当前位置: 仪器信息网 > 行业主题 > >

标记混标

仪器信息网标记混标专题为您提供2024年最新标记混标价格报价、厂家品牌的相关信息, 包括标记混标参数、型号等,不管是国产,还是进口品牌的标记混标您都可以在这里找到。 除此之外,仪器信息网还免费为您整合标记混标相关的耗材配件、试剂标物,还有标记混标相关的最新资讯、资料,以及标记混标相关的解决方案。

标记混标相关的资讯

  • 使用UPLC-荧光/质谱法分析2-AB标记的多聚糖混合物
    王 芸 沃特世科技(上海)有限公司 蛋白质糖基化是生命系统非常重要的翻译后修饰之一,在免疫识别,蛋白分泌,信号转导等生命过程中发挥了重要作用。与蛋白相连的多聚糖是这些功能的重要载体,特别是对于单克隆抗体药物,多聚糖部分对药物的生物活性有着重要的影响。因此,发展分离效率高,检测灵敏度好的糖基化分析方法对单克隆抗体药物分析具有十分重要的意义。 针对糖基化分析中的种种困难,沃特世公司开发了亲水作用色谱法,以及荧光-质谱结合检测的分析方法。ACQUITY UPLC® 系统配合荧光检测器(FLR)以及多聚糖分析专用(GST )色谱柱,比HPLC方法有更高的分离度。多聚糖分析专用色谱柱装填了1.7&mu m的酰胺吸附剂,可在HILIC模式下有效分离荧光标记的多聚糖。UPLC® 配合荧光检测器分析多聚糖可以获得很高的分离度和定量准确性,特别是对于位置异构体以及有共流出的小峰分析;而质谱检测为糖链鉴定提供了更多的结构信息。通过与标准糖链保留时间的比较,该流程能实现高通量的多聚糖定性定量,满足药物分析的多种需求。 一、色谱条件与标记后的多聚糖样品的分离 可通过HILIC方法,有效分离2-AB标记的多聚糖混合物。对于方法优化,使用更缓的窄梯度,可有效提高保留时间上相临近的多聚糖峰之间的分离度;对于其它的参数,如流速、缓冲液浓度、流动相pH及柱温等,一般也需要进行优化。图1示例使用优化后的HILIC色谱条件后,复杂的2-AB标记的IgG多聚糖混合物得到了很好的分离,包括E1/ E2与F1/ F2。实验所用梯度洗脱时间为45分钟,包括色谱柱清洗和再平衡步骤。一般来说,一个样品的总分析时间在1小时内。因此,与使用3.0-&mu m填料的HPLC方法相比,使用1.7-&mu m填料的UPLC色谱方法,不但分离效果更好,而且运行时间更短。实验中使用2.1 x150 mm色谱柱。图1(B)中甘露糖5(峰C)与甘露糖6(峰H)可与邻近多聚糖峰成功分离,解决了共流出的问题。 二、2-AB标记的多聚糖定量及结构鉴定 由于多聚糖在HILIC 模式下能实现基线分离,各种异构体,例如末端唾液酸的位置异构,都能得到很好的分离。因此,在荧光检测器下的峰面积积分能对各种糖链进行定量分析。而从MS谱图来看,多聚糖样品中高甘露糖糖型所占比例较高,而复合型及杂合型糖链也都能够得到鉴定。各种带有神经氨酸的糖链也都能得到鉴定,表明该方法能够适合各种多聚糖复合物的分析。除了分子量,我们还能通过MS/MS谱图进一步确认多聚糖的结构。 2-AB标记的IgG多聚糖混合物的分析结果充分说明沃特世提供了成熟的聚糖分析方案,且相应色谱柱的质量控制采用了2-AB标记的IgG多聚糖混合物进行。ACQUITYUPLC系统显著缩短了分析时间,将常规HPLC上需要2个小时甚至3个小时的分离梯度缩短到1小时。 此外沃特世提供UPLC-FLR-MS的整体解决方案可以十分有效的对多聚糖进行分析,除提供分子量信息外,还可以进行糖结构推导,大大降低了生物药物研发工作中糖基化分析的难度。 实验流程: 一、2-AB 标记糖链 使用GlycoPro le试剂盒,Prozyme公司 使用试剂盒进行2-AB 标记糖链时,除以下步骤,按照该公司的说明操作即可。 1.使用50&mu l的标记反应液 2. 65度反应4-5小时 3.将样品按步骤4处理除掉过量的标记试剂 使用Sigma公司试剂 1. 配制3 0% 的醋酸D M S O 溶液( 3 0 &mu l 冰醋酸,700ulDMSO) 2.按照20:1(v/w)的比例配制2-AB 溶液 (如需要20mg 2-AB,则用400&mu l 30% 的醋酸DMSO溶液配制) 3.以16.7:1(v/w)的比例将2-AB溶液与氰基硼氢化钠混合配制标记反应液 4.将所得糖链用50&mu l标记反应液溶解,65度震荡反映4-5小时 5 .将反应液按步骤4处理除去过量的标记试剂 二、使用MassPrep亲水作用样品处理板除去过量的标记试剂 所需溶液: MiniQ 纯水,90% 乙腈 ACN,10 mM 醋酸铵Tris,20% ACN 1.样品处理板活化,向样品处理板加入200&mu l MiniQ纯水,再加入 200&mu l 90% ACN,重复 90% ACN 2.吸取 50&mu l 标记溶液,加入 450&mu l ACN( 如有沉淀,请勿离心,以免降低糖链回收率),由于板上每孔体积为200&mu l,可以将样品分为四份加入 3.将样品加入处理板,设定真空度为低(压力 250-500 mmHg),以保证样品与HILIC基质有充分时间相互作用;如果溶液在板上没有移动,可适当增加真空度 4.用 90% ACN清洗处理板两次 5.换用样品收集板,用200&mu l 10 mM 醋酸铵Tris, 20%ACN洗脱,洗脱液转移至1ml 离心管 6.冷冻干燥标记后糖链溶液冻干后的样品复溶于20&mu l50% ACN中,超声5 min 后转入UPLC采样瓶,进样5&mu l。 参考文献 (1) Martin Gilar, Ying-Qing Yu, Joomi Ahn, and Hongwei Xie.Analysis of Glycopeptide Glycoforms in Monoclonal Antibody TrypticDigest using a UPLC HILIC Column (2) Hongwei Xie, Weibin Chen, Martin Gilar, St John Skiltonand Jeffery R. Mazzeo. Separation and Characterization of N-linkedGlycopeptides on Hemagglutinins In A Recombinant Influenza Vaccine (3) Joomi Ahn,Ying Qing Yu and Martin Gila.r UPLC亲水相互作用色谱(HILIC)-荧光检测法分析2-AB标记的多聚糖
  • 新版GB 2763-2021配套混标新品上架!
    2021年3月,国家卫生健康委员会、农业农村部和国家市场监督管理总局联合发布GB 2763-2021《食品安全国家标准 食品中农药最大残留限量》。标准规定了564种农药在376种(类)食品中10092项最大残留限量,完成了国务院批准的《加快完善我国农药残留标准体系的工作方案》中农药残留标准达到1万项的目标任务。新版标准将于9月3日正式实施,相对于现行的GB 2763-2019标准,新限量标准增加了81种农药,并对部分农药的中英文通用名、残留定义,每日允许摄入量等信息进行了修订;增加了2985项农药最大残留限量、修订了194项农药最大残留限量值;增加了7项检测方法标准,删除了2项检测方法标准,修订了2项检测方法标准和规范性附录A,增加了小麦全粉等20种食品名称,修订了15种食品名称。阿尔塔科技配合GB2763-2021新版标准的实施,特别推出与之配套的标准品混标套装,涵盖了标准中所列的农药及其残留标记物共计644种,并按照各个组分的检测方法进行分组,完全满足定性定量的检测要求。阿尔塔科技还可以根据用户的实际使用需求研制符合标准要求的定制混标产品,节约成本并方便使用,为客户在新版标准检测中面临的的各种挑战提供全方位解决方案。部分相关产品,更多产品请咨询销售人员:更多产品请详询400-860-5168转3034。
  • 活体成像中荧光色素标记细胞的方法举例
    活体光学成像(Optical in vivo Imaging)主要采用生物发光(bioluminescence)技术与荧光(fluorescence)技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,今天,生物发光标记物可以标记到任何一种基因上,使对基因功能的全面细致研究成为现实。而荧光技术则采用荧光报告基团(GFP、RFP, Cyt及dyes等)进行标记,利用荧光蛋白在外源光源或是内源发光照射下被激发产生的荧光作为检测信号。研究人员能够利用一套非常灵敏的光学检测仪器直接监控活体生物体内的细胞活动和基因行为。 该技术可被广泛应用于标记细胞或基因的示踪及检测;基因治疗在活体动物体内直接的观察和检测;基因组、蛋白组学、药学及生物技术在活体动物内的研究;药物及化学合成药物的药物代谢及毒理学监测;食品菌落生长成像;皮肤医学中皮肤疾病的体内成像;法医鉴定;微孔板成像,例如:免疫分析、报告基因、基因探针和嗜菌作用分析等;荧光团的体内成像,例如:Alzheimer疾病研究中结合嗪的β-淀粉沉淀物分析;转基因植物中通过报告基因对生理周期节奏的研究;凝胶成像分析等等。 但在研究过程中,研究者们必须事先用基因技术进行荧光素酶基因标记,或者某种荧光报告基团标记。目前活体光学成像系统的知名制造商,如Berthold、GE、Xenogen、Photometrics、Carestream Health等,不仅为客户提供先进的仪器,也提供具体实验所需的整套解决方案,包括试剂、实验手册、特殊用途的质粒、细胞株、转基因动物、细胞处理和动物处理设施等配套技术支持。出色的多任务处理能力,人性化的整体设计,便捷精确的操作系统,使实验室影像分析领域进入了一个全新的时代。 下面以研究干细胞活体移植后的存活率为例,简介一两种内源性荧光色素标记的实验方法,供专业人士参考。 用荧光色素DiD标记 间充质干细胞 1. 先用胰蛋白酶消化待标记材料,使之成为一定密度的悬浮液; 2. 从细胞培养箱中取出间充质干细胞,吸取含原有培养基的细胞悬浮液进行标记; 3. 用10 ml Mg/Ca-free PBS (不含钙镁离子的磷酸缓冲液)清洗细胞,吸去PBS, 钙镁离子会影响胰蛋白酶的活性,必须小心; 4. 加入预热的0.05% 胰蛋白酶液,加液量以T75型瓶为例,每瓶加5ml, 确保瓶的表面被完全覆盖; 5. 在细胞培养箱中37° C 孵育约 5 分钟; 6. 然后在显微镜下确认细胞已经完全分散,如果有细胞贴壁情况,轻拍若干次或延长孵育时间直至酶解消化完全成功; 7. 加入等量含 10% FCS的培养基中和胰蛋白酶; 8. 用移液器反复吸取几次确保细胞均匀分散; 9. 然后移取细胞悬浮液至15ml 已灭菌的有盖聚丙烯离心管中; 10. 400 RCF离心5 分钟; 11. 小心移去上清液,不要扰动细胞; 12. 将细胞重新悬浮于DMEM 并进行计数; 13. 需要待标记细胞在无血清DMEM溶液中的密度应为1x106 /ml ; 14. 每ml细胞悬浮液加入5 ?L DiD 染色液; 15. 用移液器将染色液与细胞悬浮液混合均匀; 16. 在6孔低附着性细胞板上37 °C 孵育20分钟; 17. 孵育完全后移取细胞悬浮液至15ml 已灭菌的有盖聚丙烯离心管中; 18. 400 RCF离心5 分钟; 19. 小心移去染色液,不要扰动细胞; 20. 用PBS清洗细胞,用移液器反复吸取几次确保细胞均匀分散; 21. 重复洗三次; 22. 细胞重新计数并用台盼蓝染色法检测细胞活性; 23. 可以进行活细胞成像了! 用荧光色素ICG标记 人胚胎干细胞 1. 必须先准备好吲哚菁绿溶液(血容量、心输出量、肝功能测定剂)作为对照品 ,然后使之与转染试剂鱼精蛋白(抗凝血作用)混合; 2. 测出1ml吲哚菁绿溶液的活力,然后在100 ?L DMSO中溶解ICG; 3. 向混合物中加入 400 ?L Dulbecco的改良Eagles 培养基 (DMEM + 10% 胎牛血清), 震荡均匀,吲哚菁绿溶液终浓度为2mg/ml; 4. 加入转染试剂鱼精蛋白,鱼精蛋白作为对照品的载体,使之能够有效进入细胞; 5. 在300 ?L ICG 和 300 ?L 无血清Dulbecco改良 Eagles 培养基中混入 5 ?L 硫酸鱼精蛋白溶液, 使之终浓度为 10mg/ml,; 6. 震荡5分钟使之形成复合物,标记溶液制备完毕; 7. 从 hESC 10mm Petri 培养皿中移去原有培养基; 8. 加入5ml预热的 DMEM; 9. 加入制备好的鱼精蛋白/ICG 溶液, 37 °C下孵育1h; 10. 孵育完全后移去染色液; 11. 用5 ml PBS漂洗培养皿以清除染色液; 12. 移去 PBS 再加入 5ml 0.25 % 胰蛋白酶液,37 °C下孵育5分钟使之酶解,适当震摇培养皿效果会更好; 13. 用移液器反复吸取几次确保细胞均匀分散; 14. 加入等量含 10% KSR的培养基中和胰蛋白酶; 15. 然后移取细胞悬浮液至15ml 已灭菌的有盖聚丙烯离心管中,400 RCF离心5 分钟; 16. 在全培养基中悬浮细胞; 17. 如果还有细胞团块,可以移去原有培养基用10ml预热的全ESC培养基重新悬浮细胞,重复酶解再离心; 18. 在这一点上,鼠源饲喂细胞需从hESCs中分离; 19. 然后将细胞悬浮液移至涂布琼脂的10 cm 培养皿中; 20. 37 °C 孵育 45 分钟,注意不要晃动培养皿,如此鼠源饲喂细胞会贴壁而干细胞保持悬浮; 21. 从Petri 培养皿中移出已标记的单细胞人胚胎干细胞悬浮液; 22. 细胞重新计数并用台盼蓝染色法检测细胞活性; 23. 可进行活细胞成像了!
  • Ready, 2024 国抽混标定制
    2024年的国家食品安全监督抽检即将开始!阿尔塔科技为您的国抽检测助力,提供定制混标解决方案,满足检测任务个性化需求,根据具体国抽实施计划,可选择不同组份、溶剂类型、浓度、包装规格,提供定制化服务!1)一针进样检测多种参数,高效便捷2)混标均在ISO17034质量管理体系下制备,保证所有组分的均匀性和稳定性,并有完整的数据支撑,可溯源3)证书包含浓度的测量不确定度以及溯源性信息4)400-6666-027热线,”007技术支持团队“,随时解答标品使用中的问题5)现货供应混标定制服务-定制混标组分 -用户可以根据自己的项目需求,并根据相应的检测方法列出所需的检测参数,阿尔塔会以用户实际需求组分提供定制服务。- 定制混标溶剂类型 -按照检测方法选择合适的溶剂类型,或参照化合物在不同溶剂中的溶解度和稳定性来进行方案定制与调整。- 定制特殊包装规格 -常规标液包装规格是1mL,定制的混标产品有多种规格供选择,包括:0.5mL*2、10mL等。- 定制不同浓度的混标组分产品 -满足不同的检测方法和化合物在仪器上的响应度对同一混标内各组分差异化浓度的个性化需求。了解更多定制详情,请联系我们关于阿尔塔天津阿尔塔科技有限公司立于2011年,是中国领先的具有标准物质专业研发及生产能力的国家级高新技术企业,公司坚守“精于标准品科技创新,创造绿色安全品质生活“的企业愿景,秉持”致力于成为全球第一品牌价值的标准品提供者”的企业使命。是国家市场监督管理总局认可的标准物质/标准样品生产者(通过ISO 17034/CNAS-CL04认可),并通过了ISO9001:2015质量管理体系认证。公司于2022年获批筹建“天津市标准物质与稳定同位素标记技术研究重点实验室”,并被认定为国家高新技术企业、国家级专精特新小巨人企业、天津市专精特新中小企业、天津市瞪羚企业等,与安捷伦共建创新合作实验室,成立了博士后科研工作站和院士创新中心,建立了国家食品安全重大专项稳定同位素产业基地,主持完成和参加了多项天津市重大科研支撑项目和国家重点研发计划重大专项,荣获2022年中国分析测试协会科学技术奖,CAIA一等奖,处于我国标准品和稳定同位素标记内标行业的领先地位。经过10余年的努力,阿尔塔科技以其卓越的品质和全方位的技术支持与服务受到全球客户的广泛认可和良好赞誉,成长为行业内国产高端有机标准品的知名品牌。2022年底,阿尔塔成功携手杭州凯莱谱精准医疗检测技术有限公司(迪安诊断旗下子公司),进一步开拓医药和临床检测标准品,为多组学创新技术以及质谱标准化的解决方案提供技术保障,为广大人民的健康生活做出贡献,真正实现From Medicare to Healthcare。
  • 9种亚硝胺混标现货供应!更多亚硝胺混标可预订
    水中亚硝胺的检测近期引起人们关注,First Standard® 迅速推出9种亚硝胺混标,配合实验室老师开展相关项目,9种亚硝胺混标目前现货供应,随订随发!除饮用水之外,地下水,食品,玩具,化妆品,卷烟中都可能含有亚硝胺,相关标准及First Standard® 对应产品见下,详情请查看阿尔塔科技公司网站。订货信息产品名称适用标准适用范围1ST50013-2000M9种亚硝胺混标, 甲醇溶液, 2000ppmEPA 8270C Semi Volatile Organic Compounds by GAS Chromatography/MASS Spectrometry (GC/MS)水,土壤,固体废弃物GC/MS 方法测定水中半挥发性有机物1ST50028-2000L7种亚硝胺混标, 二氯甲烷溶液, 2000ppmEPA 521 Determination of Nitrosamines in Drinking Water by Solid Phase Extraction and Capillary column GAS Chromatography with Large Volume Injection and Chemical Ionization Tandem Mass Spectrometry (MS/MS)饮用水大体积固相萃取-毛细管气相色谱-化学电离串联质谱法测定饮用水中亚硝胺化合物1ST50030-2000L4种亚硝胺混标-1, 二氯甲烷溶液, 20000ppmHJ 809-2016水质 亚硝胺类化合物的测定 气相色谱法地表水、地下水、工业废水和生活污水1ST50029-200M3种亚硝胺混标, 甲醇溶液, 200ppmGB/T 5009. 26食品中亚硝胺类的测定酒类1ST50035-500L4种亚硝胺混标-2, 二氯甲烷溶液, 500ppm肉及肉制品、蔬菜、豆制品、茶叶等1ST50031-200M12种亚硝胺类混标, 200ppmEN 12868: 1999 Method for Determining the Release of N-Nitrosamines and N-Nitrosatable Substances from Elastomer or Rubber Teats and Soothers橡胶制品,儿童玩具GB/T 24153-2009橡胶及弹性体材料 N-亚硝基胺的测定1ST50034-1000L4种亚硝胺混标-3, 二氯甲烷溶液, 1000ppmGB/T 23228-2008烟草卷烟主流烟气总粒相物中烟草特有N-亚硝胺的测定气相色谱-热能分析联用法1ST4924-100L内标:N-戊基-(3-甲基吡啶基)亚硝胺 (NNPA)YC/T184-2004烟草及烟草制品烟草特有N-亚硝胺的测定1ST50032-100M10种亚硝胺混标, 甲醇溶液, 100ppmGB/T 29669-2013化妆品中N-亚硝基二甲基胺等10种挥发性亚硝胺的测定气相色谱-质谱/质谱法膏霜、散粉、唇膏
  • 基于Cytek光谱流式,罗氏公布21色20混1的复杂混样检测技术最新进展
    随着全光谱流式的成功商业化以及染料技术的更新与发展,多色流式细胞术在近年来取得长足进展。众多复杂(超过20色)免疫表型分析方案已在流式方法学、新冠感染免疫、肿瘤微环境等领域研究工作中得到充分的设计与验证,并在血液病检测、免疫监控、细胞治疗等方面展现出独特优势。为了进一步提升多色流式细胞术的检测通量,罗氏公司研发团队开发了基于Cytek® ️全光谱流式的荧光编码混样技术,报道了一管样本中同时检测20个21色PBMC样本的研究进展,除效率提升外,该技术能够在批量分析中大幅降低试剂用量,有效避免人为因素引起的实验误差,并可用于混样多路分选。相关研究工作与2022年发表于Cytometry Part A。图1. CD45多色编码混样技术示意图该方法通过对CD45的多色标记实现多个样本的荧光编码,例如“5选2”的编码方案中(图2上),从5种标记不同染料的CD45单抗库中选取2种进行标记样本,最多可产生10种编码组合。数据分析时,仅通过简单的散点图圈门即可快速解码(图2下)。经实验对比,研究人员验证了“5选2”编码混样方案检测与常规单管检测结果具有较强的可比性,并证实了Anti-CD45编码混样方案不会为实验引入明显的批次效应(实验数据请参考文献原文)。图2. 5选2型编码模式(多至10样本混样)及解码圈门策略方案可靠性验证后,研究人员进一步将编码方案扩展为“6选3”模式,并开发了可用于免疫调节剂作用模式研究的21色表型分析方案,以区分T、B、M、NK细胞丰度以及不同发育阶段T细胞亚群的活化状态,该方案使用20混1的高容量混样模式评估PBMC在葡萄球菌肠毒素B(SEB)刺激下的免疫应答。Anti-CD45编码方式与多色方案如图3所示。图3. SEB刺激实验21色方案及编码混样模式解码后的流式检测数据经FlowSOM聚类区分为17个类群,并通过optSNE降维展示。结果显示,SEB刺激下,样本中各免疫细胞亚群丰度发生显著变化:活化T细胞比例大幅上升;CD4+与CD8+效应记忆T细胞(Tem)、CD4+中央记忆T细胞(Tcm)丰度发生不同程度的下降;CD14hi单核细胞几乎消失。此外,在SEB刺激样本中,研究人员通过CD279、CD134、CD137即CD154的表达区分出两种特有的活化CD4+T细胞亚群,而在对照组中并不存在。相关结果符合实验预期,进一步验证了编码混样方案的可靠性。图4. SEB刺激试验结果展示基于Anti-CD45的编码混样技术因向实验体系引入更多染料,无疑提升了多色方案的复杂性。得益于Cytek® ️全光谱流式强大的多色分析性能,荧光溢漏带来的扩散误差(SE)被有效控制,即便在21色20混1的复杂混样方案中依然得到可靠的数据表现。该编码技术在高容量混样的同时可维持细胞活性,为后续的混样流式分选创造了可能。Cytek® ️ Aurora CS新一代全光谱流式分选平台,最高支持64荧光通道6路光谱分选。Cytek® ️ Aurora CS全光谱流式分选平台(点击查看)参考文献:Junker F, Camillo Teixeira P. Barcoding of live PBMCs to assess immune cell phenotypes using full spectrum flow cytometry[J]. Cytometry Part A, 2022.关于CytekCytek® Biosciences, Inc.(Nasdaq: CTKB)作为一家全球技术领先的生命科学技术公司,通过其受专利保护的全光谱分析(Full Spectrum Profiling,FSP™ )技术,提供高分辨率、高参数和高灵敏度的新一代细胞分析工具。Cytek的创新技术通过检测荧光信号的完整光谱信息,以实现更高水平更高灵敏度的多参数检测。Cytek的FSP™ 平台包括其核心仪器—Aurora和Northern Lights™ 分析系统、Aurora CS分选系统、试剂、软件和服务,为客户提供全面和完整的解决方案。Cytek总部位于美国加利福尼亚州Fremont,在全球设有分部和分销渠道。注:Cytek® , Tonbo Biosciences, cFluor® , Full Spectrum Profiling™ , FSP™ 和Northern Lights™ 是Cytek Biosciences, Inc. 的商标或注册商标。Cytek® 全光谱检测技术相关专利包括但不限于:US10739245B2,US11169076B2,US10788411B2。
  • EVs荧光标记的机遇与挑战
    细胞外囊泡(extracellular vesicles, EVs)在机体的多种生理病理过程中均发挥着重要作用,良好的结构稳定性、生物相容性及天然的转运能力使其成为理想的药物递送载体和治疗制剂。不管是在工业生产还是科学研究中,EVs的质量控制都至关重要,国际细胞外囊泡协会(international society for extracellular vesicles, ISEV)一直在努力推动和完善相关标准,如MISEV2014、MISEV2018以及即将发布的MISEV2022,同时工业界也试图确立适用于工业产品的质控标准。除了粒径、浓度等常规物理参数的检测,更重要的是对EVs的纯度、蛋白标志物、核酸以及载物等功能性分子进行表征,而内容物的定性定量分析通常需要通过荧光标记来实现。近日Lonza集团的研发团队发表了题为“Opportunities and Pitfalls of Fluorescent Labeling Methodologies for Extracellular Vesicle Profiling on High-Resolution Single-Particle Platforms”的文章,作者分别利用高分辨单颗粒表征平台nFCM(NanoFCM)和F-NTA对EVs进行表征,探讨EVs荧光表征过程中面临的问题与挑战。文章对EVs纯度测定过程中染料的选择、蛋白标志物分析、RNA检测、复杂体系中EVs的表征等方面进行全面研究,指出在EVs综合表征中面临的问题与注意事项,供广大EVs研究者参考。EVs纯度鉴定首先,分别选取两种细胞膜染料和两种细胞质染料对EVs的纯度进行鉴定。nFCM结果显示,无论是细胞膜染料(CMG/CMR)还是细胞质染料(CFSE/CTR),EVs阳性颗粒的比例均高达90%左右,且EVs尺寸越大,结合的染料越多,荧光强度也越高。由于具备超高的散射和荧光灵敏度,nFCM证实了几种染料标记效率的一致性(图1)。同样的样品和染色方法用F-NTA检测,经CFSE标记的EVs阳性率为88%,与nFCM结果相当,而对于CMG染料标记,F-NTA测得的阳性颗粒比例只有32%左右,粒径分布显示F-NTA检测到的是大的EVs。这个案例提醒研究者对于EVs纯度分析不仅需要关注不同染料间的标记和检测效率问题,还需要关注表征平台的检测能力。图1 不同染料标记EVs纯度的效率EVs抗体选择和标记方法在早期的微信公众号推文中小编介绍过不同公司的抗体特异性存在差异,抗体标签也是影响EVs标记效率的一个因素。该研究对比了PE、AF488、AF647、APC四种标签的CD9抗体,发现PE和AF488的标记比例优于AF647和APC,比例在50%左右;进一步选用PE和AF488两种标签的CD9、CD63和CD81抗体,发现在HT29和HEK293细胞系中不同标签抗体标记的效果没有显著差别(图2),说明在EVs蛋白标记过程中研究者需要格外关注抗体特异性、标签的选择对标记效率的影响。图2 不同荧光标签对抗体标记效率的影响除了抗体标签,未结合的抗体对EVs的阳性率也存在影响。文章对比了稀释法(Dilution)、超滤(UF)、尺寸排阻(SEC)三种方法对游离抗体去除效果和标记比例的影响。由于不涉及纯化过程,理论上稀释法对EVs的影响是最少的。nFCM结果显示三种方法得到的CD9、CD63、CD81阳性率基本一致,说明稀释法可以用来准确地测定EVs蛋白的比例,同时结果也证明UF和SEC纯化过程对EVs蛋白的阳性率没有影响(图3)。说明nFCM可通过稀释法测定EVs蛋白表达比例,省略超速离心去除游离抗体的操作,极大缩短操作时间,同时真实反映EVs蛋白表达比例和强度。图3 nFCM测定游离抗体去除方法对标记比例的影响细胞上清中EVs的直接检测前面介绍的案例都是基于EVs纯品的分析,杂质颗粒含量非常低,对测定结果的影响相对较小。进一步对较复杂的细胞上清(CCM)进行直接检测,作者指出对于EVs纯品和CCM样品,nFCM的结果令人惊讶的一致,CFSE与CMG阳性率例均在90%左右,与超离纯化的 HT29 EVs样品结果一致,说明nFCM平台既适用于纯的EVs样品,也可用于细胞上清样品中EVs的直接检测,具有广泛的应用场景;而在F-NTA平台,CFSE与CMC对于HT29细胞上清EVs标记阳性率分别为33%和27%,作者解释称可能是由于CCM样品复杂的成分导致F-NTA的检测存在差异;对于蛋白比例检测,3种EVs蛋白marker总比例高达188.5%,远远超过100%,文章指出可能是F-NTA荧光的灵敏度高于散射,大量小颗粒的散射信号未检出,导致比例高于100%。图4 CCM样品EVs纯度和蛋白比例测定与F-NTA相比,nFCM还可以利用多色荧光标记策略对sEV亚群进行表征。为研究EVs的抗体单标和双标之间是否相互影响,作者选取CD9-AF488和CD81-PE分别进行单独标记和双标,对比标记比例的变化。结果表明这两个蛋白之间,不管是单独标记或双标,阳性率差异不显著;另外,用EVs染料CTR和CD81同时标记EVs,发现所有CD81阳性的EVs的CTR均呈现阳性,说明CD81阳性的颗粒,均是EVs!(图5)。nFCM可以准确识别抗体标记的所有EVs,并且确认抗体阳性率的准确性。图5 EVs抗体单标和双标的影响结论综上,Lonza集团的研发团队对EVs荧光标记过程中的各项指标进行综合对比,对EVs纯度测定过程中染料的选择、蛋白标志物分析、复杂体系中EVs的表征等进行研究,对工业生产中EVs的质量控制提供了新思路和新方法。作者肯定了nFCM用于EVs检测的准确性和灵敏度,提出EVs纯度表征方法,初次采用CD9/63/81几种抗体的混合物验证EVs的纯度,并对细胞上清中的EVs进行直接检测,得到了跟EVs纯品相一致的结果。另外作者指出nFCM对于EVs荧光检测具有更高的灵敏度和稳定性(图6),nFCM可在单颗粒水平对EVs的散射和荧光进行同时检测,单次采样即可实现蛋白与EVs(或蛋白间)的“共定位”分析,是EVs质量控制中不可或缺的工具。图6 文中关于nFCM的评价附录:Lonza Walkersville(龙沙集团)是全球CDMO龙头企业,一家以生命科学为主导,在生物化学、精细化工、功能化学等行业均处于领先地位的全球性跨国公司,具有一百多年历史,总部位于瑞士巴塞尔。Lonza集团EVs工作流程图(图片来源:Lonza官方网站)Lonza目前已采购3台NanoFCM,分别用于EVs研发、生产质控和CRO项目,致力于EVs大规模生产、纯化和表征,后续将应用于EVs载药领域。2021年11月,Lonza收购了Codiak公司位于马萨诸塞州Lexington的外泌体生产基地,正式成为Codiak管线的战略制造合作伙伴。届时Lonza将借助Codiak的高通量外泌体生产技术向第三方提供服务,并开发先进的外泌体产品,助力细胞与基因治疗产业。参考文献:1. Fortunato D, Mladenović D, Criscuoli M, et al. Opportunities and Pitfalls of Fluorescent Labeling Methodologies for Extracellular Vesicle Profiling on High-Resolution Single-Particle Platforms[J]. International Journal of Molecular Sciences, 2021, 22(19): 10510.2. https://www.lonza.com/3. https://www.lonza.com/news/2021-11-02-13-01
  • 细胞激光器标记人体所有细胞
    激光拥有许多普通光不同的特征,使激光在许多领域被作为工具使用。但一般激光都需要复杂的技术和设备制造,让细胞发射出激光的想法似乎比较疯狂。科学家有时候看起来就是这么疯狂,最近有科学家真的制造出能发射激光的活细胞。这一新技术成为《自然》网站的最近头条新闻。科学家将含有荧光染料的油滴注射到单细胞内,用短脉冲光线激发细胞内染料产生激光。  这一新技术发表在7月27日《自然光子》杂志上,该技术不仅能开发为医学诊断的方法,也具有形成治疗疾病新技术的可能。  这一技术的设计者是Seok Hyun Yun和Matja? Humar,哈佛大学医学院的这两位光物理学家,利用油滴反射和放大光线使单细胞产生激光。Yun在2011年曾经报道过一种能产生激光的细胞,先利用基因工程技术让细胞表达荧光蛋白,然后将表达荧光蛋白的细胞放置于一对镜子中间,或者是细胞借助镜子的反射制造激光。最新这一技术更进一步,是让细胞自己独立产生激光。  在未来,这种“生物激光器”将能被进一步开发,植入活的动物体内,这能将大大提高显微镜扫描的精确度。将这种激光细胞植入身体内,可以制造出体内激光光源,帮助科学家观察组织结构和诊断疾病。  生物技术常用的荧光探针包括荧光染料和荧光蛋白,这些荧光的特点是发射比较宽的波长。这一特点导致荧光探针无法同时使用许多类型。例如我们可以选择绿色、红色和蓝色的荧光,其实同样是红色,其波长有非常多的类型。因为每个探针都是多种波长组成的混合光线,因此我们只能选择很少几类荧光作为工具。例如我们比较常用的荧光免疫组织化学,你一次用三种颜色标记三种不同蛋白就非常不错了。  激光能解决这个尴尬的问题,因为激光的特点就是非常窄的波长,这样理论上,我们可以同时追踪非常大量不同的目标分子。而且也能大大提高检测的灵敏度。波士顿布里格姆妇女医院生物工程学家Jeffrey Karp对该技术大加赞赏,认为是解决了用一种技术同时示踪数千种目标分子的伟大发明。  最新报道的这一技术核心是将含有荧光的聚苯乙烯滴注射到细胞内,可通过改变聚苯乙烯滴直径获得不同发射波长的激光。理论上组合不同的聚苯乙烯滴和不同波长的染料,能用不同波长光线标记人体所有的细胞。
  • 《自然》特写:无需标记的激光特技
    《自然—方法学》特写:无需标记的激光特技   非线性光学显微术帮助科学家看到活体细胞和组织中化学组成     哈佛大学的Brian Saar,Gary Holtom和谢晓亮教授(从左至右)发展了非线性显微成像技术和应用。     一个富含蛋白质的毛发及其周围的富含脂肪的皮脂腺。该图像是通过受激拉曼散射方法采集的,绿色为脂肪,蓝色为蛋白质。   最近出版的《自然—方法学》刊登特写文章——《无需标记的激光特技》(Laser tricks without labels),称非线性光学显微术可帮助科学家看到活体细胞和组织中的化学组成。文章内容如下:   两年前,Annika Enejder在她关于线虫的脂肪贮存研究中,遇到一个令人困惑的结果。荧光显微图像非常清晰地表明,在用他汀类药物处理这些蛔虫时,来自脂肪粒的信号将降低。他汀类药物是一类被广泛用于降低胆固醇的药物。然而,在同时进行的另一种显微实验中,直接观察脂肪颗粒却看不到这样的变化。实际上,相干反斯托克斯拉曼散射(CARS)显微技术能够识别出脂肪颗粒,而荧光显微技术做不到。   其实是这么回事,用常用的Nile red荧光染料饲喂的线虫把这种染料当作毒物处理了:染料被隔离到脂肪粒周围的肠类溶酶体颗粒中,而不是脂肪粒中。实际上,这种染料还在别的方面具有误导性:他汀类本身似乎会影响它的染色或者荧光。“在使用荧光基团的时候,有很多假象要考虑到。” 来自位于瑞典查尔姆斯理工大学的Enejder说。   没人能够否定荧光探针和分子染色在细胞内行为探测上的实力,但是这种标记办法仍然有诸多问题。如何标记是一个问题,尤其是对整个有机体而言。有些标记只能在已死亡的细胞内有作用 其他的标记标记方法则会损伤细胞,或者干扰所研究的生物过程。非标记的显微技术提供了一种能够大幅度降低人为干扰的活体观察技术。虽然有些技术仍然依赖内源性荧光基团,不过它们基本上可以摒弃荧光技术,也就避免遇到光漂白这个常见问题。这些新技术探测的是光在通过生物样品时被吸收或者改变时发生的微小变化,而不是探测被激发荧光基团的光子。这种办法依赖在高光功率密度下观察到的非线性光学过程。一言以蔽之,激光脉冲可以被用来“看”化学组成:脂质里面的C-H键,蛋白质里的酰胺键,还原态或者氧化态的生物分子,胶凝蛋白或者微管里面有规律地重复的单元。   当然,这样的技术也自有其局限性:与荧光标记能够识别单分子相比,非标记技术的灵敏度和特异性都要弱一些。只有特别常见的基团才不会淹没在一些丰富样品产生的信号当中。“这种技术的好处是,你不需要任何标记,你只需要去成像就行了”,荷兰癌症研究所(Netherlands Cancer Institute)的生物物理学家Kees Jalink解释道,“但是不好的地方是,信号太弱了,你需要大量能量来照射一个细胞,而可能仅仅得到一些粗枝大叶的细节。   非线性的众多模式   除CARS以外,其他可用的非标记手段包括双光子吸收,二次谐波产生(SHG)以及受激拉曼散射,每一种都有自己的配置需求和优势。然而,这些手段并没有在生物学家中间闪电般地传播开。昂贵的激光需要被耦合进显微镜 光的短脉冲需要精确的瞄准、调整和整形 探测器必须被优化,从而能够拾取信号,舍去背景。“组装这些仪器需要丰富的专业经验 这些仪器都要求苛刻”,供职于加拿大不列颠哥伦• 比亚大学化学与工程系的Robin F.B. Turner这样评价。而仅仅搭建仪器是不够的。“你得根据每天的情况重新校准”,Turner补充道。   Turner说,他有充分的理由跟踪这些技术:他想知道干细胞在分化成其它细胞的时候,其中的组分如何变化,而且再也没有比这个更好的办法能够研究这个问题了。“我们之所以选择拉曼和CARS,是因为它们能够做这种研究而不损伤细胞”,他说。其它研究手段都会毁损细胞,得到的仅仅是在某个时间点上的一个瞬间状况 这样的数据对于包含自发分裂细胞的异质性细胞培养并不是十分有用,Turner补充道,“我们想追踪细胞的生长”。   同样的优势在组织层次的研究上也很突出。比如,哈佛大学的Gary Ruvkun通过对线虫诱导RNA干扰筛选来研究上千个基因在脂质生成中的角色,同时通过一种叫做受激拉曼散射(SRS)的技术来监视这些结果。   Ruvkun的合作者谢晓亮教授也来自哈佛大学。大约十年前,谢晓亮因为发布了CARS显微术而引发了巨大轰动。这种技术通过一种叫做自发拉曼散射的现象来增强信号。在自发拉曼散射中,样品内的化学键能够改变通过其中的光的波长。更早使用的拉曼散射显微术要求的激光功率很高,而且有时候需要曝光时间长达一天。谢晓亮和他的同事证明,CARS可以用于活细胞研究。通过使用两束激光,它们的频率差等于需要成像化学键的振动频率,细胞产生的微弱的拉曼信号能够被不断放大。“它的灵敏度比自发拉曼散射的灵敏度高了好几个数量级”,谢晓亮说。但是CARS也有缺陷。在同一时间里,它只集中在很宽的拉曼谱中很短的一段,限制了所能采集的信号的数量 同时还带来了很高的背景信号。从实用的角度讲,这些限制意味着如果要应用CARS技术,大部分时间要基于对脂质的探测,因为碳氢键的大量富集能够产生很强的特征信号。   谢晓亮的兴趣已经转移到了SRS,这是他和他的组员闵玮、Christian Freudiger共同发展出来的技术,相关论文于2008年发表。“在CARS里面,信号峰位发生了移动,”谢晓亮解释道,“这意味这我们不能使用现有的、数量巨大的拉曼谱数据进行化学鉴定。”他还讲到,与此相比,SRS能够通过对激光异常迅速和精确地调制来去除背景噪音。这样一来,不仅能够得到与传统拉曼光谱一样的谱图,而且信号强度高了几个数量级,采集时间也远低于未经放大的拉曼信号。谢晓亮说,更妙的是,SRS产生的信号与振动化学键的数量是线性关系,这使得SRS能够进行定量分析。SRS技术可以应用于实时观测:比如在在药物和化妆品研究领域,观察维生素A酸是如何被皮肤吸收的。SRS技术还可以用于观测酸或者酶是如何从植物细胞壁表面去除木质素,从而提高生物燃料的生产效率。   谢晓亮最早是通过与Pfizer以及哈佛研究者的合作研究获得对该技术的原理的证据的。谢晓亮甚至预言,SRS技术有一天会取代CARS技术,然而其他研究人员对此有所保留。SRS需要对多个光源的信号进行混合和解读,而谱的叠加也会使去卷积变得困难。Turner说,他曾经尝试用SRS观察溶液中的核酸,最后还是决定继续使用原来的老技术。利用那些老技术,就可以从细胞的DNA里分辨出RNA。他说,尽管拉曼显微镜可能慢一些,“但是应用SRS技术来扩展我们的知识也挺费劲的,跟使用传统拉曼技术差不多。”   采购与分享   谢晓亮预计,一旦SRS被植入商用系统,很快就会传播开来,他认为早在今年底之前就会取得这样的进展 据报道,蔡司和徕卡已经于去年获得这项技术的授权。然而,就像荧光显微镜的前车之鉴,技术的传播可能相当缓慢。第一台商用多光子显微镜于1996年发布 而2003年的一项调查发现,66%使用多光子显微镜的生物学研究仍然使用定制系统。现在,商用多光子显微镜则相当普遍。   2009年10月,适逢谢晓亮的文章发表十年,奥林巴斯宣布要提供可以安装在多光子显微镜系统上的femtoCARS模块。2010年1月,Newport公司展示了可以附接到激光和多光子显微镜上的波长扩展单元,用以支持CARS、SHG以及其他成像方式。据悉,徕卡也将于下半年推出自己的产品。奥林巴斯的产品经理YiWei(Kevin)Jia宣称,早在飞秒femtoCARS模块发布之前,他已经在帮助各个研究组着手搭建CARS系统 而这个用来探测脂肪的模块能够让起步更加容易。他说,如果CARS的商业化产品推广像多光子显微镜一样,那么销售则能在数年之内有一个大的飞跃。不过目前大多数应用CARS显微技术的主要还是物理实验室,而且使用的是自己搭建的系统。   不过,这些研究人员已经开始和生物学家们合作。在普渡大学,生物医学工程教授程继新利用CARS在细胞中迅速地寻找脂肪体,然后使用同样的光源,切换到共聚焦拉曼来做同一个区域更详细的化学成分分析。新近关于人类前列腺肿瘤细胞的研究发现,先前被认为由脂肪组成的区域,实际上是被氧化的脂肪酸。下一步是考察这种脂肪酸会否可以用于标记前列腺癌的严重性。在别的项目中,程继新已经发展了一个平台,可自动收集CARS信号的来观测脂肪,还利用一种叫做和频产生的技术看到特定的蛋白纤维。有了这种技术,程继新及其合作者们可以研究富脂免疫细胞如何将自己嵌入到血管壁的胶原蛋白基质中去的——这类观测可以揭示动脉粥样硬化中的血块是如何形成的。程继新和他的同事还独立监测了多发性硬化症的老鼠模型中的神经元髓鞘,并且精确地指出是轴突的某个地方出现了损伤。他说,“以前在活体组织中对髓鞘的监测是没有办法达到单细胞水平的。”   Jalink说,髓鞘因为紧密堆积了大量脂质,特别适合用CARS成像。非标记显微技术在其他方面的应用则可能没那么容易。他说经常使用激光器的研究人员很可能会想办法采用这样的技术,他补充道,“技术上讲,这是完全可行的,但是如果我能用另一种方式来获得同样的信息,我为什么要采用这个多少有些复杂而且昂贵的技术呢?”   技术一旦发展起来,研究人员就能把它们应用到新的方面。哥伦比亚大学的Rafael Yuste利用光学手段来测量神经电位。二次谐波发生(SHG)成像技术依赖于排列非常规则的分子产生的超散射光。这些分子具有极强的诱导偶极矩,或者特定的电荷分布。Yuste对位于神经元细胞膜这类分子非常感兴趣——因为电场贯穿其中。由于二次谐波信号和电场强度直接成比例,因而可以自动获得电压信号。   问题在于,能够很好地实现这一目标的分子非常少。为了达到好的效果,Yuste说,“你需要非常仔细地去扫描全谱,来寻找潜在的内源性二次谐波发色基团。”他说,发展这种技术需要依赖学科交叉,需要研究人员在他们研究领域的边缘工作。但是在现实中,这种工作往往在研究者们自己的系里得不到足够的资金和支持,这也是为什么能够实现这一目标的分子资源较少的原因。   Enejder等人相信,学科交叉能够帮助人们解决大量只能由非标记的非线性显微技术来观测的问题。虽然Enejder的背景的是物理学,她还是转到了生物系。因为在那里可以更容易的了解生物学家们在成像上到底遇到了什么问题,非线性光学如何才能帮得上忙。她说,那些把自己的眼光牢牢地局限在物理系内部的人可以继续优化技术,但是他们或许不了解生物学家到底希望看到什么:“我就完全没有这个问题。在我眼里,应用随处可见。”   当这样的交流变得日益重要的时候,对新实验的大胆尝试也变得重要起来——而这些实验与物理学家们以往的经验可能截然不同。在一项旨在制造弹性血管的生物工程项目中,Enejder和同事们想要监测植入纤维素基质的肌肉细胞的生长。与CARS一起,Enedjer和同事们利用SHG观察了植入的细胞。他们很高兴地发现,自己可以监测到被植入细胞是如何与纤维素网进行接触,开始生成胶原蛋白纤维的。在组织工程研究中,这种方法可以大大帮助确定最优参数。尽管纸张中的植物纤维素SHG成像看不到,但是细菌分泌的植物纤维素确实拥有一种有规律的模式,能够产生SHG信号,Enejder解释说,“仅仅依赖别人文章里说的哪些可以观测是不行的,你得自己去试才行。”
  • 标记免疫分析技术在精准医疗中焕发新活力——视频采访中国分析测试协会标记免疫分析专委会主任委员颜光涛
    p style=" line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px " 标记免疫分析技术已经发展几十年的时间,研究人员仍在不断开发新的思路和方法,关于标记免疫分析技术本身的特点及优势、研究进展以及其与精准医疗交融发展等问题,仪器信息网采访了中国分析测试协会标记免疫分析专委会主任委员颜光涛研究员。 script src=" https://p.bokecc.com/player?vid=850129F45346B9FD9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=5B1BAFA93D12E3DE& playertype=2" type=" text/javascript" /script /p p style=" line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px " span style=" color: rgb(0, 112, 192) " strong 颜光涛眼中的精准医疗 /strong /span /p p style=" line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px " 精准医疗是由美国人提出的概念,其核心是基于基因测序和生物大数据统计分析,通过对个体基因、生活环境等因素综合分析后制定个体化的医疗方案,目的是提高医疗效率和水平。 /p p style=" line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px " 颜光涛认为,虽然基因测序基础很重要,但是真正在临床医学中的精准医疗,并不仅仅是基因测序和大数据分析的概念,还应该包含个体所有的代谢物、病原、抗原等各种途径,以及还包括免疫组织化学分析以及形态学和影像学。因为精准医疗不仅仅是对基因判断,还涉及细胞层面和组织层面的综合判断,所有判断因素相加才能比较全面的反映个体在医疗过程中的整体状态,因此精准医疗应该包含更广阔的概念。 /p p style=" line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px " span style=" color: rgb(0, 112, 192) " strong 标记免疫分析技术特异性和灵敏度优势明显,满足精准医疗要求 /strong /span /p p style=" line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px " 标记免疫分析技术是基于抗体的特异性和灵敏度为核心的检测技术,已经发展将近50年的时间了。该技术最早是同位素标记,后来发展为荧光标记,包括酶标记、镧系元素标记,化学发光标记。标记到抗体上,是为了更容易更方便被检测出来,提高检测的灵敏度。所有检测样本,包括组织样本、血液样本以及细胞表面样本中特定的组分,其特异性是由抗体决定的。抗体,包括单克隆抗体和多克隆抗体,使用范围十分广泛。 /p p style=" line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px " 颜光涛表示,从临床检测来说,现在的标记免疫技术具备的优势是灵敏度高,特异性、稳定性、重复性好;在时效性方面也有优势,检测一个样本的时间长则半个小时,短则十几分钟。此外在技术的信息化和自动化方面也进行了改良和优化,因此标记免疫分析,尤其是以化学发光为代表的标记免疫分析技术能够满足临床样本检测需求。 /p p style=" line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px " 此外,颜光涛提到,现在标记免疫分析技术的发展非常神速,比如,最近十余年,在POCT(床旁即时检测)方面,该项技术能够为心脑血管、急诊中毒、感染等疾病提供快速检测,并给出明确的报告,对临床医生的指导意义非常大。 /p p style=" line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px " span style=" color: rgb(0, 112, 192) " strong 标记免疫分析技术仍有很多发展思路和方向 /strong /span strong & nbsp /strong /p p style=" line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px " 关于标记免疫分析技术的提升和发展,颜光涛表示,虽然技术已经成熟并广泛应用,但仍有不足的地方。前面提到,相对大家了解的分子诊断和质谱检测等技术,以化学发光为主流代表的标记免疫分析技术,具有成本低、特异性比较好、灵敏度高的特点,所以容易做单向开发或多项同时开发,因此今后需要进一步研究发展的方向还有很多。 /p p style=" line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px " 首先是需要确立新的跟疾病相关的蛋白质或病原体以及更具有灵敏性和特异性的抗体(包括单克隆抗体和多克隆抗体),并且寻找新的标记原或标记物质,使检测技术有更强大的生命力,提高灵敏度和检测范围,降低成本,让更多的病人得益于免疫标记分析技术的进展。 /p p style=" line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px " 其次,利用标记免疫技术对一些抗原性不足的小分子物质,如短肽尤其是活性肽,以及一些疾病状态下的代谢产物的检测时,由于抗原构建比较困难,所以抗体的筛选和配对也比较困难,因此在这方面还要加强研究。 /p p style=" line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px " 再就是POCT方面,寻求一些能够快速确定病原或者特异的疾病相关的多肽类、蛋白质类大分子以及糖基化抗原等,都是非常好的发展思路和方向。 /p p style=" line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px " 还有分离技术,分离技术的有效性,决定了标记免疫分析技术能不能更快、更准。因此,抗体同纳米磁珠、同固相分离成分的偶联也是需要继续关注和努力的方向。 /p p style=" line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px " span style=" color: rgb(0, 112, 192) " strong 免疫技术和分子技术融合值得推广 /strong /span /p p style=" line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px " 在被问及“标记免疫分析技术未来在精准医疗中将如何焕发新的活力?”时,颜光涛回答,“标记免疫技术不仅仅是由标记抗体展开的技术,还可以理解为标记技术和免疫技术的混合,现在分子诊断和抗体技术混合交叉,把核酸的特异性和抗体的的特异性叠加,能够合成新的检测技术,明显提高检测灵敏度。当然,这也不算是一项很新的技术,因为现在很多试剂盒都在这样生产了,就是把免疫技术和分子技术融合到一个流程里来操作。因此,今后标记免疫技术跟其他技术交叉融合方面是值得推广的,希望大家能更多的探讨。” /p p style=" line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px " “另外,选择更多的特异性分子,以及新的跟抗体有类似作用的、固定的蛋白分子,都可以作为标记的载体。另外还可以发展一些更好的标记物,如多重荧光标记以及当下炙手可热的量子点标记技术。再就是同免疫分离,这是很重要的,跟纳米技术很好的互相交融,创造出一些更实用的方法。” /p p & nbsp /p
  • GB 5009.271邻苯混标全新上市
    GB 5009.271-2016 邻苯混标 《GB 5009.271-2016 食品安全国家标准 食品中邻苯二甲酸酯的测定》,于2017年6月23号开始实施。迪马科技根据此标准,推出了多种邻苯二甲酸酯混标:1、依据此标准第一法:邻苯二甲酸酯混标(16种化合物);2、依据此标准第二法:邻苯二甲酸酯混标(17+1:17种邻苯二甲酸酯混标 + DINP单标);邻苯二甲酸酯混标(18种化合物)。邻苯二甲酸酯混标(16种化合物) 适用于《GB 5009.271-2016 食品安全国家标准 食品中邻苯二甲酸酯的测定》第一法,1000 μg/mL 在正已烷中,1 mL/安瓿,Cat. No.: 46883序号中文名称英文名称CAS1邻苯二甲酸二甲酯Dimethyl phthalate (DMP)131-11-32邻苯二甲酸二乙酯Diethyl phthalate (DEP)84-66-23邻苯二甲酸二异丁酯Diisobutyl phthalate (DIBP)84-69-54邻苯二甲酸二丁酯Dibuthyl phthalate (DBP)84-74-25邻苯二甲酸二(2-甲氧基乙基)酯Bis(2-methoxyethyl) phthalate (DMEP)117-82-86邻苯二甲酸二(4-甲基-2-戊基)酯Bis(4-methyl-2-pentyl) phthalate (BMPP)146-50-97邻苯二甲酸二(2-乙氧基)乙酯Bis(2-ethoxyethyl) phthalate (DEEP)605-54-98邻苯二甲酸二戊酯Dipentyl phthalate (DPP)131-18-09邻苯二甲酸二己酯Dihexyl phthalate (DHXP)84-75-310邻苯二甲酸丁基苄基酯Benzyl butyl phthalate (BBP)85-68-711邻苯二甲酸二(2-丁氧基)乙酯Bis(2-n-butoxyethyl) phthalate (DBEP)117-83-912邻苯二甲酸二环己酯Dicyclohexyl phthalate (DCHP)84-61-713邻苯二甲酸二(2-乙基己)酯Bis(2-ethylhexyl) phthalate (DEHP)117-81-714邻苯二甲酸正二辛酯Di-n-octyl phthalate (DNOP)117-84-015邻苯二甲酸二壬酯Dinonyl phthalate (DNP)84-76-416邻苯二甲酸二苯酯Diphenyl phthalate(DPhP)84-62-8邻苯二甲酸酯混标(1种化合物) 适用于《GB 5009.271-2016 食品安全国家标准 食品中邻苯二甲酸酯的测定》第二法。10,000μg/mL在正已烷中, 1 mL/安瓿,Cat. No.: 4688510,000μg/mL在乙腈中, 1 mL/安瓿,Cat. No.: 46901序号中文名称英文名称CAS1邻苯二甲酸二异壬酯Diisononyl phthalate (DINP)28553-12-0邻苯二甲酸酯混标(17种化合物) 适用于《GB 5009.271-2016 食品安全国家标准 食品中邻苯二甲酸酯的测定》第二法。1000 μg/mL 在正已烷中,1 mL/安瓿,Cat. No.: 468841000 μg/mL 在乙腈中,1 mL/安瓿,Cat. No.: 46900序号中文名称英文名称CAS1邻苯二甲酸二甲酯Dimethyl phthalate (DMP)131-11-32邻苯二甲酸二乙酯Diethyl phthalate (DEP)84-66-23邻苯二甲酸二异丁酯Diisobutyl phthalate (DIBP)84-69-54邻苯二甲酸二丁酯Dibuthyl phthalate (DBP)84-74-25邻苯二甲酸二(2-甲氧基乙基)酯Bis(2-methoxyethyl) phthalate (DMEP)117-82-86邻苯二甲酸二(4-甲基-2-戊基)酯Bis(4-methyl-2-pentyl) phthalate (BMPP)146-50-97邻苯二甲酸二(2-乙氧基)乙酯Bis(2-ethoxyethyl) phthalate (DEEP)605-54-98邻苯二甲酸二戊酯Dipentyl phthalate (DPP)131-18-09邻苯二甲酸二己酯Dihexyl phthalate (DHXP)84-75-310邻苯二甲酸丁基苄基酯Benzyl butyl phthalate (BBP)85-68-711邻苯二甲酸二(2-丁氧基)乙酯Bis(2-n-butoxyethyl) phthalate (DBEP)117-83-912邻苯二甲酸二环己酯Dicyclohexyl phthalate (DCHP)84-61-713邻苯二甲酸二(2-乙基己)酯Bis(2-ethylhexyl) phthalate (DEHP)117-81-714邻苯二甲酸正二辛酯Di-n-octyl phthalate (DNOP)117-84-015邻苯二甲酸二壬酯Dinonyl phthalate (DNP)84-76-416邻苯二甲酸二苯酯Diphenyl phthalate(DPhP)84-62-817邻苯二甲酸二烯丙酯Diallylphthalate(DAP)131-17-9邻苯二甲酸酯混标(18种化合物) 适用于《GB 5009.271-2016 食品安全国家标准 食品中邻苯二甲酸酯的测定》第二法。1000 μg/mL 在正已烷中,1 mL/安瓿,Cat. No.: 468821000 μg/mL 在乙腈中,1 mL/安瓿,Cat. No.: 46902序号中文名称英文名称CAS1邻苯二甲酸二甲酯Dimethyl phthalate (DMP)131-11-32邻苯二甲酸二乙酯Diethyl phthalate (DEP)84-66-23邻苯二甲酸二异丁酯Diisobutyl phthalate (DIBP)84-69-54邻苯二甲酸二丁酯Dibuthyl phthalate (DBP)84-74-25邻苯二甲酸二(2-甲氧基乙基)酯Bis(2-methoxyethyl) phthalate (DMEP)117-82-86邻苯二甲酸二(4-甲基-2-戊基)酯Bis(4-methyl-2-pentyl) phthalate (BMPP)146-50-97邻苯二甲酸二(2-乙氧基)乙酯Bis(2-ethoxyethyl) phthalate (DEEP)605-54-98邻苯二甲酸二戊酯Dipentyl phthalate (DPP)131-18-09邻苯二甲酸二己酯Dihexyl phthalate (DHXP)84-75-310邻苯二甲酸丁基苄基酯Benzyl butyl phthalate (BBP)85-68-711邻苯二甲酸二(2-丁氧基)乙酯Bis(2-n-butoxyethyl) phthalate (DBEP)117-83-912邻苯二甲酸二环己酯Dicyclohexyl phthalate (DCHP)84-61-713邻苯二甲酸二(2-乙基己)酯Bis(2-ethylhexyl) phthalate (DEHP)117-81-714邻苯二甲酸正二辛酯Di-n-octyl phthalate (DNOP)117-84-015邻苯二甲酸二壬酯Dinonyl phthalate (DNP)84-76-416邻苯二甲酸二异壬酯Diisononyl phthalate (DINP)28553-12-017邻苯二甲酸二苯酯Diphenyl phthalate(DPhP)84-62-818邻苯二甲酸二烯丙酯Diallylphthalate(DAP)131-17-9
  • 欧盟对食品成分标记做出新规定
    欧盟各国消费者保护部7日达成一致,规定欧盟国家的生产商今后有义务在食品包装上标明七种成分的含量。   德国超市出售的食品中,大约有三分之二的产品包装上有各种含量标记,迄今为止这只是出于生产商的自愿所为。欧盟的新规定却将此转为义务。27国的部长们目前达成一致,脂肪、饱和脂肪酸、糖、蛋白、盐、碳水化合物以及热量,这七种含量必须出现在食品的外包装上,并且所有内容必须以令人看清楚的字迹出现。至于这些标记应该出现在外包装的何处,欧盟国家没有统一标准。   德国联邦消费者保护部部长艾格纳认为,欧盟的新规则还不甚完满,她提出更多细节需要得到解释。尤其是食品生产商在制造过程中使用代用品的问题。“比如做匹萨饼用了火腿代用品,制造商标明这个匹萨用了肉类含量很低的混合物品,我怀疑这样说消费者是否能明白。”她认为代用品必须明确标示用了什么物质。   在欧盟通过以及实施任何一项法律都不是件容易的事。欧盟各国虽然已达成一致,但这项法律实行起来则不会那么快。据悉生产商将会有3到5年时间去贯彻这项规定。
  • 苏州纳米所等发明microRNA表达谱的高通量非标记检测技术
    microRNA是近年来发现的一种单链的短链RNA,长度约22个碱基,在动植物及人类中广泛存在,与发育、分化、凋亡、脂肪代谢、病毒感染和癌症等多种重要生物学过程有密切的联系,并显示出作为癌症、心血管等重大疾病等方面的新的分子标记物的巨大潜力,是近十年来的一个研究的热点。对microRNA表达谱进行高通量、低成本的检测对于该领域的发展具有重要的意义。   中科院苏州纳米技术与纳米仿生研究所李炯课题组与生物物理所阎锡蕴课题组合作,首次实现了高通量microRNA芯片的非标记检测,而其他芯片和测序技术需要数小时的手工操作才能完成标记,从而大幅度降低了检测的标记时间和成本。   与其他商业化microRNA芯片技术相比,该技术还具有如下独特的优势:1. 高灵敏度,由于减少了标记带来的损失,仅用100ng的总RNA就可以得到较好的结果 2. 完美识别前体microRNA,解决了芯片技术在这方面的缺陷,因此无需纯化小RNA,可以直接使用总RNA,减少了实验的操作步骤 3. 可以对microRNA链中的中间或者是两端的单碱基错配都能有效识别,这也是其他芯片技术无法实现的 4. 可应用于植物microRNA表达谱检测。植物microRNA在3'端普遍存在甲基化的问题,对于主流的酶标记方法来说效率很低(~10%),因此多数芯片技术无法直接应用于植物microRNA表达谱的检测,测序技术在文库构建的时候也会受到类似的影响,少数公司则采用了非主流的化学标记的方法。而该技术基于核酸杂交,完全不受甲基化的影响。另外,该技术无需特殊设备,常规的芯片制作和扫描设备就可以应用,从而最大程度地减少了进入市场的难度。   即使与现在发展迅猛的测序技术相比,该技术对于microRNA表达谱检测在通量(大量样品)、成本、灵敏度以及后续的数据分析等方面仍然具有明显的优势。该工作近期发表于Nucleic Acid Research杂志上。(原文链接)   目前,研究人员正努力标准化该技术,为其尽早进入市场铺平道路。   此项工作得到中科院和国家自然科学基金委的大力支持。   图1. 高通量microRNA非标记检测原理示意图   图2. 选择性
  • 追踪单个活细胞 细胞条码完胜荧光标记
    p style=" TEXT-ALIGN: center" img style=" WIDTH: 500px HEIGHT: 404px" title=" 2015812530441140.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201508/uepic/28a495d3-f847-4968-980e-a818f89bc0ae.jpg" width=" 500" height=" 404" / /p p style=" TEXT-ALIGN: center" strong 活细胞中的塑料球能发出激光。图片来源:M. SCHUBERT /strong /p p   两组研究人员分别将微小激光器放置在了活细胞内。这听上去可能有点像蚂蚁侠的下一代武器,但这个“小玩意”将极大提高生物学家追踪单个细胞活动的能力——这可能惠及从发育生物学到癌症研究的诸多领域。 /p p   “这有可能做一些你利用其他技术做不到的事。”英国敦提大学生物物理学家David McGloin说。例如,该激光器能追踪的细胞比荧光标记能追踪的更多,并且比高频ID等萌芽技术更简单易用。剑桥大学神经生物学家Kristian Franze也赞同这一观点。“如果他们能开发出适用于活细胞的此类技术,那对许多人而言将非常有趣。”他说。 /p p   要制作一个激光器,你需要两件东西:一种能被激发产生光的材料或“媒介”以及一个回荡着特定波长的光的“共振腔”,就像管风琴会同特有频率的声波共鸣一样。与谐振腔共振的光会刺激该材料发出更多光,极大地放大其效果来创造激光,结果将产生一个能放大光量的反馈回路。 /p p   之前,科学家也曾“摆弄”过以细胞为基础的激光器。例如,2011年,美国哈佛大学医学院生物医学家Seok Hyun Yun和现供职于英国圣· 安德鲁大学的物理学家Malte Gather,利用工程改造后包含绿色荧光蛋白的单个细胞作为发光媒介,并将其置于一个共振腔内,从而制造了一个激光器。但没有人制出放置在单个细胞内的激光器。 /p p   研究小组多年来一直在探索以单细胞为基础的激光,希望在活组织内造出会发荧光的细胞,以便在这些细胞工作时跟踪它们,深入揭示身体内部机制,比如癌症是如何开始的。目前,Gather和Yun正在利用类似技术分别进行研究。 /p p   一个困难环节是将腔囊放置在细胞内。Gather和同事将细胞与直径约为5~10微米的塑料球混合,这些小球被掺杂了荧光染料。小珠子充当了空腔,而染料则充当了媒介。细胞经由内吞作用将小球吸入“体内”,这一过程就像免疫细胞吞噬病原体。由于这些球体用荧光染料浸过,所以用一种颜色的光撞击后,它们会发出另一种颜色的光。这种光接着在球体内共振,引发激光作用,并放大自己。重要的是,每一束激光会根据球体的精确尺寸发出12种不同波长的光。相关论文发表在近日出版的《纳米快报》上。这一技术能作用于4类细胞,包括人类巨噬细胞和一种白血细胞。 /p p   研究人员指出,这一技术在细胞传感、医疗成像等领域有着广泛应用。“改写传统激光研究领域的知识并在这个平台上展开研究以便将激光性能最优化,将是一件有趣或者说非常激动人心的事情。”Yun表示。 /p p   之后,研究人员设计出一种5纳秒的光脉冲激活这些染料。它发射的光能沿球体的中间线运行——通过一种名为全内反射的过程进行约束。特定波长的共振和增加会更强烈,直到珠子发出足够的激光。 /p p   Yun和同事Matjaz Humar还设法诱导细胞“吞下”塑料珠子,并且他们制造了两类共振球,相关成果日前在线发表于《自然—光子学》期刊。研究人员利用一个细胞内的脂肪滴或油滴反射和放大光,从而产生激光。Yun和Humar报告说,他们能改变波长,并且利用不同直径的荧光聚苯乙烯微球而不是被注射进去的油滴或脂肪滴标记单个细胞。理论上,利用不同组合的微球和具有不同光谱特性的染料,应当可以使为人体中存在的几乎所有细胞进行单独标记成为可能。 /p p   Yun和Gather表示,这些激光器最显著的应用可能将是追踪单个细胞的行动。每个塑料珠子的直径和光学特性都略有不同,因此它们能有效区分波长,充当细胞条形码。Gather和同事用19小时在细胞培养皿中追踪了少量巨噬细胞,而Yun和Humar也进行了类似验证。 /p p   由于激光器能在明确的波长上照亮细胞,这让它们比荧光蛋白质标记等其他细胞追踪技术更有优势。包含荧光染料和蛋白的传统荧光探针拥有相对较宽的发射光谱——约30~100纳米。这限制了能被同时使用的探针数量,因为通常很难从组织中天然分子广泛的背景发射中区分出这些发光源。但这种激光器的光谱特性使其能同时追踪数千个微小指向标。研究人员通过为每个细胞装载数个小球将这一数字扩展到数百万或数十亿。然后,每个细胞将以不同的波长组合发射激光。 /p p   但这一技术还有很长的路要走。首先,研究人员需要确定不同的细胞类型都能“吞下”小球,尤其是活组织中的细胞。Gather预测,这将不是问题。“我相信该技术是可归纳的。”他说。另外,研发人员必须缩小塑料球的尺寸。Yun承认,现在的小球会将细胞填满。但Yun和Gather已经证实,他们可以用更小的玻璃球代替塑料球。 /p p   由于细胞发光可以持续一个较长的周期,可以在较长时间里识别和跟踪活组织内的细胞,有望为研究人员提供一种很有潜力的手段,执行细胞内传感、自适应成像,还可能真正看到肿瘤细胞的生长过程。但科学家指出,目前这一技术还只用在实验室培养的活细胞中,但他们希望进一步研究能带来用于动物实验的细胞跟踪系统,并最终用于人类。“不管怎样,它非常酷!”McGloin说。 /p
  • 流式也能Barcode,光谱流式一管20样本混样方案
    随着全光谱流式的成功商业化以及染料技术的更新与发展,多色流式细胞术在近年来取得长足进展。众多复杂(超过20色)免疫表型分析方案已在流式方法学、新冠感染免疫、肿瘤微环境等领域研究工作中得到充分的设计与验证,并在血液病检测、免疫监控、细胞治疗等方面展现出独特优势。为了进一步提升多色流式细胞术的检测通量,罗氏公司研发团队开发了基于Cytek® ️全光谱流式的荧光编码混样技术,报道了一管样本中同时检测20个21色PBMC样本的研究进展,除效率提升外,该技术能够在批量分析中大幅降低试剂用量,有效避免人为因素引起的实验误差,并可用于混样多路分选。相关研究工作与2022年发表于Cytometry Part A。图1. CD45多色编码混样技术示意图该方法通过对CD45的多色标记实现多个样本的荧光编码,例如“5选2”的编码方案中(图2上),从5种标记不同染料的CD45单抗库中选取2种进行标记样本,最多可产生10种编码组合。数据分析时,仅通过简单的散点图圈门即可快速解码(图2下)。经实验对比,研究人员验证了“5选2”编码混样方案检测与常规单管检测结果具有较强的可比性,并证实了Anti-CD45编码混样方案不会为实验引入明显的批次效应(实验数据请参考文献原文)。Cyte
  • 祝贺!天津市标准物质与稳定同位素标记技术研究重点实验室扩建!
    仪器信息网讯1月16日,天津市标准物质与稳定同位素标记技术研究重点实验室(以下简称重点实验室)扩建剪彩及标准物质技术研讨会在天津阿尔塔科技有限公司隆重举行。天津市滨海新区科技局副局长陈峥、中国分析测试协会驻会主持工作副理事长刘成雁教授、中国检验检疫科学研究院,重点实验室学术委员会主任庞国芳院士、中国计量科学研究院化学所原所长,重点实验室学术委员会副主任李红梅研究员、阿尔塔科技首席技术官张磊博士、天津市分析测试协会以及众多行业专家莅临现场。重点实验室依托阿尔塔科技的研发团队及平台,联合人才储备雄厚的南开大学、河北大学共同建立,将以“面向世界标准品前沿、面向国家重大需求、面向人民生命健康”为原则,深耕稳定同位素标记化合物的结构设计合成、分析方法开发和质量控制。重点实验室学术委员会会议现场重点实验室主任/阿尔塔科技首席技术官 张磊博士致欢迎辞张磊博士代表重点实验室的全体成员,向领导和学术委员会专家表示衷心感谢。他详细介绍了实验室的扩建情况,此次投入大量资金改造了1500平米的实验室,扩建了研发实验室并新增多套大型仪器设备,同时也扩大了研发技术团队。最后,张磊博士再次感谢各位领导和专家的莅临和指导。天津滨海新区科技局副局长 陈峥致辞天津滨海新区科技局副局长陈峥在致辞中首先对阿尔塔科技表示祝贺,希望阿尔塔科技能够进一步发挥企业创新主体的作用,与国家检验检测科学研究院、中国计量科学研究院、南开大学、河北大学等高校院所以及龙头企业加强合作,提供资源,集中力量建设国内最好的标准物质研发平台。同时希望该阿尔塔科技能够聚集人才,加快构建一流的产业生态,把重点实验室打造成为与国际接轨的高水平、开放性、充满内生活力的研发机构。中国分析测试协会驻会主持工作副理事长 刘成雁致辞刘成雁在致辞中代表中国分析测试协会感谢阿尔塔科技作为协会的优秀会员单位对协会工作的支持。同时希望阿尔塔科技在各科技主管部门的支持下,在天津市分析测试协会的带领和服务下,为我国检验检测领域实验室生态范式的建设做出更大的贡献。中国检验检疫科学研究院/学术委员会主任 庞国芳院士致辞庞国芳院士在致辞中表示希望阿尔塔科技能带领我国标准品企业在国产化的道路上勇往直前,同时希望重点实验室成为产学研合作,科技成果转化的平台和枢纽,推动我国标品行业继续发展,为我国标准品和经济发展做出更大的贡献。中国计量科学研究院化学所原所长/学术委员会副主任 李红梅研究员致辞李红梅研究员首先对阿尔塔科技公司取得的成就表示祝贺,并对其在标准物质和稳定同位数标记技术领域的深耕给予了肯定。她讲到:标准物质不仅在工程技术及检测领域的质量保证、材料赋值等方面有着十分广泛应用,而且随着现代科技的发展,标准物质的开发将面临更大的挑战和机遇。她鼓励公司持续加大技术开发投入,保持技术优势,并针对开放合作、市场推广和服务能力等方面提出希望。最后,她表达了对阿尔塔公司未来发展的期望,希望打造国际品牌,为国内外各个领域提供更全面深入的服务。2023年重点实验室成果汇报重点实验室主任/阿尔塔科技首席技术官 张磊博士张磊博士致欢迎词并做了2023年工作总结汇报,感谢各位领导和专家的支持,介绍了实验室的建设情况和过去一年的工作进展。自2023年2月成立以来,实验室专注食品安全、环境污染物、医药等领域标准物质研发,着重解决了100多种食品环境和临床检测领域标准物质依赖进口的问题。实验室将一如既往地致力于国家标准物质和稳定同位素标记技术的发展,为推动我国科技事业进步贡献力量,希望与会专家们共同推动我国标准物质研制技术实现从跟跑到并跑,再到领跑的跨越。天津滨海新区科技局副局长陈峥(左)和庞国芳院士(右)共同为重点实验室扩建剪彩。与会嘉宾合影留念重点实验室学术委员会会议同期举行,专家们针对重点实验室发展目标、建设规划、研究计划、重大学术活动等进行了讨论,为实验室发展指明了方向。在随后的学术交流会上,中国计量院李红梅研究员,国家地质实验测试中心教授级高级工程师王苏明,阿尔塔科技标物中心质量总监徐银分别就《化学计量与标准物质发展动态》、《CNAS-RMP认可要求及注意事项》及《混标研制与应用技术案例解析》三个主题做了精彩报告。《化学计量与标准物质发展动态》中国计量科学研究院化学所原所长/学术委员会副主任 李红梅《CNAS-RMP认可要求及注意事项》国家地质实验测试中心/教授级高工 王苏明《混标研制与应用技术案例解析》阿尔塔科技标物中心总监/副高级工程师 徐银李红梅深入解读了全球化学计量溯源体系及国际测量系统框架下国际标准的变化趋势,介绍了国家标准物质研发和资源创建等方面工作进展。 王苏明首先详细解读了CNAS对文件框架的要求,以及CNAS与RMP认可的相关文件。她强调了这些文件在实验室认可中的重要地位,为实验室的工作提供了明确的指导和规范。徐银向大家解释了为什么大家选择混标,首先是质谱技术进步和普及实现了高通量靶向检测和非靶向筛查;其次快速、高效、低成本检测与安全,环保的市场要求对混标的需求;同时国产标准品质量的提高,混标专业制备与检测能力的提高,混标质量日益获得市场认可、信赖。
  • 网友亲述某单位X荧光测试仪“比武招标记”
    仪器信息网讯 古有&ldquo 比武招亲&rdquo ,今有&ldquo 比武招标&rdquo !近日,网友在仪器信息网仪器论坛发布了一则名为《比武招标记---便携式X荧光测试仪的采购》的主题帖,亲述了某环保厅组织实施该项目的仪器采购过程。   事件起因   据网友介绍,环保部在&ldquo 2010年重金属监测能力建设方案技术指南&rdquo 中提到,将为14个重点省份的各级环境监测站配备便携式X射线荧光测定仪。该消息一出,各地仪器供货商纷至沓来,有的递宣传页,有的现场演示,甚至于有的相互攻击,有的还许以好处做诱饵等,使出浑身解数抢夺招标机会,   面对仪器市场的乱象和卖方的激烈竞争,为了确保仪器的采购质量和招标公平,业主决定设擂&ldquo 比武招标&rdquo ,并特别制定了比武规则(招标文件),希望采购到的是真正具有检出限低、测量准确、重复性好、测量范围宽和适应基体广的仪器。   比武招标过程   在比武规则(招标文件)发布后,大多数商家对&ldquo 是骡子是马,拉出来遛遛&rdquo 的做法表示支持,卯足劲,准备在擂台赛上一决胜负。 各路厂商在评标室展开仪器同步比对测试   为此各路英雄使出浑身解数,亮出比武的密杀器同场竞技,即在1小时内测试5个盲样(不限测试方法),并提交统一格式的&ldquo 测试结果报告表&rdquo 。比武战场静悄悄,各路英雄纷纷在规定时间内结束了战斗。   价格大比拼   物美还需价廉。由于投标报价的权重设置较高(为0.5),因此各投标人竞相杀价,各投标报价远远低于国家下达的45万元预算价。有意思的是,网友还透露在一片杀价声中,某国外知名品牌低下一贯高贵的头,投出了比国产还低的价格&hellip &hellip   花落谁家?   为避免有关厂商以此为商业宣传,品牌型号以大写字母A、B、C、D、E、F、G代替。最终,通过一番过关斩将的较量厮杀,&ldquo 比武招标&rdquo 结果终于尘埃落定,D、E仪器的投标人以最高技术得分和价格得分胜出,获得了中标资格。这正是&ldquo 不怕不识货,就怕货比货&rdquo !(编辑:刘玉兰)   网友评论   网友kinddy1289:这种招投标,就要考的真本事了,光是嘴上吹那是过不了关的,支持国家采用这种招标手段!   网友zal:把招标仪器拿来现场比武,对我们实验室来说的确是很实用,不会造成资源浪费。   网友v2661131:这样的比试才有意义。购买者可以选购到品质优良、价格合理的仪器。而不是单纯听销售们的夸夸其谈。最好的就是在仪器展会上来次现场比武。这样才是公平公正。仪器市场上就应该优胜劣汰,资源整合。   更多精彩评论点击:http://bbs.instrument.com.cn/shtml/20130707/4836620/index_1.shtml
  • MS标记LC紫外色谱图,药物杂质一目了然
    岛津的工程师在新发布的模块化单四极杆液质上开了一种新型数据处理算法“Mass-it”,可生成MS标记的紫外色谱图,以方便使用单四极杆LC-MS进行药物杂质分析。 在制药CMC中,化学家通常使用LC和或LC-MS来鉴定和定量合成产品中的组分,其中许多组分仅使用LC的紫外检测器进行分析。LC-MS的优点包括灵敏度高和定性能力好。然而,数据分析的复杂性,低耐用性以及电离方法对目标化合物的限制阻碍了LC-MS的引入。 岛津开发的新型质谱,从三个方面提升质谱仪器的性能:1)“Mass-it”新型解卷积算法辅助对MS数据进行解析,2)更好的耐用性,以及3)应用范围更广的离子源。 本次研究的对象是阿托伐他汀、普萘洛尔、西草净、五氯硝基苯,使用岛津Nexera LC-40 XR液相色谱系统进行分析,该系统配置SPD-M40二极管阵列检测器和LCMS-2050模块化质谱仪(图1),该质谱仪与液相色谱仪的自动进样器模块大小相当。 图1 岛津LCMS-2050集成到HPLC/UHPLC中 实验使用ESI / APCI双离子源(DUIS),扫描质量范围(m/z 100-1000)并以正负离子同时扫描模式进行分析。Mass-it处理TIC色谱图峰并生成检测到的质量信号列表,其保留时间通过提取的离子色谱图确定。XIC保留时间使算法能够区分多个共洗脱成分信号和来自单个成分的一组相关离子信号。 图2 阿托伐他汀的紫外色谱图 按Mass-it列出的组分的m / z被标记在UV 色谱图上。图2所示的示例是高纯度阿托伐他汀样品的代表性数据,显示为单一组分。对于实际样品,算法会在检测到多个杂质组分时对其进行标记,图3展示了Mass-it在阿托伐他汀杂质检测中的应用(图3)。 图3 用Mass-it标记的阿托伐他汀多个杂质 那么该系统的耐用性究竟如何呢?工程师做了系统性实验,10000次连续进样中引入30mg化合物来测试(一次注入1μL的3种药物的混合物,每种药物的浓度为1000 ng/μL)。在MS扫描模式下的进行实验,每隔一段时间检查LC-MS的性能,图4数据显示普萘洛尔的峰面积重复性为8.5%RSD。结果表明,即使重复分析高浓度样品,也可以获得稳定的结果。 图4 LCMS-2050的长期稳定性研究显示了对高浓度样品的耐用性 LCMS-2050配备了DUIS离子源, 可通过ESI和APCI组合方式生成离子,扩大了可离子化的化合物的范围。图5展示了使用由ESI和APCI特征电离的化合物评估DUIS离子源的电离能力。DUIS(+)对西草净(Simetryn)的离子化效率与单独使用ESI(+)相当,表明APCI功能的添加仅略微影响了DUIS配置中的ESI功能。而五氯硝基苯(Quintozene)的ESI(-)离子化效果不佳,但在使用DUIS(-)离子化时,灵敏度显著得到提升(10倍)。因此,DUIS是一种多功能且通用的离子源,可以在单次分析中兼顾ESI和APCI离子化方式。 图5 西草净(上)和五氯硝基苯(下)的ESI和DUIS离子化效率对比 LCMS-2050非常坚固耐用,并配备了强大的软件功能,即使对于首次使用MS的用户,LC-MS数据也更易于理解。这些功能有望增加更多的LC-MS用于药物杂质分析。 本文内容非商业广告,仅供专业人士参考。
  • 日本林纯药公司肯定列表农药混标
    日本林纯药公司创建于1904年,主要生产和经营化学品,包括标准品,电子工业试剂等,林纯药也是日本最大的标准品生产商之一,可以提供3000多种农药兽药及代谢物、内分泌干扰物等标准品。 林纯药公司根据日本厚生劳动省颁布的肯定列表,配置了适用于GC/MS和LC/MS的农药混标,7种GC/MS混标包括354种农药组分,10种LC/MS混标包括282种农药组分(部分组分重复)。这些特别配置的农药混标,可以满足客户同时测定多种农药的需求,满足肯定列表检测的要求。 Normal 0 7.8 磅 0 2 false false false EN-US ZH-CN X-NONE MicrosoftInternetExplorer4
  • 火速围观 | VOC/SVOC等混标新品火热上线啦!
    初秋八月,坛墨质检新品如期而至,欢迎咨询订购!VOC/SVOC定义及分类挥发性有机物:VOCs 是指常温下饱和蒸汽压大于70Pa、 常压下沸点在260℃ 以下的有机化合物,或在20℃ 条件下,蒸汽压大于或者等于10Pa 且具有挥发性的全部有机化合物。主要按其化学结构的不同,可以进一步分为八类: 烷类、芳烃类、烯类、卤烃类、酯类、醛类、酮类 和其他。半挥发性有机物: 半挥发性有机污染物(SVOCs ),是指沸点一般在170-350℃ 之间(由于分类依据模糊,经常与挥发性有机物有交叉)、蒸汽压在13.3*10 -5 Pa的有机物。主要包括:二噁英类 、 多环芳烃 、 有机农药类 、 氯代苯类 、多氯联苯类 、吡啶类、喹啉类、 硝基苯类 、 邻苯二甲酸酯类 、 亚硝基胺类 、 苯胺类 、 苯酚类 、多氯萘类和多溴联苯类等化合物。*图片仅供参考1HJ 639-2012 水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法环境保护部2012年12月发布标准《HJ 639-2012 水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法》自2013年3月1日起实施;本标准适用于海水、地下水、地表水、生活污水和工业废水中57种挥发性有机物的测定。检测方法:待测样品经吹扫吸附收集,再加热脱附进样,气相色谱分离,质谱检测定性,内标法定量。坛墨产品:甲醇中2种内标同位素混标(80638KA);甲醇中56种VOC混标(80032GA);甲醇中57种挥发性有机物VOC混标(80911JA);甲醇中54种挥发性有机物VOC混标(80706KA);2二氯甲烷中64种半挥发性有机物SVOC混标(80251KM)生态环境部2018年7月29号发布标准《HJ 951-2018 固体废物 半挥发性有机物的测定 气相色谱-质谱法》自2018年12月1日起实施;适用于固体废物及其浸出液中氯代烃类、邻苯二甲酸酯类、亚硝胺类、醚类、卤醚类、酮类、苯胺类、吡啶类、喹啉类、硝基芳香烃类、酚类包括硝基酚类、有机氯农药类、多环芳烃类等64种半挥发性有机物的筛查和定量分析。检测方法:固体废物和浸出液中的半挥发性有机物经提取、净化、浓缩、定容后,用气相色谱分离、质谱检测。根据质谱图、保留时间、碎片离子质荷比及其丰度定性,内标法定量。坛墨产品:二氯甲烷中6种内标同位素混标(80119QM);二氯甲烷/苯中64种半挥发性有机物SVOC混标(80251JMO,1000ppm);二氯甲烷中64种半挥发性有机物SVOC混标(80251JM,1000ppm) 二氯甲烷中64种半挥发性有机物SVOC混标 (80251KM,2000ppm);3甲醇中6种挥发性有机物VOC混标(80680JD)环境保护部2011年2月发布标准《HJ 605-2011 土壤和沉积物 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法》自2011年6月1日起实施;本规定了土壤和沉积物中65种挥发性有机物的测定。检测方法:待测样品经吹扫吸附收集,再加热脱附进样,气相色谱分离,质谱检测定性,内标法定量。坛墨产品:甲醇中3种内标混标同位素(80119QM);甲醇中3种替代物混标(80047KA);甲醇中59种挥发性有机物VOC混标(80253JA,1000ppm);甲醇中59种挥发性有机物VOC混标(80648KA,2000ppm,研发中);甲醇中6种挥发性有机物VOC混标 (80903KA);4丙酮中7种苯氧羧酸农药混标(80680JD)环境保护部2019年5月发布标准《HJ 1022-2019 土壤和沉积物 苯氧羧酸类农药的测定 高效液相色谱法》自2019年9月1日起实施;本规定了土壤和沉积物中7种苯氧羧酸类农药的测定。检测方法:待测样品乙腈超声提取,提取液经固相萃取柱净化浓缩后,进液相色谱进行分离,高效液相色谱-三重四极杆质谱法定性,外标法定量。坛墨产品:丙酮中7种苯氧羧酸类农药混标(80680JD, 1000ppm);丙酮中7种苯氧羧酸类农药混标(80680GD,100ppm);
  • 阿尔塔科技稳定同位素标记技术产业化基地建设成果系列报道之七:稳定同位素标记孔雀石绿与结晶紫
    为提高渔业产品质量,兽药被广泛应用于渔业养殖中寄生虫和微生物疾病的防治,不当使用会导致水产品中抗生素残留,最终影响人类食品安全和健康。图片来源:千图网孔雀石绿和结晶紫是有毒的三苯甲烷类化合物,易在水产品体内长期残留,农业部已将其列为水产禁药。然而,因其对鱼体的水霉病、寄生虫病等有特效,使得许多水产养殖户仍有违规使用,其在水产品中残留超标时有发生。因此,孔雀石绿和结晶紫为水产品检测的重点项目。孔雀石绿和结晶紫对人体健康有什么危害?图片来源:千图网孔雀石绿和结晶紫的人体暴露途径主要是食用含有孔雀石绿和结晶紫的鱼、虾等水产品。它们具有高毒性,可能会引起致癌、致畸、致突变,其代谢产物隐性孔雀石绿和隐性结晶紫的毒性强于母体化合物,对人体的健康危害非常大。孔雀石绿和结晶紫的限制法规图片来源:千图网2011年卫生部发布的《食品中可能违法添加的非食用物质和易滥用的食品添加剂名单(第1-5批汇总)》,以及2014年国家卫计委发布的《食品中可能违法添加的非食用物质名单》(国卫办食品函〔2014〕843号) 都指出不得违法添加及使用孔雀石绿和结晶紫。阿尔塔助力守护“舌尖上的安全”GB/T 19857-2005 《水产品中孔雀石绿和结晶紫残留量的测定 液相色谱-串联质谱和高效液相色谱的测定方法》适用于鲜活水产品及其制品中孔雀石绿、结晶紫及其代谢物残留量的检验。为保证检测的有效实施,阿尔塔科技成功研发出系列稳定同位素标记孔雀石绿和结晶紫及其代谢物标准物质,并且考虑到其具有高毒性的特点,推出系列经准确定值的标准溶液和混合标准溶液,为检测用户减少配制标液的风险,保护检测人员身体健康。部分孔雀石绿与结晶紫产品:了解更多产品或需要定制服务,请联系我们阿尔塔科技稳定同位素标记物产业化基地阿尔塔科技致力于建设世界一流的国产稳定同位素标记物产业化基地,为食品安全检测提供长期可靠的保障。阿尔塔科技开展科研攻关,已开发十余种稳定同位素标记物制备共性关键技术,实现了上百种的稳定性同位素标记农药、兽药、食品添加剂的量产和可持续供应,稳定同位素标记物产业化基地建设成果斐然,国产化和替代进口成绩显著。2022年,阿尔塔科技获批筹建“天津市标准物质与稳定同位素标记技术研究重点实验室”。阿尔塔科技将依托重点实验室继续深耕食品安全、环境安全、医药研发、临床检测等领域稳定同位素标记标准物质的结构设计合成和分离纯化、分析方法开发和质量控制,开展稳定同位素标记标准物质全产业链应用技术研究。阿尔塔科技将陆续推出稳定同位素标记物产业化基地建设成果系列报道,展示阿尔塔科研团队的研发成果,包括但不限于十三五项目开发的稳定同位素标记RM。产品的化学结构、化学纯度和同位素丰度、均匀性和稳定性均经过严格的检测和评估,质量媲美进口产品,价格较进口产品大幅降低。我们期待与更多的科研机构、检测实验室进行合作,持续开发市场需求的高品质产品,让更多的国家标准制修订和实验室检测活动用上国产稳定同位素标记标准物质。
  • 新地表水环境质量标准 GB3838-2002 定制混标标样
    地表水环境质量标准 GB3838-2002 定制混标标样 我们公司一直致力于地表水环境质量标准 GB3838-2002 定制混标,并且根据实际情况不断改进,在原来有机物前35项定制二种有机物混标基上,增加了6种有机磷(替代原有机磷7种),12种氯苯类混标,10种硝基苯类混标。非常适合我国现有地表水有机项目检测。 混标 组分 规格 备注 12种氯苯类订制混标 1,2- 二氯苯;1,4- 二氯苯;1,3- 二氯苯;氯苯;1,2,3- 三氯苯;1,2,4- 三氯苯;1,3,5- 三氯苯;1,2,3,4- 四氯苯;1,2,3,5- 四氯苯;1,2,4,5- 四氯苯;五氯苯;六氯苯(100ppm) 200ppm甲醇溶剂*1ml 地表水氯苯类混标 10种硝基苯类混标 2,4-二硝基氯苯;2,4,6-三硝基甲苯;2,4-二硝基甲苯;邻硝基氯苯;间硝基氯苯;对硝基氯苯;邻二硝基苯;间二硝基苯;对二硝基苯;硝基苯; 2000ppm甲醇溶剂*1ml 6种有机磷订制混标 甲基对硫磷 对硫磷 马拉硫磷 乐果 敌敌畏 内吸磷 100ppm甲醇溶剂*1ml 原有机磷7种组分中敌百虫组分干扰敌敌畏测定,敌百虫本身物质不稳定,剔除敌百虫组分 25种VOC订制混标 地表水前35项挥发性 100ppm甲醇溶剂*1ml 地表水前35项挥发性 24种SVOC订制混标 地表水前35项半挥发性 500ppm甲苯溶剂*1ml 地表水前35项半挥发性 8种有机氯订制混标 4,4' -DDD、4,4' -DDE、4,4' -DDT、2,4' -DDT、&alpha -HCH、&beta -HCH、&gamma -HCH、&delta -HCH 50ppm甲苯甲醇溶剂*1ml 国产 8种苯系物混合标液 苯、甲苯、乙苯、邻二甲苯、间二甲苯、对二甲苯、苯乙烯、异丙苯 1000ppm甲醇 进口订制 除标注国产以为,均为进口订制混标,保证可溯源性。 我公司可以提供GB3838-2002其它所有标样,有任何疑问请随时与我们公司联系。
  • 我为奥运出份力-冬奥会食品安全混标上架!
    北京冬奥会开幕在即,作为东道主,中国主办方继续将“民以食为天,食以安为先”的思想,严格落实在每一顿奥运餐食上,确保让远道而来的运动健将们吃的健康,吃的安心。为确保运动员的饮食安全,北京冬奥组委建立了三级餐饮保障体系,从种植养殖、生产加工、运输仓储、烹饪制作、餐饮服务到垃圾回收等环节全流程严格管理。同时,北京冬奥会食品供应安全工作协调小组统筹协调冬奥食品供应安全保障跨部门、跨境与跨地区的重大事项,确保赛时餐饮供应充足、食品安全。北京冬奥组委还制定实施农产品、水果干果和生产加工产品3大类,猪肉、牛肉、羊肉、鸡肉、鸭肉、鸡蛋、乳制品、水产品、蔬菜、果品等17项餐饮原材料供应基地规范标准,保证食品绝对安全。此外,新技术也被用来保障北京冬奥会食品安全。通过开展微生物检验、食源性兴奋剂(瘦肉精)检测及食用农产品抗生素残留等样品制备管理等,高质量、高标准、高效率开展食品检验检测工作,监测评估食品安全风险。天津阿尔塔科技有限公司是一家专注于有机标准品研发和生产为主的标准品供应商,是中国CNAS标准物质/标准样品生产者认可实验室,也是本届冬奥会食品检验检测技术机构的优质供应商。为确保冬奥会舌尖上的安全,阿尔塔科技积极响应冬奥组委,全面部署,根据相应的检测标准研制出精准的混标溶液,为检测机构快速高效、保质保量的完成冬奥会食品安全保障的任务提供强有力的技术支撑。阿尔塔科技以其优质的产品和全方位的技术服务受到全球客户的广泛认可,产品定位“替代进口,填补空白”,客户遍及全国和欧美亚地区。拥有First Standard® 自主品牌,产品涵盖食品成分和添加剂、农残、兽残、挥发性与半挥发性有机物、持久性污染物、医药、天然产物等有机标准品和稳定同位素标记试剂逾万种,被广泛应用于食品安全检测、环境安全监测、生命科学研究、药品开发和疾病诊断等重点领域。公司冬奥会食品安全检测部分混标产品展示:产品号产品名称英文名称包装规格1ST47594-10M甲醇中12种甾体激素和β-受体激素类混标溶液,10μg/mL12 Steroid Hormone and β-Adrenergic Receptor Mix Solution in Methanol,10μg/mL1mL,10μg/mL1ST9250-100A乙腈中6种霉菌毒素混标溶液,100μg/mL6 Mycotoxin Mix Solution in Acetonitrile, 100μg/mL1mL,100μg/mL1ST47523-100M甲醇中9种甾体激素类兽药混标溶液,100μg/mL9 Steroid Hormone Mix Solution in Methanol, 100μg/mL1mL,100μg/mL1ST45166-100M甲醇中10种药物混标溶液,100μg/mL10 Drug Mix Solution in Methanol, 100μg/mL1mL,100μg/mL更多产品信息及检测方案咨询,请联系对应业务员。
  • 废标、流标、围标、低价抢标,那些让人吐血的投标记忆!
    p   今天来聊聊投标的事情! /p p   作为仪器销售没投过标,你都不好意思说自己是混江湖的,很多项目动辄就要公开招标、竞争性谈判、竞争性磋商。投标过程常常无比虐心,各种招数层出不穷,在反腐高压之下,招标流程越来越吹毛求疵,低价抢标,虚假参数应标,想方设法围标,动不动就被判废标或流标,然后就是质疑别人和被别人质疑。感觉每次做完一个投标,心都要操碎了! /p p   今天和大家盘点一下,投标那些糟心的事情! /p p    span style=" color: rgb(255, 0, 0) " strong 废标、流标何其多 /strong /span /p p   最近中国政府采购网,又有一大批项目被宣布废标或流标,一个标招2次以上现在都很正常。各种劳民伤财,最开心的是招标公司,又可以挣标书费了。让我们看看废标、流标都有哪些情况吧。 /p p    strong 1、陕西师范大学脑片膜片钳系统 /strong /p p   本项目于2017年8月30日在中国政府采购网发布竞争性磋商公告,招标文件购买时间为2017年8月31日至2017年9月6日,由于截止至2017年9月6日获取磋商文件的单位数不足3家,本项目做流标处理。 /p p    strong 2、北京邮电大学分子束外延生长系统项目 /strong /p p   至投标截止时间,无投标人递交投标文件,本项目废标。 /p p    strong 3、兰州大学电镜中心设备完善(扫描电子显微镜及电镜附件采购)项目 /strong /p p   实质性响应不足三家。 /p p    strong 4、北京师范大学分子束外延薄膜生长设备采购 /strong /p p   设备卖方就设计图纸及技术方案未能与采购人达成一致,无法签订合同。采购人决定重新开展政府采购活动。 /p p    strong 5、公安部四川消防研究所三重串联四极杆气质联用仪采购项目 /strong /p p   由于投标单位:成都巨新实业有限公司所提交的投标文件中投标产品与成都欧迈行进出口贸易有限公司的品牌一致(安捷伦)并报价高于它,按照招标文件5.1的要求,被认定为无效投标处理。即投标单位不足三家,所以该项目作流标处理。 /p p    strong 6、中国科学院理化技术研究所高分辨3DX射线显微成像系统采购项目 /strong /p p   有效投标人不足三家 /p p    strong 7、北京理工大学分析色谱仪及低温探针台采购 /strong /p p   本项目第1包“分析色谱仪”,对招标文件做实质性响应的投标人不足3家,予以废标。 /p p    strong 8、中国科学院苏州纳米技术与纳米仿生研究所3D生物打印机竞争性磋商采购项目 /strong /p p   本项目实质性符合不足三家,本项目废标。 /p p    strong 9、公安部四川消防研究所扫描电子显微镜与X射线能谱联用仪采购项目 /strong /p p   由于成都宏诺兴科技有限公司:未提供2015年度或2016年度由会计师事务所出具的财务报表,故该单位作废标处理。因此投标单位不足三家,即作流标处理。 /p p    strong 10、中山大学医学院蛋白纯化液相色谱仪采购项目 /strong /p p   有效投标人不足三家 /p p   如上废标或流标基本都是因为有效投标不足三家或实质性响应不足三家。现在对资格审核和实质性响应的审核越来越严格: /p p    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 星号参数不满足三个品牌, /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   公司证件不全被废标 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   营业执照原件忘带被废标 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   未提供财务报表被废标 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   招标文件上有个地方忘记盖公章,被废标 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   两家公司投标同一个品牌被废标 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   投标产品不满足实质性响应被废标 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   授权书是PS的,当场被揭穿 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   。。。。 /span /p p   现在做标书,你要睁大眼睛,集中精力,一点都大意不得,不然所有努力都会功亏一篑,栽在那些本可以避免的地方就太不值当了。 /p p    span style=" color: rgb(255, 0, 0) " strong 围标几乎要精神分裂 /strong /span /p p   围标当然是被严格禁止的,但是很多时候又不得不准备三家公司围标,满足不了三家公司,满足不了三个品牌,招标进行不了,客户买不成,仪器用不了呀! /p p   为了合法合理的围标,就要绞尽脑汁在标书上做文章了。 /p p   一个人做三家公司的标书是什么体验?有种精神分裂的节奏! /p p   最大的难度是你要找三家毫不相干的公司,还要找三个都能满足关键参数的品牌。 /p p   找三个投标报名人。用三家公司名义报名,付三次标书费和投标保证金。 /p p   然后就是一人分饰多角,做三份完全不同的标书。 /p p   同时做三个公司的标书,为了以假乱真,弄假成真,绞尽脑汁让三个标书像三个完全不同的公司做出来的。所以除了字体不同,格式不同,内容不同,各种不同。 /p p   好不容易搞定一切,恍惚中又怀疑自己把公章盖错了。 /p p   以上都是围标的真实经历! /p p   据说现在有很多网络投标,直接提交电子版标书,招标办甚至能根据文档的属性查看最终编辑人,发现是同一个人做的,还发现是一个局域网里做出来的,然后被废标了。他们就带回家做一份上传,用手机热点做一份上传,在公司电脑上做一份上传。还要保证三个文档的编辑人不同。 /p p   正所谓上有政策下有对策! /p p    span style=" color: rgb(255, 0, 0) " strong 虚假应标,底价抢标 /strong /span /p p   如下是真实的案例,感谢热心者提供! /p p    strong 案例1 /strong /p p   本来不想提了,刚发生的事情。投了一个标,参数都是我们的,对方硬是响应,预中标排名第一,私下看到对方所投产品型号,根本不能满足,用户也不够积极,最终协商的结果是其中一个大型仪器供其他厂家的货,闻所未闻,气死我了。 /p p    strong 案例2 /strong /p p   本人亲自操作项目:某市疾病预防控制中心招标(甲第鞭毛虫和隐孢子虫检测设备一套),客户之前考察我公司代理美国爱德士公司产品,结合他们兄弟单位的使用情况考虑采购。参数按照饮用水国标两虫第三法(其实就是爱德士的参数)进行了参数公示和招标。结果竞争对手PALL公司产品(产品符合饮用水国标两虫检测第一法)来抢标,因为价格差距近30万。打分制价格低占了很大优势,对方中标,但是第一法的设备和操作肯定和第三法有很大的区别。对方的标书上参数完全满足。我方提出了质疑并提供了国家饮用水GB5750的标准为依据,提出国标第一法跟招标参数的不符表示质疑,对方虽被废标但并不甘心。两家公司都互不相让,最后交易中心和客户害怕事情闹大,把资金买了其它设备。两家公司争来争去,却是竹篮打水一场空。 /p p   这个项目有几点让人很无奈: /p p   1、开标前虽然招标参数是我的,对手不看参数全写满足,对手价格低,打分制招标他们优势大,却没有任何对策。 /p p   2、对方中标我代表公司以国标里的要求提出质疑,对方根本不在乎,就说自己满足,交易中心虽把对方中标结果废除,但是并没有任何实际的惩罚。对方一副有恃无恐的样子,却把交易中心给吓怕了。 /p p   3、交易中心暗示我私下找对方谈,出点费用让对方接受被废标,我们作为第二中标人顺序中标,但是老板和厂家觉得自己站在道德制高点,对方参数实际又不满足招标要求,不愿意出这个费用。我也无话可说。 /p p    strong 案例3 /strong /p p   我做过一个大型进口设备的招标,这个产品比较特殊,金额要100多万,厂家在中国没有总代理商,都是按报备制做的,客户前期需求最先找我们沟通,选型和技术交流都是我们做的,当然我们也第一时间和厂家进行了报备,并且拿到了厂家针对这个项目的专项授权。等开标的时候,现场的情况一下子让我们措手不及,竟然有另外2个公司也拿着厂家的授权来应标了,并且价格比我们低很多。当时招标办根据低价中标的原则,让A公司中标了。后来我们就质疑了,三家公司用同一个品牌来投标,明显不符合招标规则,按理当场应该废标的。并且A公司的授权涉嫌伪造,是将厂家原来给的授权进行了PS处理。质疑最后仍然无效。我们又和厂家进行协商,要求厂家不能直接对A公司进行供货,必须要通过我们进行采购。但是厂家却唯利是图,仍然向A公司进行了供货。现在客户仪器买了,售后却没人管了,A公司早都找不到人了,又来找我们做售后。你说我们管还是不管? /p p   做项目真心不容易,在当前竞争日益激烈的情况下,投标项目需要我们倾注更多的心力、智力和精力。当然我们也希望有越来越公开透明公平的竞争机会,本是同根生,相煎何太急!同行恶性竞争,对双方都没有好处。 /p
  • 阿尔塔科技化妆品检测配套混标上新啦!
    国家药监局落实“四个最严”的要求,依据《化妆品监督管理条例》等法律法规,组织在全国范围内开展国家化妆品监督抽检工作,依法严厉打击化妆品非法添加、生产经营不符合国家强制性标准或技术规范的等违法行为。在国家药品监督管理局的监督抽检计划中,化妆品中限用物质的实际添加种类和含量是否与产品标签一致、是否有违法添加行为(如:抗感染药物、激素类和防腐剂类)等,是监督抽检工作关注的重点。阿尔塔科技助力化妆品行业高质量发展,及时推出配套的化妆品禁限用物质标准品及控制样品,助力提升化妆品标准物质体系建设,为化妆品监督抽检工作及保护消费者的用妆安全提供技术支持。配套化妆品混标:化妆品基质质控样:了解更多产品或需要定制服务,请联系我们天津阿尔塔科技有限公司介绍天津阿尔塔科技有限公司成立于2011年,是中国领先的具有标准物质专业研发及生产能力的国家级高新技术企业,公司坚守“精于标准品科技创新,创造绿色安全品质生活“的企业愿景,秉持”致力于成为全球第一品牌价值的标准品提供者”的企业使命。是国家市场监督管理总局认可的标准物质/标准样品生产者(通过ISO 17034/CNAS-CL04认可),并通过了ISO9001:2015质量管理体系认证。公司于2022年获批筹建“天津市标准物质与稳定同位素标记技术研究重点实验室”,并先后被认定为国家高新技术企业、天津市“专精特新”企业、“瞪羚”企业等,成立了博士后科研工作站和院士创新中心,建立了国家食品安全重大专项稳定同位素产业基地,主持完成和参加了多项天津市重大科研支撑项目和在研国家重点研发计划重点专项,处于我国标准品和稳定同位素标记内标行业的领先地位。经过10余年的努力,阿尔塔科技以其卓越的品质和全方位的技术支持与服务受到全球客户的广泛认可和良好赞誉,成长为行业内国产高端有机标准品的知名品牌。2022年底,阿尔塔成功携手杭州凯莱谱精准医疗检测技术有限公司(迪安诊断旗下子公司),进一步开拓医药和临床检测标准品,为多组学创新技术以及质谱标准化的解决方案提供技术保障,为广大人民的健康生活做出贡献,真正实现From Medicare to Healthcare。
  • 借力表面增强拉曼 中科院实现对水体中Hg(II)免标记定量检测
    p   近日,中国科学院合肥物质科学研究院技术生物与农业工程研究所研究员黄青课题组,利用表面增强拉曼光谱(SERS)技术,实现了对水体中汞离子的选择性、免标记、半定量的检测。该项成果对实现实际水样中重金属离子的高选择性及准确检测具有一定的科学意义和实用价值,相关成果在线发表在Sensors and Actuators B: Chemical上。 /p p   表面增强拉曼光谱(SERS:surface enhanced Raman spectroscopy)作为一种正在快速发展的技术,因其快速、无损和痕量检测等特点,得到广泛关注并开始走向实际应用。汞是一种毒性极强的重金属,对人体及生物体有很大危害。Hg(II)作为汞在环境中的一种常见的存在形式,对其进行快速、可靠、有效测量具有必要性和迫切性,但基于SERS技术对其特异性和相对定量检测存在一定难度。为此,黄青等设计了能够有效的捕捉水样中的汞离子并产生拉曼散射增强效应的纳米粒子——适配体复合检测体系。研究人员在SiO2@Au纳米粒子表面修饰上能有效捕获汞离子的DNA适配体,利用DNA分子中T碱基和Hg(II)形成T-Hg2+-T结构的特性,能够高效捕获Hg2+,并产生SERS信号改变。实验结果表明,在加入Hg(II)后,设计DNA分子中的腺嘌呤(A)产生736cm-1SERS信号与鸟嘌呤(G)产生的位于660cm-1的SERS信号的峰强的比值会随检测Hg(II)浓度增加而减小,并出现一些特征新峰,如550cm-1。计算表明,它来源于汞离子取代了T上的H在两个DNA分子间形成N-Hg-N结构而发生的伸缩振动。利用这些变化,可以对Hg(II)的进行快速、特异性和半定量的痕量检测。 /p p   研究工作得到国家自然科学基金、国家重点基础研究发展计划等的支持。 /p p   论文题目:A label-free SERS approach to quantitative and selective detection of mercury (II) based on DNA aptamer-modified SiO2@Au core/shell nanoparticles /p p style=" text-align: center " img title=" 001.png" src=" http://img1.17img.cn/17img/images/201712/insimg/ca52438b-c746-4230-bd80-e8cad9d9affa.jpg" / /p p style=" text-align: center " strong 合肥研究院实现对水体中Hg(II)高选择性、免标记的定量检测 /strong /p p & nbsp /p
  • 阿尔塔氟虫腈及其代谢物混标现货供应!
    2017年7月20日,比利时通过RASFF系统通报鸡蛋中检出氟虫腈。问题鸡蛋已被销往12个国家或地区。据报道,问题鸡蛋产自荷兰,氟虫腈被不恰当的用于养鸡场的清洁物品中,造成鸡蛋被检出残留物。针对此事,国家质检总局第一时间在官网做出回应表示,“我国对进口禽蛋及其产品实施严格的检验检疫准入管理。目前包括荷兰在内的欧盟各成员国的新鲜禽蛋和禽蛋产品均尚未获得检验检疫准入资格,不能向我国出口,请中国境内消费者不必为此担心。”氟虫腈是一种苯基吡唑类广谱杀虫剂,对蚜虫、叶蝉、飞虱、鳞翅目幼虫、蝇类和鞘翅目等重要害虫有很高的杀虫活性,对作物无药害。然而氟虫腈会对农作物周围的蝴蝶、蜻蜓等造成影响,并且现有动物实验研究表明,短期摄取大量氟虫腈会对神经系统造成不良影响,长期摄取氟虫腈可能会损害肝脏、甲状腺和肾脏,但不会引起基因突变、致癌或对生殖能力、胎儿造成影响。德国禁止在用于食品加工的动物养殖过程中使用氟虫腈。目前德国实行欧盟的相关规定,要求食品中的氟虫腈残留不能超过0.005毫克/千克。我国国标GB 2763-2016中明确了氟虫腈在谷物、油料和油脂、蔬菜、水果、糖类和食用菌中的限量(玉米及鲜食玉米0.1mg/kg,其他为0.02mg/kg),但未明确在蛋类中的规定。“毒鸡蛋“事件发生后,虽然我国国内市场暂无进口禽蛋,但是仍然引起相关各科研机构、第三方检测公司的及仪器公司的注意,其中阿尔塔的合作伙伴SCIEX及博纳艾杰尔在最快的时间内发布了鸡蛋中氟虫腈的检测方法。SCIEX:如何应对欧洲“毒鸡蛋”来袭?博纳艾杰尔:这个八月有点忙,“毒鸡蛋”怎么防? 阿尔塔科技有限公司提供氟虫腈及其代谢物的单标、混标,均为现货!更多产品欢迎咨询订购!单标货号产品名称英文名称CAS#溶剂包装1ST20305-100M氟虫腈Fipronil120068-37-3甲醇100ppm, 1ml1ST20502-100A氟甲腈Fipronil Desulfinyl205650-65-3乙腈100ppm, 1ml1ST20306-100M氟虫腈硫化物Fipronil Sulfide120067-83-6甲醇100ppm, 1ml1ST20308-100M氟虫腈砜Fipronil Sulfone120068-36-2甲醇100ppm, 1ml混标1ST27612-100A氟虫腈及其3种代谢物混标, 100ppmFipronil & 3 Metabolites Mix Solution, 100ppm乙腈100ppm, 1ml
  • 一探究竟!331种农药混标,坛墨质检有不同!
    一、简介由农业农村部环境质量监督检验测试中心(天津)起草制定的《植物源性食品中331种农药及其代谢物残留量的测定 液相色谱-质谱联用法》(GB 23200.121-2021)已于2021年3月3日发布,9月3日起正式实施。 二、国标解读1、国标特点:序列特点描述1权威强GB2763标准检测方法2数量多分析331种农药及其44种代谢物共计375种农药残留组分3种类繁既涉及到剧毒禁用有机磷及氨基甲酸酯类农药,又涉及到常用销量大农药品种如三唑类杀菌剂及苯甲酰脲类杀虫剂4范围广涉及食用菌、水果、蔬菜、糖料、粮食、油料作物、茶叶、坚果和香辛料、植物油类10大类农产品,全面覆盖植物源性食品将GB 23200.121与GB 23200.113标准配合使用,能够显著提高检测效率。共可覆盖GB 2763-2021农药品种的60%、2021版国抽农药品种的89%、例行监测农药品种的96% 农药种类目标物数量(个)有机磷农药76杀虫剂52杀菌剂60除草剂72生物农药8其他107合计375 2、QuEChERS前处理QuEChERS方法:利用吸附剂填料与基质中的杂质相互作用,吸附杂质从而达到除杂净化的目的,已经成为国际上最新发展起来的一种用于农产品检测的快速样品前处理技术。配合GB 23200.113-2018 GC-MS/MS检测标准,一个样品使用同一个前处理方法即可同时用于GC-MS/MS和LC-MS/MS检测,大大简化了前处理过程,缩短前处理时间,提高了国标方法的适用性和检测效率。GC-MS/MS标准中包含208种农药,LC-MS/MS标准中包含375种农药,其中重合的农药有118种,两个标准共包含465种农药。今后仅需两针进样即可完成GB 2763-2021《食品安全国家标准 食品中农药最大残留限量》中规定的大多数农药残留品种测定。 3、标准物质解决方案 产品编号产品名称浓度规格备注81388a(套标)植物源性食品中331种农药套标10μg/mL16支/套套标81388b(套标)植物源性食品中331种农药套标50μg/mL16支/套71802-10mg鱼藤酮/10mg纯品714149-1mg嘧苯胺磺隆/1mg715828-1mg嗪吡嘧磺隆/1mg91485a甲醇中脱甲基-甲酰胺基-抗蚜威100μg/mL1mL 单标92065a甲醇中阿维菌素B1a100μg/mL1.2mLBW900297-100-N甲苯中稀禾定100μg/mL1.2mLBW900078-100-D丙酮甲氨基阿维菌素苯甲酸盐100μg/mL1.2mLBW900230-100-A甲醇中依维菌素100μg/mL1.2mLBW900684-100-A甲醇中3-羟基克百威100μg/mL1.2mL81381a乙腈中20种除草剂混标-植物源性食品中331种农药-组110μg/mL1mL混标(10μg/mL)81382a乙腈中64种有机磷混标-植物源性食品中331种农药-组210μg/mL1mL81383a乙腈中46种杀虫剂混标-植物源性食品中331种农药-组310μg/mL1mL81384a乙腈中52种杀菌剂混标-植物源性食品中331种农药-组410μg/mL1mL81385a乙腈中57种农药混标-植物源性食品中331种农药-组510μg/mL1mL81386a乙腈中61种农药混标-植物源性食品中331种农药-组610μg/mL1mL81387a乙腈中66种农药混标-植物源性食品中331种农药-组710μg/mL1mL81381f乙腈中20种除草剂混标-植物源性食品中331种农药-组150μg/mL1mL混标(50μg/mL)81382f乙腈中64种有机磷农药混标-植物源性食品中331种农药-组250μg/mL1mL81383f乙腈中46种杀虫剂混标-植物源性食品中331种农药-组350μg/mL1mL81384f乙腈中52种杀菌剂混标-植物源性食品中331种农药-组450μg/mL1mL81385f乙腈中57种农药混标-植物源性食品中331种农药-组550μg/mL1mL81386f乙腈中61种农药混标-植物源性食品中331种农药-组650μg/mL1mL81387f乙腈中66种农药混标-植物源性食品中331种农药-组750μg/mL1mL 三、坛墨标准物质产品解读 1、问:坛墨的套标有几部分组成?分类依据是什么?答:①一共有2组套标,一组10μg/mL和一组50μg/mL;②每组套标分三部分,第一部分为纯品:有三个化合物,因其溶液状态下不稳定或效期较短,建议使用时现配现用;第二部分为单标:有四个化合物是容易受其他化合物干扰,或者容易影响其他化合物,建议使用时单标进样;第三部分为混标;共7支混标,按种类区分,除草剂,有机磷,杀菌剂,杀虫剂等农药。 2、问:坛墨提供的两种浓度能否满足国标需求?答:国标4.4.2中,确定了混合标准储备溶液的浓度最高为50μg/mL;4.4.3中,确定了混标标准工作溶液的浓度为5μg/mL;并且在7.5.3中,基质匹配工作标准曲线的浓度外围是0.002至0.5μg/mL;综上所述,坛墨提供的两组浓度均完全符合国标的需求。 3、问:坛墨能否提供更大浓度的标准物质,比如100,200μg/mL等浓度?答:坛墨能提供100浓度的混标定制产品;但并不建议客户使用:①不符合国标的要求;②LCMSMS仪器进样,不建议超过国标的上限0.5μg/mL,会引起仪器过载,因此不建议配制更高浓度的标准溶液;③如果再增大浓度,实验员在稀释时,会由于稀释倍数过大而引入较大误差。 部分相关产品,更多产品请咨询销售人员:400-860-5168转3792
  • 18种多氯联苯混标全新上市啦(HJ 743-2015)
    迪马科技根据《HJ 743-2015 土壤和沉积物 多氯联苯的测定 气相色谱-质谱法》标准定制了18种多氯联苯混标。 产品信息:DIKMA NO:46903DESC:Custom Mixed PCB (18 Analytes) 100 μg/mL in N-Hexane 1mL中文名称:HJ743-2015土壤和沉积物多氯联苯的测定18种混标适用于《HJ 743-2015 土壤和沉积物 多氯联苯的测定 气相色谱-质谱法》,100 μg/mL在正己烷中,1 mL/安瓿,Cat. No.: 46903序号化合物英文名CAS12,4,4’-三氯联苯2,4,4’-trichlorobiphenyl (BZ # 28)7012-37-522,2’,5,5’-四氯联苯2,2’,5,5’-tetrachlorobiphenyl (BZ # 52)35693-99-332,2’,4,5,5’-五氯联苯2,2’,4,5,5’-pentachlorobiphenyl (BZ # 101) 37680-73-243,4,4’,5-四氯联苯3,4,4’,5-tetrachlorobiphenyl (BZ # 81)70362-50-453,3’,4,4’-四氯联苯3,3’,4,4’-tetrachlorobiphenyl (BZ # 77)32598-13-362’,3,4,4’,5-五氯联苯2’,3,4,4’,5-pentachlorobiphenyl (BZ # 123)65510-44-372,3’,4,4’,5-五氯联苯2,3’,4,4’,5-pentachlorobiphenyl (BZ # 118) 31508-00-682,3,4,4’,5-五氯联苯2,3,4,4’,5-pentachlorobiphenyl (BZ # 114)74472-37-092,2’,3,4,4’,5’-六氯联苯2,2’,3,4,4’,5’-hexachlorobiphenyl (BZ # 138)35065-28-2102,3,3’,4,4’-五氯联苯2,3,3’,4,4’-pentachlorobiphenyl (BZ # 105)32598-14-4112,2’,4,4’,5,5’-六氯联苯2,2’,4,4’,5,5’-hexachlorobiphenyl (BZ # 153)35065-27-1123,3’,4,4’,5-五氯联苯3,3’,4,4’,5-pentachlorobiphenyl (BZ # 126)57465-28-8132,3’,4,4’,5,5’-六氯联苯2,3’,4,4’,5,5’-hexachlorobiphenyl (BZ # 167)52663-72-6142,3,3’,4,4’,5’-六氯联苯2,3,3’,4,4’,5’-hexachlorobiphenyl (BZ # 156)38380-08-4152,3,3’,4,4’,5’-六氯联苯2,3,3’,4,4’,5’-hexachlorobiphenyl (BZ # 157)69782-90-7162,2’,3,4,4’,5,5’-七氯联苯2,2’,3,4,4’,5,5’-heptachlorobiphenyl (BZ # 180)35065-29-3173,3’,4,4’,5,5’-六氯联苯3,3’,4,4’,5,5-hexachlorobiphenyl (BZ # 169)32774-16-6182,3,3’,4,4’,5,5’-七氯联苯2,3,3’,4,4’,5,5' -heptachlorobiphenyl (BZ # 189)39635-31-9
  • ​抗体-抗原相互作用研究进展:利用焦碳酸二乙酯共价标记-质谱法进行表位定位
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,Epitope Mapping with Diethylpyrocarbonate Covalent Labeling-Mass Spectrometry,该文章的通讯作者是美国马萨诸塞大学的Richard W. Vachet1。基于单克隆抗体 (mAb) 的疗法之所以成功,是因为抗体与其抗原之间的高特异性和亲和力。表位识别涉及确定 mAb 识别的抗原残基,对于了解结合机制和帮助设计未来的治疗方法至关重要。识别抗原中的结合残基和特异性结合所必需的抗原高阶结构 (HOS) 的特征对于理解结合机制至关重要。在研究完整的抗体-抗原复合物时,质谱 (MS) 已成为一种很有前途的表位定位工具;MS仅需要低样本量,不受分子量的限制,并且比核磁共振或X晶体衍射提供更高的分辨率。目前已经开发了各种用于抗原-抗体相互作用的 MS 工具,其中,共价标记质谱(CL/MS) 已成为一种有前途的补充技术,可以提供残留水平的分辨率并且具有相对较高的通量,通常不会像 HDX-MS 那样遭受标记损失,并且根据试剂的不同,样品制备很简单,不需要专门的设备。焦碳酸二乙酯(DEPC)是一种很有前途的CL试剂,它可以标记许多亲核残基,包括赖氨酸、组氨酸、丝氨酸、苏氨酸、酪氨酸和 N 端,可以标记平均蛋白质中约 30% 的残基。组氨酸和赖氨酸残基的标记程度与其溶剂可及表面积(SASA)相关,而丝氨酸、苏氨酸和酪氨酸的标记对其微环境敏感,特别是附近疏水残基的存在。此外,DEPC 标记在很大程度上不受毫秒时间尺度上发生的蛋白质动力学的影响。本文为了评估 DEPC-CL/MS 用于研究抗体-抗原相互作用,选择肿瘤坏死因子-α(TNFα)作为模型系统,研究了三种具有不同的表位并在不同程度上稳定TNFα的mAb——阿达木单抗、英夫利昔单抗和戈利木单抗结合TNFα的相互作用。至于具体试剂制备、DEPC-蛋白质反应、蛋白质消化条件、LC-MS 和 MS/MS 参数以及数据分析等详细信息请点击“阅读原文”进一步了解。1、抗体-抗原复合物的 DEPC-CL/MS考虑因素TNFα 是一种含有157个残基的蛋白质,具有35个DEPC可修饰残基。单独标记TNFα 表明其中34个残基可以被修饰,从而提供足够的结构覆盖信息。DEPC-CL/MS 实验通常比较游离蛋白与复合蛋白的标记,以确定结合位点。然而,对于抗体-抗原系统,直接比较游离TNFα与TNFα/mAb复合物较困难,因为抗体增加了过多的可标记残基数量,所以需要含有非结合mAb利妥昔单抗的溶液中的 TNFα 进行对照,从而提供了一种校正由抗体存在而引起的任何标记变化的方法。该对照试验表明,在利妥昔单抗存在时,TNFα中标记的残基较少(34),这表明当存在额外的蛋白质时,某些残基的标记水平降至检测限以下。用利妥昔单抗(即对照)结合TNFα与用另外三种mAb结合TNFα的比较揭示了标记残基的可能发生的三种不同变化(图1)。第一种,有些残留物的标记程度没有显着变化,表明它们的微环境或 DEPC 可及性没有变化。第二种,由于溶剂可及性的增加,引起特别是组氨酸和赖氨酸残基标记的增加;或微环境的变化,引起特别是丝氨酸、苏氨酸和酪氨酸残基标记的增加(由于DEPC局部浓度增加,可接近的丝氨酸、苏氨酸和酪氨酸残基周围的疏⽔性更强的微环境导致这些弱亲核残基反应性更⼴泛)。第三种,由于溶剂暴露的损失或疏⽔性更低的微环境,引起残基标记减少。图1. TNFα与mAb复合后标记程度可能的变化情况。TNFα三聚体以灰色表示;抗体以黄色表示;标记用绿色星号表示,星号的大小与标记程度成正比。分别显示了(A)标记程度没有变化、(B)标记程度增加和(C)标记程度减小的结果。2、与阿达⽊单抗复合的TNFα的DEPC-CL/MS阿达⽊单抗在所研究的mAb中具有最⼤的表位,该表位由TNFα同源三聚体的两个亚基组成(图2A、B)。该表位包含11个可修饰残基,其中8个在对照或存在阿达⽊单抗的情况下被标记。其余三个,His78、His73和Lys65,在利妥昔单抗或阿达⽊单抗条件下均未标记,因为它们埋在TNFα三聚体中。图2. 与阿达木单抗复合的TNFα的结构和DEPC标记结果。(A) 阿达木单抗与TNFα三聚体的复合物,阿达木单抗在三聚体凹槽中与TNFα三聚体的两个单体结合。(B)与TNFα 三聚体复合的阿达木单抗Fab的表面结构表示(PDB ID: 3WD5)。(C)使用和不使用阿达木单抗的TNFα中表位残基的DEPC标记程度。(D)使用和不使用阿达木单抗的TNFα中非表位残基的DEPC标记程度。(E)在阿达木单抗结合后标记减少(蓝色)的表位残基映射到TNFα 三聚体上。阿达木单抗以黄色显示,TNFα三聚体以灰色显示。(F)与阿达木单抗结合后标记增加(红色)的表位残基映射到TNFα三聚体上。在比较利妥昔单抗对照和阿达木单抗时,八个表位残基的标记程度发生了变化(图2C)。八个残基中有五个标记减少,包括Tyr141、Lys112、Lys90、Thr72和Ser71,因为在阿达木单抗结合后被埋藏(图2 E);其中大多数这些残基的标记是完全被阻止的。剩余三个表位残基(Thr77、Ser81和Ser147)在阿达木单抗结合时被标记,但在对照中它们没有被标记(图2F)。Thr77标记的增加可能是由于阿达木单抗重链上靠近Trp53的疏水性微环境增加所致(图3A)。虽然 Ser81 不与阿达木单抗接触,但它被认为是表位的一部分,因为它靠近与mAb结合的Lys90和Glu135(图3B)。Ser147也被标记,可能是由于结合时更加疏水的环境(图3C)。总体而言,TNFα 表位中所有可修饰残基都会发生 DEPC 标记变化,但表位边缘的Thr和Ser残基实际上会增加标记,这些违反直觉的变化反映了 DEPC 标记对这些弱亲核残基的疏水微环境的独特敏感性。图3.阿达木单抗结合时TNFα残基的代表性结构变化。(A)Thr77的微环境由于其靠近阿达木单抗中的Trp53而增加疏水性。(B)Ser81被表位残基Lys90和Glu135掩埋,但在阿达木单抗结合时部分暴露,导致其DEPC反应性增加。(C)在未结合的TNFα中,Ser147完全暴露于溶剂中,然而在阿达木单抗的存在下,Ser147位于更疏水的微环境中。(D)Ser86的微环境在结合状态(灰色)下变得不那么疏水,因为它与Tyr87的接近度降低。(E)Thr89和Thr105由于靠近阿达木单抗而增加标记。(F)Ser9、Tyr151、Tyr119、Tyr56 和 Ser99 的标记范围都有所增加,这些残基十分靠近三聚体界面。在表位之外,标记了21个残基,其中大部分 (11/21) 的标记程度没有变化,表明它们在SASA或微环境中没有发生显着变化。残基Ser86标记程度降低(图2D),是因为其在阿达木单抗结合后重新定位,周围的疏水口袋很可能发生变化(图3D),导致标记减少。表位外的九个残基增加了标记程度。这些残基中的大多数 (7/9) 是丝氨酸、苏氨酸或酪氨酸,其 DEPC 反应性对微环境变化非常敏感。其余两个残基 Thr89 和 Thr105 在利妥昔单抗对照中未标记,但在阿达木单抗结合后,它们的微环境变得更加疏水,可能是由于它们与表位非常接近,所以它们的标记程度增加(图3E )。Ser9、Tyr56、Tyr119 和 Tyr151 的标记增加可能是因为它们面向 TNFα 中的三聚体界面(图3F),在阿达木单抗结合时发生的三聚体的稳定化可能会改变这些残基的微环境,从而增加它们的标记程度。其中两个残基Tyr56、Tyr151在利妥昔单抗对照中完全未标记,并在复合物中被标记,使其行为类似于表位边缘的Ser和Thr残基。标记程度增加的另外两个非表位残基是His15和Lys128,然而,阿达木单抗与TNFα三聚体的Fab的晶体结构并未表明His15或Lys128的SASA变大;阿达木单抗/TNFα 在实验浓度下形成的大于3:1的高阶复合物的复杂变化可能可以解释标记的增加。此外,作者还对英夫利昔单抗复合物中TNFα和与戈利木单抗复合的TNFα进行了DEPC-CL/MS分析。综上所述,本实验使用结合TNFα的三种治疗性mAb,证明 DEPC-CL/MS 可以揭示有关表位的准确信息以及远离表位的细微结构变化。为了获得可靠的结果,需要涉及非结合mAb的对照实验来解释由mAb中存在大量可修饰残基引起的额外标记变化。研究结果表明,表位中的组氨酸和赖氨酸残基在标记中显着减少,而在表位内或表位边缘的弱亲核性丝氨酸、苏氨酸和酪氨酸残基由于附近疏水微环境的产生而发生标记程度的增加。大多数远离表位的残基在标记程度上不会发生任何显着变化;确实发生变化的残留物主要分为三类:第一类包括不属于表位但与表位非常接近的残基,因此由于部分掩埋而导致标记程度发生变化;第二类,TNFα三聚体界面上的残基会发生标记变化,这些变化反映了抗体结合后三聚体稳定化引起的结构变化;第三类主要包括弱亲核性残基由于抗体结合时发生的 HOS 变化而在微环境中发生标记增加或减少,并反映在这些残基周围产生或多或少的疏水环境,这是 结构变化或形成具有大mAb/TNFα化学计量的复合物的结果。总而言之,DEPC 标记可以提供有关抗体-抗原表位的信息,并且具有很好的表位定位潜力,也可用于快速筛选潜在的治疗性抗体或生物等效性研究。参考文献:1、Tremblay CY, Kirsch ZJ, Vachet RW. Epitope Mapping with Diethylpyrocarbonate Covalent Labeling-Mass Spectrometry. Anal Chem. 2022 Jan 18 94(2):1052-1059.阅读原文:https://pubs.acs.org/doi/10.1021/acs.analchem.1c04038
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制