当前位置: 仪器信息网 > 行业主题 > >

仲戊醇

仪器信息网仲戊醇专题为您提供2024年最新仲戊醇价格报价、厂家品牌的相关信息, 包括仲戊醇参数、型号等,不管是国产,还是进口品牌的仲戊醇您都可以在这里找到。 除此之外,仪器信息网还免费为您整合仲戊醇相关的耗材配件、试剂标物,还有仲戊醇相关的最新资讯、资料,以及仲戊醇相关的解决方案。

仲戊醇相关的资讯

  • 日本拟将2-戊醇、丙醛等纳为食品添加剂
    2009年7月22日,日本发布拟修订食品卫生法及食品和食品添加剂标准规范执行条例的通报。   日本健康劳动福利部拟将2-戊醇、丙醛、6-甲基喹啉纳为食品添加剂并制定这些物质的标准规范。
  • 真空控制在旋蒸分离纯化中的应用
    在使用旋转蒸发仪过程中,分离纯化过程中,所用的温度和真空度是重要的设置参数。物质的饱和蒸气压是温度和真空度控制的参考标准(见附表)。* 什么是饱和蒸气压? 无论是液体还是固体,时时刻刻都存在蒸发(升华)、凝结过程,而气化后的气体分子会对物质表面形成压力。而蒸气压指的就是液体或固体表面存在着的该物质的蒸气,这些蒸气对液体或固体表面产生的压强。  饱和蒸气压就是指在密闭条件中、一定温度和气压下,物质的蒸发(升华)与凝结处于动态平衡状态时,那个时候该物质的蒸气压。 以常见的水为例(纯水),密闭容器中,抽走空气,水会不断蒸发,随着温度的不同,其蒸气形成的饱和蒸气压也会不同。如果温度稳定在100℃,那蒸气就会不断形成,直至蒸气压到101.32kPa,也就是那个时候水的饱和蒸气压。这个时候如果温度不再升高,101.32kPa的蒸气压下,随后蒸气虽然在继续产生,但同时也会有等量的蒸气重新凝结为水,形成平衡,压力不再升高;如果温度为30℃,那么水蒸汽形成的蒸气压就不会超过4.2455kPa;20℃时,饱和蒸气压就是2.3388kPa。* 真空控制与旋蒸分离纯化 旋转蒸发仪在进行分离纯化的过程中,要考虑到目的产物在高温下会出现变性或分子结构损坏的情况。因此需要到较低的温度下进行分离纯化。在较低的温度下形成分离试剂的饱和蒸气压,需要借助真空泵进行抽真空。通过对真空度的控制,可以在目的产物变性的安全温度以下对混合溶剂进行快速分离提纯。* WIGGENS防腐蚀真空控制器 WIGGENS的DVR480 型防腐蚀真空控制器,专用于旋蒸的真空度控制。最低可控制真空度达到0.1mabr ,支持最多5 段编程控制,可以高效自动地实现多种溶剂的回收。接触气体材料均为PTFE 或高性能陶瓷,可耐受酸、碱、以及各种有机溶剂气体。数字式显示,按键控制,具有USB 数字接口,以及模拟输入输出接口。可以连接泵电源控制,在达到稳定真空度后暂时关停泵电源,节能环保;也可工作在泵的常开状态。* 附表:常用有机溶剂饱和蒸气压(40℃)需要的真空度溶剂分子式40℃(104℉)下的饱和蒸汽压 (mbar)摩尔质量 (g/mol)水H2O7418.0四氯化碳CCl4285153.8三氯甲烷CHCl3477119.4甲酸CH2O211446.0二氯甲烷CH2Cl2~atm.84.9甲醇CH4O35232.0四氯乙烯 (PCE)C2Cl453165.8三氯乙烯C2HCl3191131.4五氯乙烷C2HCl514202.3反式-1,2-二氯乙烯C2H2Cl277796.9顺式-1,2-二氯乙烯C2H2Cl248896.91,1,2,2-四氯乙烷C2H2Cl419167.81,1,1-三氯乙烷C2H3Cl3307133.4乙腈C2H3N22941.1乙酸C2H4O24760.01,2-二氯乙烷C2H4Cl221499.0乙醇C2H6O17846.1丙酮C3H6O56358.1二甲基甲酰胺(DMF)C3H7NO1373.1正丙醇C3H8O7060.1异丙醇C3H8O13660.1四氢呋喃 (THF)C4H8O40272.1丁酮C4H8O26572.1(1,4-)二氧己环C4H8O210288.1乙酸乙酯C4H8O225188.1正丁醇C4H10O2574.1异丁醇C4H10O4274.1叔丁醇C4H10O14074.1乙醚C4H10Oatm.74.1二乙胺C4H11N58173.1吡啶C5H5N6079.1正戊烷C5H12atm.72.2正戊醇C5H12O1188.2甲基叔丁基醚C5H12O59788.2异戊醇C5H12O1488.2氯苯C6H5Cl34112.6苯C6H623678.1环己烷C6H1225084.2乙酸丁酯C6H12O235116.2己烷C6H1437386.2二异丙醚C6H14O372102.2甲苯C7H87792.1正庚烷C7H16124100.2二甲苯C8H1027106.2
  • 【行业应用】赛默飞发布气相色谱法测定工业用异戊烯中含氧化合物解决方案
    科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布气相色谱法测定工业用异戊烯中含氧化合物的解决方案。高纯度异戊烯是一种重要的精细化工中间体,主要用于生产频哪酮、异戊二烯和叔戊醇,也可作为合成橡胶、树脂的中间体等。采取醚化法生产的异戊烯产品中通常含有甲醇、二甲醚、TAME等含氧化合物杂质,这类杂质对产品质量影响很大,因此在生产过程中要控制它们的含量。本实验采用Trace 1310气相色谱仪,配合AS 1310自动进样器,参考石油化工行业标准送审稿《工业用异戊烯中含氧化合物的测定(气相色谱法)》,测定工业用异戊烯中浓度不低于0.001%(质量分数)的甲醇、甲基叔戊基醚、叔戊醇等含氧化合物,以外标法计算各组分的含量。Thermo Scientific的Trace 1310色谱仪配合Thermo AS 1310液体自动进样器,在测定异戊烯中含氧化合物分析时,方法可靠、操作简单、结果准确。更多产品信息,请查看:气相色谱(trace1310)https://www.thermofisher.com/order/catalog/product/14800302#/legacy=thermoscientific.cn?CID=search-PR 应用方法下载,请查看:https://www.thermofisher.com/content/dam/tfs/Country%20Specific%20Assets/zh-ch/CMD/Chrom/petrochemical/documents/Industrial%20Isopentenyl%20oxygenates%20Measurements%20using%20Gas%20Chromatography.pdf?CID=search-PR ---------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公 司,员工人数约3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应 用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成 立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com请扫码关注:赛默飞世尔科技中国官方微信
  • 专家视角丨药物研发过程中的化学对照品探讨
    精准药物分析的工作,离不开稳定的分析系统和可靠的标准物质(标准品/对照品等)。标准物质具有复现、保存和传递量值的基本作用,对实现测量结果的溯源性,保证测量结果在时间与空间上的连续性与可比性,进而确保测量结果的准确可靠、有效与国际互认具有关键作用。 岛津为制药行业客户提供稳定可靠的标准品/对照品制备解决方案:制备液相系统(Prep LC)、质谱引导的制备液相系统(MS-trigger Prep LC),超快速制备纯化液相色谱系统(UFPLC)、制备超临界流体色谱(Prep SFC)。 超快速制备纯化液相色谱系统(UFPLC)可在线完成从分离、浓缩、纯化到回收的制备全过程。 2020年,中国药科大学药物分析系吴春勇博士于新药仿药CMC实操讨论群进行了精彩而全面的主题分享,并发表在“新药仿药CMC实操讨论”公众号,经过“新药仿药CMC实操讨论”的授权,在此分享吴春勇博士的《化学药物研发过程中的对照物探讨》。 概述案例 对于吴春勇博士的《化学药物研发过程中的对照物探讨》,新药仿药CMC实操讨论群也进行了较为热烈的探讨。PPT正文后续延申的讨论内容如下(基本按照时间先后顺序列出)。 沈晓斌博士(前FDA资深审评员,FDA报批咨询顾问):very nice.吴博士论述的非常全面、非常细。我们就说比如说在FDA做review的时候呢,我们个人不会接触那么全面,各种各样的方式,这个标准品的这个去就是抽点它的含量呀,就是拿到他的COA,通常不会把各种方法都是看过一遍的。 就是它这个PPT呢,把所有的东西都给想细细的捋了一遍,个人觉得就是这是一个对知识体系的全面的补充,有些东西,因为你以前没有接触过,你不会考虑那么细,当在FDA的时候你看到的是公司怎么做,然后你来评估他是否合理,是否可以接受,或者跟FDA的现有要求,来评估。 想要就说一点,FDA本身他不去说去该怎么去定量,这个标准品他只是负责审评,就是评审你(的资料),外界可以自己去建议你想要的方式,但是你要有足够多的科学依据,然后他(FDA)来评估是否可以接受,就是完全靠自己来论述清楚。 另外就是说国内看起来,这个我以前对国内这个没有太多的,而且也没有特别去关注,因为我这个工作最早才从FDA报批方面的东西,吴教授这个主题一讲,觉得国内在有些方面其实要求是似乎是比USP、FDA的要求更细更多一些,有一种感觉就是弯道超车已经超了,在有些方面实际上是做的更好。只不过,过去这些年,西方就是设定了这种既定的质量标准,那其他国家,就因为你要照着西方去做仿药嘛,你就必须根据他的规则来走,更多的是这方面的区别。 孙亚洲老师(长沙晶易首席科学家):意见1:研发人员买的非法定对照品,外标法测定杂质含量时,很多人直接采用了COA的赋值,也直接采用相应的测定结果订入了标准,有些不妥。包括批检验,最初的朔源需要是法定对照或者经过标定的对照品。 意见2:在吴博士的ppt中,对于非法定来源的如百灵威,sigma等买到的杂质对照品,拿到后是否需要再行进行研究工作或者分析一下是否存在风险,似乎没有提出来。这个问题建议大家是否深入思考一下。 群主补充:只有经过标化赋值且可溯源(过程,方法,验证)的,风险才是最低的。 群主补充:尽管杂质测定中,如5%的误差是可以接受的(这属于科学性的范畴);但不等同于对照品/标准品可以草率拿来,草率采用他人的赋值,这完全是两个范畴。也许某份杂质对照品中含水量10%,无机成分包括前处理过程带来的硅胶等30%,若草率定量,杂质的真实含量会被低估如40%。 沈晓斌博士:同意以上的观点。 群友1:通过药品杂质的公司购买的对照品,我们就碰到了,欧美的一家知名公司提供的对照品结构出现偏差,我们通过多次比对都无法拿到和代谢产物吻合的结果,多次交涉和讨论之后才发现该公司的产品是另外一个同分异构体。 吴春勇博士(中国药科大学药物分析系副教授):看来概率虽然小,这个问题还是客观存在的。 沈晓斌博士:提供化合物的公司没有责任和义务。使用者必须做该做的来证明给监管机构标准品的使用是合理的。 刘国柱博士(长沙晨辰医药创始人、技术总监):我请教吴博士一个问题,目前国内杂质对照品市场非常混乱,大部分购买的杂质对照品都是经几手倒卖才到厂家手里,对照品塑源存在问题,谱图与赋值真实性也存在问题,请问对此引入的风险有何看法? 群友2:在购买对照品的时候,在COA的同时能否得到该合成方法的信息,这个在技术层面上是有难度的。没有哪个合成公司愿意提供产品合成路线给对方的。 群友3:好多杂质对照品本身不稳定,需要在-20℃保存,有可能在运输过程中就发生了变化,拿到的第一时间应该进行确认,遇到好几次这种情况。 吴春勇博士:在现有的条件下,购买的商业化对照品全部自己赋值,实践上还是存在相当的困难,成本上也没法控制。所以我个人观点:1)尽量选择知名公司;2)自己对风险进行评估,尤其是校正因子与各国药典不同,或者结构上与待测药物的生色团类似,分子量相当,校正因子却有显著不同。 【插话:知名公司依旧有风险或风险大】 是的,分享的那个案例,购买公司是业界相当知名的! 群友4:购买杂质时能同时获得合成信息的可能性非常小,最多提供四大谱(还不带解谱的),那就需要公司内部有比较强大的解谱能力,有碰到过解谱结果和供应商提供的不一致的情况,所以购买“商业化”的杂质对照风险是很大,市场良莠不齐,缺乏有效的管控。 群友5:我们碰到问题的那家公司就是业界知名对照品公司,也有出失误的概率。 刘国柱博士:另请教吴博士及大家一个问题,目前国内许多企业对于杂质对照品的结构确证,很多时候都只做了质谱与NMR氢谱与碳谱,不做二维;而事实上不做二维NMR谱,NMR信号是无法归属的,从而不足以确定杂质结构,有可能确证的结构是错的;请问这个问题大家如何看待? 吴春勇博士:我个人只要做结构确认,一定做二维。 刘国柱博士:那我和您观点一致,强烈呼吁大家做结构确证一定要做二维。 购买的杂质对照品一般只提供质谱与NMR氢谱与碳谱,不做二维与结构解析;在此习惯引导下,国内许多企业自已做杂质结构确证也只做个质谱与NMR氢谱与碳谱,个人观点这是存在风险的做法。 代孔恩(安士研发总监):法规有明确规定必须这么表征,很多标准品量很小,做全应该不容易。【插话:情况多,复杂,没法一刀切】 黄常康博士(南京百泽医药创始人):有些杂质是定向合成的,或者是有文献数据的。我觉得根据实际情况来判断需不需要。不用二维定不了结构的,该做就做,有些简单的杂质,其实氢谱已经足够了,质谱只是多一个证据。 自己做的话,还需要加上做结构确证的杂质的钱,很多时候会差很多。 群友6:对照品的检测分析,既要有普遍性的,也要特殊性的,这个普遍性与特殊性的界点怎么界定,很难有一个文件化的说法。 以上讨论内容来源: 新药仿药CMC实操讨论公众号
  • 新品 | 鲲鹏基因发布 ArchiPure全自动核酸提取纯化仪
    高质量的核酸样本在分子生物学上的应用至关重要,核酸的分离与纯化作为常规分子诊断实验的第一步,是获取可靠实验结果的基本保障。鲲鹏基因始终致力于将生命科学研究领域的新技术转化为与临床相关的医学研究产品,开发具有自主知识产权,国际领先的科研与分子诊断产品。继自主研发的Archimed系列荧光定量PCR仪受到市场广泛认可后,鲲鹏基因全新推出了高通量全自动核酸提取纯化仪——ArchiPure系列产品。高效、自动化且稳定的核酸纯化性能,搭配极为丰富的预封装核酸提取试剂产品,为不同应用场景提供灵活多样的自动核酸纯化解决方案,满足包括疾控、海关、医院、医学检验等机构对于安全防控性、通量灵活性及快速自动化的应用需求。磁棒法核酸提取技术1. 快速稳定 操作简单、用时短。整个提取流程只有四步,大多可以在15-40分钟内完成磁珠与核酸的特异性结合使得提取的核酸纯度高、浓度大。 2. 安全无毒 不使用酚、氯仿、异戊醇等有毒试剂,绿色环保,可有效保护实验操作人员。 3. 高效可控 能够实现自动化、大批量操作,有利于重大疾病疫情爆发时进行快速及时的应对。 磁棒法步骤产品特点ArchiPure系列产品具有操作简单、稳定高效的特点,ArchiPure 12 (12个样本/批) 和 ArchiPure 96 (96个样本/批) 两款仪器,能够帮助实验人员从繁复的提取工作中解脱出来。既能满足对于样本通量有显著需求的中大型检测平台满负荷运转,也能助力空间有限且以使用灵活为主要诉求的中小型实验室、移动检测车开展工作。 应用领域针对不同的应用场景,ArchiPure可从病毒、细菌、全血、咽拭子、细胞等样本中自动提取纯化核酸,所提取核酸满足后续分子生物学实验需求,广泛用于科学研究、临床分子诊断、动植物疫病监测等领域。丰富的试剂品种能够满足不同样品类型的提取需求。人性化的预封装设计减少手工操作产生的误差,最快13分钟即可完成12或96个样本的核酸纯化,得到高质量的核酸样本。产品信息仪器核酸提取试剂
  • 水产品中孔雀石绿和结晶紫的岛津LCMSMS检测方案
    孔雀石绿是一种带有金属光泽的绿色结晶体,又名碱性绿、严基块绿、孔雀绿,其既是杀真菌剂,又是染料,易溶于水,溶液呈蓝绿色;溶于甲醇、乙醇和戊醇。长期以来,渔民都用它来预防鱼的水霉病、鳃霉病、小瓜虫病等,而且为了使鳞受损的鱼延长生命,在运输过程中和存放池内,也常使用孔雀石绿。科研结果表明,孔雀石绿在鱼内残留时间很长,且其具有高毒素、高残留和致癌、致畸、致突变等副作用,鉴于此,许多国家均将孔雀石绿列为水产养殖禁用药物。我国于2002年5月也将孔雀石绿列入《动物食品禁用的兽药及其化合物清单》中。但是,因为其价格便宜,而且其治疗水霉病等的功效是其他药物所&ldquo 不能替代&rdquo 的,所以利益的驱动使得孔雀石绿并没有退出渔业市场。本方案依据国标《GB/T 19857-2005 水产品中孔雀石绿和结晶紫残留的测定》,使用岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8030联用快速测定了水产品中孔雀石绿和结晶紫。 本方案为快速测定水产品中孔雀石绿、隐色孔雀石绿、结晶紫和隐色结晶紫的方法。样品经提取后,用超高效液相色谱LC-30A分离,三重四极杆质谱仪LCMS-8030进行内标法定量分析。样品在2分钟内得到快速分离和检测。孔雀石绿和隐色孔雀石绿在0.5~200 &mu g/L,结晶紫在0.5~500 &mu g/L,隐色结晶紫在0.1~200 &mu g/L浓度范围内线性良好,标准曲线的相关系数均在0.999以上;对1 &mu g/L、50 &mu g/L和200 &mu g/L混合标准溶液进行精密度实验,连续6次进样保留时间和峰面积相对标准偏差分别在2.925%和0.160%之下,系统精密度良好;方法定量限为0.1 &mu g/kg,优于国标《GB/T 19857-2005 水产品中孔雀石绿和结晶紫残留的测定》中0.5 &mu g/kg的要求。 了解详情,请点击&ldquo 超高效液相色谱三重四极杆质谱联用法测定水产品中的孔雀石绿和结晶紫&rdquo 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 【应用分享】对此欢终宴,倾壶待曙光-三大名酒的检测
    春节将至,大街小巷张灯结彩,年味越来越浓。春节期间,亲朋好友聚餐,饭桌上除了美味的佳肴,必不可少的还有白酒了。今天,我们一起来看下,中国三大名酒的检测吧~图源于网络,如侵联系删除白酒文化中国传统白酒是以粮谷为原料,以酒曲为糖化发酵剂,经蒸煮、糖化发酵、蒸馏、贮存、勾兑而成。不同品牌不同产地的白酒所采用的原材料,发酵等生产工艺都不一样,这就意味着白酒成分非常复杂,主要是醇类,酯类和醛类和其他痕量风味物质。正是由于这些组分含量的区别,所以白酒的香气口感不同。白酒常见的香型有酱香型、浓香型、清香型。酱香型味最重(高级酯、高级醇等总含量也最高),浓香居中,清香更低(香型物质总含量也是最低的)。本文所介绍的三种名酒:茅台,五粮液和泸州老窖就分属酱香型和浓香型,并对它们进行成分以及主体香源物质进行分析。传统上,一般先浓缩进行测定,但由于回收率不稳定,本文所采用的是直接进样法,气相色谱仪Agilent7890+FID分析。01茅台检测从上图茅台酒的分析图谱可见,此酒属于酱香型白酒,因有一种类似豆类发酵时的酱香味。这种酒酒体醇厚,回味悠长。从放大图可以看出峰1-7和11-16分离状况详情:图(A)乙酸乙酯和乙缩醛分离度为3.69;丙醛和异丙醛分离度为1.82。甲醇的拖尾因子是1.18。图(B)几种主要醇类仲丁醇、正丙醇、异丁醇和正丁醇的峰形很好。从成分上分析,酱香酒的各种芳香物质含量高、种类多,但其中乙酸乙酯起很大的作用,茅台酒中乙酸乙酯的含量高于五粮液和泸州老窖。它的香味分为前香和后香。前香是由低沸点的醇、酯、醛类组成,起呈香作用;后香是由高沸点酸组成,起呈味作用,也是大家所说的空杯留香的原因。茅台酒的酸度是其它酒的3至5倍,主要以乳酸和乙酸为主。由于乳酸在FID上没有响应,但可以从乙酸的峰看出其含量是大于五粮液和泸州老窖的。高级醇的种类多含量高,其中正丙醇和异戊醇含量特别高。02五粮液检测从上图五粮液的分析图谱可见,此酒属于浓香型白酒,这种香型的白酒窖香浓郁,绵甜爽净。从放大图可以看出峰1-6和9-16的分离情况:图(A)乙酸乙酯和乙缩醛分离度为3.72;丙醛和异丙醛分离度为2.17。甲醇峰形较好,拖尾因子是0.94。图(B)几种主要醇类仲丁醇、正丙醇、异丁醇和正丁醇的峰形很好。它的主体香源成分是己酸乙酯和丁酸乙酯。有机酸以乙酸和己酸为主,从图谱中可以看出己酸的含量比其它香型酒要高出几倍,其中乙酸含量在此酒中是要略高于己酸的,但由于乙酸在FID上响应较弱,所以峰面积小。五粮液中还有醛类和高级醇。在醛类中,乙缩醛较高,是构成喷香的主要成分。03泸州老窖检测从上图泸州老窖的分析图谱可见,此酒亦属于浓香型白酒,此酒成分相对简单,相比于五粮液中还有其它低沸点的醇、酯、醛,泸州老窖只有几种主要成分乙酸乙酯、己酸乙酯、乳酸乙酯、乙酸和正己酸, 这是浓香型酒几种典型的香味成分, 这几种成分含量明显高于五粮液:乙酸和己酸含量比同属浓香型白酒的五粮液要高,己酸乙酯和丁酸乙酯比酱香型白酒茅台高十倍左右。但其它成分含量很低。这种酒几乎不含除乙醇以外的醇类。结果对比酒中一般含有大量酯类和仅次于酯类含量的酸类。酯类主要影响香气,乙酸乙酯、乳酸乙酯、己酸乙酯这三类起主导作用,其他酯类在呈香过程中起烘托作用。酸在酒中起调味作用需要比例适当,含量少则会导致味道寡淡,但过量会酸味重。不同含量的酯类和酸类再加上一些少量醇、酯、醛类形成了每种白酒的独特风格, 如同为浓香型泸州老窖和五粮液这些成分含量就有显著区别, 在下表中列出了这三种酒的特征组分和含量。*含量是由面积归一法来计算的,由于这与FID响应有关且测试中峰面积计算有一定误差,所以得到的只是估值。乙酸由于在FID中响应低,其计算出来的含量也远低于实际值。三种酒的重要组分及其含量结论在没有浓缩的情况下,30 m的INOWAX气相柱基本能够实现主要成分的分离且分析时间短,如需获得更好的分离效果,可以选择60 m的INOWAX气相柱。为了避免含量低导致未检出,我们可以通过增加进样量,减小分流比的方法,尝试以异辛烷为溶剂来萃取,将酒中风味物质浓缩或者用TCD进行测试来实现检测出更多的物质。详细产品信息:产品描述货号NanoChrom BP-INOWAX, 30m×0.32mm×0.50μmG2032-3005NanoChrom BP-INOWAX, 60m×0.32mm×0.50μmG2032-6005END纳谱分析可提供色谱柱免费试用,申请方法如下:1► 扫描右侧二维码进行试用申请。2► 点击文末“阅读原文”进行试用申请。3► 电话咨询:4008083822,或可在公众号后台留言,直接在线申请试用。
  • 哈药纯中纯水检出致癌物 北京四纯净水不“净”
    昨天,国家质检总局在官方网站公布对瓶(桶)装饮用水产品质量监督抽查结果,18种饮用水产品质量不过关上黑榜,哈药“纯中纯”弱碱性饮用水、“景友”鄂尔多斯天然沙漠水被检出潜在致癌物溴酸盐超标。   此次共抽查了北京、天津、河北等211家企业生产的220种瓶(桶)装饮用水产品,包括186种瓶装饮用水和34种桶装饮用水,结果发现有18种产品不符合标准,涉及菌落总数、大肠菌群、霉菌、酵母、溴酸盐、电导率、界限指标(锶含量)、游离氯等多个项目。   在黑名单中,哈药集团制药六厂生产的“纯中纯”弱碱性饮用水(350mL/瓶,2011-03-11)、鄂尔多斯市景友鸿鹄矿泉饮品有限责任公司生产的“景友”鄂尔多斯天然沙漠水(398mL/瓶,2011-04-02)等一共6种饮用水检出溴酸盐超标。   记者查询到,溴酸盐在国际上被认定为潜在致癌物,它是矿泉水或山泉水等天然水源在经过臭氧消毒后生成的副产品。我国新版矿泉水标准中,对溴酸盐含量都有严格限量规定。   同时,来自重庆的“雨露”饮用纯净水(610ml/瓶,2011-03-24)游离氯(余氯)不合格,而如果余氯超过一定的含量,饮用后对人体有害。   北京四纯净水不“纯净”   本报讯 (记者廖爱玲)昨天,在北京市食品安全办公室公布的22种停售下架食品名单中,也发现了4种北京产的饮用水产品不合格。   这4种饮用水包括来自北京科源兴生物科技有限公司红门玉龙水厂生产的桶装“蓝岛冰泉”优质饮用水 北京黄土岗水厂生产的桶装饮用纯净水 北京万事食品有限公司生产的“万昌”饮用水 北京市老井饮用水有限公司的天泰山泉饮用纯净水。
  • “百年色谱历史 近代技术论坛”在京隆重召开
    仪器信息网讯 2011年4月12日,由中国色谱学会、中科院大连化学物理研究所及北京理化分析测试技术学会北京色谱学会主办,北京创新通恒科技有限公司承办的“百年色谱历史 近代技术论坛”在北京昌平区温都水城国际酒店隆重举行,来自全国各地高校、科研院所及医药企业的代表约170余人参加了此次论坛。此次论坛主题为分离纯化中的色谱技术与应用。中科院大连化学物理研究所梁鑫淼研究员担任此次论坛主持。 论坛现场 中科院大连化学物理研究所梁鑫淼研究员 创新通恒十周年 硕果累累   今年正值创新通恒公司成立十周年之际,创新通恒公司为庆祝公司成立十周年特承办此次论坛。在论坛开幕式上,创新通恒公司董事长崔万臣先生介绍了公司十年的发展历程。崔万臣先生说到,“公司自2000年成立至今,走过了风风雨雨的十年历程。公司从最初的4-5人,销售额不足百万元发展到如今员工过百人,销售额近亿元,并且初步确立了国内液相色谱市场领先者的地位。在此期间既有创业的艰辛,也有成功的喜悦,我们深知公司今天的成绩与关心、支持和帮助我们的专家及用户密不可分,在此一并表示感谢!” 北京创新通恒科技有限公司董事长崔万臣先生   “在十年间,公司一直以满足客户需求为宗旨,根据市场需求先后推出了分析型高效液相色谱、实验室制备色谱及工业级制备色谱,尤其在工业级制备色谱方面,公司后起直追,达到了国际先进技术水平,特别是在某些领域确立了品牌效应和优势领先地位。我们有信心在下一个十年中,在巩固国内市场份额的同时,力争攻克国际市场,让中国的液相色谱技术走出国门,走向世界。”   中国分析测试协会副理事长王顺昌先生、中国仪器仪表学会分析仪器分会理事长闫成德先生、沈阳药科大学吴春福校长及杭州中美华东制药有限公司代表分别致辞,祝贺创新通恒公司成立十周年,并预祝此次论坛圆满成功。 中国分析测试协会副理事长王顺昌先生   王顺昌先生在致辞中说到,“目前我国从事色谱仪器生产与销售的企业队伍在逐渐壮大,但是在世界上还缺乏影响力,希望以创新通恒等为代表的国产色谱仪器企业打好技术基础,做好应用,抓住机遇使中国的液相色谱产品在市场上更具竞争力。” 中国仪器仪表学会分析仪器分会理事长闫成德先生   闫成德先生表示,“创新通恒的发展模式对于国内仪器产业发展具有启示意义,其在发展模式上摒弃了同质竞争,打价格战的商业模式,而是转而开发独特的产品与市场,使得产品在一段时间内保持国内独家状态,获得了创新的价值和利润,企业也得到了快速的发展。” 沈阳药科大学吴春福校长   吴春福校长在致辞中回顾了沈阳药科大学色谱仪器的配备历史,并表示学校教师的科学研究和职业生涯都受益于色谱技术的发展。如今色谱已渗透入制药行业的方方面面,其为制药行业生产效率及产品质量的进一步提高起到了重要的作用。创新通恒作为一家以色谱为主要业务的公司,发展很快,沈阳药科大学与创新通恒合作共建实验室,力图在应用中不断发现新问题,解决问题,促进制备色谱技术在制药行业的应用推广。 杭州中美华东制药有限公司代表   杭州中美华东制药有限公司副总经理代表医药企业致辞,其表示,“对于医药企业而言,创新通恒公司的工业化制备液相色谱系统在弥补了国内空白的同时,也为医药企业提供了一个更具性价比的设备选择。并且在与创新通恒的合作中,我们受益良多,得到了技术、设备、材料及人员等各方面的支持。最后祝愿创新通恒公司有更广的发展前景。” 分离纯化中的色谱技术与应用   在随后的技术论坛环节,来自高校、科研院所及医药企业的研究人员分享了最新的分离纯化色谱技术及应用。   从论坛的主题报告的内容看,目前,随着国家对药品标准的提高,以及对制药行业环境监管的日益严格,用于分离纯化的色谱技术的应用前景十分广阔,其中制备液相色谱技术、模拟移动床液相色谱技术(SMB)及超临界流体色谱技术(SFC)等更被看好。 北京创新通恒科技有限公司董事兼总工沈志刚先生   在此次论坛上,北京创新通恒科技有限公司董事兼总工沈志刚先生介绍了制备色谱技术在制药工业中的应用情况,以及制药工业对制备液相的要求,并对制备色谱未来发展前景进行了展望。    蔡青峰主任 顾凯执行主任   浙江海正药业有限公司蔡青峰主任则介绍了药物纯化中绿色化学,高压制备色谱作为绿色制备的典型方法,克服了传统中低压和重结晶等工艺环境污染严重的问题,在提高纯化效率的同时,也对绿色经济和循环经济的发展起到了重要推动作用,前景非常广阔。药明康德新药开发有限公司分析部顾凯执行主任则介绍了超临界流体色谱技术(SFC),药明康德专门成立了SFC研究团队,耗资300万美元购置相关仪器设备,目前在用SFC分离纯化药物方面取得了很大的成绩,而未来绿色技术SFC随着仪器价格的降低会有更多的应用前景。 梁恒教授Iogo Piotrowski 博士   西安交通大学生命科学与技术学院分离科学研究所梁恒教授及德国KNAUER公司的Iogo Piotrowski博士分别介绍了模拟移动床色谱技术(SMB),梁恒教授研究了SMB的色谱理论,并在此基础上研制了用于SMB的旋转阀,未来则希望做更多实际应用研究 Iogo Piotrowski博士则介绍了KNAUER公司制备色谱、SMB产品及生物纯化色谱产品的情况。 富士硅化工有限公司Lucien Charles博士   此外,论坛上针对填料问题进行了探讨,随着分离物质的复杂程度的提高,填料也成了分离纯化色谱技术进一步发展的瓶颈。中科院大连化学物理研究所梁鑫淼研究员介绍了其课题组近年来新开发的各种新型的色谱分离填料及新填料在分离中药等的应用实例 富士硅化工有限公司Lucien Charles博士介绍了富士硅公司填料生产制造情况、富士硅所提供填料的种类及填料未来的发展趋势。 达朝山副教授 鲁丹丹研究员   对于现在新药研发的重点生物大分子药物的研发,论坛也进行了探讨。兰州大学生命科学学院生物化学和分子生物学研究所达朝山副教授介绍了多肽药物的合成与纯化 中国人民解放军军事医学科学院放射与辐射医学研究所鲁丹丹副研究员则介绍了核酸药物的制备技术,值得一提的是,创新通恒公司与中国人民解放军军事医学科学院合作开发了公斤级合成设备Kilotide500,并且已经安装到杭州天龙药业有限公司,打破了该设备长期进口的局面,并且显著降低了成本。 现场互动   论坛结束后,创新通恒公司举办了盛大晚宴,感谢专家和用户十年来一如既往的支持与关爱!为期一天的论坛落下帷幕。 晚宴现场
  • 广州菲罗门酒类专用柱FB-Wine分析中国三大名酒
    广州菲罗门酒类专用柱fb-wine分析中国三大名酒白酒常见的香型有酱香型、浓香型、清香型等,酱香型味最重(高级酯、高级醇等总含量也最高),浓香居中,清香更低(香型物质总含量也是最低的)。本文所介绍的三种名酒:*台,五*液和泸**窖就分属酱香型和浓香型,并对它们进行成分以及主体香源物质进行分析。本应用采用的是直接进样法,气相色谱仪7890-fid分析。检测方法:仪器:agilent 7890 w/ fid柱型:fb-wine, 30m x 0.32mm x 0.40um(p/n: 30m-l101-040)炉温:50°c 5min 5 °c/min 200°c 2min载气:氢气 @ 1.3ml/min (恒定流量)进样口:分流40ml/min @ 240 °c检测器: fid @ 260 °c样品:*台,五*液,泸**窖进样量:1ul 图一*台(酱香型)样品测试图谱 (a)峰1-7放大图 (b)峰11-17放大图 图二 五*液(浓香型)样品测试图谱 (a)峰1-6放大图 (b)峰10-19放大图 图三 泸**窖(浓香型)样品测试图谱表1 *台、五*液、泸**窖酒的峰鉴定峰号*台min五*液 min泸**窖 min1乙醛2.640乙醛2.597乙醛2.6472丙醛3.292丙醛3.2453异丙醛3.365异丙醛3.3184甲酸乙酯3.5955乙酸乙酯4.043乙酸乙酯3.988乙酸乙酯4.0486乙缩醛4.267乙缩醛4.1997甲醇4.555甲醇4.4988乙醇5.263乙醇5.118乙醇5.3029丙酸乙酯5.41910异丁酸乙酯5.567异丁酸乙酯5.80811仲丁醇7.060仲丁醇6.99012丁酸乙酯7.359丁酸乙酯7.291丁酸乙酯7.37413异戊酸乙酯8.23514正丙醇7.497正丙醇7.42215异戊酸乙酯8.30216异丁醇9.322异丁醇9.21217仲戊醇9.94118戊酸乙酯10.096戊酸乙酯10.10619正丁醇10.811正丁醇10.70220异戊醇12.599异戊醇12.53121己酸乙酯13.138己酸乙酯13.134己酸乙酯13.16622己酸丙酯15.119己酸丙酯15.06023庚酸乙酯15.98024乳酸乙酯16.590乳酸乙酯16.542乳酸乙酯16.60525正己醇16.65126己酸丁酯18.67927辛酸乙酯19.869辛酸乙酯19.84228乙酸19.992乙酸20.021乙酸20.08629壬酸乙酯21.633壬酸乙酯21.60230丙酸22.10731己酸己酯22.94932正丁酸24.141正丁酸24.084丁酸24.17933未知杂质24.50434异戊酸25.02735正戊酸26.473正戊酸26.55036正己酸28.754正己酸28.685正己酸28.75937十四酸乙酯30.80138辛酸29.843辛酸32.81839油酸乙酯35.60040亚油酸乙酯35.829图一是*台酒的分析图谱,此酒属于酱香型白酒。从放大图可以看出峰1-7和11-17分离状况详情:图(a)乙酸乙酯和乙缩醛分辨率为3.69;丙醛和异丙醛分辨率为1.82。甲醇的拖尾因子是1.18。 图(b)几种主要醇类仲丁醇、正丙醇、异丁醇和正丁醇的峰形很好。从成分上分析,酱香酒的各种芳香物质含量高种类多,但其中乙酸乙酯起很大的作用,*台酒中乙酸乙酯的含量高于五*液和泸**窖。它的香味分为前香和后香。*台酒的酸度是其它酒的3至5倍,主要以乳酸和乙酸为主。由于乳酸在fid上没有响应,但可以从乙酸的峰看出其含量是大于五*液和泸**窖的。 图二和图三是浓香型白酒泸**窖和五*液的图谱。这种香型的白酒窖香浓郁,绵甜爽净。图二的放大图可以看出峰1-6和10-19的分离情况:图(a)乙酸乙酯和乙缩醛分辨率为3.72;丙醛和异丙醛分辨率为2.17。甲醇峰形较好,拖尾因子是0.94。图(b)几种主要醇类仲丁醇、正丙醇、异丁醇和正丁醇的峰形很好。它的主体香源成分是己酸乙酯和丁酸乙酯。有机酸以乙酸和己酸为主,从图谱中可以看出己酸的含量比其它香型酒要高出几倍,其中乙酸含量在此酒中是要略高于己酸的,但由于乙酸在fid上响应较弱,所以峰面积小。图三中泸**酒的成分相对简单,相比于五*液中还有其它低沸点的醇、酯、醛,泸州老窖只有几种主要成分乙酸乙酯、己酸乙酯、乳酸乙酯、乙酸和正己酸, 这是浓香型酒几种典型的香味成分。白酒中的成分是很复杂的,由于有些成分的含量低或者在fid上响应低,所以在以上的方法中没有列出。订货信息:货号:30m-l101-040;描述:fb-wine 30m*0.32mm*0.4um
  • 这台发射宇宙射线的神秘设备,能给西安古城墙做“CT”
    ◎ 采写丨科技日报记者 王迎霞 颉满斌◎ 策划丨赵英淑 滕继濮 林莉君吴春至今记得第一次做CT的情景。被推进舱里的那一刻,她紧张、害怕,担心查出问题,也担心射线对身体造成影响。多年过去,她再次经历了这样的不安,只不过,这次做CT的是古城墙。吴春是陕西省西安城墙管理委员会副主任,在她的积极联系和鼎力支持下,兰州大学核技术创新与产业化团队带着研发的国内首套塑闪宇宙射线缪子成像设备,给西安古城墙做了一次“CT”。“一定不要给城墙造成损伤,但也一定要知道‘五脏六腑’都有啥毛病。”吴春提出要求。这是她作为历史文化遗产守护者的底线。叫缪子的宇宙射线有着600多年历史的西安古城墙,也像人体一样,会随着时间的推移出现“健康”问题。北方夏季雨水较多,西安古城墙被雨水长时间浸泡后,部分墙面出现了快速裂缝和沉陷的现象。尽管城墙管委会一直都在高度关注城墙的各类安全问题,但有些损害在墙体内部,仅凭肉眼无法观测。如何检测古城墙内部情况,进而有针对性地展开修复工程,成为摆在西安城墙管委会面前的重要难题。西安城墙正北门—安远门在现代医学技术的加持下,要想掌握人体的病灶情况,我们可以使用B超、CT、核磁共振等各种影像仪器。想知道一座几十米高的古城墙的健康状况,该怎么办?“以往,我们用得最多的是钻孔法,就是通过在墙体上打孔取材的方式,来判断其内部情况。但这种勘探方式会直接破坏墙体,后期还需要对损坏部分进行修复。”吴春说。另一种是雷达监测法。雷达的频率越小,穿透程度便会越深,但其精度会相应变差,成像可能出现偏差;而如果探测太浅,又不能够满足古建筑、山脉等大型物体的探测深度需要。“钻孔法对城墙有损,而使用雷达法,基本上70%的情况都探不出来。”吴春做梦都想找到能够无损探测的方法。一个偶然的机会,她结识了兰州大学核技术创新与产业化团队。在给城墙南门的一面墙做三维激光扫描的过程中,吴春不由地感慨:“这激光扫描呀,如果能透视到里面就好了。省得我们苦苦找隐患点,又无计可施。”这时,操作扫描的老师说自己认识一位兰州大学教授,他能用一种宇宙射线对物体进行成像,或许可以帮到她。是物探,还是遥感?对方说好像都不是,是一种新方法,具体是什么,他也说不清。这下吴春来了兴致:“刚好58号马面(在城墙外侧依一定距离修建的凸出墩台,平面有长方形和半圆形,因外观狭长如马面,故名)出了一些问题,我联系试试!”他们说的宇宙射线,就是缪子。星际空间有很多高能粒子,其中最主要的是质子。高能的质子通过大气层时会发生核反应、电离等级联反应,从而一生二、二生四,从上往下越来越多,有点像烟花,也像射灯。到达海平面时,里面就富含各种组分,缪子只是其一,还有中子、β射线和γ射线等。它们都被称为“宇宙射线次级射线”。“根据估算,海平面上每平方米面积上每分钟会落下10000个缪子,也就是说,每秒钟就会有一个缪子穿过我们的手掌。”兰州大学核技术创新与产业化团队相关负责人打比方道,“它们就像下雨一样浇着我们,淋着我们,时时刻刻穿透我们的身体。”作为宇宙中的基本粒子之一,缪子的带电量为一个负电荷,质量为电子的207倍,它与物体发生相互作用的方式与电子类似。相比于中子、X射线和γ射线等,宇宙射线缪子具有更强的穿透能力。很多人都好奇这种神奇的物质,究竟是如何为我所用的。原来,科研人员在被测物体周边放置缪子探测器,根据缪子射线在物体中不同方向的穿透情况,搜集肉眼看不见的缪子计数,进而在计算机上进行分析,通过数据分析计算实现被测物体的三维成像。工作人员正在组装探测器“对于城墙这样十几米甚至几十米厚的物体来说,如果里面有个一米大的空洞,我们完全可以通过缪子成像技术检测到。”该团队成员刘军涛从团队2018年着手干这件事开始,他就跟着全程参与了缪子成像系统的研发。藏着秘密的“冰柜”2021年9月,兰州大学核科学与技术学院两位骨干教师,带着由两位工程师以及四五位学生组成的团队,向着古都西安出发。与他们同行的,是一个长1.6米形状酷似冰柜的仪器。“之所以看起来像一台冰柜,是因为我们给原来只能在实验室使用的探测仪器增设了金属外壳,使设备可以防潮、避光,方便移动。”刘军涛说。正在作业中的探测器刘军涛告诉吴春,仪器定型的时间不长,没有成熟商业产品那样漂亮的外观,但探测效果不受影响。吴春的话给他吃了很大一颗定心丸:“不管啥方法,只要是科学的,我们都欢迎!”这台貌不惊人的方疙瘩,隐藏着能给城墙看病的秘密。它包括多对探测器层和采集板,负责收集从宇宙中散落下来的缪子与信息转换;一个用于数据传输监测与存储的主机系统;一台移动电源,可确保仪器在野外运行时有稳定的供电;一个用于调控设备内温度和湿度的空调系统……缪子成像技术研究,目前国内也有少数同行团队在做。兰州大学核技术创新与产业化团队的不同之处在于,他们已经从实验室测试阶段走向了实际应用。2020年11月,该团队成功研发我国首套塑闪宇宙射线缪子成像系统,并顺利完成专家验收。“‘塑闪’是塑料闪烁体的简写。缪子通过塑料闪烁体后会产生光,有闪烁光就代表有缪子通过这个材料。我用光电转换的器件,可以把光信号转为电信号,看到脉冲后,表示已经捕捉到了缪子。”刘军涛说。采集缪子只是第一步。随后,他们不断完善软件模型,模拟成像场景,调整各类参数,最终将其带到西安古城墙下,开始“首秀”。缪子成像技术主要有两种成像原理,即角度散射成像和强度衰减成像。此次西安古城墙探测运用的便是强度衰减成像法。这一成像方法的原理是,缪子在物体内部穿行过程中会损失能量,而当其能量损失殆尽时便会被物体吸收,这将使探测到的缪子强度减小,所以宇宙射线缪子强度减小量取决于物体的厚度及材料密度。因此,在已知物体外部轮廓的情况下,通过探测缪子强度衰减,可以推导得到被探测物体的密度,从而对物体的内部结构与物质组成进行重构。“这就像人们利用X射线扫描身体,通过透视人体骨骼从而成像一样。”刘军涛介绍说,山体、建筑物、历史遗迹等大型物体的内部结构成像,用的也是这一原理。吴春给他们指定的测试段是城墙58号马面处。正如给人体做三维影像检查会采用放射源与探测器旋转多角度成像,想要给城墙做“CT”,也需要从不同角度采集多组数据。团队采取了环绕马面设置6个观测点的方案,放置探测器进行数据采集。正在作业中的探测器没想到,刚把机器安放好,又一波全国范围的新冠疫情席卷而来。那是2021年秋,实验面临的最大问题是,因为防疫政策需要,探测器不能按照计划不停地变换位置。团队只能因陋就简,顺势而为,及时改变了测量计划。终于在2022年春节前夕,他们将仪器带回兰州。让吴春吃惊的是,这个团队成功测试出了城墙中的低密度区域——也就是一个配电室。在测试团队事先并不知道的情况下,他们通过宇宙缪子成像技术清晰地呈现出它的位置、形状、大小。“这一高精度成像再次验证了使用缪子成像技术能够完成被测物体三维成像的可行性。”刘军涛表示。他们和58号马面科研从来无坦途。兰州大学核技术创新与产业化团队虽然首战告捷,但在实际探测过程中,还是遇到了不少困难。宇宙射线缪子成像技术利用的是不需要人工放射源产生的天然射线,具有无接触勘探、不受时空限制、不会对勘探物体造成任何伤害、绿色环保等特点,但它的使用受客观条件影响较大。“不像医院里使用人工射线源,环境比较单纯,我们的仪器往往放置在室外,得经历风吹日晒等自然环境的考验。”兰州大学2020级能源动力专业硕士研究生姚凯强说。在室外使用就会出现各种问题,比如电路短路,或者电压波动较大等,设备接收到的信号也会跳动不稳。整个墙体的勘探过程耗时将近4个月,为了应对各种环境的考验,团队对实验室内原来使用的平板探测器进行了升级与调整。姚凯强和另一名师兄专门留在了西安,隔两天就得去现场调整仪器。另外,后期也需要处理那些不稳定环境下接收到的杂乱数据。与数据收集相比,更大的挑战在于开发反演成像的算法平台。“我们在进行文物探测的过程中总会遇到一个问题,就是测量到的数据比待解的未知量少很多。比如有两个变量一个方程的情况下,方程的解是无穷多的。”对2021级核技术专业硕士研究生刘国睿来说,这就需要她和小伙伴在庞杂的结果中挑选出能够同时满足多个方程的模型,选择最合理的结果。来西安之前,刘国睿、姚凯强等人首先根据描述对城墙进行了可行性分析,几何模型比较简单,仅仅知道城墙的长宽高,里面可能有什么情况。在仿真中,他们需要先把城墙的模型大致建好,再进行正演计算,用正演的结果去反演成像。“相当于我们先算一个可能得到的测量结果,然后用这个测量结果做反演,看能不能给里面的防空洞成出一个三维图像来。”刘国睿说。确定做58号马面后,他们把模型更加细化了。初期建的模型特别简单,就是一个矩形的堆,后来又加上马面,对尺寸进行调整。激光测绘把整个城墙的轮廓描绘清楚之后,他们决定换模型,尽管那时6个探测点都已确定。最后一次模拟时,探测点位早已敲定,团队更新了非常细化的城墙轮廓,决定重新建模再做一次。根据优质成像的分辨率,他们在马面里假设了一个防空洞,看能不能成像。另一个难题是遇到密度异常部分时的演算。刘国睿念大三时就加入该课题组学习,后继续在此攻读研究生,在她看来,整体测算并不困难,但密度异常体与周边部分衔接地带,算起来有难度。“这些地方的密度解出来可能会带有系统偏差。”她说。最终的研究结果就是,这次试验精度可以对城墙内部一个长宽高均为1米的防空洞成像出来。“我们还测到马面北面比较空虚,当时比较质疑这个结果,为此做了好多验证。”刘国睿强调,他们必须排除是不是自己技术方面的原因,比如数据处理不当、测量问题之类。排除过后,得出结论——58号马面北墙附近的夯土密度确实较低。回想起这一幕,这个性格沉静的女孩,终于有了笑意。追寻“中国方案” 兰州大学师生付出的所有努力,吴春都看在眼里。实际上,58号马面的情况,她早有掌握。她就想看看这宇宙射线缪子成像技术,到底行不行。刘国睿在分析马面数据的过程中发现,砖和夯土之间好像有空腔,因为不确定,就反复向吴春求证。“小姑娘问,里面是不是有空腔?为什么会有?是真的有,还是我们收集的数据不够、计算方法不对而导致的偏差?我当时就欣慰地笑了。”但吴春并没有挑明,而是让她继续往下做。后来的成果报告会上,吴春正式向有关部门汇报称,兰州大学核技术创新与产业化团队的缪子成像结果,跟西安城墙管委会掌握的情况基本吻合。从此,她对他们更加信任了。这份信任,源于科研人员对自身的严格要求。在所有人看来,大胆质疑、小心求证是科学精神最重要的品格之一,他们恪守这一理念,初心不改。“为什么是这个,而不是那个?哪一步出了错,都无法导出正确结果。”刘军涛深谙其研究之复杂,意义之深远。刘军涛给学生们讲解缪子探测系统如今,团队已经扩展至30余人,每个人分工明确。导师的悉心培养和团队的互帮互助,让青年科研人员受益匪浅。在读研二的刘国睿,已在物理学经典期刊上发表研究论文,内容便是针对宇宙射线缪子技术在实地应用中出现的问题,并提出探索性的解决方案。每一位成员的心里,都有浩瀚宇宙。中华文明上下五千年,源远流长,在悠悠岁月中厚重沉淀。当前,随着科技已经成为考古发展新动力,他们在完成西安城墙成像工作的过程中,逐渐感受到缪子成像技术未来在科技考古领域的广阔前景。“这项技术以后在大型遗迹考古中一定会发挥作用,我们也想在科技考古领域做成标杆性的亮点。”刘军涛告诉记者,今年,敦煌研究院也与团队接触并计划建立合作关系,他们将在深入探测石窟内部结构的工作中共同努力。与不断发展的成像技术相辅相成的,是持续更新的应用场景。一直以来,缪子成像技术应用的瓶颈主要在于探测系统现场应用场景的适应性、成本控制等。在团队不断优化完善下,这项技术也从考古探测发展到了地质勘查、矿产勘探、集装箱检测等更广阔的空间。前段时间,团队又有了新思路:是否可以使用缪子成像技术探测青藏高原的冰川厚度,明晰岩石边界?对他们来说,制作轻量化、耐低温的缪子成像仪器,正在成为新的探索方向。值得一提的是,从仪器组装所需要的材料等硬件到算法系统软件,兰州大学核技术创新与产业化团队都致力于将其本土化。是啊,要想获得“中国方案”、作出“中国贡献”,必须实现技术国产化,这是每位科研人员肩负的重大使命。刘军涛欣喜地透露,现在团队这项技术的国产化率已经达到了95%左右。今年,一直致力于文物保护高质量发展的吴春,又与兰州大学团队取得了联系,看实验能否深入开展。她寄希望于下一步的合作能够证实这种技术更安全、更准确,同时辅以地质勘查,为墙体的修缮工程提供可靠参考,使得预防性保护更具前瞻性。“经过这样完整的检验之后,我们希望这种技术能够得到广泛应用。可以相信,科技将助力中国考古迎来‘黄金时代’。”吴春说。考古科技化,技术国产化,归根到底都是高水平科技自立自强。这是一条遥远而艰辛的路。每个人都渴望化身滴水,汇入时代的海河,信念灼灼。科技日报•深瞳工作室出品文中图片均由受访者提供微信编辑丨宋慈审核丨朱丽终审丨王郁
  • 坛墨质检甲醇中4种苯系物混标/GB50325-2020
    坛墨质检甲醇中4种苯系物混标/GB50325-2020产品编号BWT900636-A(套标)CAS号规格1mL*5支/套甲苯 108-88-3对二甲苯 106-42-3间二甲苯 108-38-3邻二甲苯 95-47-6 标准值1:100μg/mL 标准值2:400μg/mL 标准值3:800μg/mL 标准值4:1200μg/mL 标准值5:2000μg/mL
  • 与DNA提取有关的那些事
    也许你很难想象一片叶子、一块肌肉、一管血液都经历了什么,最后以核酸的形式呈现。核酸的提取是所有分子生物学研究的基础,核酸提取的质量、浓度的多少对于下游分子生物学实验的成败起着关键的作用,今天我们就说一说关于DNA提取的那些事儿。一. DNA提取原则1、保证DNA分子的完整性2、排除有机溶剂与金属离子的干扰3、排除蛋白质、多糖、多酚、脂类的污染4、获得高纯度的核酸5、方法操作简便,稳定性强二. DNA有哪些染色体DNA、线粒体DNA、叶绿体DNA、质粒DNA、病毒/噬菌体DNA等。三. 样本的收集保存注:详细操作可参见《派森诺样品制备及质量要求》文件,可向当地销售或技术-支持索取。四. DNA提取原理及方法目前提取DNA的方法繁多,如CTAB法、SDS法、各种试剂盒等,但原理大致相同,主要是裂解和纯化两大步骤。首先对样品破壁裂解,采用机械力、化学试剂、酶等方法将DNA释放出来,随后去除蛋白质、糖、酚、金属离子等杂质,再用无水乙醇、异丙醇沉淀或载体吸附DNA,之后洗涤溶解即可得到核酸。虽然原理相似,但不同提取方法使用的试剂有很大差别,下面列举出在提取过程中,常用试剂的作用及原理:1、裂解相关试剂 (1)CTAB(十六烷基三甲基溴化铵):一种阳离子表面活性剂,在高盐溶液中,CTAB可与蛋白质和中性多糖形成复合物而沉淀,但不能沉淀核酸和酸性多糖,另外它还能保护DNA不受内源核酸酶的降解。(2)SDS(十二烷基硫酸钠):一种阴离子去污剂,可使细胞膜崩解,与膜蛋白疏水部分结合并使其与膜分离,使蛋白变性。(3)PVP(聚乙烯吡咯烷酮):是酚类化合物的螯合剂,可与多酚化合物形成复合体,使其不被氧化成醌类。(4)β-巯基乙醇:抗氧化剂,有效地防止酚氧化成醌,避免褐变,使酚容易去除。(5)蛋白酶K:用于生物样品中蛋白质的一般降解,将蛋白质降解成小分子肽或氨基酸,使DNA分子分离出来。2.纯化相关试剂耗材(1)苯酚:使蛋白质变性,同时抑制了DNase的降解作用。(2)氯-仿:克服酚的缺点,加速有机相与液相分层,去除核酸溶液中的迹量酚(酚易溶于氯-仿中)。(3)异戊醇:少许异戊醇可以减少蛋白质变性操作过程中产生的气泡,有助于分相,保持体系的稳定。(4)无水乙醇:沉淀DNA,不易沉淀盐类等物质;异丙醇也可沉淀DNA,体积小时间短,但易沉淀盐类物质。(5)核酸纯化柱:采用硅胶膜作为核酸的特异性吸附材料(高盐低pH值结合核酸),同时去除其他杂质,可以最-大程度地回收样品中的DNA(低盐高pH值洗脱),可以用于各物种的DNA提取。操作简单、用时短、纯度高。(6)DNA提取磁珠:是一种核心为四氧化三铁、表面修饰大量硅羟基的磁性微球,能在高盐、低pH条件下和溶液中的核酸通过疏水作用、氢键作用和静电作用等发生特异性结合,而不与其它杂质(如蛋白)结合,可迅速从生物样品中分离核酸,操作安全简单,非常有利于核酸的自动化和高通量提取。五. 核酸的保存短时间(24h内)可放置4℃保存,长期(24h以上)放置于-20℃进行保存,期间避免反复冻融。对于纯度不高、总量较少、完整度不好的非高质量核酸,还需尽早进行后续实验,以防保存时间过长,DNA质量更受影响,进而影响建库和测序质量。以上为大家列举了在提取过程中经常用到的试剂及原理,给出了核酸保存的建议。要强调的是相同的原理下,不是试剂的去污、裂解效果越好就用的越多,还是要在实际提取过程中,根据提取材料的不同、提取结果的差异,灵活调整实验方案。
  • 面包甲醛超标61倍?原来是监测仪的问题
    用电化学甲醛监测仪测试面包,显示的数值为5毫克/立方米测试料酒,显示的数值为0.63毫克/立方米 测试爽肤水、白酒、香水,显示的数值均为5毫克/立方米  看着迅速飙升的甲醛数值,尹宏倒吸了一口凉气:太恐怖了!他只是在甲醛监测仪前吃了片面包。“简直难以置信!” 一家甲醛监测仪生产厂家的工程师解释,面包里挥发出的气体恰是电化学甲醛监测仪的“软肋”,但并不是甲醛。  经过一番实验发现,电化学甲醛监测仪的“克星”不止是面包中挥发出的气体,香水、料酒的味道甚至炒菜时的油烟也会让电化学甲醛监测仪数值飙升,发出红色警报。  吃片面包  甲醛监测仪数值猛升  12月9日,尹宏借来一款空气质量监测仪,测试家中的空气质量。由于仪器还有测试甲醛功能,顺便也看看家中是否甲醛超标。在家中多处测量发现,甲醛含量基本是0。尹宏顺手将监测仪放在桌子上,在旁边吃起了面包。  哪知,监测仪上的甲醛数值迅速攀升,很快从0上升到1毫克/立方米以上。“太恐怖了。”为了确定是面包导致数值攀升,尹宏又将回到正常的监测仪放在面包袋(里面还有几片面包)封口处,甲醛数值又一路狂飙,最高达到约1.3毫克/立方米。  网友@dongdongtj也发现了与尹宏类似的现象。其取出烤箱里的面包发现:“同一地方,同样环境,甲醛测量值从0.15到0.3。”值得注意的是,他们都是利用电化学传感器测量甲醛。  记者实验  白酒爽肤水也是如此  12月14日,记者用尹宏使用的监测仪靠近面包测试,检测数值同样是迅速攀升到1毫克/立方米以上。那么,到底是面包里含有甲醛,还是监测仪出了问题?  国家标准《居室空气中甲醛的卫生标准》规定,居室空气中甲醛的最高容许浓度为0.08毫克/立方米。正常情况下,人体对甲醛的嗅觉阈通常是0.07 毫克/立方米。如果真的是空气中的甲醛浓度严重超标,可以闻到明显的刺激性气味。成都商报记者多次试验,均未发现异常味道。因此排除了面包挥发甲醛的可能。  15日,记者购买了一款由江西贝谷科技股份有限公司生产的甲保御牌家用甲醛监测仪。开机后,检测结果显示0.08毫克/立方米,符合国家标准。然后分别使用面包、料酒、白酒、香水、爽肤水对该监测仪进行试验。  结果发现,当面包、白酒、香水、爽肤水靠近监测仪时,甲醛数值会迅速飙升,发出红色警报。屏幕显示,甲醛浓度达到5毫克/立方米,超过国家标准61.5倍。料酒的测试数值是0.63毫克/立方米,但也超标近7倍。只要监测仪远离这些物质,甲醛数值就会逐渐回到正常水平。  厂家解释  芳香物质影响仪器测量  “面包发酵过程中微生物代谢产生的芳香物质会影响甲醛的测量。醇类物质也会对甲醛测量的准确性产生影响,如乙醇、丙醇、丁醇、异丁醇、戊醇、 异戊醇等。”成都商报记者在京东上看到,客服在针对监测仪的回复中称,这个问题现今技术还无法解决,所有电化学测量仪器都不能避免。不排除干扰因素,测量结果也一定不会准确。  “吃饭、喝酒时也不能检测,炒菜里的料酒也会影响到测量的准确性。”江西贝谷科技股份有限公司工程师周工表示,市场上在售的家用甲醛监测仪除了利用电化学制成的,还有半导体的。  周工说,电化学甲醛监测仪的工作原理相对简单,由采样窗口抽入的空气通过电化学传感器(由两根贵金属电极及一种特殊的电解质组成),在过滤膜上,甲醛气体分子在适当的电极电压下发生氧化还原反应,产生与甲醛浓度成正比的电流信号。该信号经过放大和数字处理电路而显示出甲醛的浓度。  “电化学传感器和半导体传感器都会对酒精挥发的气体产生反应。”周工分析,醇类物质、酚类物质以及二氧化硫等刺激性气味都会像甲醛一样使得监测仪的数值产生波动。“不过,这些物质极易挥发,而甲醛的挥发期最长达15年。所以在测量时只要避免上述物质,测量的精准度还是可以保证的。”
  • 警察的发现导致头发中替扎尼定的LC-MS / MS新方法
    法国警察在自行车队的房间中发现了替扎尼定(Tizanidine),导致开发新的LC-MS / MS方法,用于测定头发样品。警察发现替扎尼定替扎尼定是肌肉松弛剂,禁止在运动中使用。然而,在法国的三周骑自行车比赛中,法国警察的特殊公共卫生部门发现了一个国际骑自行车团队的一名医生的房间里的替扎尼定药盒。替扎尼定是一种具有肌肉松弛剂活性的α-2肾上腺素能受体激素,用于治疗多发性硬化症、脊髓损伤或脑损伤患者的肌肉痉挛。其他应用包括疼痛管理和阿片类药物和酒精戒断治疗。该药物仅在法国根据指定的临时使用授权计划提供,该计划在没有其他合适治疗的情况下允许指定患者使用某些医疗产品(可能是开发性或非标签使用)。因此,在法国,替扎尼丁不能从大街上的药剂师那里买到。尽管世界反兴奋剂机构(WADA)并未禁止使用这种肌肉松弛剂,但这种肌肉松弛剂对运动员的康复、缓解痉挛和治疗运动损伤可能很有帮助。它也可以与其他药物联合使用。在队医室发现替扎尼丁后,警方联系了Légale医疗研究所(法国斯特拉斯堡)的反兴奋剂分析员,要求分析从自行车队成员处获得的头发是否含有替扎尼丁。文献中没有关于头发中替扎尼丁的测定方法报道,因此分析员团队开发并验证了一种新的LC-MS/MS方法,并通过LC-HRMS进行确认。开发专用的LC-MS/MS方法一位法医病理学家从七名骑自行车的人身上采集了头发样本,将头发剪得尽可能靠近头皮。样本长度范围为2-12 cm(通常为2-3 cm),保存至分析,确保从根部到尖端的方向保持不变,这是分段时间分析的一个重要步骤(尽管由于样本限制,此处未进行此操作)。样品在环境温度下由快递员送到实验室进行测试。所有头发样本均为黑色至深棕色。实验室工作人员的空白头发样本用于比对。首先,用二氯甲烷清洗完整的头发,然后用剪刀剪成1 mm的区段。将剪下的头发(20mg)在1mL pH 9.5硼酸盐缓冲液(40°C)中培养过夜,然后冷却并与5mL乙醚/二氯甲烷/己烷/异戊醇(50/30/20/0.5,V/V)混合。离心后,将获得的上清液干燥,然后溶于30 μL的5 mM甲酸铵缓冲液,用于分析。使用XEVO TQS微型三重四极质谱仪配备Waters Acquity HSS C18柱(150×2.1mm×1.8μm,在50°C下保持) ,用于分析。使用甲酸缓冲液(pH 3;流动相A)和0.1%甲酸的乙腈溶液(流动相B)进行梯度洗脱。以地西泮-d5为内标,以正模式电离。LC-MS/MS方法验证良好,线性范围为1至100 pg/mg。使用加标空白头发样本检查精确度,精确度低于15%,可接受。LOD为0.4 pg/mg,在头发中掺杂剂的预期范围内。头发没有出现任何干扰分析物或内标物的峰,基质效应较低。七名自行车运动员中有三名对替扎尼丁呈阳性反应,但水平较低(1.1至11.1 pg/ng),结果通过作者的标准验证性LC-HRMS方法得到证实。筛查和确认是法医毒理学和兴奋剂控制的一种可靠和成熟的方法。首次测定头发中的替扎尼丁反兴奋剂科学家首次成功测定了头发样本中的替扎尼丁。头发测试似乎适合于确认是否接触替扎尼丁。在测试头发中的药物时,解释结果非常重要。不幸的是,缺乏将替扎尼丁加入头发的文献数据或警方关于运动员给药的信息,这意味着无法确定运动员可能给药的剂量、频率或持续时间。未来的研究需要将给药方案与头发浓度联系起来,分段头发分析有助于区分一次性和长期使用。原文载于Separation LC Mass Spectrometry 11 November 2021相关文献Kintz P, Gheddar L, Raul J-S. Liquid chromatography–tandem mass spectrometry and confirmation by liquid chromatography–high-resolution mass spectrometry hair tests to evidence use of tizanidine by racing cyclists. Drug Test Anal. 2021. doi:10.1002/dta.3164Tizanidine. British National Formulary, National Institute for Clinical Excellence (https://bnf.nice.org.uk/drug/tizanidine.html accessed 9 November 2021).Kintz P, Ameline A, Gheddar L, Raul J-S. Testing for GW501516 (cardarine) in human hair using LC/MS–MS and confirmation by LC/HRMS. Drug Test Anal. 2020. https://doi.org/10.1002/dta.2802(符斌 供稿)
  • 张学礼:合成生物学促进微生物细胞工厂构建
    细胞工厂操作系统 图片来源:百度图片   自然微生物能生产的化学品种类很少,远不能满足生产能源、化工、材料和药物领域各种化学品的需求。另一方面,自然微生物即使能生产某些化学品,其产量也很低,不具备经济可行性。   如何拓展微生物细胞生产化学品的种类和如何提高细胞的生产效率是限制细胞工厂产业化的两个关键技术问题。   生物制造瓶颈   石油资源是目前运输燃料和整个化工产业的基础。然而,石油资源是不可再生的,并且以其为基础的化工炼制是一个高能耗、高污染的过程。   而从另一个角度看,天然产物在药物开发方面有着广泛的应用,很多产物具有抗肿瘤、消炎、抗寄生虫、抗氧化防衰老等功效,一直是新药来源的重要组成部分。   天然产物的生产目前主要从药用植物中直接提取分离。然而,植物生长周期长、产物含量低,导致这种生产方式对野生植物资源造成严重破坏。   如何以一种可持续、绿色清洁的方式生产燃料、大宗化学品和天然产物,对于保障社会经济可持续发展至关重要。   生物质是一种可再生的清洁资源。通过生物制造技术,生物质可以被转化为燃料、大宗化学品和天然产物,从而替代石油化工炼制和植物资源提取。生物制造的核心技术是构建高效的微生物细胞工厂,将生物质原材料转化为各种终端产品。   然而,自然微生物能生产的化学品种类很少,远不能满足生产能源、化工、材料和药物领域各种化学品的需求。另一方面,自然微生物即使能生产某些化学品,其产量也很低,不具备经济可行性。   如何拓展微生物细胞生产化学品的种类和如何提高细胞的生产效率是限制细胞工厂产业化的两个关键技术问题。   合成生物学助力   合成生物学技术的发展极大地提升了细胞工厂的构建能力。通过以下四个方面的改造,可以快速构建出生产各种化学品的高效细胞工厂:   最优合成途径的设计:生产目标化学品的合成途径可能不存在于单一生物中,通过计算机模拟设计,可以将不同的生化反应组装到一个细胞中,形成一条完整的合成途径。在此基础上,根据基因组代谢网络和调控网络模型,设计出目标化学品的最优合成途径,使其合成过程中能量供给充足、氧化还原平衡,碳代谢流最大程度地流入产品合成。另一方面,自然界中可能不存在某步关键的生化反应,导致合成途径不能被打通。通过计算机模拟设计,可以人工合成出一个全新的蛋白,使其催化该步生化反应,从而进一步拓展化学品的合成种类。   合成途径的创建:目标产品合成途径由一系列生化反应及相关的编码基因组成,其中某些基因是外源生物的。传统的PCR(聚合酶链式反应)扩增方法周期长,而且很多外源基因在宿主细胞中的表达及翻译效率很低。DNA合成技术的发展很好地解决了这一问题。基于芯片的高通量、高保真DNA合成技术显著降低了合成时间、合成成本和错误率 单个酶的大量合成和高通量筛选相结合,能有效解决外源基因的表达和翻译问题。另外,标准化的结构元件和调控元件文库,如启动子、核糖体结合位点和信使RNA稳定区文库,为合成途径的创建提供了坚实的物质基础。多片段DNA组装技术,如酵母体内同源重组技术,则能快速高效地实现功能模块组装和合成途径创建   合成途径的优化:合成途径创建完之后,通常效率都很低,远远达不到产业化生产的要求,因此需要对合成途径进行优化,提高其效率。高效的合成途径很多时候不仅仅只受限于某个单一的限速反应步骤,而且需要多个酶的协同平衡。基于标准化调控元件文库,可以对合成途径各个基因的表达进行精确调控,从而获得多个基因协调表达的状态。多重基因组自动改造技术则可以同时对染色体上的多个基因进行改造,结合高通量筛选技术,可以快速高效地鉴定出最优的调控组合。另外,通过人工合成的蛋白骨架,既可以使合成途径相邻的两个酶聚集在物理空间比较近的区域,提高两个生化反应的速率,也可以获得这些酶的最优组合比例。   细胞生产性能的优化:合成途径优化完之后,可以获得一个初步的人工细胞。需要进一步提高人工细胞的生理性能和生产环境适应能力,才能将其转变为实际生产可用的细胞工厂。进化代谢和全局扰动等技术的发展可以有效地提高细胞的生产性能。在此基础上,使用各种高通量组学分析技术可以解析细胞性能提升的遗传机制,并可用于新一轮细胞工厂的构建。   产业化初见成效   使用上述的合成生物学技术,科学家们成功构建出一系列高效的细胞工厂。在燃料化学品方面,生产长链醇(丙醇、异丁醇、异戊醇)、脂肪酸酯、脂肪醇、烷烃、烯烃等燃料的细胞工厂相继面世。   另外,利用二氧化碳和钢厂废气为原料生产乙醇、脂肪醇等燃料的细胞工厂也被成功开发。在大宗化学品方面,科学家们成功开发出生产C3(乳酸、聚乳酸、1,3-丙二醇、1,2-丙二醇、3-羟基丙酸、丙烯酸、丙氨酸)、C4(丁二酸、苹果酸、富马酸、1,4-丁二醇、异丁烯、丁二烯)、C5(异戊二烯、戊二胺、戊醇、木糖醇)和C6(己二酸、葡萄糖酸、甘露醇)等化学品的细胞工厂,其中很多已实现产业化生产,并被进一步用于塑料、纤维、尼龙、橡胶等一系列终端产品的生产。   在天然产物方面,生产青蒿素、紫杉醇、银杏内酯、丹参酮、吗啡、白藜芦醇、莽草酸、番茄红素、虾青素、辅酶Q10等产物及其关键前体化合物的细胞工厂也被成功开发。   随着合成生物学各种新技术的不断发展,微生物细胞工厂的构建技术也将越发完善。其必将极大地推动石油化工制造和药物生产的产业升级,为人类社会的可持续发展作出巨大的贡献。
  • 坛墨标样-甲醇中16种挥发性有机物-TVOC混标(含乙酸正丁酯)/GB50325-2020
    坛墨标样-甲醇中16种挥发性有机物-TVOC混标(含乙酸正丁酯)/GB50325-2020产品编号BWT900637-100-ACAS号规格1mL标准值100μg/mL序号名称CAS号1正己烷110-54-32苯71-43-23三氯乙烯79-01-64甲苯108-88-35辛烯111-66-06乙酸丁酯123-86-47乙苯100-41-48对二甲苯106-42-39间二甲苯108-38-310邻二甲苯95-47-611苯乙烯100-42-512壬烷111-84-213异辛醇104-76-714十一烷1120-21-415十四烷629-59-416十六烷544-76-3
  • 直播预告 | 液相分离纯化技术在药物研发中的应用
    01 讲座主题《液相分离纯化技术在药物研发中的应用》“主要内容1. 液相分离技术的简介 2. 液相分离技术的特点 3. 典型案例的分享02 主讲人简介周春东上海皓元生物医药科技有限公司制备分离部SFC/正相部门负责人 ✦ ✦ ✦ ✦ ✦ 教育经历于2010年6月,毕业于西北农林科技大学的化学生物学专业,获得硕士学位于2003年6月,毕业于西北农林科技大学大学的生物技术专业,获得学士学位 工作经历拥有近13年关于药物分子分析和分离的专业经验,擅长手性药物分析方法开发和制备拆分以及药物API、中间体及工艺杂质分析方法开发及分离纯化。于2010年7月加入上海药明康德新药研发有限公司,主要从事公司外部项目相关的SFC和常规HPLC分离的方法开发、分离工作,已服务于多家国内外公司,如默克、诺华、GSK、强生、礼来、杨森制药、扬子江药业、南京药石、四川海思科制药、等等,另外还参与公司内部的FTE分离纯化工作;每年累计完成项目超过千个,并得到一致的好评。于2018年5月加入上海泓博智源医药股份有限公司,主要从事负责药化分析部门SFC分析分离平台实验室的0-1的建设及反相制备分离支持服务的整体水平完善和提升,实现了公司手性分析分离纯化wan全内部完成以及承接部分外部服务项目。于2019年12月加入济川(上海)医学科技有限公司即济川药业上海研究院,主要从事项目药物工艺杂质及制剂杂质分离纯化实验室的建设和运行等工作,共支持了研究院十多个药物研发项目,其中,部分已经获得生产许可;同时,参与药物研究阶段专li撰写,并获得已发表发明专li6个。与2022年3月加入上海皓元生物医药科技有限公司,主要负责SFC/正相制备分离平台的全面建设和运营管理,从7月正式启动到2022年底完成公司三百多个项目支持,以及多家商务项目的支持;现在实验室有多台分析分离液相仪器,几十种分析分离色谱柱,可以快速实现分析方法开发和制备分离方法开发及优化;支持项目可以是手性或非手性化合物;也可以提供GMP下的分离纯化项目需求。03 讲座时间2023年7月31日(周一)下午14:00
  • 高纯试剂中杂质检测专题——工业甲醇中铵离子的测定
    01 引言 离子色谱法测定甲醇中铵离子 监测甲醇中铵离子含量在煤基合成甲醇工艺中具有重要作用。在煤基合成甲醇过程中,会产生一系列杂质气体 ,如 CO 、NH3 以及有机硫化物、氮的氧化物、煤焦油等,而铵离子会引起合成过程中的催化剂中毒失效,致催化剂效率严重下降;同时铵离子含量较高时会降低低温甲醇洗脱硫效率、对工艺设备有严重影响。因此,通过控制甲醇中铵离子的含量 ,可以防止催化剂中毒,提高转化率,降低成本。工艺控制中工业用甲醇中铵离子含量不得大于0.05mg/L.制定工业用甲醇中铵离子测定方法,是为工业甲醇的杂质检测提供一个试验方法,对指导甲醇为原料的相关生产过程的检测具有重要意义。目前甲醇中NH4+的测定都是采用离子色谱法,2022年3月1日开始实施国标《工业用甲醇中铵离子的测定离子色谱法》,下面小编分享下甲醇中NH4测定的离子色谱法。02 相关标准 GB/T 40395-2021《工业用甲醇中铵离子的测定离子色谱法》03 皖仪科技应对方案 皖仪仪器设备 试剂耗材 甲醇:色谱纯;铵根离子:ρ=1000mg/L;一次性注射器(0.5-2mL);有机系针式过滤器(0.22μm) 测试结果 标曲线性测试NH4+标曲重叠谱图NH4+线性说明:由于所有胺类物质一次线性范围均较窄,本次按照标准要求配置的标准曲线系列梯度范围较宽,因此,标准曲线采用二次曲线拟合,本次测试铵离子线性相关系数为R2=0.99996,线性良好。------ 重复性测试 ------ NH4+0.05mg/L连续3针测试谱图NH4+0.2mg/L连续3针测试谱图NH4+2.0mg/L连续3针测试谱图 ------ 重复性结果 ------ 说明:根据谱图及测试结果可见,所有组分定量重复性均小于1%,定性重复性均小于0.2%,测试重复性良好。------ 检出限 ------ 注:标准中规定,在进样体积为50μL下,测定下限为0.01mg/L,本测试以NH4+0.05mg/L进样,考察其峰高,取测试最大噪声,以3倍信噪比对应峰高为检出限。------ 测试结果 ------ 经计算,本次测试 NH4+检出限为 0.434μg/L,小于标准要求的 0.01mg/L。04 总结 结果表明 本文采用离子色谱法,对甲醇中 NH4+进行测定,准确度高,灵敏性好,精密度好,该法可用于甲醇中 NH4+的测定。05 注意事项 — END —扫描二维码 |
  • 药物分析进展和应用专栏|植物甾醇分析技术介绍
    植物甾醇是常见的植物活性成分,同时也是人类饮食中的主要脂类成分组成部分。其结构与胆固醇类似,均具有环戊烷多氢菲母核,图1中的β-谷甾醇、菜油甾醇、和豆甾醇为较为常见的植物甾醇。由于植物甾醇与胆固醇具有相似的结构,二者均需溶于胶束后才能被人体吸收,植物甾醇能与膳食来源的胆固醇竞争进入混合胶束从而减少肠道对于胆固醇的吸收,因此有助于控制血液中的总胆固醇、低密度脂蛋白和甘油三酯水平,从而减少心血管疾病的风险(图2)[1]。近年来,随着人们对健康饮食的日益重视,越来越多的科研人员开始关注到含植物甾醇的食品及植物的分析技术的开发与运用,本文将重点介绍基于气相色谱-氢火焰离子化检测器联用技术及液相色谱-大气压化学电离质谱联用技术的植物甾醇分析方法。图1. 常见的三种植物甾醇结构图2. 植物甾醇降低血清胆固醇的示意图[1]1. 植物甾醇的分析技术食物与植物中的甾醇类成分经过前处理并富集后,可采用不同的分析技术与手段开展分析与鉴定。目前最常用于植物甾醇定量分析的技术为气相色谱法(Gas Chromatography,GC)。液相色谱法(Liquid chromatography,LC)、薄层扫描法(Thin Layer Chromatography Scanning,TLCS)等也可以进行植物甾醇组分的分离与定量分析。1.1 气相色谱-氢火焰离子化检测器联用技术(GC-FID)技术原理:氢火焰离子化检测器(Flame Ionization Detector,FID)的工作原理是基于有机化合物能够在火焰中发生自由基反应而被电离从而对待测物进行分析[2]。如图3所示,FID离子室中火焰分为A层预热层;B层点燃火焰;C层温度最高,为热裂解区,有机化合物CnHm在此发生裂解而产生含碳自由基CH:CnHm→CH含碳自由基进入反应层D层,与外面扩散进来的激发态原子或分子氧发生反应,生成CHO+及e-:CH+O→CHO++e-形成的CHO+与火焰中大量水蒸气碰撞发生分子-离子反应,产生H3O+离子:CHO++H2O→H3O++CO化学电离产生的正离子(CHO+,H3O+)和电子(e-)在外加直流电场作用下向两极移动而产生微电流,收集极与基流补偿电路间的电流作为微电流放大器的输入,微电流放大器输出的电流信号(或电压信号)经A/D转换器,将模拟信号转换成数字信号,由计算机记录下来并进行数据处理从而获得色谱峰。图3. 氢火焰离子化检测器(FID)的示意图技术特点:火焰离子化检测器(FID)是气相色谱常用的检测器,它对几乎所有有机物均有响应,特别是对于烃类化合物灵敏度高且其响应与碳原子数成正比。与此同时,它对于气体流速、压力、温度变化的细微差异相对不敏感,不易受到外界环境改变影响。通过该法对植物甾醇进行分析时,需要对样品进行衍生化处理,将游离的植物甾醇转化为适合GC分析的疏水性衍生物,如生成三甲基硅醚(TMS)衍生物。目前广泛使用于植物甾醇分析的衍生化试剂包括有:含N-甲基-N-三甲基硅烷基三氟乙酰胺(N-methyl-N-trimethylsilylfluoroacetamide,MSTFA)无水吡啶溶液、含1%的三甲基氯硅烷(Trimethylchlorosilane,TMCS)的双三甲基硅基三氟乙酰胺(Bis-trimethylsilyltrifluoroacetamide,BSTFA)等。通过GC-FID对植物甾醇进行定量时,常使用的内标包括有白桦脂醇(Betuline)、5α-胆甾烷醇和5α-胆甾烷-3β-醇等。分析仪器:1957年,澳(大利亚)新(西兰)帝国化学工业公司(Imperial Chemical Industries of Australia and New Zealand,ICIANZ)中央研究实验室的McWilliam和Dewar开发了第一台FID。目前FID检测器已经成为应用最广泛的气相色谱检测器之一,其获取、操作成本、维护要求均相对较低。市面上的气相色谱仪基本上均可配置FID检测器,包括安捷伦9000、8890、8860和7890气相色谱系列,赛默飞 TRACE 1300、1100系列,岛津Nexis GC-2030,珀金埃尔默 2400等进口气相色谱系统以及福立 GC9790、GC 9720,常州磐诺GC1949,上海仪电分析GC 128、北分瑞利 GC3500系列等国产气相色谱仪。1.2 液相色谱-大气压化学电离质谱联用技术(LC-APCI-MS)技术原理:大气压化学电离化(Atmospheric Pressure Chemical Ionization,APCI)原理与化学离子化相同,但离子化在大气压下进行。流动相在热及氮气流的作用下雾化成气态,经由带有几千伏高压的放电电极时离子化,产生的试剂气离子与待测化合物分子发生离子-分子反应,形成单电荷离子,正离子通常是(M+H)+,负离子则是(M-H)-。大气压化学离子化能在流速高达2 ml/min下进行,常用于分析分子质量小于1500道尔顿的小分子或弱极性化合物,主要产生的是(M+H)+或(M-H)-离子,很少有碎片离子,是液相色谱-质谱联用的重要接口之一。图4. 大气压化学电离源(APCI)的示意图技术特点:植物甾醇的发色团数量少,因此不适合通过紫外检测器检测;同时植物甾醇质子亲和力较小、酸性较弱、不宜在溶液中形成质子化的离子或去质子化生成阴离子,因此通过电喷雾电离(Electron Spray Ionization,ESI)的电离效率相对较差。由于植物甾醇亲脂性较强,分子量一般小于1000 Da,采用APCI离子源可以提供更高的植物甾醇检测灵敏度,且无需对样品进行衍生化,极大地缩短了分析所需的时间。研究人员还发现植物甾醇分析过程中,采用正离子模式能够提供了比负离子模式更高的灵敏度,且易于生成准分子离子峰[M+H]+、[M+H-H2O]+ [4]。分析仪器:目前国内外均有大量厂商生产搭配有APCI离子源的液相色谱质谱联用系统,已运用于药物研究、食品安全检测、生命科学和分子生物学等多个领域。Agilent 6470、6490系列三重四极杆液质联用系统,Bruker EVOQ LC-TQ液相色谱质谱联用系统,PerkinElmer QSight 400系列三重四极杆质谱仪,SHIMADZU LCMS-2020、LCMS-2050液相色谱质谱联用系统以及国产的江苏天瑞LC-MS 2000液质联用系统,杭州谱育科技EXPEC 5310LC-MS/MS、EXPEC 5250 气相/液相色谱-三重四极杆质谱联用仪、EXPEC5510LC-MS/MS、禾信仪器LC-TQ5100等均配置有APCI离子源。国产的江苏天瑞LC-MS 2000液质联用系统,杭州谱育科技EXPEC 5310系列质谱仪等均配置有APCI离子源。2. 应用实例2.1 基于GC-FID快速分析橄榄油中的植物甾醇在对特级初榨橄榄油样本进行皂化处理后,国际橄榄理事会(International Olive Council,IOC)方法采用乙醚对皂化样本多次液液萃取以提取植物甾醇;研究人员优化后前处理方法采用反相聚合物基质固相萃取柱对皂化样品中的植物甾醇进行提取。同时研究人员基于GC-FID建立了同时快速定量17种脂质(含内标胆甾烷醇)的分析方法,其中包括16种植物甾醇,这17种脂质的GC-FID色谱图如图4所示[5]。通过分析比对不同前处理方法结果,研究人员发现优化后前处理方法简单、省时,并减少了溶剂的使用量,但是与IOC官方方法获得的结果较为一致。通过GC-FID快速定量17种脂质的分析方法也有助于评估高价值且容易掺假的特级初榨橄榄油的真实性。图5. 特级初榨橄榄油样品采用IOC方法(A)及优化前处理方法(B)处理后,分别经由GC-FID分析得到色谱图。(1)胆固醇;(2)菜籽甾醇;(3)24-亚甲基胆固醇;(4)菜油甾醇;(5)菜油烷甾醇;(6)豆甾醇;(7)Δ7-菜油甾醇;(8)赪桐甾醇; (9)β-谷甾醇;(10)谷甾烷醇;(11)Δ5-燕麦甾醇;(12)Δ5,24-豆甾二烯醇;(13)Δ7-豆甾醇;(14)Δ7-燕麦甾醇;(15)高根二醇;(16)熊果醇;(IS)胆甾烷醇。2.2 基于LC-APCI-MS/MS快速分析饲料中的植物甾醇相较于GC-FID或GC-MS,LC-APCI-MS/MS无需进行样品衍生化即可完成植物甾醇的定量分析,极大地缩短了样品前处理时间。研究人员建立了基于LC-APCI-MS/MS的植物甾醇分析方法,并可在8分钟内快速定量6种目标植物甾醇[6],图6为胆固醇与6种植物甾醇混合标准溶液(500 ng/mL)的MRM提取离子流色谱图。该方法提供了一种适用于大豆、向日葵、草料、犊牛成品饲料和上述饲料混合物在内的不同类型饲料中的植物甾醇定量的方法。同时将实验结果与其他相关研究结果进行比较,显示出良好的一致性。该方法简单、快速,可以将其应用于其他饲料和食品中的植物甾醇分析。图6. 不同研究化合物混合标准溶液的MRM提取离子流色谱图。①麦角甾醇;②胆固醇;③岩藻甾醇;④Δ5-燕麦甾醇;⑤菜油甾醇;⑥豆甾醇;⑦β-谷甾醇3.小结与展望植物甾醇是植物中的生物活性化合物,同时因其在降低血液胆固醇水平方面有着重要意义,植物甾醇可作为保健食品中的功效成分用于调节人体机能。在这种情况下,有必要建立适合于保健食品中植物甾醇类化合物的分析方法,以评估保健食品质量。同时随着分析技术的发展和相关研究的不断深入,更多快捷、灵敏的分析技术也将成为植物甾醇分析的有力工具,并为更多不同的植物甾醇类化合物在降低血脂、预防心血管疾病等健康领域的运用提供支持与保障。参考文献:[1] Zhang R, Han Y, McClements D J, et al. Production, characterization, delivery, and cholesterol-lowering mechanism of phytosterols: A review[J]. Journal of Agricultural and Food Chemistry, 2022, 70(8): 2483-2494.[2] 胡坪, 王氢. 仪器分析(第五版)[M]. 北京:高等教育出版社,2019.[3] 国家药典委员会. 中华人民共和国药典(2020版):四部[M]. 北京:中国医药科技出版社,2020.[4] Mo S, Dong L, Hurst W J, et al. Quantitative analysis of phytosterols in edible oils using APCI liquid chromatography–tandem mass spectrometry[J]. Lipids, 2013, 48: 949-956.[5] Gorassini A, Verardo G, Bortolomeazzi R. Polymeric reversed phase and small particle size silica gel solid phase extractions for rapid analysis of sterols and triterpene dialcohols in olive oils by GC-FID[J]. Food chemistry, 2019, 283: 177-182.[6] Simonetti G, Di Filippo P, Pomata D, et al. Characterization of seven sterols in five different types of cattle feedstuffs[J]. Food Chemistry, 2021, 340: 127926.
  • 岛津为沈阳药科大学建校80周年庆典送祝福
    2011年金秋,沈阳药科大学将迎来80周年华诞。1931年创建于江西瑞金的沈阳药科大学,其前身是中国共产党和毛泽东主席亲切关怀下创办的中国工农红军卫生学校,学校始终与中华民族的独立和复兴、与新中国的建设和发展同呼吸、共命运,经过80年的发展,学校现已成为多学科、多层次、多形式教育的高等药学学府,被誉为&ldquo 药学人才摇篮&rdquo 。真可谓八十春秋风雨沧桑,红色药苑历久弥新! 九月的沈阳药科大学,绿树成荫,碧草铺地,鲜花盛开。在此金色的季节,庆典大会于9月10日上午在沈阳奥体中心隆重举行,众多海内外校友重返校园,感受母校变化,再温恩师教诲,共忆风华正茂。作为沈阳药科大学的重要伙伴,受沈阳药科大学校党委书记、校长吴春福教授的邀请,岛津分析仪器事业部吴彤彬部长率岛津分析仪器事业部高层领导,参加了此次庆典活动,为该校80周年华诞送上了最热烈的祝贺! 岛津企业管理(中国)有限公司出席庆典活动。 在庆典活动期间,沈阳药科大学校长吴春福教授、副校长毕开顺教授亲切会见了岛津公司一行。 在会谈中,两位校长对岛津分析仪器的性能及售后服务给与了高度评价,表达了今后进一步加强与岛津公司合作的愿望。岛津公司吴彤彬事业部长对沈阳药科大学对岛津公司仪器的信赖深表感谢,并介绍了岛津公司近年来在中国分析仪器事业方面的进展情况。在会见结束前,吴彤彬部长表示,岛津公司作为全球领先的分析仪器厂商,一直致力于人类及环境的健康事业,可以提供从光谱、色谱到质谱等仪器及检测手段,提供全面的解决方案。希望今后进一步加强与沈阳药科大学的相互合作。岛津分析仪器事业部的张建军经理、吕冬经理、李国英经理、贾向群经理、王益等参加了庆典活动及校长会见。     吴彤彬部长与吴春福校长合影。 毕开顺校长与岛津一行合影。 80周年校庆,是沈阳药科大学发展史上一个光荣的里程碑,是该校迈向新征程的历史新起点。岛津公司衷心祝福沈阳药科大学弘扬优良传统,紧跟时代步伐,走向新的辉煌!    关于岛津 岛津国际贸易(上海)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津国际贸易(上海)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 无溶剂香气萃取和分析研究进展
    11月22日至23日,由365bet体育在线、上海香料研究所、上海化工研究院有限公司共同主办,中国香料香精化妆品工业协会等单位协办的“2019 中国国际香料香精化妆品科学技术论坛”在上海举办。国内外高校、科研院所、香料香精化妆品行业专家学者、企业家等共200余人出席论坛。前美国化学学会农业和食品化学分会主席,美国化学学会会士 (fellow), 美国化学学会农业和食品化学分会会士(fellow),农业与食品化学杂志顾问委员, 美国俄勒冈州立大学michael qian教授被邀做了“无溶剂香气萃取与分析研究进展”,介绍了一下几个内容:传统香气分析概述传统溶剂提取法与溶剂辅助风味蒸发法顶空和吹扫捕集固相微萃取法 pdms搅拌棒萃取法eg-silicone搅拌棒吸附萃取法分析挥发性酚热脱附薄膜固相微萃取首先钱教授给大家一个确定风味重要化合物的思路。首先提取样品中的化合物(isolation),然后对其进行富集浓缩(concentration),通过一维或二维气相色谱进行分离(separation), 对其中的气味化合物可通过嗅觉检测器(olfacrometry)来进行识别, 然后通过气味强度评估(osme odor intensity assessment) 或是风味稀释分析(flavor dilution analysis)等评估法对重要气味化合物进行锁定。最后通过质谱(ms 或 ms/ms)或质谱红外(ms/ir)或核磁共振(nmr)进行鉴(identification)。 对浓度很低的化合物,可以在色谱分离之后,通过馏分的收集(preparative gc )来进一步对其浓缩, 以达到检测器的检测下限,进行成果的鉴定。 钱教授的学生正在使用odp来识别香味化合物钱教授把多年来的工作研究香气香味的经验与大家分享,比如如何才能提高监测灵敏度和提高分离效率,以下三个点非常重要:样品的制备和浓度通过优化色谱法来提高分离效率了解并利用检测的特异性 还比如几种的传统萃取技术(溶剂萃取,safe,同时蒸馏萃取)的优缺点,- 适合高浓度香气物质的萃取- 可同时萃取极性和非极性化合物- 耗时久- 重复性差- 需要使用同位素进行内标定量和现代化的无溶剂风味萃取的原理,丰富的应用案例以及他们的优缺点。静态顶空- 类似于食品上的气味成分- 有限的伪影生成- 无溶剂峰,可自动化- 低灵敏度- 适用于白酒中主要成分分析:乙醛,乙酸乙酯, 异戊醇, 乙酸异戊醇动态顶空- 无需样品制备- 高效富集- 自动化- 潜在的热伪影- 对低挥发物回收率低- 高酒精度会影响微量成分的分析固相微萃取在风味分析方面的挑战- 灵敏度- 选择性- 竞争吸附- 纤维重现性- 需要加入内标来定量(同位素稀释分析)pdms 搅拌棒吸附萃取- 可提取非极性和半极性的风味物质- 萃取相负荷是spme的100倍- 可用于直接接触或顶空模式- 使用方便,经久耐用, 可重复使用- 对高挥发性化合物回收率低(如乙醛,丙醛,丁醛,乙酸和短链酸)- 不能回收强极性化合物eg-silicone 搅拌棒吸附萃取- 有效提取高挥发性化合物,如乙醛,乙酸乙酯- 有效提取极性化合物,如酚类化合物, 短链酸- 可与pdms搅拌棒互相补充- 背景噪音较大- 稳定性和持久性较pdms搅拌棒差重要的挥发性酚类化合物有:装有微型瓶的热脱附管,和热脱附单元tdu2 此方法成果的萃取了marionberry (marion 黑莓)中的多种风味化合物, 其中包括呋喃酮,以及重要的酚类化合物,还有覆盆子酮等。 覆盆子酮是树莓类中重要的气味化合物,而此化合物只有在使用spe法才被检测到。spe法在这里更接近于液液萃取法的效果。在总结时,钱教授说到:”分析化学的不断发展将使快速的风味分析成为可能,并提供新的痕量风味成分的鉴定。” 并且强调:“有效的分析和鉴定关键风味成分需要将仪器分析与感官评估相结合。” 各种样品前处理的技术都有其优缺点,正确选择和结合最适合样品的技术是关键。哲斯泰为您提供各种无溶剂的萃取技术,给您一个强大的技术平台。我们也希望可以助所有的风味化学家一臂之力, 在样品前处理和嗅觉检测领域,更好的为大家服务! (china)和第三届(chile)国际香料会议的发起者和主席。
  • 内地高校实验室事故频发折射管理漏洞
    上周,南京大学鼓楼校区化学楼内甲醛反应釜发生泄漏,从化学楼到靠近该校北门的路边弥漫着一股刺鼻的气味,上百名师生紧急疏散。事发后,据当地媒体报道,未发现有人员伤亡。   南京大学的师生是幸运的。在1年多以前的东北农业大学实验室感染事件中,28名师生被发现感染布鲁氏菌病——一种与甲型H1N1流感、艾滋病、炭疽病等20余种传染病并列的乙类传染病。至今,不少实验室还时不时提起该事件,作宣讲教材引以为戒。   高校实验室是科学研究的根据地,本来就充满着各种未知的风险,这一点无法避免。但近些年暴露在公众视野下的,不仅有科学实验中“量杯碎,试管炸”的小事件,更有类似有毒气体泄漏的大事故,以至于有化学专业学生在高校BBS上将实验室里的研究生比作煤矿下的民工。这种说法当然有些夸张,但安全事故频发,还是有必要探讨其背后的原因,毕竟这关系着广大师生的人身安全。   实验室事故多源于科研人员的粗心大意   有关此次南京大学甲醛泄漏事故,校方尚未公布具体原因。但据当地媒体报道,事发时,一名教师正在实验室里做实验,期间出去了一段时间,甲醛也是在这个“空档”泄漏的。按照实验的规范要求,师生在做实验时,不得中途离开,事故发生是否与此有关成了媒体关注的焦点。   近几年,高校实验室发生事故的消息频频见诸报端,事故原因则如出一辙,皆是因为实验人员的粗心大意。   2008年,上海有机所某博士生在使用过氧乙酸时,没带防护眼镜,结果过氧乙酸溅到眼睛,致使双眼受伤。同年,另一个博士生在使用三乙基铝时,由于没有带防护手套,化学物品粘在手上也没有用清水冲洗,结果左手皮肤严重腐蚀,以致植皮……   “河里面淹死的多是那些会游泳的。”北京理工大学一位教授告诉中国青年报记者,不少实验人员总抱着侥幸心理,认为不会出事。就在前两天的一次试验中,他自己在加热温度计时就闹出了一个“小事故”。忘记关加热套,结果温度过高,超了温度计的量程,“嘭”的一声,温度计裂开了,幸好没有伤到人。   这位教授说,发表论文时要将重要试验的操作过程都详细地记录下来,甚至将试剂的纯化方法也要写清楚,目的只有一个,保证他人在用作者的实验方法做实验时能够在同一条件下进行。否则,不仅实验结果的数据会有出入,还有可能导致事故的发生。   “实验室出事多是人祸”的说法并非没有依据。1951年、1965年、1976年,科学家Sulkin和Pike调查了5000多个生物实验室,累计实验室相关感染3921例。这项调查发现,低于20%的生物实验室获得性感染与已知的事故有关,80%的报告事例与实验人员粗心大意地暴露于某些能传播真菌和病毒的固体或液体颗粒有关。   曾令全社会恐慌的2003年的非典疫情,也曾一度传出病毒源自实验室泄露的说法。虽然并未得到证实,但在新加坡、台湾和北京,后来发生的三起实验室感染非典事故,原因则都是工作人员未能严格执行生物安全管理与病原微生物标准操作,犯了不该犯的低级错误。   实验室安全教育缺失   硬件上潜在的危险也需要重视,北京矿冶研究总院的吴春平博士对中国青年报记者说,安全预防中,“人防”和“技防”缺一不可。   以化学实验室为例,人们通常认为,化学实验室里有气味很正常,但在吴春平看来,如果实验室里的某种气味过浓,便说明实验室的通风系统不符合安全要求,人长期在里面工作很容易患病。   据统计,2010年教育部直属高校校舍面积缺额最多的就是实验室实习场所及附属用房,占总缺额的26%,缺额面积近350万平方米。中国教育科学研究院高教中心主任张男星对中国青年报记者说,实验室实习场所面积缺口最大,安全建设应纳入大学章程,此外,要关注九项校舍的分类达标,尤其是实验室实习场所达标以及科研用房的建设状况。   最近,教育部等部门颁布的文件规定了包括实验室实验在内的高校实践教学所占比重,其中理工农医类高校不得少于25%,高职高专不得少于50%。张男星说,“这对实验室安全问题提出了更为重大的挑战。”   那么,如何才能降低实验室安全事故的发生概率?   吴春平从事了10多年的爆破研究工作,在任何一次试验中,如果他稍有不慎,便有可能和手里的炸药一起“灰飞烟灭”,因此,“按照操作规范进行实验”成了他进实验室的最大原则,其次就是“谨慎、谨慎再谨慎”。   但对于硕士、博士、博士后和技术员组成的一线科研人员来说,其安全防护知识往往局限于来自实验室管理者的简单传授和自身操作实践,“而且,后者还是常态。”吴春平说,学生自我摸索的过程,也是最容易出事故的时候。   比如,雷管上的两根导线要连接在一起,如果分开了,很有可能产生静电,雷管就会爆炸,吴春平告诉记者,这就相当于电灯泡的两个电线之间一旦有了火花,灯泡便会亮。就是这么简单的原理,但如果在实验中没有老师的“第一次”提醒,仍会有学生在搬运雷管时,忽略掉如此致命的细节。   一项题为“某医科大学临床医学专业学生对实验室生物安全知识认知情况调查分析”的调查佐证了“安全教育的缺位”。这份调查显示,在问及“您以前接受过实验室生物安全知识教育吗”问题时,仅20.3%的人回答接受过教育 而“认知率较低的主要原因还是由于学生获取生物安全知识的途径较少,尤其课堂灌输几乎没有”。   实验室管理制度成“样子货”,管理水平有待提高   通常来说,高校实验室的墙壁上都会贴有“实验室管理制度”或“实验室安全管理制度”,但多流于形式。湖南某高校一名研究生告诉记者,他所在的化学实验室的实验室管理制度一共有8个大项,合计280条细则,诸如仪器设备管理办法、工作档案制度等等,“看起来让人眼花缭乱”。   如其中一条:学院通过教师学习、教研活动等途径,提醒教师必须在理论教学中教会学生如何正确使用实验设备,并教会学生在突发事故发生时如何自我保护、相互救援、安全撤离。这位研究生说,囿于没有任何约束机制,教师很少主动向学生讲解如何撤离实验室,甚至他们自己也不清楚如何撤离,“看似把各方面都考虑在内的制度,却是中看不中用的‘样子货’。”   更为重要的是,对一些实验室安全的“检查”流于形式。海洋地质学家、全国政协委员高抒告诉中国青年报记者,针对实验室的检查一般是定期检查,而且由于会提前通知检查时间,往往成了“一场彩排的游戏”,领导一走,实验室“很自觉地”马虎起来,出事也在所难免。   “避免实验室事故发生,要先填上高校管理的漏洞。”高抒说,不管是实验人员个人的麻痹大意,还是他们对实验室制度的置若罔闻,最终都必须通过管理水平的提高来规避。   而我国实验室管理水平不高从实验室管理人员的安排上就可见一斑。   在国外,有研发机构的大型企业,一般都有专门从事实验室管理的员工,一个员工可以在这个岗位上工作几十年。但在国内,实验室里更多的是教授、研究生的身影,却很难看到专门的实验室管理人员。“即便是有管理人员的,与国外的积极性比起来也是大相径庭。”   高抒在德国访问时发现,德国实验室里的仪器用了30年后还可以继续使用,而国内的不少仪器用了七八年就到了头。究其原因,就在于国内的维护不到位,“很多实验室的管理人员对待‘后勤’工作比较糊弄。”   “吃大锅饭,就没有积极性。”高抒说,在德国,实验室的管理人员是整个科研队伍的成员之一,属于支持人员,这意味着,其个人的利益和团队整体的发展挂钩在一起,科研实验做的好,管理人员的腰包也会鼓起来。但在国内,实验室的管理人员通常是归校方或研究院所的后勤部门统一管理,作为科研队伍的编外人员,他们自然不会全身心地投入到实验室的工作中去。   一位曾任北京航空航天大学教育部某重点实验室副主任的教授道出了另外一个层面的因素。这位教授告诉记者,除了管理层面的问题之外,还有一部分原因在于,当下以论文数量为主的评价体系使得科研人员“愈加浮躁”,不少人做实验的目的只有一个,就是把论文需要的数据尽早赶出来,“赶速度出数据,最终赶出了事故。”这一点也值得警惕。
  • 电位滴定在油品中硫醇硫含量检测中的应用
    一、油品中硫醇硫是什么?硫醇是含巯基官能团(-SH)的一类非芳香化合物。结构上相当于醇类中的氧被硫替换形成,例如乙醇(俗称酒精)CH3CH2OH,乙硫醇CH3CH2SH。石油产品中有少量硫醇化合物,硫醇的存在不仅会使油品具有令人讨厌的气味,同时在燃烧时转变为有毒、腐蚀性的二氧化硫和三氧化硫,对燃料系统的弹性材料有害,并对燃料系统的构件产生腐蚀,影响相关机械寿命,例如汽车发动机。因此控制石油产品中的硫醇含量是相当重要的。油品中的硫醇含有的硫,称为硫醇硫含量。国家标准强制规定了汽油柴油、煤油、馏分燃料、喷气燃料等一系列油品中硫醇硫的含量。那么该如何测定油品中硫醇硫的含量呢?二、硫醇硫的测定方法目前硫醇硫测定有2种常用方法,一种是定性检测的博士试验,另一种是定量检测的电位滴定法。 方法原理优点缺点博士试验(NB/SH/T 0174-2015)振荡加有亚铅酸钠溶液的试样,并观察混合溶液,从外观来推断是否存在硫醇、硫化氢、元素硫或过氧化物。再通过添加硫磺粉,振荡并观察最终混合溶液外观的变化来进一步确定是否存在硫醇操作流程简单只能定性检测硫醇含量是否超过临界值。通常作为硫醇定量测定法的一种替代方法。二硫化碳会干扰测定。过氧化物和酚类物质大于痕量的情况不适用。电位滴定(GB/T 1792-2015)将无硫化氢的试样溶解在乙酸钠的异丙醇滴定溶剂中,以玻璃参比电极和银/硫化银指示电极之间的电位作指示,用硝酸银醇标准溶液通过电位计进行滴定。在滴定过程中,硫醇硫沉淀为硫醇银,而滴定终点通过电池电位上的突变显示出来。测量快速,准确。有机硫化物,如硫化物、二硫化物及噻吩不干扰测定。质量分数小于0.0005%的元素硫不干扰测定。需要脱除硫化氢。要求工作人员有较高的专业水平。 *天然气中的硫醇硫也采用类似方法检测。参考标准《GB/T 11060.6-2011》(6)依据滴定终点计算出样品中硫醇硫的含量
  • GPC凝胶净化鉴别地沟油与植物油中胆固醇含量
    据近日报道,公安部指挥破获了浙鲁豫等地利用地沟油制售食用油特大案件。 今年6月以来,北京市食品安全监控中心多次组织多家有关单位的专家,对地沟油鉴定技术开展评估。在将近3个月时间中,检测人员综合运用色谱分析、光谱分析、理化分析及基因鉴定技术等现代分析测试手段,对地沟油鉴定开展了技术攻关,先后对80余个技术指标进行了全方位的筛选,确定了多环芳烃、胆固醇、电导率、特定基因等四大类、20余项有重要鉴别意义的项目,初步建立了地沟油检测的指标体系。   其中,胆固醇是一项重要鉴别项目。食用植物油中一般不含胆固醇或含量极低。根据地沟油中可能含有动物源性成分,可以推断如果检出胆固醇并超过一定范围,可怀疑该油脂为地沟油。 通过我们的相关实验表明,作为油脂性样品净化的**技术之一,凝胶色谱净化(GPC净化)可以发挥非常好的作用,在鉴别地沟油这项艰巨任务中,有着很大的应用潜力。请看相关应用报告。 点击下载:凝胶色谱净化-高效液相色谱法测定食用油中的胆固醇
  • 【ISCO 制备色谱仪】快速色谱法在简单碳水化合物纯化中的应用
    01 摘要碳水化合物化合物可利用 RediSep Gold Amine 色谱柱结合蒸发光散射检测(ELSD)进行简便的纯化。该色谱柱采用亲水相互作用液相色谱(HILIC)梯度洗脱法,以乙腈或丙酮与水的梯度进行操作。将待纯化的样品溶解于 DMSO 中,不仅允许大量样品加载,同时还能保持良好的分辨率。02 背景碳水化合物通常采用氨基柱进行分析,该方法具有良好的分辨率。这种分析方法一般使用乙腈和水作为流动相,样品通常溶解在水中。由于样品注射量较小,样品有机会吸附在固定相上。在制备色谱中,相对于色谱柱尺寸而言,样品负载和注射体积要大得多,因此将样品溶于水中注射可以防止碳水化合物吸附在柱子上,导致它们在空隙处洗脱。干法加载样品到固体装载小柱上通常用于快速色谱,但用户需要自己用氨基介质填充他们的小柱。样品仍然溶解在水中进行加载,这需要很长时间才能在运行样品前蒸发。二甲基亚砜(DMSO)常用于反相色谱的样品溶解,因为它能溶解大多数化合物。DMSO 能够溶解碳水化合物,但在 HILIC 中是一种弱溶剂,因此它允许样品吸附在柱子上。在使用氨基柱时,DMSO 在洗脱早期被洗脱;然而,在采用非氨基介质的其他 HILIC 运行中,它可能在梯度洗脱的后期才被洗脱。03 结果与讨论虽然亲水相互作用液相色谱(HILIC)属于正相色谱,但它使用的溶剂通常适用于反相色谱,因此需要根据表 1 中的设置调整蒸发光散射检测器(ELSD)的参数,以保持基线稳定的同时维持灵敏度。表1. 纯化碳水化合物的蒸发光散射检测器(ELSD)设置。ELSD控制设置值Spray Chamber20℃Drift Tube60℃Gain1SensitivityHigh样品均溶解于 DMSO 中。如有必要,将样品在热水浴中加热以促进溶解。使用 PeakTrak Flash Focus 梯度生成器在系统上开发方法。运行了一个亻贞查梯度以验证样品能够被洗脱,并证明化合物之间有足够的分辨率以实现成功的纯化。所需化合物的保留用于计算聚焦梯度的溶剂组成。所有运行均使用 RediSep Gold 氨基柱。运行完成后,用2-丙醇洗涤并储存柱子,2-丙醇与有机溶剂混溶,可实现较少极性化合物的快速纯化。第一个实例使用了核糖和葡萄糖。亻贞查梯度和聚焦梯度都使用乙腈作为弱溶剂。亻贞查运行只用了少量几毫克,并且为了提高这个小样品负载的灵敏度,ELSD 增益被调高到 3。第二个洗脱峰用于聚焦梯度;计算梯度后,ELSD 增益被重置为 1 以保持 ELSD 响应在量程内。总样品负载为 100 毫克,使用 50 克 RediSep Gold Amine 柱。果糖和蔗糖通常一起出现在样品中。图 2 展示了从葡萄糖杂质中纯化果糖的过程。该混合物以与核糖-葡萄糖样品类似的方式运行,梯度聚焦于葡萄糖。在约 1.8 柱体积(CV)出现的峰是用于溶解样品的 DMSO。图1. 核糖和葡萄糖在 5.5 克 RediSep Gold Amine 柱上运行亻贞查方法(上图),并聚焦到 50 克 RediSep Gold 胺柱上。样品总负载量为核糖和葡萄糖各 50 毫克。聚焦梯度中约 1.8 柱体积处的小峰是 DMSO。图2. 使用 RediSep Gold Amine 柱和乙腈/水梯度从蔗糖中纯化不纯的果糖。04 丙酮作为弱溶剂丙酮也是 HILIC 的弱溶剂,可以替代乙腈使用。尽管醇类可以用于 HILIC,但这些溶剂对于在胺柱上纯化碳水化合物来说太强了。使用丙酮纯化了一个果糖和葡萄糖的样品。该混合物的纯化方式与之前的例子相似,除了亻贞查梯度使用了一根 15.5 克的 RediSep Gold Amine 柱,因为 PeakTrak 允许使用任何尺寸的 Teledyne ISCO 柱进行亻贞查运行。聚焦梯度使用了一根 50 克的 RediSep Gold Amine 柱,但计算出的梯度需要较低的水浓度来纯化葡萄糖,这表明对于这些化合物,丙酮是比乙腈更强的溶剂。图3. 使用丙酮/水梯度纯化的果糖和蔗糖。亻贞查运行使用了一根 15.5 克的 RediSep Gold 胺柱。05 结论使用 NextGen 300+ 配备蒸发光散射检测器(ELSD)和 RediSep Gold 胺柱,通过 HILIC 梯度方法可以高效纯化碳水化合物。使用 DMSO 溶解样品既保证了高样品负载量,又保持了良好的分辨率。PeakTrak Flash Focus 梯度生成器使得 Teledyne ISCO 制造的所有色谱柱都能快速开发和放大方法。
  • 岛津Crude2Pure系统在有机合成化合物纯化中的应用
    制备液相分离技术广泛应用于合成化合物分离纯化,天然产物制备,代谢产物研究和生物制品纯化等领域。目前一般的操作流程是待分离的样品溶液经过高效液相制备系统,以紫外吸收特性或者质谱响应作为触发信号,在信号超过设定参数时引起馏分收集器收集,得到含有目标产物的溶液,后续通过旋转蒸发或者冷冻干燥等手段使得含有目标化合物的溶液浓缩、干燥,最终得到目标产物的固体状态。这种传统的工作流程在相关领域得到广泛使用。 然而,相对于前期的制备纯化工作,目标馏分的后处理经常是费时又费力的过程。含有大量水的样品往往需要12-24小时甚至更长的时间进行处理。流动相中加入的甲酸、三氟乙酸、氨水、乙酸铵等添加剂会与化合物上的官能团成盐或者以游离态存在而不能完全去除进而影响目标产物的纯度和后续生物活性实验的结果。并且更为严重的是,由于化合物的结构特性和制备色谱柱的柱效影响,在制备纯化过程中往往需要在流动相中添加易挥发的酸或者碱来调节流动相的pH 值以改善色谱峰峰形进而提高分离效率。但在分离完成后对馏分进行旋转蒸发或者冷冻干燥的过程中,随着溶剂的逐渐去除,剩余溶液中的酸或碱的浓度相对提高,当pH 变化到超过目标化合物能够稳定存在的条件时,化合物结构发生变化,造成目标产物损失,使得前期的分离工作功亏一篑。 岛津公司的全自动纯化系统Crude2Pure系统(以下简称C2P 系统)提供了一种全新的制备分离所得馏分后处理模式,可在短暂的时间内完成从馏分溶液到目标物固体粉末的获得。并且在这一过程中,有效地除去了流动相中加入的添加剂,即便是已经和化合物结合成盐的,也可以通过置换的手段得到满足后续实验要求的盐的形态,有效降低了目标化合物分解的危险。由于可以直接生成固体粉末,免去了转移等操作,极大程度的降低了由于多步骤操作而引入杂质或损失产物的风险。 C2P 系统由捕集系统和回收系统组成(图1)。捕集系统根据化合物的极性和疏水特性通过一定比例和组成的流动相将馏分溶液输送通过C2P 捕集柱,目标化合物将被保留在捕集柱中。将该捕集柱转移至回收系统,选择需要的化合物形态(盐,游离碱等)后,回收系统通过冲洗C2P 捕集柱去除多余的流动相添加剂,转化成盐形态,除水等步骤后,以二氯甲烷-甲醇溶剂洗脱目标化合物,同时辅以加热和氮气干燥,进而在3小时内得到目标化合物的固体粉末。 图1 C2P 系统的捕集系统(左)和回收系统(右) 岛津Crude2Pure 系统提供了一种快速、安全、有效的全新分离制备后处理方法。使用Crude2Pure 系统,可以在3 小时内快速完成目标化合物馏分的自动粉末化操作,同传统的样品分离纯化后处理方法相比,节省处理时间3倍以上;该系统对样品的处理过程不受样品结构特点和性质的影响,实验证明可以适合大多数化合物的处理;样品回收过程是针对每个样品的独立过程,减少转移操作,避免了相互污染的产生;待制备样品被捕集的同时,馏分溶液中的流动相添加剂在回收过程中被有效的去除,不仅可以消除阻碍粉末化的因素并且可以根据样品最终回收形态的需要选择前处理溶剂,最终得到高纯度的化合物粉末,平均回收率在90%以上。基于以上特点,C2P 系统在天然产物提取分离纯化和合成有机化合物的研究中有广泛的应用前景。 了解详情,请点击《Crude2Pure 系统在有机合成化合物纯化中的应用》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 甲醇中16种挥发性有机物混合-16种TVOC(含乙酸正丁酯)(GB50325-2020)
    81073KACAS号规格2mL库存≥50有效期2021-06-01标准值2000μg/mL1正己烷110-54-32苯71-43-23三氯乙烯79-01-64甲苯108-88-35辛烯111-66-06乙酸丁酯123-86-47乙苯100-41-48对二甲苯106-42-39间二甲苯108-38-310邻二甲苯95-47-611苯乙烯100-42-512壬烷111-84-213异辛醇104-76-714十一烷1120-21-415十四烷629-59-416十六烷544-76-3
  • 血液中乙醇分析/血液中乙醇检测气相色谱仪大促销
    随着新《交通法》的实施,驾车者血醇含量的检测日趋普遍,气相色谱法定性及定量检测血醇含量是唯一司法认定的检测手段。 南京科捷公司血液中乙醇含量检测解决方案是参考国外同类检测方法,并基于《中华人民共和国公共安全行业标准》(GA/ 105-1995)而开发的用带自动顶空进样器并配有双柱双检测器的气相色谱法进行的血液中的乙醇含量的定性及定量检测分析。本方案检测方法先进,仪器配置合理,操作简单,适合各级公安部门及司法鉴定中心配备。 血液中乙醇分析/血液中乙醇检测仪器配置方案: 仪器设备 仪器名称 规格及说明 产地 分析仪器 GC5890F 气相色谱仪 双FID、毛细管进样系统、填充柱进样系统、三阶程序升温、智能后开门 南京科捷 DK300A自动 顶空进样器 定量管及六通阀进样,平衡温度、充压力均可设定变化。 南京科捷 色谱工作站 南京科捷 样品制备专用配件及消耗品 顶空瓶、垫、盖 10ml或20ml 进口 顶空瓶封口钳 上海 专用色谱柱 填充柱 Parapak S 2mm*2m 玻璃管柱 南京科捷 毛细管柱 PEG20M 30m*0.53mm 毛细管柱 进口 血液中乙醇分析/血液中乙醇检测气相色谱仪主要特点: 大屏幕中英文两种显示,画面切换简单明了,外观时尚美观。 完善的自动化,智能化,多功能化,多维色谱系统(ARM9-32位芯片和国外原版软件)宽幅的升温速率,快速的降温系统,高稳定性的温控技术,非常好的性能价格比。 完善的自诊断功能,能使用户方便的检查故障部位和故障类型。 完善的温度过热保护及铂丝电阻开,短路报警功能,保证温度不失控。 可选配内置AD转换电路,可直接数字输出信号,实现在PC上完成控制与分析的全部工作。 柱箱通过干冰或液氮可实现负温度操作。 在180℃以内,柱箱控制精度高达± 0.01℃。 可同时安装三个填充柱或两付毛细管柱,双放大器可同时工作。可同时安装三个检测器及甲烷转化炉。 手动进样、自动启动进样装置、自动点火等功能任选,陶瓷或石英喷嘴任选。 仪器具有断气自动停电保护功能。 六路控温,七阶程序升温,毛细管和填充柱汽化室独立控温,智能双后开门。 血液中乙醇分析/血液中乙醇检测气相色谱仪技术指标: 柱箱控温范围:室温5℃-400℃(以0.1℃为增量任设)。 温度精度:不大于± 0.1℃。 温度梯度:± 1℃(100℃-360℃程序升温)。 升温速率:0.1℃-40℃/min(以0.1℃为增量任设)。 进样口、检测器控温范围:室温+10℃-400℃。 电压220V± 10%,最大功率2200W。 外型尺寸:长570× 宽480× 高500(mm) 柱箱尺寸:长270× 宽248× 高260(mm) 仪器重量:46kg 欢迎来电咨询血液中乙醇分析/血液中乙醇检测气相色谱仪详情!联系方式如下: 姓 名 手机(南京) 座 机 负 责 区 域 郑基斌 13951984142 021-54081115 浙江、江苏 卞啊峰 15895820021 025-83312752 上海、安徽、山东 李 双 18925461793 0769-23361019 广东、福建、湖南、江西 尹俊荣 13951792301 010-61702619 天津、内蒙古 尹艳艳 15150695512 028-87522753 云南 李金 15250968853 028-87522753 四川、重庆、贵州 刘楚涵 13605177611 0769-23361019 广西、海南 彭红媛 18611025238 010-61702619 北京、新疆 郑基萍 13951691728 025-84372482 辽宁、吉林、黑龙江、宁夏、青海、陕西、甘肃、山西、河南、河北、湖北
  • 酱香拿铁里面到底有没有“酱香”?用禾信质谱一探究竟
    9月4日,某品牌咖啡与某品牌白酒合作推出的联名咖啡“酱香拿铁”火爆全网!据相关报道称“酱香拿铁每一杯都含有53度的酱香型白酒”。那么,“酱香拿铁”到底有没有酒精成分呢?“酱香拿铁”的“香”,到底是由哪些物质带来的?禾信仪器利用先进的全二维气相色谱-飞行时间质谱联用,带您一探究竟。实验方案前处理:取5 mL酱香拿铁,加入3 g氯化钠,待测。分析仪器:禾信仪器全二维气相色谱-飞行时间质谱联用仪GGT 0620柱系统:Welchrom® WM-FFAP (30 m*0.25 mm*0.25 μm) + HV + DB-17 (1.3 m*0.18 mm*0.18 μm)进样方式:顶空固相微萃取(SPME)禾信仪器全二维气相色谱-飞行时间质谱联用仪 GGT 0620实验结果 酱香拿铁经禾信仪器GGT 0620分析可显著发现酒精成分及许多香味成分,选择信噪比大于15的化合物进行分析,共发现有354种风味物质,主要包括醇类、酯类、酸类、醛类、吡嗪、酮类等物质。酱香拿铁的全二维色谱轮廓图 醇类物质是酱香拿铁中化合物种类最多的物质。共检出53种化合物,其中包括常见的乙醇成分,以及其他香气成分如:正丁醇、异丁醇、异戊醇等。 酯类物质是酱香拿铁中含量最高的物质,共鉴定出49种酯类香气物质,主要呈果香香气,部分物质还呈甜香、花香、脂肪香等气味。据相关文献报道,酯类物质中,本次酱香拿铁检出的丙酸乙酯呈香蕉气味、丁酸乙酯呈菠萝香味、2-甲基丁酸乙酯、己酸乙酯呈典型的果香。 酸类物质同样是酱香型白酒中重要香气物质,酱香拿铁中检出的酸类主要包括乙酸、丁酸、己酸、辛酸。而醛类物质中,己醛、3-甲基丁醛是曾被报道酱香型白酒中的主要香气物质,在本次酱香拿铁检测中同样有检出。 除此以外,还鉴定出20种吡嗪类化合物,吡嗪类物质在酱香型白酒中主要呈烤香味,吡嗪类化合物在不同香型白酒中的种类和含量均有差异,在酱香型白酒中吡嗪类化合物含量最高,其次则是浓香型白酒、清香型白酒。分析结果化合物的种类数量占比分析结果化合物的含量占比 另外,根据相关文献结果可知[1],酱香型白酒中关键香气物质主要有:乙酸乙酯,2-甲基丙酸乙酯、3-甲基丁酸乙酯、己酸乙酯、乳酸乙酯、丙醇、3-甲基丁醇、乙酸、3-甲基丁酸、3-甲基丁醛、3-羟基-2-丁酮、4-甲基愈创木酚、三甲基吡嗪、糠醛、二甲基三硫。在本次实验中,除3-羟基-2-丁酮、二甲基三硫外,上述化合物均有检出。两个物质未检出的原因,可能与添加酒样的含量较低、含水率较高等因素有关。 综上可见,酱香拿铁中含有大量与酱香型白酒相符的成分,且特征成分几乎都有检出,商家的“酱香拿铁每一杯都含有53度的酱香型白酒”的宣传语可信度非常高,该产品中含有白酒。建议未成年人、孕妇、驾驶人员、酒精过敏者要谨慎饮用酱香拿铁。[1] 酱香拿铁3D轮廓图参考文献:[1]朱全. 茅台酒香气组成及香韵结构协同作用研究[D].上海应用技术大学,2020.DOI:10.27801/d.cnki.gshyy.2020.000050. 全二维气相色谱-飞行时间质谱联用仪GGT 0620是一套集合了全二维气相色谱和高时间分辨率飞行时间质谱的分析系统,主要用于复杂样品的精准定性定量检测,可应用于:环境分析、材料分析、石油化工产品分析、食品风味研究、非法添加与真假鉴别、香精香料分析、中药有效成分分析、代谢组学研究等。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制