当前位置: 仪器信息网 > 行业主题 > >

环丙基溴

仪器信息网环丙基溴专题为您提供2024年最新环丙基溴价格报价、厂家品牌的相关信息, 包括环丙基溴参数、型号等,不管是国产,还是进口品牌的环丙基溴您都可以在这里找到。 除此之外,仪器信息网还免费为您整合环丙基溴相关的耗材配件、试剂标物,还有环丙基溴相关的最新资讯、资料,以及环丙基溴相关的解决方案。

环丙基溴相关的资讯

  • 上海有机所金属铱催化的烯丙基取代反应研究取得新进展
    过渡金属催化惰性碳氢键的直接官能团化反应在近年来受到化学研究工作者的极大关注,并取得了重要进展,但在这类反应中,剧烈的反应条件,当量氧化剂的使用,以及选择性难以控制等依旧是其应用中的主要制约因素。此外,从烯烃出发实现烯烃碳氢键活化的工作也非常少见。 铱催化剂催化烯丙基取代反应 2009年,中国科学院上海有机化学研究所金属有机国家重点实验室的研究人员发现金属铱催化的基于自由胺基协助双键末端碳氢键活化,在[Ir(COD)Cl]2和Feringa配体的催化体系作用下,邻胺基苯乙烯类化合物与烯丙基碳酸酯可以发生直接的烯丙基烯基化反应,立体选择性地得到顺式双键产物(J. Am. Chem. Soc. 2009, 131, 8346-8346),反应条件温和,原料简单易得。这一方法为构建顺式双键提供了新的策略和思路。结果发表以后被Synfacts积极评述(Synfacts, 2009, 9, 0987)。这也是金属铱催化直接烯丙基烯基化反应的首例报道。 铱催化剂催化合成苯并氮杂七元环化合物 最近,研究人员在这一研究发现的基础上,通过巧妙的设计,在[Ir(COD)Cl]2和Feringa配体的催化下,邻胺基苯乙烯类化合物和烯丙基双碳酸甲酯反应,可以实现串联的烯丙基烯基化与分子内不对称烯丙基胺化反应,高收率、高对映选择性地合成苯并氮杂七元环类化合物。所得具有光学活性的苯并氮杂七元环类化合物,可以方便地转化为结构复杂多环化合物,为合成苯并氮杂七元环这一在许多天然产物和药物分子中都广泛存在的一类骨架提供了有效的方法。这一部分工作已发表在Angew. Chem. Int. Ed., 2010, 49, 1496-1499上。结果发表以后被Synfacts积极评述(Synfacts, 2010, 4, 0446)。 这些研究工作获得国家自然科学基金委面上项目和科技部973项目的资助。(摘自有机化学网)
  • 大连化物所铜催化不对称炔丙基转化研究取得新进展
    p   近日,中国科学院大连化学物理研究所研究员胡向平领导的研究团队在铜催化不对称炔丙基转化研究中取得新进展,通过运用一种脱硅活化的新策略,成功实现了Cu-催化的炔丙醇酯与β-萘酚及富电子苯酚间的不对称[3+2]环加成反应,相关研究结果以通讯形式发表在最新一期的《德国应用化学》(Angew. Chem. Int. Ed. 2016, 55, 5014-5018)上。 /p p   在炔丙基转化反应中,有效形成亚丙二烯基铜活性中间体是实现反应的关键。针对传统的由端基炔丙基化合物形成亚丙二烯基铜活性中间体能力不足的缺点,该研究利用铜能高效促进Csp-Si键开裂的特点,提出以三甲基硅基保护的炔丙醇酯为底物,通过脱硅活化的策略,实现亚丙二烯基铜活性中间体的不可逆形成。基于这一反应策略,研究组利用自主发展的高位阻手性P,N,N-配体,成功实现了炔丙醇酯与β-萘酚及富电子苯酚间的不对称[3+2]环加成反应。这是该研究组继2014年提出脱羧活化的炔丙基转化策略(Angew. Chem. Int. Ed. 2014, 53, 1410-1414)后,在炔丙基转化反应中实现的又一催化活化策略。这些反应策略的提出与实现有效拓展了催化不对称炔丙基转化反应研究的思路。 /p p   上述研究工作得到国家自然科学基金委的资助。 /p p style=" text-align: center " img style=" width: 500px height: 216px " title=" W020160419304595129181.jpg" border=" 0" hspace=" 0" vspace=" 0" src=" http://img1.17img.cn/17img/images/201604/insimg/dc0e2990-2b81-4183-b6ca-5d3434096321.jpg" width=" 500" height=" 216" / /p p style=" text-align: center "    span style=" font-size: 14px " 大连化物所铜催化不对称炔丙基转化研究取得新进展 /span /p p style=" text-align: center " & nbsp /p
  • 博纳艾杰尔推出丙基酰胺键合硅胶色谱柱
    Venusil HILIC亲水作用色谱柱   亲水作用色谱(Hydrophilic Interaction Chromatography,HILIC)是近年来色谱领域研究的热点,博纳艾杰尔科技推出丙基酰胺键合硅胶为基质的HILIC色谱柱, 对极性化合物,如极性代谢物,碳水化合物或肽具有极佳的分离效果。   丙基酰胺键合硅胶克服了传统正相色谱柱在水相条件下不稳定的缺点,其常使用流动相是和反相色谱相同的水相缓冲液( 40%)及有机溶剂,但是其梯度条件通常是初始为高比例有机相,逐步加大水相含量 极性丙基酰胺键合硅胶的HILIC色谱柱在反相条件下,可以有效的保留极性化合物,是一种崭新的极性化合物HPLC分离解决方式.      图1. Venusil HILIC 比传统正相色谱柱更稳定   样 品:VB1, VB6, VC, VB2   老化条件:甲醇:20 mM NaH2PO4 (pH=7.0) = 40 : 60 1.0mL/min 温度:40℃   分析条件:0.1%TFA:ACN = 90:10 流速: 1.0mL/min 温度:30℃ ,UV280nm      色谱柱: Atlantis C18 4.6×250mm,5μm   流动相:98%的0.005M的磷酸 钠 (pH=7):2% 甲醇   流 速: 1ml/min   柱 温: 25℃   检 测: UV 210nm      色谱柱:Venusil HILIC 4.6×250mm,5μm   流动相: A: 0.1%TFA水溶液,   B: 乙腈,   A:B=75:25   流 速: 1 mL/min   温 度: 25℃   检 测: UV 210 nm   图2. Venusil HILIC与C18分离井冈霉素对比色谱图   图2. 结果显示,反相C18在98%的水相条件下,几乎没有保留的强极性化合物井冈霉素,在25%的乙腈条件下,使用丙基酰胺键合硅胶的Venusil HILIC得到了很好的分离。所以,Venusil HILIC色谱柱是强极性化合物分离的有力工具。   丙基酰胺键合硅胶的HILIC色谱柱用于低聚糖的分析,显示出比氨基柱更好的稳定性,更好的分离效果,尤其在使用ELSD检测器的时候,丙基酰胺键合硅胶比氨基键合硅胶具有更低的背景噪音,图3。      图3. 丙基酰胺键合硅胶HILIC色谱柱与氨基键合硅胶柱分离葡萄糖对比   样品:葡萄糖标准品(购至Sigma)   检测:ELSD   色谱柱:4.6×250mm,5μm   色谱条件:乙腈/水(80:20),1mL/min,30℃   图3显示,丙基酰胺键合硅胶填充的HILIC色谱柱可以将葡萄糖在水溶液中存在的两个端基异构体(即α-D-葡萄糖和β-D-葡萄糖)区分开,而用氨基柱则只能得到一个相对较宽的色谱峰,结果表明了丙基酰胺键合硅胶HILIC柱在分析糖类成分方面的独特优势。   腺苷类强极性抗肿瘤药物地西他滨(Decitabine)在普通的反相C18色谱柱上检测有关物质存在杂质分离度不够或检测不出的问题,使用丙基酰胺键合硅胶的Venusil HILIC色谱柱获得了极佳的分离效果,图4。      图4. 地西他滨有关物质分析色谱图   Venusil HILIC(丙基酰胺键合硅胶),4.6×150mm,5μm,乙腈:水=96∶4,1ml/min,   UV@244nm,室温 Venusil HILIC 丙基酰胺键合硅胶.pdf
  • 上海有机所在PdH催化的不对称迁移烯丙基取代研究中获进展
    中国科学院上海有机化学研究所天然产物有机合成化学重点实验室研究员何智涛课题组在Nature Communications上,在线发表了题为Palladium-Catalyzed Regio- and Enantioselective Migratory Allylic C(sp3)-H Functionalization的研究论文。该工作利用链行走的策略为惰性烯丙位C-H键的不对称官能团化提供了新思路,揭示出亲核试剂的pKa值对迁移和取代历程的影响,并通过机理研究阐释和验证了反应的基本历程。  相较于传统带有离去基的烯丙基取代反应,不对称烯丙基C-H键的直接官能团化更为直接和步骤经济。目前,该领域的研究仍面临诸多问题。大部分相关催化工作要求烯丙位C-H被相邻的杂原子或sp2碳单元进一步活化,对非活化的烯丙位C-H键的不对称官能团化的研究相对局限。过渡金属催化的链行走策略已被证实可以有效活化远程的惰性C-H键。基于此,科研人员设想利用过渡金属参与的链行走策略来定位烯丙位的C-H金属化,由此产生的稳定烯丙基金属中间体再被分子间的亲核试剂捕获,从而实现非活化的烯丙位C-H键的高效不对称官能团化(图1)。  该反应对于不同的链长度和取代基均有较为突出的结果,兼容复杂迁移体系的同时也能实现了手性控制(图2)。此外,亲核试剂的pKa值与反应的活性密切相关。只有当亲核试剂的pKa值处于13-18间时才有相对较高的反应活性。pKa值高的亲核试剂往往无法促进开始的烯烃迁移的发生,而pKa值低的亲核试剂虽能有效实现金属迁移,但却具有相对较弱的亲核取代能力。  进一步探究反应机理(图3)并结合传统的迁移反应和烯丙基取代过程,研究推测,反应可能首先由二价钯在亲核试剂作用下还原形成零价钯启动,随后在碱的作用下被质子氧化形成二价PdH物种,与末端烯烃配位继而发生快速链行走过程得到烯丙基钯中间体,再接受亲核试剂的进攻,从而得到烯丙位C-H官能团化的产物,同时再生零价钯完成催化循环历程。研究发现,反应初期存在诱导期,为初始零价钯形成过程。该串联过程对于催化剂和亲核试剂均呈现出一级反应,而对二烯底物的动力学符合Micheaelis-Menten模型,即饱和动力学关系,由此推断反应决速步为亲核取代过程。   研究工作得到国家自然科学基金委员会、上海市科学技术委员会、中科院等的资助。
  • 智能型卡尔费休库仑微量水分测定仪KF106隆重上市
    高精度智能化库仑法微量测定仪由于技术上问题,一直由国外产品掌控国内微量水分测定仪的市场,由于其价格相对于其它常用的水分测定仪,价格一直居高不下,从而限制其产品广泛使用。 针对国内产品对微量水分测定仪的测试精度和智能化程度越来越高,经过多年水分测定仪的销售和生产的经验,通过我公司技术人员共同努力,研发出最新智能型卡尔费休库仑微量水分测定仪KF106,其精度和相对误差均与国外同类产品相媲美,其销售价格则为同类进口产品的一半。同时根据国内的用户的操作习惯,研发最新的操模式,其操作的便利性和智能性完全满足日常的微量水分测定的要求,受到广大用户的欢迎。 KF106型微量水分测定仪采用经典理论&mdash &mdash 卡尔&bull 菲休微库仑电量法;依据电解定律反应的水分子数同电荷数成正比,仪器检测参加反应电荷数(库仑)自动换算成对应的水分子数,因此此方法测试精度极高,测试成本极低,具有其他测试方法不可替代的优势;能可靠的对液体、气体、固体样品进行微量水分的测定。该仪器以棒图形式显示测量电极信号,直观指示电解液的含水量,实时描绘电解速度对时间的变化曲线。具有高灵敏度、高精度、高再现性,低功耗节能设计等特点,可内置蓄电池用于便携测量,广泛适用于石油、化工、电力、制药、商检、科研、环保等领域。 可检测物质种类包括: 1.汽油,水压油、绝缘油、变压器油、透平油、抗燃油。 2. 戊烷、己烷、二甲基丁烷、辛烷、十二烷、二十碳烷、二十八烷、环十二烷、癸基环己烷、甲基丁二烯、苯、甲苯、二甲苯、乙基甲苯、二甲基苯乙烯、十四烯、石油醚、环己胺、甲基环己胺、环庚 烷、乙烯环己胺、二环戊二烯、二甲基萘、三甲基苯乙烯、苯、二氢苊、芴、亚甲基菲、异甲基异丙基苯等。 3.酚类 苯酚、甲酚、氟苯酚、氯酚、二氯苯酚、硝基酚等。 4.醚类 二乙醚、二甘醇单甲醚、二甘醇二乙醚、聚乙二醚、苯甲醚、氟苯甲醚、碘苯甲醚、二癸醚、二庚醚。 5.全部醇类、全部卤代烃类、全部脂类等。 仪器特点 320× 240点阵图形液晶显示屏,触摸屏操作; 实时描绘电解速度对时间的变化曲线; 以棒图形式显示测量电极信号,直观指示电解液的含水量; 使用空白电流补偿、平衡点漂移补偿来修正测量结果; 独创开关恒流电解技术,降低整机功耗; 带时间标记的历史记录,最多存储255个; 具有电极开路、短路自检报警功能; 内置高速热敏式微型打印机,打印美观、快捷,具有脱机打印功能; 内置蓄电池(选配),充满电后,可连续使用6小时以上; 配有标准RC232接口,可与计算机连接,便于处理试验数据; 具有屏幕保护功能,延长液晶使用寿命; 技术参数 测量范围:1ug~100mg 精 度:测试水量在3ug~1000ug之间误差小于± 2ug 测试水量大于1000ug误差小于± 0.2% 分 辨 率:0.1ug 电解电流:0~400mA 待机功耗:6W 最大功耗:35W 电源电压:AC220V± 20% 50HZ± 10% 适用环境温度: 5℃~40℃ 适用环境湿度: &le 85% RH 外形尺寸:350× 260× 180(mm)
  • 美国环保局确定阻燃剂六溴环十二烷的替代品
    2013年9月24日,美国环境保护局(EPA)根据环境设计(DfE)项目颁布了阻燃剂六溴环十二烷(HBCD)替代物的报告草案。该机构称,六溴环十二烷具有持久性、生物累积性和毒性等特性。   DfE替代物评估报告确定了两种可行的用于聚苯乙烯建筑保温的HBCD替代物,以及一个目前预计不可行的替代物质列表。EPA在报道中称,其中一种物质,丁二烯-苯乙烯溴化共聚物(butadiene styrene brominated copolymer)预计比六溴环十二烷安全,目前在美国已经处于商业化生产中。   尽管EPA继续支持急需改革有毒物质控制法案(TSCA),该机构目前正采取措施解决公众关注的某些阻燃化学品的问题,包括向企业公开公司各种信息以帮助他们做出决定选择更安全的化学品。   今年三月,该机构根据TSCA工作计划决定对20种阻燃剂进行风险评估。包括六溴环十二烷在内的其中四种,都是“全面风险评估”的对象。EPA将于今年晚些时候开展评估,并预计于2014年将风险评估草案向公众公布,并接受同行评议。
  • 季胺化反应的发展及P-SAX季胺盐高分子聚合物的使用场景
    季铵盐中由于含有季铵基甚至有的还含有双键,故可以和诸多的不饱和单体共聚,在水溶液中带正电荷,生成阳离子型或两性离子型水溶性聚合物,很容易吸附于固一液或固一气界面上而被用作絮凝剂、抗静电剂、导电纸涂层及油田化学剂。另外,在现代社会中,表面活性剂的应用日趋广泛。季按盐类表面活性剂具有重要的用途,此外也可被用作柔软剂、抗静电剂、颜料分散剂、矿物浮选剂和沥青乳化剂、金属缓蚀剂及相转移催化剂等,在纺织印染、塑料加工、医疗卫生、日用化工、石油化工、金属加工等行业得到广泛应用。能够合成季铵盐的反应就是季胺化反应。过去几年,大部分是通过简单的合成反应获得季铵盐,例如:○ 在乙酸乙酯作溶剂的条件下与三乙胺混合加热、回流、搅拌进行季胺化反应得到三乙基对(邻)硝基苄基氯化铵;○ 以N-乙基苯胺为原料,经羟乙基化、氯乙基化、季铵化合成N-苯基-N-乙基氨基乙基三甲基氯化铵;○ 通过γ-氯丙基甲基硅氧烷—二甲基硅氧烷共聚物和N,N-二甲基苄基胺的季铵化反应合成了带有苄基二甲基γ-硅丙基氯化铵侧基的聚硅氧烷;○ 用雌二醇经溴乙基化、咪唑乙基化、季铵化和水解反应,合成一类新型的取代苯甲基雌甾咪唑鎓盐;○ 由1,3,5-三甲基-2,4,6-三(咪唑甲基)苯与1,3,5-三(溴甲基)苯直接合成了洞状咪唑鎓环番3(C30H33N63+Br-33H2O)等。P-SAX季铵盐高分子聚合物就是Welchrom® P-SAX固相萃取小柱中主要的填料原料,其聚合物的合成方法就是会用到季胺化的反应方法。P-SAX是一种混合型阴离子交换反相吸附剂,对酸性化合物具有高的选择性和灵敏度。Welchrom® P-SAX固相萃取小柱设计用于克服传统高分子聚合物基质混合型固相提取吸附剂的局限性。它是一种在pH0~14范围内稳定的混合型强阴离子交换、水可浸润性合物吸附剂。现在可使用可靠的固相提取来检测、确认或定量各种样品基质中的酸性化合物及其代谢物。利用Welchrom® P-SAX固相萃取小柱的选择性和稳定性,可通过固相提取步骤从复杂的样品中将分析物分成两部分:酸性化合物和碱性/中性化合物。分流提取物可通过多种分析方法或多种联用分析技术(LC/MS和GC/MS)进行分析。Welchrom® P-SAX固相萃取小柱广泛应用于净化不同基质如血清、尿液、塑料制品或者食品中的酸性和中性化合物,如奶粉及奶制品中三聚氰酸的检测。
  • 自动乌氏黏度仪在羟丙甲基纤维素中的应用
    羟丙基甲基纤维素(hydroxypropyl methyl cellulose),亦有简化作羟丙甲纤维素(缩写作HPMC),是属于非离子型纤维素混合醚中的一个品种。它是一种半合成的、不活跃的、黏弹性的聚合物,常于工业助剂、眼科学用润滑剂,又或在口服药物中充当辅料或赋型剂。在工业领域中,羟丙甲基纤维素的主要用途是为聚氯乙烯生产中做分散剂,系悬浮聚合制备PVC的主要助剂。另外,在其他石油化工、涂料、建材、除漆剂、化妆品等产品生产中,羟丙甲基纤维素也可作增稠剂、稳定剂、保水剂、成膜剂等。在合成树脂领域,添加羟丙甲基纤维素可使获得的产品具有颗粒规整、疏松、视比重适宜,加工性能优良等特点。羟丙甲基纤维素在生产和研发中关键的指标是分子量,根据分子量不同,羟丙甲基纤维素制品可用于不同的用途,低分子量级别(分子量)的羟丙甲基纤维素用于片剂包衣材料,高分子量(分子量100000)的羟丙甲基纤维素可用作片剂骨架的阻滞剂、有延缓药物释放的作用。目前羟丙甲基纤维素分子量常用的测试方式是乌氏毛细管法,乌氏毛细管法实验操作简单,数据重复性好,在大多数高分子材料研发及相关质量控制中都起到关键作用,尤其是ZVISCO自动乌氏黏度仪因其自动化程度高,节省人力的同时进一步提高了实验数据的可靠性。以IV2000系列自动乌氏黏度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度可达180℃。3. 测试过程IV2000系列自动乌氏黏度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可达到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV2000系列自动乌氏黏度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。
  • 自动乌氏黏度仪在羟丙甲基纤维素中的应用
    羟丙基甲基纤维素(hydroxypropyl methyl cellulose),亦有简化作羟丙甲纤维素(缩写作HPMC),是属于非离子型纤维素混合醚中的一个品种。它是一种半合成的、不活跃的、黏弹性的聚合物,常于工业助剂、眼科学用润滑剂,又或在口服药物中充当辅料或赋型剂。在工业领域中,羟丙甲基纤维素的主要用途是为聚氯乙烯生产中做分散剂,系悬浮聚合制备PVC的主要助剂。另外,在其他石油化工、涂料、建材、除漆剂、化妆品等产品生产中,羟丙甲基纤维素也可作增稠剂、稳定剂、保水剂、成膜剂等。在合成树脂领域,添加羟丙甲基纤维素可使获得的产品具有颗粒规整、疏松、视比重适宜,加工性能优良等特点。羟丙甲基纤维素在生产和研发中关键的指标是分子量,根据分子量不同,羟丙甲基纤维素制品可用于不同的用途,低分子量级别(分子量100000)的羟丙甲基纤维素可用作片剂骨架的阻滞剂、有延缓药物释放的作用。目前羟丙甲基纤维素分子量常用的测试方式是乌氏毛细管法,乌氏毛细管法实验操作简单,数据重复性好,在大多数高分子材料研发及相关质量控制中都起到关键作用,尤其是ZVISCO自动乌氏黏度仪因其自动化程度高,节省人力的同时进一步提高了实验数据的可靠性。以IV2000系列自动乌氏黏度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度可达180℃。3. 测试过程IV2000系列自动乌氏黏度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可达到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV2000系列自动乌氏黏度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。
  • 加拿大发布十溴联苯醚和六溴环十二烷限制提案
    据CHEMICAL WATCH网站消息,近日,加拿大环境部公布了一份对多溴联苯醚(PBDEs)的限制提案。该提案认为十溴联苯醚可在有机体内大量累积,并可能转化成生物蓄积毒性或潜在生物蓄积毒性物质,对有机体高度有害。但溴化阻燃剂行业协会(BSEF)对此结论并不认同,特别是在十溴联苯醚的脱溴相关问题上,两者分歧十分严重。   加拿大政府于今年3月公布的多溴联苯醚风险管理修正策略在经过60天的公众评议后,现在做出最终决策论断:   按照加拿大环境保护法(CEPA)要求,需立即正式禁止制造、使用、销售和进口产品中的四溴、五溴、六溴二苯醚及所有多溴联苯醚。使用、销售和进口领域的禁令扩大到七溴、八溴、九溴和十溴联苯醚同类及所有树脂类或含有这些物质的聚合物。   禁止使用、销售和进口含四溴到十溴联苯醚超过0.1%的所有新产品。   加强联邦环境质量手册对多溴联苯醚的检测。   对包括含有多溴联苯醚及相关成分的堆填区、焚化炉和回收设施制定风险管理战略措施。   检测加拿大民众对于多溴联苯醚的暴露情况和空气中的多溴联苯醚浓度。   此外,加拿大环境部还针对六溴环十二烷(HBCD)发布了一份评估筛选报告草案和一份风险管理范围文件,两份文件的公众评议日期皆为60天,截至日期为10月27日。   BSEF协会还补充说,加拿大现在发布的六溴环十二烷筛选评估和风险控制范围报告即表示支持聚苯乙烯保温泡沫在联合国和欧盟整体过渡阶段授权使用六溴环十二烷。
  • 科“谱”时刻 | 持久性有机污染物六溴环十二烷(HBCDD)知多少?
    质谱技术在多个科研领域都扮演着重要角色。禾信仪器以质谱为主业发展近20年,各式各样的产品被广泛应用于环境监测、食品安全及犯罪调查等。公众号开设“科‘谱’时刻”专栏,带您深入探索质谱技术原理、常见应用领域及最新研究进展,一起跨入质谱技术的奇妙世界。什么是持久性有机污染物?“持久性有机污染物”是Persistent Organic Pollutants的中文翻译,英文简称“POPs”,是指“持久存在于环境中、在生物体中积累并对我们的健康和环境构成风险的有机物质。它们可以通过空运、水运或迁徙物种穿越国际边界,到达从未生产或使用过它们的地区。”(定义引自欧盟“POPs”法规)。为了保护全球生态环境和人类健康发展,推动持久性污染物的淘汰、限制、限排,联合国环境规划署主持国际成员国于2001年5月在瑞典首都斯德哥尔摩共同缔结了一项公约,即《关于持久性有机污染物的斯德哥尔摩公约》。欧盟POPs法规,将评估过的POPs按禁用、限制、减排、废弃分类形成清单加以管控。截止目前,POPs清单已收录31种有害物质,包含了杀虫剂(如滴滴涕)、工业有毒化学品(如多氯联苯)、工业制造中无意产生的副产物(如二噁英、呋喃)等,其中就包括六溴环十二烷(HBCDD)。POPs清单中管控的HBCDD(包含主要的非对应异构体)HBCDD的危害与控制一.性质与危害①分子式:C12H18Br6,溴含量高达74.7%;②熔点:175℃-195℃;超过240℃会脱溴裂解;③不溶于水,易溶于丙酮、甲苯等有机溶剂;④自然界常见的有α,β,γ-HBCDD三种异构体;HBCDD不同结构式⑤在光、热下稳定,具有优异的阻燃性能,常被用于家具装饰材料、电子产品、泡沫纺织等聚合材料中;⑥一种合成物质,难降解,可远距离传输,具有生物累积性,可造成人体器官衰竭。二.相关管控法规①《关于持久性有机污染物的斯德哥尔摩公约》;②POPs法规(EU)2019/2021;③ 欧盟RECHA法规,SVHC候选清单;④中国重点管控新污染物清单(2023版)。测定HBCDD的方法有哪些?HBCDD的测定常用气相色谱质谱法和液相色谱质谱联用法,提取方法有索氏提取法、超声提取法、微波辅助萃取法、加速溶剂萃取法、超临界流体萃取技术等。下表中列出几种常见的标准方法。HBCDD测定的不同方法禾信仪器测定HBCDD解决方案禾信仪器拥有GCMS和LC-TQ系列产品,并有众多提高前处理效率的自动化浓缩设备和固相萃取设备,可以满足以上不同聚合物材质的检测需求。
  • 910万!广东省公安厅2023-100禁毒检测试剂消耗品采购项目
    一、项目基本情况项目编号:0809-2341GDG14250项目名称:广东省公安厅2023-100禁毒检测试剂消耗品采购项目采购方式:公开招标预算金额:9,104,695.90元采购需求:合同包1(依托咪酯快检试剂):合同包预算金额:2,400,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1化学试剂和助剂吗啡、甲基安非他明、氯胺酮、依托咪酯(4合1)检测试剂(胶体金法)80,000(人份)详见采购文件2,400,000.00-本合同包不接受联合体投标合同履行期限:合同服务期为一年。当1年合同服务期满或货物总额累计结算达到各包组的每年预算金额时先到为准,服务合同自动终止。合同包2(毒品标准品及对照品):合同包预算金额:1,327,726.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)2-1化学试剂和助剂吗啡一水合物3(瓶)详见采购文件1,764.00-2-2化学试剂和助剂甲卡西酮外消旋体盐酸盐3(瓶)详见采购文件3,186.00-2-3化学试剂和助剂苯丙胺盐酸盐3(瓶)详见采购文件1,764.00-2-4化学试剂和助剂可待因3(瓶)详见采购文件1,764.00-2-5化学试剂和助剂替苯丙胺盐酸盐3(瓶)详见采购文件2,175.00-2-6化学试剂和助剂去氧麻黄碱外消旋体盐酸盐3(瓶)详见采购文件1,764.00-2-7化学试剂和助剂二亚甲基双氧安非他明盐酸盐3(瓶)详见采购文件2,175.00-2-8化学试剂和助剂氟胺酮3(瓶)详见采购文件5,850.00-2-9化学试剂和助剂4-甲氧基甲基苯丙胺盐酸盐3(瓶)详见采购文件4,746.00-2-10化学试剂和助剂盐酸去甲氯胺酮3(瓶)详见采购文件3,675.00-2-11化学试剂和助剂去甲芬太尼盐酸盐一水合物3(瓶)详见采购文件4,800.00-2-12化学试剂和助剂苯甲酰爱康宁3(瓶)详见采购文件1,764.00-2-13化学试剂和助剂氯胺酮3(瓶)详见采购文件1,764.00-2-14化学试剂和助剂盐酸曲马多3(瓶)详见采购文件4,500.00-2-15化学试剂和助剂瑞芬太尼盐酸盐3(瓶)详见采购文件5,952.00-2-16化学试剂和助剂哌替啶盐酸盐3(瓶)详见采购文件1,764.00-2-17化学试剂和助剂去环丙甲基丁丙诺啡3(瓶)详见采购文件14,256.00-2-18化学试剂和助剂可卡因3(瓶)详见采购文件1,764.00-2-19化学试剂和助剂麦角二乙胺3(瓶)详见采购文件4,800.00-2-20化学试剂和助剂芬太尼盐酸盐3(瓶)详见采购文件1,410.00-2-21化学试剂和助剂丁丙诺啡盐酸盐3(瓶)详见采购文件15,840.00-2-22化学试剂和助剂舒芬太尼3(瓶)详见采购文件4,416.00-2-23化学试剂和助剂5-二甲基-3,3-二苯基氮杂戊环高氯酸盐3(瓶)详见采购文件2,646.00-2-24化学试剂和助剂美沙酮盐酸盐3(瓶)详见采购文件1,764.00-2-25化学试剂和助剂芬特明盐酸盐3(瓶)详见采购文件3,660.00-2-26化学试剂和助剂羟考酮3(瓶)详见采购文件4,560.00-2-27化学试剂和助剂安非拉酮盐酸盐3(瓶)详见采购文件9,030.00-2-28化学试剂和助剂替来他明盐酸盐3(瓶)详见采购文件4,320.00-2-29化学试剂和助剂乙基去甲氟胺酮盐酸盐3(瓶)详见采购文件7,950.00-2-30化学试剂和助剂2-(乙氨基)-2-苯基环己-1-酮盐酸盐3(瓶)详见采购文件12,780.00-2-31化学试剂和助剂地佐辛盐酸盐一水合物3(瓶)详见采购文件13,050.00-2-32化学试剂和助剂甲胺酮盐酸盐3(瓶)详见采购文件11,940.00-2-33化学试剂和助剂哌醋甲酯盐酸盐3(瓶)详见采购文件2,865.00-2-34化学试剂和助剂依托咪酯3(瓶)详见采购文件2,925.00-2-35化学试剂和助剂甲喹酮3(瓶)详见采购文件4,260.00-2-36化学试剂和助剂地芬诺酯盐酸盐3(瓶)详见采购文件12,570.00-2-37化学试剂和助剂N-(1-氨甲酰基-2,2-二甲基丙基)-1-丁基吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-38化学试剂和助剂N-(1-氨甲酰基-2,2-二甲基丙基)-1-(4-戊烯基)吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-39化学试剂和助剂3,3-二甲基-2-[1-(4-氟丁基)吲哚-3-甲酰氨基]丁酸甲酯3(瓶)详见采购文件11,550.00-2-40化学试剂和助剂2-[1-(4-氟苄基)-1H-吲哚-3-甲酰氨基]-3-甲基丁酸甲酯3(瓶)详见采购文件11,550.00-2-41化学试剂和助剂N-(1-甲基-1-苯基乙基)-1-(4-氰基丁基)吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-42化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3,3-二甲基丁酸甲酯3(瓶)详见采购文件11,550.00-2-43化学试剂和助剂N-(1-乙氧基羰基-2-甲基丙基)-1-(5-氟戊基)吲哚-3-甲酰胺3(瓶)详见采购文件11,550.00-2-44化学试剂和助剂2-[1-(4-氟丁基)-1H-吲唑-3-甲酰氨基]-3,3-二甲基丁酸甲酯3(瓶)详见采购文件11,550.00-2-45化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3-苯丙酸甲酯3(瓶)详见采购文件11,550.00-2-46化学试剂和助剂N'-(1-(5-氟戊基)-2-氧代吲哚-3-亚基)苯甲酰肼3(瓶)详见采购文件11,550.00-2-47化学试剂和助剂3,3-二甲基-2-[1-(5-氟戊基)吲哚-3-甲酰氨基]丁酸乙酯3(瓶)详见采购文件11,550.00-2-48化学试剂和助剂3,3-二甲基-2-[1-(5-氟戊基)吲唑-3-甲酰氨基]丁酸甲酯3(瓶)详见采购文件7,470.00-2-49化学试剂和助剂3,3-二甲基-2-[1-(4-戊烯-1-基)-1H-吲唑-3-甲酰氨基]丁酸甲酯3(瓶)详见采购文件11,550.00-2-50化学试剂和助剂N'-(1-戊基-2-氧代吲哚-3-亚基)苯甲酰肼3(瓶)详见采购文件11,550.00-2-51化学试剂和助剂N'-(1-己基-2-氧代吲哚-3-亚基)苯甲酰肼3(瓶)详见采购文件11,550.00-2-52化学试剂和助剂3,3-二甲基-2-(1-戊基-1H-吲唑-3-甲酰氨基)丁酸乙酯3(瓶)详见采购文件11,550.00-2-53化学试剂和助剂[1-(4-氟苄基)-1H-吲哚-3-基](2,2,3,3-四甲基环丙基)甲酮3(瓶)详见采购文件6,720.00-2-54化学试剂和助剂N-(1-金刚烷基)-1-(4-氟丁基)吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-55化学试剂和助剂N-(金刚烷-1-基)-1-(5-氯戊基)-1H-吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-56化学试剂和助剂N-(金刚烷-1-基)-1-(环己基甲基)-1H-吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-57化学试剂和助剂羟基可替宁1(瓶)详见采购文件1,538.00-2-58化学试剂和助剂乙酰芬太尼1(瓶)详见采购文件1,397.00-2-59化学试剂和助剂甲氧麻黄酮1(瓶)详见采购文件749.00-2-60化学试剂和助剂去甲氟胺酮1(瓶)详见采购文件8,826.00-2-61化学试剂和助剂溴胺酮1(瓶)详见采购文件7,310.00-2-62化学试剂和助剂3-[1-(哌啶-1-基)环己基]苯酚盐酸盐1(瓶)详见采购文件1,554.00-2-63化学试剂和助剂地西泮1(瓶)详见采购文件562.00-2-64化学试剂和助剂依替唑仑1(瓶)详见采购文件8,353.00-2-65化学试剂和助剂艾司唑仑1(瓶)详见采购文件1,456.00-2-66化学试剂和助剂利多卡因盐酸盐一水合物1(瓶)详见采购文件1,058.00-2-67化学试剂和助剂盐酸甲苯噻嗪1(瓶)详见采购文件428.00-2-68化学试剂和助剂N-(1-氨基-3,3-二甲基-1-氧代丁-2-基)-1-丁基-1H-吲唑-3-甲酰胺1(瓶)详见采购文件7,084.00-2-69化学试剂和助剂3,3-二甲基-2-[1-(4-戊烯-1-基)-1H -吲唑-3-甲酰胺基]丁酸1(瓶)详见采购文件9,000.00-2-70化学试剂和助剂3,3-二甲基-2-[1-(4-丁醇)吲哚-3-甲酰氨基]丁酸甲酯1(瓶)详见采购文件9,000.00-2-71化学试剂和助剂咖啡因-D31(瓶)详见采购文件8,838.00-2-72化学试剂和助剂那可汀-D31(瓶)详见采购文件2,800.00-2-73化学试剂和助剂N-蒂巴因-D31(瓶)详见采购文件3,276.00-2-74化学试剂和助剂罂粟碱-D61(瓶)详见采购文件3,276.00-2-75化学试剂和助剂舒芬太尼-D51(瓶)详见采购文件9,000.00-2-76化学试剂和助剂去甲氟胺酮-D41(瓶)详见采购文件6,375.00-2-77化学试剂和助剂地西泮-D51(瓶)详见采购文件506.00-2-78化学试剂和助剂羟基可替宁1(瓶)详见采购文件1,538.00-2-79化学试剂和助剂去甲乙酰芬太尼盐酸盐一水合物1(瓶)详见采购文件1,648.00-2-80化学试剂和助剂4-苯胺基-N-苯乙基哌啶二盐酸盐一水合物1(瓶)详见采购文件5,860.00-2-81化学试剂和助剂可替宁3(瓶)详见采购文件3,000.00-2-82化学试剂和助剂吗啡-D33(瓶)详见采购文件18,000.00-2-83化学试剂和助剂O6-单乙酰吗啡-D33(瓶)详见采购文件18,000.00-2-84化学试剂和助剂去氧麻黄碱外消旋体盐酸盐-D53(瓶)详见采购文件7,788.00-2-85化学试剂和助剂苯丙胺-D53(瓶)详见采购文件36,000.00-2-86化学试剂和助剂氯胺酮-D43(瓶)详见采购文件22,500.00-2-87化学试剂和助剂去甲氯胺酮-D43(瓶)详见采购文件22,500.00-2-88化学试剂和助剂3,4-亚甲二氧基甲基苯丙胺-D53(瓶)详见采购文件18,000.00-2-89化学试剂和助剂3,4-亚甲二氧基苯丙胺-D53(瓶)详见采购文件22,500.00-2-90化学试剂和助剂可卡因-D33(瓶)详见采购文件18,000.00-2-91化学试剂和助剂苯甲酰爱康宁-D33(瓶)详见采购文件18,000.00-2-92化学试剂和助剂四氢大麻酸-D33(瓶)详见采购文件22,500.00-2-93化学试剂和助剂可替宁-D33(瓶)详见采购文件18,000.00-2-94化学试剂和助剂甲卡西酮-D33(瓶)详见采购文件22,500.00-2-95化学试剂和助剂氟胺酮-D43(瓶)详见采购文件19,125.00-2-96化学试剂和助剂PMMA-D33(瓶)详见采购文件19,350.00-2-97化学试剂和助剂芬太尼-D5盐酸盐3(瓶)详见采购文件7,680.00-2-98化学试剂和助剂去苯乙基芬太尼-D53(瓶)详见采购文件18,000.00-2-99化学试剂和助剂去苯乙基乙酰芬太尼-13C63(瓶)详见采购文件35,607.00-2-100化学试剂和助剂4-ANPP-D53(瓶)详见采购文件36,000.00-2-101化学试剂和助剂可待因-D63(瓶)详见采购文件36,000.00-2-102化学试剂和助剂美沙酮-D33(瓶)详见采购文件18,000.00-2-103化学试剂和助剂曲马多-D33(瓶)详见采购文件25,950.00-2-104化学试剂和助剂钯ICP标准液1(瓶)详见采购文件612.10-2-105化学试剂和助剂银ICP标准液1(瓶)详见采购文件388.02-2-106化学试剂和助剂金ICP标准液1(瓶)详见采购文件612.10-2-107化学试剂和助剂铅ICP标准液1(瓶)详见采购文件611.93-2-108化学试剂和助剂汞ICP标准液1(瓶)详见采购文件611.93-2-109化学试剂和助剂磷ICP标准液1(瓶)详见采购文件351.02-2-110化学试剂和助剂1-苄基-1H-咪唑-5-羧酸1(瓶)详见采购文件1,200.00-2-111化学试剂和助剂碘化钾1(瓶)详见采购文件92.90-2-112化学试剂和助剂甲醇中D-依托咪酯溶液3(瓶)详见采购文件900.00-2-113化学试剂和助剂甲醇中D-依托咪酯-D5溶液3(瓶)详见采购文件6,900.00-2-114化学试剂和助剂甲醇中依托咪酯酸溶液3(瓶)详见采购文件2,700.00-2-115化学试剂和助剂海洛因3(瓶)详见采购文件9,699.00-2-116化学试剂和助剂氯胺酮1(瓶)详见采购文件2,613.00-2-117化学试剂和助剂左旋甲基苯丙胺盐酸盐1(瓶)详见采购文件4,067.00-2-118化学试剂和助剂右旋甲基苯丙胺盐酸盐1(瓶)详见采购文件3,658.00-2-119化学试剂和助剂麻黄碱1(瓶)详见采购文件2,613.00-2-120化学试剂和助剂二亚甲基双氧安非他明盐酸盐1(瓶)详见采购文件2,613.00-2-121化学试剂和助剂乙酰可待因1(瓶)详见采购文件6,533.00-2-122化学试剂和助剂O3-单乙酰吗啡氨基磺酸盐1(瓶)详见采购文件5,500.00-2-123化学试剂和助剂可卡因1(瓶)详见采购文件2,613.00-2-124化学试剂和助剂吗啡一水合物1(瓶)详见采购文件2,613.00-2-125化学试剂和助剂1-苯基-2-丙酮1(瓶)详见采购文件4,800.00-2-126化学试剂和助剂3,4-亚甲基二氧苯基-2-丙酮1(瓶)详见采购文件4,800.00-2-127化学试剂和助剂胡椒醛1(瓶)详见采购文件4,800.00-2-128化学试剂和助剂N-乙酰氨基苯甲酸(N-乙酰邻氨基苯甲酸)1(瓶)详见采购文件7,060.00-2-129化学试剂和助剂邻氨基苯甲酸1(瓶)详见采购文件7,060.00-2-130化学试剂和助剂羟亚胺盐酸盐1(瓶)详见采购文件8,826.00-2-131化学试剂和助剂邻氯苯基环戊酮1(瓶)详见采购文件8,826.00-2-132化学试剂和助剂1-苯基-2-溴-1-丙酮(α-溴代苯丙酮)1(瓶)详见采购文件4,800.00-2-133化学试剂和助剂4-苯氨基-N-苯乙基哌啶1(瓶)详见采购文件5,860.00-2-134化学试剂和助剂黄樟素1(瓶)详见采购文件4,800.00-2-135化学试剂和助剂N-苯乙基-4-哌啶酮1(瓶)详见采购文件5,860.00-2-136化学试剂和助剂N-甲基-1-苯基-1-氯-2-丙胺盐酸盐1(瓶)详见采购文件4,800.00-2-137化学试剂和助剂γ-丁内酯1(瓶)详见采购文件3,768.00-2-138化学试剂和助剂3-氧-2-苯基丁腈(α-氰基苯丙酮)1(瓶)详见采购文件3,325.00-2-139化学试剂和助剂溴西泮1(瓶)详见采购文件2,613.00-2-140化学试剂和助剂可待因1(瓶)详见采购文件2,613.00-2-141化学试剂和助剂地西泮1(瓶)详见采购文件1,295.00-2-142化学试剂和助剂艾司唑仑1(瓶)详见采购文件1,786.00-2-143化学试剂和助剂美沙酮盐酸盐1(瓶)详见采购文件2,613.00-2-144化学试剂和助剂安眠酮(甲喹酮)1(瓶)详见采购文件2,613.00-2-145化学试剂和助剂Δ9-四氢大麻酚1(瓶)详见采购文件1,034.00-2-146化学试剂和助剂三唑仑1(瓶)详见采购文件3,140.00-2-147化学试剂和助剂氟胺酮1(瓶)详见采购文件4,873.00-2-148化学试剂和助剂麦角二乙胺1(瓶)详见采购文件1,600.00-2-149化学试剂和助剂芬太尼1(瓶)详见采购文件195.00-2-150化学试剂和助剂1-[1-(3-甲氧基苯基)环己基]哌啶盐酸盐1(瓶)详见采购文件8,826.00-2-151化学试剂和助剂亚甲基二氧吡咯戊酮盐酸盐1(瓶)详见采购文件8,857.00-2-152化学试剂和助剂N-甲基-N-异丙基-5-甲氧基色胺1(瓶)详见采购文件6,213.00-2-153化学试剂和助剂N-(1-氨基-3,3-二甲基-1-氧亚基丁-2-基)-1-(戊-4-烯-1-基)-1H-吲唑-3-甲酰胺 (ADB-4en-PINACA)1(瓶)详见采购文件7,084.00-2-154化学试剂和助剂3,3-二甲基-2-[1-(4-戊烯-1-基)-1H-吲唑-3-甲酰氨基]丁酸甲酯 (MDMB-4en-PINACA)1(瓶)详见采购文件7,084.00-2-155化学试剂和助剂N-(1-氨基-3,3-二甲基-1-氧亚基丁-2-基)-1-丁基-1H-吲唑-3-甲酰胺 (ADB-BUTINACA)1(瓶)详见采购文件7,084.00-2-156化学试剂和助剂1-(4-氰基丁基)-N-(2-苯基丙-2-基)-1H-吲唑-3-甲酰胺 (4CN-CUMYL-BUTINACA)1(瓶)详见采购文件7,084.00-2-157化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3-甲基丁酸乙酯 (5F-EMB-PICA)1(瓶)详见采购文件7,084.00-2-158化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3,3-二甲基丁酸甲酯 (5F-MDMB-PICA)1(瓶)详见采购文件7,084.00-2-159化学试剂和助剂2-[1-(4-氟丁基)-1H-吲唑-3-甲酰氨基]-3,3-二甲基丁酸甲酯 (4F-MDMB-BUTINACA)1(瓶)详见采购文件7,084.00-2-160化学试剂和助剂N-(1-金刚烷基)-1-(4-氟丁基)吲唑-3-甲酰胺 (4F-ABUTINACA)1(瓶)详见采购文件7,084.00-2-161化学试剂和助剂N-(1-氨甲酰基-2-甲基丙基)-1-(4-氟苄基)吲唑-3-甲酰胺 (AB-FUBINACA)1(瓶)详见采购文件2,452.00-2-162化学试剂和助剂赛洛新1(瓶)
  • 全球最大行李箱公司新秀丽多款产品多环芳香超标
    近日香港消费者委员会的一项测试报告显示,全球最大的旅游行李箱公司新秀丽(01910.HK)旗下多款行李箱手柄中检测出的多环芳香烃(PAHs)含量超标,而部分PAHs可能致癌。   在香港消费者委员会检测的新秀丽19款行李箱样本中检测出四款产品的手柄中含有PAHs,包括东京时尚、Cubelite及Westlake luggage等,其中东京时尚系列的手柄中PAHs含量更超标1800倍。   根据德国的自愿性标签计划(GS Mark)对消费品物料PAHs的限量要求,消费品若接触皮肤多于30秒,所含的PAHs总限量为10毫克/千克。上述四款产品均超出这一标准。   香港海关已建议被检测出手柄PAHs总含量较高的旅行箱代理商将有关产品下架及更换手柄。   对此,新秀丽发布公告称公司行李产品不会构成任何产品安全或健康问题,并已经随机抽取有关产品的手柄样本送交德国及香港的独立化学实验室测试PAHs含量,结果显示手柄PAHs含量明显低于香港消费者委员会的测试结果。   但新秀丽表示已从所有香港销售点撤回东京时尚行李箱,并将在香港市场为有顾虑的消费者安排更换新一代的侧手柄。   上海港汇广场新秀丽专卖店店员告诉《第一财经日报》记者,该店并无销售上述提及的几款型号的产品。截至发稿,记者一直未能拨通新秀丽在中国唯一的子公司——新秀丽国际贸易(宁波)有限公司的电话。   北京对外经贸大学奢侈品研究中心执行主任周婷表示,其注意到近一年来高端品牌在中国质量问题频繁爆出,例如零配件质量问题、皮具质量问题等。她指出:“现在一些高端品牌在中国忙于铺渠道打知名度,却忽视了品质的优异。也有些高端品牌在中国的发展过于追求速度和量,导致生产体系监控不严格,售后服务也跟不上。”   “特别地,那些在中国有代工的品牌在中国的质量问题尤其突出。”周婷强调。据相关报道,新秀丽78%的生产业务集中在中国内地。   新秀丽财报显示,公司在2011年销售净额创历史新高达到15.65亿美元,而亚洲成为新秀丽增长最快及获利最高的区域。其中中国的销售净额增长57.4%。
  • 应用速递:药物安全—缬沙坦制剂中亚硝胺杂质的测定
    背景介绍缬沙坦是血管紧张素II受体阻滞剂(ARB)、联苯四氮唑结构的沙坦类化合物,用于各类轻中度高血压的治疗,尤其适用于ACE抑制剂不耐受的患者。2018年7月,药品监管部门首次在含有缬沙坦的产品中发现亚硝胺杂质——N二甲基亚硝胺(NDMA)。随后在沙坦类其他药物和雷尼替丁中都检测到各类亚硝胺杂质,例如N-二乙基亚硝胺(NDEA)、N-二异丙基亚硝胺(NDIPA)、N-乙基异丙基亚硝胺(NEIPA)和N-亚硝基二丁胺 (NDBA)。因此,对使用缬沙坦原料药的药品进行了全球召回,导致缬沙坦药品暂时短缺。 图1 N-亚硝胺的分子结构 根据世界卫生组织 (WHO) 的国际癌症研究机构 (IARC)的研究,大多数亚硝胺会对动物和人类具有致癌和遗传毒性。沙坦类药物大多含有四唑环,四唑环的形成需要亚硝酸钠;药物的生产设备、生产用试剂和溶剂(例如普通溶剂DMF中的二甲胺)也可能会带来污染,都有可能形成亚硝胺。欧洲药典 (Ph. Eur.) 委员会将 API 中亚硝胺的临时限值设定为低于 1 ppm,且于2020年底降至30 ppb。 低限值设定就需要使用灵敏度高和选择性好的分析方法。本应用参照美国FDA指南的方法进行优化,通过GC/MS/MS在EI源 MRM模式下痕量检测缬沙坦药品中的5种亚硝胺杂质 (NDMA、NDEA、NEIPA、NDIPA 和 NDBA),并根据USP要求进行方法学验证。 实验条件GC-MS/MS 方法检测不同的亚硝胺化合物,使用液体直接进样方式。与FDA方法相比,选择了膜厚更薄(0.5µm而不是1µm)的Supelcowax® 柱,符合USP通则中色谱法的规定。色谱条件以及质谱条件见表1-3。 表1 色谱条件色谱柱SUPELCOWAX® 10, 30 m x 0.25 mm I.D., 0.5µm (24284)检测器MS/MS进样口温度250℃柱温箱程序40℃保持0.5min,20℃/min至200℃, 60℃/min 至250℃保持3min载气及流速氦气,1.0mL/min衬管4 mm单径锥衬管带玻璃棉进样量2 µL进样模式脉冲不分流样品稀释剂二氯甲烷样品制备使用切片工具,取药片的四分之一放入15mL离心管,加入5mL二氯甲烷。将样品涡旋1分钟,并置于离心机中以4000 rpm离心2.5min。取二氯甲烷层上清液2mL,用0.45µm PVDF膜过滤。取续滤液0.5mL到2mL样品小瓶中并加盖。标准溶液二氯甲烷作为溶剂,配制得到浓度分别2.5、5.0、10、20、40、80、100ng/mL的5种亚硝胺(NDMA/NDEA/NEIPA/NDIPA/NDBA)校准溶液。 表2 质谱条件调谐自动调谐离子源及采集模式EI源,MRM碰撞气体氮气 @ 1.5mL/min淬灭气体氦气@ 4.0mL/min 溶剂延迟7 min离子源温度230°C四极杆温度150°C电离电压70 eV驻留时间50 ms 表3 MRM 离子对参数列表峰化合物Transition保留时间1N二甲基亚硝胺MRM274→426.952N二甲基亚硝胺MRM174→446.9522N-二乙基亚硝胺MRM 1102→857.533N-二乙基亚硝胺MRM2102→567.5283N-乙基异丙基亚硝胺MRM1116→997.784N-乙基异丙基亚硝胺MRM271→567.7874N-二异丙基亚硝胺MRM1130→427.971N-二异丙基亚硝胺MRM2130→887.9765N-亚硝基二丁胺MRM1158→999.497N-亚硝基二丁胺MRM284→569.494 五种亚硝胺化合物在10分钟内完全分离,且目标峰与溶剂和基质杂质得到了很好的分离(图 2)。由于使用了0.5µm膜厚的色谱柱,与 FDA 方法相比,分离时间更短。图2:40 ng/mL系统适用性溶液色谱图,峰表见表3.实验得出:N-二乙基亚硝胺(NDEA)和N-二异丙基亚硝胺(NDIPA)的多反应监测MRM Transition最低检测限浓度为2.5ppb,如图3所示。图3 NDEA(上图)和 NDIPA(下图)最低检测限谱图 方法适用性经验证的 FDA-OTR 方法要求 40 ng/mL 标准品六次重复进样的 RSD%≤ 5%。 使用我们的方法,连续6次进样 40 ng/mL 的5种亚硝胺杂质,在两种 MRM 下的 RSD%远小于 5,如表4所示。化合物MRM1 RSD%MRM2 RSD% N二甲基亚硝胺1.81.3N-二乙基亚硝胺1.11.1N-乙基异丙基亚硝胺4.21.5N-二异丙基亚硝胺0.92.2N-亚硝基二丁胺4.33.0表4 40ng/mL 亚硝胺标准品连续六次进样的精密度此外,线性校准曲线的相关系数R2应≥ 0.998。本方法中五种亚硝胺杂质的两个 MRM都超过了这一标准(表 5)。杂质MRM 1MRM 2N二甲基亚硝胺0.99940.9995N-二乙基亚硝胺0.99910.9995N-乙基异丙基亚硝胺0.99950.9995N-二异丙基亚硝胺0.99960.9994N-亚硝基二丁胺0.99830.9981表5 两种MRM定量中两种亚硝胺的相关系数 (R2)缬沙坦制剂中亚硝酸胺的检测在药店购买的缬沙坦药品中加入亚硝胺杂质,浓度为10 ppb(NDBA为40 ppb),5种亚硝胺的回收率在94.5%~105.7%之间。(表6)。杂质10ppb回收率NDMA99 %NDEA103.5 %NEIPA94.5 %NDIPA103.9 %NDBA105.7 %表6缬沙坦药品中5种亚硝胺的加标回收率对于缬沙坦药品中5种亚硝胺的检测,OTR 方法的定量限 (LOQ) 范围是 8 – 40 ppb,本实验方法的 LOQ见表 7。 LOQ 是根据每种化合物校准曲线信噪比 (S/N) 为 10 浓度计算得出的,并且通过缬沙坦片剂的标准添加实验进行了验证。 检出限LOD是信噪比 (S/N) 为 3 的浓度计算得到 。杂质FDA方法 LOQ [ppb]本实验方法LOQ [ppb]NDMA133NDEA85NEIPA83NDIPA85NDBA4032表7 OTR和实验方法LOQ结果结论综上,参考FDA 建议方法,使用 SUPELCOWAX® 色谱柱通过 GC-MS/MS在 MRM 模式下可以轻松实现亚硝胺杂质的测定。所有亚硝胺化合物之间以及与溶剂和基质峰的分离良好,满足所有系统适用性要求。 该方法已成功应用于缬沙坦药物中亚硝胺类杂质的分析。 相关产品描述货号链接SUPELCOWAX® 10 气相毛细管柱30 m × 0.25 mm,0.50 μm24284 https://www.sigmaaldrich.cn/CN/zh/product/supelco/24284 SupraSolv® GC-MS二氯甲烷 1.00668 https://www.sigmaaldrich.cn/CN/zh/product/mm/100668 N二甲基亚硝胺NDMA认证参考物质 5000 µg/mL甲醇溶液CRM40059 https://www.sigmaaldrich.cn/CN/zh/product/supelco/crm40059N-二乙基亚硝胺NDEA 认证参考物质 5000 µg/mL甲醇溶液40334 https://www.sigmaaldrich.cn/CN/zh/product/supelco/40334N-亚硝基二丁胺NDBA 分析标准品442685 https://www.sigmaaldrich.cn/CN/zh/product/supelco/442685 N-乙基异丙基亚硝胺NEIPA EP标准品Y0002262 https://www.sigmaaldrich.cn/CN/zh/product/supelco/y0002262N-二异丙基亚硝胺NDIPA EP 标准品Y0002263 https://www.sigmaaldrich.cn/CN/zh/product/supelco/y0002263
  • 老板再也不用担心我的多肽合成 ---来阿拉丁一站式购齐所需试剂和容器
    ALADDIN的优势多肽在基础生理学、生物化学和医药研究,尤其是医药行业新药筛选中起关键作用,新的短链肽和模拟肽在新药研发中为新药提供了较强的生物活性和蛋白酶水解抗性。短肽还可以作为分子探针,更好的阐述生物系统的功能。因此肽合成在化学生物学领域所占份额越来越大。阿拉丁为你提供高质固相和液相肽合成的一站式服务,包括带有Fmoc、Boc和Cbz保护基团的天然或非天然氨基酸合成砌块、偶联试剂、预装树脂、Linker、N-保护试剂。产品列表多肽固相合成管固相多肽合成预装树脂N-保护试剂耦合试剂Fmoc修饰的氨基酸及氨基酸衍生物列表Boc修饰的氨基酸及氨基酸衍生物列表更多相关产品耗材产品列表多肽固相合成管货号品名包装容量外径螺纹口砂板孔隙度P3597-01-1EAP3597-01 多肽固相合成管1个25ml25mm25G2P3597-02-1EAP3597-02 多肽固相合成管1个25ml25mm25G3 试剂产品列表固相多肽合成预装树脂货号品名规格包装 A116077Fmoc-Arg(Pbf)-Wang resin100-200 mesh, 1%DVB1g,5g,25g A116080Fmoc-Asn(Trt)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.41g,5g,25g A116082Fmoc-Asp(OtBu)-王氏树脂100-200 mesh, 1%DVB,Substitution 0.1g,5g,25g A118255Fmoc-氨基酸-王树脂100-200 mesh, 1%DVB,Substitution 0.3-0.8mmol/g5g,25g A118270AminoMethyl Polystyrene Resin0.5~1.5mmol/g, 100~200 mesh5g,25g,100g C110262氯甲基化聚苯乙烯树脂1% DVB交联 1.0~1.24mmol/g , 100~200 mesh, 1% DVB5g,25g,100g C1182692-Chlorotrityl Chloride Resin0.8-1.5mmol/g, 100~200 mesh5g,25g,100g G116092Fmoc-Glu(OtBu)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.1g,5g G116094Fmoc-Gly-Wang resin100-200 mesh, Substitution 0.3-0.8mmol/g5g,25g L116104Fmoc-Leu-王氏树脂100-200 mesh, Substitution 0.3-0.8mmol/g5g,25g L116107Fmoc-Lys(Boc)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-1g,5g,25g M118256Fmoc-Met-王氏树脂100-200 mesh, 1%DVB,Substitution 0.3-0.1g,5g,25g M118275MBHA Resin0.3~0.8mmol/g, 100~200 mesh, 1% DVB1g,5g,25g P118257Fmoc-D-Phe-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-0.5g,25g P118258Fmoc-Phe(4-Cl)-Wang resin100-200 mesh, 1%DVB1g,5g,25g P118261Fmoc-Pro-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-0.8m5g,25g R118279Rink Amide-AM Resin 0.3~0.8mmol/g, 100~200 mesh, 1% DVB1g,5g,25g R118280聚合物键合型 Rink 酰胺 4-甲基二苯甲胺0.3~0.8mmol/g, 100~2001g,5g,25g S118282Sieber 酰胺树脂0.3~0.8mmol/g, 100~200 mesh, 1% DVB5g,25g,100g T118264Fmoc-Thr(tBu)-王氏树脂100-200 mesh, 1%DVB,Substitution 0.31g,5g,25g T118267Fmoc-Tyr(tBu)-Wang resin100-200 mesh, 1%DVB,Substitution 0.5g,25g T118281Fmoc-Threoninol(tBu) DHP HM Resin 0.3~0.8mmol/g, 100~200 mes5g,25g V118268Fmoc-Val-Wang resin100-200 mesh, 1%DVB,Substitution 0.3-0.85g,25gN-保护试剂氨基保护是合成化学和肽合成中必须部分,有效的保护基团可以从合成的化合物易于添加和除去。货号品名规格cas号包装 B105737氯甲酸苄酯 96%,含约 0.1% 碳酸钠稳定剂501-53-125g,100g,500g,2.5kg D106158二碳酸二叔丁酯 98%24424-99-525g,100g,500g,1kg D106159二碳酸二叔丁酯 99%24424-99-525g,100g,1kg D106160二碳酸二叔丁酯 96%24424-99-5100g,500g F1061739-芴甲基-N-琥珀酰亚胺基碳酸酯 98%82911-69-15g,25g,100g F113338芴甲氧羰酰胺 99%84418-43-95g,25g,100g I105738氯甲酸异丁酯 98%543-27-125g,100g,500g耦合试剂由于肽合成中较低的消旋化是固相肽合成的一个关键指标,阿拉丁为你提供各种高质量偶联试剂,包括碳化二亚胺、脲类和磷型的偶联试剂,可以快速、有效和无消旋的缩合货号品名规格cas号包装 A1133452-(7-氮杂苯并三氮唑)-N,N,N' ,N' -四甲基脲四氟硼酸盐 98%873798-09-55g,25g,100g B106161卡特缩合剂 98%56602-33-65g,25g,100g,500g B1093122-溴-1-乙基吡啶四氟硼酸盐 98%878-23-95g,25g B113336溴代三(二甲基氨基)磷鎓六氟磷酸盐 98%50296-37-21g,5g,25g B113343三吡咯烷基溴化鏻六氟磷酸盐 98%132705-51-21g C109314N,N' -羰基二咪唑 &ge 97.0% (T)530-62-12.5kg,25g,100g,500g C109315N,N' -羰基二咪唑 99%530-62-11kg C113337N,N' -羰基二(1,2,4-三氮唑) 96%41864-22-65g,25g,100g H1061761-羟基苯并三唑一水合物 &ge 97.0%123333-53-925g,100g,250g,500g H1061773-羟基-1,2,3-苯并三嗪-4(3H)-酮 98%28230-32-25g,25g,100g H106354N-羟基邻苯二甲酰亚胺 98%524-38-92.5kg,25g,100g,500g H1093281-羟基-7-偶氮苯并三氮唑 99%39968-33-75g,25g,100g,500g H109329N-羟基-5-降冰片稀-2,3-二酰亚胺 99%21715-90-210g,50g,250gH109330N-羟基琥珀酰亚胺 98%6066-82-62.5kg,25g,100g,500g H109337N-羟基硫代琥珀酰亚胺 钠盐 98%106627-54-71g,5g,25g N102772N-琥珀酰亚胺基-N-甲基氨基甲酸酯 97%18342-66-05g,25g N113351TNTU 98%125700-73-41g,5g,25g,100g C113347多肽试剂TCTU 98%330641-16-25g,25g,100g C1171602-氯-1,3-二甲基咪唑六氟磷酸盐 98%101385-69-71g,5g,25g D1028482-(2-吡啶酮-1-基)-1,1,3,3-四甲基脲四氟硼酸盐 99%125700-71-21g,5g,25g D106162N,N' -二异丙基碳二酰亚胺(DIC) 98%693-13-010ml,25ml,100ml,500ml D106171N,N' -琥珀酰亚胺基碳酸酯 98%74124-79-15g,25g,100g D106284N,N-二甲基丙烯基脲(DMPU) 99%7226-23-525g,100g,500g D109331二吡咯烷基(N-琥珀酰亚氨氧基)碳六氟磷酸盐 98%207683-26-91g,5g,25g O113352TOTT 98%255825-38-85g,25g,100g P1091051-苯基-3-甲基-5-吡唑啉酮 99%89-25-82.5kg,100g,500g W111795伍德沃德氏试剂K 98%4156-16-51gFmoc修饰的氨基酸及氨基酸衍生物列表货号品名规格cas号包装 A107817Fmoc-L-天冬氨酸 4-烯丙酯 98%146982-24-31g,5g,25g A140203N-Fmoc-8-氨基辛酸 &ge 98.0%(HPLC)126631-93-41g,5g B116715N-Boc-N' -Fmoc-D-赖氨酸 97%115186-31-75g,25g B121679N-Boc-顺式-4-Fmoc-氨基-L-脯氨酸 97%174148-03-91g,5g C115874FMOC-&beta -环己基-L-丙氨酸 98%135673-97-11g,5g,25g C115932Fmoc-Cys(Mbzl)-OH 98%136050-67-41g,5g,25g D115880N&alpha -Fmoc-L-2,3-二氨基丙酸 97%181954-34-71g,5g,25g F100409Fmoc-S-三苯甲基-L-半胱氨酸 98%103213-32-75g,25g F100413Fmoc-O-叔丁基-L-谷氨酸 98%71989-18-95g,25g F100419Fmoc-L-谷氨酸 98%121343-82-65g,25g F100746N-Fmoc-N' -Boc-L-鸟氨酸 96%109425-55-01g,5g,25g F100759Fmoc-Val-OSu 97%130878-68-15g,25g F100801Fmoc-L-天冬氨酸 98%119062-05-41g,5g,25g,100g F100805Fmoc-L-缬氨酸 98%68858-20-85g,25g,100g F100808Fmoc-L-亮氨酸 98%35661-60-05g,25g,100g F101115FMOC-L-炔丙基甘氨酸 98%198561-07-81g,5g,250mg F101121FMOC-D-炔丙基甘氨酸 96%220497-98-31g,250mg F101195Fmoc-D-烯丙基甘氨酸 96%170642-28-11g,250mgF101202FMOC-D-3-(4-吡啶基)-丙氨酸 98%205528-30-91g,5g F101214Fmoc-3-(3-吡啶基)-L-丙氨酸 98%175453-07-31g,5g,250mg F101220FMOC-L-3-(2-吡啶基)-丙氨酸 97%185379-40-21g,250mg F101223FMOC-D-3-(2-吡啶基)-丙氨酸 98%185379-39-91g,5g F101459Fmoc-2-氨基异丁酸 97%94744-50-05g,25g F101574FMOC-L-4-甲基苯丙氨酸 98%199006-54-71g,250mg F101598FMOC-L-3-甲基苯丙氨酸 98%211637-74-01g,250mg F101600FMOC-D-3-甲基苯丙氨酸 98%352351-64-51gBoc修饰的氨基酸及氨基酸衍生物列表td style="padding-left: 12px "98%货号品名规格cas号包装 B100726BOC-O-苄基-L-酪氨酸 98%2130-96-35g,25g,100g B100799Boc-L-谷氨酰胺 98%13726-85-75g,25gB101207BOC-D-3-(3-吡啶基)-丙氨酸 98%98266-33-21g,5g,250mg B101451BOC-D-丙氨酸 98%7764-95-65g,25g B101478Boc-D-酪氨酸 70642-86-31g,5g,25g,100g B101548BOC-L-4-甲基苯丙氨酸 98%80102-26-71g,5g,250mg B101595BOC-L-3-甲基苯丙氨酸 98%114873-06-21g,5g B101597BOC-D-3-甲基苯丙氨酸 98%114873-14-21g,5g B101616BOC-L-2-甲基苯丙氨酸 98%114873-05-11g B101623BOC-D-2-甲基苯丙氨酸 98%80102-29-01g B101627BOC-D-4-溴苯丙氨酸 98%79561-82-31g B101633BOC-L-2-溴苯丙氨酸 98%261165-02-0500mg B101661BOC-L-3,4-二氯苯丙氨酸 98%80741-39-51g,5g,250mg B101686BOC-L-2-氯苯丙氨酸 98%114873-02-81g,5g B101696BOC-D-2-氯苯丙氨酸 98%80102-23-45g B102424Boc-L-脯氨酸酰胺 97%35150-07-31g,5g B102427N-BOC-L-苯丙氨醛 97%72155-45-41g,250mg B102428Boc-L-脯氨醛 97%69610-41-91g,5g B1024361-(Boc-氨基)环戊烷羧酸 98%35264-09-61g,5g B102447N(&alpha )-Boc-L-2,3-二氨丙酸 97%73259-81-11g,5g B102996BOC-L-异亮氨酸 99%13139-16-75g,25g,100g B103072N-Boc-N' -Cbz-L-赖氨酸 98%2389-45-95g,25g,100g B103084N-Boc-4-氧-L-脯氨酸甲酯 97%102195-80-21g,5g,250mg B103160(S)-N-BOC-4-溴苯丙氨酸 98%62129-39-91g,5g,25g更多产品请访问阿拉丁官网
  • 生态环境部《土壤和沉积物中甲基汞和乙基汞测定》 (征求意见稿) 标准解读
    生态环境部办公厅2020年12月31日发布《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》 (环办标征函〔2020〕62号) ,我国国内第一个土壤和沉积物中甲基汞和乙基汞的测定方法标准公开征求意见。 该标准的主要起草单位是由中国环境监测总站和江苏省环境监测中心,验证单位包括:山东省生态环境监测中心、广西壮族自治区生态环境监测中心、四川省生态环境监测总站、湖南省长沙生态环境监测中心、贵阳市环境监测中心站和合肥市环境监测中心站等七家单位。为什么需要对土壤和沉积物中的甲基汞和乙基汞进行测定呢?土壤中的汞主要包括金属汞、无机化合态汞和有机化合态汞。有机化合态汞以有机汞(烷基汞)和有机络合汞普遍存在。其中烷基汞主要包括甲基汞和乙基汞;甲基汞是有机汞中毒性最大的一种形态,甲基汞很容易穿过血脑屏障,对人神经系统进行侵害,尤其对妇女和儿童有很大的影响;土壤中的甲基汞易被植物吸收,通过食物链在生物体内富集,从而暴露给人体;而土壤中的腐殖质与汞结合形成的络合物不易被植物吸收。另外,乙基汞也属于亲脂性化合物,中毒后可引起急性肠胃炎以及造成严重的肾脏损伤等。土壤和沉积物中的甲基汞和乙基汞国内是否有相关限值控制标准? 2018年6月,生态环境部与国家市场监督管理总局联合发布了《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)国家环境质量标准,该标准于2018年8月1日正式实施,标准中明确了不同类型建设用地中甲基汞的筛选值和管制值,其中甲基汞在第一类用地的筛选值为5mg/kg。 目前国内暂无涉及土壤和沉积物中乙基汞的限值控制标准。《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》内容简介原理:土壤或沉积物样品经碱液提取后,提取液中的甲基汞和乙基汞经四丙基硼化钠衍生,生成挥发性的甲基丙基汞和乙基丙基汞,经吹扫捕集、热脱附和气相色谱分离后,再高温裂解为汞蒸气,用冷原子荧光光谱仪检测。根据保留时间定性,外标法定量。 方法检出限和定量下限:当取样量为0.5 g 时,甲基汞和乙基汞的方法检出限均为0.2 μg/kg,测定下限均为0.8 μg/kg 前处理过程:分析过程:标准曲线:8 个40 ml 棕色进样瓶,分别加入实验用水约35 ml,再分别加入0 pg,2.00 pg,5.00 pg,10 pg,50 pg,100 pg,500 pg,1500 pg的甲基汞和乙基汞混合标准溶液,,然后加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液(如果只进行甲基汞的分析,可加入四乙基硼酸钠溶液进行衍生化反应),迅速加入实验用水至瓶满,不留空隙,盖紧盖子静置10 min ~15 min。实际样品:40 ml 进样瓶中加入实验用水约35 ml 至瓶颈处,取试样150 μl 至进样瓶中,依次加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液(如果只进行甲基汞的分析,可加入四乙基硼酸钠溶液进行衍生化反应),最后迅速加入实验用水至瓶满,盖紧盖子静置10 min ~15 min 上机分析:标准内部验证和外部验证均采用美国知名仪器厂家Brooks Rand公司生产的MERX全自动烷基汞分析系统:MERX全自动烷基汞分析系统异位吹扫捕集,样品满瓶式进样,衍生化效率和烷基汞分析结果不受环境空气的影响三通道Tenax 捕集阱交替捕集,效率高液体传感器,水汽进入捕集阱会报警精密流量控制,气流波动小,避免因吹扫气流量过大造成大量水汽进入吸附阱或因流量过小造成的吸附不完全甲基汞检出限可达0.002ng/L;乙基汞检出限可达0.005ng/L宽线性范围:甲基汞0.0125-50ng/L,乙基汞0.025-50ng/L残留低:高浓度样品运行后仪器残留低于2‰重复性好,数据结果可靠国内销售数量超过300家,用户的普遍选择MERX全自动烷基汞分析系统同时还是《水质烷基汞的测定吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 977-2018)的验证仪器。该仪器数据质量稳定可靠,在国内饱受好评。谱图:质量控制:空白试验:每20 个样品或每批次样品(<20 个/批)应至少做一个空白试样,空白试样的测定值应低于方法检出限(甲基汞和乙基汞的方法检出限均为0.2 μg/kg)校准:建议每次分析前均应建立工作曲线,若采用线性回归法,相关系数≥0.995;若采用响应因子法,校准系数RSD≤15%(工作曲线绘制后,每批样品测定时需要测定工作曲线中间浓度点的标准溶液,其相对误差值应该控制在±20%以内。否则,需重新绘制工作曲线)平行样:每20 个或每批次样品(<20 个/批)应至少测定一个平行双样,测定结果的相对偏差应≤30%基体加标:每20 个样品或每批次样品(<20 个/批)应至少测定一个基体加标样品或一个土壤或沉积物的有证标准物质。甲基汞加标回收率控制在75%~130%之间;乙基汞加标回收率控制在70%~120%之间标准物质测定:测定甲基汞有证标准物质的允许相对误差在﹣40%~+10%之间展望:本标准的检出限、精密度等性能指标能满足《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)的相应要求,相信该标准正式出台后,会使涉及土壤和沉积物中甲基汞和乙基汞分析检测的单位有据可依,并为相关分析检测人员提供新的思路和手段。 参考文献:1. 关于征求《土壤和沉积物 甲基汞和乙基汞的测定吹扫捕集/气相色谱-冷原子荧光光谱法》国家环境保护标准意见的通知 (链接:http://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202012/t20201231_815730.html);2. 《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》及编制说明;3. 《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)。
  • 我国将全面禁止六溴环十二烷生产与使用,您准备好了吗?
    持久性有机污染物(Persistent Organic Pollutants),简称 POPs,是指高毒性的、持久的、易于生物积累并在环境中长距离转移的化学品,这类化学品对人类健康和全球环境有着严重的危害。2001年国际社会通过《斯德哥尔摩公约》,作为保护人类健康和环境免受持久性有机污染物(POPs)危害的全球行动。公约于2004 年生效,目前有124个成员国,其中包括中国。 为履行《关于持久性有机污染物的斯德哥尔摩公约》,2016年12月26日,原环境保护部、工业和信息化部、住房和城乡建设部、原质检总局等部门联合印发《关于〈《关于持久性有机污染物的斯德哥尔摩公约》新增列六溴环十二烷修正案〉生效的公告》,并于2018年联合编制《关于持久性有机污染物的斯德哥尔摩公约》国家实施计划(增补版),明确自2021年12月26日起,禁止六溴环十二烷的生产、使用和进出口。 了落实履约任务,确保如期实现履约目标,落实工作以企业主体责任,通过加强政策宣贯,组织开展部门联合调研督导,确保自2021年12月26日起全面停止六溴环十二烷的生产和使用,并且在2021年12月26日后,企业的六溴环十二烷库存,将依据《国家危险废物名录(2021年版)》,按照危险废物进行处置。对违反非法生产、销售六溴环十二烷或含有六溴环十二烷产品的,由市场监管部门依据《产品质量法》《产业结构调整指导目录》予以处罚。 岛津六溴环十二烷检测解决方案 在检测六溴环十二烷,岛津在土壤、海洋、塑料制品、聚合物等领域有着全面的解决方案,能使用LC-MS/MS,LCMS-TOF,GC-MS等仪器对六溴环十二烷进行准确定量分析。 岛津对六溴环十二烷的全面解决方案,对企业与监管部门全面禁止六溴环十二烷生产、使用与进口以及我国履行斯德哥尔摩公约,提供强有力的帮助。 斯德哥尔摩公约延伸阅读:我国一直在为履约而努力,在2019年已经将林丹和硫丹列入禁止生产使用和进出口,并禁止全氟辛基磺酸及其盐类和全氟辛基磺酰氟除可接受用途外的生产、流通、使用和进出口。 由于斯德哥尔摩公约的增列,要求对短链氯化石蜡、十溴二苯醚、多氯萘、六氯丁二烯、五氯苯酚及其盐类和酯类、全氟辛酸(PFOA)及其盐类和相关化合物等6种类持久性有机污染物(POPs)实施禁止或限制措施,虽然目前我国暂时还未生效,但在2019年09月18日,生态环境部《关于公开征集生产、使用和替代短链氯化石蜡等6种类持久性有机污染物相关信息的通知》,短链氯化石蜡、十溴二苯醚、多氯萘、六氯丁二烯、五氯苯酚及其盐类和酯类、全氟辛酸(PFOA)及其盐类将会是后续我国重点关注的持久性有机污染物。 为了人类健康和全球环境,斯德哥尔摩公约在未来将继续增列,像德克隆、甲氧滴滴涕、UV-328等农药类与无意排放类物质,将是斯德哥尔摩公约后续关注的持久性有机污染物。
  • 卫生部公布14种食品添加剂质量规格标准
    根据《中华人民共和国食品安全法》和卫生部等9部门《关于加强食品添加剂监督管理工作的通知》(卫监督发〔2009〕89号)规定,经审核,现公布磷酸酯双淀粉等14个食品添加剂的质量规格标准。   特此公告。   附件:磷酸酯双淀粉等14个食品添加剂的质量规格标准.doc 一、磷酸酯双淀粉 项目 指标 干燥失重/(g/100g) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 磷酸盐残留量(以P计)/(%) ≤ 马铃薯和小麦淀粉0.5;其他淀粉0.4 注:用三偏磷酸钠或三氯氧磷为酯化剂 二、醋酸酯淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 乙酰基含量/(%) ≤ 2.5 乙酸乙烯酯/ (mg/kg) ≤ (仅限用乙酸乙烯酯作为酯化剂) 0.1 注:用乙酸酐作酯化剂时,其用量不超过8.0%(w/w,占淀粉干基),用乙酸乙烯酯作酯化剂时,其用量不超过7.5%(w/w,占淀粉干基)。 三、辛烯基琥珀酸淀粉钠和辛烯基琥珀酸铝淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg)≤ 20 砷/(mg/kg) (以As计) ≤ 0.5 铅/(mg/kg) ≤ 1.0 辛烯基琥珀酸基团/(%) ≤ 3.0 辛烯基琥珀酸残留量/(%) ≤ 0.3 注:生产辛烯基琥珀酸淀粉钠时,辛烯基琥珀酸酐用量不超过3.0%(占淀粉干基,w/w);生产辛烯基琥珀酸铝淀粉时,辛烯基琥珀酸酐用量不超过2.0%,硫酸铝用量不超过2.0%(均为占淀粉干基,w/w)。 四、氧化羟丙基淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 氯丙醇/(mg/kg) ≤ 1.0 羧基含量/(%) ≤ 1.1 羟丙基含量/(%) ≤ 7.0 注:用次氯酸钠作氧化剂,使用量中的有效氯不超过5.5%(占淀粉干基,w/w),用过氧化氢作氧化剂,使用量中的活性氧不超过0.45%(占淀粉干基,w/w);用环氧丙烷作醚化剂,使用量不超过25%(占淀粉干基,w/w)。 五、羧甲基淀粉钠 项目 指标 干燥失重/(%) ≤ 10 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 氯化物(以cl计)/(%) ≤ 0.43 硫酸盐(以SO4计)/(%) ≤ 0.96 注:一氯乙酸为醚化剂。 六、淀粉磷酸酯钠 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 磷酸盐残留量(以P计)/ (%) ≤ 马铃薯和小麦淀粉0.5;其他淀粉0.4 注:用正磷酸、磷酸钠、磷酸钾或三聚磷酸钠酯化。 七、氧化淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 羧基含量/(%) ≤ 1.1 注:用次氯酸钠作氧化剂,使用量中的有效氯不超过5.5%(占淀粉干基,w/w)。 八、酸处理淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 注:采用盐酸、正磷酸或硫酸处理。 九、乙酰化双淀粉己二酸酯 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 乙酰基含量/(%) ≤ 2.5 己二酸盐/(%) ≤ 0.135 注:用已二酸酐(用量占淀粉干基不超过0.12%,w/w)交联,乙酸酐(用量占淀粉干基不超过8.0%,w/w)酯化。 十、羟丙基淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/( mg/kg ) ≤ 30 重金属(以Pb计)/(mg/kg)≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 氯丙醇/(mg/kg) ≤ 1.0 羟丙基含量/(%) ≤ 7.0 注:用环氧丙烷作醚化剂(用量占淀粉干基不超过25%,w/w)。 十一、磷酸化二淀粉磷酸酯 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 磷酸盐残留量(以P计)/ (%) ≤ 马铃薯和小麦淀粉0.5;其他淀粉0.4 注:采用三聚磷酸钠和三偏磷酸钠作酯化剂。 十二、乙酰化二淀粉磷酸酯 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg)≤ 20 铅/(mg/kg) ≤ 1.0砷/(mg/kg) (以As计) ≤ 0.5 磷酸盐残留量(以P计)/ (%) ≤ 马铃薯和小麦淀粉0.14;其他淀粉0.04 乙酰基含量/(%) ≤ 2.5 乙酸乙烯酯残留量/(mg/kg) ≤ (仅限用乙酸乙烯酯作酯化剂) 0.1 注:用乙酸酐作酯化剂时,其用量不超过8.0%(w/w,占淀粉干基),用乙酸乙烯酯作酯化剂时,其用量不超过7.5%(w/w,占淀粉干基)。 十三、羟丙基二淀粉磷酸酯 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单品淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 磷酸盐残留量(以P计)/(%) ≤ 马铃薯和小麦淀粉0.14;其他淀粉0.04 羟丙基含量/(%) ≤ 7.0 氯丙醇/(mg/kg) ≤ 1.0 注:采用三氯氧磷(用量占淀粉干基不超过0.1%,w/w)或三偏磷酸钠酯化交联,环氧丙烷醚化(用量占淀粉干基不超过10%,w/w)。 十四、聚丙烯酸钠 项 目 指 标 硫酸盐(以SO4计),w/ % ≤ 0.49 重金属(以Pb计)/(mg/kg) ≤ 20.0 砷(以As计)/(mg/kg) ≤ 2.0 残存单体,w/ % ≤ 1.0 低聚合物,w/ % ≤ 5.0 干燥失重,w/ % < 6.0 烧灼残渣,w/ % ≤ 76.0 pH(0.1%水溶液) 8~10 0.2%水溶液粘度 (60rpm.20℃) 250~430 cps 注:生产工艺,丙烯酸+NaOH→中和催化剂→聚合→精制→干燥→粉碎→成品。 分送:各省、自治区、直辖市卫生厅局,新疆生产建设兵团卫生局,部直属各单位。 卫生部办公厅 2010年7月21日印发
  • 月饼文化节凸显食品安全 添加剂成隐患
    由中国焙烤食品糖制品工业协会主办的2009(第十五届)中国月饼文化节昨天在京举行,今年的中国月饼文化节的主题是“贯彻食品安全法,传承创新促发展”,凸显了食品安全的重要性。   今年是国家颁布《食品安全法》的第一年,月饼行业骨干企业发起了贯彻执行食品安全法《倡议书》。中国焙烤食品糖制品工业协会已连续9年进行了月饼质量专项抽查,合格率都在90%以上。虽然《限制商品过度包装要求食品和化妆品》国家标准明年4月才开始实施,但各主流厂商积极按新标准的要求组织生产,并注重新工艺、新品种的研发,使过度的包装得到有效遏制。   今年的月饼包装也严格控制,“以往内藏‘乾坤’的豪华月饼今年基本消失了”,中国焙烤食品糖制品工业协会理事长朱念琳告诉记者,今年的月饼过度包装得到了有效遏制,价格整体回落,包装更注重简约环保,突出月饼的文化、工艺、味道和特色,像一些品牌推出的南瓜、紫薯、香芋、玉米、木瓜等水果粗粮系列月饼,就受到了不少市民的追捧 而往年曾大热的鱼翅、鲍鱼、冬虫草等贵价月饼今年却鲜有露面。大三元去年800克容量的月饼礼盒今年足足装了1170克,重量增加了三分之一但价格不变。北京稻香村去年650克的礼盒今年装了680克,58%的月饼礼盒增加了净含量。   不过今年的月饼添加剂和标签成了新的隐患。关于添加剂问题,国家质检总局食品监管司副司长毕玉安昨天表示,一些中小企业、小作坊加工月饼使用的是复合粉,这些原料供应商都已调配好,但按照今年开始实施的食品安全法,要标注食品添加剂的量必须是复合粉中的量和加工企业添加量的总重量,但是这些小企业不可能准确地进行标示,结果往往是超量、超范围使用食品添加剂。   另一大隐患是标签标示的问题。“很多产品的标签最容易引起消费者投诉,如糖尿病人吃了高糖的月饼后病情加重引发纠纷”,毕玉安表示,这就要求有些产品在标注成分和配料表时,也应该有对特殊人群的警示语言。毕玉安透露,根据食品安全法的法规,国家质检总局制定了最新的《食品标识管理规定》,近期发布。   在会上,主办方还宣布了北京焙烤行业荣获“食品安全管理优秀企业”的企业名单,他们分别是:   北京大三元酒家有限公司   北京好利来企业投资管理有限公司   中国全聚德(集团)股份有限公司   北京全聚德仿膳食品有限责任公司   北京麦生食品有限公司   北京金凤成祥食品有限公司   北京味多美食品有限责任公司   北京二商宫颐府食品有限公司   北京市桂香春清真食品公司   北京祥聚斋食品有限公司   北京奥龙苑食品有限公司   北京聚庆斋食品有限公司   北京稻香村食品有限责任公司   北京稻香春食品有限责任公司
  • 辽宁省城镇供水排水协会立项《水质 环氧氯丙烷的测定 吹扫捕集/气相色谱-质谱法》等二项团体标准
    各团体会员、相关单位和企业:根据《中华人民共和国标准化法》、《团体标准管理规定》(国标委联[2019]1号)及《辽宁省城镇供水排水协会团体标准管理办法》要求,协会标准化管理办公室审议通过了《水质 环氧氯丙烷的测定 吹扫捕集/气相色谱-质谱法》、《食品载冷剂中缓蚀剂的缓蚀效率评价方法》、二项团体标准立项,经协会秘书处审定,通过立项,现予公告。请起草单位按照协会标准管理办法,尽快组织相关单位进行标准编写,确保按期完成标准编制任务。辽宁省城镇供水排水协会2023年8月9日关于二项团体标准制定项目立项的通知.pdf相关标准如下:水质 环氧氯丙烷的测定 吹扫捕集/气相色谱-质谱法食品载冷剂中缓蚀剂的缓蚀效率评价方法
  • 环保部、外交部等11部委公告:禁止六溴环十二烷生产使用
    环境保护部、外交部等11部委近日联合发布关于《新增列六溴环十二烷修正案》生效的公告。  公告指出,自2016年12月26日起,禁止六溴环十二烷的生产、使用和进出口。但根据《关于持久性有机污染物的斯德哥尔摩公约》,以下情形除外:用于建筑物中发泡聚苯乙烯和挤塑聚苯乙烯的(主要作为阻燃剂),在特定豁免登记的有效期内(2016年12月26~2021年12月25日),可生产、使用和进出口 用于实验室规模的研究或用作参照标准的,可生产、使用和进出口。  公告要求,各级相关部门应加强对六溴环十二烷生产、使用和进出口的监督管理。一旦发现违反公告的行为,严肃查处。  据了解,2016年7月2日,第十二届全国人大常委会第二十一次会议审议批准了上述修正案。
  • 重磅:生态环境部《土壤和沉积物 甲基汞和乙基汞的测定》 (HJ 1269—2022) 标准发布
    生态环境部办公厅2023年1月29日正式发布《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 1269—2022),该标准为我国国内第一个土壤和沉积物中甲基汞和乙基汞的测定方法标准,标准将于2023年6月16日正式实施。 该标准的主要起草单位是由中国环境监测总站和江苏省环境监测中心,验证单位包括:山东省生态环境监测中心、广西壮族自治区生态环境监测中心、四川省生态环境监测总站、湖南省长沙生态环境监测中心、贵阳市环境监测中心站和合肥市环境监测为什么需要对土壤和沉积物中的甲基汞和乙基汞进行测定呢?土壤中的汞主要包括金属汞、无机化合态汞和有机化合态汞。有机化合态汞以有机汞(烷基汞)和有机络合汞普遍存在。其中烷基汞主要包括甲基汞和乙基汞;甲基汞是有机汞中毒性最大的一种形态,甲基汞很容易穿过血脑屏障,对人神经系统进行侵害,尤其对妇女和儿童有很大的影响;土壤中的甲基汞易被植物吸收,通过食物链在生物体内富集,从而暴露给人体;而土壤中的腐殖质与汞结合形成的络合物不易被植物吸收。另外,乙基汞也属于亲脂性化合物,中毒后可引起急性肠胃炎以及造成严重的肾脏损伤等。土壤和沉积物中的甲基汞和乙基汞国内是否有相关限值控制标准? 2018年6月,生态环境部与国家市场监督管理总局联合发布了《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)国家环境质量标准,该标准于2018年8月1日正式实施,标准中明确了不同类型建设用地中甲基汞的筛选值和管制值,其中甲基汞在第一类用地的筛选值为5mg/kg。目前国内暂无涉及土壤和沉积物中乙基汞的限值控制标准。《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 1269—2022)内容简介原理:土壤或沉积物样品经碱液提取后,提取液中的甲基汞和乙基汞与四丙基硼化钠发生衍生化反应,生成挥发性的甲基丙基汞和乙基丙基汞,经吹扫捕集、热脱附和气相色谱分离后,再高温裂解为汞蒸气,用冷原子荧光光谱法测定。根据保留时间定性,外标法定量。 方法检出限和定量下限:当取样量为0.5 g 时,提取液体积为 30 ml 时,甲基汞和乙基汞的方法检出限均为0.2 μg/kg,测定下限均为0.8 μg/kg 前处理过程:分析过程:标准曲线:8 个40 ml 棕色进样瓶,分别加入实验用水约35 ml,再分别加入0 pg,2.00 pg,5.00 pg,10 pg,50 pg,100 pg,500 pg,1000 pg的甲基汞和乙基汞混合标准溶液,,然后加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液,迅速加入实验用水至瓶满,不留空隙,盖紧盖子静置20 min实际样品:40 ml 进样瓶中加入实验用水约35 ml 至瓶颈处,取试样150 μl 至进样瓶中,依次加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液,最后迅速加入实验用水至瓶满,盖紧盖子静置20 min 上机分析:标准内部验证和外部验证均采用美国知名仪器厂家Brooks Rand公司生产的MERX全自动烷基汞分析系统:异位吹扫捕集,样品满瓶式进样,衍生化效率和烷基汞分析结果不受环境空气的影响三通道Tenax 捕集阱交替捕集,效率高液体传感器,水汽进入捕集阱会报警精密流量控制,气流波动小,避免因吹扫气流量过大造成大量水汽进入吸附阱或因流量过小造成的吸附不完全甲基汞检出限可达0.002ng/L;乙基汞检出限可达0.002ng/L宽线性范围:甲基汞0.0125-50ng/L,乙基汞0.025-50ng/L残留低:高浓度样品运行后仪器残留低于2‰重复性好,数据结果可靠国内销售数量超过350家,用户的普遍选择来源:《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》编制说明第65页MERX全自动烷基汞分析系统同时还是《水质烷基汞的测定吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 977-2018)的验证仪器。该仪器数据质量稳定可靠,在国内饱受好评。 谱图:质量控制:空白试验:每20 个样品或每批次样品(<20 个/批)应至少做一个空白试样,空白试样的测定值应低于方法检出限(甲基汞和乙基汞的方法检出限均为0.2 μg/kg)校准:每次分析样品前均应建立不少于 6 个点的校准曲线,采用线性回归法计算结果,曲线的相关系数≥0.995;采用校准系数法计算结果,校准系数 CFi的相对标准偏差≤15%。每20 个样品测定一个校准曲线中间浓度点的标准溶液,其相对误差值应该控制在±20%以内,否则应重新建立校准曲线平行样:每 20 个或每批次样品(少于 20 个样品)应至少测定 1 个平行双样,平行双样测定结果的相对偏差应在±30%以内基体加标:每 20 个样品或每批次样品(少于 20 个样品)应至少测定 1 个基体加标样品或1 个有证标准物质。甲基汞加标回收率控制在 75%~130%之间;乙基汞加标回收率控制在 65%~120%之间 展望:本标准的检出限、精密度等性能指标能满足《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)的相应要求,该标准会使涉及土壤和沉积物中甲基汞和乙基汞分析检测的单位有据可依,并为相关分析检测人员提供新的手段。 参考文献:1. 土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法 (HJ 1269—2022)(链接:https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/202301/t20230128_1014026.shtml);2. 土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)及编制说明(链接:http://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202012/t20201231_815730.html);3. 土壤环境质量 建设用地土壤污染风险管控标准(试行)(GB36600—2018)。
  • 基因检测如何让你患上各种疾病
    p   我很喜欢基因科学。在中学里,我喜欢用孟德尔发现的遗传定律计算各种基因型的概率 在大学里,我惊奇地学到,地中海贫血症患者居然能抵抗疟疾 在医学院里,我对DNA的机理着迷。遗传学是一种将数学、计划生物学和生物化学神奇地组合在一起的学科。 /p p   但我对类似23andMe、deCODEme这样给健康人做基因检测的服务没什么兴趣。简单来说,基因检测就是寻找基因中的风险因素。由于每个人都有患某种病的风险,这种检测会让我们所有人都变成病患。基因组科学的迅速发展使得基因检测的项目越来越多,与此同时,我们应该质问:有多少人将会被不必要地告知自己有某种程度上的异常?我们应该对他们采取什么措施? /p p   想象一下,一位90后姑娘往样品采集器中吐了一口唾液,然后将其寄给了某家基因检测公司。几周后,姑娘收到了基于她的基因数据得到的解读报告:终生患卵巢癌风险8.5%,比普通人高4倍 心脏疾病风险40%,比普通人高1.25倍& amp #823& amp #823但并没有告诉姑娘改如何达到最佳健康状态,也不知道做什么可以保持健康。 /p p   我思考了一个重要的差别,即对人类基因科学了解更多和对你自己的基因组了解更多之间的差别。两者是完全不相关的。我完全赞同追求科学,但我非常担心个人基因检测可能带来预想之外的副作用。这些副作用的产生是因为我们认为自己懂的比我们实际懂的多。 /p p    strong 更多检查,更多干预 /strong /p p   乳腺癌风险高的女性,可能会很早就开始高频率地做乳腺X线检查。前列腺癌风向高的男性可能会很早就开始做前列腺特异性抗原检查。 /p p   乳腺癌风险高的女性,可能会服用他莫昔芬甚至切除乳腺的方式来预防 前列腺癌风险高的男士,可能会服用非那雄胺或者切除前列腺来预防。 /p p    strong 遗传学不是宿命 /strong /p p   基因检测试图不考虑环境等其他因素,仅凭基因型来预测你的表现型。对于已知的表型,比如眼睛的颜色,真的有必要再通过基因检测确定一下?如果你乳糖不耐受,超喜欢吃香菜,会因为基因检测告诉你乳糖耐受、喜欢吃香菜而改变生活习惯吗? /p p    strong 基因异常不等于疾病 /strong /p p   有些疾病是完全由基因决定的,这些是罕见的遗传病。但大部分疾病都是基因、人体和环境互作用的结果。 /p p   并不是所有的基因突变都会反映到表型上。外显率(penetrance)是衡量基因型在多大程度上能够预测表现型的指标。即使是BRCA1和BRCA2这样跟疾病密切相关的基因,其外显率只在30%~70%之间(编者注:在亚洲人中的外显率应该更低)。其他跟疾病有关的基因的外显率要远低于这个值。 /p p    strong 癌症风险高该怎么办? /strong /p p   一位20岁的男士做了基因检测,前列腺癌的风险比一般人高2.3倍,死于前列腺癌的风险高达6.9%,这个风险是否意味着应该采用预防性前列腺切除术?或者他需要开始激素治疗吗?但这会导致勃起障碍和男性乳房发育。那剩下的唯一办法就是多做检查――前列腺特异性抗原筛查。假设这个检查真的能帮你降低前列腺癌的死亡率,是不是即使你死于前列腺癌的风险只有2%,也会定期去做这个检查?那基因检测到底起了什么作用? /p p    strong “现在怎么做?” /strong /p p   我们解读基因组的能力远远领先于我们判断基于解读基因组所做的医疗干预是否有道理的能力。 /p p   让健康的人们了解他们患病的风险真的是通往健康社会的路线图吗?让年轻人在离死亡还很远的时候就关注他们可能的死因,这真的是健康的做法吗?而且基因检测不需要等到20岁才做,在怀孕时就可以给胎儿做基因检测。很讽刺的是,最健康的人群可能正是那些对自己的DNA一无所知的人。 /p
  • 欧盟拟修订大米中丙环唑的最大残留限量
    根据欧盟委员会(EC)No 396/2005法规第6节的规定,意大利收到一份来自先正达植保公司(Syngenta Crop Protection)要求修改大米中的一活性物质丙环唑(propiconazole)最大残留限量(MRL)的申请。为了与意大利范围内大米中丙环唑的最大残留限量相适应,该公司建议将大米中丙环唑的最大残留限量由现行的0.05mg/kg提高至1mg/kg。意大利依据欧盟委员会(EC)No 396/2005法规第8节的规定起草了一份评估报告,并提交至欧盟委员会,之后于2010年12月1日转至欧洲食品安全局。   欧洲食品安全局根据评估报告、评估草案、芬兰提供的附录、联合国粮农组织以及世界卫生组织农药残留会议意见等进行了审核,对丙环唑的毒理学概况进行了评审,做出如下决定: 商品代码 商品 现行MRL(mg/kg) 建议MRL(mg/kg) 建议理由 0500060 大米 0.05* 0.7 该提议的最大残留限量支持数据充分,并不会对消费者构成健康风险。理论每日最大摄入量(TDMs)的风险评估不能展开。
  • 欧盟拟提高丙环唑在多种作物中的最大残留限量
    2012年12月18日,据欧洲食品安全局消息,应欧盟委员会的要求,近日欧洲食品安全局提议修订丙环唑(PROPICONAZOLE)在葡萄柚、橘子、柠檬,酸橙、柑橘 牛、绵羊、山羊的肉、脂肪和肾脏中的最大残留限量。   据了解,依据欧盟委员会(EC)No396/2005法规第6章的规定,西班牙收到要求修订多种作物中丙环唑最大残留限量的申请。为协调丙环唑的最大残留限量(MRL),西班牙建议修订丙硫菌唑的最大残留限量。   西班牙依据欧盟委员会(EC)No396/2005法规第8章的规定对此起草了一份评估报告,并提交至欧委会,之后转至欧洲食品安全局。   欧洲食品安全局对评估报告进行评审后,做出如下决定: 商品代码 商品种类 现行MRL(mg/kg) 建议MRL(mg/kg) 0110010 葡萄柚 0.05 6 0110020 橘子 0110030 柠檬 0110040 酸橙 0110050 柑橘 1012010 1013010 1014010 牛、绵羊和山羊的肉 0.01 0.05 1012020 1013020 1014020 牛、绵羊、山羊的脂肪 0.01 0.05 1012040 1013040 1014040 牛、绵羊、山羊的肾脏 0.01 0.05
  • 欧盟发布活性物质环丙酸酰胺的执行法规
    2011年10月15日,欧盟在官方公报上发布了有关批准活性物质环丙酸酰胺的委员会执行法规(EU)1022/2011。   具体内容参考   http://www.tsinfo.js.cn/SIS/WTO/database/warn/eu-1022-2011-e.pdf
  • 傅若农:气相色谱固定液的前世今生
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。   第一讲:傅若农讲述气相色谱技术发展历史及趋势   第二讲:傅若农:从三家公司GC产品更迭看气相技术发展   第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状   气相色谱(GC)技术至今已有52年的历史了,其现在已经是相当成熟的技术。今天气相色谱仪已经相当普及,就像分析天平一样,在许多实验室都可以见到。而对于分析人员而言,气相色谱仪的操作也很简单,样品处理完以后装到进样瓶中,之后往自动进样器上一放就自动进行分析了。而这一切的实现其实是50年来无数分析人员及厂家设计制造人员的研究,借助现代科学技术集成起来的成就。但是气相色谱仪和气相色谱方法具有相当的科学内涵,值得从事气相色谱分析人员深入地去学习和领会,才能使你在长期气相色谱分析当中应付自如、游刃有余。这里我们先从气相色谱的核心气相色谱固定液谈起,本章所谈只限于液体固定相,即在工作温度下固定相以液态存在。   首先,我讲一个我自己经历的故事。1974年我们买了一台北京分析仪器厂的SP-2305 E型气相色谱仪,为了测试仪器的性能,我们就用仪器附带的、厂家事先配制好的固定液 DNP(邻苯二甲酸二壬酯)做测试,但是厂家没有在固定液的包装上注明它的最高使用温度(低于130 ℃),我们在设定温度时设定为130 ℃,结果由于固定液流失把热导池污染了,不能正常使用,没有办法只好到北京分析仪器厂又更换了热丝。后来查了文献才知道这种固定液在130 ℃就会流失。因此我意识到做气相色谱必须要了解、熟悉气相色谱固定液的性能,当然了解气相色谱固定液的性能的重要性还远不止于此,因为气相色谱固定液的性能是影响色谱分离的主要因素。   一.早期使用的气相色谱固定液   气相色谱发明人马丁(Martin)1950 年使用硅藻土(Celite)做载体,用硅油(DC 550)做固定液,用气体做流动相, 分离氨、脂肪胺和吡啶同系物。 DC 550(含25%苯基的甲基聚硅氧烷)原为工业用的耐高温硅油。   马丁使用硅油(聚硅氧烷)作气相色谱固定液以后,开辟了聚硅氧烷作气相色谱固定液的先河。但是聚硅氧烷类固定液在当时还没有占主导地位,人们更多地使用各种低分子化合物。如1956年有人提出了&ldquo 标准&rdquo 固定液:正十六烷、角鲨烷、苄基联苯、邻苯二甲酸二壬酯、二甲基甲酰胺、二缩甘油。(J.Chromatogr.Sci. 1973,11(4):216)。   后来也使用了一些高聚物用作气相色谱固定液,如聚乙二醇类,各种聚酯类,以及各类从石油提炼出来的润滑脂阿皮松-L 、阿皮松-M等。当时使用的一些聚硅氧类固定液也都是工业品,如 DC-550 、DC-710 、QF -1、 DC-11 、SE-30(聚二甲基硅氧烷),聚二甲基硅氧烷之后成为非常广泛使用的GC固定液 。   1964年又有人提出 58 个常用固定液,使用频率最高的十个固定液是阿皮松-L、SE-30、邻苯二甲酸二壬酯、角鲨烷、PEG 20M、己二酸乙二醇聚酯、PEG 400、DC 550、磷酸三甲酚酯、PEG 1500。   为了适应各种各样混合物的分离,固定液如雨后春笋地增长,在1972年出版的 &ldquo Gas Chromatographic Data Compilation DS 25 A S-1&rdquo 中收集了700多种气相色谱固定液。   在气相色谱以填充柱为主的时代,由于填充柱的柱效有限,为了能分离各类混合物,人们研究发展了上千种固定液,但是固定液量太多了又带来新的麻烦。为此,许多人致力于固定液的分类和精选最常用的固定液,最有影响的是Rohrschneider和McReynolds的固定液表,下表1是McReynolds固定液表的一部分,它发表于1970年的色谱科学杂志上(J chromatogr Sci 1970,8:685-691)。 表1 McReynolds 固定液表   说明:X' , Y' ,Z' ,U' ,S' 分别代表苯、正丁醇、2-戊酮、1-硝基丙烷、吡啶   McReynolds用10种典型化合物,苯、正丁醇、2-戊酮、1-硝基丙烷、吡啶、2-甲基2-戊醇、碘丁烷、2-辛炔、二氧六环和顺八氢化茚,在120℃柱温下测定了226种固定液上的保留指数差(△I),以前五种化合物△I之和的大小来表示固定液的极性。   McReynolds 工作的目的是为了解各种固定液的性能,选择时可以寻找性能类似的品种,减少测试比较固定液的数量。   后来Hawkes推荐的较常用的气液色谱固定液有下列一些:   (1) 聚二甲基硅氧烷 (OV-101, OV-1, SE-30 )   (2) SE-54 ( 含5%苯基和1%乙烯基的聚甲基硅氧烷)   (3) OV-7 ( 含20%苯基的聚甲基硅氧烷)   (4) OV-1701 ( 含7%苯基和7% 氰丙基的聚甲基硅氧烷)   (5) OV-17 [ 含50% 苯基的聚甲基硅氧烷(油) ]   (6) OV-17(gum)[ 含50%苯基, 2%乙烯基的聚甲基硅硅氧烷(橡胶) ]   (7) OV-25 [ 含75%苯基的聚甲基硅氧烷(油)]   (8) OV-210 [( 含50% 三氟丙基的甲基硅氧烷(油))   (9) OV-215 [含50%苯基, 2%乙烯基的聚甲基硅氧烷(橡胶)]   (10) UCON HB 5100 ( 约50/50的聚乙/丙基醚 )   (11) OV-225 ( 含25% 氰丙基﹑25% 苯基的聚甲基硅油或硅橡胶 )   (12) Superox-4 ( 高分子量的聚乙二醇, 使用温度可到300℃ )   (13) Superox-0.1 ( 聚乙二醇,使用温度可到 280℃ )   (14) Superox 20M ( 聚乙二醇, 使用温度可到 300℃)   (15) PEG-20M ( 聚乙二醇, 使用温度可到 300℃)   (16) Silar 5CP ( 含 50% 氰丙基﹑50% 苯基的聚甲基硅油 )   (17) SP-2340 (含75% 氰丙基的聚甲基硅油 )   (18) Silar 10 CP ( 含100% 氰丙基的硅油 )   (19) OV-275 ( 含 100% 氰乙基的硅油 )。   他还推荐了最常用的 6 种气相色谱固定液如下表2。 表2 最常用的6种气相色谱固定液   自从1979年弹性石英毛细管柱问世之后,毛细管气相色谱得到了迅速的发展。以毛细管柱代替填充柱的趋势日益明显,特别是1983年大内径厚液膜毛细管柱的发展和应用。而优秀的气-固色谱毛细管柱&mdash &mdash PLOT柱的出现把填充柱仅剩余的一点优势也给抵消了。   有人认为毛细管柱具有非凡的高柱效,对固定液的选择性就降低了要求,只要有三支毛细管柱(聚二甲基硅氧烷、聚乙二醇20M、氰基聚二甲基硅氧烷)就可以应付80%的分析任务。但是要解决高沸点复杂混合物、各种沸点相近的异构体,性质极为相近的光学异构体,必须要有新的、热稳定性极好的、重复性好的、有不同选择性的固定液,为此多年来研究人员合成了许名适用于毛细管柱的固定液。   二、硅氧烷是现时气相色谱固定液的主体   尽管使用和研究过的气相色谱固定液有千余种,以适应填充柱低柱效和高选择性的要求。但是对现代毛细管色谱柱而言,这些固定液合用者很少。其中尚可在毛细管色谱柱中使用的除去聚乙二醇外几乎都是聚硅氧烷类,因而在新的固定液合成中也还限于以聚硅氧烷作为骨架,同时引入不同的选择性基团。这是因为聚硅氧烷类固定液具有以下的优点:(1)热稳定性好 (2)成膜性能好 (3)玻璃化温度低,使用温度范围宽 ( 4)如在分子中有一定量的乙烯基则易于交联 (5)扩散性能好,传质阻力小,易获高柱效 (6)可在聚硅氧烷侧链上引入各种有机分子片段,调节选择性。从上世纪70年代至今,以聚硅氧烷类固定液为基础发展了一系列优秀的气相色谱固定液。   (一)热稳定性好的固定液   目前有许多高沸点复杂混合物的分离要使用耐高温的毛细管色谱柱,如石油中碳数高达100的烃类,食品中的甘油三酸酯,环境污染物中六、七环多环芳烃等,均需要热稳定性极好的固定液。过去用的固定液几乎没有能经受370℃高温的。为此近年来出现了一些可在400℃左右使用的毛细管柱固定液。   (1)耐高温聚二甲基硅氧烷   有人利用涂有聚二甲基硅氧烷的毛细管柱,在390℃下分离碳数高达90的烃类。用程序升温到430℃ ,可使100-110个碳原子的烃类流出色谱柱。   前几年VIBI公司使用窄分布的聚二甲基硅氧烷(Unimolecular Low Bleed VB-1),它的特点是纯化预聚体除去低聚物,聚硅氧烷链上有支链,减少交联剂量,使用全部交联原理把端基也纳入,使其交联行成一个网络整体,没有低分子化合物。   (2)使用交联的聚硅氧烷固定液提高其热稳定性   在毛细管柱进行原位交联(固相化)是提高液膜稳定性的重要途径,也是制备抗溶剂冲洗的必要手段。但是一些苯基含量高的聚甲基硅氧烷,如OV-17、OV-25、以及OV-225难以用引发剂使之交联,但如引入一定量的乙烯基后它们可以交联,所以在研究毛细管色谱用固定液时,往固定液分子中引入乙烯基或使用端羟基聚硅氧烷固定液。   (a)引入乙烯基   早在80年代初,M.L.Lee研究组和Blomberg研究组就研究把乙烯基引入含苯基和氰丙基的聚硅氧烷的分子中使之易于交联。因为很早人们就知道含有乙烯基的聚硅氧烷很容易被过氧化物或其它引发剂使之交联的。例如在含50%苯基的聚硅氧烷中引入1%的乙烯基,在含70%苯基的聚硅氧烷中引入4%的乙烯基,就可以在加入过氧化物引发剂的情况下较为容易地进行交联。对含有苯基和氰丙基的聚硅氧烷,Markeides等人采用先制备含有乙烯基的预聚体,然后再在柱中进行原位交联。对这类固定液可采用过氧化物、偶氮化合物,甚至臭氧都可以使之引发交联。   (b)用端羟基聚硅氧烷固定液交联并和毛细管壁进行键合   1983年Verzele提出用端羟基的聚硅氧烷固定液。1985年Blum又进一步研究了非极性和中等极性的聚硅氧烷(以羟基为端基)的固定液,以及毛细管柱的制备工艺问题。1986年Lipsky等人首次把端羟基聚二甲基硅氧烷涂渍在弹性石英毛细管柱上,石英柱的外涂层不用聚酰亚胺,而使用金属铝,端羟基聚二甲基硅氧烷在高温下加热(375-400℃),形成交联并键合的液膜。这一色谱柱在8-12h内逐渐从350℃升温到425℃。利用这种色谱柱分离原油组分,程序升温可达425&mdash 440℃。   (3)利用硅氧烷/硅亚芳基共聚物提高热稳定性   在聚硅氧烷中如把主链中的氧原子用亚苯基取代,它的热稳定性就会提高,这类化合物用作气相色谱固定液可以耐高温,其结构如下图1: 图1 硅氧烷/硅亚芳基共聚物结构   其热稳定性当R及R为苯基时提高,见下表中的数据。据Buijten等的研究结果,用这类化合物可涂渍出高效毛细管柱,涂渍效率达102%。这种色谱柱可在370 ℃下分离多环芳烃. 下表是硅氧烷/硅亚芳基共聚物在氮中热重分析数据。目前在GC/MS中使用最多的含5%苯基的硅氧烷/硅亚芳基共聚物,硅氧烷/硅亚芳基共聚物的热性能见表3。如DB-5MS色谱柱就是使用这类固定液。 表3 硅氧烷/硅亚芳基共聚物在氮中的热重分析数据   (4) 在聚硅氧烷链中引入硼烷提高热稳定性   在硅氧烷链中引入十硼烷,可以提高固定液的耐热性,现在网上有信息显示,北京绿百草科技提供信和固定相Dexsil 300 GC,该固定相主要用于药物、三酸甘油酯和醚、高沸点脂肪烃、高沸点烃、甾族化合物、杀虫剂和糖类。   Dexsil有三个品种及其结构和极性如下表4: 表4 三个品种Dexsil的结构及极性   HT-5 高温固定液就是Dexsil 400 GC 固定液制备的色谱柱,用以进行模拟蒸馏的色谱图2: 图2 DB-HT Sim Dis 色谱柱的模拟蒸馏色谱图   色谱柱:DB-HT Sim Dis 5 m x 0.53 mm I.D., 0.15 &mu m   载气:氦,18 mL/min, 在 35下测定   拄温:30-430 ℃,程序升温,10℃/min   检测器温度:FID 450 ℃   三、极性固定液   小分子的极性固定液极性最强的是b,b-氧二丙氰,但是它的耐温性很差,于是人们就研究各种极性高的高聚物,聚乙二醇20M (即分子量为20000的聚乙二醇)是使用最多中等极性的固定液。多年来人们知道往聚硅氧烷分子中引入苯基可以提高极性,所以上世纪七八十年代OV公司就合成了含不同数量苯基的甲基苯基聚硅氧烷固定液,OV-7是较早使用的含20% 苯基的甲基聚硅氧烷固定液,又如 SE-54 (含5% 苯基),OV-17 (含 50% 苯基),OV-25 (含 75% 苯基,含5% 苯基的聚二甲基硅氧烷)是各个公司制备毛细管柱的主要气相色谱固定液,如安捷伦公司的 HP-5、DB-5. Restke公司的Rtx-5 SGE公司的BP-5 Supelco公司的SPB-5 PerkinElmer公司的PE-2等。OV-17在农残分析中多有使用,相当于安捷伦公司的DB-17, Restke 公司的 Rtx-50,SGE公司的 BPX-50, Supelco公司的 SP-2250,使用DB-17ms(用于GC/MS的色谱柱)分析22种杀虫剂的色谱如图 3(安捷伦公司的图谱)。 图3 使用DB-17ms分析22种杀虫剂的色谱图   另外往聚硅氧烷分子中引入氰乙基、氰丙基、三氟丙基等可提高其极性。如 OV-275,Silar10C ,OV-1701 ,OV-210 。OV-275,Silar10C是含100% 氰乙基或氰丙基的聚甲基硅氧烷,OV-1701是含7% 氰丙基和7% 苯基的聚甲基硅氧烷 ,OV-210含三氟丙基的聚甲基硅氧烷。但是这类种固定液不易涂渍,也不易交联,所以多年来人们研究易于涂渍、易于交联的含高氰丙基的聚硅氧烷固定液,本世纪多个公司有所突破,制备成功各种各样的极性固定液和毛细管色谱柱。用OV-1701涂渍的毛细管色谱柱DB-1701分离22种杀虫剂的色谱见图4(安捷伦公司的图谱) 图4 DB-1701 分离22种杀虫剂的色谱图   各种固定液使用频率有很大的差别,国外有人统计各类固定液在色谱柱中使用的百分比见表5。 表5 五类典型气相色谱固定液的使用情况   四、选择性固定液   选择性固定液是近年来研究最多的气相色谱固定液,而且主要是针对手性异构体的分离。因为化合物的手性特征十分普遍,它在医药,农药应用中具有重要意义,所以对分析手性化合物提出迫切要求。而分离对映异构体的核心是寻找合适的手性固定相。气相色谱中手性固定相一般讲有三大类:第1类是手性氨基酸的衍生物 第2类是手性金属配合物 第3类是环糊精衍生物和其他主客体相互作用固定液,如冠醚类、杯芳烃类固定液。   第1类和第2类手性固定相有不少好的固定相,例如1978年有人把手性氨基酸的衍生物接枝到聚硅氧烷上,并有商品色谱柱上市,即把L-缬氨酸-特丁酰胺接枝到聚硅氧烷上,商品名&ldquo Chirasil-Val&rdquo 。这一固定液可以使用到220℃。特别适用于氨基酸手性异构体的分离,以及对手性胺类、氨基醇类、&alpha -羟基基酸酰胺类的分离。但是近年来大量研究的手性固定液的、能成为商品毛细管的只有环糊精(CD衍生物固定液。基于美国密苏里-罗拉大学的环糊精研究者Armstrong的研究结果,1990年美国的ASTEK公司推出一套CD毛细管色谱柱,典型的有下列9种,见表6。 表6 ASTEK公司的9种环糊精衍生物毛细管商品柱   五、近年商品柱所使用的新固定液   近几年在气相色谱的进展中只有气相色谱固定相的发展有所突破,即室温离子液体的研究和用它们制备的商品化气相色谱柱 金属有机框架化合物用于气相色谱固定相的研究有很大进展 碳纳米管作气相色谱固定相的研究也所发展,但是后二者应属于气-固色谱固定相,而且还没有商品化色谱柱的出现,所以本章暂不讨论。   室温离子液体是在常温下呈液态的离子型化合物,常由较大的有机阳离子( 如烷基咪唑盐、烷基吡啶盐、烷基季铵盐、烷基季膦盐) 和相对较小的无机或有机阴离子( 如六氟磷酸根、四氟硼酸根、硝酸根)构成。室温离子液体所以能在许多领域获得广泛的应用,是因为它的热稳定性好、粘度高而且随温度变化的波动小、表面张力小、蒸汽压力低、物理性能可变换幅度大、有成千上万的品种可供选择。而这些性能正好符合气相色谱固定相的要求,所以选择它作气相色谱固定相是很自然的事。下表7是Supelco公司的商品离子液体固定相的牌号和极性(J Chromatogr A, 2012,1255:130-144)。 表7 几种商品离子液体固定相的极性(Supelco公司)   *相对极性数=(Px x 100)/ PSLB-IL 100= McRynolds 极性乘以100再除以SLB-IL 100的McRynolds 极性   小结:   气相色谱固定液是气相色谱仪的核心和灵魂,也是迄今为止气相色谱不断研究的课题之一。现在聚硅硅氧烷类固定液是气相色谱固定液的主体,其中含5%苯基的聚甲基硅氧烷占有半壁江山,而极性固定相使用较多的是聚乙二醇固定液和含氰丙基、三氟丙基聚甲基硅氧烷的固定液。选择性固定液目前有商品柱的主要是环糊精衍生物固定液,近年发展和研究最多并成为商品柱的新型固定液主要是室温离子液体固定液。下一章,我将为大家讲述气相色谱固体固定相的今夕。(未完待续)   (作者:北京理工大学傅若农教授)
  • 美调查:50%以上受检婴儿床垫含TRIS阻燃剂
    原标题:美国调查发现半数以上受检婴儿床垫含TRIS阻燃剂   美国知名媒体《芝加哥论坛报》于日前发布一份针对婴儿床垫产品中磷酸三脂(TRIS)阻燃剂含量情况调查报告。来自民间调查的这批受检产品来自于Angeles,Babies R Us以及Foundations三家企业于2011年和2012年在售的27款婴儿床软垫,对当中的磷酸三(1,3-二氯丙基)酯(TDCPP,CAS:78-43-3)和磷酸三(β-氯乙基)酯(TCEP,CAS:115-96-8)以及磷酸三(2-氯丙基)酯(TCPP,cas号13674-84-5)含量进行统计分析。经检测,几乎在半数以上受检产品中发现上述阻燃剂的情况。   TDCPP、TCEP、TCPP三种物质因其对健康具威胁性,在婴儿床垫中的使用受限。TDCPP被世界卫生组织(W.H.O.)以及消费者安全协会(CPSC)鉴定为潜在致癌物质。美国国家毒理计划、欧盟委员会以及其他相关组织也认定TCEP具有潜在致癌性。对于TCPP的相关研究则较少,但因其结构与TCEP和TDCPP类似,也被怀疑具有相似的致癌特性。在产品适用过程和适用该产品的区域周围的空气粉尘皆可产生有毒化学品暴露。   20世界70年代的美国,TDCPP仅被用于儿童睡衣,目前该物质位列加州65致癌物清单以及华盛顿州儿童产品需高度关注物质(CHCC)清单之列 TCEP也在加州65致癌物清单中,同样也被华盛顿州和纽约州限制适用。加拿大已经禁止TCEP用于供三岁以下儿童适用的产品中。   仅仅在刚过去的2012年,美国民间和政府对化学阻燃剂的相关活动就不少:   2012年3月,美国最大儿童汽车座椅Britax向密歇根州儿童环境健康和生态中心承诺将逐步淘汰儿童产品中的溴化阻燃剂、氯化阻燃剂使用   2012年5月,美国参议院致信环境保护署(EPA)要求EPA全面调查阻燃剂安全性,限制有毒化学阻燃剂使用   2012年7月,美国儿童产品行业巨头Graco children's products Inc. 宣布在所有的产品系列中禁用有毒化学阻燃剂   2012年10月,美国华盛顿州引入《无毒儿童法案》(Toxic Free Kids Act),对使用对象为12岁以下儿童的产品中的磷酸酯类阻燃剂:TDCPP和TCEP颁布禁令。该法案预计于2014年7月1日生效。   化学阻燃剂的安全问题更多的为各界所关注,对环保阻燃剂和物理阻燃方式的呼声越来越热烈。这样的形势下,对企业的产品生产就提出了更多的要求,相关企业应重点关注法规变化,调整产品生产环节,保证产品顺利行销。
  • 江苏常州检验检疫局成功开发环氧氯丙烷检测技术
    近日,江苏常州检验检疫局危包检测中心技术人员利用先进的高精密仪器GC/MS/MS,成功开发出了环氧氯丙烷的检测技术,其检测低限可达0.1mg/L,能够充分满足相关企业的检测需求,帮助其控制产品质量,应对国外技术壁垒,保障产品顺利出口。   环氧氯丙烷(又称表氯醇)是一种重要的有机化工原料和精细化工产品,用途十分广泛。以它为原料制得的环氧树脂具有黏结性强、耐化学介质腐蚀、化学稳定性好、抗冲击强度高以及介质电性能优异等特点,在涂料、胶黏剂、增强材料和食品接触材料等行业具有广泛的应用。环氧氯丙烷是一种毒性很强的有害物质,其蒸气对眼睛以及呼吸道有强烈刺激性,反复和长时间吸入能引起肺、肝和肾损害 皮肤直接接触液体可致灼伤,如果高浓度吸入还会导致中枢神经系统抑制甚至死亡。   针对环氧氯丙烷的健康危害性,众多国家均对食品接触材料中环氧氯丙烷的含量及迁移量有严格规定,日本和韩国食品接触材料法规明确规定食品模拟物中环氧氯丙烷迁移量不得超过0.5mg/L,欧盟塑料法规(EU)No.10/2011规定相关产品成品中环氧氯丙烷残留量不得超过1mg/Kg。此次常州局开发的新技术,将检测限度精确至0.1mg/L,有效地解决了企业的后顾之忧。
  • 日日更新 月月不同 | 更多的全氟和阻燃剂筛查方案它来了
    日日更新 月月不同 | 更多的全氟和阻燃剂筛查方案它来了原创 飞飞 赛默飞色谱与质谱中国 关注我们,更多干货和惊喜好礼牛夏梦由于新污染物本身具有的生物毒性、环境持久性、生物累积性以及对人体健康存在的潜在风险引起大家的广泛关注。目前国际上广泛关注的新污染物包括全氟化合物(per-and polyfluoroalkyl substances,PFAS)、抗生素(Antibiotic)、阻燃剂(Flame Retardant,FR)、持久性有机污染物(Persistent Organic Pollutants,POPs)、内分泌干扰物(Endocrine-Disrupting Chemicals,EDCs)、微塑料(Microplastics),药物与个人护理品(Pharmaceuticals and personal care products,PPCP)等。健康风险有毒物质和疾病登记局(ATSDR)显示根据全氟化合物的动物试验研究发现PFAS 会对肝脏和免疫系统造成损害,还会导致实验动物出生体重低、出生缺陷、发育迟缓以及新生儿死亡;复旦大学医学研究院比较了全球范围内不同人群经呼吸道和胃肠道暴露于OPFRs的水平以及其在体内的负荷水平;归纳和总结了长期低水平的OPFRs暴露对儿童神经发育、成年人的生殖系统以及甲状腺功能等方面的潜在危害;抗生素的耐药性则是全球需要面对的公共卫生挑战,抗菌素耐药性增加是导致严重感染、并发症、住院时间延长和死亡率增加的原因。赛默飞新污染物解决方案新污染物覆盖种类较为广泛,目前除了主要关注的新污染物除了抗生素以外,热度比较高的新污染物还有全氟化合物PFAS以及阻燃剂,其中阻燃剂中添加型阻燃剂中的有机磷阻燃剂则是目前使用较多的一种,也是目前污染较为广泛的一类。赛默飞为了满足客户检测筛查更多种类的全氟化合物以及更广泛新型有机污染物的需求,进行了新污染物种类的扩项。本次方案更新亮点:更多的全氟化合物,赛默飞推出市面覆盖最多的全氟化合物的谱图库(Library)以及数据库(Database),100多种全氟化合物可供筛选,其中包括磺酸类、羧酸类、酰胺类及醇类;新类别的有机磷阻燃剂的筛查方案,增加了40多种有机磷阻燃剂,扩大大家对于新污染物的发现范畴,覆盖更广更全面;同一个的方法,有效数据级别up,新添加的化合物均存在出峰时间、分子式以及碎片的全部信息,方便大家实现更高级别的鉴定;当前最新方法包的新污染物类别组成如下:图1 数据库中新污染物类别分布(点击查看大图)有机磷阻燃剂存在较多的异构体,该方法包可以实现异构体的有效分离:图2 磷酸三(1-氯-2-丙基)酯和三(3-氯丙基)磷酸酯(上)、磷酸三丙酯和磷酸三异丙基酯(下)(点击查看大图)该方案基于赛默飞高分辨仪器平台Orbitrap Exploris系列静电场轨道阱质谱,Orbitrap超高的分辨率(12W以上)尽可能的实现分子量相近化合物的分离分析;精确的质量精度,在标配的Easy-IC功能下,可以做到小于1ppm的质量偏差,最大程度的解析未知物的元素组成;正负切换,得到的更多方向的二级碎片以及更多种类的化合物,更有利于目标物质的高通量筛查。赛默飞高分辨新污染物筛查数据库目前已更新400多种,之后也会进一步持续更新,助力更广度的新污染物筛查工作持续有效进行。赛默飞依托完整的产品线以及优异的质谱性能,助力新污染筛查分析,致力于世界更健康、更清洁、更安全。赛默飞推出的全新高分辨新污染物筛查方法包已上线,该方法包种包括仪器进样方法、数据处理方法、报告模板以及新污染物的具体信息,如需该方案致电联系相关销售即可免费获得。推荐阅读:● 重磅来袭|赛默飞新污染监测高通量方案再升级 ► 点击阅读 ● 磨砺以须 倍道而进|新污染物高分辨液质筛查方案就现在! ► 点击阅读 ● 简单上手 快速落地 | 新污染物液质解决方案看这里 ► 点击阅读 如需合作转载本文,请文末留言。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制