当前位置: 仪器信息网 > 行业主题 > >

溴甲酚绿

仪器信息网溴甲酚绿专题为您提供2024年最新溴甲酚绿价格报价、厂家品牌的相关信息, 包括溴甲酚绿参数、型号等,不管是国产,还是进口品牌的溴甲酚绿您都可以在这里找到。 除此之外,仪器信息网还免费为您整合溴甲酚绿相关的耗材配件、试剂标物,还有溴甲酚绿相关的最新资讯、资料,以及溴甲酚绿相关的解决方案。

溴甲酚绿相关的资讯

  • 赫施曼助力干粉灭火剂中碳酸氢钠的检测
    普通干粉灭火剂主要由活性灭火组分、疏水成分、惰性填料组成,其中灭火组分是干粉灭火剂的核心。如碳酸氢钠干粉灭火剂中起到灭火作用的物质是碳酸氢钠,它适用于易燃、可燃液体、气体及带电设备的初起火灾。根据GB4066-2017,检测干粉灭火剂中碳酸氢钠含量的方法原理为:将干粉灭火剂试样破坏硅膜后,加热蒸馏水溶解过滤,取其滤液,分别以甲酚红-百里酚蓝和溴甲酚绿-甲基红为指示液,用盐酸标准溶液滴定。一、试验用试剂1.丙酮:分析纯;2.三级水:符合GB/T6682的规定;3.溴甲酚绿乙醇溶液(0.1%);4.甲基红乙醇溶液(0.2%);5.溴甲酚绿-甲基红混合指示剂:将溴甲酚绿乙醇溶液(0.1%)与甲基红乙醇溶液(0.2%)按3:1体积比混合,摇匀;6.甲酚红钠盐水溶液(0.1%);7.百里酚蓝钠盐水溶液(0.1%);8.甲酚红-百里酚蓝混合指示剂:将甲酚红钠盐水溶液(0.1%)与百里酚蓝钠盐水溶液(0.1%)按1:3体积比混合,摇匀;9.盐酸标准滴定溶液:用盐酸(符合GB/T622的规定)配制浓度约为0.1mol/L的水溶液。二、试验步骤1.制备待测溶液:称取干粉灭火剂试样2g,精确至0.0002g,置于100mL烧杯中,用瓶口分液器加3~4mL丙酮并不断搅拌;待丙酮挥发后,加入少量热三级水60℃~70℃溶解过滤,用约250mL三级水洗涤不溶物,将滤液和洗涤液均收集在500mL容量瓶中,用三级水稀释至500mL,摇匀,即为待测溶液A。2.移取50mL溶液A于250mL锥形瓶中,用赫施曼光能滴定器加5滴甲酚红-百里酚蓝混合指示剂,用盐酸标准溶液经过赫施曼opus电子滴定器滴定至试验溶液的颜色由紫色变为黄色,读取消耗盐酸标准溶液的体积V1。3.再加入10滴溴甲酚绿-甲基红混合指示剂,用盐酸标准溶液经过opus电子滴定器滴定至试验溶液的颜色由绿色变为暗红色。4.煮沸2min,溶液颜色变回绿色,冷却至室温。用盐酸标准溶液经过opus电子滴定器继续滴定至暗红色为终点,读取消耗盐酸标准溶液的体积V2。三、计算碳酸氢钠含量式中:m—试样质量,单位为g;c—盐酸标准滴定溶液实际浓度,单位为摩尔每升(mol/L);V1—第一次滴定所消耗盐酸标准滴定溶液的体积,单位为毫升(mL);V2—滴定所消耗盐酸标准滴定溶液的总体积,单位为毫升(mL)。取差值不超过0.2%的两次试验结果的平均值作为测定结果。滴定法一般使用的是玻璃滴定管,对试验人员的技术水平、实操经验和耐心的要求较高,有灌液慢、控速难,读数乱(不同人次、位置的凹液面读数可能出现偏差)三大痛点。赫施曼的光能滴定器上转滚轮即可抽取并存储滴定液,下转滚轮进行滴定,转得越快滴得越快。数值是直接从屏幕上读取,不看凹液面、无视线误差,按清零键后就可进行下一个滴定。自带太阳能板,无需电池。赫施曼opus电子滴定器可通过触摸屏进行灌液、预滴定、快速滴定和半滴滴定,10mL规格的分辨率为小数点后三位(1μL),可屏幕直接读数、连接电脑输出数据,解决了常规玻璃滴定管灌液慢、控速难,读数乱的三大痛点,可提高工作效率、降低目视误差,无需大量实操经验,降低了培训成本和人员个体差异,所得数据也更加准确、稳定。
  • 【技术指导】自动水溶性酸测定仪的维护与注意事项
    自动水溶性酸测定仪维护、注意事项A1180技术指导产品介绍产品名称:自动水溶性酸测定仪产品型号:A1180概 述:自动水溶性酸测定仪是在规定条件下,将试样与等体积的蒸馏水混合摇动,取其水抽出液通过比色确定其pH值。适用于变压器油、汽轮机油、抗燃油等石油产品的水溶性酸的测定。可广泛应用于电力、石油、化工、商检及科研等部门。适应标准:GB/T 7598维护与保养1、更换指示剂指示剂溴甲酚绿和溴甲酚紫用尽后取出原瓶,重新更换,再原样装回原位。2、更换蠕动泵管打开仪器上盖,向上拔动蠕动泵的拔杆,即可松动甭管的压板,取下磨损的旧泵管,退出旧泵管上的管箍,套在一根新的泵管上,再把新管原样装回泵体上,用拔杆把泵管压板压回原位。3、更换打印纸按下左图的按钮,将打印纸按照右图装入打印机,并关闭前盖即可。注意事项1、蠕动泵仪器使用完毕后,请将蠕动泵的压臂松开,防止蠕动泵软管被压臂长期挤压,而造成损伤。2、试验用水测定试样之前,将去离子(或蒸馏水)水煮沸,赶尽其中的二氧化碳。
  • 聚焦3.15,海能在行动:鸡蛋营养成分检测解决方案
    消费者权益日3.15黑名单之夜刚刚过去,消费安全不容忽视。无论你来自何方,从事什么样的职业,我们都有一个共同的名字——消费者。今年央视3.15晚会的主题是:“信用让消费更放心”。消费领域一些失信和侵犯消费者权益的情况在很大程度上影响着消费者的满意度和消费信心,制约着消费潜力的进一步扩大。从晚会曝光的情况来看,各类食品安全问题依旧层出不穷:生产车间“辣眼睛”的辣条、“化妆”出来的“土鸡蛋”……针对以上问题,海能实验室迅速做出反应,为各位消费者总结了最新解决方案,希望对大家有所帮助。眼下,深颜色的土鸡蛋成为热销产品,在鸡蛋的选择上很多人愿意花更多的钱买土鸡蛋,现在的土鸡蛋都被打上了健康、养生、纯天然、无污染等标签。生活中有人会用鸡蛋壳和蛋黄的颜色来区分柴鸡蛋和散养的土鸡蛋,认为土鸡蛋营养价值更高。那么土鸡蛋是不是真的营养价值更高呢?下面我们就用一组实验来检测一下。当当当当~海能实验室不同种类鸡蛋中的蛋白质含量仪器与试剂1、仪器K1160全自动凯氏定氮仪,SH420F石墨消解仪,分析天平K1160全自动凯氏定氮仪SH420F石墨消解仪2、试剂硫酸(分析纯),20g/L硼酸溶液,溴甲酚绿-甲基红混合指示剂,40%氢氧化钠溶液,混合催化剂(3gK2SO4、0.2gCuSO4),0.1045mol/L硫酸标准滴定液。实验方法1、取样称取混合均匀好的鸡蛋样品1g(精确至0.1mg)左右,加入消化管。加入混合催化剂:3g硫酸钾,0.2g硫酸铜,沿消化管壁加入浓硫酸10mL。2、消解设定消解参数3、测试数据分析与讨论1、实验数据2、讨论测试结果显示3种鸡蛋和其他蛋类的蛋白质含量差距均在1%以内 。消费者在选择的时候可以凭借自己的喜好进行选择。
  • 哪些方法可以测定柴油的氧化性?
    1、按SH/T0175方法进行测定  方法概要:将以过滤过的350mL试样,注入氧化管,通入氧气,速率为50 mL /min在93℃的温度下氧化16h。然后将氧化后的试样冷却到室温,过滤得到的可过滤的不溶物。用三合剂把粘附性不溶物从氧化管上洗下来,把三合剂蒸发除去,得到的粘附性不溶物。可过滤不溶物和粘附性不溶物的量之和为总不溶物量硫含量2、按GB/T 380方法进行测定  方法概要:将适量样品在灯中燃烧,用0.3%碳酸钠水溶液吸收燃烧生成的二氧化硫,并用0.05N的盐酸标准溶液滴定吸收液,用溴甲酚绿甲基红作滴定指示剂酸度3、按GB/T 258方法进行测定  方法概要:容量法,本方法系用沸腾的乙醇抽出轻柴油中的有机酸,然后趁热用0.05N氢氧化钾乙醇溶液滴定,中和100亳升石油产品所需氢氧化钾的毫升数称为酸度十六烷值4、按GB/T 386方法进行测定  十六烷值是指与柴油自燃性相当的标准燃料中所含正十六烷的体积百分数。标准燃料是用正十六烷与2-甲基萘按不同体积百分数配成的混合物。其中正十六烷自燃性好,设定其十六烷值为100,α-甲基萘(1-甲基萘)自燃性差,设定其十六烷值为0。也有以2、2、4、4、6、8、8-七甲基壬烷代替α-甲基萘(1-甲基萘),设定其十六烷值为15,十六烷值测定是在实验室标准的单缸柴油机上按规定条件进行的。十六烷值高的柴油容易起动,燃烧均匀,输出功率大;十六烷值低,则着火慢,工作不稳定,容易发生爆震。一般用于高速柴油机的轻柴油,其十六烷值以40-55为宜;中、低速柴油机用的重柴油的十六烷值可低到35以下。柴油十六烷值的高低与其化学组成有关,正构烷烃的十六烷值高,芳烃的十六烷值低,异构烷烃和环烷烃居中。当十六烷值高于50后,再继续提高对缩短柴油的滞燃期作用已不大;相反,当十六烷值高于65时,会由于滞燃期太短,燃料未及与空气均匀混合即着火自燃,以致燃烧不完全,部分烃类热分解而产生游离碳粒,随废气排出,造成发动机冒黑烟及油耗增大,功率下降。加添加剂可提高柴油的十六烷值,常用的添加剂有硝酸戊酯或已酯。
  • PP刊登旭月IAA新成果 旭月IAA流速技术值得信赖
    2018年7月,Plant Physiology刊出了佛山科学技术学院喻敏教授与澳大利亚塔斯马尼亚大学Shabala教授的铝毒最新研究成果Boron Alleviates Aluminum Toxicity by Promoting Root Alkalization in Transition Zone via Polar Auxin Transport。研究利用了非损伤微测技术(Non-invasive Micro-test Technology, NMT),检测了豌豆根部IAA流速及根表pH。IAA流速数据全部利用扬格NMT Physiolyzer® (NMT活体生理检测仪)完成,根表pH数据利用扬格NMT Physiolyzer® 以及MIFE® (非损伤微测技术的一种)共同完成。除了两家通讯单位外,华中农业大学资环学院石磊教授、中科院南京土壤所沈仁芳研究员、南京农业大学资环学院朱毅勇教授课题组,以及德国波恩大学Franti?ek Balu?ka教授,均参与了此项研究。硼能够缓解高等植物的铝毒,但机制尚不够明确。本研究利用非损伤微测技术、溴甲酚绿pH检测等技术,证明了铝毒抑制根表pH梯度时,硼提升了根表pH梯度,促进过渡区碱化,伸长区酸化。硼明显降低了过渡区的铝积累,从而缓解了铝导致的根部伸长受阻。利用基于非损伤微测技术的NMT Physiolyzer® ,检测IAA流速发现,在IAA极性运输最活跃的过渡区,硼部分缓解了因为铝而受到抑制的IAA极性运输过程。该研究成果解释了硼缓解铝毒的新机制,为在酸性土壤施用硼肥,降低植物铝积累和减轻植物铝的毒性作用,保障酸性土壤地区农业生产和农产品质量安全等,提供了有力的科学技术支撑,且具有重要的应用前景。-/+B时,Al胁迫不同时间后,根表各区域的pH值。研究利用非损伤微测技术,检测根表pH发现,铝胁迫下,硼可以使过渡区在一定时间内维持相对较高的pH。无论是否施加铝胁迫,硼处理后根部的伸长率明显高于对照组。H+-ATPase抑制剂处理后,硼处理组与对照组相比,伸长率的差异消失。同样,IAA极性运输抑制剂NPA处理后,硼处理组与对照组相比,原本高于对照组的伸长率的差异(铝胁迫下)。并且,因为硼所致使的过渡区根表相对较高的pH,因NPA的抑制作用,也消失了。这表明,硼缓解铝毒,不仅与H+-ATPase有相关性,而且与IAA极性运输存在某种关联。-/+B及-/+Al胁迫后,根表各区域IAA流速。正值代表外排。IAA流速数据结果显示,过渡区根表IAA外排最大,提示IAA向顶性运输是从静止中心经过渡区到达伸长区。这一结果与根表pH梯度的数据是相吻合的,即IAA外排大的位置,根表pH相对较高(过渡区),反之则较低(伸长区)。过渡区较大的IAA外排也一定程度上反映了此区域细胞胞质内的IAA含量较低,从而调控质膜H+-ATPase促进根表碱化。-/+B及-/+Al胁迫后,各处理、各基因型样品根表pH值。最终结果显示,硼促进了被极性运输生长素外排转运体PIN2驱动的生长素极性运输,并且引起下游信号对质膜H+-ATPase的调节,使得根表pH升高。这一过程对降低铝在根尖的积累至关重要。佛山科技学院喻敏教授,从2011年开始利用旭月非损伤微测系统,开展离子流、分子流实验,并于2018年采购了扬格非损伤微测系统。扬格NMT Physiolyzer® 除可以检测离子流外,还可以检测MIFE® 等设备无法检测的IAA、H2O2、O2等分子的流速。
  • 应用:土壤全氮的测定自动定氮仪法
    农植中氮素失调,问题真不少!氮缺乏植株矮小瘦弱植株分叶分枝少叶片转淡绿、淡黄、黄色早衰品质差氮过量植株徒长贪青迟熟蔬菜硝酸盐含量增加 实验员小A:oh my god,那咋整?小睿:我们可以通过测定土壤中氮含量,调节氮肥浓度,促使植被成长和大丰收!凯氏定氮仪就是一台可以使样品中多形态的氮(氨态氮、酰胺态氮、尿氮)都转变成单一形态的铵态氮(铵盐),通过酸溶液滴定得出土壤中氮含量的精密仪器。用凯氏定氮法测定试样时,需经过消化、蒸馏、滴定 三个过程。目前实验室常配置:1. 高温加热设备(工作温度>硫酸沸点)2. 半自动凯氏定氮仪RK-9830自动凯氏定氮仪蒸馏型,性价比之王3. 滴定管需要一位固定实验人员在完成样品消解后,把样品逐个放入半自动凯氏定氮仪中,进行氮元素的形态转换和收集,当铵态氮完全收集在吸收瓶中后,实验员取走吸收瓶,使用标定后的酸标准溶液进行滴定测试,记录数据后计算出样品中的氮含量。 实验员小A:这个我试过!一天下来,又是拿取样品,又是做滴定记录、结果计算……上午完成样品消解,下午做样品分析。一天天手忙脚乱的,感觉一天做30-40个样品,已是我的生理极限!(+心理极限)此刻的我无比渴望拥有影分身之术!!!小睿:何不试试全自动凯氏定氮仪?方法:NY/T 1121.24-2012 土壤检测第24部分:土壤全氮的测定自动定氮仪法仪器:RK-9870 全自动凯氏定氮仪,RX-20S 曲线升温石墨消化炉,分析天平等RK-9870 全自动凯氏定氮仪滴定分析型,便捷化、自动化样品:GBW07497(HTSB-5):0.1601±0.0029%试剂:盐酸,硫酸,催化片,氢氧化钠,硼酸,甲基红,溴甲酚绿,95%乙醇步骤:取适量样品于消化管中,加入10ml硫酸和2片催化片,在消化炉上梯度升温到400℃持续1小时直至样品消解为灰白色,冷却后,逐个上仪器分析。样品结果如下:项目样品1样品2样品3样品4样品5样品6盐酸标准溶液0.0514mol/L样品重量g1.00181.00131.00141.00171.00171.0004样品结果%0.15760.15880.16240.16010.16060.1614RSD%1.09回收率%98.4-101.5结论:测定样品结果均在标准品真值范围内,完成一批样品耗时6-7小时(包括样品冷却时间),即在配置一台20位消化炉+一台全自动定氮仪的条件下,单个实验员能在一天内完成2批(40个)样品。实验员小A:真香!小睿:哈哈,更香的在后头~睿科集团推出的RK-8900系列全自动凯氏定氮仪,可配置20位或40位自动进样器,实验员只需要在样品消解完成后把样品整架放置到进样器中,仪器依次自动完成样品的分析和计算,即单个实验员能在一天内轻松完成至少80个样品,还能利用等待时间进行其他任务,大大提高了实验效率。RK-8900全自动凯氏定氮仪带自动进样系统,自动化、智能化产品详情RK-9870 全自动凯氏定氮仪操控系统选用7寸彩色触摸屏,中、英文转换,简单易操作系统60分钟无人操作自动关机,节能、安全、放心滴定系统选用R、G、B同轴光源及传感器,颜色适应范围广、精度高蒸汽流量任意调节以适用不同浓度样品冷却器统选用304不锈钢制作,降温速度快、分析数据稳定安全门及安全门报警系统确保人身安全;消煮管缺位保护系统防止试剂、蒸汽伤人RK-8900全自动凯氏定氮仪实现“样品一炉消煮完毕、无人执守自动分析、分析后自动生成报告”样品自动进样系统可同时放置40支消煮管支架以满足批量自动分析的要求样品存放采用矩形结构设计,样品消煮完成后连同消煮管架直接上机,方便、快捷双进样模式可选带液位传感器的试剂桶内置于进样系统,使工作场所更干净一键启动完成1-40样品的自动进样、制冷系统自动运行、自动蒸馏、空白值自动计算导入、自动分析、自动扣除空白、数据存储、自动更换样品等应用领域食品、粮油、化工、环境、医疗、肥料……
  • 应对3.15——分析仪器在行动
    p   令消费者期待,问题企业提心吊胆的3.15黑名单之夜刚刚过去,今年3.15晚会的主题为“共建秩序,共享品质”,食品安全问题依旧是这次晚会的重头戏。 /p p   核桃饮料里没核桃 植物蛋白饮料蛋白含量为零 豆奶是添加剂勾兑的 柴鸡蛋、土鸡蛋差别不大......针对以上问题,海能仪器迅速做出反应,在第一时间为各位消费者提供最新解决方案,希望对大家有所帮助。 /p p   新鲜出炉的,接好!还烫手呢~ /p p style=" text-align: center " img title=" 640.jpg" src=" http://img1.17img.cn/17img/images/201803/insimg/bcf37221-ef66-443a-8b82-f76c77d54642.jpg" / /p p   央视财经爆料,市场上盒装豆奶鱼龙混杂,消费者们一不小心就喝到包装与知名品牌相似的假豆奶,正在喝豆奶的你是不是仔细瞅了下包装? /p p   蛋白含量是区别真假豆奶的有效方法,别急,海能应用实验室这就为您奉上豆奶中蛋白含量的测定方案! /p p    strong 仪器与试剂 /strong /p p   1、仪器 /p p   K1160全自动凯氏定氮仪,SH420F 石墨消解仪 /p p style=" text-align: center " img style=" width: 297px height: 290px " title=" 01.jpg" src=" http://img1.17img.cn/17img/images/201803/insimg/2a2856d9-815f-47e6-bf02-2c7f9202213f.jpg" width=" 411" height=" 396" / img title=" 02.jpg" src=" http://img1.17img.cn/17img/images/201803/insimg/d1804e86-67c2-4917-8b9b-f6a323f715f5.jpg" / /p p   2、试剂 /p p   硫酸标准滴定液c(H+)=0.1mol /L、2%硼酸溶液、40%氢氧化钠溶液、溴甲酚绿-甲基红混合指示剂、催化剂片等。 /p p    strong 试验方法 /strong /p p   1、取样 /p p   将样品混匀后,精确量取5mL样品,加入消化管中,再加入10mL浓硫酸,并加入3g硫酸钾和0.2g硫酸铜催化剂。同时做空白实验。 /p p   2、消解 /p p   利用石墨消解仪进行消解,将消化管放在石墨仪上,盖好排废罩,连接废气吸收系统。消化过程采用曲线升温模式,设置参数如下表。消化完毕后,将消化管取下冷却至室温。 /p p style=" text-align: center " img title=" 03.png" src=" http://img1.17img.cn/17img/images/201803/insimg/99ca09c4-3693-48d5-a4b6-6917ac29946b.jpg" / /p p   3、测试 /p p   待消化管内溶液冷却至室温后,将消化管放置于全自动凯氏定氮仪上。定氮仪设置程序如下: /p p style=" text-align: center " img title=" 04.png" src=" http://img1.17img.cn/17img/images/201803/insimg/96ec6990-ed64-44e7-8d9e-de8a2cce88eb.jpg" / /p p   仪器自动滴定并给出计算结果。 /p p    strong 实验结果 /strong /p p style=" text-align: center " img title=" 06.png" src=" http://img1.17img.cn/17img/images/201803/insimg/ed795206-ef1a-4731-a097-59b367c0a959.jpg" / /p p   央视3.15晚会爆料,植物蛋白饮料市场造假现象严重,外包装与某知名品牌相似度极高,内容物却为各种添加剂及香料勾兑而成,侵权的同时也存在严重造假。 /p p   那么,如何辨别其中的“假货”成了消费者面临的一道难题,除了擅长找不同以外还有没有更科学的方法呢? /p p style=" text-align: center " strong 植物蛋白饮料中蛋白质含量的测定 /strong /p p    strong 仪器与试剂 /strong /p p   1、仪器 /p p   K1160全自动凯氏定氮仪,SH420F 石墨消解仪 /p p   2、试剂 /p p   硫酸标准滴定液c(H+)=0.1mol /L、2%硼酸溶液、40%氢氧化钠溶液、溴甲酚绿-甲基红混合指示剂、催化剂片等。 /p p    strong 试验方法 /strong /p p   1、取样 /p p   使用减重法称取5-10g左右的植物蛋白饮料类样品,加催化剂片(或者3g硫酸钾、0.2g硫酸铜),加入10-20mL浓硫酸。同时做空白实验。 /p p   2、消解 /p p   利用石墨消解仪进行消解,将消化管放在石墨仪上,盖好排废罩,连接废气吸收系统。消化过程采用曲线升温模式,设置参数如下表。 /p p style=" text-align: center " img title=" 006.png" src=" http://img1.17img.cn/17img/images/201803/insimg/2ac2249b-6997-4030-abac-af8f09d02cd0.jpg" / /p p   消化完毕后,将消化管取下冷却至室温。 /p p   注意: /p p   如果取样量极大,比如10g,需要更加缓慢升温。再次升温以样品不冒泡冲样为准。消解过程中温度控制最为关键,建议消解温度从100-150℃开始,消解45-60分钟,缓慢升温到150度,消解60分钟以上(这个过程注意不要盖上排废罩),再升温至200度消解100-120分钟,持续缓慢至250-300度消解120分钟,升温至420度消解一个小时,取下冷却至室温。如果消解过程中样品无剧烈沸腾冒泡,可连续升温至420度。 /p p style=" text-align: center " img title=" 005.png" src=" http://img1.17img.cn/17img/images/201803/insimg/a312368a-bcd4-4e77-af0a-aff6ca63ac19.jpg" / /p p   3、测试 /p p   待消化管内溶液冷却至室温后,将消化管放置于全自动凯氏定氮仪上。定氮仪设置程序如下: /p p style=" text-align: center " img title=" 004.png" src=" http://img1.17img.cn/17img/images/201803/insimg/a8563ce4-418d-4857-8645-980a9c00e2c6.jpg" / /p p    strong 结果与讨论 /strong /p p style=" text-align: center " img style=" width: 440px height: 441px " title=" 001.jpg" src=" http://img1.17img.cn/17img/images/201803/insimg/158430ba-ce02-4993-9c47-36e444cfe32b.jpg" width=" 521" height=" 551" / /p p style=" text-align: center " img style=" width: 441px height: 321px " title=" 003.jpg" src=" http://img1.17img.cn/17img/images/201803/insimg/5f97fe09-4d48-4a91-a528-750a2b3a5556.jpg" width=" 454" height=" 331" / /p p   此次3.15晚会上对柴鸡蛋和普通鸡蛋进行了营养成分比较及分析,事实证明两款鸡蛋差异确实不大。 /p p   那么,是不是其它鸡蛋也是如此呢?如有疑问,同我来做个实验不就都明白了。 /p p style=" text-align: center " strong 凯氏定氮法鉴别多种蛋类营养价值 /strong /p p    strong 仪器与试剂 /strong /p p   1、仪器 /p p   K1160全自动凯氏定氮仪,SH420F 石墨消解仪 /p p   2、试剂 /p p   硫酸标准滴定液c(H+)=0.1024mol /L、2%硼酸溶液、40%氢氧化钠溶液、溴甲酚绿-甲基红混合指示剂、催化剂片等。 /p p    strong 试验方法 /strong /p p   1、取样 /p p   将样品混匀后,用十万分之一天平差减法称取1g左右的样品于消化管中,加入8mL浓硫酸,并加入3g硫酸钾和0.2g硫酸铜催化剂。同时做空白实验。 /p p   2、消解 /p p   利用石墨消解仪进行消解,将消化管放在石墨仪上,盖好排废罩,连接废气吸收系统。消化过程采用曲线升温模式,设置参数如下表。消化完毕后,将消化管取下冷却至室温。 /p p   3、测试 /p p   待消化管内溶液冷却至室温后,将消化管放置于全自动凯氏定氮仪上。定氮仪设置程序如下: /p p    strong 结果与讨论 /strong /p p   1、结果 /p p   2、讨论 /p p   实验表明,其中各种蛋类的蛋白质含量相差不大。由于饲养方式的不用,可能会使口感上稍有差别。因此,消费者在选择的时候可以凭借自己的喜好进行选择。 /p p style=" text-align: center " img style=" width: 437px height: 261px " title=" untitled.png" src=" http://img1.17img.cn/17img/images/201803/insimg/820eb4d5-edd4-4825-ae89-f1fe20214d49.jpg" width=" 437" height=" 280" / /p p   央视财经爆料的假冒核桃露在迷惑消费者的技术上已经达到炉火纯青的地步了,单凭包装和口味,大部分消费者是无法辨别真假的。 /p p   那么你喝的核桃露里到底有没有核桃呢? /p p style=" text-align: center " strong 核桃香精香料与核桃油测试 /strong /p p   仪器与设备 /p p   G.A.S FlavourSpec& reg 风味分析仪 /p p style=" text-align: center " img title=" 101.png" src=" http://img1.17img.cn/17img/images/201803/insimg/1134ffb1-b820-447d-b8eb-7b79ef4ffb63.jpg" / /p p    strong 试验方法 /strong /p p   1、样品处理 /p p   用移液枪量取20 μL核桃油或核桃香精香料,置于20 mL顶空进样瓶中,盖上瓶盖并压紧,放到自动进样器的样品盘上,设置仪器参数后即可自动测试。 /p p   2、实验参数 /p p style=" text-align: center " img title=" 102.png" src=" http://img1.17img.cn/17img/images/201803/insimg/61bc2700-bdbb-4549-bb02-e18566d9eecc.jpg" / /p p    strong 结果与讨论 /strong /p p style=" text-align: center " img title=" 103.png" src=" http://img1.17img.cn/17img/images/201803/insimg/fab05365-f3ab-4d3c-b8af-30df65dc7b03.jpg" / /p p   说明: /p p   A. 谱图中的每一个点代表着一种挥发性有机物,白色表示浓度较低,红色表示浓度较高,颜色越深表示浓度越高 /p p   B. 纵坐标代表气相色谱的保留时间,横坐标代表离子迁移时间 /p p   C. 前两个为核桃油,后面4个为核桃香精香料 /p p   为了更为完整与直观地对比二者之间的差异,我们选取了图中待分析区域,通过Gallery Plot插件自动形成指纹图,结果如下: /p p style=" text-align: center " img title=" 105.png" src=" http://img1.17img.cn/17img/images/201803/insimg/da83bd84-6fd4-467c-b1aa-d344d52141f2.jpg" / /p p   说明: /p p   A. 每一行代表一个核桃油样品中全部的挥发性有机物信息 /p p   B. 每一列代表同一挥发性有机物在不同核桃油样品中的信息 /p p   C. 从图中可以看出,核桃油的风味物质成分非常丰富,而核桃香精香料的风味物质较少 /p p   此外,通过动态主成分分析(PCA),结果如下: /p p style=" text-align: center " img title=" 107.png" src=" http://img1.17img.cn/17img/images/201803/insimg/8ea12be8-d879-44f2-8a1a-8b2157aa2134.jpg" / /p p   通过PCA分析,建立模型,可用来区分核桃油和香精香料。 /p p   结 strong 论 /strong /p p   使用FlavourSpec& reg 风味分析仪,在无需样品前处理前提下,经顶空进样后可快速检测区分核桃油和香精香料中的挥发性有机物,从而达到鉴别核桃饮料所用原料的目的。 /p
  • 生物打印肝脏模型评价药物的肝脏毒性研究
    背景介绍 药物性肝损伤(DILI)会影响肝脏代谢和解毒能力,但其根本机制仍有很多未知。为了准确和可再现地预测人的DILI,非常需要体外肝脏模型来替代昂贵和低通量的2D细胞培养系统、动物研究和芯片实验室模型。我们提出了一种新的“droplet in droplet”(DID)生物打印方法,该方法可以产生用于肝毒性研究的生理相关肝脏模型。这些模型,或称微型肝脏,是用BIO X微滴打印包裹在ⅰ型胶原中的肝(HepG2和LX2 肝星状细胞)和非肝(HUVEC 人脐静脉血管内皮细胞)细胞制成的。培养7天后,将微型肝脏暴露于急性和高剂量的对乙酰氨基酚或氟他胺,然后评估细胞活力、白蛋白分泌、丙氨酸氨基转移酶(ALT)活性和脂质积累的变化。微型肝脏ALT活性增加,白蛋白和脂质生成减少,表面这两种药物均有细胞毒性反应。这项研究的结果进一步验证了3D生物打印是一种可行的、可用于模拟肝组织和筛选特异性药物反应的中到高通量的解决方案。 材料和方法 细胞准备根据建议的方案培养两种肝细胞(HepG2和LX2)和一种非肝细胞(HUVEC)细胞系,并每3-4天传代一次。HepG2在含有谷氨酰胺的MEMα中生长,并补充1%丙酮酸钠(Gibco,Cat#11360070)和1%MEM非必需氨基酸溶液(Gibco,Cat-#11140050)。LX2细胞在IMDM(Gibco,Cat#12440053)中生长,HUVEC在EGM-2生长培养基(Lonza,Cat#CC-3156)中培养,并添加单体补充剂(Lonza,Cat#CC-4176)。所有培养基均添加10%的FBS(Gibco,16000044类)和1%的青霉素链霉素(Gibco,参考文献1509-70-063)。.生物墨水的制备和DID生物打印中和并制备3mg/mL浓度的Coll I bioink(CELLINK,SKU#IK4000002001)用于生物打印。以1:1:2(LX2:HUVEC:HepG2)的比例将5x106个细胞/毫升装入冷冻墨盒。在未经处理的96孔板(Thermo Fisher Scientific)中,使用BIO X(CELLINK,SKU#0000000 2222)上的液滴打印功能对微型肝脏进行生物打印。使用设置为8°C的温控打印头(TCPH,SKU#0000000 20346)将胶原液滴分配到设置为8°C–10°C的冷却打印床上。在第一轮液滴打印后,样品在37°C下培养3分钟,然后返回BIO X,使用相同参数进行第二轮液滴打印。在37°C条件下,将得到的封装液滴热交联20分钟,并为每个孔提供200微升混合培养基(25%IMDM+25%DMEM+50%MEM)。培养液每2-3天更新一次。药物处理和分析培养7天后,用不同浓度的APAP[0.1,0.5,1,5,10,25,50 mM](Abcam)或FLU[10,25,50,75,100,150,200µM](Selleckchem)处理微型肝脏72小时。采用比色溴甲酚绿(BCG)测定法(Sigma-Aldrich)、ALT活性测定法(BioVision)和活/死染色试剂盒(Invitrogen)分别检测白蛋白产生、肝损伤和细胞活力。所有分析均按照制造商的说明进行。 结论 胶原I中的细胞生长和球体形成胶原I中的细胞生长和球体形成在这项研究中,我们评估了Coll I bioink中的细胞生长、球体形成和迁移模式。到第2天,HepG2和LX2已紧密组装成小簇,HUVEC已拉长,形成同心网络(图1)。使用胶原蛋白作为支架可以在整个培养过程中进行细胞重组、球体极化和细胞增殖(数据未显示)。此外,根据图1,很明显,细胞在整个培养过程中渗透DILI模型,并可能在内部和外部液滴层之间迁移。生物打印微型肝脏的药物治疗和细胞毒性第10天的毒性评估结果表明,生物打印微型肝脏对APAP(图2A)和FLU(图2B)具有细胞毒性和剂量依赖性反应。这种肝功能下降表现为白蛋白分泌和脂质生成减少,ALT活性上调。同样明显的是,基于ALT活性的增加,两种药物的毒性剂量都会对细胞活力产生破坏性影响。后者在图3中尤为明显,其中活/死图像表明,在较高浓度的APAP或流感病毒下,细胞活力显著降低。药物治疗的动态细胞内反应研究了APAP和FLU如何调节细胞内脂肪含量。肝组织的ORO染色通常用于识别脂肪酸或药物引起的不同阶段纤维化或脂肪变性(Pingitore,2019)。在我们的研究中,经处理的微型肝脏的ORO染色显示,在高剂量药物处理的样本中,脂肪积累最小,而在未经处理或低剂量药物治疗的样本中,脂肪积累显著(图4A)。一种解释是APAP和FLU与脂质过氧化有关,其中毒性药物水平引起的氧化应激可能引发脂质降解和膜损伤(Behrends,2019)。图4B中未处理样品的详细观察提供了液滴模型中液滴的横截面图。这张图片显示了大量细胞向液滴外壳迁移并产生脂肪,可能表明存在营养和氧气梯度,并验证了细胞重组模式和胶原内的球体极化。▶ 作为2D细胞培养系统、动物研究和芯片实验室原型的可靠替代品,BIO X可作为中高通量工具,用于制作功能性3D生物打印肝脏模型,实现药物筛选和分析,并减轻药物消耗的成本。▶ CELLINK Coll I作为DID模型的支架,为模型提供了一个稳定、可调和高度相容的环境,且具有丰富的肝细胞重排和球体形成的结合位点。▶ 基于脂质过氧化、白蛋白分泌减少和ALT活性上调的证据,我们的研究结果表明,DID微型肝脏具有功能性,并且对APAP和FLU具有剂量依赖性和细胞毒性反应。▶ DID模型允许组织层之间的细胞间相互作用,并为研究不同硬度层之间的迁移模式提供了独特的机会。未来的毒性研究可以采用该模型复制纤维化的各个阶段,或研究药物治疗后肝脏组织的再生能力。参考文献:1.Behrends, V., Giskeødegård, G. F., Bravo-Santano, N., Letek, M., & Keun, H. C. Acetaminophen cytotoxicity in HepG2 cells isassociated with a decoupling of glycolysis from the TCA cycle, loss of NADPH production, and suppression of anabolism. Archivesof Toxicology. 2019 93(2): 341–353. DOI: 10.1007/s00204-018-2371-0.2.Chen, M., Suzuki, A., Borlak, J., Andrade, R. J., & Lucena, M. I. Drug-induced liver injury: Interactions between drug properties andhost factors. Journal of Hepatology. 2015 63: 503–514. DOI: 10.1016/j.jhep.2015.04.016.3.Pingitore, P., Sasidharan, K., Ekstrand, M., Prill, S., Lindén, D., & Romeo, S. Human multilineage 3D spheroids as a model of liversteatosis and fibrosis. International Journal of Molecular Sciences. 2019 20(7): 1629.
  • 使用凯氏定氮仪要注意些什么?步琦来解答,助您实验一臂之力
    步琦凯氏定氮仪的注意事项及维护凯氏定氮法是测定蛋白质/氮的常用方法,该方法简单易操作,但由于实验过程中涉及到的步骤(消化→蒸馏→滴定)以及使用的试剂较多,因此出现问题后排查起来会费时费力。本文集合了客户了经常面临的问题,并一一给予解决方法,旨在帮助客户实验过程中能快速发现问题,并及时排查解决掉。1消解仪使用注意事项快速消解仪为实验室应用而设计和构建的。用途是通过加热用浓硫酸在催化剂作用下消解样品。抽吸装置(如尾气吸收仪 K-415 或水射泵(订货号 002913)必须连接到抽吸模块上,以安全排出消解过程中出现的烟雾。在使用前,需要检查以下事项:样品管是否完好,如果发现样品管破损(如有裂痕,划痕或者撞击的痕迹)立即更换新的样品管,另外样品管在使用一段时间也应及时换新,建议使用 2~3 年后更换新样品管1,订货号037377(300mL,4pcs)或11059690(300mL,20pcs),以保证安全。水射泵侧管需低于烟雾收集管出口,防止烟雾冷凝在管路里边影响抽气力度,可能降低消解效率。消解过程中,需要注意:水射泵流速要适当,不能为了节约水流速过低,不能提供合适的负压带走烟雾。硫酸不宜过少,防止干烧损坏样品管。加热尽量按照指导逐渐升温,防止样品溅到试管壁上导致消解不完全,影响结果。注意催化剂的比例和厂家品牌,防止盐过多,冷却后析出影响消解管的安装。如果发现有大量烟雾冒出,液体喷溅。请立即断电,加大通风,待样品管冷却后再进行操作。检查抽气泵是否正常工作,以及玻璃和密封圈是否完好。消解结束后,需要注意:在完成消解后 30min 内请勿使用立即冷水清洗样品管或者直接蒸馏。温度差过大会导致玻璃自身产生形变而出现裂痕。需待冷却完全后,再清洗样品管,并检查是否玻璃完好。要想延长密封件的使用寿命,经常用水对其进行清洗,然后用软布擦干清洗过的密封件。明确禁止以下使用:在通风柜外进行消解操作在浓硫酸中消解样品(如食物和饲料)时,可产生爆炸性硝基化合物。在浓硫酸中对不明成分的样品材料进行消解。使用在冲击、摩擦、加热或火花的情况下可引起爆炸或燃烧的样品。铝块消解仪:K-446 在使用前除了需要检查以上所需事项外,在使用后还需注意:消解完后,废液承接盘一定要放置在烟雾收集管底部,防止酸滴到加热模块上腐蚀设备。加热模块上面的杂质需及时清理干净,以免影响加热效率。烟雾收集管需及时清洁,减少对玻璃的腐蚀。玻璃明显有变薄或者纹路及时更换。K-415 尾气吸收仪:配置 8%-10% 的氢氧化钠溶液或者 20% 的碳酸钠溶液 3L, 碱液中一般加入溴甲酚蓝或溴甲酚绿作为指示剂(取少量固体粉末用乙醇溶解,再加入碱液中),也可加入酚酞指示剂。吸收瓶中要加入固体颗粒的活性炭(颗粒直径2mm ~ 6mm),并在两端加入玻璃棉。打开电源开关,确保冷却水打开,利用旁通阀可调节抽吸性能。需要降低抽吸性能时,应逆时针转动旋钮。顺时针转动旋钮将关闭阀门,使抽吸性能达到最大。每天实验前检查洗涤液是否需要更换,每次更换洗涤液时应清洁垫圈、滤网和密封圈。检查活性炭是否出现结晶,凝结,如有需更换。检查玻璃器件,软管及接头是否有损坏。2凯氏定氮仪使用注意事项使用凯氏定氮仪是将消化后的样品(硫酸消化液)加强碱后反应并生成 NH4+,并通过水蒸汽将NH4+ 带入到硼酸中,最后用标准酸滴定,根据消耗的标准酸算出N的含量。乘以相应的蛋白质系数,即可得到蛋白质含量。标准测试:1. 蒸馏量偏低进行蒸馏仪蒸汽力度测试:预热设备后,空样品管蒸馏,蒸馏 5 分钟,用量筒测量蒸馏液体是否达到 130mL 以上。2. 蒸馏仪密封性测试预热设备,空白稳定后,用同一方法测试 5 个硫酸铵或磷酸二氢铵样品,看样品回收率及平行性能否达到要求(回收率 98 - 102 %,RSD 3. 设备冷凝水不足检查冷凝水管路连接水阀是否打开?检查进水滤网是否堵塞或损坏?4. 设备不排空检查废液管是否插到下水道或废液桶的液面以下。检查抽吸瓶上下部阀门密封件是否老化或粘连。凯氏定氮仪日常维护:1. 清洗和检查样品管每次使用仪器之前执行此操作。清洗干净后再次用二级纯水将样品管进行润洗一次,同时检查样品管是否有破损情况,如有裂痕及破损,请停止使用该样品管。2. 清洗玻璃组件设置清洗每天结束时,应执行清洗程序,对系统进行全面的冲洗。防喷溅保护器和冷凝器用水冲洗,去除残留的氢氧化钠。通过定期清洗,可延长玻璃部件的使用寿命。清洗方法已预设,但可根据样品管的尺寸进行修改和调节。针对有样品管排空的型号如:Multi K-365 及 K-375,我们建议在 300mL 样品管中添加 200mL 以上的水,蒸馏设置 300s 以上。3. 清洗和维护软管和软管连接如实验间隔周期较长,长时间未使用凯氏定氮仪,我们建议将所有试剂倒空,将软管从试剂桶内取出,并手动排空管内溶液,用水进行清洗。尤其是碱液管路,长时间不使用会导致 NaOH 结晶,防止对碱泵及管路造成损坏。4. 清洗和维护防溅保护器玻璃飞溅保护器:如果防溅保护器上部有残留物,建议将其卸下,用清洗剂进行清洗。塑料防溅器:如果您看到空白值不断增加,建议卸下防溅保护器。用清洗剂或超声水浴进行清洗。当拆卸防溅保护器进行清洗时,也要清洗密封件,以延长其使用寿命。用清水冲洗后,用软布擦干,重新安装,并将防溅保护器装回原位。5. 全自动滴定型号的维护定期对 pH 电极进行校准,默认采用两点校准,缓冲液可根据需要进行修改,校准后看两个参数,斜率值和零点,电极斜率值(Slop)在 95%~103% 之间时,电极可正常使用,在 96.5%~101% 之间,电极状态很好。零点(pH(0))在 6.4~8.0 之间时,电极可正常使用,越接近7越好。pH 电极的电极零点和斜率可能因玻璃膜老化或隔膜变化(如污染)而改变,导致测得的电极斜率小,由此产生测量值不稳定、平衡时间长和结果不准确等现象。以下表格列出了电极斜率小常见的原因和排查措施。3总结常见应用问题及排查氮含量太高原因纠正措施称量误差检查天平是否平稳,天平周围是否有其他仪器干扰,是否有静电干扰样品或标准品污染重新取样,或更换标准品玻璃器皿污染清洗玻璃器皿蒸馏残留减少液体总量,300mL 样品管中的样品量应不超过 150mL,以避免样品量过多喷溅严重;在碱加入样品管前,使用水稀释样品管中酸也能减低喷溅程度实验环境中有游离氨检查进行定氮的实验室是否放置了氨水等含挥发性氨试剂滴定剂浓度错误检查滴定液的计算和浓度、 摩尔反应系数(每摩尔盐酸含 2 摩尔 H+、每摩尔硫酸含 2 摩尔 H+)、滴定剂系数;对滴定酸进行标定,重新计算滴定系统、滴定管、玻璃管中有空气检查滴定酸液位,如滴定酸不足及时补充,并在滴定系统上进行排液操作pH 电极故障使用标准溶液校准电极,必要时进行更换,如使用标准缓冲盐进行校准多次仍不能通过滴定仪要求则建议更换手工滴定指示剂变性重新配置母液计算错误重新计算,更换实验员对实验结果核对计算错误重新计算,更换实验员对实验结果核对氮含量太低原因纠正措施称量误差检查天平是否平稳,天平周围是否有其他仪器干扰,是否有静电干扰滴定剂浓度错误检查滴定液的计算和浓度、 摩尔反应系数(每摩尔盐酸含 2 摩尔 H+、每摩尔硫酸含 2 摩尔 H+)、滴定剂系数;对滴定酸进行标定,重新计算样品或标准品污染重新取样,或更换标准品样品中的氮含量较高减少样品量,样品中氮含量不可超过 200mg样品转移过程损失避免天平转移到样品管过程中,样品损失,或挂壁玻璃器皿污染清洗玻璃器皿消解硫酸不足增加硫酸用量(依据经验,一般常量法比如 1g 左右样品试用 20mL 浓硫酸,半微量法使用 10 mL 浓硫酸)消化时发生泄漏检查抽吸模块密封性消解时发生喷溅调整加热档,使消解仪缓慢升温,避免样品因喷溅造成损失催化剂与硫酸比例不对纠正催化剂与浓硫酸的使用比例在 1:3-1:2消解未完成延长消解时间,保证样品澄清后继续消解 30min消解后未完全冷却消解后冷却至少 30 分钟NaOH 加入量不足或所用的 NaOH 浓度不正确 ( 应为 32 %)纠正用量,直到可以观察到在碱加入后样品颜色发生变化蒸馏时发生泄漏进行蒸汽力度测试滴定剂浓度错误检查滴定液的计算和浓度、 摩尔反应系数、滴定剂系数;对滴定酸进行标定,重新计算pH 电极故障使用标准溶液校准电极,必要时进行更换,如使用标准缓冲盐进行校准多次仍不能通过滴定仪要求则建议更换手工滴定指示剂变性重新配置母液计算错误重新计算,更换实验员对实验结果核对重复性不佳原因纠正措施称量误差检查天平是否平稳,天平周围是否有其他仪器干扰,是否有静电干扰样品非均质由于样品的不均质导致结果不平行,请重新均质样品样品或标准品污染重新取样,或更换标准品样品转移过程损失避免天平转移到样品管过程中,样品损失,或挂壁玻璃器皿污染清洗玻璃器皿消解时发生喷溅调整加热档,使消解仪缓慢升温,避免样品因喷溅造成损失消化时发生泄漏检查抽吸模块密封性尾气吸收抽吸力不足检查尾气吸收仪管路密封性,定期清洗尾气吸收仪的泵消解期间抽吸力太强使用旁路阀降低尾气吸收装置的抽吸力消解未完成,消解时间太短延长消解时间,保证样品澄清后继续消解 30min蒸馏时发生泄漏进行蒸汽力度测试蒸馏和滴定时搅拌器不工作清洗搅拌器,必要时进行更换滴定系统、滴定管、样品管中有气泡检查滴定酸液位,如滴定酸不足及时补充,并在滴定系统上进行排液操作pH 电极校准不正确或未校准使用标准溶液校准电极,必要时进行更换,如使用标准缓冲盐进行校准多次仍不能通过滴定仪要求则建议更换滴定管被堵塞、松脱、太短或损坏检查滴定管,清洁或重新连接手工滴定指示剂变性重新配置母液
  • 宁夏疾控中心采购大批食品安全监测耗材
    2013年1月31日,中国政府采购网公布了宁夏回族自治区疾病预防控制中心2013年食品安全风险监测试剂耗材采购项目招标公告,此次采购包括微生物培养基、化学试剂及玻璃器皿、生化诊断试剂、仪器配件及专用耗材等,详情如下所示:   一、委托编号:2013NCZ0037 招标编号:HSZB-2013ZC004   二、采购方式:公开招标   三、采 购 人:宁夏回族自治区疾病预防控制中心   联 系 人:李 银 联系电话:0951-4085393   四、招标代理机构:宁夏恒盛招标有限公司   联 系 人:李 慧   电 话:0951- 5031788 传 真:0951-5058301   电子邮箱: nx.hs@163.com   地 址:银川市国际贸易中心C栋12楼008室   户 名:宁夏恒盛招标有限公司   开 户 行:银川市农行开发区支行   账 号:140001040016999   五、评标办法:最低评标价法   六、采购内容简述:   一标段: 微生物培养基 序号 名称 规格 总数 单位 1 平板计数琼脂 250g/瓶 5 瓶 2 LST肉汤 250g/瓶 4 瓶 3 BGLB肉汤 250g/瓶 2 瓶 4 EC肉汤 250g/瓶 2 瓶 5 EMB琼脂 250g/瓶 3 瓶 6 致病性大肠埃希氏菌诊断血清 18瓶/套 2 套 7 产肠毒性大肠埃希氏菌诊断血清 10瓶/盒 2 盒 8 肠侵袭性大肠埃希氏菌诊断血清 11瓶/盒 2 盒 9 出血性大肠杆菌O157诊断血清 1mL/瓶 2 瓶 10 出血性大肠杆菌O157:H7诊断血清 1mL/瓶 2 瓶 11 CN琼脂 250g/瓶 3 瓶 12 CN琼脂配套试剂 10支/盒 3 盒 13 金氏B培养基 250g/瓶 2 瓶 14 乙酰胺肉汤 100g/瓶 2 瓶 15 钠氏试剂 5mL/支×2 2 盒 16 Api 20NE生化条(带配套盐水及试剂) 25条/盒 5 盒 17 BPW 250g/瓶 3 瓶 18 SC增菌液 100g/瓶 2 瓶 19 TTB培养基基础 250g/瓶 2 瓶 20 碘液 20支/盒 3 盒 21 0.1%煌绿 20支/盒 3 盒 22 沙门氏菌显色培养基 1000mL/瓶 5 瓶 23 TSI琼脂 250g/瓶 1 瓶 24 MIU培养基 20支/盒 6 盒 25 靛基质试剂 10mL/瓶 3 瓶 26 软琼脂 250g/瓶 2 瓶 27 Api 20E生化条(带盐水) 25条/盒 15 盒 28 Api 20E配套试剂 7支/套 2 套 29 氧化酶 瓶 2 瓶 30 矿物油 125mL/瓶 2 瓶 31 沙门氏菌A-F多价诊断血清 1mL/瓶 3 瓶 32 沙门氏菌诊断学清 60种/套 2 套 33 志贺氏菌增菌肉汤 250g/瓶 4 瓶 34 志贺氏菌增菌肉汤配套试剂 10支/盒 6 盒 35 志贺氏菌显色琼脂 1000mL/瓶 5 瓶 36 XLD琼脂 250g/瓶 1 瓶 37 克氏双糖琼脂 250g/瓶 3 瓶 38 志贺氏菌属四种多价血清 1mL/支 3 支 39 志贺氏菌属福氏多价血清 1mL/支 3 支 40 志贺氏菌属诊断血清 50种/套 2 套 41 7.5%氯化钠肉汤 250g/瓶 5 瓶 42 Baird-parker基础 500g/瓶 2 瓶 43 脑心浸液500g/瓶 1 瓶 44 冻干血浆 12瓶/盒 3 盒 45 金葡显色培养基 500mL/瓶 3 瓶 46 10%氯化钠胰酪胨大豆肉汤 250g/瓶 6 瓶 47 Baird-parker基础 250g/瓶 1 瓶 48 亚蹄酸盐卵黄增菌液 100mL×6瓶/盒 2 盒 49 胰酪胨大豆多粘菌素B肉汤 250g/瓶 4 瓶 50 胰酪胨大豆多粘菌素B肉汤配套试剂 10000IU×10支/盒 3 盒51 MYP琼脂基础 250g/瓶 2 瓶 52 MYP琼脂配套试剂 10支/盒 3 盒 53 50%卵黄乳液 5mL/支×10 6 盒 54 蜡样芽胞杆菌显色琼脂 1000mL/瓶 3 瓶 55 酪蛋白琼脂 100g/瓶 2 瓶 56 蜡样芽胞杆菌生化鉴定盒 10次/盒 6 盒 57 Api CHB生化条(带培养基及配套试剂)(进口) 10条/盒 6 盒 58 磷酸盐缓冲液 250g/瓶 1 瓶 59 大肠杆菌IMVC生化鉴定盒 10次/盒 3 盒 60 BPW 250g/瓶 3 瓶 61 mLST-Vm基础 250g/瓶 2 瓶 62 mLST-Vm配套试剂 5支/盒 3 盒 63 阪崎显色培养基 1000mL/瓶 3 瓶 64 LB基础 250g/瓶 2 瓶 65 LB1配套试剂 10支/盒 5 盒 66 LB2配套试剂 10支/盒 2 盒 67 单增李斯特菌显色平板 20块/盒 6 盒 68 SIM琼脂 250g/瓶 2 瓶 69 半固体琼脂 250g/瓶 2 瓶 70 Api Listeria生化条(进口) 10条/盒 10 盒 71 木糖生化管 20支/盒 3 盒 72 鼠李糖生化管 20支/盒 3 盒 73 Phoenix阳性鉴定板(进口) 25块/盒 4 盒 74 Phoenix阴性鉴定板(进口) 25块/盒 4 盒 75 Phoenix鉴定培养液(进口) 100支/盒 2 盒 76 一次性血平板 20块/盒 10 盒 77 百日咳诊断血清 1mL/瓶 1 瓶 78 脑膜炎奈瑟氏菌诊断血清 11瓶/套 1 套 79 脑膜炎奈瑟氏菌乳胶凝剂试剂盒 25人份/盒 1 盒 80 DR585链球菌分型试剂盒 盒 1 盒 81 亚碲酸钾培养基 500g/瓶 1 瓶 82 3.5%亚碲酸钾溶液 10瓶/盒 1 盒 83 裂解马血 10瓶/盒 1 盒 84 炭琼脂 500g/瓶 1 瓶 85 炭琼脂培养基添加剂 10瓶/盒 1 盒 86 Api NH生化鉴定条(带配套盐水及试剂)(进口) 10条/盒 1 盒 87 Api Staph(带配套试剂)(进口) 25条/盒 1 盒 88 Api 20 Strep(带配套试剂)(进口) 25条/盒 1 盒 89 Api Coryne生化鉴定试剂条(带配套试剂)(进口) 12条/盒 1 盒 90 O157胶体金测试条 10条/包 3 包 91 国产霍乱弧菌O1群胶体金快速检测试剂盒 10条/包 3 包 92 国产霍乱弧菌O139群胶体金快速检测试剂盒 10条/包 3 包 93 肉毒毒素诊断血清 7支/盒 4 盒 94 A型肠毒素快速检测试剂 10条/包 5 包 95 B型肠毒素快速检测试剂 10条/包 5 包 96 C型肠毒素快速检测试剂 10条/包 5 包 97 沙门氏菌抗原快速检测试剂 10条/包 5 包 98 革兰氏染液 套 2 套 99 细菌双向血培养瓶 12瓶/箱 8 箱 100 大肠杆菌 8099 2 株 101 金黄色葡萄球菌 ATCC 6538 2 株 102 铜绿假单胞菌 ATCC 15442 2 株 103 白色念珠菌 ATCC 10231 2 株 104 枯草杆菌黑色变种芽孢 ATCC 9372 2 株 105 藤黄微球菌 CMCC(B)28001 1 株 106 生孢梭菌 CMCC(B)64941 1 株 107 白色念珠菌 CMCC(F)98001 1 株 108 药敏检测试剂盒 12种/盒 50 盒 109 药敏板 套 150 套   第二标段: 化学试剂及玻璃器皿 序号 名称 规格/型号 数量 单位 1 丙酮 500ml/瓶 10 瓶 2 三氯甲烷 500ml/瓶 15 瓶 3 无水乙醇 500ml/瓶 20 瓶 4 三氯醋酸 500g 2 瓶 5 蒽酮 25g 1 瓶 6 硫脲 500g 1 瓶 7 CuSO4 25g 1 瓶 8 NaF 500g 1 瓶 9 钨酸钠 500g 1 瓶 10 对羟基联苯 100g 1 瓶 11 乳酸锂 5g 1 瓶 12 乳酸钙 500g 1 瓶 13 硝酸 500mL 20 瓶 14 硝酸 2500mL 8 瓶 15 抗坏血酸 100g 10 瓶 16 硝酸镁,六水 50g 2 瓶 17 氧化镧 500g 1 瓶 18 甲醇 4L 10 瓶 19 乙腈 4L/瓶 8 瓶 20 正己烷 4L 6 瓶 21 氯化钠 500g 20 瓶 22 无水硫酸钠 500g 20 瓶 23 乙酸乙酯 4L 4 瓶 24 丙酮 4L 4 瓶 25 二氯甲烷 4L 2 瓶 26 磷酸 500mL/瓶 3 瓶 27 硫酸铈铵 25g/瓶 10 瓶 28 次氯酸钠 500mL/瓶 5 瓶 29 环己烷 500mL/瓶 5 瓶 30 三氟乙酸 500mL/瓶 2 瓶 31 Hydrolysis Reagent C47TM CB130(氧化剂) 4×950mL/包 3 包 32 o-Phthalaldehyde DiluentCB910(OPA稀释剂) 4×951mL/包 3 包 33 巯基乙醇 10g 1 瓶 34 邻苯二甲醛OPA 5g 1 瓶 35 2-硝基苯甲醛2-Nitrobenzaldehyde 25g/瓶 1 瓶 36 二甲基亚砜 500ml/瓶 1 瓶 37 甲酸Formic acid 100mL/瓶 1 瓶 38 β-葡萄糖醛酸苷肽酶/芳基磺酸酯酶β-Glucuronidase/sulfatase 5ml,100000单位/mg 3 瓶 39 蛋白酶 100mg 1 瓶 40 高氏淀粉酶 500g 1 瓶 41 β-葡萄糖苷酶/硫酸酯酶 2mL 3 瓶 42 正丙醇 500mL/瓶 1 瓶 43 盐酸羟胺 100g/瓶 2 瓶 44 对甲苯磺酸 101g/瓶 2 瓶 45 乙酸铵 500g 2 瓶 46 石油醚 500ml/瓶 5 瓶 47 乙二胺 500ml/瓶 2 瓶 48 氢氧化钾 500g 4 瓶 49 冰醋酸 500ml/瓶 10 瓶 50 无水乙醇 500mL/瓶 12 瓶51 95%乙醇 500mL/瓶 10 瓶 52 甲基叔丁基醚 500ml/瓶 5 瓶 53 对氨基苯磺酰胺 50g 2 瓶 54 盐酸N-(1-萘)-乙二胺 25g 2 瓶 55 二苯碳酰二肼 25g 2 瓶 56 异烟酸 25g 2 瓶 57 砒唑酮 25g 2 瓶 58 N-二甲基甲酰胺 25g 2 瓶 59 氯胺T 25g 2 瓶 60 安替比林 50g 2 瓶 61 4-氨基安替比林 50g 2 瓶 62 碘化钾晶体 50g 1 瓶 63 次氯酸钠 500ml 2 瓶 64 36%过氧化氢 500ml 2 瓶 65 冰醋酸 500m110 瓶 66 碘化钾 250g 1 瓶 67 无水磷酸氢二钠 500g 1 瓶 68 无水磷酸氢二钾 500g 1 瓶 69 乙二胺四乙酸二钠 250g 1 瓶 70 盐酸N,N-二乙基对苯二胺 100g 1 瓶 71 硫酸N,N-二乙基对苯二胺 100g 1 瓶 72 无氯纯水 1000ml 1 瓶 73 亚砷酸钾 1 瓶 74 硫代乙酰铵 250g 1 瓶 75 氯胺T 500g 1 瓶 76 吡啶 500ml 1 瓶 77 巴比妥酸 250g 2 瓶 78 一水磷酸二氢钠 500g 1 瓶 79 二水磷酸二氢钠 500g 1 瓶 80 二乙酰一肟 25g 2 瓶 81 二硫化碳 500mL 1 瓶 82 氯化钾 250g 1 瓶 83 20-30目沙子 500g 2 瓶 84 盐酸 500m1 2 瓶 85 三氧化铬 100g 2 瓶 86 对氨基苯磺酸 100g 2 瓶 87 硫酸 500m1 2 瓶 88 氯化汞 500g 3 瓶 89 碘化钾 500g 2 瓶 90 氢氧化钠 500g 3 瓶 91 磷酸 500m1 2 瓶 92 甲醛 501ml 2 瓶 93 环已二胺四乙酸 100g 2 瓶 94 氨基磺酸 100g 2 瓶 95 盐酸副玫瑰苯胺 100g 2 瓶 96 邻苯二甲酸氢钾 500g 2 瓶 97 亚砷酸钠 500g 2 瓶 98 可溶性淀粉 500g 2 瓶 99 硝酸银 250g 2 瓶 100 碳酸铵 500g 2 瓶 101 丙酮 500m1 4 瓶 102 乙酸 500m1 2 瓶103 磷酸二氢钾 500g 2 瓶 104 磷酸氢二钠 500g 2 瓶 105 异烟酸 100g 2 瓶 106 硫氰酸汞 500g 2 瓶 107 乙醇 500m1 2 瓶 108 硫酸铁铵 100g 2 瓶 109 氨水 500m1 2 瓶 110 丙三醇 500m1 2 瓶 111 溴甲酚绿 100g 2 瓶 112 柠檬酸三钠 500g 2 瓶 113 氯化钠 500g 2 瓶 1 比色管 100ml 100 只 2 比色管 25mL 50 只 3 容量瓶 10mL 30 支 4 具塞锥形瓶 250ml 60 支 5分液漏斗 1L 5 支 6 分液漏斗 250mL 30 支 7 玻璃吸管glass pasteur pipettes 230mm,250支/盒 1 盒 8 容量瓶 100mL,5个/盒 4 盒 9 具塞玻璃刻度试管 10mL 300 个 10 具塞玻璃刻度离心管 25mL 200 个 11 玻璃吸管(尖头)glass pasteur pipettes 150mm,250支/盒 5 盒 12 玻璃吸管(尖头)glass pasteur pipettes 230mm,250支/盒 4 盒 13 棕色磨口具塞试剂瓶 500mL 200 个 14 量筒 100mL 5 个 15 棕色容量瓶 100ml 20 个 16 250mL具塞锥形瓶 250mL 30 个 17 圆底烧瓶 100mL 30 个 18 10mL具塞玻璃刻度试管试管架   5 个 19 25mL具塞玻璃刻度离心管试管架   5 个 20 石油醚 500mL 2 瓶 21 定量滤纸 内径12.5 20 盒 22 定量滤纸 内径15 20 盒 23 定量滤纸 内径18 20 盒 24 定性滤纸 内径12.5 20 盒 25 定性滤纸 内径15 20 盒 26 定性滤纸 内径6cm 10 盒 27 定性滤纸 内径18 20盒 28 橡胶手套 中 10 双 29 橡皮塞子 1号-10号 各10 只 30 多孔玻板吸收管 棕色 10 个 31 多孔玻板吸收管 白色 10 个 32 大炮吸收管 白色 30 个 33 具塞比色管 10m1 30 个 34 量筒 20ml 5 个 35 量筒 50ml 3 个 36 量筒 250mL 3 个 37 量筒 500mL 3 个 38 量筒 1000mL 5 个 39 烧杯 25mL 20 个 40 烧杯 50mL 20 个 41 烧杯 100mL 20 个 42 烧杯 100mL 20 个 43 烧杯 1000mL 15 个 44 烧杯 3000ml 20 个 45 烧杯 2000ml 20 个 46 吸管 1mL 20 个 47 吸管 2mL 20 个 48 吸管 5mL 20 个 49 吸管 10mL 20 个 50 移液管 1mL 20 个 51 移液管 2mL 20 个 52 移液管 5mL 20 个 53 移液管 10mL 20 个 54 温度计 360° 10 个 55 大口瓶 2500mL 10 个 56 比色管(具塞) 10ml 20 个 57 棕色容量瓶 50ml 20 个 58 塑料量筒 250ml 2 个 59 标本缸(圆筒型) 高20cmX直径25cm 10 个 60 标本缸 10 个   第三标段: 生化诊断试剂 序号 名称 规格/型号 数量 单位 1 流行性出血热IgG抗体检测试剂盒 96人份/盒 8 盒 2 流行性出血热抗体检测试剂盒(胶体金法) 20人份/盒 2 盒 3 出血热荧光抗体(直接法) 15 ml 4 流行性出血热IgM抗体检测试剂盒 96人份/盒 2 盒 5 登革热IgM抗体检测试剂盒(进口) 96人份/盒 1 盒 6 狂犬病毒荧光PCR检测试剂盒 20人份/盒 4 盒 7 乙脑IgM抗体检测试剂盒 48人份/盒 2 盒 8 呼吸道病毒15联RT-PCR检测试剂盒(进口) 50人份/盒 1 盒 9 BED新发感染检测试剂盒(进口) 192人份/盒 4 盒 10 丙肝病毒抗体检测试剂盒(酶免法) 48人份/盒 1 盒 11 梅毒螺旋体抗体试剂盒(ELISA) 48人份/盒 1 盒 12 梅毒螺旋体抗体试剂盒(TPPA) 100T/盒 1 盒 13 乙肝表面抗原检测试剂盒(酶免法) 48人份/盒 1 盒 14 风疹IgM抗体检测试剂盒 48人份/盒 20 盒 15 麻疹IgM抗体检测试剂盒 48人份/盒 20 盒 16 麻疹IgM抗体检测试剂盒 96人份/盒 2 盒 17 乙肝DNA检测试剂盒 20人份/盒 1 盒 18 布病IgM ELISA检测试剂盒(进口) 96人份/盒 3 盒 19 布病IgG ELISA检测试剂盒(进口) 96人份/盒 3 盒 20 甲肝病毒IgM抗体检测试剂盒(酶免法) 96人份/盒 200 盒 21 戊肝病毒IgM抗体检测试剂盒(酶免法) 96人份/盒 200 盒 22 麻疹荧光PCR检测试剂盒 规格:48T/盒 9 盒 23 风疹荧光PCR检测试剂盒 规格:48T/盒 5 盒   第四标段: 仪器配件及专用耗材 序号 名称 规格/型号 数量 单位 1 25mL EPA样品瓶 140×27.5mm,100个/包 1 包 2 色谱柱ACQUITY UPLC HSS T3(进口) 1.8um 2.1mm*50mm 1 根 3 水相针式滤器 100只/包 4 包 4 水相针式滤器 100只/包 4 包 5 有机相针式滤器 100只/包 4 包 6 有机相针式滤器 100只/包 8 包 7 样品瓶存放盒   2 只 8 Ag-H离子交换树脂柱(进口) 2.5cc,48个/包 2 包 9 玻璃纤维滤纸GF/C 47mm,1.2µ m,100张/盒 5 盒 10 玻璃纤维滤纸GF/C 110mm,1.5µ m,100张/盒 3 盒 11 PriboFast玉米赤霉烯酮免疫亲和柱(进口) 25/包 5 包 12 黄曲霉毒素B1B2G1G2M1免疫亲和柱(进口) 25/包 6 包   黄曲霉毒素M1免疫亲和柱 25/包 8 包 13 固相萃取小柱(中性氧化铝) 30/包 1g/6mL 10 包 14 Oasis MAX固相萃取柱(进口) 6cc/150mg,30/包 5 包 15 Oasis HLB固相萃取柱(进口) 200mg/6cc, 30/盒 5 盒 16 Oasis MCX固相萃取柱(进口) 150mg/6cc,30/盒 5 盒 17 Oasis MCX固相萃取柱(进口) 60mg/3cc, 100/盒 5 盒 18 Oasis WCX固相萃取柱(进口) 150mg/6cc, 30/盒 5 盒 19 Oasis WAX固相萃取柱(进口) 150mg/6cc, 30/盒 5 盒 20 塑料巴斯德吸管 2ml 1000/盒 3 盒 21 MycoSep 230-雪腐镰刀菌烯醇多功能净化柱(进口) 25支/pk 每支小柱5ml 5 盒 22 PriboFast 226-玉米赤霉烯酮多功能净化柱(进口) 25支/pk 每支小柱5ml 5 盒 23 PriboFast 200-玉米赤霉烯酮多功能净化柱(进口) 25支/pk 每支小柱5ml 5 盒 24 DONStar R呕吐毒素免疫亲和柱(进口) 25支/pk 每支小柱3ml 5 盒 25 ZearaStar玉米赤霉烯酮免疫亲和柱(进口) 25支/pk 每支小柱3ml 5 盒 26 SupelMIP® 固相萃取 — 氯霉素 25 mg/10 mL , (LRC), pk of 50 4 盒 27 SILICA/PSA混合玻璃固相萃取柱 1.0g/6mL,10个/盒 30 盒 28 Florisil玻璃固相萃取柱 1.0g/6mL,10个/盒 30 盒 29 PSA玻璃固相萃取柱 1.0g/6mL,30个/盒 30盒 30 LC-Si固相萃取柱 200mg,3mL,30个/包 3 包 31 LiChrolut EN固相萃取柱 200mg,3mL,30个/包 3 包 32 50uL微量进样针 50μL 4 支 33 封口膜   2 卷 34 PTFE针头过滤器 0.22um,13mm,100/pk 10 包 35 BEH-C18色谱柱(进口) 150mm*d2.1mm,1.7um 2 根 36 R95口罩 (20个/盒)防酸碱 4 盒 37 R95口罩 (20个/盒)防有机 4 盒 38 sunfire-C18色谱柱(进口) 150mm*2.1mm,5um 2 根 39 氨基甲酸酯分析柱(进口) 150mm*3.9mm 1 根 40 氨基甲酸酯Sentry保护柱芯(进口) 2个/包 1 包 41 Sentry保护柱套(进口)   1 个 42 PAH C18 分析柱(进口) 250mm*4.6mm,5um 1 根 43 PROTEIN-Pak sp阳离子交换色谱柱(进口) 10mm*100mm,8um 1 根 44 无尘抽纸 200抽/盒 20 盒 45 塑料容量瓶 25mL, 5个/盒 36 盒 46 塑料容量瓶 50mL, 5个/盒 36 盒 47 塑料容量瓶 100mL, 5个/盒 36 盒 48 塑料刻度吸管 2mL 60 支 49 塑料刻度吸管 5mL 60 支 50 塑料刻度吸管 10mL 60 支 51 O型环(进口) 10/包 3 包 52 分流用玻璃衬管(进口) 5个/包 3 包 53 毛细管用压环 (进口) 10/包 3 包 54 惰性处理石英棉(进口) 3g/包 1 包 55 进样针(进口) 10uL 3 支 56 氟离子选择电极   2 支 57 甘汞电极   2 支 58 硅胶管(溶剂解吸型) 6*120mm 5 支 59 硅胶管(溶剂解吸型)
  • 南方网评:“双碳”行动为广东全面绿色转型加力
    日前,广东印发《关于完整准确全面贯彻新发展理念 推进碳达峰碳中和工作的实施意见》(下称《实施意见》),提出坚持科学、精准、依法、安全降碳,强调做好产业和能源转型的加减法,推动经济社会发展全面绿色转型。图源:视觉中国  “双碳”工作事关应对气候变化挑战、合力保护人类共同的地球家园,彰显着大国担当。碳排放广泛存在于能源、工业、交通和社会经济生活的方方面面。实现“双碳”目标,意味着发展模式要向低能耗、低排放、低污染转型。  做好减法是首选,去高碳经济是必做题。要走好产业结构优化升级之路,淘汰落后产能,推动传统产业数字化、智能化、绿色化融合发展。办好这件事,既慢不得又急不得,只能循着“先立后破”的思路,在平衡好发展与减排的前提下循序渐进。有所为有所不为,通过产业优化升级降低能耗强度、实现能源替代、减少碳排放总量,才能如期实现“双碳”目标。  做好加法变方式,兴低碳经济是必选题。 “双碳”目标是一场大转型、大变革,蕴藏了巨大的投资、能源和技术创新机遇,为高质量发展提供了新动能。追求低碳不是“躺平”停滞,而是以新发展理念为引领,用绿色方式实现高质量发展。《实施意见》立足于“加法”,大力发展战略性产业集群,谋划布局卫星互联网、人工智能、超材料、可控核聚变等未来产业,打造绿色工厂、绿色园区,推行绿色供应链管理等一系列措施,给出了清晰的减排增绿发展施工图。  能源替代须抓牢,做好非化石是重点题。高碳排放的根源在于石化能源,限排、低排只能靠压减石化能源,这就需要做足能源替代的戏码。《实施意见》就规模化开发海上风电、积极发展光伏发电、有序发展核电、因地制宜发展生物质能提出一系列设想,符合广东的发展实际。2020年广东新能源产业营收达约4300亿元;在阳江沙扒海域,海上风电已实现从近海浅水区向近海深水区延伸;广东在核电、海上风电、太阳能发电等清洁能源领域有显著优势。广东经济发达,有能力、有基础在能源转型上实现率先突破。  涵养绿色强本底,崇尚低碳生活是加分题。推动经济社会发展全面绿色转型,需要转变大量生产、大量消耗、大量排放的生产、消费思维模式,推进经济社会绿色发展和绿色生活相协调。建立健全绿色低碳循环发展的经济体系,关涉产业结构、能源结构、交通运输结构、用地结构以及居民生活方式的调整优化。从生产到生活,人人自觉减碳,才会形成低碳的经济社会。  实现“双碳”目标,机遇大于挑战。放眼全国,广东经济发展水平比较高,在电子信息、新能源汽车等多个低排放行业处于领先地位。在推进“双碳”目标过程中,广东绿色技术优势明显,有条件有能力为打赢“双碳”硬仗作出新贡献。
  • 207名学生在地震中死亡 死亡率较小
    学生在帐篷内复课,第一堂上的是语文课 任珊珊、王鹤 摄   帐篷顶上积了五六厘米厚的雪,人们担心融化的雪水会渗入帐篷内,赶忙清理积雪。 本报特派玉树记者张强、曾向荣 摄  玉树重建程序启动 学生均有望获高考优惠政策  玉树重建程序已启动,玉树籍学生有望均获高考优惠政策,三江源保护有望写入国家重建规划。昨日,青海省5位厅局长齐聚玉树,举行高规格抗震救灾新闻发布会。  校外死亡学生占64.7%  昨日,青海省教育厅副厅长才让太首次发布学生伤亡情况。地震波及63所学校,共计22019名学生。经初步统计,地震中死亡207名学生。在死亡的207名学生中,校外死亡占64.7%。才让太表示,校舍质量较好,地震宣传和师生互助是学生死亡率较小的三大原因。  才让太表示,青海省教育厅正积极和国家教育部协商,玉树今年高考生有望获得高考优惠政策。学校将采取扩大、调整招生计划,通过定向招生,加分或降分录取等优惠政策,保证灾区考生能顺利考上大学。  救灾物资早期发放确有不均  地震发生后,不少玉树籍在西宁等地上学的高三学生也积极加入到救灾工作中。对于这部分受到影响的考生,才让太表示,高考优惠政策有望惠泽整个玉树籍考生,即使是在外地就学的玉树籍考生,也能享受相应政策。  青海省商务厅厅长何少民昨天表示,新玉树规划已经启动。  玉树籍的青海民政厅厅长更阳在新闻发布会上首度承认,“救灾物资早期发放过程中存在不均现象”,并承认“早期个别地区、个别发放点出现哄抢现象”。不过更阳表示,民政部门已经制定和完善救灾物资发放办法,在发放后期没有再出现类似问题,并欢迎媒体和社会各界的监督。  中山一院医疗队灾区救人  第二批正整装待发  广州日报讯 昨日记者从中山大学附属第一医院获悉:该院积极响应抗震救灾,在4月15日凌晨,离玉树发生地震不足24小时,中山一院第一批赴青海救灾医疗队已急赴灾区,同时该院截至目前,职工捐款数额已逾十万元。  目前,中山一院正在紧锣密鼓组织第二批、第三批医疗队,并配备了充足的药品、器械等医疗物资,整装以待,随时出发。  民政部否认捐款   收取20%手续费  广州日报北京讯 从地震发生后一直到后续三个月,我们将采取每天给受灾群众发放10元钱和1斤粮的政策。”民政部新闻发言人、救灾司副司长庞陈敏昨日在国新办发布会上介绍了灾民安置情况时这样表示。  庞陈敏还回应了关于“通过有关机构捐款要收取20%手续费”的报道,他表示,这是不可能的。有关社会组织和一些基金会,都会依法并依照相关章程开展救灾工作。  青海计划用5年  建设一个新玉树  广州日报西宁讯 青海计划用5年时间建设一个新玉树:确保3年时间完成恢复重建的主要任务,再用2年时间,把玉树州首府建成高原生态型商贸旅游城市、三江源地区的中心城市和青藏高原城乡一体发展的先行地区。这是记者昨日从青海省政府获悉的。
  • 川大苏昭铭研究员:冷冻电镜成果发Nature,绿荫场上拿冠军
    苏昭铭:博士,四川大学生物治疗国家重点实验室博士生导师。华西生物国重创新班"一对一"指导教师。前不久,苏昭铭老师带领课题组在Nature发表文章。优秀的成绩并非偶然,从学生、学者到老师,苏昭铭一路走来,一路坚守。从“尖子生”到“好老师”从学生到学者,在求学的过程中,苏昭铭没有吝啬时间的付出,也未曾停止向更高处的探索。在离开北京大学后,苏昭铭前往美国北卡罗来纳州立大学攻读博士学位。在不断钻研的过程中,苏昭铭找到了坚守的方向。博士阶段,苏昭铭的研究方向是有机化学。“博士最后一年,随着基础知识的积累,我逐渐产生自己的想法,也发掘着自己的未来方向”,他回忆到,“在自由文献讨论的课堂上,有关生物的相关命题启发着我去探索自己真正的兴趣所在。”博士毕业后的苏昭铭并没有止步,他先后前往美国Scripps Florida研究所,美国贝勒医学院从事博士后研究。“博士后阶段帮助我从一个刚毕业的学生过渡到一个可以从事严肃科学研究的工作者”,两次转型使苏昭铭完成了研究重心从化学到生物的成功过渡,也寻找到了“让我觉得更有意义和挑战性”的科学课题。从学者到老师,时间与经验的积淀是为人师的必经之路。即使已经拥有一份华丽的简历,苏昭铭却始终“还想再去高处看看”,他质问自己,“既然我作出选择,并付出这么多时间,那为什么我不能做到世界顶尖的水平呢?”2017年,苏昭铭加入斯坦福医学院,任职高级研究员,在美国科学院院士Wah Chiu实验室从事冷冻电镜相关的研究。苏昭铭深知,对于科研,时间的积淀是必须的也是急不得的, “只有当你具有独立思考的能力和清晰的目标,才能担负起领导课题组的责任”。2019年,归国后的苏昭铭选择了四川大学华西医院生物治疗国家重点实验室。“川大对于科研的纯粹吸引了我,川大‘华西生物国重创新班’以提升本科同学的科研能力和创新思维为宗旨的创新人才培养模式,也引起我极大的兴趣。我们不仅有自己纯粹的科研追求,还能为川大的优秀人才培养做出贡献”。苏昭铭说。四川大学华西医院生物治疗国家重点实验室拥有西南地区唯一的冷冻电镜平台,在魏于全院士的大力支持下,课题组应用多种冷冻电镜技术,进行RNA的结构及功能的探索,缓缓揭开了“RNA结构与功能关系”这层神秘的面纱。“苏老师是一个‘可沟通’的老师”,这是苏昭铭的第一位研究生对他的评价。谈及学生管理,苏老师回忆起自己的博士生导师。导师随性而专注的工作状态无形中对苏昭铭形成了一种指引,“他让我觉得我也可以从事科研,也意识到科研的价值与乐趣所在”。在带领课题组的过程中,苏老师也将这种观点传输给自己的学生: 一是要确认同学的心态,“科研需要大量的时间付出,对于每一名学生,我都需要确认他们是否从内心选择这样的道路,这是对他们人生的‘负责’”;二是要“接地气”,不算壮大的课题组却气氛感十足,“如果让学生对科研产生一种遥不可及的距离感,会让他们对此产生抵触与畏难情绪”。除了带领课题组进行深入的探究,基于生物治疗国重的人才培养平台,苏昭铭老师也负责部分本科教学的课程。通过扩展冷冻电镜的相关知识,带领同学们认识着前沿的科学技术,受到广泛好评。“探索”,是科研的至美之境目前,苏老师团队的主要研究方向为应用冷冻电镜技术,探索生物大分子,尤其是RNA的精细结构。前不久,苏昭铭课题组在Nature发表文章,他们运用冷冻电镜单颗粒重构技术首次解析了全长四膜虫核酶的高分辨结构,揭示了外围区域结构及其远程调控催化活性的功能,阐明了在底物结合和催化过程中的内部引导构象的变化。在这项研究中,课题组成员主要负责电镜结果的数据处理。“对于我们的研究,数据处理对成果的贡献要占到50%以上的比重”,苏昭铭向我们介绍到,“数据的分析是对凌乱数据的梳理,不加分析的原始数据难以得出有意义的结论”。这项研究解析了截至目前全世界分辨率最高的纯RNA冷冻电镜结构,填补了40年来在全长四膜虫核酶结构功能研究上的空白,也为用冷冻电镜进行RNA结构研究提供了参考。攻读博士期间,苏昭铭一直聚焦于合成研究领域,学习冷冻电镜技术,而丢掉“老本行”这样巨大的转变需要勇气,也需要大量时间与经历的投入。苏昭铭用两段博士后经历完成了这个转变。第一个博士后阶段,苏昭铭瞄准了生物领域的“RNA”分子,将其与化学相联系,“在我看来,相对于蛋白质来说,RNA的研究还有很多空白,而他作为中心法则中上承DNA下启蛋白质的生物大分子,其结构与功能应得到我们更多的关注”。第二个博士后阶段,苏昭铭在贝勒医学院初步开启了RNA冷冻电镜结构功能研究之旅。回首博士后的科研探索经历,他不禁感慨道,“这样的过渡需要时间的付出,又或者说这些时间的付出成就了这样的转变”。深度、高度,是苏昭铭对待科研“纵向探索”的追求,而在选题的诞生过程中,他也总会“横向挖掘”各个领域的关联,通过冷冻电镜观测RNA的先进技术,解决现代医学的重要问题。谈到选题的诞生,他说道:“许多想法不是在办公室中凭白产生的”。读文献,帮助回顾已有的进展,而参与学术会议则是想法碰撞的重要机遇,“在交流中我们也会寻找与各个学科领域的合作关系”。“足球”,是生活之至乐所在为各学院老师所公认的,除了苏老师的科研水平,还有他精湛的“球技”。足球,是苏昭铭工作之余必不可少的娱乐方式。苏昭铭对足球的热爱要从学生时代说起,他从小对球类运动充满兴趣,足球则逐渐更成了他在科研工作之余寻找“乐子”,放松自我的不二选项。“科研工作者与其他工作所最不相同的,大概就是‘无时无处不在思考’”,苏昭铭老师笑称,“运动帮我们保持更好的身体和心理状态”。来到华西后,苏昭铭在球场结识了同样热爱足球的同事朋友,带领组建了华西国重教职工球队。每周两次的足球训练,“踢着踢着就成了习惯”,足球成为苏昭铭生活的一部分。在第二届川大教职工足球联赛中,苏昭铭所在的华西国重教职工球队获得冠军,而他也在比赛中获得“最佳射手”的称号。实验室或绿茵场,苏昭铭在科研与生活中找到自己的平衡;奔跑或思考,他似乎永远专注而充沛地,进行无止境的探索。未来,苏老师将带领课题组,继续应用冷冻电镜的技术,探索生物RNA的结构与功能,为基础医学的认知与药物疗效验证提供新的思考!
  • 海光:央企之于国产仪器商绝对是加分项
    p strong   仪器 /strong strong 信息网讯 /strong 2016年,仪器信息网将与15家国内外优秀科学仪器企业“品牌携手,共创未来”。11月18日,2016年度仪器信息网品牌合作伙伴授牌仪式暨“仪器经理人俱乐部”主题活动在京举行。 /p p   借此活动,仪器信息网采访了北京海光仪器有限公司副总经理刘海涛,请其结合自身“央企”背景阐述了国产科学仪器制造商品牌建设的重要意义,同时还就海光仪器2015年市场表现及其对2016年中国科学仪器市场前景进行了介绍。 /p script type=" text/javascript" src=" https://p.bokecc.com/player?vid=C5EE6738A46711219C33DC5901307461& amp siteid=D9180EE599D5BD46& amp autoStart=true& amp width=600& amp height=490& amp playerid=621F7722C6B7BD4E& amp playertype=1" /script
  • 巧妙食多酚,生活质量更加分
    导读大宗果蔬中除了含有维生素、糖类、矿物质等基础营养成分之外,还富含多种酚类功能成分。这类化合物可增强机体免疫功能,具有抗癌、抗衰老、调节毛细血管、抗菌、航延、抗病毒、降血压、降血脂、抗血栓等生物学作用。多酚类物质按结构大致可分为简单酚类、酚酸类、羟基肉桂酸类和黄酮类化合物等,是天然的抗氧化剂,化学结构中有一定量的ROH,能形成有抗氧化作用的氢自由基(H),以消除O-2和OH等自由基的活性,从而保护机体组织免受氧化作用的损害。下面让小编带您一起走入果蔬的微观世界,揭开多酚类化合物的神秘面纱。 岛津解决方案 果蔬中多酚类检测多使用分光光度法及高效液相色谱法,在基质的干扰下,灵敏度较低,且通量不高。使用三重四极杆液质联用仪LCMS-8060建立果蔬中常见32种多酚类成分检测方法,可以实现无标准品情况下定性筛查分析,且满足高通量、高灵敏度地检测需求。 样品前处理 称取10 g试样于50.0 mL棕色离心管中,加入约20 mL 80%甲醇溶液,混合,室温下超声,离心,上清液转入50.0 mL棕色容量瓶中,残渣按上述步骤重复提取1次,定容至50.0 mL备用。 提取离子流色谱图 图1. 多酚类化合物提取离子流图 样品测定结果 从市场购买蓝莓及苹果样品,经样品前处理后上机分析,检测参数共计32种,化合物列表及定量结果见下表。 表1 . 实际样品检测结果结论 用LCMS-8060液质联用仪测定水果中32种常见多酚物质,通量高、分析速度快、灵敏度高!细心的你一定注意到了,不同类型水果间多酚种类及含量差异非常大,蓝莓检出的多酚种类及含量都明显高于苹果,尤其是花色苷类多酚组分,摘得“第一号抗氧化剂”称号,蓝莓当之无愧。 有关果蔬多酚类功能成分就分享到这里。更多应用方案,请识别右侧二维码下载。 撰稿人:王超
  • 新品推荐|天尔多功能饮用水检测仪器 TE-80
    天尔TE-80饮用水多功能水质检测仪是我们公司最新研发生产的一款便携式水质测定仪器,可广泛应用于饮用水、自来水、疾控、环保部门、城市供水、纯净水厂、饮料厂、化工、制药、食品等领域中水质污染物的快速检测.依据光电检测原理和化学比色测量原理研发设计,可用于测定饮用水中浊度、色度、余氯、总氯、二氧化氯、有效氯、化合性氯、亚氯酸盐、氨氮、亚硝酸盐、臭氧、尿素、总硬度、钙硬度、镁硬度、锰、铁、六价铬、高锰酸盐指数、pH、溶解氧、氯化物、电导率等项目(支持定制),搭载高清彩色液晶触摸屏,操作便捷,内置高容量锂电池,自带高强度防水耐酸碱便携箱,是一款可在野外,实验室提 供检测,监察,数据管理集一体的便携式水质检测系统.1.采用5寸高清液晶触摸显示屏,操作便捷,可直接显示被测物的浓度值及当次测量的吸光度,且嵌入实验操作步骤;2.内置工作曲线,配制标准溶液,即可实现样品的快速测定。曲线具有修正功能,用户可根据检测需求对相应的项目进行曲线修正和调整;3.具有独特干扰补偿算法,可有效屏蔽色度、光衰产生的测量偏差,设备使用方便、数据检测准确;4.用户可自设报警限值,超过限值自动提示;5.仪器可自动调零和自动校正,提高检测效率;6.内置热敏打印机,可随时打印当前数据及历史数据.检测项目:项目测量范围检测方法浊度0-20NTU/0-200NTU散/透射光法色度0.0-50.0°/0-500°铂-钴标准比色法余氯0.02-2.00mg/LDPD法总氯0.02-2.00mg/LDPD法二氧化氯0.04-5.00mg/LDPD法 有效氯1.0%-15.0%碘量光度法化合性氯0.02-2.00mg/LDPD法亚氯酸盐0.02-2.00mg/LDPD法氨氮0.02-5.0mg/L纳氏试剂法氨氮0.02-2.5mg/L水杨酸法亚硝酸盐0.005-0.200mg/L重氮偶合法臭氧0.01-2.00mg/LDPD法尿素0.05-5.00mg/L麝香草酚法总硬度0.05-4.00mg/L邻甲酚酞络合酮钙硬度0.05-4.00mg/L邻甲酚酞络合酮镁硬度0.10-4.00mg/L邻甲酚酞络合酮锰0.02-5.00mg/L甲醛肟法铁0.1-4.0mg/L邻菲咯啉分光光度法六价铬0.05-1.00mg/L二苯碳酰二肼法高锰酸盐指数0.5-5.0mg/L碱性高锰酸钾法pH6.5-8.5pH标准缓冲溶液法溶解氧0.5-15.0mg/L碘量光度法氯化物0.5-25.0mg/L硫氰酸汞分光光度法
  • Nexis视角丨创新气相色谱技术助力钢铁行业高质量发展
    钢铁是现代社会重要的工业原料,钢铁工业的发展状况也是衡量一个国家工业水平的重要指标。我国钢铁行业发展快速,已经成为全球主要的钢铁生产国和消费国。 2022年2月,工业和信息化部、国家发展和改革委员会、生态环境部三部委联合发布《关于促进钢铁工业高质量发展的指导意见》,其中着重强调了“钢铁工业是国民经济的重要基础产业,是建设现代化强国的重要支撑,是实现绿色低碳发展的重要领域。“十四五”时期,我国钢铁工业仍然存在产能过剩压力大、产业安全保障能力不足、绿色低碳发展水平有待提升、产业集中度偏低等问题。”可以预见,在新的政策下,高质量发展仍是现阶段钢铁行业发展的重要目标,从追求产量增加向追求质量提高与追求绿色低碳环保发展。落实钢铁行业碳达峰实施方案,统筹推进减污降碳协同治理,提升高质量发展水平。 岛津气相色谱仪在钢铁冶金行业中应用非常广泛,具体涉及到煤气、粗苯、焦油加工产品、焦化废水等多方面,尤其是焦化工业中。相关需求可以大致分为三类: 焦化工业回收中的需求比如煤气主组成分析;硫化氢分析、粗苯、萘等含量分析;脱萘循环洗油中萘含量分析,贫富油中粗苯含量分析等。 焦油加工中的需求比如煤焦油萘含量分析;三混油分析;洗油分析;粗酚分析、以及深加工产品分析。 环保及安全性分析的需求比如大气中非甲烷总烃分析;焦化废水中酚类和其他污染物分析、工业废水中丙烯酸甲酯分析等分析。相关需求及应对方案举例如下:岛津气相色谱仪广泛应用于国内外钢铁冶金行业客户中,典型方案举例如下: 1 煤气全组分分析 炼焦炭时产生的煤气叫焦炉煤气。将焦炭送到高炉去炼铁,作为还原剂使用,把铁矿石中的铁还原出来,焦炭就生成了高炉煤气。焦炉煤气和高炉煤气等气体是钢铁冶金企业重要的燃料,准确测定煤气组成对于提高煤气利用率,降低综合燃料比和成本具有重要意义。常见分析标准有《GB/T 28901-2012 焦炉煤气组分气相色谱分析方法》和《GB/T 10410-2008人工煤气和液化石油气常量组分 气相色谱分析》等。 岛津高炉煤气分析(单TCD)方案此外,岛津还有高炉煤气分析(双TCD)等多种方案,以及岛津热值软件,满足不同客户的精细化分析需求。 2 煤气中H2S分析 焦化厂在炼焦的过程中会产生大量的H2S、SO2、COS、CH3SCH3等含硫气体,硫化物对人的身体健康,环境都有极大的影响。而且对后续焦炉气生产甲醇产生严重的影响,造成系统中设备、管路堵塞、腐蚀,催化剂中毒、失活等一系列问题。因此硫化物(H2S为代表的)的测定非常重要。常见标准:《YB/T 4496-2015 焦炉煤气 硫化氢含量的测定 气相色谱法》,《GB/T 28727-2012气体分析.硫化物的测定.火焰光度气相色谱法》。 形态硫色谱图硫化氢,羰基硫,总硫色谱图 此外,准确分析合成气、煤气等样品中痕量的总硫、总有机硫及形态硫含量,对保护反应过程中所使用的昂贵的催化剂有着极为重要的作用。同时,岛津也可提供搭载硫化学发光检测器Nexis SCD-2030的气相色谱分析方案,可高灵敏度检测各种痕量硫化物。 3 粗酚分析粗酚是焦油加工的副产品,主要分析标准是:《GB/T 2601-2008 酚类产品组成的气相色谱测定方法》,其中方法一:焦化产品中焦化苯酚、工业酚、邻甲酚等组成的测定。方法二:焦化产品中的工业甲酚、间对甲酚、工业二甲酚等组成的测定。 4 大气中非甲烷总烃分析 非甲烷总烃是钢铁工业大气污染物中非常重要的指标之一,一般是指从总烃中扣除甲烷以后其他气态有机化合物的总和,常见标准有:《HJ 604-2017 环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱法》、《HJ 38-2017 固定污染源废气 总烃、甲烷和非甲烷总烃的测定 气相色谱法》。岛津拥有非常丰富的非甲烷总烃分析经验,目前有多套成熟的非甲烷总烃以及苯系物分析方案。 钢铁行业作为工业的重要领域,是能源消费大户,同时也是CO2排放大户,目前中国钢铁行业CO2排放约占全国的15%~17%,在工业领域中是仅次于电力行业的第二排放大户,深入推进绿色低碳环保和促进钢铁工业高质量发展对国家“双碳”目标的实现具有重要意义。岛津长久以来一直致力于提高气相色谱的性能,通过技术创新将硬件、软件、性能等进行优化,实现操作体验、产品性能、运行效率的融合,这些新技术将助力钢铁行业的分析工作更上一层楼。Nexis GC-2030加强版 ——Nexis GC-2030加强版气相色谱仪配备了全新智能交互界面,仅需触屏即可完成仪器操作并可以实时了解仪器运行状态。创新ClickTek技术全面提升用户分析体验,使色谱柱的安装和仪器维护进入徒手时代。通过不断强化Analytical Intelligence功能,优化人机交互体验,为实验室赋能。预老化功能、基线检查和系统适应性测试、远程控制和监视以及LabSolutions平台可形成从仪器启动到完成分析的全自动化工作流程。 GC-2010 Pro ——GC-2010 Pro继承了高性能毛细柱气相色谱仪GC-2010Plus的基本性能。其良好的重现性确保其具备高可靠性。配备了高性能检测器使高灵敏度分析得以实现。同时,高速柱温箱冷却技术可大幅缩短分析时间,是一款高性价比气相色谱仪产品。 本文内容非商业广告,仅供专业人士参考。
  • 东华大学团队造出双功能纳滤膜,兼具脱盐和抗菌两大能力
    纳滤(Nanofiltration)是一种高效节能的膜分离工艺,可有效地去除多价离子和有机化合物,在水处理、制药和食品工业等领域具有重要的应用前景。透水性和离子筛分能力,是纳滤膜分离性能的主要指标。增大渗透性分离层的表面积,则能在提升水通量同时保持盐份的截留。目前,聚酰胺基纳滤微孔膜,已被广泛用于液体基分子/离子分离。然而,在兼具渗透、截留、抗菌和自清洁方面,这种膜仍然存在一定的瓶颈。受到氨基/亚胺与酰氯缩合交联形成致密聚酰胺网络的启发,东华大学材料科学与工程学院、纤维材料改性国家重点实验室教授团队,提出通过将多氨基卟啉基共轭微孔聚合物(PACMP,porphyrin-aniline conjugated microporous polymers)接枝到聚酰胺上,借此来扩大纳滤膜的分离表面积的策略。(来源:团队)得益于 PACMP 与聚酰胺膜牢固的共价接枝,并借助减薄分离层厚度、增加分离表面积、增加粗糙度等方法,纳滤膜的水通量能达到纯酰胺膜的两倍,同时还能保持较高的盐截留率。此外,PACMP 在光照下光激发单线态氧可有效杀灭细菌,体现了卟啉基聚合物接枝的聚酰胺膜优异的抗菌性能。就其研究意义来说:一方面,课题组发现了粉末状聚合物牢固负载制备二维材料的方法,并对原子力显微镜图像处理表征膜表面积变化的独特方法加以探索,也从后处理角度解决了共轭微孔聚合物难加工成形的问题。另一方面,该工作通过卟啉基聚合物修饰聚酰胺纳滤膜,制备了一种复合膜材料,其具备分离层较低、传质阻力小的优势,进而可以造出双功能纳滤膜。这种双功能纳滤膜拥有水通量翻倍的特点,可以实现有效抗菌的功能。基于此,该团队研发出一种可以高效解决膜易污染、膜通量低等问题的新策略。期间,课题组所引入的共轭微孔聚合物,不仅解决了膜分离过程中渗透率和截留率存在 trade-off 的难题,而且赋予分离膜以优异的抗菌和抗阻垢性能,未来有望用于工业分离领域,例如浓缩、脱盐、油水分离、染料提纯、天然药物分离、有机/无机液体分离等。日前,相关论文以《超渗透性抗菌偶联微孔聚合物-聚酰胺复合膜的表面工程》为题发在 Science China Materials 上。在论文投稿期间,其中一位审稿人非常认可通过卟啉基共轭微孔聚合物,来赋予纳滤膜原位抗菌性的方法。其还表示,利用原子力显微镜图像处理表征膜表面积的方法给他留下了深刻印象。而在研究中,该团队通过阅读文献、结合实际应用,发现传统的聚酰胺纳滤膜存在几个突出的问题,包括水通量待提高、盐离子或分子的截留率长期运行难保持、膜表面易结垢易污染等。调研发现,纳滤膜的分离层厚度,会对水/溶剂传质的阻力产生影响,即较厚且致密的分离层会导致传质阻力大幅增加,长期运行之后容易导致表面结垢,从而造成通量下降以及膜污染。相反的,使用薄的分离层可以提高膜的通量,并能保持较高的截留率。针对低通量、易结垢问题,该团队确立了如下目标:制备分离层减薄的聚酰胺纳滤膜,进而造出一种可以确保纳滤性能和稳定膜结构的纳滤抗菌膜,最终实现较高的通量和抗污染特性。同时,通过引入共轭微孔聚合物,优异的截留性能得以保证。另外,他们发现卟啉基聚合物材料具有较好的光吸收性能,在光照下能激发产生单线态氧活性成分,通过氧化破坏细胞器可以抑制细菌的生长。因此,可以将卟啉基共轭微孔聚合物 PACMP 作为光敏材料,以作为单线态氧的“生成器”,从而发挥杀菌的功能。基于以上调研与论证,该团队又提出这样一个课题计划:将氨基封端的卟啉基共轭微孔聚合物 PACMP,与酰氯通过酰胺化反应“预接枝”形成多酰氯聚合物,接着通过一步界面聚合法,让多酰氯聚合物和酰氯的混合溶液,同时与哌嗪单体完成酰胺化反应,从而形成聚酰胺纳滤复合膜。随后,针对含有不同剂量的共轭微孔聚合物的纳滤膜,他们对其进行纳滤性能测试,包括纯水通量测试、多种盐溶液的通量及截留率测试等。为了研究纳滤膜的抗菌性能,通过膜在光照/黑暗条件下对比、聚合物含量对比等,课题组检测了革兰氏阴性、阳性两种细菌的存活率。最后,通过长期通量/盐截留测试,表征了膜结构与纳滤性能的稳定性。而在研究纳滤膜精细结构如何分离层表面积时,该团队遇到了一个难题:即如何定量表征膜分离层表面积的变化?通过扫描电子显微镜,他们观察到纳滤膜分离层厚度只有 120-150nm,这是一个极薄且非常脆弱易破损的表面,对其表面进行定量表征几乎是不可能实现的。正当犯难时,他们想到通过对比原子力显微镜二维图像明暗场,可以反映材料表面高度起伏的变化,由此得到对应的高度曲线和三维立体结构。这时课题组设想,通过单位投影面积中明暗对比程度,是否可以得到实际表面积与单位投影面积的增量(变化量)?事实证明,该方法既巧妙、又可靠,原本困扰他们许久的膜精细结构的表征问题也就迎刃而解了。此外,传统聚酰胺纳滤膜具有两面亲水性,理论上水相溶液可以从任何一面渗透到另一面。对于特定的应用场景,比如高湿度环境或极干燥沙漠环境,假如水分可以选择性地透过就会显得更为重要。因此,他们将致力于研制亲水和疏水的两性非对称膜。亲水面允许高湿度环境的水分透过进入到干燥环境;背水面则能有效阻止水分从低湿度环境蒸发。由此,亲疏水膜可以调节膜覆盖下环境的湿度变化。另外,亲疏水非对称膜还可以拓展应用以下场景:即去除有机溶剂中微量的水分、或水相中微量的有机溶剂。
  • 岛津发布液相色谱柱新品,可增加分离度并缩短分析时间
    p   岛津制作所(Shimadzu Scientific Instruments-SSI)宣布推出采用核壳技术的新型Shim-pack Velox色谱柱,旨在最大限度地提高LC系统的性能。这些色谱柱使用户能够在任何LC平台上实现更高的分离度和更快的分析时间。核壳柱结构为最具挑战性的样品模型提供了优异的使用寿命。 /p p   Shim-pack Velox色谱柱通过最大效率地提高分辨率来改善分离和检测。它们出色的重现性可保持分析和数据的完整性。它们还可以通过更快的分离时间,更高的样品通量和出色的耐用性来降低分析成本并最大限度地提高实验室生产率。 /p p   使用岛津的色谱柱选择指南可确保最佳色谱柱配置,并改进各种LC平台的色谱分析。将高效的核壳颗粒技术与多种表面化学组分结合在一起,使用户能够在各种应用和具有挑战性的分离中实现最佳分离度。Shim-pack Velox色谱柱还可确保一致的批次性能。 /p p /p
  • 真的有“0添加”防腐剂化妆品?智商税!
    我们常用的化妆品,如护肤、彩妆、洗护类产品,由水、油脂和营养物质组成,是微生物增生、繁殖的培养基地,极易变质腐败。为了延长化妆品使用寿命,在生产的过程中需加入适量的防腐剂。根据文献资料和新闻报道,绝大多数化妆品所谓的“0添加”只是没有添加《化妆品安全技术规范》中列出的防腐剂,而是使用了其他替代防腐剂,且这类物质使用时间较短,其副作用还暂不明确。 2015版《化妆品安全技术规范》中规定了51种准用防腐剂及最大允许浓度,较常用的有苯氧乙醇、苯甲酸钠、对羟基苯甲酸酯类、甲基异噻唑啉酮等。某护手霜成分表 如何检测化妆品中防腐剂? 防腐剂是一把双刃剑,过量的或不适合自身肤质的防腐剂可能会导致过敏性皮炎、肝脏毒性、类激素作用等副作用。 2021年3月国家药品监督管理局发布《化妆品中防腐剂检验方法》(2021年第17号通告),与2015版《化妆品安全技术规范》中绝大部分准用防腐剂一一对应,检测仪器有液相色谱仪和气相色谱仪,如有阳性检出或测试结果存在干扰因素,可采用三重四极杆液相色谱-质谱仪、气相色谱-质谱仪进行确证。 《化妆品安全技术规范(2015年版)》准用防腐剂与检验方法对照表岛津解决方案 岛津公司拥有丰富的色谱质谱产品,性能优越,操作简便,可以应对化妆品中防腐剂的检测。 检验方法 液相色谱法检测化妆品中23种防腐剂色谱柱:Shim-pack GIST C18,250mm x 4.6mm x 5μm流动相:A 0.12%磷酸水溶液 B乙腈流速:1 mL/min,柱温:30℃检测波长:230nm、254nm、280nm进样体积:10 μL洗脱程序:梯度洗脱 色谱图(1. 甲基异噻唑啉酮、2. 2-溴-2-硝基丙烷-1,3-二醇、3. 4-羟基苯甲酸、4. 甲基氯异噻唑啉酮、5. 苯甲醇、6. 苯氧乙醇、7. 苯甲酸、8. 4-羟基苯甲酸甲酯、9. 氯苯甘醚、10. 脱氢乙酸、11. 5-溴-5-硝基-1,3-二噁烷、12. 4-羟基苯甲酸乙酯、13. 4-羟基苯甲酸异丙酯、14. 4-羟基苯甲酸丙酯、15. 4-羟基苯甲酸苯酯、16. 4-羟基苯甲酸异丁酯、17.4-羟基苯甲酸丁酯、18. 4-羟基苯甲酸苄酯、19.苯甲酸乙酯、20. 4-羟基苯甲酸戊酯,21. 苯甲酸异丙酯、22. 苯甲酸丙酯、23. 苯甲酸苯基酯) 气相色谱法检测化妆品中26种防腐剂色谱柱:Rxi-wax,60m×0.32mm×0.25μm柱温程序:50℃(1 min)_50℃/min_ 120℃ _5℃/min_195℃(3 min)_20℃ /min_220℃(10min)_20℃/min_240℃ (15 min)进样方式:分流进样(分流比为5:1)检测器温度:250℃ 色谱图(1. 丙酸、2. 三氯叔丁醇、3. 苯甲酸甲酯、4.苯甲酸异丙酯、5. 苯甲酸乙酯、6. 苯甲酸丙酯、7. 苯甲酸异丁酯、8. 苯甲酸异丁酯、9. 苯甲醇、10. 甲基氯异噻唑啉酮、11. 苯氧异丙醇、12. 甲基异噻唑啉酮、13. 山梨酸、14. 苯氧乙醇、15. 苯甲酸、16. 十一烯酸、17. 对氯间甲酚、18. 氯二甲酚、19. 邻苯基苯酚、20. 4-羟基苯甲酸甲酯、21. 4-羟基苯甲酸异丙酯、22. 4-羟基苯甲酸乙酯、23. 4-羟基苯甲酸丙酯、24. 4-羟基苯甲酸异丁酯、25. 4-羟基苯甲酸丁酯、26. 4-羟基苯甲酸戊酯) 确证方法 三重四极杆液相色谱-质谱法检测化妆品中34种防腐剂 色谱柱:Shim-pack GIST C18,50mm x 2.1mmx 2μm流动相1:A相-5 mM乙酸铵;B相-甲醇流动相2:A相-5 mM乙酸铵(含0.1%甲酸) B相-甲醇流速:0.3 mL/min洗脱方式:梯度洗脱离子化模式:ESI +/- 同时扫描离子源接口电压:4.0 kV雾化气:氮气 3.0 L/minDL温度:250℃扫描模式:多反应监测(MRM) 色谱图流动相1:(1. 水杨酸、2. 甲基异噻唑啉酮、3. 苯甲酸、4. 2-溴-2硝基丙烷-1,3-二醇、5. 4-羟基苯甲酸、6. 脱氢乙酸、7. 甲基氯异噻唑啉酮、8. 硫柳汞、9. 4-羟基苯甲酸甲酯、10. 4-羟基苯甲酸乙酯、11. 4-羟基苯甲酸异丙酯、12. 对氯间甲酚、13. 碘丙炔醇丁基氨甲酸酯、14. 4-羟基苯甲酸丙酯、15. 4-羟基苯甲酸苯酯、16. 邻苯基苯酚、17. 氯二甲酚、18. 4-羟基苯甲酸异丁酯、19. 4-羟基苯甲酸丁酯、20. 4-羟基苯甲酸苄酯、21. 氯咪巴唑、22. 十二烷基三甲基溴化铵、23. 4-羟基苯甲酸戊酯、24. 苄氯酚、25. 十二烷基二甲基苄基氯化铵、26. 苄索氯铵、27. 溴氯酚、28. 三氯卡班、29. 三氯生、30. 十四烷基二甲基苄基氯化铵、31. 十六烷基二甲基苄基氯化铵、32. 海克替啶) 流动相2:(1. 己咪定二(羟乙基磺酸)盐、2. 氯己定) 部分同分异构体色谱图气相色谱-质谱法检测化妆品中19种防腐剂色谱柱:InertCap Pure-WAX,30 m×0.25 mm×0.25 μm柱温程序:40℃(1 min)_40℃/min_80℃_10℃/min_230℃(1 min) _10℃/min_260℃(5 min)色谱柱流量:1 mL/min进样方式:分流进样(分流比为5:1)采集模式:SIM 色谱图(1. 甲酸、2. 丙酸、3. 三氯叔丁醇、4. 苯甲酸甲酯、5. 苯甲酸异丙酯、6. 苯甲酸乙酯、7. 苯甲酸丙酯、8. 苯甲酸异丁酯、9. 苯甲酸丁酯、10. 苯甲醇、11. 苯氧异丙醇、12. 山梨酸、13. 苯氧乙醇、14. 2,6-二氯苯甲醇、15. 邻伞花烃-5-醇、16. 2,4-二氯苯甲醇、17. 十一烯酸、18. 苯甲酸苯基酯、19. 氯苯甘醚) 结语 其实,为了抑制细菌繁殖,绝大多数化妆品都会添加防腐剂。防腐剂种类繁多,涉及多种检测仪器,利用岛津LC、GC可以准确测定防腐剂含量,如存在不确定因素,可用岛津LC-MS/MS和GC-MS进行定性定量确证,符合法规要求,助您高效准确识别化妆品中防腐剂。 撰稿人:郑嘉
  • Lovibond 罗威邦MD6x0系列光度计固件升级新增7项程序
    Lovibond® 德国罗威邦® 水质分析 光度计固件 .072 版本新增 7 项程序Lovibond 罗威邦 MD 6x0 和 PM 6x0 系列光度计的固件升级为 .072 版本,新加入 7 项内置程序。这为泳池水、饮用水和工业用水等不同应用中的用户提供了更多方法和选择。以下是新添加的方法程序:方法号试剂类型比色皿波长量程化学方法氯胺 (M) PPM63ø 24 mm660 nm0.02 - 4.5 mg/LNH2Cl as Cl2Indophenole method 靛酚法氯(游离)和单氯胺M64L+PPø 24 mm660 nm0.02 - 4.50 mg/L Cl2Indophenole method 靛酚法氰尿酸 高量程 HM161Tø 24 mm530 nm10 - 200 mg/L CyA三聚氰胺亚硝氮 超高量程 VHR LM271Lø 24 mm580 nm25 - 2500 mg/L NO2 -Ferrous Sulfate Method单宁 LM389Lø 24 mm660 nm0.5 - 20 mg/L TanninFolin Phenol臭氧 PPM301PP+Tø 24 mm530 nm0.015 - 2 mg/L O3DPD / 甘氨酸苯酚 TM315Tø 24 mm530 nm0.1 - 5 mg/L C6H5OH4-氨基安替吡啉• 方法 M63 一氯胺 (同时存在氨氮)应用:消毒控制仪器:MD 6x0氯消毒剂与含氮化物反应生成一氯胺。一氯胺在很多地方作为一种消毒剂使用。• 方法 M64 游离氯和一氯胺应用:消毒控制仪器:MD 6x0、PM 620、PM 630氯消毒剂与含氮化物反应生成一氯胺。一氯胺在很多地方作为一种消毒剂使用。• 方法 M161 氰尿酸HR应用:泳池水仪器:MD 6x0、PM 600、PM 620、PM 630氰尿酸是池水控制中的一个重要参数。使用新方法,可以在 10-200 mg/l 的扩展范围内进行测量。• 方法 M271亚硝酸盐 VHR应用:工业用水仪器:MD 6x0亚硝酸盐是一种还原剂,可防止冷却水系统腐蚀。根据工业用水控制的要求,新方法提供高达 2,500 mg/l 的宽测量范围。• 方法 M301臭氧应用:饮用水和泳池水仪器:MD 6x0臭氧是一种强氧化剂,可用作替代氯的消毒剂。臭氧还具有消除水系统中的异味、脱色和抑制藻类的功能。新方法 M301 与方法 M300 类似,但使用粉末包装代替药片进行测量。• 方法 M315苯酚(羟基苯)应用:原水和废水仪器:MD 6x0常见酚类有机物如有甲酚、二甲酚和邻苯二酚等,在水中可形成氯酚,氯酚具有强烈的气味和味道。方法 M315 使用片剂试剂测定酚类物质。• 方法 M389单宁应用:锅炉水仪器:MD 6x0单宁添加到锅炉水中以防止结垢和腐蚀。方法 M389 使用我们的液体试剂监测单宁含量。Lovibond 罗威邦MD 6x0 和 PM 6x0 系列光度计固件支持在线升级,请有需要客户联系罗威邦水质分析下载新固件版本。支持升级设备:MD 600 / MaxiDirectMD 610MD 640PM 600PM 620PM 630
  • 布鲁克宣布世界上首个1.2 GHz高分辨率蛋白质核磁共振数据
    p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 8月26日,布鲁克公布世界上第一个1.2 GHz高分辨率蛋白质核磁共振(NMR)数据。两块1.2千兆赫的超导磁体现已在布鲁克的瑞士磁体厂达到全磁场,创造了稳定、均匀的核磁共振磁体的世界纪录,用于高分辨率和固态蛋白质核磁共振在结构生物学中的应用,以及用于研究本质无序蛋白质。 /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 在Euroismar 2019上,Bruker及其科学合作者展示了1.2 GHz高分辨率核磁共振数据,这些数据是使用新的1.2 GHz 3 mm三反TCI低温探针获得的。Bruker独特的1.2 GHz超高场核磁共振磁体采用了一种新型的混合设计,在先进的低温超导体(LTS)外插入高温超导体(HTS),这一设计共同为高分辨率蛋白质提供了极其苛刻的稳定性和均匀性。核磁共振1.2 GHz 1h-15n 2d Best-Troy和1.2 GHz 3d 15n的2d平面编辑了500μm泛素样品的noesy-hsqc,13c/15n标记于H2O:d2o 90%:10%。两个实验都是用3毫米TCI低温探针记录的。 /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 意大利佛罗伦萨大学的Lucia Banci教授和Claudio Luchinat教授预计将成为第一批接收1.2 GHz核磁共振波谱仪的客户,一旦进一步的系统开发和工厂测试完成,这一过程将需要几个月的时间。在对1.2 GHz系统中的一个进行了CERM测试样品的初始数据采集后,他们说:“在瑞士的Bruker的超高频设施中,已经在α-突触核蛋白上获得了高分辨率光谱,这是一种与阿尔茨海默病(alzheime)等疾病相关的固有紊乱蛋白质。此外,我们还能够回顾与几种癌症相关的蛋白质的第一个1.2 GHz核磁共振波谱。毫无疑问,1.2千兆赫仪器的分辨率的提高——通过在高磁场中增加分散度而得以实现——将有助于推进重要的研究领域,如结构生物学。我们期待在完成最终开发和工厂评估后,在实验室接收1.2 GHz核磁共振波谱仪。” /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " Bruker Biospin集团总裁Falko Busse博士说:“新的1.2 GHz系统是一场技术革命,将使新的分子和细胞生物学发现成为可能。我们非常重视我们的超高场核磁共振客户对我们的信任,并且我们很自豪地实现了在1.2 GHz下生成世界上第一个高分辨率蛋白质核磁共振数据的进一步里程碑。虽然我们还没有完全完成新1.2 GHz系统的所有开发工作,但我们最近的快速进展证明了我们对创新的承诺,以及与客户合作开发使人信服的科学能力。” /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 与先前宣布的Ascend 1.1 GHz磁铁类似,Ascend 1.2 GHz混合HTS/LTS磁铁是一个标准孔(54 mm),两层磁铁系统,具有与Bruker现有900 MHz和1 GHz超高场NMR磁铁类似的漂移和均匀性规格,确保与一系列核磁共振探针类型和光谱仪附件。Bruker的Ascend& #8482 1.2 GHz核磁共振磁体采用了与在ENC 2019上宣布为产品的Ascend 1.1 GHz磁体相同的先进导体和磁体技术,用于绕组、连接、力管理、淬火保护、低漂移和高均匀性。 /p
  • 四川卫生厅1.7亿采购电脑 被指招标量身定做
    2011年10月底,四川省卫生厅2010年中西部地区村卫生室信息化建设项目进行国内公开招标,这个项目需要采购4.4535万台一体式计算机,涉及近1 .7亿元的采购金额,几乎所有的计算机企业都志在必得。但《经济参考报》记者近来获悉,这次招标被惠普、方正、同方等企业联合质疑为“量身定做”,而同一项目的部分软件采购至今没有结果,两次开标均以流标告终。 供应商质疑招标“量身定做” 据了解,四川省卫生厅的这次采购是根据《卫生部办公厅关于做好农村居民基本公共卫生服务工作的通知》和《2010年中西部地区村卫生室信息化建设项目管理方案》文件制定的乡村卫生机构信息化改造项目,目标是为90%的村卫生室配备满足业务管理需要的电脑,10%的村卫生室配备移动PDA设备,开发与整合村卫生室管理信息系统,并在所有县部署运行。 由于立项时间在2010年,因此名称叫做“四川省卫生厅2010年中西部地区村卫生室信息化建设项目政府采购项目”。 惠普、同方、方正三家联合质疑的焦点是招标产品的技术配置。本次招标采购的产品是一体式台式机,要求intel双核处理器2.6G主频,内存为2G,硬盘500G,显示屏为17寸宽屏。 这样的技术要求并不高,但“显示屏为≥17寸宽屏”引起了大家的质疑。三大厂商在质疑函中一致表示,17英寸宽屏一体机为联想独有,其他企业都是20英寸以上的显示屏。如果以20英寸以上显示屏的一体机与17英寸显示屏一体机竞标,那价格上明显居于劣势。 海尔电脑则从另外一个方面对这个项目进行了质疑———资质认证加分的设定。根据招标文件,本次招标有很多资质认证方面的分数,比如投报品牌销售量在ID C(互联网数据中心)的排名,排名最高的可以得到5分。海尔在质疑函中指出:“ID C数据排名对产品的质量、服务和前景已经没有实际参考价值。此项有严重的指向性,有悖公平竞争原则。” 此外,海尔负责人表示,标书中“原厂商售后服务通过C O PC -2000认证的得5分”也是一个重要的质疑点,因为这个认证是总部设在美国的商业盈利性公司出具的,认证的合理性、权威性、实用性本身就存在问题。 同时,对于项目采购一体机而不是常见的台式机,惠普、同方、方正三家厂商也在质疑函中提出异议。他们认为,一体机是介于传统台式机和笔记本电脑之间的较高集成度的产品,是高集成度的主机和显示器集成为一体的产品,试想某个村卫生室一体机的某个部件出项问题,现场维修的可能性几乎为零,只能连同显示器整机一起运往厂商的维修中心进行修复,并不适合农村卫生院使用。且因一体机的高集成设计,可扩展性非常差,对于未来用户增加应用功能将无法实现硬件支持,他们一致建议转而采购常规台式机。 和硬件项目一样,此次采购涉及的医疗软件系统以及另外1万台电脑的“四川省卫生厅县医院信息化平台建设项目”也受到东软、中软等一些企业的质疑,问题同样是资质加分。 软件项目的招标文件显示“供应商获得省部级及以上科技进步奖”、“参与医疗卫生信息化相关的国家“十一五”、“十二五”、“863”、“技术创新基金重点科研课题或项目”以及参与制定卫生部“卫生信息标准”都可以作为加分项目,这部分分数达到12 .5分。此外,供应商还要提供在川缴纳社保证明材料,要缴纳28份才能获得满分10 .5分。供应商认为这些条款有比较强烈的指向性。 四川卫生厅回应称质疑不合理 面对多方质疑,采购人四川省卫生厅在2011年10月24日发出了《四川省卫生厅关于村卫生室信息化建设项目技术参数质疑的复函》。 四川省卫生厅认为,三大计算机厂商提出的质疑并不合理。 首先,招标文件要求的是大于等于17英寸显示器的宽屏一体机,因此各厂商也可以投报20寸英显示器的机型,同样符合招标要求,不是歧视性条款。政府采购法规定:采购人可以根据采购项目的特殊要求,规定供应商的特定条件,无论是ID C的销售业绩,还是ISO、CO PC-2000和H D I认证都不是专有厂商独有的东西,而是第三方出具的认证,所有厂商都可以去申请,因此不存在差别待遇或者歧视待遇。 其次,针对三家供应商质疑的“能完全按照标书细节要求实现功能的软件为联想独有”这一条,四川省卫生厅解释,随机附赠的应用软件方面,采购人并没有规定必须要计算机生产商编写的软件,供应商可以为本项目采购商用软件,一样可以满足招标文件需求。 至于一体机项目本身的问题,四川省卫生厅认为厂商的观点有失偏颇,采购一体化电脑的决定经过专家论证并无问题。因此决定不予更改,照常招标。 而面对软件部分招标的质疑,四川省卫生厅则不予回应,只是称仍然按招标文件执行。对此,一些软件企业进行了“抵制”,不参加招标,致使两次开标由于没有多少企业参与而以流标告终。 加分名目繁多影响充分竞争 在这个项目中,所涉及的分数分布有如下几项:价格35分,技术30分,服务14分,政策功能(节能环保)4分,ID C销售业绩5分,政府采购万台合同数目6分,IS O认证两种2分,CO PC-2000和H D I认证2分,财务状况2分。 CO PC证书为欧洲认证且在国内计算机生产厂商品中只有联想公司拥有;H D I认证体系国内也只有联想具备该项认证;而同时拥有节能、环保两项认证的也仅有联想一家,这样的分数设置是否合理? 江苏省财政厅政府采购管理处处长吴小明表示,《政府采购法》第二十二条中规定:采购人可以根据采购项目的特殊要求,规定供应商的特定条件,但不得以不合理的条件对供应商实行差别待遇或者歧视待遇。根据这一条,采购人可以针对项目的特点提出特定的需求,但前提必须是“合理”。 国际关系学院教授赵勇也认为,资质加分必须满足两个条件:第一,需要的资质是否是采购项目所需要的;第二,能否形成有效竞争,如果所需要的资质仅仅是少数厂商所独有的话,那就有指定品牌的嫌疑了。 各项加分的存在,对投标供应商的投标报价有着很大的影响“对于计算机产品而言,这是一项十分成熟的产品,各个品牌的技术相当,主要的竞争集中在价格上。而各项加分过高是很不合理的。加分不是不能有,但是必须是合理的,而且分值不能太高,否则只能影响价格竞争。现在的计算机基本都是组装的,各个品牌的技术差异不大,政府采购项目中,应该更多地考虑价格和服务因素。”同方电脑商用系统公司总经理张伟表示。 中国招标投标协会特聘专家、上海市政府采购评审专家金翔表示,对于通用类产品而言,5分或者10分的品牌分以及销售业绩分过高,3分以下比较合适,太高多的加分项易导致不公平。 金翔解释说“如果过分看重以往的销售业绩和品牌,一些新的品牌就很难进入政府采购市场,二三线品牌也难有上升空间。应该给新的品牌赢得竞争的机会,否则新品牌在这个市场得不到认可,失去信心,很可能退出政府采购市场。这样做有可能导致一家独大,最后导致垄断,最终损害采购人利益。应当保证政府采购市场的充分竞争。”
  • C-NCAP新增鞭打试验 2012年版新规解读
    9月2日,C-NCAP发布了2012年度第三批碰撞成绩,除了碰撞成绩外C-NCAP新规也颇引人注意。《C-NCAP 管理规则(2012 年版)》于2012年7月1日开始实施,按照C-NCAP三个月发布一次碰撞成绩的时间来看,9月2日发布的第三批碰撞成绩,为C-NCAP使用新规以后的第一次成绩发布。   《C-NCAP 管理规则(2012 年版)》最大的变化有5点:1、增加低速后碰撞颈部保护试验(即“鞭打试验”) 2、正面40%重叠可变形壁障碰撞试验速度由56km/h 提高到64km/h 3、后排假人的评价定量化,即对于三项碰撞试验中的后排成年女性假人,依据每个假人的指标给予最高2分的评分 4、增加对于汽车电子稳定控制装置(即ESC)的1 分加分 5、评价总分由51 分修改为62 分,星级划分标准进行修改。   下面就让我们一起对C-NCAP的各个碰撞评分做一个详细的解读。   C-NCAP的评分项目主要有四大项:   1、正面100%重叠刚性壁障碰撞试验   2、正面40%重叠可变形壁障碰撞试验   3、可变形移动壁障侧面碰撞试验   4、低速后碰撞颈部保护试验(以下简称“鞭打试验”)   C-NCAP中最高得分为62 分,其中,正面100%重叠刚性壁障碰撞试验、正面40%重叠可变形壁障碰撞试验以及可变形移动壁障侧面碰撞试验每项试验满分为18 分,三项试验总得分满分为54分。鞭打试验满分为4分。对安全带提醒装置有1.5的加分,ISOFIX装置分别有0.5分的加分、对侧气帘(及侧气囊)和电子稳定控制系统(ESC)分别有1分的加分。   根据总分,按照以下星级评分标准对试验车辆进行星级评价:总分星级 总分 星级 ≥60 分 5+ (★★★★★☆) ≥52 且<60 分 5 (★★★★★) ≥44 且<52 分 4 (★★★★) ≥36 且<44 分 3 (★★★) ≥28 且<36 分 2 (★★) <28 分 1 (★)   针对C-NCAP成绩的主要来源,我们将逐一解释主要测试项目的分数评定方法。   1、正面100%重叠刚性壁障碰撞试验    正面100%重叠刚性壁障碰撞试验   正面100%重叠刚性壁障碰撞试验如图所示,在试验车辆的正前方放置一个刚性壁障,壁障上附以20mm厚胶合板。试验车辆以不得低于50km/h的速度正面冲击壁障,并且试验车辆到达壁障的路线在横向任一方向偏离理论轨迹均不得超过150mm。在试验车辆中,前排放置两个男性假人,后排放置一个女性假人以及一个3岁儿童假人,以测量前排人员以及后排人员的伤害情况。   在这项试验中,可以得到的最高分数为18分。前排假人可以得到的最高分数为16分,评分部位为假人的头部、颈部、胸部、大腿部和小腿部,每个部位最高得分分别为5分、2分、5分、2分和2分。第二排女性假人可以得到的最高分数为2分,按照女性假人身体区域被分为头部、颈部、胸部,第个部位最高得分分别为0.8分、0.2分、1分。   正面100%重叠刚性壁障碰撞试验总体评分原则 部位 部位罚分项 得分 总分 前排假人 头 对于驾驶员侧假人,若转向管柱产生向上位移量,则其头部得分应被修正,修正值为0~-1 0-5 0-18 颈 — 0-2 胸 对于驾驶员侧假人,若转向管柱产生向后位移量,则其胸部得分应被修正,修正值为0~-1。 0-5 大腿 — 0-2 小腿 — 0-2 第二排女性假人 头 — 0-0.8 颈 — 0-0.2 胸 — 0-1 总体罚分项 对于两侧的每一个车门,若在碰撞过程中开启,则分别减去1分 总体罚分最高限定为4分 对于前排驾驶员侧和乘员侧的安全带,若在试验过程中失效,则分别减去1 分 将假人从约束系统中解脱时,如果发生了锁止且通过在松脱装置上施加超过60N的压力仍未解除锁止,则分别减去1分 若第二排假人及儿童约束系统固定方式(包括成人用安全带或ISOFIX固定装置)失效,则减去1分 试验后,对应于每排座位,若有门且在不使用工具的前提下,两侧车门均不能打开,则该排对应减去1分 碰撞试验后,若燃油供给系统存在液体连续泄漏且在碰撞后前5分钟平均泄漏速率超过30g/min,则减去2分   成人安全带失效是指安全带和约束系统出现下列情形之一:   1、安全带织带断裂   2、安全带带扣、调节装置、连接件之一出现断裂和脱开   3、卷收器未能正常工作   4、有乘员下潜现象出现(submarine effect)。   儿童约束系统固定装置失效是指出现下列情形之一:   1、用于固定儿童约束系统的成人安全带出现成人安全带失效中1-3所述的失效   2、用于固定儿童约束系统的ISOFIX 装置出现断裂和脱开   3、用成人安全带固定儿童约束系统和用ISOFIX 装置固定儿童约束系统时,由于成人安全带或ISOFIX 装置的原因而导致儿童假人头部与车辆内部有接触,并且儿童假人的头部3ms合成加速度值超过88g。   2、正面40%重叠可变形壁障碰撞试验    正面40%重叠可变形壁障碰撞试验   正面40%重叠可变形壁障碰撞试验如图所示,在与测试车辆0%重叠正面放置一可变形壁障,车辆以64km/h的速度冲击可变形壁障,测试车辆与可变形壁障碰撞重叠宽度应在40%车宽±20mm的范围内。同样,在测试车辆前排和后排分别放置男性假人和女性假人,以测量前排和后排的人员伤害情况。不同的是,在正面40%重叠可变形壁障碰撞试验中,还需测量测量A柱、转向管柱和踏板变形量。   在这项试验中,可以得到的最高分数为18分。前排假人评价时按照试验假人身体区域分成4组,分别为第一组头、颈 第二组胸 第三组膝盖、大腿、骨盆 第四组小腿、脚及脚踝。每组最高得分均为4分,可以得到的最高分数为16分。前排假人评分标准以驾驶员侧假人的伤害指数为基础,只有当乘员侧假人相应部位的得分低于驾驶员侧假人相应部位的得分时,才采用乘员侧相应部位得分来代替。   第二排女性假人可以得到的最高分数为2分,按照女性假人身体区域被分为2组,每组最高得分均为1分,具体分组为第一组头颈部 第二组胸部。   正面40%重叠可变形壁障碰撞试验总体评分原则 组号 部位 部位罚分项 得分 总分 前排假人 第1组 头、颈 对于驾驶员侧假人,若转向管柱向上位移量过大,则其头部得分应被修正,修正值为0~-1 0-4 0-18 第2组 胸 对于驾驶员侧假人,若管柱向后位移量过大,值为0~-2 和0~-1 0-4 第3组 膝、大腿及骨盆 — 0-4 第4组 小腿、脚及脚踝 对于驾驶员侧假人,若踏板向后和向上位移则其得分应被修正,修正值分别为0~-1 0-4 第二排女性假人 第1组 头、颈 — 0-1 第2组 胸 — 0-1 总体罚分项 对于两侧的每一个车门,若在碰撞过程中开启,则分别减去1分 总体罚分最高限定为4分 对于前排驾驶员侧和乘员侧以及第二排假人所放置座位的安全带,若在试验过程中失效,则分别减去1分 将假人从约束系统中解脱时,如果发生了锁止且通过在松脱装置上施加超过60N 的压力仍未解除锁止,则分别减去1分 试验后,对应于每排座位,若有门且在不使用工具的前提下,两侧车门均不能打开,则该排对应减去1分 碰撞试验后,若燃油供给系统存在液体连续泄漏且在碰撞后前5min 平均泄漏速率超过30g/min,则减去2分 .turn_page_box_content{clear:both padding:9px 2px text-align:center color:#000000 margin:0 font-size:12px font-family:"宋体" } .turn_page_box_content .tpb_right a{padding:0 6px 0 border:1px solid #ccc background-color:#fff color:#000000 height:20px line-height:20px font-size:12px display:inline-block } .turn_page_box_content .tpb_right a:hover{background-color:#ffffff text-decoration:none border-color:#ff0000} .turn_page_box_content .tpb_right a.cur{font-weight:bold padding:0 6px 0 border:1px solid #ed120a background-color:#ed120a color:#fff} .turn_page_box_content .tpb_right a.cur:hover{background-color:#ed120a} .turn_page_box_content .tpb_right a.tpb_btn_previous, .turn_page_box_content .tpb_right a.tpb_btn_next{padding-left:6px padding-right:6px} .turn_page_box_content .tpb_right a{margin-right:6px } 3、可变形移动壁障侧面碰撞试验    可变形移动壁障侧面碰撞试验   可变形移动壁障侧面碰撞试验如图所示,在移动台车前端加装可变形蜂窝铝形成移动壁障,移动壁障以不低于50km/h的速度,与试验车辆垂直行驶,并且移动壁障的中心线对准试验车辆R点(用于建立乘员调节工具和尺寸的基本基准点),移动壁障的纵向中垂面与试验车辆上通过碰撞侧前排座椅R点的横断垂面之间的距离应在±25mm内。在试验车内驾驶席位置以及后排被撞击侧分别放置一个假人,以测量驾驶员及第二排职位受伤情况。   在这项试验中,可以得到的最高分数为18分。前排假人可以得到的最高分数为16分,评分部位为头部、胸部、腹部和骨盆,每个部位最高得分均为4分。第二排女性假人可以得到的最高分数为2分,评分部位为假人的头部、骨盆,每个部位最高得分均为1分。   可变形移动壁障侧面碰撞试验的总体评分原则    部位 部位罚分项 得分 总分 前排假人 头 — 0-4 0-18 胸 1) 若背板力Fy 值过大,则胸部得分应被修正,修正值为0~-22)若T12 的Fy 和Mx 值过大,则胸部得分应被修正,修正值为0~-2 0-4 腹 — 0-4 骨盆 — 0-4 第二排女性假人 头 — 0-1 骨盆 — 0-1 总体罚分项 对于两侧的每一个车门,若在碰撞过程中开启,则分别减去1分 总体罚分最高限定为4分 对于前排驾驶员侧及第二排假人所放置位置的安全带,若在试验过程中失效,则分别减去1分 碰撞试验后,若燃油供给系统存在液体连续泄漏且在碰撞后前5分钟平均泄漏速率超过30g/min,则减去2分   4、鞭打试验 鞭打试验   鞭打试验如图所示,仿照原车的安全带系统将假人约束在座椅上,座椅固定安装在移动滑车上。滑车以16.65km/h的特定加速度波形发射,模拟后碰撞过程,测量后碰撞过程中,颈部受到的伤害情况。   这项试验在C-NCAP总体得分中所占分值为4分,鞭打试验分数最高得分为8分,换算到C-NCAP中为最高4分的加分。   鞭打试验总体评分原则    指标 得分 鞭打试验得分 换算C-NCAP加分 颈部伤害指数(NIC) 0-2 0-8 0-4 上颈部 0-6 下颈部 座椅靠背动态张角 -2或0 头枕干涉头部空间 -2或0 座椅滑轨动态位移 -4或0   5、加分项   总体最高加分为4 分。   安全带提醒装置:对于配置有安全带提醒装置的车辆,可得到加分,该项目最高加分为1.5分。   侧面安全气囊和气帘:对于配置有侧面安全气囊和气帘的车辆,若该气囊和气帘在可变形移动壁障侧面碰撞试验中能正常展开,则可得1分加分。   ISOFIX 固定装置:对于配置了ISOFIX 装置的车辆,如果其ISOFIX 固定装置数量不少于2个,其中至少有一个位于第二排座椅,并且使用该装置固定儿童座椅进行正面100%重叠刚性壁障碰撞试验时未发生表失效,则可得0.5 分加分。   电子稳定控制系统(ESC):对于配置了电子稳定控制系统(ESC)的车辆,如果车辆生产企业能够提供关于该系统满足各规定要求的性能测试报告,则可得1分加分。
  • 关于新标准纤维级聚己内酰胺(PA6)切片试验方法,您所不知道的那些事
    己内酰胺(PA6)是重要的有机化工原料之一,主要用途是通过聚合生成聚酰胺切片(通常叫尼龙-6切片),可进一步加工成锦纶纤维、工程塑料、塑料薄膜。其中PA 纤维主要用于服装、装饰、地毯丝、帘子线、工业用布、渔网等;极少量用于热熔胶、精细化学品和制药等。2020年5月1号正式实施GB/T 38138-2019纤维级聚己内酰胺(PA6)切片试验方法。本标准适用于以己内酰胺为原料生产的纤维级聚己内酰胺(PA6)切片,其他差别化、功能性纤维级聚己内酰胺(PA6)切片可参照选用。标准中涉及到含水率、二氧化钛含量、氨基含量、羧基含量等指标测定,使用的方法是电位滴定法、卡尔费休法、分光光度法。01氨基和羟基的测定 - 电位滴定法1.1 为什么测端氨基和羧基?切片检测端羧基和端氨基可以计算高分子的平均分子量、可以反馈出在聚合时用什么进行封端氨基、可以反映出抗氧化能力及染色难易程度。1.2 标准方法解读标准中新增了A法-三氟乙醇体系,即将试样溶解在88%三氟乙醇溶液中,用盐酸-乙醇标准溶液进行电位滴定,滴定到等当点结束即得氨基含量。继续使用氢氧化钾-乙醇标准溶液进行滴定,滴定到两个等当点结束,以第二个等当点的体积计算羧基含量。B法是间甲酚-异丙醇体系,将试样溶解在间甲酚和异丙醇混合液中,用盐酸-乙醇标准溶液进行电位滴定。1.3 梅特勒托利多电位滴定仪的解决方案选择梅特勒托利多超越系列电位滴定仪,只需OneClick™ 一键启动,即可实现滴定分析。OneClick™ 一键滴定,即插即用和方法数据库。• 带 StatusLight™ (状态指示灯)的触摸屏终端• 触摸屏和 PC 软件的双通道控制模式实现更安全可靠的滴定• 扩展容量法或库仑法卡尔费休水分测定• 扩展 pH 和电导率的同时测量和滴定T7电位滴定仪+InMotion自动进样器02含水率的测定-卡尔费休法2.1 为什么测含水率?含水率的测定也是切片质量的重要指标,含水率在特定范围是为了保证纤维质量均匀提高结晶度、软化点。2.2 标准方法解读将试样在特定条件下加热,挥发出的水蒸气由干燥的氮气装入载有已平衡好的无水甲醇的滴定杯中吸收,用卡尔费休水分仪测定含水量。2.3 梅特勒托利多卡尔费休水分仪的解决方案根据含水量范围,选择梅特勒托利多卡尔费休容量法 V30S或库仑法 C30S加卡式炉 InMotion KF的方法进行测定,温度控制在 175±5℃,加热炉温度最高可达280℃,内置流量计可在操作面板轻松查看实际载气流速。InMotion™ KF• 一体式螺旋盖• 节省空间的设计• 数字式气体流量控制• 状态指示灯C30S+InMotion KFV30S+InMotion KF03二氧化钛含量-分光光度法3.1 为什么测二氧化钛含量?钛白粉消光剂的添加可对化学纤维的消光起作用,而且对纤维聚合物性能、机器磨损程度、过滤组件使用周期、纺丝的断头率、纤维的物料机械性能产生影响,因此二氧化钛的含量分析也是检测的重要指标。3.2 标准方法解读试样在加热条件下,用浓硫酸和适量过氧化氢消解,以四价离子状态存在的钛,在强酸溶液中过氧化氢形成络合物。用分光光度计在 410nm波长处测定其吸光度,计算二氧化钛含量。3.3 梅特勒托利多紫外可见分光光度计的解决方案UV7 超越系列仪器有效优化了分光光度计的工作流程,FastTrack™ 技术实现了快速可靠的测量。赖以信任的分光光度计性能结合了直观有效的 OneClick™ 操作。• 快速简单• 出色的性能• 紧凑的模块化结构• 直接测量和专用方法UV7紫外可见分光光度计与此同时,我们还可以选择梅特勒托利多的天平进行称重分析和 DSC 差示扫描量热仪进行熔点分析,为您提供纤维级聚己内酰胺纺织切片的综合专业的解决方案。
  • 激光粒度仪干湿法测试在涂料粒径分析中的应用
    p style=" text-indent: 2em " 涂料粒径分析主要包括粉末涂料、建筑乳液等涂料产品以及钛白粉、氧化铁、滑石粉等颜填料的粒径分布测试。粒径测试的方法主要有沉降法、激光法、筛分法、电阻法、显微图像法、电镜法、电泳法、质谱法、刮板法、透气法、超声波法等。 /p p style=" text-indent: 2em " 激光粒度仪测试法是新型粒径测试方法,应用广泛,测试速度快,测试范围广。激光粒径分析仪是根据激光在被测颗粒表面发生散射,散射光的角度和光强会因颗粒尺寸的不同而不同,根据米氏散射和弗氏衍射理论,可以进行粒径分析。激光粒度仪的测试方法可以分为干法和湿法2种。干法使用空气作为分散介质,利用紊流分散原理,能够使样品颗粒得到充分分散,被分散的样品再导入光路系统中进行测试。湿法则是把样品直接加入到水或者乙醇等分散介质中进行分散,然后再经过光路系统,计算出粒径分布。干、湿2 种测试方法由于分散介质不同,测试结果会存在差异。目前粒度仪大多数使用湿法进行测试,但是干法测试也有其优点:测试速度快,操作简单,可以测试在水中溶解的样品等。本文使用了干法和湿法分别对钛白粉、滑石粉、石墨烯等颜填料的粒度进行测试,通过分析测试结果,讨论了这2 种方法之间的差异以及测试条件、分散剂对测试结果的影响,并讨论了测试结果之间的重复性。 /p p style=" text-indent: 2em " /p p style=" text-indent: 2em " 1 实验部分 /p p style=" text-indent: 2em " 1.1 主要原料及仪器 br/ /p p style=" text-indent: 2em " 钛白粉:R-2196,中核华原钛白有限公司 滑石粉:T-777A,优托科矿产( 昆山) 有限公司;石墨烯:SE1132,常州第六元素材料科技股份有限公司。HELOS /BF 干湿二合一激光粒径分析仪:德国新帕泰克公司,镜头测试范围( R) 为R1( 0.1 ~ 35μm) 、R3( 0.5~175μm) 、R5 ( 0.5~875μm) 。 /p p style=" text-indent: 2em " 1.2 试验方法 /p p style=" text-indent: 2em " (1) 干法测试 /p p style=" text-indent: 2em " 称取一定量充分混合均匀的样品,在(105± 2) ℃的烘箱中烘15min,除去水分。选择测试模式为干法。设置分散压力、震动槽速率等参数。加样测试,遮光率控制在7%~10%。 span style=" text-indent: 2em " (2) 湿法测试 /span /p p style=" text-indent: 2em " 湿法测试的样品分为干粉样品和液态样品。干粉样品在测试前要充分混合,保证样品的均匀性。液态样品摇匀后直接加入样品槽。不易分散的样品在样品槽内加入适量的分散剂,调整泵速、超声时间、强度、搅拌速率,选择合适的镜头,开始测试。遮光率在8%~12%之间。 span style=" text-indent: 2em " 1.3 粒径分布参数 /span /p p style=" text-indent: 2em " Xb = a μm:表示粒径小于a μm 的粒径占总体积的b%;VMD: 体积平均粒径。 /p p style=" text-indent: 2em " 2 结果与讨论 /p p style=" text-indent: 2em " 2.1 钛白粉粒径分布的测试 /p p style=" text-indent: 2em " 2.1.1 干法测试 /p p style=" text-indent: 2em " 测试条件:R1镜头;分散压力0.6 MPa;震动槽速率60%;触发条件为遮光率>1%开始测试,遮光率小于1%停止。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/b84e7831-4aad-489a-a46d-0f876e2dab70.jpg" title=" 1.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图1):X1 = 0.20μm;X50 = 0.60μm;X99 = 1.80μm;VMD为0.69μm。 /p p style=" text-indent: 2em " 2.1.2 湿法测试(未加分散剂) /p p style=" text-indent: 2em " 测试条件:R1镜头;泵速40%;超声时间30s;搅拌速率40%。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/69a7988b-b531-43eb-8c0b-5bd739d289a7.jpg" title=" 2.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图2):X1=0.11μm;X50=0. 84μm;X99=2.52μm;VMD为0.90μm。 /p p style=" text-indent: 2em " 2.1.3 湿法测试(加分散剂六偏磷酸钠) /p p style=" text-indent: 2em " 测试条件:R1镜头;泵速40%;超声时间30s;搅拌速率40%。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/e2c574b9-a23f-4dd5-9d8a-183f2fd0aa7e.jpg" title=" 3.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图3):X1=0.11μm;X50=0.66μm;X99=2.08μm;VMD为0.74μm。 /p p style=" text-indent: 2em " 2.1.4 钛白粉粒径分布2种测试方法之间的差异 /p p style=" text-indent: 2em " 从钛白粉干法和湿法测试结果可以看出,2种方法的测试结果相近,干法比湿法测试结果偏小。干法与加分散剂的湿法测试相比,2种方法的X1值相差0.09 μm,X50值相差0.06μm,X99值相差0.28μm,VMD 相差0.05 μm。湿法测试中若不加分散剂,样品在分散介质中无法充分分散,样品的粒径分布图中会出现双峰(见图2) 。可见分散剂对于样品分散效果的影响较大,合适的分散剂有利于样品在分散介质中分散,保证测试的准确性。 /p p style=" text-indent: 2em " 2.2 滑石粉粒径分布的测试 /p p style=" text-indent: 2em " 2.2.1 干法测试 /p p style=" text-indent: 2em " 测试条件:R1镜头;分散压力0.3MPa;震动槽速率65%;触发条件为遮光率>1%开始测试,遮光率小于1%停止。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/445a2402-5a0b-4b2e-b1f1-58c432a88889.jpg" title=" 4.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图4):X1=0.57μm;X50=4.35μm;X99=19.19μm;VMD为5.41μm。 /p p style=" text-indent: 2em " 2.2.2 湿法测试(未加分散剂) /p p style=" text-indent: 2em " 测试条件:R1镜头;泵速40%;超声时间30 s;搅拌速率40%。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/c6a8d3ba-ab3b-4b3f-9550-7ace614e5f95.jpg" title=" 5.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图5):X1=0.61μm;X50=6.21μm;X99=22.01μm;VMD为7.03μm。 /p p style=" text-indent: 2em " 2.2.3 湿法测试(加分散剂六偏磷酸钠) /p p style=" text-indent: 2em " 测试条件:R1镜头;泵速40%;超声时间30 s;搅拌速率40%。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/b0b08e13-41c5-46e2-a71c-25e23675901d.jpg" title=" 5.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图6):X1=0.60μm;X50=5.73μm;X99=23.63μm;VMD为7.03μm。 /p p style=" text-indent: 2em " 2.2.4 滑石粉粒径分布2种测试方法之间的差异 /p p style=" text-indent: 2em " 比较滑石粉干法测试和湿法测试的粒径分布图可以看出,湿法比干法测试结果偏大。滑石粉密度较大,在干法测试的过程中,选择了0.3MPa的分散压力。湿法测试中,加入分散剂和未加分散剂的测试结果相近,可以看出添加分散剂对滑石粉的测试结果影响不大。滑石粉能够较好地分散在水中。 /p p style=" text-indent: 2em " 2.3 石墨烯粒度分布的测试 /p p style=" text-indent: 2em " 2.3.1 干法测试 /p p style=" text-indent: 2em " 测试条件:R1镜头;分散压力0.1MPa;震动槽速率65%;触发条件为遮光率>1%开始测试,遮光率小于1%停止。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/7f9ffd85-54ba-4328-b50d-4fc24a2cf80e.jpg" title=" 7.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图7):X1=0.62μm;X50=3.86μm;X99=8.10μm;VMD为3.89μm。 /p p style=" text-indent: 2em " 2.3.2 湿法测试(不加分散剂) /p p style=" text-indent: 2em " 测试条件:R1镜头;泵速40%;超声时间30s;搅拌速率40%。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/003d417d-2e04-44e5-8a14-57f411eab7d9.jpg" title=" 8.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图8):X1=1.94μm;X50=9.69μm;X99=20.37μm;VMD为10.19μm。 /p p style=" text-indent: 2em " 2.3.3 湿法测试(加分散剂) /p p style=" text-indent: 2em " 测试条件:R1镜头;泵速40%;超声时间30s;搅拌速率40%。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/2ba88413-e53a-482f-a685-1faee97cfeda.jpg" title=" 9.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图9):X1=1.34μm;X50=7.45μm;X99 = 18.04μm;VMD为7.95μm。 /p p style=" text-indent: 2em " 2.3.4 石墨烯2种测试方法之间的差异 /p p style=" text-indent: 2em " 从石墨烯2种方法的测试结果可以看出,干法的测试结果偏小,湿法的测试结果较大( 加入分散剂测试) 。这是因为石墨烯样品密度较小,会浮在分散介质上,样品的分散效果较差。2种方法X1值相差0.72μm,X50值相差3.59μm,X99值相差9.94μm,VMD相差4.06μm,说明石墨烯样品难于在水中较好地分散,干法测试更适合石墨烯。湿法测试中,添加分散剂和不加分散剂的粒径分布结果相差也较大,说明使用分散剂六偏磷酸钠可以较好地分散石墨烯。而分散剂的浓度和用量对样品分散效果的影响则需要通过另外的实验来确定。 /p p style=" text-indent: 2em " 2.4 涂料粒径分析干法和湿法之间的差异 /p p style=" text-indent: 2em " 干法和湿法虽然测试的结果比较接近,但是由于两者的分散介质的折射指数不一样,两者的测试结果之间会有一些差异。进行粒径分析,最重要的是要保证样品在各自使用的介质中的分散效果。干法的进样速率、压力等分散条件的选择要合适,在保证可以分散好样品的情况下,尽量选择较小的压力,减少对样品颗粒的冲击,避免颗粒的二次破碎。对于一些难于分散的样品,比如氧化铁,密度较大,需要选择较大的分散压力,否则无法取得好的分散效果,或者改变进样量来改变样品的分散效果。湿法进样要通过改变搅拌速率、超声时间来进行调整,同时使用合适的分散剂来对样品进行分散。对于一些较轻,可漂浮在分散介质上的样品,要延长样品的测试时间,以利于样品的充分分散。同时湿法测试应该使用超声波去除气泡,否则会在结果中形成拖尾峰。 /p p style=" text-indent: 2em " 2.5 干法和湿法测试的重复性比较 /p p style=" text-indent: 2em " 2.5.1 干法测试重复性 /p p style=" text-indent: 2em " 重复性指标是衡量粒径分布测试结果好坏的重要指标,是指同一个样品多次测量结果之间的偏差,通常用X50之间的偏差表示。粒径分布的重复性测试与样品的分散程度有较大的关系,样品分散的好,则测试的重复性也较高。选取2种常用的颜填料钛白粉和滑石粉进行干法重复性试验。结果见表1。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/ced0fa21-b433-476e-8ea8-b78efae89aad.jpg" title=" 10.webp.jpg" / /p p /p p style=" text-indent: 2em " 2.5.2 湿法测试重复性 /p p style=" text-indent: 2em " 选取乳液和钛白粉分别进行了2次湿法重复测量。测试结果见表2。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/0a260ef9-6bbc-4de2-a8b8-641cc551f187.jpg" title=" 11.webp.jpg" / /p p /p p style=" text-indent: 2em " 目前在GB /T 21782.13—2009 中规定了粉末涂料粒径测试重复性的要求为2次测试结果的任何一个粒度级分区间的偏差不大于1%。从以上样品的测试结果来看,干法测试和湿法测试的重复性均满足标准要求。 /p p style=" text-indent: 2em " 影响重复性测试的主要因素是样品的分散程度,所以测试前取样要保证样品的均匀性,对于容易团聚的样品,其重复性较差,所以无论是干法测试还是湿法测试,均要做好样品的前处理工作。干粉状样品,要注意除水干燥。对于一些在水中分散不好的干粉样品,需要在分散介质中加入分散剂,设置好仪器的超声时间、搅拌速率等辅助分散条件。湿法测试用液态样品,需要将样品搅拌均匀。乳液、水分散体样品,由于被测粒子已经在样品中分散形成了稳定体系,所以测试结果的重复性较好。湿法测试的分散介质对于样品的影响很大,容易和分散介质( 水) 发生反应,或和水的折射率相差不大的样品不宜使用湿法测试。而对于像氧化铁之类的密度较大的样品,使用干法测试分散性较差,可以使用湿法进行测试。通过加入分散剂,延长超声时间,提高搅拌速率,使样品可以充分分散,从而提高样品的测试重复性。 /p p style=" text-indent: 2em " 3 结语 /p p style=" text-indent: 2em " 讨论了激光粒度仪干法和湿法测试涂料用颜填料钛白粉、滑石粉、石墨烯以及建筑乳液的粒径分布。对激光粒度仪测试法来说,干法测试和湿法测试由于分散原理上的差异,对于同一个样品,测试结果也会存在差异。湿法测试的结果比干法测试的结果偏大。在进行密度较小的样品的测试过程中,样品会浮在分散介质上,要加入六偏磷酸钠等表面活性剂,降低分散介质的表面张力,提高样品的分散度,才能保证样品在分散介质中充分分散。 /p p style=" text-indent: 2em " 在保证准确的仪器设置条件下,激光粒度仪测试的重复性较好,钛白粉、滑石粉等粉体干法测试2次结果的偏差小于1%。湿法测试,乳液的测试重复性要好于干粉的测试重复性,湿法测试2次结果的偏差小于1%。 /p
  • 你想要了解的挥发酚在线监测难点和对策,都在这里啦
    导读 近年来,挥发酚污染问题明显多发,直接导致部分区域水质下降,严重威胁群众身体健康。为打好碧水保卫战,必须从源头上解决挥发酚问题!准确监测是管控挥发酚的先决条件,但是目前,挥发酚在线监测仍面临着很多问题!什/么/是/挥/发/酚PhotoTek 6000挥发性酚类(Volatile Phenols)指蒸馏时能随水蒸汽一起挥发的酚类,主要是沸点低于230℃的绝大多数一元酚,如苯酚、甲酚、二甲酚等。酚类化合物对细胞有直接损害作用。长期饮用被酚污染的水,可引起头昏、恶心、呕吐及各种神经系统症状,对人及哺乳动物有促癌作用。因此,一系列标准规范如《污水综合排放标准》(GB 8978-1996)、《地表水环境质量标准》(GB 3838-2002)、《生活饮用水卫生标准》(GB5749-2006)等均对挥发酚限值提出了要求。测/定/方/法PhotoTek 6000目前国内测定挥发酚的方法有4-氨基安替比林法、气相色谱法等。其中4-氨基安替比林法又可根据前处理方法不同分为萃取分光光度法和直接分光光度法,萃取法测定酚的质量浓度范围为0.002 mg/L~0.1 mg/L,直接法测定酚的最低检出浓度为0.1 mg/L。当前市场上现有的国内外水中挥发酚在线监测仪通常都采用4-氨基安替比林分光光度法,不同厂家的仪器主要是水样前处理方式不同。前处理方式的主要区分在于是否采用蒸馏,是否采取萃取等。其中前处理中的蒸馏是为了分离出水样中的挥发酚,萃取是为了降低定量下限,测定更加准确。在/线/监/测/难/点PhotoTek 60001. 目前市场上无相关的挥发酚仪器技术要求与检测方法、安装、验收、运行等标准,市场上产品良莠不齐,严重冲击了市场秩序和政府监管力度。2. 市面上很多所谓的“挥发酚在线监测仪”并无蒸馏过程,测定结果为总酚。但是总酚和挥发酚之间并无相关关系,因此此类仪表所测数据并不可靠,仅能测定标液。3. 水样中挥发酚的测定易受到浊度、色度干扰,导致实际水样比对不准确(随着水样中浊度增大,测量值变大)。4. 萃取过程能显著提升仪器测量灵敏度和准确度,但是市场上大部分挥发酚仪器无萃取过程,远远达不到地表水Ⅰ、Ⅱ类水限值(0.002mg/l)。5. 测定采用的萃取剂氯仿为易制毒化学品,采购难,毒性强,易致癌。6. 为了提高检测灵敏度,除了萃取之外,还可通过延长光程或者增加反应水样等方式。但是延长光程对光学检测体系的稳定性要求极高,加大反应水样会产生大量废液,增加运维成本。对/策PhotoTek 60001. 应尽快建立并完善挥发酚监测方面的法律法规,进一步完善挥发酚自动监测仪表(技术要求与检测方法、运行、安装、验收等)的相关规范,为挥发酚精准管控提供有力保障。2. 通过增加严格有效的前处理过程,提高仪器测定精度和灵敏度。比如蒸馏过程可以将水体中的挥发酚分离出来,得到有效的挥发酚数据,蒸馏过程还可避免水体自带的色度、浊度干扰;萃取过程可以进一步提高检测的灵敏度,准确测定低浓度水体。同时通过其他技术攻关,在满足测量稳定性的同时进一步提高检测灵敏度。重/点/监/测/场/景PhotoTek 6000Ø 排污企业——焦化、煤气、石油精炼、冶金、玻璃、塑料、医药、农药、油漆、木材防腐、造纸、石油化工、合成氨、化学有机合成工业Ø 地表水Ø 饮用水 关于朗石朗石针对于挥发酚监测痛点和难点,推出了PhotoTek 6000挥发酚水质自动在线监测仪,基于蒸馏+萃取前处理方法,潜心研发“0”毒萃试剂配方,在满足测量稳定性的同时进一步降低了定量下限,满足排污企业排口、地表水和饮用水的水质监测需求,欢迎大家前来咨询!
  • 用来制杀虫剂的砷 烟草中也曾检测到
    在上期科普中,我们对烟草中的重金属及其吸烟对人体的影响做了开篇,指出通过吸烟且以高温燃烧为主导过程的重金属进入人体会打破体内的金属离子的平衡,从而影响人体代谢过程,产生疾病。本期开始对烟草中各种重金属逐一介绍。   铝   香烟中的铝含量为699-1200毫微克/克。一般人体的铝在血浆浓度平均为4.2毫克/升,这个水平不受年龄或吸烟习惯的影响。铝被指与阿尔茨海默氏病(AD )有关,但还缺乏一定的证据。但有数据表明,抽烟带入的铝对人体内微量金属动态平衡可能存在干扰而加剧与AD的发生。此外,铝与小红细胞性贫血和骨软化症具有一定的因果联系,还有增强炎症和氧化作用。   锑   媒体曾报道锑及其化合物通过直接接触或吸入引起皮炎、角膜炎、结膜炎和鼻中隔溃疡。研究发现吸烟者体内有较高的锑。职业病和动物研究均表明,吸入的锑化合物对呼吸道和心血管效应有影响,最近一项研究报道,与几乎检测不出锑的非吸烟者相比,即使尿含锑低于0.1微克/升的吸烟者,外周动脉疾病发生的风险也直线上升。在我们的研究中,锑含量上升或导致某些金属(包括镉,铅和锑)的毒性发作。美国有检测显示,锑在正规烟草品牌中浓度为0.045%,在假烟中高达0.117%。   砷   烟草可能含有砷,而砷常常被用来制作杀虫剂。长时间暴露在含有砷的烟尘中会刺激眼睛、鼻子、喉咙和皮肤。在加工后的烟叶中,已被检测到的砷浓度可达400毫微克/克,卷烟的主流烟气中也可检测到砷。有研究者认为砷和甲酚是心血管疾病风险的主要来源。   钡   很少人知道烟草含钡,事实上含量还不少。早在100年前就有人测得烟草根部平均含钡0 .12%,茎部含0.04%,叶片含0.04%,后来测定的烟叶含钡大多在0.01%-0.06%之间。已经证明,吸烟者比不吸烟者体内钡含量要高。钡的可溶形式毒性很大,急性暴露时会造成低钾血症。
  • 【技术简述】14种工业废水处理方法简述
    含酚废水有何危害,怎样处理?含酚废水主要来自焦化厂、煤气厂、石油化工厂、绝缘材料厂等工业部门以及石油裂解制乙烯、合成苯酚、聚酰胺纤维、合成染料、有机农药和酚醛树脂生产过程。含酚废水中主要含有酚基化合物,如苯酚、甲酚、二甲酚和硝基甲酚等。酚基化合物是一种原生质毒物,可使蛋白质凝固。水中酚的质量浓度达到0.1一0.2mg/L时,鱼肉即有异味,不能食用 质量浓度增加到1mg/L,会影响鱼类产卵,含酚5—10mg/L,鱼类就会大量死亡。饮用水中含酚能影响人体健康,即使水中含酚质量浓度只有0.002mg/L,用氯消毒也会产生氯酚恶臭。通常将质量浓度为1000mg/L的含酚废水.称为高浓度含酚废水,这种废水须回收酚后,再进行处理。质量浓度小于1000mg/L的含酚废水,称为低浓度含酚废水。通常将这类废水循环使用,将酚浓缩回收后处理。回收酚的方法有溶剂萃取法、蒸汽吹脱法、吸附法、封闭循环法等。含酚质量浓度在300mg/L以下的废水可用生物氧化、化学氧化、物理化学氧化等方法进行处理后排放或回收。含汞废水怎样治理,含汞化合物有何特性?含汞废水主要来源于有色金属冶炼厂、化工厂、农药厂、造纸厂、染料厂及热工仪器仪表厂等。从废水中去除无机汞的方法有硫化物沉淀法、化学凝聚法、活性炭吸附法、金属还原法、离子交换法和微生物法等。一般偏碱性含汞废水通常采用化学凝聚法或硫化物沉淀法处理。偏酸性的含汞废水可用金属还原法处理。低浓度的含汞废水可用活性炭吸附法、化学凝聚法或活性污泥法处理,有机汞废水较难处理,通常先将有机汞氧化为无机汞,而后进行处理。含油废水有何特性,怎样治理?含油废水主要来源于石油、石油化工、钢铁、焦化、煤气发生站、机械加工等工业部门。废水中油类污染物质,除重焦油的相对密度为1.1以上外,其余的相对密度都小于1。油类物质在废水中通常以三种状态存在。(1)浮上油,油滴粒径大于100μm,易于从废水中分离出来。(2)分散油.油滴粒径介于10一100μm之间,恳浮于水中。(3)乳化油,油滴粒径小于10μm,不易从废水中分离出来。由于不同工业部门排出的废水中含油浓度差异很大,如炼油过程中产生废水,含油量约为150一1000mg/L,焦化废水中焦油含量约为500一800mg/L,煤气发生站排出废水中的焦油含量可达2000一3000mg/L。因此,含油废水的治理应首先利用隔油池,回收浮油或重油,处理效率为60%一80%,出水中含油量约为100一200mg/L 废水中的乳化油和分散油较难处理,故应防止或减轻乳化现象。方法之一,是在生产过程中注意减轻废水中油的乳化 其二,是在处理过程中,尽量减少用泵提升废水的次数、以免增加乳化程度。处理方法通常采用气浮法和破乳法。重金属废水来源及其处理原则是什么?重金属废水主要来自矿山、冶炼、电解、电镀、农药、医药、油漆、颜料等企业排出的废水。废水中重金属的种类、含量及存在形态随不同生产企业而异。由于重金属不能分解破坏,而只能转移它们的存在位置和转变它们的物理和化学形态。例如,经化学沉淀处理后,废水中的重金属从溶解的离子形态转变成难溶性化台物而沉淀下来,从水中转移到污泥中 经离子交换处理后,废水中的重金属离子转移到离子交换树脂上,经再生后又从离子交换树脂上转移到再生废液中。因此,重金属废水处理原则是:首先,最根本的是改革生产工艺.不用或少用毒性大的重金属 其次是采用合理的工艺流程、科学的管理和操作,减少重金属用量和随废水流失量,尽量减少外排废水量。重金属废水应当在产生地点就地处理,不同其他废水混合,以免使处理复杂化。更不应当不经处理直接排入城市下水道,以免扩大重金属污染。对重金属废水的处理,通常可分为两类 一是使废水中呈溶解状态的重金属转变成不溶的金属化合物或元素,经沉淀和上浮从废水中去除.可应用方法如中和沉淀法、硫化物沉淀法、上浮分离法、电解沉淀(或上浮)法、隔膜电解法等 二是将废水中的重金属在不改变其化学形态的条件下进行浓缩和分离,可应用方法有反渗透法、电渗析法、蒸发法和离子交换法等。这些方法应根据废水水质、水量等情况单独或组合使用。怎样处理含氰废水?含氰废水主要来自电镀、煤气、焦化、冶金、金属加工、化纤、塑料、农药、化工等部门。含氰废水是一种毒性较大的工业废水,在水中不稳定,较易于分解,无机氰和有机氰化物皆为剧毒性物质,人食入可引起急性中毒。氰化物对人体致死量为0.18,氰化钾为0.12g,水体中氰化物对鱼致死的质量浓度为0.04一0.1mg/L。含氰废水治理措施主要有:(1)改革工艺,减少或消除外排含氰废水,如采用无氰电镀法可消除电镀车间工业废水。(2)含氰量高的废水,应采用回收利用,含氰量低的废水应净化处理方可排放。回收方法有酸化曝气—碱液吸收法、蒸汽解吸法等。治理方法有碱性氯化法、电解氧化法、加压水解法、生物化学法、生物铁法、硫酸亚铁法、空气吹脱法等。其中碱性氯化法应用较广,硫酸亚铁法处理不彻底亦不稳定,空气吹脱法既污染大气,出水又达不到排放标准.较少采用。农药废水的特点及其处理方法是什么?农药品种繁多,农药废水水质复杂.其主要特点是(1)污染物浓度较高,化学需氧量(COD)可达每升数万mg (2)毒性大,废水中除含有农药和中间体外,还含有酚、砷、汞等有毒物质以及许多生物难以降解的物质 (3)有恶臭,对人的呼吸道和粘膜有刺激性 (4)水质、水量不稳定。因此,农药废水对环境的污染非常严重。农药废水处理的目的是降低农药生产废水中污染物浓度,提高回收利用率,力求达到无害化。农药废水的处理方法有活性炭吸附法、湿式氧化法、溶剂萃取法、蒸馏法和活性污泥法等。但是,研制高效、低毒、低残留的新农药,这是农药发展方向。一些国家已禁止生产六六六等有机氯、有机汞农药,积极研究和使用微生物农药,这是一条从根本上防止农药废水污染环境的新途径。食品工业废水污染特点及其处理方法是什么?食品工业原料广泛,制品种类繁多,排出废水的水量、水质差异很大。废水中主要污染物有(1)漂浮在废水中固体物质,如菜叶、果皮、碎肉、禽羽等 (2)悬浮在废水中的物质有油脂、蛋白质、淀粉、胶体物质等 (3)溶解在废水中的酸、碱、盐、糖类等:(4)原料夹带的泥砂及其他有机物等 (5)致病菌毒等。食品工业废水的特点是有机物质和悬浮物含量高,易腐败,一般无大的毒性。其危害主要是使水体富营养化,以致引起水生动物和鱼类死亡,促使水底沉积的有机物产生臭味,恶化水质,污染环境。食品工业废水处理除按水质特点进行适当预处理外,一般均宜采用生物处理。如对出水水质要求很高或因废水中有机物含量很高,可采用两级曝气池或两级生物滤池,或多级生物转盘.或联合使用两种生物处理装置,也可采用厌氧—需氧串联。怎样处理造纸工业废水?造纸废水主要来自造纸工业生产中的制浆和抄纸两个生产过程。制浆是把植物原料中的纤维分离出来,制成浆料,再经漂白 抄纸是把浆料稀释、成型、压榨、烘干,制成纸张。这两项工艺都排出大量废水。制浆产生的废水,污染最为严重。洗浆时排出废水呈黑褐色,称为黑水,黑水中污染物浓度很高,BOD高达5—40g/L,含有大量纤维、无机盐和色素。漂白工序排出的废水也含有大量的酸碱物质。抄纸机排出的废水,称为白水,其中含有大量纤维和在生产过程中添加的填料和胶料。造纸工业废水的处理应着重于提高循环用水率,减少用水量和废水排放量,同时也应积极探索各种可靠、经济和能够充分利用废水中有用资源的处理方法。例如浮选法可回收白水中纤维性固体物质,回收率可达95%,澄清水可回用 燃烧法可回收黑水中氢氧化纳、硫化钠、硫酸钠以及同有机物结合的其他钠盐。中和法调节废水pH值 混凝沉淀或浮选法可去除废水中悬浮固体 化学沉淀法可脱色 生物处理法可去除BOD,对牛皮纸废水较有效 湿式氧化法处理亚硫酸纸浆废水较为成功。此外,国内外也有采用反渗透、超过滤、电渗析等处理方法。怎样处理印染工业废水?印染工业用水量大,通常每印染加工1t纺织品耗水100一200t.其中80%一90%以印染废水排出。常用的治理方法有回收利用和无害化处理。回收利用:(1)废水可按水质特点分别回收利用,如漂白煮炼废水和染色印花废水的分流,前者可以对流洗涤.一水多用,减少排放量 (2)碱液回收利用,通常采用蒸发法回收,如碱液量大,可用三效蒸发回收,碱液量小,可用薄膜蒸发回收 (3)染料回收.如士林染料可酸化成为隐巴酸,呈胶体微粒.悬浮于残液中,经沉淀过滤后回收利用。无害化处理可分:(1)物理处理法有沉淀法和吸附法等。沉淀法主要去除废水中悬浮物 吸附法主要是去除废水中溶解的污染物和脱色。(2)化学处理法有中和法、混凝法和氧化法等。中和法在于调节废水中的酸碱度,还可降低废水的色度 混凝法在于去除废水中分散染料和胶体物质 氧化法在于氧化废水中还原性物质,使硫化染料和还原染料沉淀下来。(3)生物处理法有活性污泥、生物转盘、生物转筒和生物接触氧化法等。为了提高出水水质,达到排放标准或回收要求.往往需要采用几种方法联合处理。怎样处理染料生产废水?染料生产废水含有酸、碱、盐、卤素、烃、胺类、硝基物和染料及其中间体等物质,有的还含有吡啶、氰、酚、联苯胺以及重金属汞、镉、铬等。这些废水成分复杂.具有毒性,较难处理。因此染料生产废水的处理.应根据废水的特性和对它的排放要求.选用适当的处理方法。例如:去除固体杂质和无机物,可采用混凝法和过滤法 去除有机物和有毒物质主要采用化学氧化法、生物法和反渗透法等 脱色一般可采用混凝法和吸附法组成的工艺流程,去除重金属可采用离子交换法等。怎样处理化学工业废水?化学工业废水主要来自石油化学工业、煤炭化学工业、酸碱工业、化肥工业、塑料工业、制药工业、染料工业、橡胶工业等排出的生产废水。化工废水污染防治的主要措施是:首先应改革生产工艺和设备,减少污染物,防止废水外排,进行综合利用和回收 必须外排的废水,其处理程度应根据水质和要求选择。一级处理主要分离水中的悬浮固体物、胶体物、浮油或重油等。可采用水质水量调节、自然沉淀、上浮和隔油等方法。二级处理主要是去除可用生物降解的有机溶解物和部分胶体物,减少废水中的生化需氧量和部分化学需氧量,通常采用生物法处理。经生物处理后的废水中,还残存相当数量的COD,有时有较高的色、嗅、味,或因环境卫生标准要求高,则需采用三级处理方法进一步净化。三级处理主要是去除废水中难以生物降解的有机污染物和溶解性无机污染物。常用的方法有活性炭吸附法和臭氧氧化法,也可采用离子交换和膜分离技术等。各种化学工业废水可根据不同的水质、水量和处理后外排水质的要求,选用不同的处理方法。酸碱废水的特性及其处理原则是什么?酸性废水主要来自钢铁厂、化工厂、染料厂、电镀厂和矿山等,其中含有各种有害物质或重金属盐类。酸的质量分数差别很大,低的小于1%,高的大于10%。碱性废水主要来自印染厂、皮革厂、造纸厂、炼油厂等。其中有的含有机碱或含无机碱。碱的质量分数有的高于5%,有的低于1%。酸碱废水中,除含有酸碱外,常含有酸式盐、碱式盐以及其他无机物和有机物。酸碱废水具有较强的腐蚀性,需经适当治理方可外排。治理酸碱废水一股原则是:(1)高浓度酸碱废水,应优先考虑回收利用,根据水质、水量和不同工艺要求,进行厂区或地区性调度,尽量重复使用:如重复使用有困难,或浓度偏低,水量较大,可采用浓缩的方法回收酸碱。(2)低浓度的酸碱废水,如酸洗槽的清洗水,碱洗槽的漂洗水,应进行中和处理。对于中和处理,应首先考虑以废治废的原则。如酸、碱废水相互中和或利用废碱(渣)中和酸性废水,利用废酸中和碱性废水。在没有这些条件时,可采用中和剂处理。选矿废水中含有哪些浮选药剂,怎样处理?选矿废水具有水量大,悬浮物含量高,含有害物质种类较多的特点。其有害物质是重金属离子和选矿药剂。重金属离子有铜、锌、铅、镍、钡、镉以及砷和稀有元素等。在选矿过程中加入的浮选药剂有如下几类:(1)捕集剂.如黄药(RocssMe)、黑药[(RO)2PSSMe]、白药[CS(NHC6H5)2] (2)抑制刑,如氰盐(KCN,NaCN)、水玻璃(Na2SiO3) (3)起泡剂,如松节油、甲酚(C6H4CH30H) (4)活性刑,如硫酸铜(CuS04)、重金属盐类 (5)硫化剂,如硫化钠 (6)矿桨调节剂,如硫酸、石灰等。选矿废水主要通过尾矿坝可有效地去除废水中悬浮物,重金属和浮选药剂含量也可降低。如达不到排放要求时,应作进一步处理,常用的处理方法有:(1)去除重金属可采用石灰中和法和焙烧白云石吸附法 (2)主除浮选药剂可采用矿石吸附法、活性炭吸附法 (3)含氰废水可采用化学氧化法。冶金废水可分为几类,其治理发展趋向是什么?冶金废水的主要特点是水量大、种类多、水质复杂多变。按废水来源和特点分类,主要有冷却水、酸洗废水、洗涤废水(除尘、煤气或烟气)、冲渣废水、炼焦废水以及由生产中凝结、分离或溢出的废水等。冶金废水治理发展的趋向是:(1)发展和采用不用水或少用水及无污染或少污染的新工艺、新技术,如用干法熄焦,炼焦煤预热,直接从焦炉煤气脱硫脱氰等 (2)发展综合利用技术,如从废水废气中回收有用物质和热能,减少物料燃料流失 (3)根据不同水质要求,综合平衡,串流使用,同时改进水质稳定措施,不断提高水的循环利用率 (4)发展适合冶金废水特点的新的处理工艺和技术,如用磁法处理钢铁废水.具有效率高,占地少,操作管理方便等优点。来源:净水技术
  • 美国麦克仪器公司田震博士受邀参加分子光谱报告会
    2016年3月29日麦克默瑞提克(上海)仪器有限公司分析服务中心田震博士主持召开了上海市分子光谱应用技术协作组有关分子光谱的应用报告会,并做了《基于材料表面吸附分子的光谱表征方法》的报告。报告主要介绍了应用不同分子在材料表面吸附后分子光谱的变化,来获得材料表面的性质。内容除传统的Py-IR、NH3-IR和CO-IR等技术在固体催化剂酸性中心的类型(B酸和L酸)、强度及位置的应用外,还包括CO-IR技术在金属活性组分间的相互作用(Stong Metal-Support Interaction,SMSI)、金属离子的氧化性及氧化态等分析,NH3-NIR技术在材料表面羟基密度及其聚集度表征,CO-IR和CO2-IR方法并结合Raman和XRD表征技术在TiO2材料不同晶态在颗粒体相和表面分布,以及应用光致发光光谱法(PL Spectroscopy)在研究气体分子扩散方面的应用。 参会人员有来自华东理工大学、同济大学、上海师范大学、中科院上海有机所、联合利华等单位。会后,大家就如何进一步加强分子光谱技术的应用进行了探讨,不同单位和不同领域的与会者就以后在这一领域合作的可能性进行了分析与讨论,并达成了相应的合作意向。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制