685-2016、原国家卫生计生委2017年第9号公告和国家卫生健康委2018年第11号公告中已批准该物质作为添加剂用于食品接触用聚对苯二甲酸乙二酯(PET)、PP和聚偏氟乙烯(PVDF)等多种塑料材料及制品和涂料及涂层。本次申请将其使用范围扩大至食品接触材料及制品用黏合剂和油墨。欧盟委员会和日本厚生劳动省允许该物质用于食品接触材料及制品用黏合剂;瑞士联邦食品安全和兽医办公室和欧洲油墨协会均允许该物质用于食品接触材料及制品用油墨。2.工艺必要性。该物质用作黏合剂的消泡剂,利于黏合剂的生产及使用;用作油墨的分散剂,达到提高粘度的效果。(八)一氧化碳-乙烯-丙烯三元聚合物1.背景资料。该物质在常温下为白色固态颗粒,不溶于水。美国食品药品管理局和欧盟委员会均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性。该物质主要用于复合包装,具有较高的阻隔性能,可有效阻隔氧气渗透,防止内容物氧化。(九)4-乙基苯酚与间甲酚、对甲酚、对叔丁基苯酚和甲醛的聚合物1.背景资料。该物质常温下为深琥珀色固体,不溶于水,溶解于醇类、酮类溶剂。欧洲委员会和美国食品药品管理局均允许该物质用于食品接触用涂料及涂层。2.工艺必要性。该物质为涂料的主要成膜物质,可增加涂层的柔韧性和延展性。(十)乙二醇与2,2-二甲基-1,3-丙二醇、对苯二甲酸、间苯二甲酸、己二酸和衣康酸的聚合物1.背景资料。该物质常温下为透明固体,不溶于水,可溶于酯类溶剂。欧洲委员会和日本厚生劳动省均允许该物质用于食品接触用涂料及涂层;南方共同市场和日本黏合剂行业协会均允许该物质用于食品接触材料及制品用黏合剂。2.工艺必要性。以该物质为原料生产的涂料具有较高的表面张力,可提升涂层的防污性能;以该物质为原料生产的黏合剂则具有较高密封强度和易揭等性能。(十一)间苯二甲酸与间苯二甲胺和己二酸的聚合物1.背景资料。该物质常温下为无色透明颗粒,不溶于水。国家卫生健康委2022年第2号公告已批准该物质用于食品接触用塑料材料及制品,使用温度不得超过100℃,本次申请将其使用温度限值提高至121℃。欧盟委员会和日本厚生劳动省均允许该物质在使用温度不超过121℃时用于食品接触用塑料材料及制品。2.工艺必要性。以该物质为原料生产的塑料薄膜,具有良好的氧气阻隔性能、热稳定性能和热成型性能。
  • 新品上市|低密度聚乙烯拉伸流变性能新技术--VADER 1000
    摘要在单轴拉伸流动中测量了三种选定的商用低密度聚乙烯(LDPE)的非线性流变性能。使用三种不同的设备进行测量,包括拉伸粘度装置(EVF),自制长丝拉伸流变仪(DTU-FSR)和商用长丝拉伸流变仪(VADER-1000)。通过测试显示,EVF的测量结果受到最大Hencky应变4的限制,而两个长丝拉伸流变仪能够在达到稳态的更大Hencky应变值下探测非线性行为。利用长丝拉伸流变仪的能力,我们表明具有明显差异的线性粘弹性的低密度聚乙烯可以具有非常相似的稳定拉伸粘度。这表明有可能在一定的速率范围内独立控制剪切和拉伸流变。关键词拉伸流变;聚乙烯;聚合物熔体;非线性粘弹性正文多年来,控制聚合物流体的流变行为作为分子化学的一个性能,引起了学术界和工业界的极大兴趣。最成功和最多产的理论预测的流变行为的纠缠聚合物系统是De Gennes(1971)和Doi和Edwards(1986)提出的 "管模型"。然而,尽管三十年来人们一直在努力改进管模型,但即使对于最简单的情况,即单分散线性聚合物体系,缠结聚合物在拉伸流动中的非线性流变行为仍然没有得到充分理解(Huang等人,2013a;Huang等人,2013b)。低密度聚乙烯等工业聚合物是最复杂的缠结聚合物系统,它们不仅具有高度的多分散性,而且还含有不同的支化分子结构。预测低密度聚乙烯的流变行为,特别是拉伸流动中的非线性行为,是非常具有挑战性的。在明确定义的模型系统上,已经进行了探索延伸流中支化聚合物动力学的实验工作(Nielsen等人,2006;Van Ruymbeke等人,2010;Lentzakis等人,2013)以及商业聚合物系统,如低密度聚乙烯LDPEs。有几个小组观察到低密度聚乙烯LDPE的瞬时拉伸应力的最大值(Raible等人,1979;Meissner等人,1981;M¨unstedt和Laun,1981)。Rasmussen等人(2005年)首次报告了应力过冲后的稳定应力,并通过比较长丝拉伸流变仪和十字槽拉伸流变仪的测量结果(Hoyle等人,2013年)以及比较恒定拉伸速率和恒定应力(蠕变)实验(Alvarez等人,2013年)进行了实验验证。已经开发了几个模型(Hoyle等人,2013;Wagner等人,1979;Hawke等人,2015),试图了解应力过冲背后的物理学。然而,这些模型都不能实际用于预测工业中低密度聚乙烯LDPE的流变行为,因为这些模型包含许多与分子结构没有直接关系的拟合参数。最近,Read等人(2011)提出了一个预测方案,能够计算随机长链支化聚合物熔体的线性和非线性粘弹性,作为其形成的化学动力学的函数。这些预测似乎与剪切流和拉伸流中三个低密度聚乙烯的测量结果非常一致。然而,测得的拉伸数据受到最大Hencky应变约为3.5的限制,并且没有显示出稳定状态的迹象,而模拟结果则达到了更大的 Hencky应变值,并预测了每个应变速率的稳定应力。在更大的Hencky应变值下预测非线性行为的质量仍然是未知的。此外,在Read等人(2011)的模拟中,没有预测到应力过冲。在这项工作中,我们介绍了三种不同的商用低密度聚乙烯的拉伸测量。这三种低密度聚乙烯是根据Read等人(2011)的模型预测而专门设计的。预计它们具有不同的零剪切速率粘度,但在非线性拉伸流动的大变形中具有相似的应力-应变反应。测量是在三个不同的设备上进行的,包括两个长丝拉伸流变仪和一个拉伸粘度夹具。我们表明,长丝拉伸流变仪的测量结果可以达到5以上的大Hencky应变值,在那里达到非线性稳定状态。我们还表明,低密度聚乙烯LDPE样品在拉伸流动中的大Hencky应变值具有相似的非线性行为,包括相同的应力过冲幅度和过冲后的相同稳定应力,尽管Read模型预测没有应力过冲现象。这些结果表明,低密度聚乙烯LDPE熔体的非线性粘弹性可以通过选择性聚合方案来控制。实验材料陶氏化学公司提供了三种类型的商用低密度聚乙烯树脂,分别为PE-A、PE-B和PE-C。所有样品都是颗粒状的。表1总结了样品的特性,包括密度、熔体流动指数(I2)、重量-平均摩尔质量(Mw)、数量-平均摩尔质量(Mn)和熔体强度。重量-平均摩尔质量是由多角度激光散射法确定的,而数量-平均摩尔质量是由微分折射率确定的。摩尔质量值是若干次重复的平均数。熔体强度是用通用流变仪结合通用ALR-MBR 71.92挤出机测量的。测量是在150℃下进行的,产量为600g/h。模具的长度为30毫米,直径为2.5毫米。表1实验是在24mm/s2的加速度下进行的。纺丝线的长度被设定为100毫米。流变仪测试在膜生物反应器挤出机系统清扫30分钟后进行,并一直运行到纺丝线失效。通过力-拉速数据拟合出一个四参数交叉函数,根据拟合的破坏速度曲线确定破坏时的力。表中的数据是五次连续测量的平均数。力学谱三种低密度聚乙烯样品的线性粘弹性(LVE)特性是通过小振幅振荡剪切(SAOS)测量得到的。TA仪器公司的ARES-G2流变仪采用25毫米的板-板几何形状。图1所有样品的时间-温度偏移因子αT作为温度的函数,参考温度为Tr= 150℃测量是在氮气中,在130℃和190℃之间的不同温度下进行的。对于每个样品,使用时间-温度叠加(TTS)程序,在参考温度Tr= 150℃时,数据被移动到单个主曲线。所有样品的时间-温度偏移系数(αT)与单一的阿伦尼乌斯公式一致,其形式为其中活化能∆H = 65 kJ/mol。R是气体常数,T是以开尔文表示的温度。在图1中,偏移因子αT被绘制为温度的函数。拉伸应力测量拉伸应力测量使用三种不同的设备:TA仪器的延伸粘度夹具(EVF)、自制的长丝拉伸流变仪(DTU-FSR)(Bach等人,2003a)和Rheo Filament的商用长丝拉伸流变仪(VADER-1000)。将不同设备的结果进行相互比较。用于EVF测量的样品在150℃下压缩成型,在低压10bar下3分钟,在高压150bar下1分钟,然后用淬火冷却盒在150bar下淬火冷却到室温。在短时间内,当冷却盒插入时,样品会出现压力损失。在相对较低的温度下进行短时间的压缩成型是为了防止样品的任何潜在氧化或降解。样品模具为特氟隆涂层,尺寸为100×100 0.5mm。从约20mm长的铭牌上冲压出12.7mm-12.8mm宽的样品。最终样品的厚度约为0.6mm。在EVF测量中,样品被插入设备中,在150℃下180s的平衡时间后,样品以0.005s-1的应变速率被预拉伸15.44s,然后松弛80s,然后样品被拉伸。报告的Hencky应变是由圆柱体的旋转计算出来的。通常情况下,使用EVF的拉伸测量仅限于样品保持均匀的情况。EVF一次旋转所能达到的Hencky应变值通常低于4,与EVF相比,长丝拉伸仪器并不依赖于沿拉伸方向的均匀变形的假设。事实上,由于板材上的无滑移条件,变形在轴向上是不均匀的。这些设备只是探测了通常在中间细丝平面发现的最小直径平面内的变形和应力之间的关系。在这个平面外的剩余材料只需要固定在研究的薄片上,就像在固体力学测试中用狗骨形状来固定材料一样。长丝拉伸装置确实依赖于最小直径平面内的径向均匀变形的假设。Kolte等人(1997年)的模拟表明,在长丝中间平面几乎没有任何径向应力变化。用激光测微计来测量中丝薄片的直径。为了探索更高的应变,在DTU-FSR和VADER 1000流变仪都采用了在线控制方案,该方案首先由Bach等人(2003b)使用,后来由Mar´ın等人(2013)发表,用于在拉伸过程中控制长丝中平面的直径,以便在样品断裂前确保恒定的应变速率。根据样品的类型,DTU-FSR和VADER-1000都可以达到最大Hencky应变值7。在长丝拉伸流变仪上进行测量之前,样品被热压成半径为R0、长度为L0的圆柱形试样。长宽比定义为∆0= L0/R0。样品在150℃下压制,并在相同温度下退火10分钟,然后冷却至室温。在测量中,所有样品被加热到150℃,在180s的平衡时间后,样品在拉伸实验之前被预拉伸到Rp的半径。对于DTU-FSR,R0= 4.5mm,L0= 2.5mm,Rp在3到4.5mm之间,而对于VADER-1000,R0 = 3.0mm,L0= 1.5mm,Rp = 2.5mm。在拉伸测量过程中,力F(t)由称重传感器测量,中间灯丝平面的直径2R(t)由激光测微计测量。在拉伸流动开始的小变形时,由于变形场中的剪切分量,部分应力差来自于压力的径向变化。这种影响可以通过Rasmussen等人(2010)描述的校正因子来补偿。 对于大应变,校正消失,对称平面中应力的径向变化变得可以忽略不计(Kolte等人,1997)。对于本工作中的所有样本,当Hencky应变值大于2时,校正值小于4 %,Hencky应变和中丝平面上应力差的平均值计算如下其中mf是灯丝的重量,g是重力加速度。应变率定义为ϵ• =dϵ/dt,拉伸应力增长系数定义为η-+=〈σzz-σrr 〉/ϵ• 结果和讨论线性粘弹性图2(a)显示了所有样品在参考温度150℃下的储能模量G’和损耗模量G”与角频率ω的函数关系。(b)表示在150°C相应的复数粘度η*。图中的两个星号来自稳定剪切测量,在 150°C下剪切速率为0.005 s-1图2(a)显示了所有样品在参考温度150℃下的储能模量G’和损耗模量G”与角频率ω的函数关系。相应的复数粘度η*绘制在图2(b)中。图中实线是多模麦克斯韦(multimode Maxwell fitting)拟合的结果。Maxwell relaxation modulus多模麦克斯韦弛豫模量G(t)由下式给出 其中gi和τi列于表2。表中的零剪切速率粘度η0通过下式计算 在图2(b)中,很明显三个样品具有不同的零剪切速率粘度。然而,在图2(a)、(b)中,似乎PE-C的线性行为在较低频率下接近PE-A,在较高频率下与PE-B重叠。而且在ω 1 rad/s时,PE-C的G′和G″曲线几乎与PE-A平行,垂直位移因子约为0.6。表2 LDPE 在 150°C 熔体的线性粘弹性启动和稳定状态下的拉伸流变图3(a)显示了PE-A在150℃时的拉伸应力增长系数与时间的关系。图中比较了EVF、DTU-FSR和VADER-1000的测量值。图中的虚线是根据表2中列出的麦克斯韦弛豫谱计算的LVE包络线。EVF的测量值受到最大Hencky应变4的限制,在图3(b)中可以清楚地看到。其中测量的应力是作为Hencky应变的函数绘制的。两个长丝拉伸流变仪的测量值能够达到大于5的较大Hencky应变值,在该值下观察到稳定的应力。图3我们注意到EVF和长丝拉伸测量之间存在明显的偏差。我们认为EVF测量的应力太低,特别是在低应变率下,Hoyle等人(2013)也观察到这一点,他们将长丝拉伸测量值与Sentmanat拉伸流变仪测量值进行了比较。因此,对于图3(b)中的ϵ• =0.01 s-1,已经与ϵ• =0.5有偏差,而对于ϵ• =2.5 s-1,EVF测量与DTU-FSR测量一致,最高ϵ• 为3.5。请记住,在EVF中,只有横截面的初始面积是已知的;在拉伸过程中横截面面积的变化不是测量的,而是由一个假设均匀单轴拉伸速率不变的方程计算出来的。此外,在EVF测量中,样品宽度为12.8mm略微超过了Yu等人(2010)建议的12.7mm的上限,这导致在更大的Hencky应变值下的平面延伸而不是单轴延伸。相比之下在DTU-FSR和VADER-1000中,中间直径一直被测量,因此在拉伸过程中横截面的实际面积是已知的,由此计算出中间细丝平面中的真实Hencky应变。借助于在线控制方案,在整个测量过程中保证了单轴拉伸过程中恒定的Hencky应变率。来自DTU-FSR和VADER-1000的大Hencky应变值的数据由于力小而有些分散。此外,在拉伸速率超过0.4s-1时,使用DTU-FSR和VADER-1000进行的测量观察到了应力过冲的现象。由于仪器中采用的控制方案的限制,使用两个长丝拉伸流变仪进行测量的拉伸速率不超过2.5s-1。在长丝拉伸中,表面张力可能对测量的应力有影响,尤其是在长丝中间平面的半径非常小,大的亨基应变值的时候。在所有的测量中,最小的半径是R = 0.12mm。如果我们把低密度聚乙烯LDPE的表面张力γ = 0.03 J/m2,表面张力效应产生的最大应力是σsur =γ/R = 250Pa。在图3(b)中,很明显,对于所有达到Hencky应变大于4的测量,测量的应力高于104Pa。因此可以忽略表面张力效应。图4图4显示了PE-C在150℃时拉伸应力增长系数与时间的函数关系。DTU-FSR和VADER-1000的测量结果非常一致。在0.15和2.5s-1之间的中间拉伸速率下,EVF的测量值与DTUFSR一致。拉伸速率低于0.1s-1时,偏差越来越大。根据DTU-FSR和VADER-1000的测量,在拉伸速率快于0.4s-1时,再次观察到应力过冲。图5图5比较了DTU-FSR测量的拉伸流动中PE-A和PE-C的非线性行为。如图2所示,PE-A和PE-C具有不同的线性粘弹性,这也由图5(a)中不同的LVE包络表示。在拉伸流的启动过程中,PE-A和PE-C也有不同的非线性反应。从图5a中可以清楚地看出,在所有拉伸速率下,PE-C 比 PE-A 有更明显的应变硬化。然而,在图5(a)、(b)中,有趣的是,尽管PE-A和PE-C最初有不同的非线性行为,但是它们在更大的Hencky应变值下具有相同的反应,并且在每个应变速率达到相同的拉伸稳态粘度,如图6所示。图6还显示在快速应变率下,拉伸稳态粘度表现出幂律行为,粘度比例约为ε• -0.6,这与Rasmussen等人(2005)和Alvarez等人(2013)的观察结果一致。应该注意的是,如图5(b)所示,相同的非线性行为仅在Hencky应变值大于4时观察到,这一点无法通过EVF测量。图6图7(a)比较了PE-B与PE-C在150℃时的拉伸应力增长系数。在所提出的速率下,PE-B没有显示任何应力过冲。尽管PE-B和PE-C在线性和非线性流变学方面的表现不同,但在每种拉伸速率下,它们的相对应变硬化量似乎是相似的。在图7(b)中可以更清楚地看到这一点。图7(b)中比较了Trouton比率。Trouton 比值定义为Tr = η-+ /η0,其中η0是零剪切率粘度,其数值列于表2。可以看出,在每个拉伸速率下,PE-B达到与PE-C相同的最大Trouton比率,证实它们具有相同的相对应变硬化量。图7结论我们使用三种不同的设备测量了三种商用低密度聚乙烯样品的拉伸流变性能。这三种设备在拉伸流变的启动方面给出了一致的结果。然而,EVF的测量结果受到最大Hencky应变4的限制,而两个长丝拉伸流变仪达到了更大的Hencky应变值,在这里可以观察到应力过冲和稳态粘度。此外,EVF的测量仅在取决于应变速率的应变范围内跟随长丝拉伸测量。尽管三种低密度聚乙烯样品具有不同的线性粘弹性能,但已经表明,PE-A和PE-C在Hencky应变值大于4时具有非常相似的非线性rhelogical行为,而PE-B和PE-C具有相同的相对应变硬化量。上述结果表明,工业低密度聚乙烯的非线性流变性可以通过聚合来调整。特别是,有可能合成一种聚合物(PE-C),其具有比参考聚合物(PE-A)低得多的粘弹性模量,但仍具有与参考聚合物相同的拉伸粘度。
  • AFM-IR与FTIR巧妙结合:长春应化所实现聚合物纳米尺度定量分析!
    聚合物材料相对于传统材料如玻璃、陶瓷、水泥、金属而言是后起之秀,但其发展的速度及应用的广泛性却远远超过了许多传统材料,在当今世界乃至未来的世纪都充当着举足重轻的角色,已成为工业、农业、国防和科技等领域的重要材料,尤其是在开发新型替代能源、节约资源和保护生态环境方面更是发挥着不可替代的作用。但由于其分子量分布不均一的特性,很难实现准确定量分析, 近日,长春应化所高分子物理与化学国家重点实验室高分子复杂体系—多组分课题组通过AFM-IR与FTIR的巧妙结合,首次实现了聚合物纳米尺度定量分析。 红外光谱是聚合物结构分析的常用方法,但是其空间分辨率低于几个微米,对于微纳尺寸的相区无能为力。近年来,法国科学家Dazzi等人基于光热诱导共振现象,将原子力显微镜与红外光谱相结合,开发了原子力红外(AFM-IR)技术,空间分辨率达到50纳米,在各种纳米、微米结构的研究方面具有广阔的应用前景。然而由于多组分的聚合物体系大多存在相分离,难以获得在纳米尺度上组成均匀的标准样品,AFM-IR技术迄今未能应用于定量分析。  高抗冲聚丙烯(HIPP)是一种应用广泛的多相多组分聚合物合金,在其聚丙烯基体中分散着各种乙丙共聚物形成的具有核壳结构的橡胶粒子,迄今为止的研究认为这些橡胶粒子的硬核的主要成分是聚乙烯。  高分子物理与化学国家重点实验室苏朝晖课题组与埃克森美孚亚太研发中心的鲍培特博士合作,以AFM-IR技术研究HIPP不同相区中的化学组成,利用AFM-IR和傅里叶变换红外光谱(FTIR)谱图的高度一致性,以常规FTIR用普通的乙丙共聚、共混标样制作工作曲线,用于AFM-IR光谱的定量分析,第一次发现聚丙烯是一些HIPP体系中橡胶粒子的硬核的主要成分。  AFM-IR定量分析HIPP微相区组成示意图  这项工作最近在Analytical Chemistry上发表。这是中国研究人员在纳米红外领域发表的第一篇论文,也是世界上第一篇以纳米红外技术进行定量分析的论文。开发和引领纳米红外技术的Anasys Instruments认为应化所科研工作者建立的方法使复杂聚合物体系的纳米相区组成分析成为可能,是纳米红外技术领域的新突破。  该工作得到了埃克森美孚亚太研发中心的资助。
  • 吉林省卫生健康委员会对废止《食品安全地方标准 面制食品中十二烷基苯磺酸钠的测定高效液相色谱-荧光检测器法》等7项食品安全地方标准征求意见
    各有关单位:根据《中华人民共和国食品安全法》和《国家卫生健康委办公厅关于进一步加强食品安全地方标准管理工作的通知》(国卫办食品函〔2019〕556号)的规定,经吉林省食品安全专家委员会议通过,我委将废止以下食品安全地方标准,具体废止标准号及标准名称如下:DBS22/010-2013 《食品安全地方标准 面制食品中十二烷基苯磺酸钠的测定高效液相色谱-荧光检测器法》DBS22/013-2013 《食品安全地方标准 植物源性食品中α-玉米赤霉烯醇和赤霉烯酮的测定 液相色谱-质谱/质谱法》DBS22/017-2013 《食品安全地方标准 柑橘类水果及其饮料中橘红 2 号的测定高效液相色谱法》DBS22/018-2013 《食品安全地方标准 鲜(冻)畜肉中鸭源性成分的定性检测PCR 方法》DBS22/003-2012《食品安全地方标准 生牛乳中雄激素的测定气相色谱-质谱法》DBS22/004-2012 《食品安全地方标准 植物油中胆固醇的测定气相色谱-质谱法》DBS22/008-2012 《食品安全地方标准 乳与乳制品中 L-羟脯氨酸的测定》现公开征求意见,如有意见建议请于2023年9月23日前书面反馈我委。联系人:省卫生健康委员会食品安全标准与监测评估处 邢立新联系电话:0431-88906887电子邮箱:1047810177@qq.com吉林省卫生健康委员会2023年9月13日
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制