当前位置: 仪器信息网 > 行业主题 > >

苄基苏氨醇

仪器信息网苄基苏氨醇专题为您提供2024年最新苄基苏氨醇价格报价、厂家品牌的相关信息, 包括苄基苏氨醇参数、型号等,不管是国产,还是进口品牌的苄基苏氨醇您都可以在这里找到。 除此之外,仪器信息网还免费为您整合苄基苏氨醇相关的耗材配件、试剂标物,还有苄基苏氨醇相关的最新资讯、资料,以及苄基苏氨醇相关的解决方案。

苄基苏氨醇相关的资讯

  • 博纯发布美国博纯SASS-3000独立除氨系统新品
    产品特性:博纯SASS-3000样气除氨系统采用了独特的除氨技术,使用固体除氨介质去除样气中的氨气,而无危险性废液产生。三个独立除氨筒自动切换,每一个可去除高达40,000 PPM/L/M的氨气。SASS-3000样气除氨系统安装简单,使用方便,可在环境温度-20℃至50℃范围内稳定运行。快插式连接使更换操作更简单和快速。样气处理流量可达5.0 LPM,可处理≤30%V/V水分含量的样气,处理后样气中的氨浓度可低于2PPM。避免低浓度SO2(<35 mg/m3)被氨气所形成的铵盐结晶吸附损失,可解决铵盐结晶给CEMS管线及冷凝器带来的堵塞,从而确保CEMS系统尾端分析仪在高湿度、低SO2量程情况下测试的稳定性和准确性,保证较高的测试响应速度。最终有效延长CEMS系统使用寿命,并减少运维人员繁杂的工作量。产品应用: 燃煤锅炉SCR脱硝系统 工业锅炉脱硝、氨法脱硫系统 垃圾焚烧厂脱硝、氨法脱硫系统 其他类型脱硝、氨法脱硫系统 等等注:该仪器未取得中华人民共和国医疗器械注册证,不可用于临床诊断或治疗等相关用途创新点:上市时间:2019年6月 SASS-3000样气除氨系统采用了独特的除氨技术,使用固体除氨介质去除样气中的氨气,而无危险性废液产生。三个独立除氨筒自动切换,每一个可去除高达40,000 PPM/L/M的氨气。 样气处理流量可达5.0 LPM,可处理≤ 30%V/V水分含量的样气,处理后样气中的氨浓度可低于2PPM。避免低浓度SO2(<35 mg/m3)被氨气所形成的铵盐结晶吸附损失,可解决铵盐结晶给CEMS管线及冷凝器带来的堵塞,从而确保CEMS系统尾端分析仪在高湿度、低SO2量程情况下测试的稳定性和准确性,保证较高的测试响应速度。最终有效延长CEMS系统使用寿命,并减少运维人员繁杂的工作量。 美国博纯SASS-3000独立除氨系统
  • 关注环保——博纯推出专利除氨器
    在脱硝后烟气气体分析应用中,经常会有逃逸氨问题的困扰。博纯专利除氨器能有效去除逃逸氨,防止采样管线因结盐而堵塞,有效的保护仪器设备。   美国博纯有限责任公司研制了博纯专利除氨器其中的专利洗涤器介质并投入连续生产。该介质的使用寿命取决于样气的流速和气流中的氨浓度,在与气体反应时,具有很强的选择性,仅仅将气体中的氨去除,防止氨盐产生 同时,它是一种非常安全、稳定的化学物质,便于进行搬运和存储。   博纯专利除氨器安装方便(安装于采样探头后方),便于维护。   查看产品图片http://www.instrument.com.cn/netshow/SH101541/C96354.htm   更多产品信息,请登录www.permapure.com   关于博纯   成立于1972年,总部位于美国的博纯(Perma Pure)有限责任公司是国际领先的气体处理设备制造商。我们为全世界医疗、工业和科学、氢燃料电池和环境监测应用领域提供气体采样和预处理类产品如,干燥器、加湿器、过滤器、冷凝器、特种气体洗涤器及完整采样系统等。   博纯(Perma Pure)已经成为医疗设备市场中呼吸气体干燥器的主要供应商,应用包括麻醉监护、呼吸监测及代谢测试中对呼出气体进行干燥,同时可对呼吸器的供气或供氧进行加湿。近年来,公司也开始向燃料电池厂商提供加湿器,并逐步成为环保和流程气体分析仪器的OEM供应商,应用包括电化学传感器(用于气体检测)、红外分析、化学发光、总碳测定(TOC)和颗粒测量的样气脱水处理。   博纯(Perma Pure)公司在1978年向DuPont公司买下了Nafion材料生产特许权,Nafion的膜渗透脱水技术以其独特的原理和优异的性能闻名于业内。一直以来博纯(Perma Pure)运用Nafion® 技术,连同其他创新多样的技术和专业知识,为客户提供全面的样气处理应用解决方案。公司于1992年加入英国豪迈集团(Halma p.l.c.),豪迈旗下子公司的产品主要用于保护人们的生命安全和改善生活质量。依托豪迈全球性业务的支持,公司在技术、投资以及生产上获得了长足发展。公司已获得ISO9001:2000认证,相关产品也均获得CE认证。   拥有完整的样气处理器件和成套系统,各种气体分析应用的客户化解决方案以及几十年来的产品应用经验和成功案例,相信我们在样气预处理方面的专业能力将为您的业务发展提供长久助力。   关于豪迈:   创立于1894年的英国豪迈国际有限公司(Halma p.l.c. – www.halma.cn )是国际安全、健康及传感器技术方面的领军企业,伦敦证券交易所的上市公司,在全球拥有 4000 多名员工,近40 家子公司,2008/09财年营业额超过 4.5亿英镑。豪迈旗下子公司的产品主要用于保护人们的生命安全和改善生活质量。通过持续不断的创新,这些产品在国际市场上始终处于领先地位。这些产品使我们的客户更安全、更富竞争力和盈利能力。豪迈的子公司正在多个领域为中国的经济做出贡献,主要包括制造、能源、水及废物处理、环境、建筑、交通运输及健康行业等。豪迈目前在上海和北京设有代表处,并且已在中国开设多个工厂和生产基地。   销售联系方式   夏黎明先生 中国区销售经理   上海市长宁区仙霞路137号盛高国际大厦1801室   邮编:200051   电话:021-52068686-113   传真:021-52068191   电子信箱: fxia@permapure.com   网址:http://www.permapure.com
  • 博纯发布美国博纯SASS-3000独立除氨系统新品
    产品特性:博纯SASS-3000样气除氨系统采用了独特的除氨技术,使用固体除氨介质去除样气中的氨气,而无危险性废液产生。三个独立除氨筒自动切换,每一个可去除高达40,000 PPM/L/M的氨气。SASS-3000样气除氨系统安装简单,使用方便,可在环境温度-20℃至50℃范围内稳定运行。快插式连接使更换操作更简单和快速。样气处理流量可达5.0 LPM,可处理≤30%V/V水分含量的样气,处理后样气中的氨浓度可低于2PPM。避免低浓度SO2(<35 mg/m3)被氨气所形成的铵盐结晶吸附损失,可解决铵盐结晶给CEMS管线及冷凝器带来的堵塞,从而确保CEMS系统尾端分析仪在高湿度、低SO2量程情况下测试的稳定性和准确性,保证较高的测试响应速度。最终有效延长CEMS系统使用寿命,并减少运维人员繁杂的工作量。产品应用: 燃煤锅炉SCR脱硝系统 工业锅炉脱硝、氨法脱硫系统 垃圾焚烧厂脱硝、氨法脱硫系统 其他类型脱硝、氨法脱硫系统 等等创新点:SASS-3000样气除氨系统采用了独特的除氨技术,使用固体除氨介质去除样气中的氨气,而无危险性废液产生。三个独立除氨筒自动切换,每一个可去除高达40,000 PPM/L/M的氨气。 样气处理流量可达5.0 LPM,可处理≤ 30%V/V水分含量的样气,处理后样气中的氨浓度可低于2PPM。避免低浓度SO2(<35 mg/m3)被氨气所形成的铵盐结晶吸附损失,可解决铵盐结晶给CEMS管线及冷凝器带来的堵塞,从而确保CEMS系统尾端分析仪在高湿度、低SO2量程情况下测试的稳定性和准确性,保证较高的测试响应速度。最终有效延长CEMS系统使用寿命,并减少运维人员繁杂的工作量。
  • 微生物所创建全染色体编辑的高产丁醇细胞工厂
    style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style p   利用代谢工程与合成生物学技术,创建高效生产天然或非天然化学品的微生物细胞工厂,已展现出良好的应用前景和巨大的市场潜力。然而,实验室构建的工程菌株大多基于质粒系统完成,通常需要抗生素和诱导剂来保证功能基因和途径的稳定存在,这为大规模低成本生产带来挑战。在染色体水平上进行基因编辑与操作,创建完全没有质粒、基因表达无需诱导的高产工程菌株,对于化学品的生物制造具有重要意义。然而,由于染色体拷贝数少、目标靶点不清楚、基因表达水平低、基因操作相对困难等因素,见诸报道的全染色体编辑的高产工程菌株很少。 /p p   针对这一挑战,中国科学院微生物研究所研究人员以大宗有机溶剂和潜在生物燃料——正丁醇为目标产品,以大肠杆菌为底盘细胞,创建全染色体编辑的丁醇细胞工厂。该研究的基本策略是将细胞工厂构建分为在染色体上创建生物合成途径与全染色体编辑优化两个部分,通过交互循环操作,不断强化丁醇途径以及底盘细胞对丁醇途径的支持能力,从而提高工程菌株的丁醇生产能力。经过以上策略获得的丁醇高产菌株,在简单批式发酵中可以产生20g/L的丁醇,达到产丁醇大肠杆菌最高水平;对葡萄糖的得率达到理论最大值的83%,超越天然的产丁醇梭菌,显示出全染色体编辑代谢工程的潜力。该菌株生产丁醇不需要添加任何抗生素和诱导剂,已在中科院天津工业生物技术研究所中试平台完成了放大测试,效果良好,具有工业化生产应用的潜力。 /p p   该研究使用一系列基因组操作技术,包括同源重组、l噬菌体Red重组技术、CRISPR/Cas9、Tn5转座子突变等,在大肠杆菌染色体水平上对38个基因进行编辑和操作,通过理性和非理性策略相结合,解决竞争碳流的副产物较多、丁醇生产能量和还原力不足、染色体基因表达强度弱等问题,最终获得了具有工业应用潜力的高产丁醇细胞工厂,为创建全染色体编辑的化学品高产细胞工厂提供了范例。 /p p   研究工作得到国家自然科学基金及国家863计划项目等资助,并已申请中国专利,相关研究成果在线发表在 em Metabolic Engineering /em 上。 /p p br/ /p
  • 禾工在江苏地区进行聚氨酯水分测定仪安调、培训作业
    江苏德丰聚氨酯有限公司主要生产、销售高固含量聚合物多元醇、聚合物预聚体、聚氨脂泡绵制品。早在2012年的时候,在我司订购第一台AKF-1卡尔费休容量法水分测定仪。应公司生产需求,于今年8月份再次在我司订购一台AKF-1卡尔费休水分检测设备。江苏德丰聚氨酯一直使用我司AKF-1型号卡式水分检测仪,对AKF-1卡尔费休微量水分测定仪如何使用能更有效的测定聚氨酯的含水量也是“轻车熟路”。因此,在本次售后安调、培训中我司技术员全程协助用户操作,与仪器操作人员有了更深一步的交流,为用户答疑解惑。AKF-1卡尔费休水分测定仪全自动测定,智能终点算法,就算一个操作员同时操作两台水分仪也不会手忙脚乱!聚氨酯是具有良好的耐油性、韧性、耐磨性、耐老化性和粘合性;在日常生活、工农业生产、医学等领域广泛应用。如何使用卡尔费休容量法水分测定仪测定聚氨酯中的含水量,禾工提供了有效的专业的整体解决方案!另外,禾工将为首次申请样品检测的客户,免费检测两个样品,并承诺在7天内提供检测服务报告!
  • 北大药学院案例分享 | MST技术助力新型RNA编辑系统开发
    Part 1研究背景RNA的A-to-I编辑是一种普遍发生于细胞中的转录后修饰。在RNA上,依赖腺苷脱氨酶(ADAR)介导的腺苷脱氨作用可以通过引导RNA和外源性ADAR酶实现对RNA特定位点的A-to-I编辑,从而通过纠正突变的RNA来实现疾病治疗。然而,外源性ADAR融合蛋白的异位表达会增加脱靶编辑的风险,故利用内源性ADAR蛋白的A-to-I的编辑策略更有发展前景。Part 2研究内容2023年北京大学药学院汤新景教授开发出一种新颖且便捷的光触发位点特异性RNA编辑系统,并将研究成果发表在Cell Chemical Biology上。为了开发内源性ADAR蛋白的A-to-I可控的编辑策略,作者设计了一种末端有胆固醇修饰的反义寡核苷酸(3’-笼式arASO):由一段2’-OMe修饰的可编程反义域、用于与靶mRNA杂交的硫代磷酸修饰的3’端和位于5’端的用于招募ADAR蛋白的工程化GluR2 R/G基序组成,这种设计能通过招募内源性的ADAR蛋白来实现位点特异性的RNA A-to-I编辑。并且,作者通过2D细胞和3D肿瘤球的实验验证了3’-笼式arASO在的光触发A-to-I编辑能力。图1:3’-笼式arASO编辑UAG终止密码子,启动EGFP表达Part 3MST技术应用为了研究3’-笼式arASO抑制位点特异性的机制,作者使用MST技术检测了3’-笼式arASO与蛋白和核酸的互作:ADAR1-p150是主要的RNA单碱基编辑器。MST技术确定了3’-笼式arASO与ADAR1-p150的结合亲和力与arASO与ADAR1-p150蛋白的亲和力接近,表明胆固醇修饰并不会对其在5’端的ADAR-招募结构域造成明显影响。图2:MST技术检测ADAR1-p150与3’-笼式arASO/arASO亲和力MST技术检测3’-笼式arASO与不配对的腺苷的单链靶RNA(ssRNA)的结合亲和力检测结果表明,3’-笼式arASO在没有光刺激的情况下与ssRNA(AC错配)的结合亲和力比其阳性对照的结合亲和力低17.4倍,但在给予光照后,其亲和力恢复到与阳性对照组相当的水平(左图)。这表明,在3’-笼式arASO的反义结合域3’端的胆固醇修饰阻断了其与ssRNA(AC错配)的结合。而胆固醇修饰对arASO与完全配对的ssRNA的结合亲和力没有影响(右图)。图3:MST技术检测结果说明胆固醇修饰阻断了3’-笼式arASO与靶RNA的结合从而抑制其位点特异性编辑。https://doi.org/10.1016/j.chembiol.2023.05.006IF: 8.6 Q1Part 4技术优势MST技术可应用于不同样品类型的亲和力检测,不论是蛋白和核酸,还是核酸和核酸。此外,亲和力检测时无需固定,即使核酸的极性较强,也不会出现黏附等问题。MST亲和力检测时间短,只需要10min即可完成,无需担心核酸降解。
  • 中科院PLOS发表RNA编辑新成果
    7月28日,来自中科院上海生命科学研究院植物生理生态研究所李轩研究组、上海巴斯德研究所郝沛研究组以及密歇根州立大学王红兵教授,在国际著名遗传学期刊《PLOS Genetics》发表一项合作研究,题为“The Landscape of A-to-I RNA Editome Is Shaped by Both Positive and Purifying Selection”。这项研究通过对多生物物种RNA编辑事件的系统发现和分析,首次揭示了RNA编辑表观遗传学位点的系统进化规律,以及其在动物神经功能和神经发育中发挥的主要作用。 自从20年前第一次被发现以来,RNA编辑已经成为多种生命形式的遗传编码变异的重要来源。RNA编辑的一个突出机制是,前体mRNA分子中腺苷的去氨基。脱氨基的事件,即A-to-I编辑,将特殊的腺苷(A)转换为肌苷(I)。在翻译中,肌苷被解码为鸟苷(G),从而导致密码子的变化,往往会引起蛋白质产物中的氨基酸替换。除了遗传再编码,A-to-I编辑已知也影响可变剪接,修改microRNA,和改变microRNA靶位点。A-to-I RNA编辑机械的主要组成部分,是作用于RNA(ADAR)家族酶的所谓的腺苷脱氨酶,ADAR酶作用于底物分子内的双链RNA(dsRNA)。关于底物靶向和编辑活性调节的细节,还是较少的;但是,有证据表明A-to-I编辑是共转录的,并且ADAR靶位点倾向于某些非随机的序列模式,并且很大程度上依赖于双链RNA的三级结构。 A-to-I RNA编辑生成的遗传变异,可扩展转录组的多样性和复杂性,它作为一个重要的机制可帮助支持关键的生物学功能。由于ADAR突变而缺乏A-to-I RNA编辑的动物模型,可导致小鼠胚胎或出生后致死,或在果蝇中显示神经缺陷。以前的研究在人类、小鼠、猴和果蝇中记录了许多A-to-I编辑靶基因。报道的编辑靶标情况,包括神经受体、离子转运蛋白和免疫反应受体。虽然多年来,科学家们都知道某些关键基因上A-to-I RNA编辑的例子,但是从进化的角度看,A-to-I编辑如何使转录组和蛋白质组多样化,以及到了何种程度,还是完全没有表征的。我们对于RNA编辑本身在进化中如何受到选择性力量的限制,还知之甚少。关于A-to-I RNA编辑提供的适应潜能,有各种不同的观点。 新一代测序技术和Model Organism ENCyclopedia Of DNA Elements (modENCODE)项目,成为模式生物的一种前所未有的资源,像果蝇和秀丽隐杆线虫,使得我们能够进行多基因组规模分析,以比较进化中的RNA编辑模式。 为了探讨RNA编辑的全景以及表征进化过程中施加在A-to-I编辑上的选择性限制,该研究小组基于modENCODE资源构建了一项研究,涉及这七种果蝇,它们有相应的参考基因组和转录组测序数据可用。该研究还补充了来自其他资源的数据,包括NCBI Sequence Read Archive (SRA)、NCBI Gene Expression Omnibus (GEO)、FlyBase和FlySNPdb数据库。 利用果蝇属作为一个模型系统——其代表了大约4500万年的进化时间,研究人员共确定了9281个A-to-I RNA编辑事件。通过与前人的研究成果,以及来自果蝇组织/发育样本或ADAR突变体的数据进行比较,并进行大规模阵列为基础的验证性实验,研究人员验证了这些事件。 通过系统发育分析,研究人员基于编辑位点的保守性,将A-to-I RNA编辑事件归类为三种不同类型。第一类位点发生在单基因家族基因上 第二类发生在多基因家族基因上,但位点不保守 第三类发生在多基因家族基因上,且位点保守。对这三类位点及其基因进行选择分析发现,第一和第二类位点均受到纯化选择(负选择)影响,而只有第三类位点受到正选择压力。重要的是,发现第三类位点高度富集于神经系统的元件和功能中。通过对这三类编辑位点进行不同组织、不同发育时期以及动物变态发育过程中的分布及变化分析,第一次发现了A-to-I RNA编辑在动物发育、交配(mating)等生理过程中动态变化的证据,进一步支持了三类不同编辑位点的重要功能。这些结果都指向神经系统功能,说明了RNA编辑表观遗传作用的适应性主要通过神经系统功能实现。神经系统功能是检验有益RNA编辑位点主要标准。以上发现,揭示了由RNA编辑表观遗传机制引入的编码可塑性,而产生一类新的二分变异。在二倍体有性生殖系统中,它是维持基因表达杂合性的一个重要机制,对克服等位杂合子分离有不可替代的优势。
  • 精准基因编辑时代到来!华人科学家重排原子精准编辑基因!
    p   当我们在谈论生命时,我们谈论的都是化学分子。DNA也好,蛋白质也罢,正是这些生物大分子发生的原子重排,才催生出无数生化反应,为地球带来生命。 /p p style=" text-align: center " img title=" 001.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/c0bbe2b5-3415-4594-bc51-72b794f474de.jpg" / /p p style=" text-align: center " strong   本研究的主要负责人David Liu教授(图片来源:Broad研究所) /strong /p p   今日,Broad研究所的华人学者David Liu教授公布了一项了不起的研究!他的团队开发了一种“碱基编辑器”,能在细胞内用简单的化学反应,使DNA的一种碱基进行原子重排,让它变成另一种碱基。与CRISPR-Cas9等流行的基因编辑手段不同,这种技术无需使DNA断裂,就能完成基因的精准编辑。这项研究发表在了顶尖学术期刊《自然》上。 /p p style=" text-align: center " img title=" 002.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/25395cd0-f659-4486-b95c-07cbee1c729a.jpg" / /p p style=" text-align: center "   strong  将近一半的致病变异来源于C-G组合到A-T组合的改变(图片来源:《自然》) /strong /p p   要看懂这项研究,我们先来看看DNA本身。我们知道,DNA的双螺旋结构由4种碱基:腺嘌呤(A)、胸腺嘧啶(T)、胞嘧啶(C)与鸟嘌呤(G)组成。它们A和T配对,C和G配对,就像字母一样,编写了人类的遗传信息。然而由于化学结构的问题,C这个字母不大稳定,容易出现自发的脱氨突变,把原本的好好的C-G组合,变成A-T组合。据估计,每天人类的每个细胞里都会出现100-500次这样的突变。而人类已知的致病单碱基变异,高达一半属于这种突变。 /p p style=" text-align: center " img title=" 003.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/3079c9ad-aff8-4c2e-b7ab-54dc17de1cbe.jpg" / /p p style=" text-align: center " strong   合适的脱氨反应能将腺嘌呤转变为结构类似于鸟嘌呤的肌苷(图片来源:《自然》) /strong /p p   换句话说,如果我们能定点修复这些基因突变,把A-T变回C-G,就有望从根源上纠正人类的许多遗传疾病。这正是Liu教授团队的研究思路。在实验室中,他们观察到了一个很有意思的现象——腺嘌呤(A)在出现脱氨反应后,会变成一种叫做肌苷的分子,而它与鸟嘌呤(G)的结构非常接近,也能成功骗过细胞里的DNA聚合酶。简单的几轮DNA复制后,A-T组合就能变回C-G。 /p p   但科学家们遇到一个棘手的问题——自然界中并没有能够在DNA中催化腺嘌呤进行脱氨反应的酶。 /p p   如果没有现成的道路,那就开辟一条!在人体中,科学家们发现了一种叫做TadA的酶,它能催化转运RNA上的腺嘌呤(A),使它脱氨。尽管催化的对象不同,但Liu教授的团队认为它有足够的应用潜力。于是,利用演化的力量,科学家们对TadA进行了改造。他们将编码TadA的基因引入大肠杆菌内,并寄希望于这种酶能在大肠杆菌快速的繁衍中,突变出催化DNA腺嘌呤的能力。 /p p style=" text-align: center " img title=" 004.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/77d2e2cb-4181-4432-b16c-f701f36c851b.jpg" / /p p style=" text-align: center "   strong  本研究中,碱基编辑器的作用机理(图片来源:《自然》) /strong /p p   同时,科学家们也想到,DNA上的腺嘌呤特别多,总不能把他们全都转化为鸟嘌呤吧。因此,特异性地对某个碱基进行催化,是这套系统迈入实际应用的关键。Liu教授想到了自己的实验室邻居张锋教授,这名华人学者以CRISPR基因编辑技术而闻名于世。如果我们借助CRISPR-Cas9系统的精准,但不让它切开双链DNA,或许就能定点对腺嘌呤进行原子重排,让它变成另一种碱基。为此,科学家们在筛选TadA酶的过程中,也同样引入了一套切不动DNA的特殊CRISPR-Cas9系统,用于精准定位。 /p p   功夫不负有心人!这套系统虽然极为复杂,但在经历了漫长的7代筛选后,Liu教授团队终于开发出了一款全新的“碱基编辑器”,其核心正是能有效针对DNA的TadA酶。无论是在细菌里,还是在人类细胞中,这款编辑器都能顺利发挥作用。在人类细胞里,它的编辑效率超过了50%! /p p style=" text-align: center " img title=" 005.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/e1500d56-ca99-4809-932c-2bd6c898751f.jpg" / /p p style=" text-align: center "   strong  这套系统能有效用于人类细胞(图片来源:《自然》) /strong /p p   尽管这套系统利用了CRISPR-Cas9系统,但科学家们在这篇论文里指出,他们开发的技术与CRISPR-Cas9系统各有千秋。在矫正单碱基突变方面,它比CRISPR-Cas9系统更为有效,也更“干净”。它几乎没有引起任何随机插入和删除等突变,在全基因组里的脱靶效应也要好于CRISPR-Cas9技术。要知道,这可是人们对CRISPR-Cas9技术安全性的最大担忧之一。 /p p   先前,研究人员们也同样开发了编辑其他碱基的方法。目前,Liu教授的团队已经有了把C变成T,把A变成G,把T变成C,以及把G变成A的工具。诚然,这些工具目前距离人类临床应用还有不小的距离。但要知道,它只涉及碱基的原子重排,无需让DNA双链断裂,从而降低了基因治疗过程中的风险。此外,许多遗传病都是单基因突变,用这些工具进行治疗也显得更为有的放矢。 /p p   我们感谢Liu教授的团队为我们带来如此令人兴奋的基因编辑新工具。毫无疑问,基因编辑的时代已经到来,你准备好迎接冲击了吗? /p p   参考资料:[1] Programmable base editing of AT to GC in genomic DNA without DNA cleavage /p p & nbsp /p
  • 液质联用仪证实"基因编辑猪"产生人胰岛素
    中国科学院广州生物医药与健康研究院29日发布消息称,该院赖良学课题组利用精确基因编辑技术对猪胰岛素基因进行了无痕定点修饰,使猪胰岛素基因编码生产人胰岛素,成功建立了完全分泌人胰岛素的基因编辑猪。这一研究成果近期被《分子细胞生物学杂志》在线发表。  根据国际糖尿病联盟在2015年发布的数据,世界范围内共有4.15亿名成年人患有糖尿病。2015年有500万人因糖尿病而死亡,超过了疟疾、肺结核与HIV的致死人数总和。  据课题组介绍,目前,对糖尿病的治疗包括胰岛素注射和胰岛移植。猪源胰岛素曾经被广泛采用,利用猪胰岛进行异种移植治疗糖尿病最近也取得良好进展。但猪与人相比,胰岛素蛋白存在一个氨基酸的差异,人胰岛素B链第30位氨基酸是苏氨酸,而猪胰岛素是丙氨酸。这一个氨基酸的差异使猪胰岛素在人体中的降血糖效价较低,而且长期使用容易诱发抗体产生。  研究人员李小平博士、杨翌博士和王可品博士研究生等将TALENs(转录激活因子样效应物核酸酶)及CRISPR(RNA介导的DNA核酸酶)技术与单链寡核苷酸结合,建立了猪基因组无痕定点编辑技术,利用该技术在体细胞中将猪胰岛素基因编码B链第30位丙氨酸的密码子GCC修改为编码苏氨酸的ACG,并获得了纯合子细胞株。同时,研究人员利用该细胞株作为核供体,通过体细胞核移植技术成功构建了人源化胰岛素克隆猪,利用高分辨率液相色谱串联质谱仪检测证实,从该基因修饰猪胰腺中提取的胰岛素完全为人胰岛素,而不含猪胰岛素。  研究人员说,该研究获得的人源化胰岛素基因修饰猪将为糖尿病的治疗提供人胰岛素,同时也将为临床异种胰岛移植治疗提供更为理想的供体来源。从技术层面来说,该成果也是第一次在大动物中实现无痕的基因组定点修饰,这种定点无痕技术的建立,将推动基因突变大动物疾病模型和具有农业育种价值的基因修饰大动物的培育。
  • Webinar:“小贝开讲” 之细胞治疗中基因编辑载体的纯化和验证
    时间:2017年7月27日 19:30 - 20:30内容简介:国家对细胞治疗领域管理政策的收紧和规范化,对CAR-T及干细胞治疗等前沿研究领域来说,是挑战但也是机遇。无论您选择病毒载体、质粒表达系统还是游离核酸片段进行基因编辑,如何高质量高通量地完成以上载体的分离纯化,并使之达到药品级的要求,都是一个普通实验室向GMP/GLP实验室转变的关键步骤。密度梯度超速离心工艺,作为最经典的纯化工艺流程,经过全球几十年的实践验证,广泛应用于病毒颗粒疫苗等生物制品行业,是工业药品级病毒、核酸纯化的首选方法。与此同时,超速离心不仅可用于制备,还可用于检测。贝克曼库尔特独有的分析型超速离心技术,还可用于病毒载体中聚合体、空壳病毒、错误组装病毒等颗粒的检测和验证。本次线上讲座,我们邀请了贝克曼库尔特生命科学部离心机产品经理霍德华与大家共同探讨,贝克曼超速离心技术如何协助您拿到最纯的基因编辑载体。主讲人简介:霍德华产品经理 贝克曼库尔特生命科学部从事细胞与分子生物学实验室科研及相关产品的应用支持和市场推广工作近15年,对各种细胞、核酸、蛋白的常用和前沿技术及仪器具有广泛而深入的了解,曾参与了多个实验室多种技术平台的构建与优化。目前在贝克曼公司负责离心机产品线的全国市场及应用推广业务,可为客户提供离心机及周边相关的实验完整解决方案支持。近年来,已协助国内外多家客户成功搭建病毒载体纯化相关的超速离心分离纯化技术平台,积累了丰富的病毒载体纯化的经验,为各地贝克曼离心机的新老用户提供了多场专题培训及疑难解答。点击此处轻松报名。
  • 新型安全高效的单碱基编辑系统—TaC9-CBE
    近十年来,以 CRISPR 系统为代表的基因编辑技术迅猛发展,在包括农业、畜牧业和生物医药等各个领域的基础科研和应用中不断涌现出耀眼成果。2020年 CRISPR 技术因其强大的功能和影响力摘得诺贝尔化学奖。然而,随着研究的深入,其引起的 DNA 双链断裂和高脱靶效应等一系列副反应也逐渐走入人们的视野,CRISPR 技术的安全性开始备受关注。单碱基编辑技术以其高效和精确的基因编辑能力,成为目前最有希望治愈各种遗传疾病的明星工具。由 gRNA 与 Cas9-脱氨酶形成 RNP 复合物,gRNA 引导复合物结合在基因组目标位点,Cas9 负责解开 DNA 双链,并将靶向链切断,脱氨酶对非靶向单链 DNA(ssDNA)上的碱基进行脱氨,细胞修复过程中实现碱基转换。然而,单碱基编辑工具被发现具有明显的脱靶编辑效应,主要包括 Cas9 非依赖的 DNA 和 RNA 脱靶效应和 Cas9 依赖的 DNA 脱靶效应。通过对脱氨酶的修饰可大大降低蛋白对核酸链的非特异结合,从而最大限度地减少 Cas9 非依赖的脱靶效应。但由于 Cas9 蛋白本身存在的 Cas9 依赖性脱靶,人们依然对其临床应用的安全性表示担忧。尽管目前已有多种方法尝试解决这一问题,但都无法在保持目标效率的同时解决 Cas9 依赖性脱靶问题。2022年3月,中国科学院广州生物医药与健康研究院赖良学研究员与五邑大学邹庆剑副教授团队合作,首次将腺苷脱氨酶与转录激活因子样效应子(TALE)融合,开发了一种新型腺嘌呤碱基编辑系统——TaC9-ABE。该新型碱基编辑系统可以完全消除Cas9依赖性脱靶,而不影响任何靶向编辑效率。相关成果以:Elimination of Cas9-dependent off-targeting of adenine base editor by using TALE to separately guide deaminase to the target site 为题在线发表在 Cell Discovery 期刊上。TaC9-ABE单碱基编辑技术原理近日,该团队再次证实将 TALE 技术与 Cas9 技术结合起来,同样可以实现更加安全高效的胞嘧啶碱基编辑系统——TaC9-CBE。相关成果以:Eliminating predictable DNA off-target effects of cytosine base editor by using dual guiders including sgRNA and TALE 为题于在线发表在 Molecular Therapy 期刊上。TaC9-CBE单碱基编辑技术原理在 TaC9-ABE 和 TaC9-CBE 碱基编辑系统中,研究人员将脱氨酶与 nCas9 分离,脱氨酶与 TALE 连接,nCas9 与 gRNA 结合,由 TALE 和 gRNA 分别将两个效应器引导到 DNA 靶位点,同时发挥作用,实现靶位点的 A to G 或 C to T 的突变。如果 nCas9 被 gRNA 带到错误的位点,由于没有脱氨酶的存在,碱基转换就不能发生;同理,如果脱氨酶被 TALE 引导至错误的位点,由于没有 nCas9 的存在,不能形成单链 DNA,脱氨酶发挥不了作用,碱基转换也不能发生,这样就彻底地排除了发生 Cas9 依赖性脱靶的可能性。研究结果证实,TaC9-碱基编辑系统在保证高效但碱基编辑的同时,对 gRNA 依赖的脱靶位点以及 TALE 依赖的脱靶位点进行深度测序均未检测到脱靶现象。图3.各种CBE编辑器的Cas9依赖脱靶测试这项研究为基因编辑动植物的培育和人类遗传性疾病的基因治疗提供了一个安全的单碱基编辑工具。TaC9-ABE 论文中,中国科学院广州生物医药与健康研究院博士研究生刘洋和蓝婷、五邑大学周小青博士和广东工业大学博士研究生周继曾为论文共同第一作者。中国科学院广州生物医药与健康研究院赖良学研究员和五邑大学邹庆剑副教授为论文的共同通讯作者。TaC9-CBE 论文中,广东工业大学博士生周继曾、中国科学院广州生物医药与健康研究院博士生刘洋、硕士生魏愈惠和五邑大学硕士生郑淑文为论文共同第一作者。中国科学院广州生物医药与健康研究院赖良学研究员、五邑大学张焜教授和邹庆剑副教授为论文的共同通讯作者。论文链接:https://www.nature.com/articles/s41421-022-00384-4https://doi.org/10.1016/j.ymthe.2022.04.010
  • 智云达研发的新产品——豆芽氨氮速测盒上市啦!
    豆芽作为芽苗菜中的一种,由于营养价值丰富,食用方便,烹调方法多样,集美容药用功效于一身,一直颇受广大消费者的亲睐。但是近来市场上频频曝光的“毒豆芽”事件,一度让消费者闻豆芽而色变。一些不法商贩在豆芽培育过程中违规使用铵盐、氨水类化肥,从而使得豆芽中含有大量的氨氮。北京智云达科技有限公司最新研发生产的豆芽氨氮速测盒上市了,本试剂盒适用于豆芽中氨氮的快速检测。 市场上销售的那些越是看似白净、粗壮且无根的豆芽越可能存安全隐患。一般正常培育豆芽要2-3天的时间,这样生产的豆芽一是浪费人力、物力和时间,同时自然生长的豆芽卖相不美观。铵盐、氨水类化肥含有大量的氨氮,作为化肥能促进植物生长,一些不法商贩为了加快豆芽生长,让豆芽卖相好看,为了一己私利违禁添加铵盐、氮水类化肥。 此试剂盒适合豆芽中氨氮测定,小包装方便携带,适合家庭、个人使用,且操作步骤简便,结果易于分辨。将显色管与色阶卡进行比较,即可读出豆芽中氨氮的含量。如果样品中氨氮含量≥50mg/kg,则样品为阳性样品,说明豆芽培育过程中使用了铵盐类化肥。 这些氨氮类物质在人体堆积对人体健康有潜在影响。氨氮可以在一定条件下转化成亚硝酸盐,亚硝酸盐对人体的危害大家早已心知肚明,如果长期饮用,亚硝酸盐将和蛋白质结合形成亚硝胺,这是一种强致癌物质,对人体健康极为不利。 北京智云达科技有限公司作为食品安全检测专家,为解决百姓身边的食品安全问题义不容辞。公司多年来已研发生产出200余种食品安全快速检测产品,包括仪器、试剂盒、试纸、胶体金卡等。为了百姓能吃上放心的食品,北京智云达科技有限公司接下来还会不断推出更便捷、更快速、更安全快速的食品安全检测产品! 豆芽氨氮速测盒
  • 氢能发展重要方向——氢氨一体化
    氢能源拥有诸多优点,但难以储存和运输,成本高昂。氢是元素周期表上最轻的元素,很容易泄漏,对储存容器要求高,并且氢气非常活泼,与空气混合后很容易发生燃烧和爆炸。如果远距离运输氢,需要将其液化,在常压状态下,需要将其温度降低到-235摄氏度以下,能耗较高。如果以管道运输,则需要克服纯氢以及掺氢的气体给管道带来的安全隐患,攻克氢气管道的材料难题。在氢能源高昂的成本下,氨气走入人们视野,氨由一个氮原子和三个氢原子组成,是天然的储氢介质。常压状态下,温度降低到-33摄氏度,就能够液化,便于安全运输。目前全球八成以上的氨用于生产化肥,并且氨有完备的贸易和运输体系。理论上,可以用可再生能源生产氢,再将氢转换为氨,运输到目的地。全球年产2亿吨合成氨,我国合成氨年产5000-6000万吨,占全球产量的25-30%。利用液氨制氢,生产消耗能源仅是电解水制氢的三分之一,氨的燃爆范围相对较窄(16%~25%),远小于氢的爆炸范围(4% ~75%),且氨非常适合用于H2载体,易液化(-33℃)、高储氢密度(17.6%,质量分数)、运输便利、无碳等优点,无论是在制氢、储氢及终端应用方面都具备可行性。液氨制氢、储氢将是氢能发展重要方向,为此高麦提供超纯氨解决方案,为氢氨联合保驾护航。高麦超纯氨解决方案图 1:GOW-MAC 5900专用气相色谱仪图 2:氨标气谱图高麦 成立于1935年,在中国、美国、日本、韩国等多个国家设有技术、研发中心,生产、组装工厂、客户运营中心,逐步形成以北京为总部,在武汉、杭州,日照,台湾等地分别设立技术研发和客户运营中心的生态网络,全方位的为中国乃至全球客户 打造专属的气体行业解决方案。The Cornerstone of Technology,Since 1935. 关注高麦,洞见真知。收录于合集 #解决方案 16个上一篇专注效益、守护安全 | 高麦赋能空分
  • 干货分享|水质检测人绕不过的坎:总氮小于氨氮
    首先,我们先了解一下什么总氮?什么是氨氮?以及总氮与氨氮的区别及联系。简单来说,氨氮是总氮的组成之一,同种废水中,总氮浓度要比氨氮浓度高。两者的关系还可以用下面这张图来表示。 理论上,在水质中氨氮的含量肯定是小于总氮的,但是实际检测中,往往会出现氨氮的检测结果大于总氮的现象,为什么会产生这种现象呢?●总氮小于氨氮的几种影响因素●1、 实验环境导致的误差在实验室周围环境有卫生间或存放氨水等等,实验室的空气中含有少量的氨气,这些氨气极易溶于水,使实验用水也不同程度地含有铵离子。在实验分析中,稀释水样所用的无氨水的制备和保存往往不被重视,导致外界氨氮溶解到水样中,增加了水样的氨氮浓度误差。2、样品引入的误差由于水中的氮化合物是在不断变化着的,采集后送回实验室等待实验分析的样品, 它们的存放时间、 存放地点,光照情况等, 甚至分析人员取样的先后次序等,都会给氨氮和总氮的实验分析带来不同的误差。3、试剂和水引入的误差实验时首先要进行过硫酸钾的提纯处理,没有经过提纯的过硫酸钾溶液的吸光度远大于经过提纯的过硫酸钾溶液,且经过提纯的过硫酸钾溶液标准偏差更小,对水样测定结果的偏差影响更小。总氮实验的成败与实验用水和试剂的优劣直接相关。首先是实验用水,普通的蒸馏水不能满足要求,必须进行二次蒸馏,使用自制无氨水时,在保存水期间,要避免与实验室空气中含有氨接触,而受其重新污染。其次是试剂的选择和配制,试剂的选择也极其重要,过硫酸钾的质量影响到整个实验的成败,,其纯度关系到空白值得高低和测定结果的准确度。通过实验发现默克的过硫酸钾可以满足实验要求。 4、实验方法引入的误差氨氮的分析通常采用较为经典的纳氏试剂光度法,虽然显色要求碱性环境,但前处理过程比较简单,直接显色测定后,就可以计算得出结果。相对来说总氮的分析的前处理过程要复杂一些,要经历在碱性条件下30min的加压处理,在前处理过程中如果密封不好,也会导致在高温高压下氨氮的释放,一般很少有化验室做到每次总氮的消解用生料带密封瓶塞的,因此转化不可能为100%的转化,这当中会导致总氮过程中的氨氮释放,从而引起误差存在。5、样品浊度引入的误差总氮分析前处理能消除的浊度影响在氨氮分析中消除不了, 加上比色时常用不同种比色皿, 这几种影响因素加起来, 对最后结果带来差异。由于两种测试方法都是用测量吸光度的,样品中的悬浮物造成的浊度是样品分析中最难消除的影响因素,在总氮和氨氮的实验分析测定中, 总氮分析前处理能消除的浊度影响在氨氮分析中就消除不了,可能会对水样检测中的氨氮造成较高的情况。6、不同分析方法和分析仪器引入的误差几乎所有的分析实验方法测定样品都有一定的方法误差, 总氮和氨氮的实验分析也不例外,分析氨氮的纳氏试剂光度法有误差,分析总氮的碱性过硫酸盐分解法同样也有误差, 两种分析方法误差给最后测定结果带来的误差,有很大的不确定性。在两个项目的整个分析过程中所使用的各种量器、比色管、比色皿等多种仪器,它们都可能引入程度不同的误差 比色时所使用的分光光度计的灵敏度、精密度和准确度都可能不是一样的,引入的误差大小也不一样。特别对总氮和氨氮的比色测定采用的是可见和紫外两种不同光区的光, 引入的误差差异更大。7、数据处理引入的误差在数据处理中, 有两方面可能引入误差:一是不同的校正曲线引入的误差,虽然这两个项目使用的两条曲线都经统计检验合格,但曲线与曲线有差别,这种差别带来误差 二是对有效数字的取舍引入误差。两方面的误差总和起来就形成了两分析项目间不小的误差。样品的浓度越小,这种误差越大,这就是有些情况下,经过稀释的水样反而会出现氨氮小于总氮的情况。8、还有就是不同人员的因素导致的各种误差实验手法,误差控制上都会有不同的差别:从上面的分析可以看到氨氮和总氮在化验过程中出现的误差的情况有客观和主观的多方面的因素影响,综合的误差会导致氨氮可能超过总氮的情况发生。●如何预防误差带来的错误数据●综上所述,在污水检测中,氨氮和总氮的化验中会经常出现的氨氮高于总氮的情况,是不可避免的,特别是在一些总氮中氨氮所占的比例较大的水样中,由于多种诱发误差的原因存在,出现这种情况的几率很高。检测人员应该对于总氮和氨氮的分析时间要保持一致,消除药品样品及实验条件的干扰。
  • 基因编辑技术,最后一块拼图补齐:线粒体中实现A到G碱基转换
    生物技术重大发现的历史时间表。图片来源:韩国基础科学研究所  科技创新世界潮韩国基础科学研究所(IBS)基因组工程中心研究人员开发了一种新的基因编辑平台,称为类转录激活因子效应相关脱氨酶(TALED)。TALED是能够在线粒体中进行A到G碱基转换的碱基编辑器。这一发现是长达数十年治愈人类遗传疾病之旅的结晶,而TALED,也被认为是基因编辑技术中最后缺失的一块拼图。研究成果发表在最新一期《细胞》杂志上。“基因剪刀”的魔力与缺憾从1968年第一个限制性内切酶的发现、1985年聚合酶链式反应的发明到2013年CRISPR介导的基因组编辑的示范,生物技术的每一个新突破发现都进一步提高了操纵DNA的能力。特别是,新近开发的CRISPR—Cas系统(“基因剪刀”)允许对活细胞进行全面的基因组编辑。这为通过编辑人类基因组中的突变来治疗以前无法治愈的遗传疾病开辟了新的可能性。虽然基因编辑在细胞的核基因组中取得了很大的成功,然而,科学家们在编辑拥有自己基因组的线粒体方面并不成功。线粒体,即所谓的“细胞的动力室”,是细胞中的微小细胞器,充当能量产生工厂。由于它是能量代谢的重要细胞器,如果基因发生突变,则会导致与能量代谢相关的严重遗传疾病。韩国IBS基因组工程中心主任金镇秀解释说:“由于线粒体DNA缺陷,出现了一些非常严重的遗传性疾病。例如,导致双眼突然失明的Leber遗传性视神经病变是由线粒体DNA中的简单单点突变引起的。”另一种线粒体基因相关疾病包括伴有乳酸性酸中毒和卒中样发作的线粒体脑肌病,它会缓慢破坏患者的大脑。一些研究甚至表明,线粒体DNA异常也可能是阿尔茨海默病和肌肉萎缩症等退行性疾病的原因。线粒体DNA可以编辑了线粒体基因组遗传自母系。线粒体DNA中有90个已知的致病点突变,总共影响至少5000人中的1人。由于向线粒体递送方法的限制,许多现有基因组编辑工具无法使用。例如,CRISPR—Cas平台不适用于编辑线粒体中的这些突变,因为引导RNA无法进入细胞器本身。另一个问题是缺乏这些线粒体疾病的动物模型。这是因为目前不可能设计出创建动物模型所需的线粒体突变。”金镇秀补充道,“缺乏动物模型使得开发和测试这些疾病的治疗方法变得非常困难。”因此,编辑线粒体DNA的可靠技术是基因组工程的前沿领域之一,为了征服所有已知的遗传疾病,必须探索这一前沿领域,世界上最优秀的科学家多年来一直在努力使其成为现实。2020年,由美国哈佛大学博德研究所和麻省理工学院刘如谦领导的研究团队创建了一种新的碱基编辑器,名为DddA衍生的胞嘧啶碱基编辑器,可从线粒体中的DNA进行C到T转换。这是通过创造一种称为碱基编辑的新基因编辑技术来实现的,该技术将单个核苷酸碱基转化为另一个碱基而不会破坏DNA。但是,这种技术也有其局限性。它不仅仅限于C到T转换,而且主要限于TC基序,使其成为有效的TC-TT转换器。这意味着它只能纠正90个已确认的致病性线粒体点突变中的9个,也就是10%。长期以来,线粒体DNA的A到G转换被认为是不可能的。研究第一作者赵兴义说:“我们开始思考克服这些限制的方法。因此,我们创建了一个名为TALED的新型基因编辑平台,可实现A到G的转换。我们的新碱基编辑器极大地扩展了线粒体基因组编辑的范围。这不仅可为建立疾病模型作出巨大贡献,还可为开发治疗方法作出巨大贡献。值得注意的是,其在人类mtDNA中能够进行A到G的转化可纠正90种已知致病性突变中的39种,约为43%。”研究人员通过融合三种不同的成分创造了TALED。第一个组分是转录激活子样效应子,它能够靶向DNA序列。第二个组分是TadA8e,一种用于促进A到G转化的腺嘌呤脱氨酶。第三个组分DddAtox,是一种使DNA更容易被TadA8e获取的胞嘧啶脱氨酶。TALED的一个有趣的方面是TadA8e在具有双链DNA的线粒体中执行A到G编辑的能力。这是一种神秘的现象,因为TadA8e是一种已知仅对单链DNA具有特异性的蛋白质。金镇秀说:“以前没有人想过使用TadA8e在线粒体中进行碱基编辑,因为它应该只对单链DNA具有特异性。正是这种跳出框框的思维方法真正帮助我们发明了TALED。”诺贝尔奖级别的成果研究人员推测,DddA tox允许通过瞬时解开双链来访问双链DNA。这个转瞬即逝的临时时间窗口允许TadA8e作为一种超快作用的酶,快速进行必要的编辑。除了调整TALED的组件外,研究人员还开发了一种能够同时进行A到G和C到T碱基编辑以及仅进行A到G碱基编辑的技术。研究团队通过创建包含所需mtDNA编辑的单个细胞衍生克隆来展示这项新技术。他们发现TALED既不具有细胞毒性,也不会导致mtDNA不稳定。此外,核DNA中没有不良的脱靶编辑,mtDNA中的脱靶效应也很少。研究人员现在的目标是通过提高编辑效率和特异性来进一步改善TALED,最终为纠正胚胎、胎儿、新生儿或成年患者中的致病mtDNA突变铺平道路。研究团队还专注于开发适用于叶绿体DNA中A到G碱基编辑的TALED,叶绿体DNA编码植物光合作用中的必需基因。基础科学研究所科学传播者苏威廉称赞道:“我相信这一发现的意义可与2014年获得诺贝尔奖的蓝色LED的发明相媲美。就像蓝色LED是让我们拥有高能效白光LED光源的最后一块拼图一样,预计TALED将迎来基因组工程的新时代。”
  • 水中氨氮测定方法及操作步骤汇总介绍
    氨 氮 氨氮(NH3-N)以游离氨(NH3)或铵盐(NH4+)形式存在于水中,两者的组成比取决于水的pH值。当pH值偏高时,游离氨的比例较高。反之,则铵盐的比例为高。 水中氨氮的来源主要为生活污水中含氮有机物受微生物作用的分解产物,某些工业废水,如焦化废水和合成氨化肥厂废水等,以及农田排水。此外,在无氧环境中,水中存在的亚硝酸盐亦可受微生物作用,还原为氨。在有氧环境中,水中氨亦可转变为亚硝酸盐、甚至继续转变为硝酸盐。 测定水中各种形态的氮化合物,有助于评价水体被污染和“自净”状况。 氨氮含量较高时,对鱼类则可呈现毒害作用。 1. 方法的选择 氨氮的测定方法,通常有纳氏比色法、苯酚-次氯酸盐(或水杨酸-次氯酸盐)比色法和电极法等。纳氏试剂比色法具操作简便、灵敏等特点,水中钙、镁和铁等金属离子、硫化物、醛和酮类、颜色,以及浑浊等干扰测定,需做相应的预处理,苯酚-次氯酸盐比色法具灵敏、稳定等优点,干扰情况和消除方法同纳氏试剂比色法。电极法通常不需要对水样进行预处理和具测量范围宽等优点。氨氮含量较高时,尚可采用蒸馏﹣酸滴定法。 2.水样的保存 水样采集在聚乙烯瓶或玻璃瓶内,并应尽快分析,必要时可加硫酸将水样酸化至pH2,于2—5℃下存放。酸化样品应注意防止吸收空气中的氮而遭致污染。 预 处 理 水样带色或浑浊以及含其它一些干扰物质,影响氨氮的测定。为此,在分析时需做适当的预处理。对较清洁的水,可采用絮凝沉淀法,对污染严重的水或工业废水,则以蒸馏法使之消除干扰。 (一)絮 凝 沉 淀 法 概 述 加适量的硫酸锌于水样中,并加氢氧化钠使呈碱性,生成氢氧化锌沉淀,再经过滤去除颜色和浑浊等。 仪 器 100ml具塞量筒或比色管。 试 剂 (1)10%(m/V)硫酸锌溶液:称取10g硫酸锌溶于水,稀释至100ml。 (2)25%氢氧化钠溶液:称取25g氢氧化钠溶于水,稀释至100ml,贮于聚乙烯瓶中。 (3)硫酸ρ=1.84。 步 骤 取100ml水样于具塞量筒或比色管中,加入1ml 10%硫酸锌溶液和0.1—0.2ml 25%氢氧化钠溶液,调节pH至10.5左右,混匀。放置使沉淀,用经无氨水充分洗涤过的中速滤纸过滤,弃去初滤液20ml。 (二)蒸 馏 法 概 述 调节水样的pH使在6.0—7.4的范围,加入适量氧化镁使呈微碱性(也可加入pH9.5的Na4B4O7-NaOH缓冲溶液使呈弱碱性进行蒸馏;pH过高能促使有机氮的水解,导致结果偏高),蒸馏释出的氨,被吸收于硫酸或硼酸溶液中。采用纳氏比色法或酸滴定发时,以硼酸溶液为吸收液;采用水杨酸-次氯酸比色法时,则以硫酸溶液为吸收液。 仪 器 带氮球的定氮蒸馏装置:500ml凯氏烧瓶、氮球、直形冷凝管和导管。 试 剂 水样稀释及试剂配制均用无氨水。 (1) 无氨水制备: ① 蒸馏法:每升蒸馏水中加0.1ml硫酸,在全玻璃蒸馏器中重蒸馏,弃去50ml初滤液,接取其余馏出液于具塞磨口的玻瓶中,密塞保存。 ② 离子交换法:使蒸馏水通过强酸性阳离子交换树脂柱。 (2) 1mol/L盐酸溶液。 (3) 1mol/L氢氧化钠溶液。 (4) 轻质氧化镁(MgO):将氧化镁在500℃下加热,以除去碳酸盐。 (5) 0.05%溴百里酚蓝指示液(pH6.0—7.6)。 (6) 防沫剂,如石蜡碎片。 (7) 吸收液:① 硼酸溶液:称取20g硼酸溶于水稀释至1L。 ② 硫酸(H2SO4)溶液:0.01mol/L。 步 骤 (1) 蒸馏装置的预处理:加250ml水于凯氏烧瓶中,加0.25g轻质氧化镁和数粒玻璃珠,加热蒸馏,至馏出液不含氨为止,弃去瓶内残渣。 (2) 分取250ml水样(如氨氮含量较高,可分取适量并加水至250ml,使氨氮含量不超过2.5mg),移入凯氏烧瓶中,加数滴溴百里酚蓝指示液,用氢氧化钠溶液或盐酸溶液调至pH7左右。加入0.25g轻质氧化镁和数粒玻璃珠,立即连接氮球和冷凝管,导管下端插入吸收液液面下。加热蒸馏至馏出液达200ml时,停止蒸馏。定容至250ml。 采用酸滴定法或纳氏比色法时,以50ml硼酸溶液为吸收液,采用水杨酸-次氯酸盐比色法时,改用50ml 0.0 1mol/L硫酸溶液为吸收液。 注意事项 (1) 蒸馏时应避免发生暴沸,否则可造成馏出液温度升高,氨吸收不完全。 (2) 防止在蒸馏时产生泡沫,必要时加入少量石蜡碎片于凯氏烧瓶中。 (3) 水样如含余氯,则应加入适量0.35%硫代硫酸钠溶液,每0.5ml可除去0.25mg余氯。 (一) 纳氏试剂光度法GB7479--87 概 述 1. 方法原理 碘化汞和碘化钾的碱性溶液与氨反应生成淡红棕色胶态化合物,此颜色在较宽的波长范围内具强烈吸收。通常测量用波长在410—425nm范围。 2. 干扰及消除 脂肪胺、芳香胺、醛类、丙酮、醇类和有机氯胺类等有机化合物,以及铁、锰、镁、硫等无机离子,因产生异色或浑浊而引起干扰,水中颜色和浑浊亦影响比色。为此,须经絮凝沉淀过滤或蒸馏预处理,易挥发的还原性干扰物质,还可在酸性条件下加热除去。对金属离子的干扰,可加入适量的掩蔽剂加以消除。 3.方法适用范围 本法最低检出浓度为0.025mol/L(光度法),测定上限为2mg/L。采用目视比色法,最低检出浓度为0.02mg/L。水样作适当的预处理后,本法可适用于地表水、地下水、工业废水和生活污水。 仪 器 (1) 分光光度法。 (2) pH计。 试 剂 配制试剂用水应为无氨水。 1. 纳氏试剂 可选择下列一种方法制备。 (1) 称取20g碘化钾溶于约25ml水中,边搅拌边分次少量加入二氯化汞(HgCI2)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,改为滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加二氯化汞溶液。 另称取60g氢氧化钾溶于水,并稀释至250ml,冷却至室温后,将上述溶液在边搅拌下,徐徐注入氢氧化钾溶液中,用水稀释至400ml,混匀。静置过夜,将上清液移入聚乙烯瓶中,密塞保存。 (2) 称取16g氢氧化钠,溶于50ml充分冷却至室温。 另称取7g碘化钾和10g碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100ml,贮于聚乙烯瓶中,密塞保存。 2.酒石酸钾钠溶液 称取50g酒石酸钾钠(KnaC4H4O64H2O)溶于100ml水中,加热煮沸以除去氨,放冷,定容至100ml。 3.铵标准贮备溶液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,稀释至标线。此溶液每毫升含1.00mg氨氮。 4. 铵标准使用溶液 移取5.00ml铵标准贮备液于500ml容量瓶中,用水稀释至标线。此溶液每毫升含0.010mg氨氮。 步 骤 1. 校准曲线的绘制 吸取0、0.50、1.00、3.00、5.00、7.00、和10.0ml铵标准使用液于50ml比色管中,加水至标线。加1.0ml酒石酸钾钠溶液,混匀。加1.5ml纳氏试剂,混匀。放置10min后,在波长4250nm处,用光程20mm比色皿,以水作参比,测量吸光度。 由测得得吸光度,减去零浓度空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度得校准曲线。 2. 水样的测定 (1) 分取适量经絮凝沉淀预处理后的水样(使氨氮含量不超过0.1mg),加入50ml比色管中,稀释至标线,加1.0ml酒石酸钾钠溶液。 (2)分取适量经蒸馏预处理后的馏出液,加入50ml比色管中,加一定量1mol/L氢氧化钠溶液以中和硼酸,稀释至标线。加1.5ml纳氏试剂,混匀。放置10min后,同校准曲线步骤测量吸光度。 3. 空白试验:以无氨水代替水样,作全程序空白测定。计 算 由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(mg)。 氨氮(N,mg/L)= 式中,m—由校准曲线查得的氨氮量(mg); V—水样体积(ml)。 精密度和准确度 三个实验室分析含1.14~1.16mg/L氨氮的加标水样,单个实验室的相对标准偏差不超过9.5%;加标回收率范围为95~104%。 四个实验室分析含1.81~3.06mg/L氨氮的加标水样,单个实验室的相对标准偏差不超过4.4%;加标回收率范围为94~96%。 注意事项 (1) 纳氏试剂中碘化汞与碘化钾的比例,对显色反应的灵敏度有较大影响。静置后生成的沉淀应除去。 (2) 滤纸中常含有痕量铵盐,使用时注意用无氨水洗涤。所用玻璃器皿应避免实验室空气中氨的沾污。 (二) 水杨酸-次氯酸盐光度法 GB7481--87 概 述 1. 方法原理 在亚硝基铁氰化钠存在下,铵与水杨酸盐和次氯酸离子反应生成兰色化合物,在波长697nm具最大吸收。 2. 干扰及消除 氯铵在此条件下,均被定量的测定。钙、镁等阳离子的干扰,可加酒石酸钾钠掩蔽。 3. 方法的适用范围 本法最低检出浓度为0.01mg/L,测定上限为1mg/L。适用于饮用水、生活污水和大部分工业废水中氨氮的测定。 仪 器 (1) 分光光度计。 (2) 滴瓶(滴管流出液体,每毫升相当于20±1滴) 试 剂 所有试剂配制均用无氨水。 1. 铵标准贮备液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。 2. 铵标准中间液 吸取10.00ml铵标准贮备液移取100ml容量瓶中,稀释至标线。此溶液每毫升含0.10mg氨氮。 3. 铵标准使用液 吸取10.00ml铵标准中间液移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00μg氨氮。临用时配置。 4. 显色液 称取50g水杨酸〔C6H4(OH)COOH〕,加入100ml水,再加入160ml 2mol/L氢氧化钠溶液,搅拌使之完全溶解。另称取50g酒石酸钾钠溶于水中,与上述溶液合并移入1000ml容量瓶中,稀释至标线。存放于棕色玻瓶中,本试剂至少稳定一个月。 注: 若水杨酸未能全部溶解,可再加入数毫升氢氧化钠溶液,直至完全溶解为止,最后溶液的pH值为6.0—6.5。 5. 次氯酸钠溶液 取市售或自行制备的次氯酸钠溶液,经标定后,用氢氧化钠溶液稀释成含有效氯浓度为0.35%(m/V),游离碱浓度为0.75mol/L(以NaOH计)的次氯酸钠溶液。存放于棕色滴瓶内,本试剂可稳定一星期。 6. 亚硝基铁氰化钠溶液 称取0.1g亚硝基铁氰化钠{Na2〔Fe(CN)6NO〕2H2O}置于10ml具塞比色管中,溶于水,稀释至标线。此溶液临用前配制。 7. 清洗溶液 称取100g氢氧化钾溶于100ml水中,冷却后与900ml 95%(V/V)乙醇混合,贮于聚乙烯瓶内。 步 骤 1. 校准曲线的绘制 吸取0、1.00、2.00、4.00、6.00、8.00ml铵标准使用液于10ml比色管中,用水稀释至8ml,加入1.00ml显色液和2滴亚硝基铁氰化钠溶液,混匀。再滴加2滴次氯酸钠溶液,稀释至标线,充分混匀。放置1h后,在波长697nm处,用光程为10mm的比色皿,以水为参比,测量吸光度。 由测得的吸光度,减去空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(μg)对校正吸光度的校准曲线。 2. 水样的测定 分取适量经预处理的水样(使氨氮含量不超过8μg)至10ml比色管中,加水稀释至8ml,与校准曲线相同操作,进行显色和测量吸光度。 3. 空白试验 以无氨水代替水样,按样品测定相同步骤进行显色和测量。 计 算 由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(μg)。 氨氮(N,mg/L)= 式中,m—由校准曲线查得的氨氮量(μg); V—水样体积(ml)。 注意事项 水样采用蒸馏预处理时,应以硫酸溶液为吸收液,显色前加氢氧化钠溶液使其中和。 (三) 滴 定 法 GB7478--87 概 述 滴定法仅适用于进行蒸馏预处理的水样。调节水样至pH6.0~7.4范围,加入氧化镁使呈微碱性。加热蒸馏,释出的氨被吸收入硼酸溶液中,以甲基红-亚甲蓝为指示剂,用酸标准溶液滴定馏出液中的铵。 当水样中含有在此条件下,可被蒸馏出并在滴定时能与酸反应的物质,如挥发性胺类等,则将使测定结果偏高。 试 剂 (1) 混合指示液: 称取200mg甲基红溶于100ml 95%乙醇;另称取100mg亚甲蓝溶于50ml 95%乙醇。以两份甲基红溶液与一份亚甲蓝溶液混合后供用。混合液一个月配制一次。 注: 为使滴定终点明显,必要时添加少量甲基红溶液于混合指示液中,以调节二者的比例至合适为止。 (2) 硫酸标准溶液(1/2H2SO4=0.020mol/L): 分取5.6ml(1+9)硫酸溶液于1000ml容量瓶中,稀释至标线,混匀。按下述操作进行标定。 称取经180℃干燥2h的基准试剂级无水碳酸钠(Na2CO3)约0.5g(称准至0.0001g),溶于新煮沸放冷的水中,移入500ml容量瓶中,稀释至标线。移取25.00ml碳酸钠溶液于150ml锥形瓶中,加25ml水,加1滴0.05%甲基橙指示液,用硫酸溶液滴定至淡橙红色止。记录用量,用下列公式计算,硫酸溶液的浓度。 硫酸溶液浓度(1/2H2SO4,mol/L)= 式中,W—碳酸钠的重量(g); V—硫酸溶液体积(ml)。 (3)0.05%甲基橙指示液。 步 骤 1. 水样的测定 于全部经蒸馏预处理、以硼酸溶液为吸收液的馏出液中,加2滴混合指示液,用0.020mol/L硫酸溶液滴定至绿色转变成淡紫色止,记录用量。 2. 空白试验 以无氨水代替水样,同水样全程序步骤进行测定。 计 算 氨氮(N,mg/L)= 式中,A—滴定水样时消耗硫酸溶液体积(ml); B—空白试验硫酸溶液体积(ml); M—硫酸溶液浓度(mol/L); V—水样体积(ml); 14—氨氮(N)摩尔质量。 (四) 电 极 法 概 述 1. 方法原理 氨气敏电极为一复合电极,以pH玻璃电极为指示电极,银-氯化银电极为参比电极。此电极对置于盛有0.1mol/L氯化铵内充液的塑料管中,管端部紧贴指示电极敏感膜处装有疏水半渗透薄膜,使内电解液与外部试液隔开,半透膜与pH玻璃电极有一层很薄的液膜。当水样中加入强碱溶液将pH提高到11以上,使铵盐转化为氨,生成的氨由于扩散作用而通过半透膜(水和其他离子则不能通过),使氯化铵电解质液膜层内NH4+Ö NH3+H+的反应向左移动,引起氢离子浓度改变,由pH玻璃电极测得其变化。在恒定的离子强度下,测得的电动势与水样中氨氮浓度的对数呈一定的线性关系。由此,可从测得的电位确定样品中氨氮的含量。 2. 干扰及消除 挥发性胺产生正干扰;汞和银因同氨络合力强而有干扰;高浓度溶解离子影响测定。 3. 方法适用范围 本法可用于测定饮用水、地面水、生活污水及工业废水中氨氮的含量。色度和浊度对测定没有影响,水样不必进行预蒸馏,标准溶液和水样的温度应相同,含有溶解物质的总浓度也要大致相同。 方法的最低检出浓度为0.03mg/L氨氮;测定上限为1400mg/L氨氮。 仪 器 (1) 离子活度计或带扩展毫伏的pH计。 (2) 氨气敏电极。 (3) 电磁搅拌器。 试 剂 所有试剂均用无氨水配制。 (1) 铵标准贮备液: 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。 (2) 100、10、1.0、0.1mg/L的氨标准使用液: 用铵标准贮备液稀释配制。 (3) 电极内充液:0.1mol氯化铵溶液。 (4) 氢氧化钠(5mol/L)-Na2-EDTA(0.5mol/L)混合溶液,贮于聚乙烯瓶中。 步 骤 1. 仪器和电极的准备 按使用说明书进行,调试仪器。 2. 校准曲线的绘制 吸取10.00ml浓度为0.1、1.0、10、100、1000mg/L的铵标准溶液于25ml小烧杯中,浸入电极后加入1.0ml氢氧化钠-Na2-EDTA溶液,在搅拌下,读取稳定的电位值(在1min内变化不超过1mV时,即可读数)。在半对数坐标线绘制E-logc的校准曲线。 3. 水样的测定 吸取10.00ml水样,以下步骤与校准曲线绘制相同。由测得的电位值,在校准曲线上直接查得水样的氨氮含量(mg/L)。 精密度与准确度 七个实验室分析含14.5mg/L氨氮的统一分发的加标地面水。实验室内相对标准偏差为2.0%;实验室间相对标准偏差为5.2%;相对误差为-1.4%。 注意事项 (1) 绘制校准曲线时,可以根据水样中氨氮含量,自行取舍三或四个标准点。 (2) 试验过程中,应避免由于搅拌器发热而引起被测溶液温度上升,影响电位值的测定。 (3) 当水样酸性较大时,应先用碱液调至中性后,再加离子强度调节液进行测定。 (4) 水样不要加氯化汞保存。 (5) 搅拌速度应适当,不使形成涡流,避免在电极处产生气泡。 (6) 水样中盐类含量过高时,将影响测定结果。必要时,应在标准溶液中加入相同量的盐类,以消除误差。
  • 纳氏试剂分光光度比色法检测污水中氨氮时的影响因素有哪些?
    纳氏试剂分光光度比色法测定水中氨氮时,虽然步骤较为简单,但实验条件还是有一定的要求,任何一处细节出现偏差,都会对测量结果产生影响。下面结合我公司的氨氮测定仪 6b-50型(v9),对纳氏试剂分光光度法测定水中氨氮含量时影响测定准确度的因素和解决的办法进行了总结,与大家共同探讨。原理介绍纳氏试剂比色法是一种测定饮用水、地面水和废水中铵的方法。其原理是:以游离的氨或铵离子等形式存在的铵氮与纳氏试剂反应生成黄棕色络合物,该络合物的色度与铵氮的含量成正比,可用目视比色和分光光度法测定。目视比色法测定时,最低检出浓度为0.2mg/l,上限浓度为2 mg/l;分光光度法测定时,最低检出浓度为0.05 mg/l,上限浓度为2 mg/l。本方法已定为国家标准分析方法。 仪器准备 6B-50型(v9)氨氮测定仪 江苏盛奥华环保科技有限公司 影响因素1:实验用水及试剂的质量检验氨氮专用试剂主要包含两种:n1-100样 / n2-100样,我司提供的是固体粉末状试剂,需要用户自行加入100ml蒸馏水配置成液体试剂备用。配置过程中如有少量沉淀,去除即可。配置完成后避光、阴凉处或放置冰箱低温1-2度保存。试剂如果变色浑浊过期使用,实验数据是不准确的。因此试剂配置、存放、使用过程中都需要注意,避免造成不必要的麻烦。 影响因素2:实验环境氨是实验室最常用的易挥发性试剂,而氨氮的分析应在无氨的实验室环境中进行,室内不应含有扬尘、石油类及其它的氮化合物,严禁在使用含氨试剂(如测定总硬度:使用氨缓冲溶液)的实验室中做氨氮项目的分析,所使用的试剂、玻璃器皿等也要单独存放,避免交叉污染,影响试剂空白值、样品测定值。影响因素3:玻璃器皿的洗涤所使用的玻璃器皿应先用(1+9)盐酸浸泡后,再用无氨水冲洗数次才能使用,否则,也会造成空白值偏高或平行性较差的情况。影响因素4:滤纸对空白值的影响氨氮实验需将水样过滤后测定,所用滤纸一般都含有铵盐,可能引起过滤空白值升高,所以需做过滤空白对照实验,以扣除滤纸影响。实验表明,不同滤纸之间铵盐含量差别很大,有些含量较高的滤纸虽经多次用水洗涤,仍达不到实验要求,因此使用前需对每一批次滤纸进行抽检,淋洗时要少量多次,减少滤纸的影响。我们选用经稀hcl浸泡并洗净的0.45um醋酸乙酯纤维滤膜过滤水样,解决了用滤纸过滤产生的高空白值问题。不仅过滤空白值低,而且重复性好,所以推荐使用0.45um醋酸乙酯纤维滤膜过滤。 影响因素5:反应条件的控制(1)反应时间对实验的影响测定氨氮时,反应时间不宜过长。6B-50型氨氮测定仪实验中,取定量的空白和水样,先后加入n1试剂1ml,n2试剂1ml。摇匀常温下静置10分钟即可倒入比色皿,放入仪器中测量读数。因而,测定水中氨氮时,显色时间不宜过长,进而保证达到分析的精密度和准确度。(2) 反应体系的ph值对实验的影响我司化验员经过多年的反复实验,发现水样ph值的变化对测定结果有明显影响,水样呈中性或碱性,得出的测定结果相对偏差符合分析要求,呈酸性的水样无可比性,所以对于水样应特别注意调节反应体系的ph值,最好将溶液显色控制在ph值为11.8~12.4。准确检测水中氨氮的含量,有利于更加有效地指导生产,确保安全、优质供水。 结 论纳氏试剂分光光度法测定氨氮应注意和解决的常见问题: ⑴试剂的正确配制决定着方法精密度和准确度,特别要注意理解实验原理、正确掌握试剂配制的要领。⑵注意主要试剂性状,选购合格的试剂。⑶降低空白实验值可提高实验精密度,对实验用水、试剂空白和过滤滤纸要注意检查。⑷反应条件、时间、体系ph决定反应平衡和反应生成物的稳定性,控制反应在最佳条件下进行,尽可能提高操作准确度,确保分析结果的精密度、准确度、稳定性和可靠性。
  • 基因编辑巨头Horizon Discovery与罗格斯大学合作开发碱基编辑技术
    p style=" text-indent: 2em text-align: justify " Horizon Discovery Group 基因编辑和基因调控技术的全球领军者,宣布和新泽西州立大学(美国)罗格斯大学建立独家战略合作伙伴关系,共同开发一种称为碱基编辑的新的基因编辑技术并使之商业化。 /p p style=" text-indent: 2em text-align: justify " 获悉,2019年1月28日, Horizon Discovery Group plc(LSE:HZD),基因编辑和基因调控技术的全球领军者,宣布和新泽西州立大学(美国)罗格斯大学建立独家战略合作伙伴关系,共同开发一种称为碱基编辑的新的基因编辑技术并使之商业化。该技术将应用于新细胞疗法的开发,同时也将丰富Horizon集团的现有技术,帮助拓展其服务范围。 /p p style=" text-indent: 2em text-align: justify " 本次合作将进一步开发Rutgers Robert Wood Johnson医学院药理学副教授Shengkan Jin博士实验室的新型碱基编辑平台。作为协议的一部分,Horizon已向Rutgers提供了独家许可的碱基编辑技术,以用于所有治疗应用。此外,该集团还将在罗格斯大学进行基础编辑的进一步研究,并在集团内部继续进行评估和概念证明研究。& nbsp /p p style=" text-indent: 2em text-align: justify " 碱基编辑是一种新颖的技术平台,用于在细胞中设计DNA或基因,并通过使用酶修饰基因,纠正DNA中的错误或突变。与目前可用的基因编辑方法(例如CRISPR / Cas9)相比,这种新技术可以更准确地进行基因编辑,同时减少意外的基因组变化,避免在基因中产生可能导致负面影响的“切割”。 /p p style=" text-indent: 2em text-align: justify " 该技术将对通过临床开发和商业化促进细胞疗法的发展产生重大影响。Horizon集团首席执行官Terry Pizzie说:“碱基编辑对于基因编辑技术领域来说就像一场潜在的革新,极有可能实现靶向治疗众多迄今无法医治的疾病的目标。此次Horizon集团与Jin博士和罗格斯大学的合作将帮助我们在研究与应用市场扩展科学和知识产权能力。作为我们五年投资战略的一部分,Horizon将致力于投资保持市场领导地位的高价值技术,碱基编辑技术就是一个很好的例子。” /p p style=" text-indent: 2em text-align: justify " 罗格斯大学的Shengkan Jin博士表示:“单独使用该技术的胞苷脱氨酶可用于开发离体疗法,如用于镰状细胞贫血和β地中海贫血的基因修饰细胞、用于艾滋病的HIV抗性细胞,用于白血病的现成CAR-T细胞以及遗传性疾病的治疗,可谓潜力巨大。” /p p style=" text-indent: 2em text-align: justify " 罗格斯大学研究与经济发展部的临时高级副总裁David Kimball博士认为:“基因编辑技术真正彻底改变了科学家们思考如何在疾病治疗方面寻求更好结果的方法。我们期待通过与Horizon合作,发展这一新型碱基编辑平台以改善人类健康。” /p p style=" text-indent: 2em text-align: justify " 美国早在2018年1月就宣布将在未来6年出资1.9亿美元支持体细胞基因编辑研究,以开发安全有效的基因编辑工具,治疗更多人类疾病。显然,美国政府也对基因编辑市场前景十分看好。 /p p style=" text-indent: 2em text-align: justify " 另据中商产业研究院最新报告,预计2020年,全球精准医疗市场规模将破千亿,达到1050亿美元,而基因编辑技术将是撬动千亿级大市场的一把钥匙。 /p p style=" text-indent: 2em text-align: justify " 关于Horizon Discovery Group plc /p p style=" text-indent: 2em text-align: justify " Horizon Discovery Group plc(LSE:HZD)是基因编辑和基因调控技术的全球领军者,总部位于英国剑桥。 /p p style=" text-indent: 2em text-align: justify " Horizon集团提供广泛的技术产品和相关研究服务,以支持医学界和生物学界更好地了解所有物种的基因功能、人类疾病的遗传驱动因素以及个性化分子、细胞和基因疗法的发展。这些技术和产品已经被全球10000多家学术机构、药物研发机构、药物制造商和临床诊断公司所采用。 /p p style=" text-indent: 2em text-align: justify " 关于罗格斯大学 /p p style=" text-indent: 2em text-align: justify " 罗格斯大学,全称新泽西州立罗格斯大学,简称罗大(Rutgers, The State University of New Jersey )是美国新泽西州的最大高等学府,也是一所公立研究型大学。罗格斯大学的主要校园位于新布朗斯维克和皮斯卡特维,另有两所分校在纽瓦克和肯顿。 /p
  • Nature|天津工生所:新一代碱基编辑技术开发获进展
    碱基编辑(base editing,BE)作为前沿的基因组编辑技术,能够在基因组水平上实现精确、高效的单碱基编辑。该技术广泛应用于基础研究、基因治疗和细胞工厂构建等领域。常用的DNA碱基编辑器主要是通过将可编程的DNA结合蛋白(如Cas9)与碱基脱氨酶融合实现的,包括胞嘧啶碱基编辑器(CBE)、腺嘌呤碱基编辑器(ABE)以及糖基化酶碱基编辑器(GBE)等,可以实现C-to-T、A-to-G以及C-to-G等种类的碱基编辑。然而,这些碱基编辑器是针对C和A碱基的直接编辑,且所包含的脱氨酶可能导致非Cas9依赖的DNA或RNA脱靶。 中国科学院天津工业生物技术研究所研究员毕昌昊带领的合成生物技术研究团队,联合研究员张学礼带领的微生物代谢工程研究团队,开发了不依赖脱氨酶(deaminase-free,DAF)的碱基编辑器DAF-CBE和DAF-TBE,分别在大肠杆菌中实现C-to-A、T-to-A的碱基颠换,在哺乳动物细胞中实现C-to-G、T-to-G的碱基颠换编辑。 该研究通过定向进化改造了人源尿嘧啶糖基化酶(UNG)的两个突变体UNG(N204D)和UNG (Y147A),获得了两种高活性的DNA糖基化酶,分别可以作用于胞嘧啶碱基的CDG4和胸腺嘧啶碱基的TDG3。进而,研究将这两种DNA糖基化酶与nCas9(Cas9、D10A)融合,构建了CDG4-nCas9和TDG3-nCas9两种碱基编辑器,用于在大肠杆菌中进行C-to-A和T-to-A的编辑。实验结果显示,CDG4-nCas9和TDG3-nCas9在大肠杆菌中的编辑效率最高分别达到58.7%和54.3%。进一步,研究针对Homo sapiens密码子优化版本的CDG4-nCas9和TDG3-nCas9,在HEK293T细胞中实现了C-to-G和T-to-G的颠换编辑,编辑效率分别达到38.8%和48.7%。这两种编辑器的脱靶效果低于常用的胞嘧啶碱基编辑器(BE4max)和糖基化酶碱基编辑器(CGBEs)。因此,研究将这两个编辑器命名为DAF-CBE和DAF-TBE。此外,通过进一步的工程改造,该团队优化了CDG和TDG的空间位置,得到了DAF-CBE2和DAF-TBE2的新版本。它们的编辑窗口从原来的间隔序列(protospacer sequence)5'端移动到中间区域,且C-to-G和T-to-G的编辑效率分别提高了3.5倍和1.2倍。DAF-CBE和DAF-TBE实现了人诱导多功能干细胞(hiPSC)高效编辑。 综上所述,经过定向进化改造,该团队开发的DAF-CBEs和DAF-TBEs碱基编辑器在大肠杆菌和哺乳动物细胞中实现了高效的碱基颠换编辑,无需使用脱氨酶。与现有的引导编辑器(prime editing)或糖基化酶碱基编辑器(GBEs)相比,DAF-BEs具有相当的编辑效率、更小的尺寸和更低的脱靶率,这扩展了碱基编辑器的编辑类型,为工业菌株铸造和生物医药等领域的相关研究提供了新的技术工具。 近日,相关研究成果发表在《自然-生物技术》(Nature Biotechnology)上。研究工作得到国家重点研发计划、国家自然科学基金、天津市合成生物技术创新能力提升行动专项、中国科学院青年创新促进会和天津市自然科学基金的支持。论文链接DAF-BEs碱基编辑器的设计及进化
  • 工欲善其事,必先利其器——基因编辑工具的开发
    基因编辑已经被越来越广泛的用于生物学的研究和应用当中,例如合成生物学,基因治疗,药物靶点发现,mRNA剪接,蛋白定向进化等等。我们在使用各种各样的基因编辑工具时,不禁感叹这些工具是多么的精巧绝伦。但科研人员发现基因编辑工具,改进这些工具的功能、效率并非易事。高效、精准、便捷的基因编辑工具,一直是人们梦寐以求的科研神器。我们熟知的CRISPR系统,最常听到、见到的是Cas9蛋白,但Cas蛋白并不是只有Cas9,下图中为Cas蛋白的分类。Cas蛋白功能分类图[1]在如此多的Cas蛋白中,发现如Cas9、Cas12a、Cas13a等可以作为基因编辑工具的,可谓凤毛麟角,少之又少。从1987年报道CRISPR重复序列,到2002年发现Cas4基因具有核酸外切酶功能,直到2012年发现Cas9可以通过RNA介导控制基因组编辑,历经20余年。在CRISPR风靡全球后,对于该系统的开发并未停止,技术大牛们又开发出: 基于CRISPR系统,通过sgRNA介导突变后不具有切割活性的Cas9蛋白(dCas9)对于基因表达进行激活或抑制的CRISPRa和CRISPRi技术; 将失去催化活性的Cas蛋白(dCas)或只有切割一条链活性的Cas蛋白(nCas)和可作用于单链DNA的脱氨酶进行融合,实现对靶点碱基替换的胞嘧啶碱基编辑器(CBE)和腺嘌呤碱基编辑器(ABE)[2];工欲善其事,必先利其器。对于基因编辑而言,需要基因编辑工具这个金刚钻。对于基因编辑工具的开发,更需要一把“利器”。Beckman可以为科研工作者提供基因编辑技术与工具开发的整套解决方案。
  • 水质自动监测系统(高锰酸盐指数,五参数,氨氮,硝酸盐氮,叶绿素,总氮和总磷)
    水质自动监测系统(高锰酸盐指数,五参数,氨氮,硝酸盐氮,叶绿素,总氮和总磷) 在水质自动监测系统集成的建设及运营维护上,厦门隆力德环境技术开发有限公司多年来积累了丰富的经验,以下以高锰酸盐指数,五参数,氨氮,硝酸盐氮,叶绿素,总氮和总磷等为测试参数,选配仪器集成水质自动监测系统。 一、高锰酸盐指数水质自动分析仪(型号:AVVOR 9000-CODmn,加拿大AVVOR) 测定方法:高锰酸盐氧化还原法,国家标准:GB11892-89、HJ/T100-2003 产品特点: 1.试剂和水样均采用隔离式微量泵进样,计量精度高,重复性好。为保证泵的计量精度,泵在运转前需预热2分钟,因此启动测量后前2分钟为泵的预热时间。 2.滴定终点判定采用动态算法,ORP电极长期使用不需校准,更换电极也不需要校准。 3.流程结构简单,维护方便。 4.独有的增强校准技术、和仪器工作参数自动调整技术。 二、五参数自动监测仪(型号:IQ SenSor Net) 德国WTW五参数有5大特点: 1.测试量程广,一台仪器可以测试各种水质,为突发事件提供可靠的数据; 2.分析原理采用国家标准分析方法; 3.浊度电极的超声波自动清洗科学先进,效果良好,有效去除气泡和浊度的影响,不会影响其他参数的分析; 4.预留其他监测模块,为日后的扩展提供方便(最多可以扩展20个参数); 5.通过计量认证,进口品牌唯一通过国家环保认证。 三、氨氮自动监测仪(型号:TresCon UNO OA111) 1.量程从0.05-1000mg/L分三挡自动切换,一台仪器可以测试各种水质,为突发事件提供可靠的数据; 2.氨气敏电极法可以有效抗浊度、色度的干扰; 3.提供试剂配方,采用国产试剂,试剂的配置简单且运营维护成本低; 4.预留其他监测模块,为日后的扩展提供方便; 5.通过国家环保认证和计量认证。 四、硝酸盐氮在线监测仪(型号:TresCon Uno 211) 1.不需试剂,4光束测试技术,反应快速 2.测试范围广,从0 &hellip 250 mg/l NO3 3.抗干扰能力强,同时测试硝氮浓度 4.有AutoCorr自动修正和在线调零功能,再现性好 5.测试含有少量悬浮颗粒的出口水流时不用过滤 五、叶绿素&alpha 分析仪(型号:microFlu-chl) 1.高灵敏度,快速响应,稳定可靠;低功耗,操作维护简便; 2.量程可选,自动日光补偿;传感器一体化微型设计,坚固耐用,防水优良; 3.停电后恢复供电可自动启动转入正常分析状态; 4.智能通讯和强大的windows软件功能 六、总磷总氮自动监测仪 1.自动分档量程,自动切换量程,自动调整分辨率; 2.公开试剂配方,所用试剂均为国产试剂,在试剂商店购买方便; 3.运行准确可靠,维护成本低,试剂运营费用低; 4.数字化通讯,扩展测试其它参数方便、经济; 5.产品获国家质检总局计量器具型式批准证书、国家环保总局环保产品认证证书、中国环境监测总站检测报告、中石油环境监测总站检测报告。 以上产品各具技术优势,在山东、江苏等地的水质自动监测系统集成中有着广泛的应用,隆力德水质自动监测站设备的先进性、可靠性、稳定性等也得到了实际的验证。
  • 解决方案丨鸡肝中环丙氨嗪残留量的测定
    环丙氨嗪又名灭蛆灵、灭蝇胺,是一种新型的昆虫生长调节剂,对双翅目昆虫幼虫体有杀灭作用,尤其对在粪便中繁殖的几种常见的苍蝇幼虫(蛆)有很好的抑制和杀灭作用。它和一般灭蝇药的不同点是它杀幼虫-蛆,而一般灭蝇药只杀成蝇且毒性较大。该药具有触杀和胃毒作用,并有强内吸传导性,持效期较长,但作用速度较慢。短期内大量接触灭蝇胺对眼睛、皮肤有刺激作用,甚至引起急性中毒,产生恶心、呕吐、眩晕等健康危害,长期摄入对人体健康有不良影响。对于动物性食品中环丙氨嗪残留量的检测现可依据国家标准GB 31658.12-2021《动物性食品中环丙氨嗪残留量的测定 高效液相色谱法》,本方法参考上述标准,将试料中的环丙氨嗪,用三氯乙酸/乙腈溶液提取,混合阳离子交换固相萃取柱净化,高效液相色谱测定,外标法定量。图-1 环丙氨嗪的结构式仪器和耗材1仪器Fotector Plus高通量全自动固相萃取仪AH 50全自动均质器MPE系列高通量真空平行浓缩仪Auto EVA 80 全自动氮吹浓缩仪Agilent 1260高效液相色谱2 耗材MCX固相萃取柱(60 mg/3mL,P/N:RC-204-72855)3 试剂乙腈(色谱纯)甲醇(色谱纯)正己烷(色谱纯)乙酸乙酯(色谱纯)25 mmol/L乙酸铵溶液:取乙酸铵0.19 g,用水950 mL溶解,用乙酸调pH至5.0,用水稀释至1000 mL。1%三氯乙酸溶液:取三氯乙酸1g,用水溶解并稀释至100 mL。提取液:取1%三氯乙酸溶液15 mL,用乙腈稀释至100 mL。0.1 mol/L 盐酸溶液:取盐酸9 mL,用稀释至1000 mL。5%氨水甲醇溶液:取氨水5 mL,用甲醇稀释至100 mL。流动相:取25 mmol/L 乙酸铵溶液40.0 mL,用乙腈定容至1000 mL。样品制备称取试样5 g(准确到±0.01 g),于50 mL离心管中,使用AH 50全自动均质器自动加入提取液15 mL,并均质30 s。5000 r/ min离心5 min,取上清液于分液漏斗中,再于残渣中加提取液10 mL,重复提取一次,合并两次上清液,加正己烷30 mL,振摇2 min,静置使分层。收集下层液体于MPE浓缩杯中,于MPE真空平行浓缩仪50 ℃水浴中浓缩至1 mL,转至10 mL刻度离心管中,用提取液润洗浓缩杯2次,每次2 mL。合并两次提取液,以10000 r/min离心5 min,取上清液,备用。1 净化取MCX固相萃取柱安装在Fotector Plus高通量全自动固相萃取仪上,依次用甲醇5 mL、水3 mL活化,备用液过柱(控制流速约1.0 mL/ min)。依次用甲醇3 mL、0.1 mol/L盐酸溶液3 mL、水3 mL和甲醇3 mL洗柱,弃去洗出液。用5%氨水甲醇5 mL洗脱,收集洗脱液。洗脱液于EVA 80全自动氮吹浓缩仪上50℃氮吹吹干,用流动相1 mL溶解残余物,涡旋混匀,过滤,待上机分析。具体的固相萃取方法见图-2。2 固相萃取净化条件图-2 Fotector Plus固相萃取方法液相检测条件1 液相条件2 色谱图 图-3 环丙氨嗪标准溶液色谱图(200 µ g/L)图-4 鸡肝基质加标环丙氨嗪色谱图(25 µ g/kg)结果与讨论为了验证该方法的回收率,本实验向鸡肝样品中加入环丙氨嗪标准品进行低、中、高三种浓度梯度的基质加标回收验证(n=6),数据如表-1所示。加标回收率在74.5%~77.9%之间,RSD值控制在5%以内。说明该方法能够运用于动物性食品中环丙氨嗪残留量的检测。样品加标回收率及RSD值(n=6)总结本解决方案操作方便、提取和浓缩效率高、重现性好,符合GB 31658.12-2021《动物性食品中环丙氨嗪残留量的测定 高效液相色谱法》要求。均质过程采用AH 50全自动均质器,仪器自动加液,通过水洗、溶剂洗、超声洗三种刀头清洗方式,全方位杜绝样品间交叉污染。MPE真空平行浓缩仪实现批量、快速、高效的浓缩过程,采用水浴加热和平稳的圆周震荡模式,一批次完成16位大体积浓缩,同时保证样品的平行性和可靠性。浓缩完成后配合Fotector Plus高通量全自动固相萃取仪进行净化,从活化到上样、洗脱等一步到位,全自动过程排除人员操作带来的误差,且六通道同时进行萃取,能够实现高通量处理,最多一天能够处理180个样品;将净化后的样品直接置于EVA 80高通量全自动氮吹浓缩仪中,不仅避免转移的损失,又省时省力,真正为批量检测提供帮助。
  • Mol Cell|北大伊成器课题组开发新型RNA编辑技术RESTART
    2022年12月14日,北京大学伊成器课题组在Molecular Cell杂志在线发表了题为CRISPR-free, programmable RNA pseudouridylation to suppress premature termination codons的研究论文,首次报道了名为RESTART(RNA Editing to Specific Transcripts for Pseudouridine-mediAted PTC-ReadThrough)的新型RNA单碱基编辑技术。该技术利用改造的guide snoRNA,招募细胞内源的假尿苷合成酶复合物,在RNA特定位点处实现高效、准确地尿苷(U)到假尿苷(Ψ)的编辑。在mRNA的无义突变位点精准引入假尿苷修饰,将提前终止密码子转换成ΨAA、ΨAG或ΨGA,以实现提前终止密码子的通读及功能蛋白的全长表达。无义突变(Nonsense mutation)是基因序列中编码氨基酸的密码子突变成终止密码子(TAA,TAG,TGA)的单碱基突变。无义突变产生提前终止密码子(Premature termination codon,PTC),导致翻译提前终止,产生较小、不具功能的蛋白产物。根据人类基因突变数据库(Human Gene Mutation Database, www.hgmd.org)的统计,无义突变占据了超过20%的疾病相关单碱基突变。目前有多种潜在的技术可用于治疗无义突变疾病,但仍存在局限性。例如:(1)CRISPR/Cas9依赖的DNA碱基编辑技术可实现精准的碱基修复,但是仍存在安全性问题。细菌来源的Cas蛋白可能会引发人体免疫反应;并且一旦出现基因组水平上的脱靶,将会是永久性的。此外编辑元件尺寸较大,使药物的体内递送受到限制。(2)RNA碱基编辑技术是在RNA水平上进行的,不会对基因组序列进行永久改变,因此安全性较高。但是,RNA编辑工具的脱靶效应仍存在安全隐患。因此,领域内亟需拓展新型RNA编辑工具,开发更加特异和安全的RNA编辑器。图一、RESTART技术原理研究表明,RESTART技术具有广泛的适用性。在多种不同组织来源的细胞系以及人的原代细胞——例如支气管上皮细胞和皮肤成纤维细胞中,RESTART都可以介导高效和精准的编辑。在对疾病无义突变修复和蛋白功能恢复的诸多应用尝试中,RESTART的高效性均得到了充分验证,反映了该技术在疾病治疗中的巨大潜力。例如,RESTART成功恢复了来源于Hurler综合征小鼠的α-L-艾杜糖醛酸酶缺陷细胞中IDUA蛋白的功能。该技术为无义突变疾病的治疗和RNA假尿苷修饰的基础研究都提供了一种全新的工具。传统的RNA编辑技术主要是通过脱氨反应(如A-to-I或者C-to-U)实现碱基编辑,其产生的脱靶会在RNA上引入突变,从而存在安全隐患。与这些技术不同,假尿苷修饰不会改变碱基互补配对,不会影响密码子的编码信息;RESTART产生的少量脱靶也不会影响RNA的稳定性和蛋白的翻译。此外,RESTART系统是由人源的snoRNA和修饰酶衍生而来的,理论上可以避免免疫原性。因此RESTART是一个高效且安全的潜在治疗技术。综上,RESTART技术作为一种可编程的不依赖CRISPR的RNA假尿苷编辑技术,拓展了RNA编辑的策略,可通过高效编辑mRNA上的无义突变位点介导翻译通读和蛋白功能的恢复,并且具有较好的安全性,展现了良好的疾病应用前景。在递送方面,RESTART适用于装载至腺相关病毒(AAV)等载体中进行递送;并且guide snoRNA可以通过体外转录和体外合成等多种方式制备,未来也可以与小RNA递送体系,例如GalNAc3进行偶联。除此之外,RESTART技术也将推动假尿苷修饰领域的研究,为该领域基础研究和无义突变疾病治疗领域都提供有利的工具。北京大学生命科学学院伊成器教授为该论文的通讯作者,课题组博士后宋靖慧(已出站)、博士生董利婷、孙含笑、罗楠、博士后黄强为共同第一作者。该工作得到农业部项目、科技部重点研发计划、国家自然科学基金等项目资助以及北大-清华生命联合中心、蛋白质与植物基因研究国家重点实验室等的支持。北京大学高性能计算平台,生命科学学院仪器中心及凤凰工程等多个平台对本项目提供了重要的技术支撑。原文链接:https://www.cell.com/molecular-cell/fulltext/S1097-2765(22)01100-5
  • 氨的过去,今天以及未来
    在碳达峰、碳中和的世纪热潮中,世界各国都在积极寻找下一代能源技术,氨能高效利用正在成为近期全球关注的焦点。目前,氨正从传统的农业化肥领域向新能源领域拓展。正是因为氢的储存和运输成本太高,氨开始受到更多的关注。资料显示,中国是全球氨生产大国,全世界每年生产合成氨2亿吨左右,我国的产能大约占到全球的四分之一。 图 碳达峰、碳中和是全球人类在21世纪的共同目标 从技术角度,氨由一个氮原子和三个氢原子组成,是天然的储氢介质;常压状态下,温度降低到零下33摄氏度就能够液化,便于安全运输。氨能是一种以氨为基础的新能源,既可以与氢能融合,解决氢能发展的重大瓶颈问题,也可以作为直接或者间接的无碳燃料直接应用,是实现高温零碳燃料的重要技术路线。 在进入新能源时代之前,氨已经是全球使用广泛的高产量(High Production Volume, HPV)的工业化学品之一,其中大约80%的商业化生产的氨进入农业并用于制造肥料。因此氨有完备的贸易和运输体系。所以,从理论上来看,可以用可再生能源生产氢,再将氢转换为氨,运输到目的地。 图 农业施肥为氨目前大的利用领域 除了化肥,氨在许多大型工业制冷系统中用作冷却剂,也时常是制造药品、塑料、纺织品、染料、杀虫剂、炸药和工业化学品的成分。在石油和天然气工业中,氨用于中和原油中常见的苛刻酸性化合物。采矿业使用“裂解”的 氨来提取铜、镍和其他金属,而燃煤和燃油发电厂则将氨添加到反应器中以净化烟雾并将有毒的氮氧化物转化为水和氮。氨还支持用于净化饮用水的氯胺消毒剂,并防止形成致癌副产品,这使得氨成为水处理应用的一种有价值的化合物。 如今,在船舶航运领域,氨即将以崭新替代能源的身份大展宏图。2021年10月28 日,国际可再生能源署(International Renewable Energy Agency, IRENA)发布报告称,氨在海运领域将成为清洁燃料的主力军。令人关注的是,挪威化肥巨头雅苒国际出资建造的全球一艘用氨能驱动的货船雅苒伯克兰号,已于2021年11月22日下水首航。 图 氨在海运领域将成为清洁燃料的主力军 全方位了解氨的危害 虽然氨在现代和未来社会的用途甚广,缺乏正确的氨气浓度测控和法规监管,过高的氨气浓度将会对人体健康和生态环境产生破坏性的影响。 l 健康危害接触低水平的氨会导致咳嗽以及对眼睛、鼻子、喉咙和呼吸道的刺激。虽然,高于25ppm浓度的氨可通过其刺激性气味被人类察觉,提供足够的早期预警信号。但氨的气味也会导致长时间接触后产生嗅觉疲劳,甚至损害人的嗅觉。 如果人体接触高浓度的氨,会立即灼伤鼻子、喉咙和呼吸道,导致呼吸道受损、甚至呼吸窘迫或衰竭,也可能导致死亡。由于儿童的肺表面积与体重之比较大,更容易受到氨的影响。 氨浓度 (ppm)对人体健康的影响50刺激眼睛、鼻子、喉咙(2小时暴露)100眼睛和呼吸道短时间内感到刺激性250大多数人能忍受(30-60分钟暴露)700眼睛和喉咙立即感到刺激性1500咳嗽、肺水肿、喉咙痉挛2500-4500致命(暴露30分钟以上)5000-10,000短时间内因气道堵塞立即致命,甚至造成皮肤损伤表一 暴露在不同的氨气浓度水平,可能会引起不同程度而的人体伤害(来源:Ammonia Toxicological Overview, Public Health England ) l 环境污染氨在二次气溶胶颗粒物生成中扮演着重要角色。其与大气中的硫酸和硝酸反应形成铵盐,作为颗粒物质在大气中停留几天至一周,然后再沉积回地面,是引发重霾污染和过量氮沉降的重要活性氮。图 大气中的氨是PM2.5的重要前体物 l 富营养化氨的排放以湿沉降和干沉降的形式返回地标,造成土壤和地表水的富营养化,从而影响植物和动物物种的生存。 氨气检测面面观 l 报警氨是一种有毒气体,暴露在一定浓度以上的氨气会对人体健康造成伤害,因此必须始终配备适当的安全监控程序和设备,以避免严重的意外伤害或死亡。 现有行业内氨分析仪器的常规标准为JJG 1105-2015《氨气检测仪检定规程》,适用于测量空气或氮气中氨含量的气体分析仪和检测报警器的检定,规程要求的两种量程范围其一为0-50 umol/mol(ppm),要求测试误差在±10%;其二为50-1000 umol/mol,要求测试误差在±6%。 JJG 1105-2015主要针对仪器检测原理的包含电化学、红外声光、非色散红外、化学发光、紫外等,采样方式有吸入式和扩散式两种。 l 氨逃逸燃煤锅炉烟气排放所含的氮氧化物,是空气污染的重要前体物,控制燃煤过程烟气排放的氮氧化物总量是各国环保法规的重点。选择性催化还原(SCR)和选择性非催化还原(SNCR)技术是目前烟气脱硝主流技术。通过在烟气中注入氨水或尿素,其主要成分氨与氮氧化物发生化学反应,生成对环境无害的氮气和水。 脱硝过程的还原反应结束后,残余的氨气称之为氨逃逸。考虑氨气本身也是有害污染物,必须对烟气中残余氨气浓度进行实时监控,一方面使喷氨效率达到优,一方面降低氨的消耗及排放。 2018年,国务院将“开展大气氨排放控制试点 ”写入新版空气污染整治目标和计划——《关于全面加强生态环境保护坚决打好污染防治攻坚战的意见》。随着各级政府对氨气污染的高度重视,工业氨气监测的需求也更加具有挑战。举例来说,2019年山东发布新的《火电厂大气污染物排放标准》重点增加了氨逃逸和氨厂界浓度控制指标要求,要求采用氨法脱硫或使用尿素、液氨或氨水作为还原剂脱硝的企业,其氨逃逸浓度应满足HJ2301中小于2.0mg/m3(约2.63ppm)的要求。 除了空气污染,氨逃逸对采用脱硝过程的企业还可能带来诸多危害:l 形成堵塞空预器的铵盐,增加维护成本(逃逸浓度2ppm时,半年后风机阻力增加约30%;3ppm时,半年后风机阻力增加约50%);l 频繁冲洗空预器,影响机组安全;l 使催化剂失活,缩短使用寿命;l 还原剂氨的耗材浪费;l 影响用于建材的飞灰(脱硝过程副产品)质量。 为了有效监测氨逃逸,一般情况下氨的监测仪表安装于脱硝系统的还原反应结束处,烟道处也会安装一台以监测最终烟气中的氨排放浓度。然而,传统的氨逃逸分析仪在实际监测中所遭遇的困难重重。传统基于近红外激光的分析仪,由于氨分子在近红外波段可用吸收光谱窄、吸收峰强度低,使得分辨率低(下限1ppm)并且易受其他气体干扰。从安装方式来看,对射式原位安装对法兰开孔精度要求高,烟道的振动、膨胀及收缩等都非常影响光精度与系统的稳定性,大大降低数据质量。同时原位式在线分析系统难以在线通入标气,对仪器进行有效的检验与标定。 海尔欣科技自主研发的LGM1600便携式高精度激光氨逃逸分析仪,基于新一代中红外激光吸收光谱技术,采用氨分子在中红外波段的强吸收峰,其强度高于近红外波段吸收100多倍,因此LGM1600检测精度比现有大多数氨逃逸分析仪器至少高出一个量级。结合德国进口高温采样预处理系统,LGM1600可实现无冷凝和极低吸附的氨气采样和分析。图 LGM1600便携式高精度激光氨逃逸分析仪 l 大气氨大气中的氨与农业活动密切相关。目前,农业活动例如施肥、畜牧养殖等是主要的人为氨排放源。对农业生产而言,施肥导致的氮挥发还是农田氮养分损失的重要途径。相对于氨的重要性,对其排放和沉降的观测研究工作却相对滞后,这主要受制于氨在线检测仪器及观测方法上的局限。 因氨具有强表面吸附力和水溶性等特性,大气氨浓度和地气氨交换通量的原位准确测量一直是学界的一大挑战,目前国际上主流的测量仪器大多采用闭路吸入式的构造,采样管路的吸附效应一直制约着大气氨浓度的快速高频高准度测量。与此同时,闭路仪器和搭配使用的外置抽气泵均要求交流供电,这意味着目前绝大多数的大气氨通量观测只能在少数电力条件允许的环境下开展。 例如,目前国内外对于氨干沉降通量的观测,大都采用基于低频(数日至数月)浓度采样的沉降速率经验系数法,其结果的准确度亟待检验。相较于氨气泄漏报警和工业排放,大气中的氨气浓度仅为0-50ppb,大多数情况下不超过10ppb,加之氨气在大气中相态转化多变,高频且准确的浓度和通量信息,是对大气氨实施有效调控的必要基础。 宁波海尔欣光电科技有限公司与中科院大气物理研究所碳氮循环团队深入合作,研发了HT8700便携式、高精度、快响应的开路多通池激光氨分析仪(图X)。这款仪器基于可调谐激光吸收光谱(TDLAS)技术,采用了分布反馈式量子级联激光(DFB-QCL)的光源,其开放式的光路结构,解决了传统闭路仪器管路吸附引起的测量误差,光机电软各个部分高度集成,可完全由太阳能驱动运行,适合野外条件使用。 图 HT8700 高精度大气氨本底激光开路分析仪 目前,HT8700在国内已为中科院大气物理所和中国农业大学所采用,研究成果发表于世界SCI期刊《Agricultural and Forest Meteorology》和《Atmospheric Environment》。HT8700同时获得海内外专家青睐,先后展示于国家碳中和北方中心、欧洲地理学会(EGU)年会、世界氮素倡议大会(INI)、亚洲通量观测联盟(AsiaFlux)年会,并出口英国与荷兰,参与欧洲高端科学机构的研究项目。
  • 我国联氨分析行业发展迅速 新仪器不断涌现
    水质分析仪器属于水质检测设备,用于分析水质中BOD、COD、氨氮、总磷、总氮、浊度、PH、溶解氧等项目的仪器。水资源是人类社会发展不可或缺并且不可替代的重要资源之一,对社会经济的发展以及人们的日常生活与生产都发挥着保障的作用。目前我国积极贯彻可持续发展战略,对我国水质检测工作大力支持。而在在对水资源质量的调查与把控中,水质分析仪器发挥着重要的作用。近年来随着国家水环境保护和治理进程不断推进,我国水质监测的市场空间也逐渐扩大。根据对地表水监测需求、地下水监测需求以及污染源水质监测需求的测算,2020年,中国水质监测市场规模约为380亿元。根据观研报告网发布的《中国水质分析仪器市场发展深度分析与投资前景研究报告(2022-2029年)》显示,随着水质检测市场的发展,水质检测设备销量也呈现不断增长态势。尤其是在国家水环境保护愈加重视、商业用水排水水质倒逼加强,居民用水尤其是饮用水水质安全日益重视的三重大势的促进下,水质检测仪器市场在近年发展迅速。到目前水质检测设备已成为环境监测设备的一个重要分支,约占有36%的市场份额。
  • 【瑞士步琦】近红外光谱法定量测定多元醇中羟基值和浊点
    近红外光谱法定量测定多元醇中羟基值和浊点近红外应用”1简介多元醇见图1是用于生产各种最终用途的聚合物和塑料的基本组成部分。例如,我们日常使用的聚氨酯产品就是用多元醇来制造的。多元醇是从多功能醇或胺开始,通常与环氧乙烷(EO)或环氧丙烷(PO)反应制成的。▲ 图1. 多元醇真正的多元醇是复杂的,具有混合和不同的链长和末端。羟基值(OH值)是有机化合物质量的快速评价指标。它是可用于反应的活性羟基数量的量度,并提供有关链长分布和范围的信息。羟值既是衡量多元醇分子量及质量的主要参数之一,又是聚氨酯制品生产厂家在配方设计时决定各原料投用量的重要参考依据。 因此羟值测定的准确性非常重要。目前,检测羟值的方法主要有化学分析法和仪器分析法。化学分析法中最常用的是滴定法,基于滴加试剂与被测溶液中物质的反应,利用滴加滴定试剂的量来推测被测物质的浓度。该方法中使用吡啶作为溶剂,吡啶易挥发且有恶臭气味,被世界卫生组织国际癌症研究机构列入2B 类致癌物清单,对实验人员的身体健康有一定的危害,且该方法反应时间较长( 需回流加热 1h),操作复杂,分析时间较长,测试效率低,测试准确性受人为因素影响较大。仪器分析法主要有核磁共振法和近红外光谱法。核磁共振法操作简单,测试快速且准确度较高。但是该方法所需要的设施昂贵,且实验室环境要求高,在企业中并未得到广泛推广。近红外光谱法是近红外光源照射下分子发生能级跃迁时产生的,记录的是分子中单个化学键的基频振动的倍频和合频信息,受含氢基团 X-H(X 为C,N,O)的倍频和合频的重叠主导,其光谱信息与样品的结构和成分组成相关。 多元醇在近红外光谱区的吸收主要包括 C-H、N-H,O-H 个含氢基团基频振动的合频和倍频振动吸收,通过这些含氢基团分子振动从基态到高能级跃迁的过程中记录的羟基的合频和倍频吸收信息,从而进行羟值的定量分析。 该方法在测试过程中无需对样品进行稀释、分散处理,因其操作简单、检测快速、绿色安全的特点而被广泛应用。浊点是当混合物从足够高的温度缓慢冷却以使混合物成为单相时,多元醇混合物中形成薄雾或云状的温度。浊点随着多元醇分子量的增加而减小,随着 EO 的加入而增大。这一分析被用来衡量多元醇的水溶性、表面活性剂性质和反应性。浊点控制反应系统中多元醇的相行为,这种行为对最终产品质量有极其重要的影响。由于多元醇在水中具有反溶解度,较高的浊点表明这些重要性能属性的增加。2应用设备及附件本文重点介绍步琦近红外光谱 N-500 用于快速测定多元醇的 OH 值和浊点。它可以应用于:最终产品或来料的检测和过程的监控支持。使用的仪器介绍如下:N-500 是市面上第一台商业化偏振干涉仪的傅里叶变换近红外光谱仪。▲步琦近红外光谱仪 N-500多至 6 通道同时检测0.5, 1, 2, 4, 5,8, 10mm 的比色皿控温,室温至 65 度3实验仪器配置:液体样品 NIRFlex Liquids,配备样品腔用于液体透射分析,可控温(室温~65℃),可自动切换背景测量通道,同时容纳 6 个比色皿。测量参数:波长:4500-10000;分辨率:8cm-1;温度设定 60°C,扫描次数:液体样品 64 次。测量要求:多元醇样品装入比色皿 8mm 后测量,每个样品测量三次光谱,每条光谱采集前都进行相同的混匀、取样。测量多元醇的样品光谱谱图:如图2▲图2. 测量多元醇的样品光谱谱图从光谱本身来看,样品的信号加强,反射率在 0.3 以上可以满足近红外分析。模型参数如下表:从表中可以看出:模型的相关系数均大于 0.99,样品羟值和浊点的准确度较高完全符合国家标准《塑料 聚氨酯生产用多元醇近红外光谱法测定羟值》的误差要求,分析方法重复性较好,可以用于实验室日常检测。4结论结果表明,近红外光谱技术可以成功地监测 OH 值和浊点,并具有良好的精度。该技术不需要样品制备用于测定 OH 值的标准湿化学方法可以被更快,更便宜和更简单的近红外分析所取代,以更快的批 QA 审核通过。近红外法具有分析效率高、制样简单、环保等优势,测试成本低,被实验室和企业广泛应用。
  • 江苏省计量院研制的甲醇中胆固醇溶液标准物质通过定级鉴定
    近日,全国标准物质管理委员会召开国家二级标准物质评审会,江苏省计量院化学所研制的甲醇中胆固醇溶液标准物质(2种)通过专家评审。   评审会上,项目负责人就此次申报的溶液标准物质的制备过程、定值方法、均匀性及稳定性考察、不确定度评定等方面内容进行了汇报。最终,专家组一致同意江苏省计量院研制的甲醇中胆固醇溶液标准物质(2种)通过国家二级标准物质的定级鉴定。   液相色谱仪作为一种常见的分析仪器,广泛应用于食品医药、环境化学、石油化工等行业相关产品的分析,台件保有量巨大。本次通过的甲醇中胆固醇溶液标准物质可用于液相色谱仪示差折光检测仪和蒸发光散射检测器的检定和校准工作。   近5年来,江苏省计量院化学所在各类科研项目的支持下,研制并获批国家有证标准物质19种,包括气体、有机溶液、无机溶液等多个品种。通过总结研制经验和专家指导意见,江苏省计量院将加大标准物质研制投入力度,为提升检测技术和科研能力,拓宽产业计量业务维度贡献更多力量。
  • 亨斯迈聚氨酯(中国)有限公司完成UL94燃烧测试仪安装调试工作
    莫帝斯技术(中国)有限公司,日前已经完成亨斯迈聚氨酯(中国)有限公司,UL94水平垂直燃烧仪的安装调试工作,目前客户已经投入使用该测试仪器,并进行内部测试服务工作。 Firemaster UL94 水平垂直燃烧仪,设计为对设备和器具部件材料的可燃性能试验,众多应用于最终用途的测试指标如易燃性能、燃烧速率、火焰蔓延、燃烧强度及产品的阻燃性能均可被检测。 其可检测的标准为以下: 水平燃烧测试:UL HB、IEC 60695-11-10、IEC 60707、ISO 1210、GB/T 2408 50W 垂直燃烧测试:UL94 V0、V1、V2、IEC 60695-11-10、ISO 1210、GB/T 2408 500W垂直燃烧测试:UL94 5VA、5VB、IEC 60695-11-20、ISO 9770、GB/T 5169.17 薄膜材料垂直燃烧测试:VTM-0、VTM-1、VTM-2、ISO 9773 泡沫材料水平燃烧测试:HF-1、HF-2、HBF、ISO 9772、GB/T 8332 亨斯迈聚氨酯(中国)有限公司介绍: 亨斯迈聚氨酯(中国)有限公司是亨斯迈聚氨酯公司在中国的子公司。亨斯迈聚氨酯是世界上最大的二苯基甲烷二异氰酸酯(MDI)的制造商之一。公司同时生产软质和硬质聚醚多元醇、聚酯多元醇、聚醚胺、环氧丙烷和组合聚醚多元醇系统和聚脲系统。 亨斯迈聚氨酯有限公司是亨斯迈集团的业务之一。 亨斯迈聚氨酯进入大中华已经有十多年的历史,是中国化学工业的外国投资方之一。目前,亨斯迈聚氨酯在上海拥有独资的组合聚醚多元醇混拌工厂及合资的MDI制造工厂和集仓储与分发为一体的贸易公司。为了更好地满足中国市场的需求,公司在香港,上海,北京,广州,青岛还设立了办事处。 公司网站地址:www.huntsman.com/pu www.motis-tech.com
  • 《自然-生物技术》首声明否定韩春雨基因编辑,明年1月完成调查
    北京时间11月29日日凌晨, 在围绕河北科技大学韩春雨NgAgo实验的可重复性问题上争论达半年之久后, 发表该论文的《自然—生物技术》(NBT)终于发布声明称,其于今日发表的Toni Cathomen及同事(编注:美德韩三国的研究团队)的通信文章,可能会否定韩春雨原论文所称的有效编辑内源性基因的这一主要发现。如果一篇论文在发表后遭到批评,NBT会对各种批评进行审慎和全面的评估,其将在2017年1月底之前完成对韩春雨NgAgo实验的调查。以下是“声明”全文。  关于韩春雨及同事发表于《自然-生物技术》的“DNA-guided genome editing using the Natronobacterium gregoryi Argonaute”(利用NgAgo进行DNA引导的基因组编辑)一文的声明  《自然-生物技术》今天就此前发表的韩春雨及同事所著论文“利用NgAgo进行DNA引导的基因组编辑”发表了“编辑部关注”,并发表Toni Cathomen及同事的通信文章,题为“利用Natronobacterium gregoryi Argonaute(NgAgo)未能检测到DNA引导的基因组编辑”。  《自然-生物技术》已审慎考虑过所有关于韩春雨及同事原著论文的评论。在任何情况下,如果一篇论文在发表后遭到批评,我们都会对各种批评进行审慎和全面的评估,此次也不例外。今天,我们不仅发表了Toni Cathomen及同事的通信文章,这可能会否定原论文所称的有效编辑内源性基因的这一主要发现 而且我们还连同原论文一起发表了“编辑部关注”,以确保读者知晓Cathomen及同事的论文,以及另外一篇在别处发表的论文(doi:10.1007/s13238-016-0343-9)所提出的担忧。目前,原论文的作者中有两位,即韩春雨和沈啸,已同意我们的发表这一“编辑部关注”,而高峰、姜峰和Yongqiang Wu则认为这并不合适。  《自然-生物技术》认为,让原作者在能力所及的情况下对上述通信文章所提出的担忧展开调查,并补充信息和证据来给原论文提供依据是非常重要的。因此,我们将继续与原论文的作者保持联系,并为他们提供机会,以在2017年1月底之前完成其调查。届时,我们会向公众公布最新进展。  编辑部关注:利用NgAgo进行DNA引导的基因组编辑  《自然-生物技术》的编辑就上述论文发表“编辑部关注”,以提醒读者人们对原论文结果的可重复性存有担忧。此次,我们发表三个团队的实验结果(http://dx.doi.org/10.1038/nbt.3753),他们都设法去重复韩春雨及同事发表在原论文中图4的结果,这一关键图表展示了对哺乳动物细胞内源性基因位点的编辑。这些团队无一能在任何位点,或在任何高于检测方法敏感度的条件下观察到NgAgo所诱发的变异。另外一组作者在《蛋白质与细胞》期刊也报告了类似结果(doi:10.1007/s13238-016-0343-9)。  我们和论文作者进行了沟通,他们正在调查造成可重复性缺乏的潜在原因。我们向其告知了这一声明。尽管调查仍在进行中,但韩春雨和沈啸同意我们的发布这一编辑部关注,高峰、姜峰和Yongqiang Wu则认为目前并不合适。这些调查一旦完成,我们会向读者提供最新信息。  以下为英文原文  Statement regarding“DNA-guided genome editing using the Natronobacterium gregoryi Argonaute” by Han Chunyu and colleagues, published in Nature Biotechnology  Nature Biotechnology is today publishing an Editorial Expression of Concern, alongside a Correspondence entitled “Failure to detect DNA-guided genome editing using Natronobacterium gregoryi Argonaute” by Toni Cathomen and colleagues, in relation to a previously published paper “DNA-guided genome editing using the Natronobacterium gregoryi Argonaute” by Chunyu Han and colleagues.  Nature Biotechnology has carefully considered all comments relating to the original paper by Han and colleagues. As in all cases where apaper encounters criticisms after publication, we have undertaken a careful and thorough evaluation of these criticisms. Today, we are publishing not only a Correspondence by Cathomen and colleagues that may refute the main finding of efficient editing of an endogenous gene claimed in the original paper, but alsoan Editorial Expression of Concern alongside the original paper to ensure that readers are aware of the concerns raised by the paper by Cathomen and colleagues and a report published elsewhere in the literature(doi:10.1007/s13238-016-0343-9). At this time, two authors of the original paper, Chunyu Han and Xiao Shen, agree with this Editorial Expression of Concern, whereas Feng Gao, Feng Jiang and Yongqiang Wu do not feel that it is appropriate.  Nature Biotechnology believes that it is important for authors to be able to investigate the concerns raised by the Correspondence and to provide additional information andevidence to support their paper if they are able to do so. Thus, we will continue to liaise with the authors of the original paper to provide them with the opportunity to do that by January 2017. An update will be provided to the community at that time.  Editorial Expression of Concern: DNA-guided genome editing using the Natronobacterium gregoryi Argonaute  The editors of Nature Biotechnology are issuing an editorial expression of concern regarding this article to alert our readers to concerns regarding the reproducibility of the original results. At this time, we are publishing the results of three groups (http://dx.doi.org/10.1038/nbt.3753) that have tried to reproduce the results in the critical Figure 4 in the original paper by Han and colleagues, which demonstrates editing of endogenous genomic loci in mammalian cells. None of the groups observed any induction of mutations by NgAgo at any of the loci or underany of the conditions tested above the sensitivity of the assays used. Similar results have been recently reported by a different group of authors in Protein& Cell(doi:10.1007/s13238-016-0343-9).  We are in contact with the authors, who are investigating potential causes for the lack of reproducibility. The authors have been informed of this statement. While the investigations are ongoing, Chunyu Han and Xiao Shen agree with this editorial expression of concern. Feng Gao, Feng Jiang and Yongqiang Wu do not feel that it is appropriate at this time. We will update our readers once these investigations are complete.    三国科学家表示使用NgAgo无法检测到基因组编辑效果  《自然-生物技术》发表的韩国首尔大学、德国弗莱堡大学和美国梅奥研究生院的10位学者的来信显示,三个独立的实验小组利用NgAgo未能发现基因组编辑的迹象。  “三个小组都合成了5’磷酸化的gDNA序列,使用高峰等人在Addgege提供的NgAgo质粒去转染相同的细胞系,并分析了基因组DNA寻找基因编辑的迹象。”  “尽管在报道的三种细胞系中做优化NgAgo介导的基因组编辑的不同尝试,但未能检测到成功编辑靶向序列的证据。”这十位科学家在来信中说。  “我们认为,在设计用于复制Gao等人的条件下,同时转染编码NgAgo的质粒DNA和单独的5'磷酸化单链gDNA不足以诱导在原始研究中报道的培养的人细胞中的indel,实现基因编辑。”  10位署名作者名单  Seung Hwan Lee,韩国基础科学研究院基因组工程中心   Giandomenico Turchiano,德国弗莱堡大学医学中心细胞与基因治疗研究所、慢性免疫缺陷中心   Hirotaka Ata,美国明尼苏达州梅奥研究生院   Somaira Nowsheen,美国明尼苏达州梅奥研究生院   Marianna Romito,德国弗莱堡大学医学中心细胞与基因治疗研究所、慢性免疫缺陷中心,德国弗莱堡大学生物研究院   Zhenkun Lou,美国明尼苏达州梅奥诊所肿瘤研究部   Seuk-Min Ryu,韩国基础科学研究院基因组工程中心,国立首尔大学化学系   Stephen C Ekker,美国明尼苏达州梅奥诊所生物化学和分子生物部   Toni Cathomen,德国弗莱堡大学医学中心细胞与基因治疗研究所、慢性免疫缺陷中心,德国弗莱堡大学医学部   Jin-Soo Kim,韩国基础科学研究院基因组工程中心,国立首尔大学化学系。
  • 默克公司推进基于基因编辑的药物研发
    p style=" text-indent: 2em text-align: justify " 据悉,德国默克公司Merck KGaA目前已进一步推进基于基因编辑的药物研发,该公司与Vertex Pharmaceuticals已达成独家研发许可协议。Vertex的许可协议是Merck KGaA针对药物开发进行基因编辑的最新尝试。 /p p style=" text-indent: 2em text-align: justify " 为了加强其在DNA损伤和修复以及免疫肿瘤学领域的现有肿瘤学研发管线,Merck KGaA& nbsp 于2017年以2.3亿美元的价格从Vertex获得了许可的四种化合物中的两种。 /p p style=" text-indent: 2em text-align: justify " Vertex 目前已获得两款DNA依赖性蛋白激酶(DNA-PK)抑制剂和另外一种临床前化合物的研发许可,在基因编辑领域用于六种遗传疾病适应症,Merck KGaA透露说它们没有包括癌症。目前该许可协议的价值尚未公布。最新的许可协议加深了Vertex在基因编辑药物开发方面的影响力,已知涵盖了M9831(原VX-984)和另外一种临床前化合物。 /p p style=" text-indent: 2em text-align: justify " M9831和临床前化合物现在是Merck KGaA DNA损伤应答(DDR)抑制剂产品组合的一部分。M9831于去年完成I期临床试验(NCT02644278),这是一项首次人体研究,旨在评估该药与聚乙二醇化脂质体多柔比星(PLD)化疗联合的安全性,耐受性和药代动力学/药效学特征。 /p p style=" text-indent: 2em text-align: justify " Merck KGaA近日表示正在研究四种DDR分子,包括两种ATR抑制剂,一种ATM抑制剂和一种研究小分子DNA-PK。已知DNA-PK可以潜在地增强许多常用的DNA损伤剂如放疗和化疗的功效。还可以起到增强CRISPR / Cas9介导的基因编辑的作用。 /p p style=" text-indent: 2em text-align: justify " Merck KGaA的执行委员会成员Belé nGarijo在一份声明中表示:我们正迅速推进在肿瘤学方面领先的DDR产品组合,并很高兴通过增强CRISPR / Cas9介导的基因编辑,看到DNA-PK在遗传疾病中的潜在益处。 /p p style=" text-indent: 2em text-align: justify " Merd KGaA生命科学业务执行董事兼首席执行官Udit Batra博士本月早些时候表示:“我们共同提出了使用我们的CRISPR-Cas9技术来开发更具代表性的啮齿动物模型的想法。这促成了这笔交易。这将有助于我们应用技术开发改进的毒理学研究,以便通过诊所更快地获得越来越多的药物。这是对我们基因编辑能力的肯定。随着其他Cas系统的出现,Merck KGaA的技术将适用。 /p p style=" text-indent: 2em text-align: justify " 他还通过CRISPR-Cas9阐述了Merck KGaA在基因编辑方面的重点领域。它们包括开发更具体的切割和替换基因组相关部分的方法,同时避免脱靶效应 开发更接近模拟人体细胞的更好细胞系进行体外毒理学研究,例如,使用基因编辑修饰Madin-Darby犬肾(MDCK)细胞,看起来更像人类肠道,或增强生物生产。 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制