当前位置: 仪器信息网 > 行业主题 > >

胡萝卜苷

仪器信息网胡萝卜苷专题为您提供2024年最新胡萝卜苷价格报价、厂家品牌的相关信息, 包括胡萝卜苷参数、型号等,不管是国产,还是进口品牌的胡萝卜苷您都可以在这里找到。 除此之外,仪器信息网还免费为您整合胡萝卜苷相关的耗材配件、试剂标物,还有胡萝卜苷相关的最新资讯、资料,以及胡萝卜苷相关的解决方案。

胡萝卜苷相关的资讯

  • 【超临界流体实战】 —— 如何快速高效提取分离天然产物—β -胡萝卜素
    超临界流体色谱系统Nexera UC岛津提供基于超临界流体色谱系统Nexera UC搭建的Online SFE-SFC-PDA联用系统,采用超临界CO2流体作为萃取溶剂,在避光、无氧的环境下进行超临界流体萃取前处理, 可以大大缩短前处理萃取时间,减少有机溶剂使用量,并防止β-胡萝卜素在分析过程中的降解及异构化。 实现全自动化在线前处理分析传统皂化前处理方法与Nexera UC方法对比 传统皂化前处理:按照GB/T 5009.83-2016《食品中胡萝卜素的测定》规定的试样处理方法进行样品预处理。其中,皂化法作为脂溶性化合物前处理的典型方法,人工操作繁琐,需耗费近1小时。Nexera UC方法:将市售胡萝卜(匀浆)和市售胡萝卜汁样品与1g脱水剂混合,装入SFE萃取罐中,仅需5分钟即可完成样品前处理,人工操作步骤大大减少。且整个前处理过程中是在避光无氧环境下进行萃取,有效避免β-胡萝卜素等不稳定化合物的降解。 SFE多次萃取,大大提升回收效率 分别对同一萃取罐进行4次online SFE-SFC-PDA分析。每次分析得到的峰面积与4次分析得到的峰面积的总和的比值即为该次分析对应的萃取效率。 表1 食品中番茄红素和β-胡萝卜素的萃取效率 (n=3) 表2 加标回收率(n=5) 实现高效分离图1 胡萝卜和胡萝卜汁样品色谱图 表3 β-胡萝卜素含量实验结果表明:采用SFE-SFC联用系统测试的结果接近营养成分表中的数值。验证了采用超临界色谱技术分析β-胡萝卜素的可行性。 结论 岛津Nexera UC系统建立了检测食品中β-胡萝卜素含量的分析方法,该方法实现了样品前处理(SFE)和样品分析(SFC)的在线联用技术,自动化程度高,大大简化了样品的前处理过程,萃取效率高,重复性好,节省有机试剂和操作时间等特点。该方法为生产行业、检验行业及相关部门提供了参考。 本文内容非商业广告,仅供专业人士参考。
  • 采用Nexera UC对多品种辣椒中类胡萝卜素萃取及组分分离的研究
    背景介绍 辣椒中不仅含有丰富的矿物质,并且维生素含量也很丰富,其中类胡萝卜素含量很高。类胡萝卜素属于天然产物,对氧、热及光不稳定,易降解或异构化,这也使实验人员在制备提取和分析检测过程中遇到了挑战。 本文介绍了采用岛津Nexera UC全相系统对17种辣椒品种中天然类胡萝卜素萃取并进行组分分析研究。并建立的SFE-SFC-MS/MS方法,对27个化合物进行了快速、高效的提取和鉴定,包括类胡萝卜素、类胡萝卜素酯类和叶绿素。 Nexera UC全相系统_在线SFE- SFC- MS ▶ 全自动化在线样品前处理与分析,可有效预防不稳定化合物的降解,优化分析工作流程,减小定量误差;▶ 实现连续最多达48个样品在线萃取;▶ 低死体积和低脉动背压控制单元(BPR)提高灵敏度。 样品前处理——超临界流体萃取(SFE) 选取17种辣椒品种样品,仅需将每种辣椒样品均质化后导入至密封的SFE萃取容器,其后Nexera UC 即可自动进行样品萃取,无需人工干预。 分析条件• SFE萃取条件流动相:A、CO2;B、甲醇流速:2mL/min时间程序:静态模式(0~3min,10%B)- 动态模式(3.01~4min,0%B)萃取单元温度:80℃BPR压力:15 MPa • SFC色谱条件色谱柱:Fused Core C30,150 mm L.x 4.6 mm I.D., 2.7 μm流动相:A、CO2;B、甲醇流速:0.5mL/min梯度程序:4~6min 0%B,6~21min,0~80%B补偿剂:甲醇(1mL/min)BPR压力:15 MPaMS 获取模式(APCI): SCAN (+)/(-): SIM (+)/(-): MRM (+)/(-) 数据结果及分析 采用在线SFE-SFC-MS/MS方法,共鉴定出19种类胡萝卜素和8种类胡萝卜素脂肪酸酯,(如表1)。且在辣椒物种中首次检测到不同的ε-apoluteinals和4-oxo-apo-β-carotenals。β-citraurin主要存在于C.chinense品种中,所有C.baccatum品种中均未检测到。β-Apo-8' - carotenals在所有C.baccatum品种中均有检测到,且在17个品种中有12个品种均有检测到;而Apo-14' -和Apo-15' -capsorubinal仅在Jalapeno品种中检测到。不同类胡萝卜素素在Habanero Red Savina品种中含量最高。 表1 辣椒样品定性分析结果 辣椒样品分别为:1. Aji limòn Capsicum baccatum、2. Erotic Capsicum baccatum、3. Jimmy Capsicum baccatum、4. Banana Pepper Capsicum annuum、5. Cayenna Impala Capsicum annuum、6. Jalapeno Capsicum annuum、7. Terenzio Capsicumannuum 、8. Calabrian pepper Capsicum annuum、9. Scotch Bonnet Capsicum chinense、10. Habanero Red Savina Capsicum chinense、11. HabaneroFatalii Capsicum chinense、12. Habanero Chocolate Capsicum chinense、13. Naga Morich Capsicum chinense、14. Naga Yellow Capsicum chinense、15. Naga Chocolate Capsicum chinense、16. Trinidad Scorpion Capsicum chinense 、17. Trinidad Scorpion Moruga Capsicum chinense 其中,类胡萝卜素脂肪酸酯主要为Apo -10′和Apo-8′-zeaxanthinal;Apo-10′-和Apo-8′- zeaxanthinal是所有研究品种中最具代表性的类胡萝卜素类酯,而仅检测到Apo-10′-和Apo-8′-zeaxanthinal。Apo-8’-capsorubinal lauric acid仅在Trinidad Scorpion Moruga中检测到。对β-Apo-8' -carotenal和Apo-8' -zeaxanthinal (β-citraurin)进行定量(如表2)。 表2 辣椒样品定量结果(mg/100g) 结论 研究表明,在17种辣椒品种中均存在不同类型的类胡萝卜素和类胡萝卜素脂肪酸酯,可能是由于不同品种中发生不同的主要类胡萝卜素氧化裂解途径所导致。使用岛津Nexera UC全相系统在辣椒品种中检测到不同组分ε-apoluteinas和4-oxo-apo-β- carotenals。Nexera UC体现出了前处理操作简单、提取能力更强,有利于发现常规萃取方式无法发现的“目标物”等显著优势。 本文内容非商业广告,仅供专业人士参考。
  • 广东省农业标准化协会发布《甘薯中 13 种类胡萝卜素单体物质含量的测定》团体标准征求意见稿
    各有关单位及专家:由广东省农业科学院作物研究所等单位提出的《甘薯中 13 种类胡萝卜素单体物质含量的测定》团体标准已完成征求意见稿,为保证团体标准的科学性、实用性及可操作性,现公开征求意见。请有关单位及专家认真审阅标准文本,对标准的征求意见稿(见附件1)进行审查和把关,提出宝贵意见建议,并将意见反馈表(见附件2)于2023年11月25日前以邮件或传真的形式反馈至协会秘书处,逾期未回复按无意见处理。感谢您对协会工作的大力支持!附件1:《甘薯中 13 种类胡萝卜素单体物质含量的测定》征求意见稿附件2:团体标准征求意见反馈表(联系人:钱波;电话/传真:020-85161829;邮箱:gdnybzh@163.com) 广东省农业标准化协会2023年10月26日附件1:甘薯中 13 种类胡萝卜素单体物质含量的测定-征求意见稿.pdf附件2: 团体标准征求意见反馈表.doc
  • 广东省农业标准化协会立项《甘薯中13种类胡萝卜素单体物质含量测定方法标准》项团体标准
    各相关单位:根据《广东省农业标准化协会团体标准管理办法》的相关要求,2023年8月21日-8月28日,广东省农业标准化协会对《甘薯中13种类胡萝卜素单体物质含量测定方法标准》团体标准进行了立项审查,经协会技术专家认真研究与审核,上述所申报的团体标准符合立项条件,现批准立项。请制标单位严格按照相关要求抓紧组织实施,严把标准质量关,切实提高标准编制的质量和水平,增强标准的适用性和有效性。同时欢迎与立项标准有关的高校、科研机构、相关企业、使用单位等加入该标准的起草编制工作。有意参与标准起草工作的请与协会秘书处联系。特此公告。联系人:钱波 电 话:020-85161829 电子邮箱:gdnybzh@163.com 广东省农业标准化协会2023年8月28日2023.8.28-粤农标协字〔2023〕38号广东省农业标准化协会关于《甘薯中13种类胡萝卜素单体物质含量测定方法标准》项团体标准立项的公告.pdf
  • 全国饲料工业标准化技术委员会发布国家标准《饲料中β-阿朴-8′-胡萝卜素酸乙酯的测定 高效液相色谱法》征求意见稿
    国家标准计划《饲料中β-阿朴-8′-胡萝卜素酸乙酯的测定 高效液相色谱法》由 TC76(全国饲料工业标准化技术委员会)归口 ,主管部门为国家标准化管理委员会。主要起草单位 贵州省兽药饲料检测所 。附件:国家标准《饲料中β-阿朴-8′-胡萝卜素酸乙酯的测定 高效液相色谱法》征求意见稿.pdf国家标准《饲料中β-阿朴-8′-胡萝卜素酸乙酯的测定 高效液相色谱法》编制说明.pdf
  • 宁夏化学分析测试协会立项《枸杞原浆中类胡萝卜素的测定 高效液相色谱法》等6项团体标准
    各相关单位:根据《宁夏化学分析测试协会团体标准制定程序》的有关规定,由宁夏回族自治区药品检验研究院申请的《枸杞原浆中类胡萝卜素的测定 高效液相色谱法》等6项团体标准,经我会评审,符合立项条件,现批准立项。请起草单位按照要求,严格把控标准质量关,切实提高标准制定的质量和水平,增加标准的适用性和实效性,按期完成标准编制的相关工作。联系人:张小飞电话: 13995098931地址:宁夏银川市金凤区新田商务中心413室邮箱:1904691657@qq.com 宁夏化学分析测试协会2024年4月15日2024团标立项公示4.15_1866.pdf
  • 自主研发无损检测线设备 让萝卜自动检测分级
    天津市西青区辛口镇小沙窝村投入资金自主研发的无损检测线设备进入试运营阶段。这将使沙窝萝卜通过设备检测自动分级,使萝卜按等级销售。   最近,记者来到辛口镇小沙窝村看到曙光沙窝萝卜合作社的生产车间里,有一个环形的检测线正开足马力工作着,这个小沙窝村村民自主研发的设备开始试运营。   检测线工作人员告诉记者:“从那边上来萝卜,一直往那头走,不合格的,直接探头就把它打下去了。合格的一直过来。过来到这边分四级。一级、二级、三级、四级。   记者在采访时看到,工作人员将一框框沙窝萝卜倒在检测线中,这些萝卜便开始沿着设备线进行检测。检测线采用的是声纳技术,通过一系列的检测,可以将种植出来的沙窝萝卜按照糖度、密度和色度进行区分。糖量方面,分为含糖量十以上,八到十,六到八和六以下四个等级。前三个等级按照由高到低的价格进行销售,第四个等级做成深加工产品。等级越高,沙窝萝卜的销售价格越高。如果达到了最高标准一级的话,每个沙窝萝卜的市场价格可以卖到三百元。等级较低的沙窝萝卜,将以甜点的方式销售。并冠以萝卜脆、萝卜糕、萝卜酥三种小包装休闲食品,推向超市、宾馆、咖啡厅、酒吧等场所。   小沙窝村党支部书记李树光告诉记者:“咱这检测线带来的影响和增收方面,没法衡量了。制定出来了标准,而且,它能达到这个标准。”   据了解,这个检测线投资四百多万元,最近半个月进入试运营阶段,二零一三年一月一日前后正式运营。   小沙窝村党支部书记李树光说:“科技是第一生产力,以后还得重视科技。人才必须重视。现在是一般的工作人员配齐了。下一步我要建立一个研发团队,从萝卜的附加值上有提升,现在只有三个专利,萝卜糕、萝卜酥、萝卜脆,下一步要在其他产品上还要研发。”
  • 欧盟拟修订咯菌腈在葫芦皮、萝卜中的最大残留限量
    据欧盟食品安全局(EFSA)消息,2月15日欧盟食品安全局就修订咯菌腈(fludioxonil)在葫芦皮、萝卜中的最大残留限量发布了意见。   据了解,依据欧盟委员会(EC)No396/2005法规第6章的规定,法国收到先正达公司要求修订咯菌腈最大残留限量的申请。为协调咯菌腈的最大残留限量(MRL),法国建议修订其最大残留限量。   依据欧盟委员会(EC)No396/2005法规第8章的规定,法国起草了一份评估报告,并提交至欧委会,之后转至欧盟食品安全局。欧盟食品安全局对评估报告进行评审后,做出如下决定: 商品种类 现行MRL(mg/kg) 建议MRL(mg/kg) 不可食的葫芦皮 0.05 0.30 萝卜 0.05 0.10
  • 罗维朋/罗威邦发布英国罗维朋 Model Fx 全自动罗维朋比色计新品
    Model Fx 全自动罗维朋比色计Lovibond® Model Fx 仪器为高精度分光光度计,专为透明液体的客观颜色分析而研发设计。仪器自动化、操作简单,可避免目视方法的主观性等缺点。操作者在菜单系统的引导下选择设置参数。之 后一键启动测量,不到 5 秒即可完成。Lovibond® Model Fx 分光光度计,采用喷粉涂层铝制外壳, 对仪器内部进行良好保护,坚固耐用。Lovibond® Model Fx 可作为实验室的 QC 仪器使用或在过程控 制环境下 24 小时工作。Lovibond® Model Fx 作为一款专业的高精度自动色度分析仪,内置标准光源和准直器、测量槽、检 光器、分光器以及处理器板。■可测量Lovibond® RYBN罗维朋色泽、AOCS RY、Lovibond RY10:1, 叶绿素,β胡萝卜素■确保符合相关国际标准和行业标准 ■可测量高温样品(内置加热器),实时显示样品温度,避免结晶所引起的误差 ■方便简易的集成操作系统 ■耐化学腐蚀外壳,适于食用油精炼厂长期、连续使用 ■铝制外壳,100%可循环利用,符合可持续发展要求 ■密封、易更换的样品测量池 ■新技术让仪器具有更高的分辨率、重复性、可靠性和精确性创新点:1. 相对于传统目视罗维朋比色计,这款全自动罗维朋比色计采用高精度分光光度法,使得测量结果不再依赖于人为主观性。 2. 食用油的颜色与温度息息相关,相对目视手动款,增加了内置加热器和实时监测样品温度功能,避免了食用油结晶而造成的结果误差。 3. 传统目视罗维朋比色计,测量所需时间较长,要花费大量时间进行颜色匹配,而全自动罗维朋比色计,只需简单操作,几秒钟即可显示结果。 4. 除了测量罗维朋色泽外,增加了AOCS色标,叶绿素和β 胡萝卜素测量功能,一机多用,为食用油检测分析提供了更多有效数据。
  • 长春应化所学生用化学仪器抗议食堂菜价上涨走红网络
    用到的天平   学生将菜的原料进行分解   相关帖文:来看看得罪化学家的下场:长春应化所抗议食堂事件   一盆豇豆炒肉丝的成本是多少?得罪化学家的下场又是什么?近日,在红网、天涯、猫扑等网站上有一个“长春应化所抗议食堂事件”的帖子。据发帖人介绍,长春应化所(中国科学院长春应用化学研究所)食堂的菜价上涨,学生把菜的成本构成制成PPT表示抗议,以铁的事实让后勤主管哑口无言。   在帖子的下方,网友分为几派进行辩论。有网友称,学生学以致用,值得称赞 有网友说,学生的做法太偏激,菜的成本计算根本就是错误的 也有网友感慨到,这只是学生抗议食堂菜价上涨的一种方式,关键是食堂应该在保证成本和利润的前提下提高饭菜质量。   长春应化所学生制作PPT抗议食堂涨价   网友“崔温馨”在帖子中称,长春应化所食堂菜价上涨,学生强烈抗议。同学们利用手中的化学仪器,以铁的事实让后勤主管哑口无言。在帖子中,“崔温馨”以图文并茂的形式,向网友展现了长春应化所学生制作的PPT。   记者在网友上传的图片中看到,在学生代表和后勤主管对质讲堂的时候,台下的学生座无虚席都来旁听。首先,学生在PPT上展示了“食堂豇豆炒肉丝与冬瓜牛肉成本”计算方法,先将剩饭的饭盒称出重量,再称出每个菜的净重量,接下来,再分解到菜里面各种原材料的重量,再扣除不能吃的部分,进行成本换算。   “崔温馨”在帖子中称,学生使用称重量的天平是国外进口的高精密电子分析天平。“结果很触目惊心,一份豇豆炒肉丝的成本是0.54元,售价却为2元。严谨的科学数据,让后勤主管看的是呆若木鸡。”   一盆冬瓜牛肉的成本是多少?   按照学生的计算方法,空饭盒重量为21.7克,豇豆炒肉丝半份是111克,冬瓜牛肉一份是270.9克。分解到菜里面各种原材料,例如豇豆炒肉丝中豇豆66.3克、汤32.3克、肉丝12.1克 冬瓜牛肉中胡萝卜28.2克、牛肉100克、冬瓜122.5克、汤20.2。   在计算好各个原材料的重量后,扣除不能吃的部分(化学术语应该叫“杂质”质量)。接着,再计算各个原材料的成本价格,豇豆为5块/千克、胡萝卜2.6元/千克、冬瓜1.2元/千克、猪肉20元/千克、牛肉20元/千克。   最后,以冬瓜牛肉为例,得出牛肉成本为2元,冬瓜0.147元、胡萝卜为0.073元,售价6元的冬瓜牛肉的总成本共计2.22元。学生称,如果减去不能吃的部分,实际吃到的成本是0.62元。而豇豆炒肉丝得出的成本是0.54元,售价为2元。   网友:能不能来我们学校演讲?   “这就叫做知识就是力量啊”、“学以致用,相信科学”、“我觉得不严谨,不能这么计算”,长春应化所学生制作PPT抗议食堂涨价的帖子引起了网友的热议。有网友调侃到“自己就是吃了没文化的亏”。   也有网友表示质疑,称学生的计算不严谨也不科学。网友“用马甲上场”质疑“算菜的成本,还应该把能源费用和人工成本算进去。”“他不加工人工资、水电、管理、财务、税费等成本,这个核算没有意义”,网友“长大的珠”也持同样的观点。   不过也有网友称,工人工资及杂费按月计算后均摊到每份菜里面的成本不会超过1元钱。更多的网友是对长春应化所的学生表示佩服,“能不能来我们学校演讲啊”、“我下次也要在我们学校去试验一下”。   网友“fox339”给大伙提了个建议,“建议下次再做类似实验的时候,拉上工商学院的学生,这样说服力就更强了!”
  • 你眼里的西红柿,在拉曼看来只不过是番茄红素罢了
    p    strong 你眼中的红色 /strong /p p   最近德国的一项研究表明,和HPLC相比,表面增强拉曼光谱技术可以更好地研究食物中的类胡萝卜素和微量元素。 /p p   抗氧化剂对人类健康是否真的会有益处呢?这个争论到现在依然存在,尤其是人们认为遵循水果和蔬菜中高度着色色素膳食补充元素可以对人体有积极的作用。西红柿富含的番茄红素当中含有大量的红色素,人们认为这种化合物总体来说对人体有益处,尤其是食用大量的西红柿可以预防前列腺癌的发生。 /p p   来自德国耶拿大学的科研人员在Analyst杂志上发表了一片文章帮我们弥补了关于番茄红素和其他类胡萝卜素的知识。尽管我们对番茄红素和β胡萝卜素的了解很多,但是对于植物相中的这些化合物却知之甚少。因此他们借助表面增强拉曼光谱技术(SERS)寻找这些植物当中类胡萝卜素的差别。 /p p strong   关于摄入量 /strong /p p   科研团队建造了一种模拟矩阵,简单的将两种特定比例的类胡萝卜素混合,之后使用电子束曝光SERS有源衬底和488纳米激励源进行样本的探索。他们从真实的番茄植株中提取类胡萝卜素并对其进行了测量,然后使用主成分分析和偏最小二乘回归法对数据进行统计分析。他们将使用SERS方法得到的样本与HPLC测量得到的提取物进行比较。大多数番茄样本通过HPLC和SERS两种方式得到的结果之间找到了一致性。 /p p   之所以说这种技术及其重要,是因为尽管现在科学家已经掌握了600多种已知的类胡萝卜素,但是仅仅有50%会出现在人们的日常饮食当中,而且在这50%当中仅有很少一部分类胡萝卜素可以从人体的血浆当中检测到,这就是我们平时所说的α和β胡萝卜素、β隐黄素、番茄红素,叶黄素和玉米黄质。如果这些化合物真的对人体有益,那么我们好像真的缺少这些化合物的摄入。 /p p   通过代谢活动,一些类胡萝卜素是形成维他命A的维他命原,但一些类胡萝卜素有自己的氧和自由基清除性能。如果来自鱼油、动物肝脏和蛋类食物的维他命不能总是满足我们对此类维生素的需求的话,那么我们的发现就会显得非常重要。番茄红素本身,5或6类胡萝卜素通常在血浆中可检测到,他们是最有效的中和活性氧。在癌症扩散期间,中和活性氧可以有效的组织或减少癌症细胞的扩散。而吸烟和酗酒对身体造成的不利影响据说是因为摄入过量的类胡萝卜素所引起。 /p p strong   让我们取悦SERS技术吧 /strong /p p   因此从健康饮食的角度,我们必须保持饮食规律的平衡,为了达到这种平衡我们必须拥有关于我们所食用食物的成分和质量的详细信息。研究团队指出,HPLC是衡量食物中所含物质的“黄金标准”分析技术。但是HPLC技术不仅复杂缓慢而且费用昂贵,而SERS技术却可以提供区分现实世界样本中类胡萝卜素的优势。使用HPLC技术和SERS技术对不同成熟程度的番茄进行的测试结果之间达成了很好的一致性,这也为SERS技术的进一步开发提供了奠基。 /p p br/ /p
  • 官方公布调查结果 “黄金大米”疑云揭开
    12月6日,中国疾控中心、浙江省医科院和湖南省疾控中心联合发布关于“黄金大米”事件的调查结果,揭开了长达3个月之久的“黄金大米试验”疑云。   当事人提供虚假信息   2012年8月,美国塔夫茨大学汤光文等在《美国临床营养杂志》发表了题为《“黄金大米”中的β—胡萝卜素与油胶囊中β—胡萝卜素对儿童补充维生素A同样有效》的研究论文,引起社会关注(见本报9月5日四版《“黄金大米试验”疑云调查》)。论文主要作者为美国塔夫茨大学汤光文、湖南省疾病预防控制中心胡余明、中国疾病预防控制中心营养与食品安全所荫士安和浙江省医学科学院王茵。其他3位作者为杰拉德戴罗尔、米切尔格鲁萨克、罗伯特罗素。   卫生部和浙江省、湖南省有关方面高度重视,责成中国疾病预防控制中心、浙江省医学科学院和湖南省疾病预防控制中心联合进行了调查。   为查清确切事实,中国疾控中心派人赴美国塔夫茨大学和美国国立卫生研究院(下称NIH)调查。根据塔夫茨大学有关规定,单一试验项目的伦理审查应每年重审,项目内容如有变化应重新进行审查。2008年,汤光文在伦理审查重审未完成前,即在衡南县开始了试验。美国塔夫茨大学也正在对试验涉及违反伦理道德的问题开展调查。   调查发现,2008年7月,在有关部门获知美国塔夫茨大学在我国开展“黄金大米”试验的信息,进行询问调查时,当事人谎称研究工作还没有进行,但实际上现场工作当时已经结束。在本次调查中,荫士安、王茵等提供虚假信息,严重干扰、妨碍了调查工作。   项目实施时,汤光文、荫士安和王茵作为项目负责人,始终没有告知当地主管部门和项目承担单位开展的是“黄金大米”试验 在与学生家长签署知情同意书时故意使用“富含类胡萝卜素的大米”这一表述,刻意隐瞒了使用 “黄金大米”的事实。   美方私带“黄金大米”入境 25名儿童每人食用60克,家长未完全知情   2002年12月,美国NIH糖尿病消化道和肾病研究所批准,美国塔夫茨大学汤光文主持“儿童植物类胡萝卜素维生素A当量研究”项目。荫士安是项目申请成员之一。项目内容是研究菠菜、金水稻(俗称“黄金大米”)和β—胡萝卜素胶囊中的类胡萝卜素在儿童体内的吸收和转化成维生素A的效率。   2003年9月,荫士安以课题中国部分项目负责人的身份,与浙江省医科院签订了美国NIH课题合作协议书。2004年8月,塔夫茨大学与浙江省医科院签订合作研究协议备忘录,合作项目负责人是汤光文,中方负责人是荫士安和王茵。   2008年,该项目被转移至湖南省衡南县,与荫士安在该地开展的国内项目“植物中类胡萝卜素在儿童体内转化成为维生素A的效率研究”合并进行。中国疾控中心营养食品所和浙江省医科院分别与湖南方面签订了合作协议书,但未明确告知实验将使用转基因大米或“黄金大米”。   2008年5月20日至6月23日,含“黄金大米”试验组的试验在江口镇中心小学实施。试验对象为80名儿童,随机分为3组,其中1组25名儿童于6月2日随午餐每人食用了60克“黄金大米”米饭,其余时间和其他组儿童均食用当地采购的食品。   “黄金大米”米饭系由汤光文在美国进行烹调后,未按规定向国内相关机构申报,2008年5月29日携带入境。6月2日午餐时,汤光文等人将加热的“黄金大米”米饭与白米饭混合搅拌后,分发给受试儿童食用。   2008年5月22日,课题组召开学生家长和监护人知情通报会,但没有向受试者家长和监护人说明试验将使用转基因的“黄金大米”。知情同意书,仅发放了最后一页,学生家长或监护人在该页上签了字,而该页上没有提及“黄金大米”。   2008年6月2日,塔夫茨大学伦理审查委员会通过了对NIH项目中文版知情同意书的伦理审批,而项目负责人未按规定,5月22日提前开展了受试对象知情同意工作。塔夫茨大学于2008年批准的该研究知情同意书中未提及试验材料是“转基因水稻”,只是称为“黄金大米”。   2003年11月,浙江省医科院伦理审查委员会通过了美国NIH项目的伦理审查。2008年项目现场工作转到湖南后,项目负责人未按规定再次申请伦理审查,王茵根据荫士安提供的材料,私自加盖公章以浙江省医科院的名义向汤光文出具了英文版“2003年的伦理审查结果仍然有效”的证明。   中方当事人受到处分   根据相关规定,荫士安被撤销中国疾控中心营养食品所妇幼营养室主任职务,技术职称从二级研究员降至三级,三年内不得主持科研工作,取消博士生导师资格,撤销党内职务 王茵被撤销保健食品研究所营养与食品卫生研究室主任职务、保健所毒理室主任职务,取消二级研究员推荐资格,取消院学术委员会委员资格和院伦理委员会委员资格,三年内不得参与职称晋升评委会工作,给予党内警告处分 胡余明被撤销湖南疾控中心主任助理、科主任职务,给予党内警告处分。   中国疾控中心、浙江省医科院和湖南省疾控中心表示对此次事件造成的不良影响深表歉意,并将以此为戒,进一步加强科研项目过程监管,完善内部规章制度,加强法律法规、科研诚信、职业道德和医学伦理教育。   衡南对受试学生开展心理辅导   在获悉“黄金大米”事件调查结果后,湖南衡南县成立工作组,组织相关专家进行心理辅导,由卫生部指派的一批心理学专家也已经抵达衡南,开始对受试学生和家长开展释疑解惑和心理辅导。应受试学生家长要求,衡南为受试学生联系了体检医院,学生可自愿进行体检,并有相应补贴。
  • 欧盟拟修订多种作物中农残最大残留限量
    原标题:欧盟拟修订多种作物中氯虫酰胺、胺苯吡菌酮、腈嘧菌酯、噻虫嗪和噻虫胺的最大残留限量   1.欧盟拟修订多种作物中氯虫酰胺的最大残留限量   2012年11月28日,据欧洲食品安全局(EFSA)消息,应欧盟委员会的要求,近日欧洲食品安全局提议修订胡萝卜等作物中氯虫酰胺(chlorantraniliprole)的最大残留限量。   据了解,依据欧盟委员会(EC)No396/2005法规第6章的规定,英国收到要求修订胡萝卜等作物中氯虫酰胺的最大残留限量。   英国依据欧盟委员会(EC)No396/2005法规第8章的规定对此起草了一份评估报告,并提交至欧委会,之后转至欧洲食品安全局。   欧洲食品安全局对评估报告进行评审后,将胡萝卜中氯虫酰胺的最大残留限量由现行的0.08mg/kg修订为0.04mg/kg,将欧洲萝卜、欧芹根、块根芹中氯虫酰胺的最大残留限量由现行的0.02mg/kg修订为0.04mg/kg,   2. 欧盟拟修订多种作物中胺苯吡菌酮的最大残留限量   2012年11月28日,据欧洲食品安全局(EFSA)消息,应欧盟委员会的要求,近日欧洲食品安全局提议修订杏仁等作物中胺苯吡菌酮(fenpyrazamine)的最大残留限量。   据了解,依据欧盟委员会(EC)No396/2005法规第6章的规定,奥地利收到要求修订杏仁等作物中胺苯吡菌酮的最大残留限量。   奥地利依据欧盟委员会(EC)No396/2005法规第8章的规定对此起草了一份评估报告,并提交至欧委会,之后转至欧洲食品安全局。   欧洲食品安全局对评估报告进行评审后,做出如下决定: 产品代码 产品种类 现行限量(mg/kg) 修改限量(mg/kg) 120010 杏仁 0.01 0.01(临时) 140030 桃子(油桃和类似物) 0.01 4 140010 杏子 0.01 没有建议 151000 野生和餐食葡萄 3 3 152000 草莓 0.01 3   3. 欧盟拟提高多种作物中腈嘧菌酯的最大残留限量   2012年11月28日,据欧洲食品安全局(EFSA)消息,应欧盟委员会的要求,近日欧洲食品安全局提议提高生菜等作物中腈嘧菌酯(azoxystrobin)的最大残留限量。   据了解,依据欧盟委员会(EC)No396/2005法规第6章的规定,法国收到要求提高生菜等作物中腈嘧菌酯的最大残留限量。   法国依据欧盟委员会(EC)No396/2005法规第8章的规定对此起草了一份评估报告,并提交至欧委会,之后转至欧洲食品安全局。   欧洲食品安全局对评估报告进行评审后,做出如下决定: 产品代码 产品种类 现行限量(mg/kg) 修改限量(mg/kg) 251020 生菜 3 15 252000 菠菜及类似物 15 270020 刺菜蓟 5 15 270030 芹菜 5 15 270070 大黄 0.05* 0.6 810000 调味料/种子 0.1* 0.3 820000 调味料/水果和浆果 0.1* 0.3   *表示与检测限一致。   4. 欧盟拟提高多种作物中噻虫嗪和噻虫胺的最大残留限量   2012年11月0日,据欧洲食品安全局(EFSA)消息,应欧盟委员会的要求,近日欧洲食品安全局提议提高餐用油橄榄等作物中噻虫嗪(thiamethoxam)和/或噻虫胺(clothianidin)的最大残留限量。   据了解,依据欧盟委员会(EC)No396/2005法规第6章的规定,西班牙收到要求提高餐用油橄榄等作物中噻虫嗪和/或噻虫胺的最大残留限量。   法国依据欧盟委员会(EC)No396/2005法规第8章的规定对此起草了一份评估报告,并提交至欧委会,之后转至欧洲食品安全局。   欧洲食品安全局对评估报告进行评审后,做出如下决定: 噻虫嗪: 产品代码 产品种类 现行限量(mg/kg) 修改限量(mg/kg) 0161030 餐用油橄榄 0.05* 0.5 0402010 产油用橄榄 0.05* 0.5 0256000 香草 0.05* 1.5 噻虫胺: 产品代码 产品种类 现行限量(mg/kg) 修改限量(mg/kg) 0161030 餐用油橄榄 0.02* 0.09 0241020 花椰菜 0.02* 0.05 0402010 产油用橄榄 0.02* 0.09 0256000香草(除山萝卜外) 0.02* 1.5   *表示与检测限一致。
  • 卫生部发布6项食品安全国家标准
    根据《中华人民共和国食品安全法》和《食品安全国家标准管理办法》的规定,经食品安全国家标准审评委员会审查通过,现发布《速冻面米制品》(GB19295-2011)等6项食品安全国家标准。其编号和名称如下:   GB19295-2011 速冻面米制品   GB9684-2011 不锈钢制品   GB8821-2011 食品添加剂 β-胡萝卜素   GB13481-2011 食品添加剂 山梨醇酐单硬脂酸酯(司盘60)   GB13482-2011 食品添加剂 山梨醇酐单油酸酯(司盘80)   GB25571-2011 食品添加剂 活性白土   特此公告。   二○一一年十一月二十一日
  • 新品发布悌可光电推出欧美伽光学无人机专用滤光片
    近日欧美伽光学推出针对无人机专用滤光片。随着人工智能、传感技术和控制系统的技术的成熟,近年来无人机行业飞速发展。从传统的娱乐航拍,迅速发展出农业植保,测绘,智能电力检测、外卖快递等,行业也由消费电子扩展至智慧农业、石油与天然气,水利,林业、快递运输多个领域。 举例农业用检测滤光片:在现代农业中,无人机技术的应用越来越广泛,专为农作物测绘而设计的无人机滤光片成为农田管理的得力助手。这款产品配备了专用光学滤光片,飞行高度和相机透镜的精妙搭配保证了获取清晰高效的农田数据,让监测和分析变得如此轻松。滤光片选取最佳波长,根据作物光谱反射率,可以匹配任何品牌的无人机,帮助用户精准监测作物生长状态,健康状况一目了然。现在我们来看看 用于农作物检测的滤光片示例下面的滤光片示例通过使用4个单独的滤光片/相机组合来计算作物的NDRE值,并计算NDRE的比率。这里涉及到的特定波段的比率和差异可以用于许多植物指数的计算。 农作物监测滤光片——红色波段(red)在叶绿素A/B重叠区域的中心,而红色边缘波段(red edge)在反射率曲线的上升边缘的中心。 优化用于农作物监测的光谱性能如何选取最佳波长的滤光片,取决于你所监测的作物的光谱反射率,以及在健康(和患病)植物中存在的叶绿素、类胡萝卜素和花青素的比例。不仅每种健康植物类型都有独特的色素比例,且当植物受到压力时,这些色素的比例也会发生变化。类胡萝卜素和花青素在压力期间都会上调——这就是为什么当作物干燥或受到压力时,叶子会变成黄色、红色或棕色。农作物无人机监测的注意事项1.光源—由于通常使用太阳作为光源,所以光强度可能随云层的变化而变化。云、雾霾和尘埃也会影响太阳光谱的光谱分布,优先散射较低的波长。虽然光谱变化不是造成误差的主要因素,但测量系统需要一个中性(即白色)反射的测试目标进行校准,以获得最佳的测量结果。 2.信号来源植物中常见的色素包括主要的叶绿素A和B,它们赋予植物绿色,但也包括不同数量的类胡萝卜素和花青素。反射光谱在波长被吸收的位置下降。反射率信号-水合作用、叶绿素含量和其他色素含量(花青素和类胡萝卜素)的组合会影响植物反射率的光谱。在压力的作用下类胡萝卜素和花青素表达上升,叶绿素表达下降,将使作物变黄和棕色。同时也会反应在反射率光谱和植物指数上。热成像-可以用来制作在9-14微米波长范围内的作物的温度分布图。水合作用和蒸腾作用良好的植物比那些干燥和热胁迫的植物更冷。阳光不是测量的严格必要条件,但它可以与反射率同时进行,因为可以探测到红外波长。3.无人机的飞行高度和相机上的透镜-决定了图像的视野和分辨率。高度和视场还决定了信号进入成像滤光片的入射角。随着入射角的增加,滤光片的响应区域通常会转移到更低的波长,边缘也变得不那么陡峭。4.光谱滤光片-一般通过对应的带通滤光片:蓝色、绿色、红色、红色边缘和近红外进行标准化差异(示例如下)。另一种选择是使用线性可变带通滤波器,它的带通随滤光片一维方向的变化而变化,可以提供类似“彩虹”的滤光效果。这种滤光片在相机上产生光谱,从而实现高光谱成像。这款无人机农业用检测滤光片的推出,为农业生产带来了全新的技术。随着农业现代化进程的不断推进,无人机技术在农业领域的应用越来越广泛,为农业检测提供了更为便捷、高效的农田管理工具。无人机滤光片的问世,不仅提升了农作物监测和分析的精准度,也使农业生产更加智能化、科技化。可以通过使用这款滤光片,及时了解农田的情况,有效掌握作物的生长情况,为农田的精细化管理提供重要依据。欧美伽光学提供多种无人机适用类型滤光片详细请咨询!
  • 捕捉“最短”瞬间 超快光谱让微观世界越来越清晰 ——第十三届光谱网络会议超快光谱报告推荐
    人类一直在追求捕捉物体运动更快的画面,比如骏马疾驰,一直是令人赞叹的画面。然而,由于骏马奔跑时的速度实在太快,人类用肉眼很难捕捉到清晰的画面;再比如,一只小小的蜂鸟每秒可以拍打翅膀80次,然而对于人类来说只能感觉到嗡嗡的声音和模糊的翅膀动作…人类一直在探索自然界的瞬态过程,陆续达到毫秒量级、微秒量级、纳秒量级、皮秒和飞秒的时间分辨。纳秒量级约等于10的负9次方秒,皮秒约等于10的负12次方秒,飞秒等于10的负15次方秒。其中,观测分子的转动和振动过程、电子从激发态回到基态的弛豫过程,就需要皮秒到飞秒量级的时间分辨。更进一步,要观察电子甚至原子核内的运动过程,就需要时间分辨率进一步达到阿秒(10的负18次方级秒),甚至仄秒(相当于10的负21次方级秒)。回顾历史,诺贝尔奖的赋予更是加持了科学家对其的热爱。1999年,诺贝尔化学奖颁发给了致力于时间分辨率上的超快光谱探测技术的科学家;2023年,诺贝尔物理学奖授予皮埃尔阿戈斯蒂尼、费伦茨克劳斯和安妮吕利耶三位科学家,以表彰他们在阿秒光脉冲方面作出的贡献。在阿秒研究中,我国科学家也取得了重大进展。据悉,2013年,中国科学院物理研究所魏志义课题组实现了160 as孤立阿秒脉冲测量实验结果,这是我国在阿秒科学领域的重大突破。随后,华中科技大学、国防科技大学和中国科学院西安光学精密机械研究所的研究团队也先后实现了阿秒激光脉冲的产生和测量……据了解,阿秒脉冲光技术是人类目前所掌握最快的时间尺度。它就像一把尺子,尺子刻度越细,可测量的精度就越精细。更重要的是,这为超快光谱探测技术提供了新的时间分辨率——依靠更快的速度,人类可以观测定格到更加清晰细小的微观世界。而所谓超快光谱探测技术,就是指利用脉冲激光器对样品进行激光刺激,并用激光对刺激后的样品进行探测,以研究样品在极短时间内的光物理、光化学和光生物反应的一种方法。超快光谱探测技术将人类自然科学的研究带入了一个更快的世界,已经成为研究物质激发态能级结构及弛豫过程的强有力工具,是研究反应动力学的科研利器,该测试技术近年在Nature、Science等国际顶刊上频频出现,已成为热点话题。那么,超快光谱目前的发展情况如何?可以解决哪些关键问题?有哪些最新的研究成果?2024年7月16-19日,由仪器信息网主办,中国仪器仪表学会近红外光谱分会、中国科学院物理研究所、中国遥感应用协会高光谱专业委员会、南通长三角智能感知研究院等协办的“第十三届光谱网络会议, 简称iCS2024”将拉开帷幕。会议期间,多位超快光谱相关专家将在云端开讲,超快光谱相关仪器技术及前沿应用不容错过。立即报名》》》中国科学院物理所 魏志义 研究员《超快激光及应用》(2024年7月16日开讲 点击报名)魏志义,中国科学院物理研究所研究员。1991年4月于中科院西安光机所获得博士毕业,1991年至1997年中山大学博士后并出站后留校工作。1997年5月调入中国科学院物理研究所,1999年晋升研究员。长期致力于超快激光技术及应用研究,曾先后在英国、香港、荷兰、日本等国家和地区合作研究,多项成果打破世界纪录,率先在国内开展了光学频率梳研究,首次在国内产生阿秒脉冲。迄今发表SCI论文400余篇,授权发明专利30余项,国际会议邀请报告100多次,作为第一完成人获国家技术发明二等奖(2018)及中国科学院科技进步二等奖(2000)、科技促进二等奖(2014)等奖项。是中国科学院青年科学家奖(2001)、国家杰出青年基金(2002)、胡刚复物理奖(2011)获得者。因在超高强度飞秒激光、超快光子学等研究方面的重要贡献,先后当选美国光学学会fellow及中国光学学会、中国光学工程学会会士。华东师范大学精密光谱科学与技术国家重点实验室 陈缙泉 教授《利用时间分辨手性光谱表征伴随激发态电子和能量传递过程中的手性产生和放大过程》(2024年7月17日上午开讲 点击报名)陈缙泉教授,本科毕业于南京大学,博士毕业于Ohio State University,毕业后分别在Montana State University 和Emory University开展博士后工作,2015年加入华东师范大学精密光谱科学与技术国家重点实验室。主要研究方向是发展高灵敏的多维时间分辨瞬态光谱技术,利用该技术研究生物大分子与功能染料分子中激发态动力学过程,重点关注分子体系中电荷/能量转移、系间穿越、电子自旋轨道耦合等过程的关联和相关过程的调控,并开发和设计新型的光动力学疗法药物,近年来工作已在 Science, Journal of the American Chemical Society, Angewandte Chemie International Edition, Chem等国际一流期刊发表,目前共发表论文130余篇。近5年主持了多项国家基金委面上项目和国家自然科学基金重大研发计划重点项目,入选2016年国家高层次人才计划,2019年上海市青年科技启明星计划。【摘要】手性的产生、传递和放大可视为手性物质与外界的一种能量交换方式,该方式一方面直接受其构型或构象影响,另一方面又与电子自旋翻转、电-磁场相互作用、电子/能量转移等物理过程息息相关。对于手性产生、传递、放大和调控的物理机制和规律的研究正由传统的宏观稳态层面深入到新兴的微观瞬态层面,理论研究还有待深入,实验研究还有待突破。为了解析分子和超分子体系中手性的产生和传递机理,该课题组研发了飞秒时间分辨圆二色吸收光谱(fs-TRCD)和飞秒-纳秒圆偏振发射光谱(TR-CPL)技术,实现了分子体系激发态手性产生和传递过程的精密测量。基于实验结果,发现和总结了分辨分子体系基态和激发态手性的光谱学方法,并阐明了不同分子体系中CPL产生和传递的物理机制,为后续多层次手性分子材料的精准构筑奠定了理论基础。中国科学院物理研究所 陈海龙 研究员《飞秒宽带瞬态荧光光谱仪及其应用》(2024年7月17日上午开讲 点击报名)陈海龙,中国科学院物理研究所研究员,博士生导师。2006年本科毕业于北京大学物理学院,2011年于中科院物理研究所获得光学博士学位,随后进入美国莱斯大学化学系从事博士后研究。2016年加入中科院物理研究所软物质物理实验室任副研究员,2022年起任中科院物理研究所研究员。主要研究方向为发展和建立多种先进超快光谱技术,并用以探索各类低维光电材料、纳米半导体光催化材料以及光合膜蛋白等体系内各种超快光转换动力学过程。在国际/国内核心期刊上发表论文100余篇。【摘要】基于非共线光参量放大原理的飞秒时间分辨瞬态荧光光谱仪具备高时间分辨、高增益、宽测量带宽以及低探测极限等诸多优点,是研究各类光化学及光物理等超快动力学过程的一个重要测量手段。参量超荧光环(即真空量子噪声参量放大信号)的强度涨落是非共线光参量放大飞秒瞬态荧光光谱仪的主要噪声来源,并因此极大限制其对微弱瞬态荧光信号的检测能力。他们将传统的荧光点状非共线光参量放大的光学构型升级为环状的锥形参量放大构型,即利用整个参量荧光环进行荧光放大。基于量子噪声涨落空间独立性的特点,新的光学构型可以将量子噪声进行全环空间平均以极大提高瞬态荧光光谱测量的信噪比。利用此技术,他们实现了对叶绿素分子激发态以及多种光合蛋白体系瞬态荧光光谱的实验观测,并以此揭示了其中的能量转移、电荷分离、振动冷却等多种超快动力学过程。振电(苏州)医疗科技有限公司 首席执行官/CEO 王璞 《超高灵敏瞬态吸收在分子互作上的应用》(2024年7月17日上午开讲 点击报名)王璞,博士,现任北京航空航天大学生物与医学工程学院特聘教授、生物医学高精尖中心研究员,博士生导师,入选第十四批国家海外青年人才项目。王璞本科毕业于复旦大学物理系,2009-2014年博士就读于普渡大学生物医学工程学院,师从于非线性成像专家程继新教授。博士期间主要工作是生物光子学医疗器械的开发以及非线性显微镜的开发与应用。已发表SCI论文20余篇,专利5项。王璞以第一或通讯作者在Nature Photonics,Science Advances,Light:Science & Applications, Nano letters等领域内一流期刊均有发表。王璞曾主持开展多项美国小企业创新奖励基金(SBIR/STTR award),并代领团队完成多项科研转化工作。其中包括相干拉曼显微镜的产业化,光声成像在乳腺以及心血管的器械转化等等。目前王璞教授主要研究工作为非线性拉曼显微镜的开发以及在先进材料、单细胞代谢的表征方案,以及光致超声器件在生物医学中的应用。同时担任振电(苏州)医疗科技有限公司CEO,致力于开发推广最先进的分子光谱成像技术。【摘要】蛋白分子互作检测是研究蛋白质与其它分子之间相互作用的一系列技术和方法。这些方法能够揭示适体分子如何结合并影响蛋白质。微尺度热泳(MST)是一种基于热泳现象的溶液中分子亲和性定量检测方法,通常所需样本量小,检测通量大,速度快,且样品处理步骤简单,但依赖于荧光标记或蛋白自发荧光来检测温度梯度下的浓度变化。中国人民大学化学与生命资源学院讲师王豪毅 博士《时间分辨光谱助力光合作用三重态光保护研究》(2024年7月17日上午开讲 点击报名)王豪毅,2013年于华东理工大学获得理学学士学位,2018年于中国人民大学获得理学博士学位。2018-2020年于中国科学院物理研究所从事博士后研究工作,2021-2023年于中国人民大学从事博士后研究工作,2023年任职中国人民大学化学与生命资源学院。主要从事自然光合作用体系超快激发态动力学行为,人工光合体系光电转换机理研究,关注超快激光光谱技术和方法。【摘要】光合作用是地球生命体中最为重要的生物化学反应,从微观层面揭示高效光合作用的物化反应机制,是光转换领域的重要课题。高等植物和藻类光合作用体系中捕光复合物II(LHCII)三聚体在猝灭过剩能量过程中扮演重要角色,其中的核心色素分子为叶绿素和类胡萝卜素。叶绿素单重态(1Chl*)经系间窜越转换到叶绿素三重态(3Chl*)的量子效率高于60%,而3Chl*敏化产生单线态氧1O2的效率接近于100%。所以,通过3Chl*向类胡萝卜素分子(Car)传能成为高等植物和藻类重要的光保护策略。本报告将讲解时间分辨光谱助力光合体系3Chl*特征的观测结果,此部分3Chl*会被O2猝灭形成活性氧物种(ROS),而此类ROS可作为生物适应性进化的信号分子而发挥正向作用。进一步揭示高等植物菠菜与海洋绿藻假根羽藻中,蛋白结构、色素组成与相应类胡萝卜素三重态3Car*猝灭性质的内在关联,并深入探究了相应3Car*猝灭受O2可及性的影响。为进一步认识3Car*光保护机制并深入理解光合生物光保护生理功能提供新认识。作为应用最广泛的仪器类别之一,光谱仪器及技术的发展一直备受业界的关注。特别值得一提的是,随着科技的发展,相关光谱新技术、新应用层出不穷,特别是拉曼、近红外、LIBS、太赫兹、高光谱,以及超快光谱、微型光谱等一直备受关注。不仅如此,现场快检、过程监控、实验室高通量分析在实践中的作用也越来越凸显。与此同时,随着大数据时代的到来,光谱技术与人工智能的结合也已经成为推动各行各业发展的强大引擎,开启一个全新的智能光谱时代!可以说,兼具实用和前沿,全球百亿光谱市场酝酿着无限的生机和活力。由仪器信息网主办,中国仪器仪表学会近红外光谱分会、中国科学院物理研究所、中国遥感应用协会高光谱专业委员会、南通长三角智能感知研究院等协办的“第十三届光谱网络会议, 简称iCS2024)”将于2024年7月16-19日召开。点击立即报名,免费参会》》》报名链接:https://www.instrument.com.cn/webinar/meetings/ics2024/
  • 欧盟拟制修订乙霉威等6种农药最大残留限量
    从国家质量监督检验检疫总局官网获悉,2015年6月29日,欧盟发布G/SPS/N/EU/136通报,拟制定或修订乙霉威、硝磺草酮、磺草唑胺、甲基嘧啶磷、丙环唑和螺环菌胺等6种农药最大残留限量,部分修订限量见下表: 农残项目 商品名称 现行MRL(mg/kg) 修订后MRL(mg/kg) 乙霉威 杏仁、核桃等干坚果类 0.05 0.01 胡萝卜 0.05 0.01 西红柿 1 0.7 磺草唑胺 芹菜、香菜 0.01 0.02生姜 0.01 0.05 甲基嘧啶磷 杏仁、核桃等干坚果类 0.05 0.01 山药 0.05 0.01 胡萝卜 1 0.01   具体限量见:   https://members.wto.org/crnattachments/2015/SPS/EEC/15_2515_00_e.pdf
  • 我国口岸首次截获蔬菜黑斯象
    6月3日,江苏镇江检验检疫局工作人员对挪威籍金牛星轮(STAR KINN)国际航行船舶实施检疫查验过程中,在其食品舱中对来自加拿大的蔬菜等食品进行检疫查验时,发现一头象甲科昆虫,经送样至江苏检验检疫局植检实验室鉴定,专家最终确认为蔬菜黑斯象。后经中国检科院确认,此前,我国口岸从未截获此害虫。   据镇江局工作人员介绍,蔬菜黑斯象属鞘翅目,象虫科。体长10毫米,宽约4毫米,暗灰褐色,全体覆有鳞毛。该虫为多食性害虫,主要危害白菜、青菜、甘蓝、芥菜、萝卜等十字花科蔬菜及茼蒿、马铃薯等178种植物。春季和晚秋,成、幼虫危害萝卜、白菜、胡萝卜、菠菜、茄子、马铃薯、黄瓜、芹菜等蔬菜的幼苗和嫩芽,严重的常造成死苗、缺株和断垄。此外,其还啃食叶片,在较粗的叶脉间形成近圆形不规则的食害孔,易造成蔬菜减产。
  • 专家称别对食品添加剂太敏感
    《食品添加剂生产监督管理规定》6月1日开始实施后,所有食品添加剂成分必须在外包装上注明。这样一来,以往隐身于“食品添加剂”、“防腐剂”、“增稠剂”等笼统说法背后的各种添加剂统统浮出水面。这虽能让消费者知道其成分,但是新包装上动辄五六种、甚至是10种以上的添加剂吓坏了消费者。   每天吃进几十种食品添加剂   6月30日,记者在超市的食品柜台看到,大多数食品都标明了食品添加剂的种类,少则四五种,多则十多种,记者拿起一包蛋黄派数了一下,食品添加剂总共有14种,如麦芽糖醇、山梨糖醇、增稠剂、膨松剂等。在奶制品柜台,上架的多是生产日期在6月份的产品。记者随意拿起一袋核桃奶一看,配料表的成分只有4种,而食品添加剂的种类却高达9种,占了包装袋好几行的位置。记者又拿起一根火腿肠数了一下,食品添加剂有10种。“不看不知道,一看吓一跳,我每天都会吃掉几十种添加剂呢。”正在省会某超市选购食品的单身白领小王对记者说,她早餐通常喝牛奶吃面包,中午经常用方便面加火腿肠“对付”。为了提神,她每天还会喝一到两杯速溶咖啡或奶茶,口香糖和其他的饼干、糖果等小零食也常备。可是她拿着经常食用的早餐奶仔细一数,里面的添加剂竟多达10种!而她经常吃的速食面、火腿肠、奶茶的添加剂起码也各含七八种,更让她想不到的是,她每天不离口的一款口香糖竟含了13种食品添加剂!“不算其他的,光是这简单的几样加起来,我每天吃进肚子里的添加剂就有三四十种,真是不敢想象长期这样吃对身体会产生哪些副作用!”小王担忧地对记者说。“乳酸、柠檬酸钠、果胶、黄原胶、海藻酸丙二醇酯、瓜尔胶、阿斯巴甜……”正在为孩子选购乳制品的陈大姐对记者说,常喝的一种乳制品最近换了新包装,仔细看吓了一跳,一小盒饮料竟然含有10种食品添加剂!一连串陌生的化学名词,真让人担心,这些食品添加剂都是些什么东西?食用后对孩子身体有没有害处?   在省会超市,记者随机采访了10位市民。多数市民对维生素、食用香精、柠檬酸、β-胡萝卜素、色素等添加剂有一定的认识,但对类似六偏磷酸钠、乳化硅油、果胶这类添加剂普遍缺乏相关知识。   专家称别对食品添加剂太敏感   食品添加剂已经成为我们生活中无法绕开的弯道。添加剂是不是有害物质?针对消费者对食品添加剂存在的疑虑,记者采访了河北农业大学食品科技学院分析营养系的副教授田益玲。   “没有食品添加剂,就没有现代食品工业。只要生产者严格按照国家标准使用食品添加剂,对人体是不会有害的。”田益玲告诉记者,几乎所有的工业加工食品都需要食品添加剂。食品添加剂对于提高食品质量、改善色香味和口感,保障食品安全和防腐,改进食品工艺都起着重要的作用。比如我们平时食用的酱油里面就含有防腐剂,如果不加入防腐剂,酱油3天就会长毛变质了,防腐剂的合理使用不仅不会对人体造成危害,而恰恰是能够防止因食品腐败给人体带来更大的伤害。   “有些食品包装上标注不含防腐剂是迷惑消费者。”田益玲说,比如方便面经过油炸之后不需要使用防腐剂了,但是需要加入抗氧化剂,消费者看到包装上标注“不含防腐剂”的字样以为食品没有添加剂,其实不是的。到目前为止,我国已批准2500余种食品添加剂,按其功能和作用可大体分为22大类,如增稠剂、乳化剂、着色剂、甜味剂、防腐剂、膨松剂等,主要作用是改善食品的品质,增加色、香、味及防止食品腐败变质,延长保存时间等。   “有些消费者谈‘添加剂’色变,其实没有必要。”田益玲表示,目前国家对食品添加剂的监管力度在不断加大,只要食品企业遵循《食品安全法》等相关法律法规,在生产过程中按照国标《食品添加剂使用卫生标准》规定的限量范围内合理使用食品添加剂,那消费者购买的食品就是安全的,所以市民对此不用太担心。她建议消费者一定要选择正规厂家生产的产品,比如看产品包装上是否标注企业食品生产许可证编号、QS标识及产品标准等。
  • 中国CDC否认参与组织转基因“黄金大米”人体试验
    中国疾控中心5日晚发表声明回应“黄金大米”事件,否认了参与组织转基因“黄金大米”人体试验的传闻,称相关研究员表示对是否使用了“黄金大米”不知情,此事件正在进一步调查中。   国际环境组织“绿色和平”近日发布消息称,美国塔夫茨大学选取中国湖南衡阳某小学学生做转基因“黄金大米”的人体试验。该项研究结果形成的论文《黄金大米中的β-胡萝卜素与油胶囊中的β-胡萝卜素对儿童补充维生素A同样有效》发表于《美国临床营养学杂志》,文中提到,中国疾病预防控制中心营养与食品安全所妇幼营养室在该试验中组织研究和收集样品。   中国疾控中心网站5日晚刊出回应文章说,该论文的第三作者荫士安是中国疾病预防控制中心营养与食品安全所的研究员。营养食品所调查所获的情况如下:   一、发表的文章是来自美国塔夫茨大学申请到的美国NIH项目“儿童植物类胡萝卜素维生素A当量研究”。该研究项目是美国塔夫茨大学与浙江省医学科学院于2004年9月签署的,研究内容是研究菠菜、黄金大米和β—胡萝卜素胶囊中的胡萝卜素在儿童中的吸收和转化成维生素A的效率。文章发表前,荫士安研究员收到了《美国临床营养学杂志》的论文发表通知,他签字同意发表。   该项目通过了美国塔夫茨大学和浙江省医学科学院伦理审查委员会的审查。该研究项目的负责人是美国塔夫茨大学的汤光文博士,中方负责人是浙江省医学科学院的王茵研究员,荫士安研究员以浙江省医学科学院客座研究员的身份作为协助研究者参与,具体负责现场工作。营养食品所没有与该课题合作各方签订合作协议。   二、荫士安研究员负责的国家自然科学基金面上项目名称为“植物中类胡萝卜素在儿童体内转化成为维生素A的效率研究”,课题执行日期2006年1月-2008年12月,此项课题的研究内容仅涉及稳定同位素标记的菠菜中类胡萝卜素转化效率研究,没有转基因大米的研究。在研究实施过程中,增加了现场协作人员浙江省医学科学院王茵研究员。另外,参加的单位还包括湖南省疾病预防控制中心和衡南县疾病预防控制中心。研究中所用的稳定同位素标记的菠菜由美国塔夫茨大学提供,并由美国塔夫茨大学汤光文博士于2008年5月从美国携带到湖南衡阳现场。   此项研究设计通过了中国疾控中心营养食品所伦理审查委员会的审批,课题组与参加试验学生的家长均签订了知情同意书。该课题现场工作于2008年5月在湖南衡阳市衡南县江口镇中心小学进行,挑选了该校80名6至8岁儿童,按血清维生素A含量随机分成两组,每组各半数分别给予氘标记菠菜或氘标记纯品β-胡萝卜素。现场工作完成后,按照样品出国的审批手续,血液样品被送往美国塔夫茨大学进行检测。   三、据荫士安研究员介绍,考虑其负责的国家自然科学基金面上项目与美国塔夫茨大学汤光文博士负责的美国NIH项目均有菠菜中类胡萝卜素转化效率研究内容,故将2个项目的现场工作合并在一起进行。营养食品所在调查中经过比对,荫士安研究员提供的受试者名单与《儿童植物类胡萝卜素维生素A当量研究》的研究对象基本一致。   四、关于美国塔夫茨大学汤光文博士负责的美国NIH项目研究中是否使用了“黄金大米”,荫士安研究员表示不知情。   据介绍,为尽快弄清事实,中国疾控中心成立了专门的工作小组,正展开进一步调查。由于涉及多家单位,营养食品所正积极和有关方面协调、沟通,进一步查对、核实有关情况,并将及时公布调查进展。
  • 近红外高光谱成像技术结合机器学习在番茄幼苗光合色素预测中的应用研究
    背景番茄是一种受欢迎且营养丰富的水果,在全球市场上占据了重要地位。近几十年来,大量的研究致力于培育出品质更高、抗逆性更强的番茄品种。果实的品质与幼苗的生长密切相关,因此,有效监控幼苗的生长对于培育优质番茄至关重要。传统的化学方法在监测植物中大量色素的浓度方面可能会受到限制。为了克服这些限制,研究人员经常求助于非侵入性、高通量和实时监测技术,例如光谱学和高光谱成像,这些技术可以在不需要破坏性采样的情况下评估植物中的色素浓度,并提供有效监测大量植物的能力。试验设计本研究使用的樱桃番茄幼苗在华南农业大学园艺学院室内植物工厂(113.36°E,23.6°N)进行水培,包括两种类型的番茄幼苗:未改变的野生型和长下胚轴缺失(HY5)突变体。野生型花青素含量较高,HY5突变体的花青素含量较低。花青素在植物光合作用中起重要作用,并影响其他色素的积累。两种苗种在相同的环境条件下培养。如图1(a)所示,将幼苗置于顶部和底部有开口的海绵方块上,使其叶子向上,根向下,将幼苗种植在72孔泡沫板上。泡沫板被放置在植物工厂的水培架子上,使番茄幼苗的根部能够接触到营养液。番茄幼苗以单孔空间分开种植,以减少植物叶片在生长过程中的相互遮荫,以确保植物获得足够的光线。本研究记录了番茄幼苗在播种后17、20和23天的光谱数据和色素浓度数据。从4块泡沫板中选取144个样本,每块泡沫板中包含36棵幼苗。一半的样本是野生型,另一半是HY5型。实验中番茄幼苗的选择标准是叶片表面平整,以便于光谱图像的获取。图1 (a)高光谱图像采集和(b)ROI提取如图1(a)所示,高光谱图像采集装置由近红外相机Gaia Field-N17、光源、暗盒和加载板组成。该近红外相机具有256个光谱通道,可以记录900-1700 nm范围内的反射光谱。每个样品的高光谱数据使用近红外相机和控制软件SpecVIEW v2.9采集。仪器和软件均由江苏双利合谱光谱成像技术有限公司提供。本研究共采集了432株幼苗,其中一半为野生型,一半为HY5型。幼苗叶片中色素浓度随时间的平均值和分布如图2所示。这些折现说明了每种光合色素的平均浓度总体上呈上升趋势。叶绿素浓度在第20天显著高于第17天,第23天变化不大。这可能有两个潜在原因:随着植物的生长,它可能耗尽了土壤中可用的营养物质。光合色素,如叶绿素,需要氮、镁等关键营养物;植物可能将资源转向开花、结果或其他繁殖过程。小提琴图展示了不同时间间隔中色素浓度的分布,小提琴图中较宽的部分表明该范围内样本数量较多。每个时间点分组的上部小提琴图显示了野生型的分布,而下部小提琴图代表HY5突变型。HY5是植物生长发育过程中促进光形态发生,刺激叶绿素和类胡萝卜素合成的关键调控因子。HY5缺失导致下胚轴变长,光形态发生受损导致色素沉着减少。图2 色素随时间的平均浓度和分布番茄幼苗的原始反射率曲线如图3(a)所示,其中包含少量异常值。常用箱形图来处理这一问题,超出上四分位数或低于下四分位数的样本值会被排除出数据集。值得注意的是,在900 nm和1700 nm附近发生细微的波动,这可能是由噪音和杂散光引起的。利用SG滤波器进行降噪处理,得到更平滑的反射率曲线,如图3(b)所示。一阶导数结果的显著波动清楚地揭示了反射率曲线的变化,如图3(c)所示。此外,如图3(d)所示,经过SNV标准化后,光谱曲线围绕在零附近变得更加密集。因此,利用SG滤波器和SNV联合对反射光谱进行处理,在不失去其特性的情况下,消除了噪声和快速振荡的干扰。图3 预处理方法比较((a)原始光谱;(b)SG平滑滤波器;(c)一阶导数;(d)SNV)在主成分分析法中,载荷图通常用来检验特征与主成分之间的关系,每个主成分中原始变量的权重有助于进一步理解所选波长的重要性。如图4(a)所示,在21个选定的主成分中,有5个主成分占总载荷的90%以上。曲线的峰谷分别出现在910 nm、950 nm、1130 nm、1400 nm和1450 nm附近,与番茄幼苗色素的相关性最强。PC4在910 nm左右上升,PC5在1130 nm左右下降,可能是由于C-H键的拉伸和弯曲振动引起的。950 nm和1130 nm附近发生的特征是由于对称和不对称振动和旋转方式对H2O分子的吸收。1450 nm左右的显著下降与水的O-H拉伸第一泛音和碳水化合物的存在有关。如图4(b)所示,以叶绿素-a的结果为例,CARS经过21次蒙特卡罗采样迭代后,所选择的特征总计为37。所选特征主要集中在950~1150 nm和1400~1480 nm之间。在960nm处观察到的吸收峰主要来自于水分子内羟基(OH)的二阶频率加倍,而在1200 nm附近的衰减被认为是有机物内CH基团的二阶振动吸收的结果。另一方面,叶绿素-b和类胡萝卜素所选择的波长不同。然而,它们都紧密地聚集在两个特定的光谱范围内:930-1210 nm之间和1350-1550 nm之间的峰谷。930-1210 nm之间的特征与植物中O-H和C-H键的振动有关。综上所述,这些一致的结果符合光谱学的既定原理,支持了特征提取的验证。图4 PCA和CARS的结果说明((a)基于PCA方法的波长权重;(b)CARS法提取叶绿素-a的敏感波长)为了证明特征提取有助于预测性能的提升,进行了全波段对比实验。表1显示了不同特征提取方法与PLSR结合时的性能,其中Np代表预测中使用的特征数量,R2c、R2v和RMSEc、RMSEv分别代表校准集和验证集上的R2和RMSE值。如表1所示,通过整合三种特征提取方法,PLSR模型的性能较使用全波段特征有所提升。以叶绿素-a为例,与全波段相比,PCA、ICA和CARS组合的R2分别提高了0.027、0.030和0.082。此外,其他三种色素的预测中也发现了相同的改善。因此,这些特征提取方法能有效地移除反射光谱中的无关信息。此外,在表1中,CARS显示出更高的R2和更小的RMSE,证明了其相较于其他两种策略的优越性。虽然PCA和ICA方法倾向于使用较少的特征进行预测,但它们可能无法保留重要的波长。另一方面,CARS展示了更高的准确性和鲁棒性。因此,在接下来的建模讨论中采用了CARS来选择敏感波长。在特征提取后,对PLSR和ELM进行测试和比较,以确定预测番茄幼苗中色素浓度的最佳模型。采用网格搜索技术确定模型的最优参数。当隐藏层节点数设置为30时,ELM达到最优,预测结果如图5(a)所示。总体而言,ELM比PLSR具有更高的R2和更低的RMSE,即ELM在检测任务中表现出更高的准确性和鲁棒性,可能的关键因素是数据中非线性关系的存在。在3种色素中,ELM模型在叶绿素-a的预测精度最高,在测试集上的R2为0.86,在叶绿素-b和类胡萝卜素数据中表现出几乎一致的预测性能。图5 预测结果((a)PLSR和ELM的比较;(b)色素浓度的可视化)所提出的方法随后被用于检测活体番茄幼苗叶片中的色素浓度。该过程包括将原始高光谱图像作为输入输入到预训练系统,系统随即生成色素浓度的预测。如图5(b)所示,热图中的颜色编码(蓝色代表低浓度,红色代表高浓度)提供了对这些色素分布的直观理解,结果也确实合理。如预期,叶片中的色素浓度高于茎部。这与植物生理学的理解一致,叶子是光合作用的主要场所,这些色素在其中发挥关键作用。利用预测的叶绿素和类胡萝卜素浓度对野生型和HY5型番茄幼苗进行分类。为此训练了基于逻辑回归、支持向量机(SVC)和K最近邻(KNN)的分类模型,将番茄幼苗的输入样本分为野生型和HY5型。模型训练是在包含三种色素浓度和相应基因型标签的真实化学数据集上进行的。然后,使用训练好的分类器和ELM预测的色素浓度作为测试输入,来确定番茄幼苗的基因型。分类器的主要结果在表2中进行了总结。从表中可以观察到,逻辑回归和SVC在测试集上达到了最高的准确度得分,约为0.85。此外,这两个模型的F1分数和AUC也达到了相对较高的值,分别为0.86和0.85,表明这些模型在处理野生型和HY5型的二分类问题上具有高水平的表现。结论为了解决在植物工厂监测大量番茄幼苗生长的挑战,本研究提出了一种新的方法,该方法结合了高光谱成像技术和机器学习技术。在本研究中,叶绿素和类胡萝卜素的实际浓度是通过化学方法确定的,这些数据作为建模的真实基准。进行了使用不同特征提取算法的实验,以验证提取过程的有效性并通过结果比较识别最佳算法。结果显示,CARS方法胜过其他方法,成为特征选择的首选方法。每种色素的敏感波长都被记录下来,以备将来应用。基于PLSR和ELM构建的回归模型进一步用于预测叶绿素a、叶绿素b和类胡萝卜素的浓度,结果显示ELM模型表现更佳,这三种色素的R2分别达到了0.86、0.83和0.83。使用ELM预测的色素浓度作为输入,基于逻辑回归和SVC构建的分类模型用于分类番茄幼苗的基因型,在测试集上达到了0.85的准确度。所提出的方法可以整合到运行在微型计算机上的软件中,使用近红外高光谱相机实时估算色素浓度和基因型。这一概念可能会启发监测设备的开发,旨在提高植物工厂的效率和生产力。作者简介:黄斌山,一作,华南农业大学电子工程学院/人工智能学院。参考文献:Huang Binshan, Li Songhao, Long Teng, Bai Shudai, Zhao Jing, Xu Haitao,Lan Yubin, Liu Houcheng, Long Yongbing. Research on Predicting Photosynthetic Pigments in Tomato Seedling Leaves Based on Near-Infrared Hyperspectral Imaging and Machine Learning. Microchemical Journal, 2024, 204: 111076.
  • 【瑞士步琦】在线近红外实时监控维生素类饲料添加剂的品质
    实时监控维生素类饲料添加剂的品质维生素类饲料添加剂主要是由化学合成来生产。快速而准确的检测其中的维生素如β—胡萝卜素含量和水分含量,对于节约企业生产成本,减少产品次品率,提高产量有着重要的作用。1介绍在维生素类饲料的生产过程中,首先将工业原料按配方进行配比调制,形成了维生素溶液,然后经过喷雾干燥将维生素溶液变成颗粒状的样品,然后经过三层筛选,形成标准化的粒径,最后将不同维生素含量的产品进行混合,将最终的维生素含量控制在标准范围内,如 10.0-10.5%,水分 6-8%。因此,产品的主要组成是类胡萝卜素,水分,和淀粉底物等。类胡萝卜素的含量需要严格控制在 10-10.5 的水平,而水分含量太低会导致原料的浪费,因此最重要的指标是类胡萝卜素和水分。然而,用户在实际生产过程中,由于无法实时调整类胡萝卜素和水分的含量,只能将产品先生产出来,然后等待传统分析的结果后,再将含量高低的产品进行混合,最终达到相应的含量标准。将 BUCHI NIR-Online® 安装在喷雾干燥之后和过筛后的位置,能在3秒内测出维生素的含量和水分,且多个参数同时的连续的监控。用户依据实时结果,能实时控制产品的含量至标准范围,从而混合步骤可以省略,且平均结果比取样的某一点的结果更有代表性,因此提高了生产效率,减少了产品的次品率。2配置BUCHI NIR-Online® 在线近红外 X-Three波长范围:400-1700 nm(检测类胡萝卜素必须)测量方式:漫反射▲安装示意图3结果已经证明 BUCHI 在线近红外能快速准确的测定维生素类饲料添加剂的各个成分:表1:模型参数参数范围(%)偏差β-胡萝卜素7.8-11.80.22水分5.9-8.90.14结果证明步琦在线近红外能够准确的分析产品中的多个指标。在线分析手段提供了实时的结果,能保证产品品质的稳定性,减少次品率,实时的水分控制,节省了企业成本,并节省了品控的工作量和试剂消耗,降低了人员成本。
  • 加拿大修订部分产品中农残限量
    2012年9月18日,据加拿大卫生部消息,加拿大卫生部发布EMRL2012-27至EMRL2012-30号4份通报。具体内容如下:   1. 修订氯虫酰胺的最大残留限量   加拿大卫生部有害生物管理局修订了氯虫酰胺(Chlorantraniliprole)在苹果、咖啡等商品中的最大残留限量。 食品类别 MRL(PPM) 薄荷头、绿薄荷头 9.0 核果(作物组12-09) 2.5 咖啡(速溶) 1.0 苹果、梨等梨果(作物组11-09) 0.4 咖啡(绿豆),大米 0.15 马、牛、羊脂肪以及肌肉副产品 0.05 树生坚果(作物组14)、非甜质玉米、开心果、爆米花谷物 0.02 块茎、球茎类蔬菜(作物组1C,土豆除外)、鸡蛋、猪与家禽的脂肪、肌肉与肌肉副产品 0.01   2. 修订咯菌腈的最大残留限量   加拿大卫生部有害生物管理局修订了咯菌腈(Fludioxonil)在西红柿、胡萝卜等商品中的最大残留限量。 食品类别 MRL(PPM) 香草(作物组19A;干叶子) 65 块根、块茎类蔬菜的叶子(作物组2) 30 香草(作物亚组19A;新鲜叶子) 10 除土豆外的块茎、球茎类蔬菜(作物亚组1D,山药茎除外) 3.5 除甜菜外的块根类蔬菜(作物亚组1B,胡萝卜除外) 0.75 西红柿、tomatillos 0.5 葫芦(作物组9)、鳄梨、黑果榄、鸡蛋果(canistels)、香肉果(mamey sapotes)、芒果、木瓜、人参果、星苹果 0.45   3. 修订种菌唑的最大残留限量   加拿大有害生物管理局种菌唑(ipconazole)在芥菜籽(油料类)和油菜籽(菜籽)中的最大残留限量修订为0.1ppm。   4. 修订噻虫嗪的最大残留限量   加拿大卫生部有害生物管理局修订了噻虫嗪(Thiamethoxam)在番茄酱、果类蔬菜中的最大残留限量。 食品类别 MRL(PPM) 番茄酱 0.8 果类蔬菜(葫芦除外,作物组8) 0.25
  • 亚洲最大的螺旋藻检测中心落成
    近日获悉,云南绿A生物产业园即将竣工,按规划在建的绿A产业园将落成一个总面积达1000平方米的螺旋藻检测中心。该中心投资达1500多万元,将成为亚洲最大的螺旋藻检测平台。绿A检测中心配备功能齐全、技术先进的检测设备,能够实现重金属、叶绿素、类胡萝卜素、藻蓝素、蛋白质等10多项专业检测,为绿A质量控制提供了更精确的数据指导。   绿A检测中心作为我国微藻科技创新体系的重要组成部分,是国家组织高水平微藻基础研究和应用基础研究、聚集和培养优秀微藻科技人才、开展微藻研究、研发和生产的重要基地。这将极大提升我国螺旋藻的质量控制水平及保证产品的优良品质。   绿A全程数字监控 技术升级 质量上新台阶   根据绿A科研人员介绍,螺旋藻养殖看似简单,其实是一项真正的高科技项目。螺旋藻是一个肉眼看不到的微生物,但由于其在生长培育阶段是有生命的,也会“生病”,因此螺旋藻生长过程的监控尤为重要。此次绿A决定建设螺旋藻检测中心,就是要将螺旋藻质量控制“前移”,将螺旋藻生长过程的质量控制和风险评估放在更核心的位置。   早在成立之初,绿A就建立了完备的螺旋藻生产质量管理和控制体系。即将建成的“绿A微藻实验室”按国家重点实验室的标准和规范建设,实现了绿A螺旋藻的现代化管理。实验室配备了国际先进的检验检测设备和专业技术人员,能够对螺旋藻的生产进行全程监控和检验,并完成水体PH质检测、温度控制、重金属检测及其他螺旋藻理化指标的10余项跟踪监测,全方位保障了绿A螺旋藻的优质产品质量。   科技创新助推绿A创新高   绿A具有完备的螺旋藻藻种选育实验室和藻种库。绿A藻种试验室内聚集了国内顶尖的科研团队,由常年驻扎绿A基地的武汉植物研究李夜光教授带队。绿A一直进行产学研模式的探索,组建具有优化组合知识结构、极强实践操作能力的技术创新科研队伍,并与100多家科研单位和大学建立合作关系,先后进入国家科委“七五”、“八五”科技攻关项目和“火炬计划”项目,得到国家领导和有关部门的高度重视和大力支持。如今绿A的藻种库有上百种优质藻种净株,科研人员能够通过技术监控清楚得出每个净株的各项营养指标参数。凭借强大的螺旋藻专业研发能力,绿A已建立起“世界微藻研发中心”的领先地位。
  • 荫士安牵头项目被删 合并试验说法存疑
    “黄金大米”儿童试验的调查在艰难推进,渴望真相的公众,仍在等待谜团解开。   《每日经济新闻》记者调查发现,中国疾控中心研究员荫士安的说法存在造假嫌疑,他所称的“合并试验”实际上早在2007年已经有过试验结果。   就在近日,国家自然科学基金蹊跷删除由荫士安牵头负责的编号为30571574的项目,而该项目正是卷入“黄金大米”试验风波的项目。   5年前已有试验结果   9月10日,中国疾控中心公布了“黄金大米”事件的最新调查结果。中国疾控中心表示,荫士安研究员负责的国家自然科学基金项目,名称为“植物中类胡萝卜素在儿童体内转化成为维生素A的效率研究”(项目编号:30571574)。课题执行日期为2006年1月至2008年12月。课题的研究内容仅涉及稳定同位素标记的菠菜中类胡萝卜素转化效率研究,没有转基因大米的研究。   荫士安表示,考虑其负责的国家自然科学基金项目与美国塔夫茨大学汤光文博士负责的美国NIH项目均有菠菜中类胡萝卜素转化效率研究内容,故将2个项目的现场工作合并在一起进行。   然而,《每日经济新闻》记者在一篇《学龄儿童体内植物源性胡萝卜素转化成维生素A的效率研究》论文发现,荫士安早在2007年9月就已经署名发表了这篇论文。论文表示,该课题是国家自然科学基金资助项目,项目编号正是30571574。   据中国疾控中心公布的初步调查结论表示,“(编号为30571574)课题现场工作于2008年5月在湖南衡阳市衡南县江口镇中心小学进行。   然而,《学龄儿童体内植物源性胡萝卜素转化成维生素A的效率研究》这篇论文却称,试验选取的浙江某农村小学7~9岁儿童32名,受试儿童前7天每天午饭及晚饭两组分别补充氘标记菠菜 (美国塔夫茨大学提供)及胡萝素油胶囊,并在试验后采集静脉血测试,以计算菠菜及纯品油胶囊中胡萝卜素的转化效率,并最终得出了试验结论。也就是说,这个课题的试验现场在浙江。   在已经得出试验结论的情况下,是否是荫士安在2008年又将同样的试验搬到了湖南重复进行?如果是重复进行,其目的是什么?   根据中国疾控中心9月10的声明,荫士安在湖南的试验分为两组,每组40人。而汤光文的“黄金大米”试验论文却称,试验分为三组,每组12人。研究对象、统计完全不同。两个试验如何合并?   在湖南进行的“黄金大米”试验中,荫士安是否为配合汤广文而进行了重复的试验研究,目前仍不得而知。   蹊跷的30571574项目   此前,《每日经济新闻》记者在国家自然科学基金的网站上,查询到“植物中类胡萝卜素在儿童体内转化成为维生素A的效率研究”(项目编号:30571574)的相关信息并做了保留。信息显示,该项目获批金额为33万元。   然而,昨日当记者再去查询该信息时,却发现这一项目已经被悄然删除。相关资料已荡然无存,无论查询项目名称,或项目编号,或试验负责人荫士安,均无法在国家自然科学基金的网站上检索到这一项目。   随着记者的调查逐步推进,更多疑问浮现出来。   在湖南省疾控中心毒理科的网站上,记者却发现,该科2010年一个通报称,由荫士安负责、湖南省疾控中心研究员胡余明为第二负责人的“植物中类胡萝卜素在儿童体内转化成为维生素A的效率研究”获得立项。   湖南省疾控中心的网站还显示,由该中心毒理科执行的该课题,于2011年5月在衡阳市衡南县正式开展,并配发了两张小学生集体进餐的图片。   而关于2010年才立项的课题,在国家自然科学基金的官方网站上,同样检索不到。   同一研究课题,为何在2010年再次立项?国家自然科学基金给予的资金资助是多少?国家自然科学基金是否进行了有效监管?荫士安的项目,并入美国试验,国家自然科学基金是否知情?国家自然科学基金为何将按规定进行公开的,并且已经结束的试验课题从数据库里删除?   记者带着这些疑问致电国家自然科学基金办公室宣传处,该处负责人表示,需要领导看过采访题纲才能处理。传真采访题纲后,记者再次致电该部门,负责人表示,领导出差无法接受采访。   截至发稿,记者仍未收到国家自然科学基金的答复。
  • 【综述】碳化硅中的缺陷检测技术
    摘要随着对性能优于硅基器件的碳化硅(SiC)功率器件的需求不断增长,碳化硅制造工艺的高成本和低良率是尚待解决的最紧迫问题。研究表明,SiC器件的性能很大程度上受到晶体生长过程中形成的所谓杀手缺陷(影响良率的缺陷)的影响。在改进降低缺陷密度的生长技术的同时,能够识别和定位缺陷的生长后检测技术已成为制造过程的关键必要条件。在这篇综述文章中,我们对碳化硅缺陷检测技术以及缺陷对碳化硅器件的影响进行了展望。本文还讨论了改进现有检测技术和降低缺陷密度的方法的潜在解决方案,这些解决方案有利于高质量SiC器件的大规模生产。前言由于电力电子市场的快速增长,碳化硅(SiC,一种宽禁带半导体)成为开发用于电动汽车、航空航天和功率转换器的下一代功率器件的有前途的候选者。与由硅或砷化镓(GaAs)制成的传统器件相比,基于碳化硅的电力电子器件具有多项优势。表1显示了SiC、Si、GaAs以及其他宽禁带材料(如GaN和金刚石)的物理性能的比较。由于具有宽禁带(4H-SiC为~3.26eV),基于SiC器件可以在更高的电场和更高的温度下工作,并且比基于Si的电力电子器件具有更好的可靠性。SiC还具有优异的导热性(约为Si的三倍),这使得SiC器件具有更高的功率密度封装,具有更好的散热性。与硅基功率器件相比,其优异的饱和电子速度(约为硅的两倍)允许更高的工作频率和更低的开关损耗。SiC优异的物理特性使其非常有前途地用于开发各种电子设备,例如具有高阻断电压和低导通电阻的功率MOSFET,以及可以承受大击穿场和小反向漏电流的肖特基势垒二极管(SBD)。性质Si3C-SiC4H-SiCGaAsGaN金刚石带隙能量(eV)1.12.23.261.433.455.45击穿场(106Vcm−1)0.31.33.20.43.05.7导热系数(Wcm−1K−1)1.54.94.90.461.322饱和电子速度(107cms−1)1.02.22.01.02.22.7电子迁移率(cm2V−1s−1)150010001140850012502200熔点(°C)142028302830124025004000表1电力电子用宽禁带半导体与传统半导体材料的物理特性(室温值)对比提高碳化硅晶圆质量对制造商来说很重要,因为它直接决定了碳化硅器件的性能,从而决定了生产成本。然而,低缺陷密度的SiC晶圆的生长仍然非常具有挑战性。最近,碳化硅晶圆制造的发展已经完成了从100mm(4英寸)到150mm(6英寸)晶圆的艰难过渡。SiC需要在高温环境中生长,同时具有高刚性和化学稳定性,这导致生长的SiC晶片中存在高密度的晶体和表面缺陷,导致衬底和随后制造的外延层质量差。图1总结了SiC中的各种缺陷以及这些缺陷的工艺步骤,下一节将进一步讨论。图1SiC生长过程示意图及各步骤引起的各种缺陷各种类型的缺陷会导致设备性能不同程度的劣化,甚至可能导致设备完全失效。为了提高良率和性能,在设备制造之前检测缺陷的技术变得非常重要。因此,快速、高精度、无损的检测技术在碳化硅生产线中发挥着重要作用。在本文中,我们将说明每种类型的缺陷及其对设备性能的影响。我们还对不同检测技术的优缺点进行了深入的讨论。这篇综述文章中的分析不仅概述了可用于SiC的各种缺陷检测技术,还帮助研究人员在工业应用中在这些技术中做出明智的选择(图2)。表2列出了图2中检测技术和缺陷的首字母缩写。图2可用于碳化硅的缺陷检测技术表2检测技术和缺陷的首字母缩写见图SEM:扫描电子显微镜OM:光学显微镜BPD:基面位错DIC:微分干涉对比PL:光致发光TED:螺纹刃位错OCT:光学相干断层扫描CL:阴极发光TSD:螺纹位错XRT:X射线形貌术拉曼:拉曼光谱SF:堆垛层错碳化硅的缺陷碳化硅晶圆中的缺陷通常分为两大类:(1)晶圆内的晶体缺陷和(2)晶圆表面处或附近的表面缺陷。正如我们在本节中进一步讨论的那样,晶体学缺陷包括基面位错(BPDs)、堆垛层错(SFs)、螺纹刃位错(TEDs)、螺纹位错(TSDs)、微管和晶界等,横截面示意图如图3(a)所示。SiC的外延层生长参数对晶圆的质量至关重要。生长过程中的晶体缺陷和污染可能会延伸到外延层和晶圆表面,形成各种表面缺陷,包括胡萝卜缺陷、多型夹杂物、划痕等,甚至转化为产生其他缺陷,从而对器件性能产生不利影响。图3SiC晶圆中出现的各种缺陷。(a)碳化硅缺陷的横截面示意图和(b)TEDs和TSDs、(c)BPDs、(d)微管、(e)SFs、(f)胡萝卜缺陷、(g)多型夹杂物、(h)划痕的图像生长在4°偏角4H-SiC衬底上的SiC外延层是当今用于各种器件应用的最常见的晶片类型。在4°偏角4H-SiC衬底上生长的SiC外延层是当今各种器件应用中最常用的晶圆类型。众所周知,大多数缺陷的取向与生长方向平行,因此,SiC在SiC衬底上以4°偏角外延生长不仅保留了下面的4H-SiC晶体,而且使缺陷具有可预测的取向。此外,可以从单个晶圆上切成薄片的晶圆总数增加。然而,较低的偏角可能会产生其他类型的缺陷,如3C夹杂物和向内生长的SFs。在接下来的小节中,我们将讨论每种缺陷类型的详细信息。晶体缺陷螺纹刃位错(TEDs)、螺纹位错(TSDs)SiC中的位错是电子设备劣化和失效的主要来源。螺纹刃位错(TSDs)和螺纹位错(TEDs)都沿生长轴运行,Burgers向量分别为和1/3。TSDs和TEDs都可以从衬底延伸到晶圆表面,并带来小的凹坑状表面特征,如图3b所示。通常,TEDs的密度约为8000-10,0001/cm2,几乎是TSDs的10倍。扩展的TSDs,即TSDs从衬底延伸到外延层,可能在SiC外延生长过程中转化为基底平面上的其他缺陷,并沿生长轴传播。Harada等人表明,在SiC外延生长过程中,TSDs被转化为基底平面上的堆垛层错(SFs)或胡萝卜缺陷,而外延层中的TEDs则被证明是在外延生长过程中从基底继承的BPDs转化而来的。基面位错(BPDs)另一种类型的位错是基面位错(BPDs),它位于SiC晶体的平面上,Burgers矢量为1/3。BPDs很少出现在SiC晶圆表面。它们通常集中在衬底上,密度为15001/cm2,而它们在外延层中的密度仅为约101/cm2。Kamei等人报道,BPDs的密度随着SiC衬底厚度的增加而降低。BPDs在使用光致发光(PL)检测时显示出线形特征,如图3c所示。在SiC外延生长过程中,扩展的BPDs可能转化为SFs或TEDs。微管在SiC中观察到的常见位错是所谓的微管,它是沿生长轴传播的空心螺纹位错,具有较大的Burgers矢量分量。微管的直径范围从几分之一微米到几十微米。微管在SiC晶片表面显示出大的坑状表面特征。从微管发出的螺旋,表现为螺旋位错。通常,微管的密度约为0.1–11/cm2,并且在商业晶片中持续下降。堆垛层错(SFs)堆垛层错(SFs)是SiC基底平面中堆垛顺序混乱的缺陷。SFs可能通过继承衬底中的SFs而出现在外延层内部,或者与扩展BPDs和扩展TSDs的变换有关。通常,SFs的密度低于每平方厘米1个,并且通过使用PL检测显示出三角形特征,如图3e所示。然而,在SiC中可以形成各种类型的SFs,例如Shockley型SFs和Frank型SFs等,因为晶面之间只要有少量的堆叠能量无序可能导致堆叠顺序的相当大的不规则性。点缺陷点缺陷是由单个晶格点或几个晶格点的空位或间隙形成的,它没有空间扩展。点缺陷可能发生在每个生产过程中,特别是在离子注入中。然而,它们很难被检测到,并且点缺陷与其他缺陷的转换之间的相互关系也是相当的复杂,这超出了本文综述的范围。其他晶体缺陷除了上述各小节所述的缺陷外,还存在一些其他类型的缺陷。晶界是两种不同的SiC晶体类型在相交时晶格失配引起的明显边界。六边形空洞是一种晶体缺陷,在SiC晶片内有一个六边形空腔,它已被证明是导致高压SiC器件失效的微管缺陷的来源之一。颗粒夹杂物是由生长过程中下落的颗粒引起的,通过适当的清洁、仔细的泵送操作和气流程序的控制,它们的密度可以大大降低。表面缺陷胡萝卜缺陷通常,表面缺陷是由扩展的晶体缺陷和污染形成的。胡萝卜缺陷是一种堆垛层错复合体,其长度表示两端的TSD和SFs在基底平面上的位置。基底断层以Frank部分位错终止,胡萝卜缺陷的大小与棱柱形层错有关。这些特征的组合形成了胡萝卜缺陷的表面形貌,其外观类似于胡萝卜的形状,密度小于每平方厘米1个,如图3f所示。胡萝卜缺陷很容易在抛光划痕、TSD或基材缺陷处形成。多型夹杂物多型夹杂物,通常称为三角形缺陷,是一种3C-SiC多型夹杂物,沿基底平面方向延伸至SiC外延层表面,如图3g所示。它可能是由外延生长过程中SiC外延层表面上的下坠颗粒产生的。颗粒嵌入外延层并干扰生长过程,产生了3C-SiC多型夹杂物,该夹杂物显示出锐角三角形表面特征,颗粒位于三角形区域的顶点。许多研究还将多型夹杂物的起源归因于表面划痕、微管和生长过程的不当参数。划痕划痕是在生产过程中形成的SiC晶片表面的机械损伤,如图3h所示。裸SiC衬底上的划痕可能会干扰外延层的生长,在外延层内产生一排高密度位错,称为划痕,或者划痕可能成为胡萝卜缺陷形成的基础。因此,正确抛光SiC晶圆至关重要,因为当这些划痕出现在器件的有源区时,会对器件性能产生重大影响。其他表面缺陷台阶聚束是SiC外延生长过程中形成的表面缺陷,在SiC外延层表面产生钝角三角形或梯形特征。还有许多其他的表面缺陷,如表面凹坑、凹凸和污点。这些缺陷通常是由未优化的生长工艺和不完全去除抛光损伤造成的,从而对器件性能造成重大不利影响。检测技术量化SiC衬底质量是外延层沉积和器件制造之前必不可少的一步。外延层形成后,应再次进行晶圆检查,以确保缺陷的位置已知,并且其数量在控制之下。检测技术可分为表面检测和亚表面检测,这取决于它们能够有效地提取样品表面上方或下方的结构信息。正如我们在本节中进一步讨论的那样,为了准确识别表面缺陷的类型,通常使用KOH(氢氧化钾)通过在光学显微镜下将其蚀刻成可见尺寸来可视化表面缺陷。然而,这是一种破坏性的方法,不能用于在线大规模生产。对于在线检测,需要高分辨率的无损表面检测技术。常见的表面检测技术包括扫描电子显微镜(SEM)、原子力显微镜(AFM)、光学显微镜(OM)和共聚焦微分干涉对比显微镜(CDIC)等。对于亚表面检测,常用的技术包括光致发光(PL)、X射线形貌术(XRT)、镜面投影电子显微镜(MPJ)、光学相干断层扫描(OCT)和拉曼光谱等。在这篇综述中,我们将碳化硅检测技术分为光学方法和非光学方法,并在以下各节中对每种技术进行讨论。非光学缺陷检测技术非光学检测技术,即不涉及任何光学探测的技术,如KOH蚀刻和TEM,已被广泛用于表征SiC晶圆的质量。这些方法在检测SiC晶圆上的缺陷方面相对成熟和精确。然而,这些方法会对样品造成不可逆转的损坏,因此不适合在生产线中使用。虽然存在其他非破坏性的检测方法,如SEM、CL、AFM和MPJ,但这些方法的通量较低,只能用作评估工具。接下来,我们简要介绍上述非光学技术的原理。还讨论了每种技术的优缺点。透射电子显微镜(TEM)透射电子显微镜(TEM)可用于以纳米级分辨率观察样品的亚表面结构。透射电镜利用入射到碳化硅样品上的加速电子束。具有超短波长和高能量的电子穿过样品表面,从亚表面结构弹性散射。SiC中的晶体缺陷,如BPDs、TSDs和SFs,可以通过TEM观察。扫描透射电子显微镜(STEM)是一种透射电子显微镜,可以通过高角度环形暗场成像(HAADF)获得原子级分辨率。通过TEM和HAADF-STEM获得的图像如图4a所示。TEM图像清晰地显示了梯形SF和部分位错,而HAADF-STEM图像则显示了在3C-SiC中观察到的三种SFs。这些SFs由1、2或3个断层原子层组成,用黄色箭头表示。虽然透射电镜是一种有用的缺陷检测工具,但它一次只能提供一个横截面视图,因此如果需要检测整个碳化硅晶圆,则需要花费大量时间。此外,透射电镜的机理要求样品必须非常薄,厚度小于1μm,这使得样品的制备相当复杂和耗时。总体而言,透射电镜用于了解缺陷的基本晶体学,但它不是大规模或在线检测的实用工具。图4不同的缺陷检测方法和获得的缺陷图像。(a)SFs的TEM和HAADF图像;(b)KOH蚀刻后的光学显微照片图像;(c)带和不带SF的PL光谱,而插图显示了波长为480nm的单色micro-PL映射;(d)室温下SF的真彩CLSEM图像;(e)各种缺陷的拉曼光谱;(f)微管相关缺陷204cm−1峰的微拉曼强度图KOH蚀刻KOH蚀刻是另一种非光学技术,用于检测多种缺陷,例如微管、TSDs、TEDs、BDPs和晶界。KOH蚀刻后形成的图案取决于蚀刻持续时间和蚀刻剂温度等实验条件。当将约500°C的熔融KOH添加到SiC样品中时,在约5min内,SiC样品在有缺陷区域和无缺陷区域之间表现出选择性蚀刻。冷却并去除SiC样品中的KOH后,存在许多具有不同形貌的蚀刻坑,这些蚀刻坑与不同类型的缺陷有关。如图4b所示,位错产生的大型六边形蚀刻凹坑对应于微管,中型凹坑对应于TSDs,小型凹坑对应于TEDs。KOH刻蚀的优点是可以一次性检测SiC样品表面下的所有缺陷,制备SiC样品容易,成本低。然而,KOH蚀刻是一个不可逆的过程,会对样品造成永久性损坏。在KOH蚀刻后,需要对样品进行进一步抛光以获得光滑的表面。镜面投影电子显微镜(MPJ)镜面投影电子显微镜(MPJ)是另一种很有前途的表面下检测技术,它允许开发能够检测纳米级缺陷的高通量检测系统。由于MPJ反映了SiC晶圆上表面的等电位图像,因此带电缺陷引起的电位畸变分布在比实际缺陷尺寸更宽的区域上。因此,即使工具的空间分辨率为微米级,也可以检测纳米级缺陷。来自电子枪的电子束穿过聚焦系统,均匀而正常地照射到SiC晶圆上。值得注意的是,碳化硅晶圆受到紫外光的照射,因此激发的电子被碳化硅晶圆中存在的缺陷捕获。此外,SiC晶圆带负电,几乎等于电子束的加速电压,使入射电子束在到达晶圆表面之前减速并反射。这种现象类似于镜子对光的反射,因此反射的电子束被称为“镜面电子”。当入射电子束照射到携带缺陷的SiC晶片时,缺陷的带负电状态会改变等电位表面,导致反射电子束的不均匀性。MPJ是一种无损检测技术,能够对SiC晶圆上的静电势形貌进行高灵敏度成像。Isshiki等人使用MPJ在KOH蚀刻后清楚地识别BPDs、TSDs和TEDs。Hasegawa等人展示了使用MPJ检查的BPDs、划痕、SFs、TSDs和TEDs的图像,并讨论了潜在划痕与台阶聚束之间的关系。原子力显微镜(AFM)原子力显微镜(AFM)通常用于测量SiC晶圆的表面粗糙度,并在原子尺度上显示出分辨率。AFM与其他表面检测方法的主要区别在于,它不会受到光束衍射极限或透镜像差的影响。AFM利用悬臂上的探针尖端与SiC晶圆表面之间的相互作用力来测量悬臂的挠度,然后将其转化为与表面缺陷特征外观成正比的电信号。AFM可以形成表面缺陷的三维图像,但仅限于解析表面的拓扑结构,而且耗时长,因此通量低。扫描电子显微镜(SEM)扫描电子显微镜(SEM)是另一种广泛用于碳化硅晶圆缺陷分析的非光学技术。SEM具有纳米量级的高空间分辨率。加速器产生的聚焦电子束扫描SiC晶圆表面,与SiC原子相互作用,产生二次电子、背散射电子和X射线等各种类型的信号。输出信号对应的SEM图像显示了表面缺陷的特征外观,有助于理解SiC晶体的结构信息。但是,SEM仅限于表面检测,不提供有关亚表面缺陷的任何信息。阴极发光(CL)阴极发光(CL)光谱利用聚焦电子束来探测固体中的电子跃迁,从而发射特征光。CL设备通常带有SEM,因为电子束源是这两种技术的共同特征。加速电子束撞击碳化硅晶圆并产生激发电子。激发电子的辐射复合发射波长在可见光谱中的光子。通过结合结构信息和功能分析,CL给出了样品的完整描述,并直接将样品的形状、大小、结晶度或成分与其光学特性相关联。Maximenko等人显示了SFs在室温下的全彩CL图像,如图4d所示。不同波长对应的SFs种类明显,CL发现了一种常见的单层Shockley型堆垛层错,其蓝色发射在~422nm,TSD在~540nm处。虽然SEM和CL由于电子束源而具有高分辨率,但高能电子束可能会对样品表面造成损伤。基于光学的缺陷检测技术为了在不损失检测精度的情况下实现高吞吐量的在线批量生产,基于光学的检测方法很有前途,因为它们可以保存样品,并且大多数可以提供快速扫描能力。表面检测方法可以列为OM、OCT和DIC,而拉曼、XRT和PL是表面下检测方法。在本节中,我们将介绍每种检测方法的原理,这些方法如何应用于检测缺陷,以及每种方法的优缺点。光学显微镜(OM)
  • Lovibond罗维朋色度标准在各行业中的应用
    Lovibond色度标准 色度标准介绍 比色测量是通过与固定的颜色代表的一系列标准进行比较的颜色分级技术,目前广泛应用于产品的颜色评估。对于多种产品类型,一系列经典色标被用于色度控制并作为颜色规格的表达方式,长久以来,许多惯用的分级色标已经被视为行业标准并延用至今。 Acid Wash Colour色度标准(ASTM D848) 广泛应用于工业芳香烃的质量测量,例如苯、甲苯、二甲苯和经提炼的溶解的石油。 仪器型号: PFX195 仪器型号: 2000系列比色计 ADMI 色度标准(美国标准方法2120 E) ADMI是由美国染料制造商协会指定,采用了频谱色度规模或三色的方法,得到样本的色度值。ADMI通常应用于有色流动液体,以Pt-Co/Hazen/APHA/Hazen为单位。 仪器型号: AquaTint AOCS-Tintometer色度标准(AOCS Cc 13b, the Wesson Method AOCS Cc 13j) 罗维朋RYBN色标的红色和黄色改良版,用于脂肪油、油及衍生物;AOCS-Tintometer色度标准的色度仪与罗维朋红色色标不同。 仪器型号:PFX995, PFX950 & PFX880 仪器型号:AF710-3 ASBC 色度标准 美国啤酒色度分级标准;根据等式ASBC = 0.375 EBC Colour + 0.46,EBC色标的衍生物。 仪器型号:PFX195 ASTM色度标准(ASTM D 1500,ASTM D 6045,ISO 2049,IP196) 按照16种标准玻璃折射性和染色性,石油产品按等级从0.5最轻的颜色到最黑的8.0标准单位。 用于各类润滑油,取暖用油,柴油和石油蜡。 仪器型号:PFX995, PFX950 & PFX880 仪器型号:PFX195 仪器型号:石油比较器,AF650 仪器型号:2000系列比色计(测量范围有限) Barrett色度标准 从无色到褐色的树脂、紫胶和沥青产品是按Barrett色度标准分级。测量钴氯化物、氯化铁和在盐酸下溶解的钾铬酸盐的一系列溶液。 仪器型号:2000系列比色计 &beta 胡萝卜素(BS 684 Section 2.20) 直接测量&beta 胡萝卜素百万分之几的含量。 仪器型号:PFX995, PFX950 & PFX880 中国药典(CP)色度标准 中国药剂溶液,划分为五个色彩:黄绿色(YG1 - YG10);黄色(Y1 - Y10); 橘黄色(OY1 - OY10);橘红色(OR1 - OR10);红褐色(BR1 - BR10)。 仪器型号:PFX195 叶绿素A&B(美国石油化学学会发表) 直接测量叶绿素A、B中油含量占百万分之几。 仪器型号:PFX995,PFX950,PFX880 Dichromate Index色度标准(DGF C-IV 4d discontinued) 油和脂肪的色度类似重铬酸钾溶液。 仪器型号:2000系列比色计 Dyed Aviation Gasoline色度标准(ASTM D 2392) ASTM D 2392 用于将汽油染色后的颜色辨识,以便于分类。罗维朋的玻璃过滤器可识别红色、蓝色、绿色、棕色及紫色染料的最高和最低限。 仪器型号: 2000系列比色计 EBC色度标准(Analytica) 由国际酿造协会和欧洲酿酒厂协议指定,颜色有浅黄色到棕红色,示值从2-27。应用于啤酒、麦芽汁、焦糖及类似有色液体。如待测样品超出量程(如浓缩物或糖浆),可将样品稀释,使读数范围符合标准范围。 仪器型号:PFX195 仪器型号:EBC3000系列比色计 仪器型号:2000系列比色计 FAC色度标准(AOCS Cc 13a) 经美国油类化学家学会油脂分析委员会审核,用于深色油品及脂肪、牛油等。FAC色度标准将26个标准色彩划分为5组:第1组颜色较浅油脂(1, 3, 5, 7, 9);第2组以显著的黄色为主(11, 11a, 11b, 11c);第3组深色油脂(13, 15, 17, 19);第4组较深颜色油脂,以显著绿色为主(21, 23, 25, 27, 29);第5组以红色为主的深色油脂(31, 33, 35, 37, 39, 41, 43, 45)。 仪器型号:PFX995, PFX950 & PFX880 仪器型号:PFX195 仪器型号:FAC 3000系列比色计 Gardner色标(ASTM D 1544, ASTM D 6166, AOCS Td 1a, MS 817 Part 10) 用于浅黄到红色的油品和化学品,包括树脂、清漆、干性油、脂肪酸、卵磷脂、葵花油和亚麻籽油。 测量范围1-18单位,1为最浅,18为最深。Gardner色度标准在1963年已经被通用;罗维朋光学干扰滤光片也可用于早期1953年和1933年的版本。 仪器型号: PFX995, PFX950 & PFX880 仪器型号: PFX195 仪器型号:Gardner 3000系列比色计 仪器型号: 2000系列比色计 Haemoglobin Content of Blood色标(Harrison&rsquo s Method) 通过比较预先校准的标准稀释血液,测量血液中血红蛋白的含量。 仪器型号:2000系列比色计 Hess-Ives 色度单位(DGK F050.2) 基于利用红、绿、蓝/紫色光谱色度测量透明液体的测量范围,在一个Hess-Ives色度单位上减少了3%的偏差。用于化学品及表面活性剂。 仪器型号: PFX995, PFX950 & PFX880 仪器型号: PFX195 Honey Colour (Pfund Equivalents) 将蜂蜜分级,从淡黄色、琥珀色到深红色,以mm Pfund为单位。美国农业部以Pfund 为色度标准,制定了对萃取蜂蜜颜色分级标准。 仪器型号:2000系列比色计 ICUMSA Colour 色标(ICUMSA GS1-7, ICUMSA GS2/3-9) 以一个特定浓度值(糖度值)、420nm白糖和560nm深色或其他较浅颜色产品为标准,按等级划分过滤糖溶液颜色的色度标准。 仪器型号: PFX880/S 仪器型号: PFX195 International Fruit Juice Union (IFU) 色标 欧洲发达国家指定的测量果汁色度标准,专门应用于黄色/琥珀色,如苹果、梨和白葡萄。 测量范围1-25单位. 仪器型号:2000系列比色计 碘色标(DIN 6162) 稀释特定碘溶液颜色由黄色到棕色,测量范围1-500单位(1最浅色,500最深色)。应用于欧洲国家的溶剂、增塑剂、树脂、油和酸性油脂。若测量值为1或更小,则采用Platinum-Cobalt单位。 仪器型号:PFX195 仪器型号: 2000系列比色计 IP单位(IP 17方法B) 应用于浅色产品如汽车燃油、白酒或煤油,测量范围由水白(0.25)至标准白(4.0)。 仪器型号:PFX995, PFX950 & PFX880 Klett色标(蓝色滤光片KS-42) (AOCS Dd 5标准方法) 与LAS同样适用于清洁剂及表面活性剂。 仪器型号:PFX995, PFX950 & PFX880 仪器型号:PFX195 Kreis值 比色测试,用于油品及脂肪的氧化酸败度的质量控制,采用Lovibond红色色度。 该测试已制定,使经过处理的样品颜色强度降低到罗维朋红色单位5或更小,由浓度和光程长度确定。Kreis值是一个简单的方程罗维朋红色色度的单位,测量范围由浓度及光程长度确定,5 - 10%的重复性。在使用此检测方法时,在早期阶段会氧化变质;新鲜脂肪和没有在无氧条件下保存的油脂会有明显的反应。 仪器型号:PFX995 仪器型号:Model F Lovibond® RYBN 色度标准(AOCS Cc 13e, AOCS Cc 13j,ISO 15305, MS 252: Part 16, IP17 方法A) 基于84个经精确校准的有色玻璃滤光片,包括红色、黄色和蓝色,从去饱和到完全饱和划分。样品颜色是经三原色与中性过滤片结合,由一个定义的Lovibond RYBN单位设置。可组成数百万的组合,所以有可能可测量任何样品的颜色;广泛应用于测量油脂、化学品、医药和糖浆。 仪器型号: PFX995, PFX950 & PFX880 仪器型号: Model F Maple Syrup 对于maple syrups色度标准有两种说法,一种说法说是由美国农业部批准的,另一种是说由佛蒙特州农业部指定的。 仪器型号:2000系列比色计 Paint Research Station (PRS) 色度标准 起初该色度标准只用于清漆,现今也按等级划分测量范围。 仪器型号:2000系列比色计 Pt-Co/Hazen/APHA 色度标准(ASTM D 1209) 以特定浓度的Pt-Co稀释发的清澈、浅黄色溶液定义,浓度范围从0(浅色)到500(深色)。改色标广泛应用于水质分析,也用于清油、化学品、石油产品,如甘油、增塑剂、溶液、四氯化碳、石油醇等。 仪器型号: PFX995, PFX950 & PFX880 仪器型号: PFX195 仪器型号: 2000系列比色计 Rosin &ndash 法国(Bordeaux) 色度标准 少量松香分级,包括10个标准尺度-特级水晶,水晶,7A,6A,5A,4A3A,2A,Y,X&mdash 为松香样品直接比较。 仪器型号: 3000(树脂)系列比色计 仪器型号:Rosin Cubes Rosin &ndash 印度色度标准 少量松香使用 仪器型号:3000树脂系列比色计(印度) Rosin,US Naval Stores (ASTM D 509) Rosin,US Naval Stores色度标准是评估松香颜色质量最常用的方法。包括15个色度标准,颜色由黄到橙红色,赋值&mdash XC(最浅色),XB,XA,X,WW,WG,N,M,K,I,H,G,F,E,D(最深色)。FF是为深色木材使用的一种特殊附加等级。官方认可的色度标准是由有色玻璃和松香直接对比得出。 仪器型号:PFX195 仪器型号:3000系列(树脂)比色计 Rubber Latex Film 色度标准(ASTM D 3157, ISO 4660, MS 1359: Part 5, BS1672) 测量橡胶乳胶膜的范围:1~16. Saybolt Colour (ASTM D 156, ASTM 6045) Saybolt色度标准用于分级浅色石油产品包括航空染料、煤油、石脑油、白色矿物油、烃类溶剂和石油蜡等。 测量范围-16(最深)至+30(最浅),测量范围是通过比较三个滤光片计算得到。 仪器型号:PFX995, PFX950 & PFX880 仪器型号:PFX195 Series 52 (Brown) 色度标准 Series 52色度标准包括了23琥珀色/棕色玻璃系列,罗维朋比色计在美国众所周知,52系列色度标准应用于酿造和蒸馏行业。EBC色度标准已经在很大程度上取代了欧洲啤酒分级标准,但它仍然应用于美国威士忌和啤酒制造行业,也适用于糖溶液和糖浆。 仪器型号:PFX195 仪器型号: (Series 52) 仪器型号: 3000系列比色计Series 52(布朗) 仪器型号: 2000系列比色计 Tanning色度标准 国际社会皮革组织和化学家的官方方法SLC119测量栲胶颜色。 仪器型号:Tanning色度计 USP美国药典色标 USP色标测量溶液范围A~T. 仪器型号:PFX995, PFX950 & PFX880 仪器型号:PFX195 仪器型号:2000比较系列 黄色指数(ASTM E 313) 主要由XYZ三坐标计算样品在日光下的黄度. 仪器型号:PFX195 简介- 色度标准和光谱资料 当标准的色度标准不适合特定的应用范围,建议用Colour Spaces色度标准。这种测量方式更为灵活,是指定测量颜色差异的方法。 X Y Z 三刺激值(x y Y值) X Y Z 三刺激值由x+y+z = 1 x = X/(X + Y + Z) y = Y/(X + Y + Z) z = Z/(X + Y + Z)计算得到,x和y的值能在x y坐标中精确的测量物体颜色,由色度空间决定。 CIEL*a*b*色标 运行中a轴从绿色变为红色时,b轴由黄色到蓝色,L轴从黑色到白色运行. 由于L*a*b*是一个三维图,可测量两点之间各个方向的色差。 L*C*h 色标 L*,C*(色度)和h(色调角)是从下面的公式计算得出:L* = L* C* = ÷ (a*2 + b*2) h = 反正切(b*/a*),其中h是指从积极的反时针方向*轴的角度。 CIE u&rsquo v&rsquo Y 色标 在u&rsquo v&rsquo 色度坐标内,可推导预测出两个不同物体、颜色不同的色差幅度。X和Y坐标使图中任何位置的色差得到相同的外观区别。 Delta E色差 Delta E色差是用接近1.0的感知色差DE表示的。 透光率 透光率会在特定波长下发生不稳定的变动。 吸光率 吸光率在特定波长下的全谱。 光密度 与透光度呈10的对数。 广州:天河北路华庭路4号富力天河商务大厦1506-07(510610) 电话:020-83510088(十线) 83510550 83510358 传真:020-83510388 北京:海淀区交大东路60号舒至嘉园3座 (100044) 电话:010-62268660 62260833 62238029 传真:010-62238297 上海:延安西路1590号增泽世贸大厦10楼E室(200052) 电话:021-52586771/72/73 传真:021-52586778 杭州:杭州市文二西路1号元茂大厦613室(310012) 电话:0571-88068711,88068722 传真:0571-88068733 成都:高升桥路2号瑞金广场2-10F(610041) 电话:028-68597087/88 13981772689/13281837316 传真:028-68597089 西安:陕西省西安市朱雀大街132#阳阳国际B座21106室 (710061) 电话:029-62221598 13609200891 传真:029-62221599 Email:dongnan@sinoinstrument.com http://www.sinoinstrument.com
  • 美国公布某些农药残留限量标准
    美国环境保护部(EPA)于2009年3月初公布了一些除草剂和杀菌剂的残留量限制标准。   主要内容:   1. 丙苯磺隆(Propoxycarbazonehe)及其代谢物Pr-2-OH   美国环境保护部根据Bayer Crop Science公司的申请制定了丙苯磺隆(Propoxycarbazonehe)及其代谢物Pr-2-OH在一些商品上的残留限量标准,该申请提出要遵循联邦食物,药品和化妆品法案(FFDCA)。   该法规最终规定以下商品内的丙苯磺隆(Propoxycarbazonehe)及其代谢物Pr-2-OH的综合残留限量为:牧草25ppm;干草20ppm。   该法规已于2009年3月4日生效,有关意见和听证要求务必于2009年5月4日前收悉。   2. 精吡氟禾草灵(Fluazifop-P-butyl)   美国环境保护部根据Syngenta Crop Protection, Inc.公司的申请制定了精吡氟禾草灵(Fluazifop-P-butyl)在一些商品上的残留限量标准,该申请提出要遵循联邦食物,药品和化妆品法案(FFDCA)。   该法规最终规定以下商品内的精吡氟禾草灵(Fluazifop-P-butyl)的综合残留限量为:干豆种子50ppm;胡萝卜根2.0ppm;牛脂肪、山羊脂肪、猪脂肪、马脂肪、家禽脂肪和绵羊脂肪0.05ppm;牛肉、山羊肉、猪肉、马肉、家禽肉和绵羊肉0.05ppm;牛肉副产品、山羊肉副产品、猪肉副产品、马肉副产品、家禽肉副产品和绵羊肉副产品0.05ppm;棉油0.2ppm;未脱绒棉籽0.1ppm;鸡蛋0.05ppm;菊苣6.0ppm;核果类水果0.05ppm;牛奶0.05ppm;澳洲坚果0.1ppm;洋葱球茎0.5ppm;花生1.5ppm;花生饼粉2.2ppm;美洲胡桃0.05ppm;大豆种子2.5ppm;菠菜6.0ppm;甘薯0.05ppm;芦笋3.0ppm;咖啡豆0.1ppm;塔巴斯科辣椒1.0ppm;大黄0.5ppm。   该法规已于2009年3月4日生效,有关意见和听证要求务必于2009年5月4日前收悉。   3. 恶唑酮菌(Famoxadone)   美国环境保护部根据第4 (IR-4) 号地区间研究项目要求修订了恶唑酮菌(Famoxadone)在一些商品上的残留限量标准,该要求提出要遵循联邦食物,药品和化妆品法案(FFDCA)。   该法规最终规定以下商品内的恶唑酮菌(Famoxadone)的综合残留限量为:蔓越莓亚组13-07A 10ppm;芫荽叶25ppm;洋葱球茎亚组3-07A 0.45ppm;绿色洋葱亚组3-07B 40ppm;菠菜50ppm;多叶蔬菜 芸苔除外、组4 菠菜除外25ppm。   该法规已于2009年3月4日生效,有关意见和听证要求务必于2009年5月4日前收悉。   4. 戊唑醇(Tebuconazole)   美国环境保护部根据第4 (IR-4) 号地区间研究项目要求修订了戊唑醇(Tebuconazole)在一些商品上的残留限量标准,该要求提出要遵循联邦食物,药品和化妆品法案(FFDCA)。   该法规最终规定以下商品内的戊唑醇(Tebuconazole)的综合残留限量为:甜樱桃采收前后5.0ppm;酸樱桃采收前后5.0ppm。   该法规已于2009年3月4日生效,有关意见和听证要求务必于2009年5月4日前收悉。   5. 烯酰吗啉(Dimethomorph)   美国环境保护部根据第4 (IR-4) 号地区间研究项目要求修订了烯酰吗啉(Dimethomorph)在一些商品上的残留限量标准,该要求提出要遵循联邦食物,药品和化妆品法案(FFDCA)。   该法规最终规定以下商品内的烯酰吗啉(Dimethomorph)的综合残留限量为:高丽参0.90ppm;葡萄干6.0ppm;马铃薯0.05ppm;去皮马铃薯0.20ppm;青萝卜20.0ppm;多肉利马豆0.60ppm;葡萄3.5ppm。   该法规已于2009年3月4日生效,有关意见和听证要求务必于2009年5月4日前收悉。   6. 百菌清(Chlorothalonil)及其代谢物4-hydroxy   美国环境保护部根据美国农业部(USDA)的要求修订了百菌清(Chlorothalonil)及其代谢物4-hydroxy在一些商品上的残留限量标准,该要求提出要遵循联邦食物,药品和化妆品法案(FFDCA)。   该法规最终规定以下商品内的百菌清(Chlorothalonil)及其代谢物4-hydroxy的综合残留限量为: 荔枝15ppm;杨桃3.0ppm。   该法规已于2009年3月4日生效,有关意见和听证要求务必于2009年5月4日前收悉。
  • 青岛能源所等开发出拉曼介导靶向单细胞基因组技术
    海洋是地球上最大的活跃碳库。海洋微生物在全球碳循环中具有重要作用,而由于大部分海洋微生物尚难以培养、原位代谢功能难以测量等技术瓶颈,关于海洋微生物光合固碳的原位功能机制等重要问题存在争议。中国科学院青岛生物能源与过程研究所与英国牛津大学、英国谢菲尔德大学、山东省海洋科学研究院等合作,基于CO2固定活性靶向性的拉曼分选耦合单细胞基因组(scRACS-Seq)等仪器、手段,揭示了海水中原位进行光合固碳的SAR11类群,并发现它们以视紫红质作为捕光系统来驱动海水中CO2的固定。近日,相关研究成果发表在《生物设计研究》(BioDesign Research)上。 为了识别海洋微生物组中哪些细胞在原位固定CO2,青岛能源所单细胞研究中心高级工程师荆晓艳、助理研究员公衍海和博士徐腾带领的研究组,利用稳定同位素13C标记的无机碳底物饲喂新鲜海水样品,通过单细胞拉曼光谱中类胡萝卜素等色素特征峰的“红移”现象,建立了在免培养前提下原位固定CO2之单细胞的识别和测量流程。基于单细胞中心等研制的scRACS-Seq系统,科研人员建立了针对CO2固定活性等代谢表型的功能靶向性单细胞拉曼分选与测序方法。运用scRACS-Seq体系,该研究在中国山东省青岛崂山湾真光层海水中识别和分选到一系列进行海洋原位固碳代谢的Pelagibacter属单细胞(Pelagibacter属单细胞来自SAR11等类群)。基于SAR11单细胞全基因组序列(覆盖度最高达到100%)的进化分析、基因功能预测与代谢途径重建,研究表明:它们具有完整的类胡萝卜素合成途径,印证了上述单细胞拉曼光谱基于色素峰红移来识别和表征CO2固定活性的原理;发现了基于视紫红质的光激活质子泵系统,包括双加氧酶(Dioxygenase enzyme)、视紫质光敏感蛋白(Proteorhodopsin)、F-型ATP合成酶(F-type ATPase)等关键蛋白;它们拥有大部分进行CO2固定的Calvin-Benson循环途径的基因。研究提示,这些SAR11细胞可能通过基于视紫红质的光激活质子泵系统,来驱动基于Calvin-Benson循环的海水原位固碳。为了验证这一假设,研究将这些SAR11单细胞基因组中四个预测为视紫质光敏感蛋白的基因在大肠杆菌中进行异源表达。结果证实,它们能够合成视紫质且其中的两个基因与GenBank中的基因均无显著同源性,属于一类全新的视紫质光敏感蛋白。因此,这些视紫红质介导的光激活质子泵系统或是SAR11在海水中原位进行光合固碳的能量引擎。SAR11难以培养且研究工具匮乏,但本研究在单细胞精度揭示了SAR11的代谢表型组和完整基因组,从而建立了视紫质光敏感蛋白和海水原位CO2固定之间的功能关联。这一原创的“拉曼介导靶向单细胞基因组”(scRACS-Seq)仪器体系,克服了当前“拉曼介导靶向元基因组”手段通常难以在单个细菌细胞精度获得高覆盖度基因组的瓶颈,因而对于环境中生命暗物质的功能探索和机制解析具有共性的方法学意义。研究工作得到国家重大科研仪器研制项目等的支持。论文链接单细胞精度的海洋微生物组功能靶向性拉曼分选与测序技术(scRACS-Seq)
  • 中国食品添加剂和配料协会着色剂专委员会年会江苏召开
    中国食品添加剂和配料协会着色剂专业委员会2016年行业年会于2016年10月18日至20日在江苏省常熟市成功召开。本次年会会务工作由常熟春来机械有限公司承办,并得到当地政府的大力支持。  来自国内外食用着色剂生产和营销企业、食品加工企业、外贸公司、商检部门、第三方检测机构、设备和仪器生产和经销商、原料基地科技人员、大专院校和科研院所共68个单位,150多名代表参加了会议。中国食品报采访报道了本次年会。  协会理事长齐庆中、名誉理事长吕坚东、副理事长杜雅正、副秘书长孙瑾及协会秘书处工作人员参加并指导了工作。  10月17日下午召开了本次年会预备会,协会领导及专业委员会领导成员单位交流了企业、产业和行业一年来的经济运行情况,主要成绩、存在的主要问题和解决方案 展望了产业发展的趋势和前景。会议认为,我国食用着色剂产业的基本状况良好。我国食用着色剂最大品种焦糖色产销稳定,食用合成色素产销稳定 辣椒红色素产业去产能效果显著,前三年积压的库存已销售一空,价格有所上扬,生产企业的利润有所增加。这是辣椒红色素产业进行供给侧结构性改革成功的典范。会议同时着重强调,由于价格上扬太快而导致出现供大于求的震荡局面再次发生。万寿菊—叶黄素产业在协会2016年4月11日青岛召开的产业研讨会的警示下,有效的抑制了万寿菊花的种植面积,但2016年的种植面积还是有一定幅度的增长,从而导致了叶黄素的价格有10%以上幅度的下滑。红曲红色素、红曲黄色素、栀子黄色素等由于产能过剩原因,导致一定幅度的产销量和价格的下滑。水溶性花色苷色素表现喜人,在全国各行业经济下滑的形势下仍然表现稳增长态势。类胡萝卜素(胡萝卜素、叶黄素、玉米黄质、角黄素、虾青素)微胶囊化制剂产品和叶黄素保健品增长较快,健康发展。  18日举行的年会大会由着色剂专业委员会主任姜祥华主持。协会副理事长杜雅正、常熟市市场监督管理局局长阚国良、常熟春来机械有限公司总经理王庆分别致辞。常熟市市场监督管理局办公室主任吴东、虞山镇镇长钟旅疆等同志到会祝贺。  着色剂专业委员会副秘书长王岩松传达了“中国食品添加剂和配料协会五届五次常务理事会暨五届三次理事会的主要内容、决定和会议纪要。  着色剂专业委员会秘书长张慧做了“着色剂行业发展和2016年专业委员会工作报告”。报告指出,过去的一年,着色剂行业的发展总体保持平稳呈现微增长态势。预计2016年食用着色剂产销总量将达到73.6万吨,同比增长0.016% 总销售额超过58.3亿元人民币,同比下降了3.48% 出口预计超过 10247吨,出口创汇总额超过2.32亿美元。2016年全行业产销将实现“微增长”的目标。其中,天然着色剂紫甘薯色素、萝卜红色素、甘蓝红等品种的产销量有所增长 合成着色剂及其复配产品、焦糖色呈现健康稳定的发展态势 辣椒红色素产业去产能效果明显,价格回升 万寿菊—叶黄素产业因2016年种植面积增大,价格出现一定幅度的下滑。红曲红色素、栀子黄色素、姜黄色素等品种产能过剩,出现了产销量和价格的下滑,应引起行业关注。报告从十三个方面分析了行业、产业发展遇到的主要问题和矛盾,面临的新挑战和新机遇。指出,我国食用着色剂产业的发展已经取得了很大成绩,但在质的方面、在实用化方面、在使用技术方面与发达国家相比还存在一定差距。各企业和全行业要做好供给侧结构性改革,转型和产业升级工作 随着新的食品安全法实施,建议生产企业加大法规执行力度。随着“互联网+”的时代兴起,着色剂生产企业应转变营销模式,迎接“互联网+食用着色剂”新模式。还应注重人才培养和人力资源的建设 加强环境保护意识 坚定不移地走中国特色的自主创新之路,促进我国食用着色剂产业实现新的质的飞跃。  本次会议在各位代表和专家的共同努力下,圆满完成了各项议程:  一、组织了学术报告:  来自院校和企业界的专家分别就技术成果、企业核心技术的专利保护以及行业企业在转型和整合的大趋势下应注意的问题等专题与代表分享了他们经验和体会。报告包括:1、我国食品添加剂和配料法规和标准化进展 2.清洁生产管理实践 3、辣椒成分分析和应用研究 4、不同来源β —胡萝卜素的指纹鉴别。  二、会议期间,与会代表还进行了分组讨论和交流,共识如下:  (一) 专业委员会秘书长张慧所做的行业发展报告客观反映了我国食用着色剂产业的发展状况。2016年,整个行业的经济运行平稳,稳中有微增态势,实现稳增长的目标,为2017年新的发展打下较好的基础。  (二) 我国食用着色剂产销量最大的焦糖色品种生产规范、市场有序,健康发展 自新焦糖色素食品安全国家标准GB1886.64实施以来,要求焦糖色素技术指标出厂批检,对生产企业负荷较重,希望出厂批检和型式检验相结合。另外,焦糖色素生产企业表示积极行动起来,宣传焦糖色素的安全性,坚决抵制一些媒体的误导性宣传。与会代表一致认为,采用普通法生产焦糖色素是今后的产业发展方向。  (三) 万寿菊-叶黄素产业因为2016年万寿菊种植面积过大而出现下滑局面。解决万寿菊—叶黄素产业的关建问题要严格控制万寿菊种植面积,防止叶黄素市场出现供大于的局面,避免价格波动而造成农业资源的浪费。与会代表建议每年11月份召开万寿菊—叶黄素产业发展研讨会,对明年万寿菊的种植面积进行合理的计划,保证产业稳定可持续有序的发展。  (四) 辣椒红色素在今年下半年价格出现翘尾现象,上涨幅度达到40%以上。出现这种局面的原因是2012年以来去产能明显,库存消耗造成的。并不是市场需求扩大所致,对这一点各企业一定要有清醒的认识,不要再盲目扩产。建议辣椒红色素生产企业理性对待这轮上涨现象,合理配备产能。辣椒红生产企业要走综合利用之路 系列产品中的每个产品也要走高端化、高质化、高新化、实用化之路。  (五) 生产企业和当地监管部门对复配着色剂的国家标准以及食品配料的法规方面解读和执行方面存在一定的偏差,希望协会在适当的机会安排关于复配着色剂和配料标准法规方面的学术报告。  (六) 食用合成着色剂生产和销售较为稳定。启动氧化铁黄的申报工作。同时呼吁国家监管部门对进口合成色素的监管加大力度,保证国内高品质产品不受到低价的冲击。  (七) 要改革粗放式发展方式,调整不合理的产业链结构,实现产业整合升级,优势互补,充分发挥资源优势。  (八) 产品安全和生产安全要严格把控,把每个生产和产品环节全面管控,杜绝安全事故发生。  (九) 在“大众创业,万众创新”形势下,科技创新是企业发展的原动力,要打造真正的创新型企业。  (十) 着色剂生产企业加强食品安全标准和法规的重视力度,成立法务部,做好标准制修定的申报工作,加强对食品安全法规的消化吸收工作。  (十一) 会议呼吁停止恶意低价竞争行为。各企业要加强自律,诚实守信,规范经营。  (十二)希望协会以各种形式组织行业内企业进行法规培训。邀请卫计委等相关机构的专家和标准评审专家对着色剂企业进行法规解读和培训指导。  (十三) 启动栀子红、藻蓝、甘蓝红、氧化铁黄、胭脂虫红、胭脂树橙、红曲米粉、叶绿素铜、β -胡萝卜素制剂等品种的制修标工作。  在年会闭幕式上,着色剂专业委员会主任姜祥华做了总结发言。发言中指出,焦糖色素和合成色素表现稳定,水溶性花色苷色素因为市场规模小而产能较小,表现出较为喜人的态势。但另外两大天然色素辣椒红、叶黄素则表现出较大的波动。这也反映了以农副产品为原料的色素加工产业会受到多方面的影响。其中包括气候条件、农副产品收购价格、当地政府的政策推动等。这就决定我们要严格把握好种植和产能两大关口,根据国际市场的需求量,理性决定种植面积、收购价格、加工产能,使产业平稳发展。坚决防止盲目投机行为。另外,着色剂生产企业要加强国家标准和法规的重视力度,坚决按照新的食品安全法进行生产和销售。清洁生产非常重要,科技创新更为重要。加大对新产品的开发力度,走精细化、实用化、制剂化之路,增加企业产品的核心竞争力,满足国内外市场的需求。  最后,会议决定,中国食品添加剂和配料着色剂专业委员会2017年行业年会由广州智特奇生物科技有限公司承办。地点时间待定。  代表们由衷感谢常熟春来机械有限公司的领导和工作人员为年会成功举办付出的辛劳 感谢常熟市、虞山镇政府对本次年会的大力支持。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制