当前位置: 仪器信息网 > 行业主题 > >

己基环戊酮

仪器信息网己基环戊酮专题为您提供2024年最新己基环戊酮价格报价、厂家品牌的相关信息, 包括己基环戊酮参数、型号等,不管是国产,还是进口品牌的己基环戊酮您都可以在这里找到。 除此之外,仪器信息网还免费为您整合己基环戊酮相关的耗材配件、试剂标物,还有己基环戊酮相关的最新资讯、资料,以及己基环戊酮相关的解决方案。

己基环戊酮相关的论坛

  • 【求助】GC分析环戊酮氰醇

    请问各位:有谁做过环戊酮氰醇的GC样品分析吗???我目前分析的结果是环戊酮氰醇与原料环戊酮的GC中的比例一直不稳定,似乎在GC中环戊酮氰醇会转化为环戊酮,请问各位有什么好的方法???

  • 【求助】3-戊酮和异辛烷的问题

    我是外行,做实验要用的3-戊酮,和溶剂异辛烷,但是266的激光打在纯3-戊酮上荧光很微弱,打在纯的异辛烷上荧光反而强,因为是借别的实验室做的实验.激光器和倍频器都是别人的,我也不懂,想请问下,出现这种问题可能是什么原因.是激光器的原因吗?都用的是5mm的石英比色皿装着试的.谢谢了.

  • 【求助】请问3-戊醇,3-戊酮该怎么分离

    安捷伦的[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url] 柱子HP-5MS请问3-戊醇(沸点114-115),3-戊酮(沸点101.5)该怎么分离(3-戊酮含量较少),谢谢

  • 【春思】五一活动二——梧桐山半日游

    【春思】五一活动二——梧桐山半日游

    五一的第一天,我们去了大梅沙。因为那天大家玩得有点过,第二天起来的比较晚,差不多都是10点多了,一个个的才慢条斯理的出来。我因为要去她姐家接她,所以比他们都早了几个钟头。等他们吃完早饭(其实不知道是早饭,还是中饭),天气有些变化,下起了中雨,不过还好,出来前大家都备了伞。 按照原计划行动,上次爬这座山,是公司组织的,我们直接从山的正门上去的,这次,我们没有走正门,走了莲塘的侧门,直接上可到小梧桐。这段路全是台阶式的,所以虽然很陡峭,但是相比之下路程就少了很多,爬起来当然是吃力点咯。我一个人背着包,冲到前面十几米高,对这下面的兄弟姐妹:“加油,没多高了!”也算是给他们打气吧,我就怕她们中有人中途而废,我就郁闷了,我做事不喜欢中途废掉,来了不爬上去多没意思哦![img]http://ng1.17img.cn/bbsfiles/images/2009/03/200903071728_137218_1614854_3.jpg[/img] 老天好像开玩笑似的,等我们爬累了,到了小梧桐那个亭子时候,居然停了,还出点阳光,山腰雾气顿生,笼罩了整个山头。头发上的雾水,脸上的汗水,夹杂着往下流,有时候眼睛都不敢睁大,汗水流进去的感觉超难受。到那个亭子,就离好汉坡不远咯,很快就可以到山顶啦,可以先休息下,停下脚步。[img]http://ng1.17img.cn/bbsfiles/images/2009/03/200903071742_137219_1614854_3.jpg[/img] 就这样,和这群人走走停停的,也差不多走了2个钟头,到了好汉坡,带上来的的水也喝得差不多了,零食也在中间休息的时候吃个精光。确实,在雨天爬着座山(深圳第一高的山),是有些危险,所以要比较小心的。越是担心这些,越是慢了,人也快很累。刚好好汉坡那里有东西可以买,来了2个卤鸡蛋,再加一碗酸辣粉,凑合凑合,给她来了碗酸辣粉,我们吃完了,那帮家伙才摸上来,我们只好看着她们吃了,闲不下来,偷偷的给她们拍了一张[em0905][img]http://ng1.17img.cn/bbsfiles/images/2009/03/200903071750_137220_1614854_3.jpg[/img] 吃完了,大家继续前进。好汉坡,不爬上去叫啥子好汉? 即使再累,也得拖着双腿往上爬!这样的天气,我们这样一帮人,就一个信念,来了就要上。不放弃,不抛弃。 其实到了好汉坡,至少已经走了全称的2/3,上面就没多少路可以走了。忍一忍,挨一挨,就过去了的。有时候就是这样,越是想着痛,你的步子就越是迈不开。痛就痛吧,如果后面有狼或者虎豹之类,终点有猎人等着,我看你不跑,呵呵…… 终究我们还是上来了,做个留恋吧,免得比人说我没有爬上来,呵呵,其实这已经是我第三次爬这座山了,这次爬山,是最刺激的,最有挑战性的!走的路比较堵,比较滑,还要不时的被人拖着走~[img]http://ng1.17img.cn/bbsfiles/images/2009/03/200903071800_137221_1614854_3.jpg[/img] 山顶的感觉是:身体是冷的,心是热的;风比较无情,人有情! 这次爬山,宣告完美结束! 虽然下山的故事,更多,大家猜吧……

  • 除草剂:环磺酮 介绍

    环磺酮(tembotrione)是三酮类除草剂的成员之一,属于HPPD抑制类除草剂,由拜耳于2007年研发成功。目前,三酮类除草剂大家族的成员还有先正达公司分别于1993年、2000年登记上市的的磺草酮和硝磺草酮和日本SDS生物公司开发的双环磺草酮以及拜耳上世纪80年代的Tefuryltrione。环磺酮的除草活性通过4-羟基苯基丙酮酸醋双氧化酶(HPPD)抑制剂表现出来,HPPD受到抑制后,杂草分生组织中酪氨酸积累和质体醌缺乏,3-5天后,杂草出现黄化症状,最终蔓延至整株,杂草白化死亡。http://ng1.17img.cn/bbsfiles/images/2017/04/201704222215_01_1623180_3.jpeg环磺酮一般与安全剂双苯恶唑酸复配使用,可保护玉米免收紫外线伤害,具有广谱、作用快速的特性,且与环境具有高度相容性。与大名鼎鼎的硝磺草酮相比,环磺酮不仅活性更高,而且防治杂草范围更广。环磺酮对蓟属、旋花属、婆婆纳属、辣子草属、尊麻属、春黄菊和猪殃殃等多种杂草也均有很强的灭杀作用,还能杀灭对草甘膦、麦草畏及ALS抑制剂类除草剂产生抗性的杂草。此外,环磺酮有较强的抗雨水冲涮能力,且可以在作物整个生长期均保持良好的除草活性而不会对下一茬作物造成危害。相对于硝磺草酮在杂草防治方面用药时间必须早来说,而环磺酮在用药时间上的限制大大降低。2007年初,环磺酮在奥地利获得登记(全球首次登记),截止2013年,环磺酮已在美国、奥地利、加拿大、巴西等26个国家获得登记。环磺酮自2008年进入市场后销售额一路攀升,09年环磺酮全球销售额还不足0.3亿美元,2010年达到0.95亿美元,2011年达到1.2亿美元,至2013年销售额达到2.1亿美元,销售额占拜耳其他除草剂销售总额的15.6%。目前,环磺酮仍属于专利保护产品,尚未在中国获得登记,在欧洲和美国的专利号分别为:EP1117639和US6376429,将分别于2019年9月9日、2019年10月7日专利到期。SPC专利保护到期时间为2021年。环磺酮在中国的专利号为ZL99811954,到期日为2019年9月9日。

  • 1,3-环戊二酮气相条件

    请问一下,1,3-环戊二酮的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]条件怎么设置比较好,1,3-环戊二酮氯化后的产物用什么萃取比较好。谢谢啦

  • 【资料】-有机化合物签别

    “短而悍”[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=26334]有机化合物签别[/url]在药品的生产、研究及检验等过程中,常常会遇到有机化合物的分离、提纯和鉴别等问题。有机化合物的鉴别、分离和提纯是三个既有关联而又不相同的概念。   分离和提纯的目的都是由混合物得到纯净物,但要求不同,处理方法也不同。分离是将混合物中的各个组分一一分开。在分离过程中常常将混合物中的某一组分通过化学反应转变成新的化合物,分离后还要将其还原为原来的化合物。提纯有两种情况,一是设法将杂质转化为所需的化合物,另一种情况是把杂质通过适当的化学反应转变为另外一种化合物将其分离(分离后的化合物不必再还原)。  鉴别是根据化合物的不同性质来确定其含有什么官能团,是哪种化合物。如鉴别一组化合物,就是分别确定各是哪种化合物即可。在做鉴别题时要注意,并不是化合物的所有化学性质都可以用于鉴别,必须具备一定的条件:(1) 化学反应中有颜色变化(2) 化学反应过程中伴随着明显的温度变化(放热或吸热)(3) 反应产物有气体产生(4) 反应产物有沉淀生成或反应过程中沉淀溶解、产物分层等。  本课程要求掌握的重点是化合物的鉴别,为了帮助大家学习和记忆,将各类有机化合物的鉴别方法进行归纳总结,并对典型例题进行解析。  一.各类化合物的鉴别方法  1.烯烃、二烯、炔烃:  (1)溴的四氯化碳溶液,红色腿去  (2)高锰酸钾溶液,紫色腿去。  2.含有炔氢的炔烃:  (1) 硝酸银,生成炔化银白色沉淀  (2) 氯化亚铜的氨溶液,生成炔化亚铜红色沉淀。  3.小环烃:三、四元脂环烃可使溴的四氯化碳溶液腿色  4.卤代烃:硝酸银的醇溶液,生成卤化银沉淀;不同结构的卤代烃生成沉淀的速度不同,叔卤代烃和烯丙式卤代烃最快,仲卤代烃次之,伯卤代烃需加热才出现沉淀。  5.醇:  (1) 与金属钠反应放出氢气(鉴别6个碳原子以下的醇);  (2) 用卢卡斯试剂鉴别伯、仲、叔醇,叔醇立刻变浑浊,仲醇放置后变浑浊,伯醇放置后也无变化。  6.酚或烯醇类化合物:  (1) 用三氯化铁溶液产生颜色(苯酚产生兰紫色)。  (2) 苯酚与溴水生成三溴苯酚白色沉淀。  7.羰基化合物:  (1) 鉴别所有的醛酮:2,4-二硝基苯肼,产生黄色或橙红色沉淀;  (2) 区别醛与酮用托伦试剂,醛能生成银镜,而酮不能;  (3) 区别芳香醛与脂肪醛或酮与脂肪醛,用斐林试剂,脂肪醛生成砖红色沉淀,而酮和芳香醛不能;  (4) 鉴别甲基酮和具有结构的醇,用碘的氢氧化钠溶液,生成黄色的碘仿沉淀。   8.甲酸:用托伦试剂,甲酸能生成银镜,而其他酸不能。  9.胺:区别伯、仲、叔胺有两种方法  (1)用苯磺酰氯或对甲苯磺酰氯,在NaOH溶液中反应,伯胺生成的产物溶于NaOH;仲胺生成的产物不溶于NaOH溶液;叔胺不发生反应。  (2)用NaNO2+HCl:  脂肪胺:伯胺放出氮气,仲胺生成黄色油状物,叔胺不反应。  芳香胺:伯胺生成重氮盐,仲胺生成黄色油状物,叔胺生成绿色固体。  10.糖:  (1) 单糖都能与托伦试剂和斐林试剂作用,产生银镜或砖红色沉淀;  (2) 葡萄糖与果糖:用溴水可区别葡萄糖与果糖,葡萄糖能使溴水褪色,而果糖不能。  (3)麦芽糖与蔗糖:用托伦试剂或斐林试剂,麦芽糖可生成银镜或砖红色沉淀,而蔗糖不能。  二.例题解析  例1.用化学方法鉴别丁烷、1-丁炔、2-丁炔。  分析:上面三种化合物中,丁烷为饱和烃,1-丁炔和2-丁炔为不饱和烃,用溴的四氯化碳溶液或高锰酸钾溶液可区别饱和烃和不饱和烃,1-丁炔具有炔氢而2-丁炔没有,可用硝酸银或氯化亚铜的氨溶液鉴别。因此,上面一组化合物的鉴别方法为:  例2.用化学方法鉴别氯苄、1-氯丙烷和2-氯丙烷。  分析:上面三种化合物都是卤代烃,是同一类化合物,都能与硝酸银的醇溶液反应生成卤化银沉淀,但由于三种化合物的结构不同,分别为苄基、二级、一级卤代烃,它们在反应中的活性不同,因此,可根据其反应速度进行鉴别。上面一组化合物的鉴别方法为:  例3.用化学方法鉴别下列化合物  苯甲醛、丙醛、2-戊酮、3-戊酮、正丙醇、异丙醇、苯酚  分析:上面一组化合物中有醛、酮、醇、酚四类,醛和酮都是羰基化合物,因此,首先用鉴别羰基化合物的试剂将醛酮与醇酚区别,然后用托伦试剂区别醛与酮,用斐林试剂区别芳香醛与脂肪醛,用碘仿反应鉴别甲基酮;用三氯化铁的颜色反应区别酚与醇,用碘仿反应鉴别可氧化成甲基酮的醇。鉴别方法可按下列步骤进行:  (1) 将化合物各取少量分别放在7支试管中,各加入几滴2,4-二硝基苯肼试剂,有黄色沉淀生成的为羰基化合物,即苯甲醛、丙醛、2-戊酮、3-戊酮,无沉淀生成的是醇与酚。  (2) 将4种羰基化合物各取少量分别放在4支试管中,各加入托伦试剂(氢氧化银的氨溶液),在水浴上加热,有银镜生成的为醛,即苯甲醛和丙醛,无银镜生成的是2-戊酮和3-戊酮。  (3) 将2种醛各取少量分别放在2支试管中,各加入斐林试剂(酒石酸钾钠、硫酸酮、氢氧化钠的混合液),有红色沉淀生成的为丙醛,无沉淀生成的是苯甲醛。  (4) 将2种酮各取少量分别放在2支试管中,各加入碘的氢氧化钠溶液,有黄色沉淀生成的为2-戊酮,无黄色沉淀生成的是3-戊酮。  (5) 将3种醇和酚各取少量分别放在3支试管中,各加入几滴三氯化铁溶液,出现兰紫色的为苯酚,无兰紫色的是醇。  (6) 将2种醇各取少量分别放在支试管中,各加入几滴碘的氢氧化钠溶液,有黄色沉淀生成的为异丙醇,无黄色沉淀生成的是丙醇。

  • 【分享】加州率先推出既環保又節能住屋保險計劃!

    在環境保護與節約能源觀念已經普遍受到社會大眾肯定後,加州保險局今天宣佈保險業者「消防站」(Fireman's Spot)決定率先推出一項「環保住屋的屋主保險計劃」,提供有需要的民眾參加。加州保險局長波茲尼爾說,一般房屋保險有火險、水險、地震險等,但是由於太陽能面板、回收性再生建材與節能設備愈來愈普及,加州保險業者經過多方評估後,開始提供環保住屋保險計劃,讓屋主挑選認購。所謂「環保住屋的屋主保險計劃」,是提供購買這項保險計劃的屋主,一旦在遭到災害後的房屋嚴重毀損需要重建時,可以選擇經過認證的「環保標準設備」來加以整修。換句話說,屋主將可從一般保險不給付的部份來挑選綠色建材,重新打造一個既環保又節能的「綠色之屋」。有關的建材,包括不含有毒物質的油漆、地毯、磁磚,經過回收再製的木器設備,以及節約水量的省水馬桶、節能燈泡和家庭電器產品等。另外,還可以在屋頂加裝太陽能面板供應所需電力。波茲尼爾認為,雖然目前提供環保住屋的屋主保險計劃才剛起步,但相信未來應會在保險市場大受歡迎,因為屋主不僅可以為自己省下一筆可觀的能源開銷,還同時為環境保護貢獻一份心力,令人不免想到「何樂不為」四個字。

  • 【原创大赛】固相萃取-气相色谱-质谱联用法检测植物油中2-十二烷基环丁酮和2-十四烷基环丁酮

    【原创大赛】固相萃取-气相色谱-质谱联用法检测植物油中2-十二烷基环丁酮和2-十四烷基环丁酮

    摘 要:建立固相萃取-气相色谱- 质谱联用(solid phase extraction with gas chromatography-mass spectrometry,SPE-GC-MS)法测定植物油中2-十二烷基环丁酮和2-十四烷基环丁酮。对影响分析物萃取效率的诸因素如洗脱溶剂等进行详细考察和优化。最佳萃取条件为0.5 g样品与5 mL乙腈混匀,经ProElut Silica (500 mg/3mL)固相萃取柱净化后,以GC-MS 进行测定,该方法对2-十二烷基环丁酮和2-十四烷基环丁酮的检出限为10μg/kg,线性范围为0.01~0.5μg/mL,线性相关系数分别为0.99938和0.99977,相对标准偏差(relative standard deviation,RSD)(n=3)小于6%。该方法成功应用于植物油中2-十二烷基环丁酮和2-十四烷基环丁酮的分析,加标回收的回收率为78%~91%。关键词:固相萃取;气相色谱-质谱;2-十二烷基环丁酮;2-十四烷基环丁酮;植物油 食品辐照作为对物质或食品进行加工处理的新型保藏技术,在国际上已逐渐被认可,但是在商业化应用、国际贸易以及辐照食品的市场监管方面,迫切需要有辐照食品鉴定检测方法。 经辐照后,在含脂食品中会产生特异性辐解产物2-烷基环丁酮(2-Alkylcyclobutanones ,2-ACBs),它是含脂辐照食品的特异性辐解产物,在未辐照的含脂食品中,至今还从未检测到此类化合物。在1990年, 2-ACBs 类化合物可作为检测含脂辐照食品的标志性化合物, 首次被报道,随后依据该结论制定了欧盟标准EN1785和GB\T 21926-2008 。2-ACBs由食品中的游离脂肪酸或甘油三酸酯的羰基氧失去一个电子,再经由重排过程生成,其过程如图1所示。http://ng1.17img.cn/bbsfiles/images/2015/07/201507091523_554630_2452211_3.png图1 经辐照后游离的脂肪酸转化为2-ACBs的示意图 在大多数食品中,棕榈酸、硬脂酸、油酸、亚油酸是主要的脂肪酸,而棕榈酸和硬脂酸是其中含量最高的饱和脂肪酸,其辐解物2-十二烷基环丁酮(2-dodecylcyclobutanone,2-DCB)和2-十四烷基环丁酮(2-tetradecylcyclobutanone,2-TCB)相对于其它2-ACBs较为稳定,因此一般作为检测含脂辐照食品的主要标志性化合物。目前对含脂辐照食品大多采用佛罗里硅土柱进行净化,但是该法的应用范围有限。本实验拟通过优化固相萃取(solidphase extraction,SPE)条件,采用气相色谱-质谱联用(gas chromatography-massspectrometry,GC-MS)技术测定植物油中2-十二烷基环丁酮和2-十四烷基环丁酮,为进一步缩短2-ACBs 萃取和分离时间、减少溶剂使用量、提高检测灵敏度以及扩大方法应用范围提供基础数据和理论依据。1 材料与方法1.1 材料、试剂与仪器GCMS-QP2010 气相色谱-质谱联用仪 日本岛津公司;DM-5MS 毛细管柱(30 m×0.25 mm,0.25 μm)迪马公司;XH-C 涡旋混合器 江苏金坛市盛威实验仪器;80-1 高速离心机 河南省予华仪器;OSB-2100 旋转蒸发仪 上海爱朗仪器有限公司;12孔固相萃取装置 迪马公司; ProElut Silica(500 mg/3mL)固相萃取柱 迪马公司。HSC-12B 氮吹仪天津市威仪科技发展有限公司;丙酮、二氯甲烷、乙酸乙酯乙腈、甲基叔丁基醚、正己烷(均为色谱纯)迪马公司。实验所用的植物油均购自当地市场。1.2 方法1.2.1 标准贮备液的制备称取一定量标准品,溶于正己烷溶剂中,配制成浓度为0.5 mg/mL的标准贮备液。再配制成质量浓度系列为0.01μg/mL、0.02μg/mL、0.05μg/mL、0.1μg/mL、0.2μg/mL、0.5μg/mL的标准工作溶液,备用。1.2.2 仪器分析条件气相色谱条件:色谱柱为DM-5MS (30.0m×250μm,0.25μm);载气He(99.995%);恒流,柱流速1.0mL/min;不分流,进样量1μL,进样口温度为260℃;起始温度80℃(保持1min),以15℃/min的速度升至150℃,再以8℃/min升温至200℃,再以20℃/min升温至260℃(保持5min)。质谱条件:EI源,离子源200℃,溶剂延迟为3min,选择离子监测模式(SIM),选择监测离子(m/z):69、84、98、112、125。1.2.3 样品的提取称取0.5 g样品于10 mL带塞试管中,加入5 mL乙腈,涡旋混合2 min,超声提取2 min,4000 rpm下离心2min,取上清液;下层油脂再用5 mL乙腈重复上述步骤,合并两次上清液。将得到的上清液在50℃下,氮吹近干,再慢慢挥干,再向氮吹瓶中加入2.5 mL正己烷复溶,待净化。1.2.4 样品的净化依次用5 mL甲基叔丁基醚,5mL正己烷缓慢通过ProElut Silica固相萃取柱,以达到润湿小柱,活化填料,除去干扰杂质的目的;再将1.2.3节方法制得的待净化液转移到ProElut Silica固相萃取柱中,流出液弃去;然后用5 mL正己烷淋洗,弃去流出液;再用10 mL甲基叔丁基醚:正己烷(1:99V:V)洗脱,用旋转蒸发瓶接收,直至洗脱液完全自然滴出。在50 ℃下,将收集到的洗脱液氮吹浓缩,然后用正己烷定容至1 mL后供GC-MS分析。2 结果与分析在固相萃取操作中,影响分析物峰面积的主要固相萃取因素有洗脱剂、洗脱体积、洗脱速率和上样速率。为了获得最佳分析结果,需要对其进行优化。2.1固相萃取条件的确定2.1.1 提取溶剂的选择2-十二烷基环丁酮(2-DCB)和2-十四烷基环丁酮(2-TCB)与脂肪酸的结构及其类似,故能溶于极性和中等极性的试剂中。分别用丙酮、二氯甲烷、甲基叔丁基醚、乙酸乙酯作为2-DCB 和2-TCB的提取溶剂。实验结果表明乙腈提取效果较好,再加以涡旋振荡后结合超声提高回收率。2.1.2 固相萃取柱的选择对于油脂类样品,采用固相萃取柱进行样品净化是必不可少的步骤。结合相应参考文献,本实验采用了硅胶、PSA、Florisil、Alumina等填料的固相萃取柱,结果表明对于植物油,硅胶柱相对于其他填料的固相萃取柱来说,2-DCB 和2-TCB回收率较高,添加回收率达到了80%-120%,满足分析检测的要求,且达到很好的净化效果。如图2所示http://ng1.17img.cn/bbsfiles/images/2015/07/201507091524_554631_2452211_3.pngA:标准品;B:空白样品;C:添加标品的样品图2 植物油空白样品及其添加样品的总离子流图2.1.3 淋洗曲线的建立固相萃取技术最重要的目的在于通过固相萃取柱将目标化合物与主要干扰物分开,从而实现净化的目的。在此过程中应非常注意选择合适的洗脱溶剂。样品处理过程是先用正己烷将其中的中性化合物除去,参照Horvarovich 等报道,用硅胶柱分离样品中的2-DCB和2-TCB,选用弱极性的甲基叔丁基醚(methyl-t-butyl ether,TBME)/正己烷(V/V)混合溶剂将稍强极性的2-DCB 和2-TCB洗脱下来。由于样品基质与文献不一样,淋洗液与洗脱液的选择也会不一样。因次需要考察正己烷以及其与甲基叔丁基醚不同比列的混合液作为洗脱液时2-DCB和2-TCB的回收率。选用5根ProElut Silica固相萃取柱,取0%、0.5%、1%、2%、5%不同浓度的甲基叔丁基醚:正己烷(V/

  • 新型除草剂环戊恶草酮介绍

    38.3mg/l。它的除草活性 Pentoxazone从每公顷0.15-0.45公斤有效成分的浓度于苗前和苗后早期施用,对小果子一年生杂草如稗属Oryzice-la,雨久花属Vaginalis、莎草属difformis和阔叶杂草有良好的除草效果。许多多年生蓑衣杂草如荸荠属Kuroguwai;也有控制和打击作用。在苗前和苗后早期(-4+5)应用时,杂草还未长到10叶阶段施用最有效,且充分发挥本除草剂功效;当以浓度每公顷0.39-0.45公斤有效成分使用时,Pentoxazone能迅速杀灭稗属Oryzicola并残留部分一直能控制6周,它的长久持效性是由于土壤对它吸收而具有低迁移性和水中低溶解性的原故。与磺酰胺类结合使用时,pentoxazone在移植水稻前一次施入田中具有良好的控制一年生和多年生杂草的能力。 Pentoxazone有效地控制抑制在叶绿素生物合成中的则叶啉-LX氧化酶。在光作用下,由于积累的原叶啉1X产生的活性氧使它诱导氧化物酶膜破裂。这种不同于其他除草剂的作用方式使用其成为控制ALS抗抑制剂的杂草,如母草屑dubia种的Majorpennell,母草属dubia类的dubiaPenell和久雨花属的Korsakowil等的重要工具。安全性 用于老鼠的毒性研究表明pentoxazone具有很低的毒性。在老鼠和细菌身上也不存在致畸和诱变可能性。在这些毒性研究的基础上,认为Pentoxazone是普通物质,基于动态毒性方面的研究,Pentoxazone对鱼、鸟和益虫存在很低或可忽略的毒性。 Pentoxazone对老鼠经口给药的大部分在168小时之内由类中排泄掉,少量被吸收的部分也迅速在肝脏中代谢掉和在粪便中排泄掉。在常规条件下应用于稻田时,pentoxazone很少转移至稻禾顶部。甚至在成熟期使用,它在稻子植物中也很快代谢掉,且在根、茎、叶的任何部位的残留量小于0.25ppm,特别在可食部分为0.046pmm。在有水时pentoxazone在土壤中的半衰期最高是40因,但它的活性成分和代谢物向下流动性很低,已查明对地下水系统没影响。因此,使用petoxazone对健康和环境具有深远的意义。

  • 迪马产品应用有奖问答06.30(已完结)——#2 混合溶剂

    迪马产品应用有奖问答06.30(已完结)——#2 混合溶剂

    10,抽取5个版友);中奖名单:langyabeilei(注册ID:langyabeilei)zengzhengce163(注册ID:zengzhengce163)捌道巴拉巴巴巴(注册ID:v3082413)吕梁山(注册ID:shih20j07)m3071659(注册ID:m3071659)http://ng1.17img.cn/bbsfiles/images/2016/06/201606301521_598684_1610895_3.pnghttp://ng1.17img.cn/bbsfiles/images/2016/06/201606301521_598685_1610895_3.png积分奖励:所有回答正确的版友奖励10个积分(幸运奖获得者除外)。【注意事项】同样的答案,每人只能发一次PS:该贴浏览权限为“回贴仅作者和自己可见”,回复的版友仅能看到版主的题目及自己的回答内容,无法看到其他版友的回复内容。下午3点之后解除,即可看到正确答案、获奖情况及所有版友的回复内容。=======================================================================#2 混合溶剂方法:GC基质:标准溶液应用编号:101164化合物:戊烷; 二氯甲烷; 乙二醇; 庚烷; 环戊醇; 3- 己醇; 乙酰胺; 2- 甲基-1- 戊醇; 糠醇; 丁醚; 壬烷;. 异丙基苯; 乙基戊基甲酮; 庚醇;丁酸丁酯; 苯甲醇; 一缩二丙二醇; 二乙基苯; 六氯乙烷; 十一烷; 1- 壬醇; 对甲氧基苯酚; 三甘醇; 十二烷; 十一醛; 十三烷; 十二醛; 二环己氨 2- 甲氧基乙基醚; 十五烷;十七烷; 十八烷; 十九烷; 二十烷; 乙酰柠檬酸三丁酯;2- 丁烯-1- 醇; 甲酰胺; 3- 戊醇; 1- 硝基丙烷; 二甲基甲酰胺; 2- 甲基-3- 戊醇; 甲苯;氯乙酸乙酯; 二甲基乙酰胺; 二甲苯; 四氯乙烷; 苯甲醛;邻氯甲苯; 2,6- 二甲基-4- 庚酮; 2- 辛酮; 邻甲酚; α- 苯乙醇;5- 壬酮; 壬醇; 癸醛; ---; 1- 癸醇; 1- 十一醇; 2- 十二酮; 1- 十二烷醇; 四甘醇; 联苄; 酸二乙酯; 磷酸三丁酯; 二苯砜; 丙烯醇; 乙酸异丙酯; 苯; 2- 硝基丙烷; 硝基乙烷; 戊醛; 2- 溴丁烷; 1- 氯戊烷; 环戊酮; 2- 己醇;乙酸丁酯; 2- 乙基-1- 丁醇;3- 乙基-3- 戊醇; 1,4- 二氯丁烷; 2- 甲基-2,4- 戊二醇;2- 丁氧基乙醇; 1,2,3- 三氯丙烷; 1,4- 丁二醇; 己酸甲酯; 1,2,4- 三甲苯; 2- 乙基-1- 己醇; 莱烯; 乙酸四氢糠酯; 萘烷; 2- 癸醇; 三甘醇二甲醚; 2- 苯氧基乙醇; 苄醚固定相:DM-1色谱柱/前处理小柱:DM-1 60m x 0.53mm x 3u色谱条件:柱温:40 oC ( 5 min ) - 285 oC, 5 oC/min 载气:He, 40 cm/sec 进样方式:分流, 50 mL/min, 275 oC 样品:#2 混合溶剂, 1.0 μL 检测:MS full scan, 285 oC文章出处:CCR00338关键字:溶剂残留,制药,GC,DM-1, 戊烷; 二氯甲烷; 乙二醇; 庚烷; 环戊醇; 3- 己醇; 乙酰胺; 2- 甲基-1- 戊醇; 糠醇; 丁醚; 壬烷;. 异丙基苯; 乙基戊基甲酮; 庚醇;丁酸丁酯; 苯甲醇; 一缩二丙二醇; 二乙基苯; 六氯乙烷; 十一烷; 1- 壬醇; 对甲氧基苯酚; 三甘醇; 十二烷; 十一醛; 十三烷; 十二醛; 二环己氨 2- 甲氧基乙基醚; 十五烷;十七烷; 十八烷; 十九烷; 二十烷; 乙酰柠檬酸三丁酯;2- 丁烯-1- 醇; 甲酰胺; 3- 戊醇; 1- 硝基丙烷; 谱图:http://www.dikma.com.cn/Public/Uploads/images/CCR00338.png图例:1. 戊烷;2. 二氯甲烷;3. 乙二醇;4. 庚烷;5. 环戊醇;6. 3- 己醇;7. 乙酰胺;8. 2- 甲基-1- 戊醇;9. 糠醇;10. 丁醚;11. 壬烷;12. 异丙基苯;13. 乙基戊基甲酮;14. 庚醇;15. 丁酸丁酯;16. ---;17. 苯甲醇;18. 一缩二丙二醇;19. 二乙基苯;20. ---;21. ---;22. 六氯乙烷;23. 十一烷;24. 1- 壬醇;25. 对甲氧基苯酚;26. 三甘醇;27. 十二烷;28. 十一醛;29. 十三烷;30. ---;31. 十二醛;32. 二环己氨;33. 2- 甲氧基乙基醚;34. 十五烷;35. 十七烷;36. 十八烷;37. 十九烷;38. 二十烷;39. 乙酰柠檬酸三丁酯;40. 2- 丁烯-1- 醇;41. 甲酰胺;42. 3- 戊醇;43. 1- 硝基丙烷;44. 二甲基甲酰胺;45. 2- 甲基-3- 戊醇;46. 甲苯;47. 氯乙酸乙酯;48. 二甲基乙酰胺;49. 二甲苯;50. 四氯乙烷;51. 苯甲醛;52. 邻氯甲苯;53. 2,6- 二甲基-4- 庚酮;54. 2- 辛酮;55. 邻甲酚;56. α- 苯乙醇;57. 5- 壬酮;58. 壬醇;59. 癸醛;60. ---;61. 1- 癸醇;62. 1- 十一醇;63. 2- 十二酮;64. 1- 十二烷醇;65. 四甘醇;66. 联苄;67. 酸二乙酯;68. 磷酸三丁酯;69. 二苯砜;70. 丙烯醇;71. ---;72. 乙酸异丙酯;73. 苯;74. 2- 硝基丙烷;75. 硝基乙烷;76. 戊醛;77. 2- 溴丁烷;78. 1- 氯戊烷;79. 环戊酮;80. 2- 己醇;81. 乙酸丁酯;82. 2- 乙基-1- 丁醇;83. 3- 乙基-3- 戊醇;84. 1,4- 二氯丁烷;85. 2- 甲基-2,4- 戊二醇;86. 2- 丁氧基乙醇;87. 1,2,3- 三氯丙烷;88. 1,4- 丁二醇;89. 己酸甲酯;90. 1,2,4- 三甲苯;91. 2- 乙基-1- 己醇;92. 莱烯;93. 乙酸四氢糠酯;94. ---;95. 萘烷;96. ---;97. ---;98. 2- 癸醇;99. 三甘醇二甲醚;100. 2- 苯氧基乙醇;101. ---;102. 苄醚

  • 迪马产品应用有奖问答06.27(已完结)——#1 混合溶剂

    迪马产品应用有奖问答06.27(已完结)——#1 混合溶剂

    10,抽取5个版友);中奖名单:dahua1981(注册ID:dahua1981)ZHAOGUANGXI(注册ID:ZHAOGUANGXI)999youran(注册ID:999youran)大川之子,纵横四海(注册ID:chuangu120)千层峰(注册ID:jxyan)http://ng1.17img.cn/bbsfiles/images/2016/06/201606271459_598335_1610895_3.pnghttp://ng1.17img.cn/bbsfiles/images/2016/06/201606271459_598336_1610895_3.png积分奖励:所有回答正确的版友奖励10个积分(幸运奖获得者除外)。【注意事项】同样的答案,每人只能发一次PS:该贴浏览权限为“回贴仅作者和自己可见”,回复的版友仅能看到版主的题目及自己的回答内容,无法看到其他版友的回复内容。下午3点之后解除,即可看到正确答案、获奖情况及所有版友的回复内容。=======================================================================#1 混合溶剂方法:GC基质:标准溶液应用编号:101153化合物:戊烷; 二氯甲烷; 乙二醇; 庚烷;环戊醇; 3- 己醇; 乙酰胺; 2- 甲基-1- 戊醇; 糠醇; 丁醚; 壬烷; 异丙基苯; 乙基戊基甲酮; 庚醇; 丁酸丁酯; ---; 苯甲醇;. 一缩二丙二醇; 二乙基苯; 六氯乙烷; 十一烷; 1- 壬醇; 对甲氧基苯酚; 三甘醇; 十二烷; 十一醛; 十三烷; 十二醛; 二环己氨; 2- 甲氧基乙基醚; 十五烷; 十七烷; 十八烷; 十九烷; 二十烷; 乙酰柠檬酸三丁酯; 2- 丁烯-1- 醇; 甲酰胺; 3- 戊醇; 1- 硝基丙烷; 二甲基甲酰胺; 2- 甲基-3- 戊醇;甲苯; 氯乙酸乙酯; 二甲基乙酰胺; 二甲苯; 四氯乙烷; 苯甲醛; 邻氯甲苯; 2,6- 二甲基-4- 庚酮; 2- 辛酮; 邻甲酚; α- 苯乙醇; 5- 壬酮; 壬醇; 癸醛; 1- 癸醇; 1- 十一醇; 2- 十二酮; 1- 十二烷醇; 四甘醇; 联苄; 酸二乙酯;磷酸三丁酯; 二苯砜; 丙烯醇; 乙酸异丙酯; 苯; 2- 硝基丙烷; 硝基乙烷; 戊醛; 2- 溴丁烷; 1- 氯戊烷; 环戊酮;2- 己醇; 乙酸丁酯; 2- 乙基-1- 丁醇; 3- 乙基-3- 戊醇;1,4- 二氯丁烷; 2- 甲基-2,4- 戊二醇; 2- 丁氧基乙醇; 1,2,3- 三氯丙烷; 1,4- 丁二醇; 己酸甲酯; 1,2,4- 三甲苯; 2- 乙基-1- 己醇; 莱烯; 乙酸四氢糠酯; 萘烷; 2- 癸醇;99. 三甘醇二甲醚; 2- 苯氧基乙醇; 苄醚固定相:DM-1色谱柱/前处理小柱:DM-1 60m x 0.53mm x 3um色谱条件:柱温:40 ℃ ( 5 min ) - 285 ℃ , 5 ℃ /min 载气:He, 40 cm/sec 进样方式:分流, 50 mL/min, 275 ℃ 样品:#1 混合溶剂, 1.0 μL 检测:MS full scan, 285 ℃ 文章出处:CCR00335关键字:溶剂残留,制药,GC,DM-1, 戊烷; 二氯甲烷; 乙二醇; 庚烷;环戊醇; 3- 己醇; 乙酰胺; 2- 甲基-1- 戊醇; 糠醇; 丁醚; 壬烷; 异丙基苯; 乙基戊基甲酮; 庚醇; 丁酸丁酯; ---; 苯甲醇;. 一缩二丙二醇; 二乙基苯; 六氯乙烷; 十一烷; 1- 壬醇; 对甲氧基苯酚; 三甘醇; 十二烷; 十一醛; 十三烷; 十二醛; 二环己氨; 2- 甲氧基乙基醚; 十五烷; 十七烷; 十八烷; 十九烷; 二十烷; 乙酰柠檬酸三丁酯; 2- 丁烯-1- 醇; 甲酰胺; 3- 戊醇; 谱图:http://www.dikma.com.cn/Public/Uploads/images/CCR00335.png图例:1. 戊烷;2. 二氯甲烷;3. 乙二醇;4. 庚烷;5. 环戊醇;6. 3- 己醇;7. 乙酰胺;8. 2- 甲基-1- 戊醇;9. 糠醇;10. 丁醚;11. 壬烷;12. 异丙基苯;13. 乙基戊基甲酮;14. 庚醇;15. 丁酸丁酯;16. ---;17. 苯甲醇;18. 一缩二丙二醇;19. 二乙基苯;20. ---;21. ---;22. 六氯乙烷;23. 十一烷;24. 1- 壬醇;25. 对甲氧基苯酚;26. 三甘醇;27. 十二烷;28. 十一醛;29. 十三烷;30. ---;31. 十二醛;32. 二环己氨;33. 2- 甲氧基乙基醚;34. 十五烷;35. 十七烷;36. 十八烷;37. 十九烷;38. 二十烷;39. 乙酰柠檬酸三丁酯;40. 2- 丁烯-1- 醇;41. 甲酰胺;42. 3- 戊醇;43. 1- 硝基丙烷;44. 二甲基甲酰胺;45. 2- 甲基-3- 戊醇;46. 甲苯;47. 氯乙酸乙酯;48. 二甲基乙酰胺;49. 二甲苯;50. 四氯乙烷;51. 苯甲醛;52. 邻氯甲苯;53. 2,6- 二甲基-4- 庚酮;54. 2- 辛酮;55. 邻甲酚;56. α- 苯乙醇;57. 5- 壬酮;58. 壬醇;59. 癸醛;60. ---;61. 1- 癸醇;62. 1- 十一醇;63. 2- 十二酮;64. 1- 十二烷醇;65. 四甘醇;66. 联苄;67. 酸二乙酯;68. 磷酸三丁酯;69. 二苯砜;70. 丙烯醇;71. ---;72. 乙酸异丙酯;73. 苯;74. 2- 硝基丙烷;75. 硝基乙烷;76. 戊醛;77. 2- 溴丁烷;78. 1- 氯戊烷;79. 环戊酮;80. 2- 己醇;81. 乙酸丁酯;82. 2- 乙基-1- 丁醇;83. 3- 乙基-3- 戊醇;84. 1,4- 二氯丁烷;85. 2- 甲基-2,4- 戊二醇;86. 2- 丁氧基乙醇;87. 1,2,3- 三氯丙烷;88. 1,4- 丁二醇;89. 己酸甲酯;90. 1,2,4- 三甲苯;91. 2- 乙基-1- 己醇;92. 莱烯;93. 乙酸四氢糠酯;94. ---;95. 萘烷;96. ---;97. ---;98. 2- 癸醇;99. 三甘醇二甲醚;100. 2- 苯氧基乙醇;101. ---;102. 苄醚

  • 香味化合物阈值求助!

    各位老师好,本人写论文需要用到以下化合物的香气或香味阈值数据,麻烦有相关资源的老师帮忙查一下,或者告知如何查找,谢谢!3-巯基-2-丁醇 cas:54812-86-1/ 37887-04-0 四氢噻吩-3-酮 cas:1003-04-9姜烯 姜油酮 cas:122-48-5丁香酚 cas:97-53-0二糠基硫醚 cas:13678-67-62-甲基-3-巯基呋喃 cas:28588-74-1癸醛 cas:112-31-2甲基(2甲基3呋喃基)二硫醚乙酸 cas:64-19-72-甲基苯硫酚 cas:137-06-42-甲基-3-甲硫基吡嗪 cas:2882-20-42-甲基-5-甲硫基吡嗪三乙酸甘油酯 cas:102-76-1柠檬酸三乙酯 cas:77-93-0呋喃酮乙酸酯 cas:4166-20-5甲基糠基二硫醚 cas:57500-00-24-糠硫基-2-戊酮 cas:180031-78-14-甲基-4-糠硫基-2-戊酮 cas:64835-96-7二糠基二硫醚 cas:4437-20-12,4,6-三异丁基-1,3,5-二噻嗪 cas:74595-94-1

  • 【求助】六通阀定量环的进样体积?

    液相色谱六通阀我们用的是20ul的,通常进样量为20ul。如用注射器进样50ul或以上体积时,进入色谱柱的量为20ul.如果现在我要进样5ul,可否用注射器直接取5ul打入定量环,此时进入色谱柱的体积是否就为5ul?,,,请求高人解答?可否用20ul定量环进10ul体积?

  • 【实战宝典】在检测土壤和沉积物中多环芳烃时,内标物和目标物是如何添加的?使用的标液基质都是哪种溶剂?

    [font=宋体]发帖人:[/font][color=black][back=white]haijingling[/back][/color][font=宋体]链接:[/font][url]https://bbs.instrument.com.cn/topic/7346939[/url]https://bbs.instrument.com.cn/topic/7353911[font=黑体][b]问题描述:[/b][/font][font=宋体]《土壤和沉积物[/font] [font=宋体]多环芳烃的测定[/font] [font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱法》([/font]HJ 805-2016[font=宋体])[/font][font=宋体]里部分物质采用内标法,比如萘的测定,内标物是萘-d8,那在做标曲时,是只添加内标物萘-d8,还是萘和萘-d8都要添加?[/font][font=宋体]还有该方法中标准溶液一般使用何种基质的?[/font][b][font=黑体]解答:[/font][/b][font=宋体]该方法是内标法,所有物质都用对应的内标定量,而不是部分。该方法目标物有[/font]16[font=宋体]种,内标物有[/font]5[font=宋体]种,替代物[/font]2[font=宋体]种,共计[/font]23[font=宋体]种物质。在绘制校准曲线时,分别移取适量的[/font]16[font=宋体]种目标物,替代物[/font]2[font=宋体]种,内标物[/font]5[font=宋体]种溶液,用丙酮和正己烷混合液稀释定容,配成多环芳烃和替代物质量浓度分别为[/font]2.0μg/mL[font=宋体]、[/font]5.0μg/mL[font=宋体]、[/font]10.0μg/mL[font=宋体]、[/font]20.0μg/mL[font=宋体]、[/font]40.0μg/mL[font=宋体],内标质量浓度均为[/font]20.0μg/mL[font=宋体]的标准系列。因此目标物和内标物以及替代物均要添加,只是添加的浓度有区别。[/font][font=宋体]标准中对标物的基质并未进行规定,只阐明标物需要用丙酮和正己烷混合溶剂进行稀释,因此标物购买的原则就是溶剂能与丙酮、正己烷互溶。市面上多环芳烃的有证标准物质种类有好几种,首选丙酮或者正己烷基质作为溶剂的标品,其次还有二氯甲烷基质以及苯与二氯甲烷混合基质的也都适用。[/font]

  • 【求助】面积归一法测环戊烷的纯度

    我现在用GC-2014C FID测定环戊烷,我买了环戊烷标准品先进样,对环戊烷定性,然后我取了一点环戊烷样品测了一下,在方法中选了面积归一化法,结果显示为98%。请问一下,在做面积归一化法测含量的时候是不是用不到标准品的,我买的标准品只是起到定性的作用,定量上面是不是用不到的呀?谢谢

  • 【分享】有机化合物的鉴别

    在药品的生产、研究及检验等过程中,常常会遇到有机化合物的分离、提纯和鉴别等问题。有机化合物的鉴别、分离和提纯是三个既有关联而又不相同的概念。 分离和提纯的目的都是由混合物得到纯净物,但要求不同,处理方法也不同。分离是将混合物中的各个组分一一分开。在分离过程中常常将混合物中的某一组分通过化学反应转变成新的化合物,分离后还要将其还原为原来的化合物。提纯有两种情况,一是设法将杂质转化为所需的化合物,另一种情况是把杂质通过适当的化学反应转变为另外一种化合物将其分离(分离后的化合物不必再还原)。 鉴别是根据化合物的不同性质来确定其含有什么官能团,是哪种化合物。如鉴别一组化合物,就是分别确定各是哪种化合物即可。在做鉴别题时要注意,并不是化合物的所有化学性质都可以用于鉴别,必须具备一定的条件: (1)化学反应中有颜色变化 (2)化学反应过程中伴随着明显的温度变化(放热或吸热) (3)反应产物有气体产生 (4)反应产物有沉淀生成或反应过程中沉淀溶解、产物分层等。 本课程要求掌握的重点是化合物的鉴别,为了帮助大家学习和记忆,将各类有机化合物的鉴别方法进行归纳总结,并对典型例题进行解析。 一.各类化合物的鉴别方法 1.烯烃、二烯、炔烃: (1)溴的四氯化碳溶液,红色腿去 (2)高锰酸钾溶液,紫色腿去。 2.含有炔氢的炔烃: 1)硝酸银,生成炔化银白色沉淀 (2)氯化亚铜的氨溶液,生成炔化亚铜红色沉淀。 3.小环烃:三、四元脂环烃可使溴的四氯化碳溶液腿色 4.卤代烃:硝酸银的醇溶液,生成卤化银沉淀;不同结构的卤代烃生成沉淀的速度不同,叔卤代烃和烯丙式卤代烃最快,仲卤代烃次之,伯卤代烃需加热才出现沉淀。 5.醇: (1)与金属钠反应放出氢气(鉴别6个碳原子以下的醇); (2)用卢卡斯试剂鉴别伯、仲、叔醇,叔醇立刻变浑浊,仲醇放置后变浑浊,伯醇放置后也无变化。 6.酚或烯醇类化合物: (1)用三氯化铁溶液产生颜色(苯酚产生兰紫色)。 (2)苯酚与溴水生成三溴苯酚白色沉淀。 7.羰基化合物: (1)鉴别所有的醛酮:2,4-二硝基苯肼,产生黄色或橙红色沉淀; (2)区别醛与酮用托伦试剂,醛能生成银镜,而酮不能; (3)区别芳香醛与脂肪醛或酮与脂肪醛,用斐林试剂,脂肪醛生成砖红色沉淀,而酮和芳香醛不能; (4)鉴别甲基酮和具有结构的醇,用碘的氢氧化钠溶液,生成黄色的碘仿沉淀。 8.甲酸:用托伦试剂,甲酸能生成银镜,而其他酸不能。 9.胺:区别伯、仲、叔胺有两种方法 (1)用苯磺酰氯或对甲苯磺酰氯,在NaOH溶液中反应,伯胺生成的产物溶于NaOH;仲胺生成的产物不溶于NaOH溶液;叔胺不发生反应。 (2)用NaNO2+HCl: 脂肪胺:伯胺放出氮气,仲胺生成黄色油状物,叔胺不反应。 芳香胺:伯胺生成重氮盐,仲胺生成黄色油状物,叔胺生成绿色固体。 10.糖: (1)单糖都能与托伦试剂和斐林试剂作用,产生银镜或砖红色沉淀; (2)葡萄糖与果糖:用溴水可区别葡萄糖与果糖,葡萄糖能使溴水褪色,而果糖不能。 (3)麦芽糖与蔗糖:用托伦试剂或斐林试剂,麦芽糖可生成银镜或砖红色沉淀,而蔗糖不能。二.例题解析 例1.用化学方法鉴别丁烷、1-丁炔、2-丁炔。 分析:上面三种化合物中,丁烷为饱和烃,1-丁炔和2-丁炔为不饱和烃,用溴的四氯化碳溶液或高锰酸钾溶液可区别饱和烃和不饱和烃,1-丁炔具有炔氢而2-丁炔没有,可用硝酸银或氯化亚铜的氨溶液鉴别。因此,上面一组化合物的鉴别方法为: 例2.用化学方法鉴别氯苄、1-氯丙烷和2-氯丙烷。 分析:上面三种化合物都是卤代烃,是同一类化合物,都能与硝酸银的醇溶液反应生成卤化银沉淀,但由于三种化合物的结构不同,分别为苄基、二级、一级卤代烃,它们在反应中的活性不同,因此,可根据其反应速度进行鉴别。上面一组化合物的鉴别方法为: 例3.用化学方法鉴别下列化合物苯甲醛、丙醛、2-戊酮、3-戊酮、正丙醇、异丙醇、苯酚 分析:上面一组化合物中有醛、酮、醇、酚四类,醛和酮都是羰基化合物,因此,首先用鉴别羰基化合物的试剂将醛酮与醇酚区别,然后用托伦试剂区别醛与酮,用斐林试剂区别芳香醛与脂肪醛,用碘仿反应鉴别甲基酮;用三氯化铁的颜色反应区别酚与醇,用碘仿反应鉴别可氧化成甲基酮的醇。鉴别方法可按下列步骤进行:(1)将化合物各取少量分别放在7支试管中,各加入几滴2,4-二硝基苯肼试剂,有黄色沉淀生成的为羰基化合物,即苯甲醛、丙醛、2-戊酮、3-戊酮,无沉淀生成的是醇与酚。(2)将4种羰基化合物各取少量分别放在4支试管中,各加入托伦试剂(氢氧化银的氨溶液),在水浴上加热,有银镜生成的为醛,即苯甲醛和丙醛,无银镜生成的是2-戊酮和3-戊酮。(3)将2种醛各取少量分别放在2支试管中,各加入斐林试剂(酒石酸钾钠、硫酸酮、氢氧化钠的混合液),有红色沉淀生成的为丙醛,无沉淀生成的是苯甲醛。(4)将2种酮各取少量分别放在2支试管中,各加入碘的氢氧化钠溶液,有黄色沉淀生成的为2-戊酮,无黄色沉淀生成的是3-戊酮。 (5)将3种醇和酚各取少量分别放在3支试管中,各加入几滴三氯化铁溶液,出现兰紫色的为苯酚,无兰紫色的是醇。 (6)将2种醇各取少量分别放在支试管中,各加入几滴碘的氢氧化钠溶液,有黄色沉淀生成的为异丙醇,无黄色沉淀生成的是丙醇。例4.用化学方法鉴别甲胺、二甲胺、三甲胺。 分析:上面三种化合物都是脂肪胺,分别为伯、仲、叔胺。伯胺和仲胺在氢氧化钠溶液存在下,能与苯磺酰氯发生反应,生成苯磺酰胺。伯胺反应后生成的苯磺酰胺,因其氮原子上还有一个氢原子,显示弱酸性,能溶于氢氧化钠而生成盐;仲胺生成的苯磺酰胺中,其氮原子上没有氢原子,不溶于氢氧化钠而呈固体析出;叔胺不发生反应,因此,可用此反应(兴斯堡反应)鉴别三种化合物。鉴别方法如下: 例5.用化学方法鉴别葡萄糖、果糖、蔗糖。 分析:上面三种化合物都是糖,葡萄糖、果糖是单糖,具有还原性,能被托伦试剂和斐林试剂氧化,而蔗糖是非还原性双糖,因此,可用托伦试剂和斐林试剂将蔗糖与葡萄糖、果糖区别;葡萄糖是醛糖,可被溴水氧化,而果糖是酮糖,不被溴水氧化,因此,溴水可将二者区别。

  • 【讨论】石墨炉测铅,测定溶剂背景突然变大

    昨天用[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]测定产品中的铅候突然出了问题。进四-甲基二戊酮出现0.09ABS背景干扰,更换新石墨管后背景值更大至1.2ABS,进超纯水和空气又没有问题--||| 与岛津工程师也沟通过,他们说“超纯水和空气没有问题,仪器本身应该是没问题的,一定是四-甲基二戊酮本身有污染,或进样器有污染,可是我更换三瓶四-甲基二戊酮,进样器也重新清洗过,还是没效果。。。 后来认为可能是光源的问题,更换了空心阴极灯和氘灯,清洗石墨帽、锥以及视窗,对其进行波长效准,还是不行。。。请大家帮忙分析一下

  • 热脱附-气相色谱/质谱法测定固定污染源废气中挥发性有机物

    前言在我国,VOCs是指常温下饱和蒸汽压大于70 Pa、常压下沸点在260℃以下的有机化合物,或在20℃条件下,蒸汽压大于或者等于10 Pa且具有挥发性的全部有机化合物。通常分为非甲烷碳氢化合物(简称NMHCs)、含氧有机化合物、卤代烃、含氮有机化合物、含硫有机化合物等几大类。VOCs参与大气环境中臭氧和二次气溶胶的形成,其对区域性大气臭氧污染、PM2.5污染具有重要的影响。大多数VOCs具有令人不适的特殊气味,并具有毒性、刺激性、致畸性和致癌作用,特别是苯、甲苯及甲醛等对人体健康会造成很大的伤害。VOCs是导致城市灰霾和光化学烟雾的重要前体物,主要来源于煤化工、石油化工、燃料涂料制造、溶剂制造与使用等过程。本方法参考《HJ 734-2014 固定污染源废气 挥发性有机物的测定 固相吸附-热脱附/气相色谱-质谱法》的测试方法,使用全自动热解析仪建立了固定污染源废气中挥发性有机物的检测方法。方法得到的挥发性有机物校正曲线R2 均在0.990以上,回收率为93.6%~108.4%,RSD为1.23%~9.87%。都满足了HJ734-2014中相应的要求。关键词 全自动热解析仪,HJ734-2014,固定污染源废气,挥发性有机物1、 仪器和设备1.1 CDS 7550S 全自动热解析仪;1.2 GC- MS2010气相色谱-质谱仪;1.3 吸附管: Carbograph1 60/80,Carbograph2 60/80,Carboxen 1000 60/80混合填料,1/4英寸×3.5英寸;1.4 容量瓶:5mL,A级。2、 试剂和材料2.1甲醇(色谱纯, Fisher Chemical);2.2 内标标准溶液:ρ=2000μg/mL,1,2-二氯乙烷-d4和甲苯-d8,国家标准物质;2.3 4-溴氟苯:ρ=2000μg/mL,国家标准物质;2.4标准溶液: ρ=2000μg/mL,国家标准物质;2.5标准贮备液:ρ=1000μg/mL用甲醇(2.1)稀释标准贮备液(2.4),避光低温保存;2.6 内标使用液:ρ=50μg/mL用甲醇(2.1)稀释标准贮备液(2.2),避光低温保存;2.7 4-溴氟苯使用液:ρ=50μg/mL用甲醇(2.1)稀释标准贮备液(2.3),避光低温保存。3、测试过程3.1 样品分析方法3.1.1 热脱附条件吸附管初始温度:室温;聚焦冷阱初始温度:-5℃; 干吹流量:50ml/min;干吹时间: 5min;吸附管脱附温度:270 ℃;吸附采样管脱附时间:3min;脱附流量:50ml/min;聚焦冷阱温度:-5℃;聚焦冷阱脱附温度:250 ℃;冷阱脱附时间: 3min;传输线温度:150 ℃。3.1.2 GC-MS检测条件色谱柱:MEGA-624ms 60m*0.25mm*1.40μm;进样口温度:220℃;柱流速:1.5mL/min(恒流);进样方式:分流进样,分流比15:1;柱箱温度:38℃,保持2min,以5℃/min升温至150℃,以10℃/min升温至220℃,保持2min。离子源:EI 源;离子源温度:250℃;离子化能量:70eV;扫描方式:全扫描;扫描范围:SIM;溶剂延迟:2.0min;电子倍增电压:与调谐电压一致;接口温度:250℃。3.3校准曲线绘制分别移取一定量的标准贮备液(2.5)加到容量瓶(1.4)中,并用甲醇(2.1)定容至刻度,将容量瓶垂直振摇三次,混合均匀, 配制目标化合物浓度分别为 5、10、20、50、100μg/mL 标准系列。用微量注射器取 1.0μL 混标溶液注入老化好的空白吸附管,同时在吸附管中加入 1.0μL内标使用液(2.6),1.0μL 4-溴氟苯使用液(2.7),得到含量为 5.00、10.0、20.0、50.0、100ng 的校准系列吸附管,每根吸附管的内标含量均为 50ng。将采样管直接放入样品罐中,样品罐有自密封效果,无需加装密封帽。分析过程种可通过仪器的干吹功来代替离线的氮气吹扫过程,省去挨个给采集管进行离线氮吹带来的麻烦。按照3.1样品分析方法从低浓度到高浓度依次测定,记录标准系列目标化合物和相对应内标的保留时间、定量离子的响应值。4、实验结果4.1目标化合物的色谱图https://ng1.17img.cn/bbsfiles/images/2022/10/202210081513294122_1633_3191395_3.png图2挥发性有机物标样色谱图4.2标准曲线结果以目标化合物峰面积为纵坐标,浓度为横坐标,用线性拟合建立校准曲线。https://ng1.17img.cn/bbsfiles/images/2022/10/202210081513297590_9342_3191395_3.png图3异丙醇标准曲线结果以异丙醇为例,图3为其标准曲线。表1统计了所有化合物的线性结果R2值,以及RF-RSD。22种目标物的R2 均在0.993以上,其中大部分都在0.998以上。满足HJ734-2014中8.3.2要求的曲线相关系数需大于等于 0.995。表1 线性结果化合物名称保留时间/minR2RF-RSD丙酮7.1840.9936 25.72异丙醇7.4240.99969.57正己烷9.2890.998912.38乙酸乙酯10.6810.99729.11苯12.4710.99838.42六甲基二硅氧烷12.3090.993227.463-戊酮14.4180.996810.38正庚烷13.1020.9981 6.60甲苯16.8490.99757.16环戊酮18.8790.9977 7.49乙酸丁酯18.6870.996113.59丙二醇单甲醚乙酸酯21.0740.99993.92乙苯20.7550.99735.69间、对二甲苯21.0740.99993.922-庚酮22.3510.9992 10.38苯乙烯22.1540.9999 3.65邻二甲苯22.1540.9989 3.65苯甲醚23.3290.9996 4.271-癸烯24.8250.99993.352-壬酮28.9080.9968 8.791-十二烯30.3490.9995 6.124.3 精密度及准确度结果对浓度为5ng、50 ng 、100ng的低中高三个浓度分别进行了 8 次平行测定,得到精密度和准确度结果,见表2、表3、表4。三个浓度点的精密度和准确度结果均满足HJ734-2014中10.1和10.2规定的精密度0.8%-36.1%,准确度91%-122%的要求。表2 5ng精密度准确度结果化合物保留时间/min计算浓度/ng平均浓度/ ngRSD/%平均回收率/%12345678丙酮7.1845.145.335.535.724.964.75 4.484.595.068.84101.2异丙醇7.4244.49 4.67 5.12 4.55 4.61 4.82 5.37 5.244.866.9897.2正己烷9.2895.575.385.355.454.885.155.074.735.205.63104乙酸乙酯10.6815.324.985.644.564.685.315.424.765.087.78101.6苯12.4715.194.97 5.69 5.144.905.245.395.265.224.79104.4六甲基二硅氧烷12.3094.994.855.185.575.404.775.375.175.165.37103.23-戊酮14.4185.264.855.324.614.344.544.654.894.817.1996.2正庚烷13.1024.89 5.114.945.034.875.495.045.125.063.92101.2甲苯16.8495.525.555.615.155.285.595.605.085.424.02108.4环戊酮18.8794.864.014.784.894.564.455.325.114.758.5895.0乙酸丁酯18.6874.355.324.644.325.314.204.554.764.689.1993.6丙二醇单甲醚乙酸酯21.0744.905.064.915.084.684.795.415.044.984.4299.6乙苯20.7554.944.985.095.034.785.015.695.315.105.47102.0间、对二甲苯21.0744.905.064.915.084.684.795.415.044.984.4299.62-庚酮22.3514.695.244.914.984.434.994.985.144.925.1998.4苯乙烯22.1544.805.044.964.994.664.935.575.225.025.50100.4邻二甲苯22.1544.805.044.964.994.664.935.575.225.025.50100.4苯甲醚23.3294.474.424.754.444.684.555.434.864.707.1394.01-癸烯24.8254.544.874.664.654.454.615.305.084.776.1495.42-壬酮28.9085.124.525.295.054.914.925.225.135.024.83100.41-十二烯30.3494.904.945.094.894.825.065.215.195.012.93100.2表3 50ng精密度准确度结果化合物保留时间/min计算浓度/ ng平均浓度/ ngRSD/%平均回收率/%12345678丙酮7.18446.549.7 49.952.254.952.353.851.751.45.16102.8异丙醇7.42450.049.048.7 46.350.248.551.850.349.4 3.3298.8正己烷9.28943.150.450.046.448.345.644.651.647.56.4095.0乙酸乙酯10.68152.950.249.651.053.750.550.848.550.93.30101.8苯12.47149.947.648.950.253.049.649.447.249.53.6199.0六甲基二硅氧烷12.30946.251.858.348.747.745.958.652.352.29.87104.43-戊酮14.41850.146.147.251.353.850.251.648.749.9 5.0599.8正庚烷13.10244.051.552.044.147.153.544.251.948.5 8.4797.0甲苯16.84950.049.948.051.253.750.450.747.750.2 3.73100.4环戊酮18.87950.452.446.850.653.450.654.351.751.34.45102.6乙酸丁酯18.68748.949.649.252.754.251.752.649.451.03.92102.0丙二醇单甲醚乙酸酯21.07446.749.448.948.849.649.748.949.148.9 1.9397.8乙苯20.75550.550.648.151.753.850.751.648.650.7 3.55101.4间、对二甲苯21.07446.749.448.948.849.649.748.949.148.9 1.9397.82-庚酮22.35146.348.848.348.150.949.351.148.949.0 3.1498.0苯乙烯22.15447.548.647.347.750.149.040.748.348.5 2.1297.0邻二甲苯22.15447.548.647.347.750.149.040.748.348.5 2.1297.0苯甲醚23.32947.048.749.048.350.849.749.948.449.2 2.6598.41-癸烯24.82545.847.346.845.949.647.248.147.547.3 2.5894.62-壬酮28.90842.846.649.249.253.551.253.349.649.47.1698.81-十二烯30.34947.450.048.648.251.550.251.650.849.8 3.1599.6表4 100ng精密度准确度结果化合物保留时间/min计算浓度/ng平均浓度/ ngRSD/%回收率/%12345678丙酮7.184104.6 104.0 104.2 101.6 102.7 104.6102.4101.8 103.2 1.23103.2 异丙醇7.424102.1 105.498.4101.2104.8102.5103.9105.4102.92.37102.9正己烷9.289102.2 99.72 101.2104.8102.5103.9105.4 105.4103.01.29103.0乙酸乙酯10.68195.694.694.3102.995.895.396.2106.0100.8 4.44100.8 苯12.471102.1 101.9111.8106.0107.1104.8102.2105.9105.23.18105.2六甲基二硅氧烷12.309101.3 105.5103.4104.895.7105.598.6102.8102.23.44102.23-戊酮14.418103.9102.8106.1102.2 98.499.7103.2100.8102.12.41102.1正庚烷13.102104.2102.8102.3102.7101.8 99.0101.792.4100.83.68100.8甲苯16.849105.5103.0102.8103.5103.9101.1103.7111.5104.43.02104.4环戊酮18.879107.8107.199.798.6100.9101.4104.7103.6102.93.40102.9乙酸丁酯18.68798.6102.5105.6103.799.7102.4103.6103.3102.42.21102.4丙二醇单甲醚乙酸酯21.074101.6104.5105.5103.4105.2100.9101.499.3102.72.19102.7乙苯20.755102.1101.4107.1101.4109.899.9101.2100.9103.03.40103.0间、对二甲苯21.074101.6104.5105.5103.4105.2100.9101.499.3102.72.19102.72-庚酮22.351104.8100.7 103.8105.2105.7103.1105.7104.7104.21.60104.2苯乙烯22.154101.3103.5103.8106.4107.6100.9104.499.9103.52.59103.5邻二甲苯22.154101.3103.5103.8106.4107.6100.9104.499.9103.52.59103.5苯甲醚23.329100.897.798.599.8101.9102.7100.9101.7100.51.72100.51-癸烯24.825101.3106.3103.0108.0100.699.0107.999.3103.23.63103.22-壬酮28.908108.9107.7101.7102.8104.0103.8100.1101.9103.92.90103.91-十二烯30.349102.9103.2105.4101.0102.8101.3104.8101.5102,91.57102,95、结果与讨论本实验参考《HJ 734-2014固定污染源废气 挥发性有机物的测定 固相吸附-热脱附/气相色谱-质谱法》,建立了固定污染源废气中挥发性有机物的测定方法。方法得到的挥发性有机物的校正曲线R2 都在0.990以上,回收率为93.6%~108.4%,RSD为1.23%~9.87%,都满足了HJ734-2014中相应的要求。参考标准1、HJ 734-2014固定污染源废气 挥发性有机物的测定 固相吸附-热脱附/气相色谱-质谱法

  • 【原创大赛】使用平面四通阀控制气动六通阀的一种尝试

    【原创大赛】使用平面四通阀控制气动六通阀的一种尝试

    在气相色谱分析中,六通阀的使用非常的普遍,常见的对六通阀的控制方式有手动切换,电动切换和气动切换。电动切换主要是使用电机转动来带动阀的转动从而实现六通阀的切换;气动切换则是使用气体的压力变换来实现六通阀的切换。之前使用的一台用于做非甲烷总烃的仪器使用的是气动控制六通阀自动进样,但是由于用于气动控制的两位五通阀坏掉了,重新购买需要一定的时间,又急于做实验,刚好手头有一个平面四通阀,于是便暂时借用,用以维持实验。 为了便于说明仪器改装的具体内容,即使用平面四通控制气动六通阀——首先对六通阀、六通阀的气动控制做一个简单的说明。1 六通阀的工作原理 首先说明一下六通阀的工作原理,以平面六通为例: 下图是一个简单的平面六通的两种状态:http://ng1.17img.cn/bbsfiles/images/2017/01/201701191701_668400_1856270_3.png 图示1 状态1和状态2的区别在哪里呢?平面六通的结构我们可以将其分为两部分:定子和转子。拆开来看,结构如下:http://ng1.17img.cn/bbsfiles/images/2017/10/2016071818472272_01_1856270_3.png 图示2 定子上的六个孔与六通阀的六个气路接口是一一对应的,即一个孔对应一个气路;转子上则刻了三个槽,将转子放在定子上,定子上相邻的两个孔则通过一个槽连接相通。如果像以上所说切换六通阀,槽连接的两个孔发生变化,则六通阀的连接进行以下变换(图示3)http://ng1.17img.cn/bbsfiles/images/2017/10/2016071818390515_01_1856270_3.png 图示3 六通阀的气路切换2 气动切换六通阀原理 了解到了六通阀的原理,接下来介绍气动切换六通阀的简单原理——气动切换六通阀,简单的说,就是使用气体压力代替人手动工作来切换六通阀。 如下图5所示,当气缸1或者气缸2分别进气或者出气时候,带动气缸中心的轴有一个运动距离,这个轴运动所带来的力可以使转子发生在平面的转动(如图4),从而带动六通阀的进行切换。http://ng1.17img.cn/bbsfiles/images/2017/10/2016071819391517_01_1856270_3.png 图示4 销子沉入转子的豁口后,轴的转动可以带动转子的转动http://ng1.17img.cn/bbsfiles/images/2017/10/2016071819181235_01_1856270_3.png 图示5 六通阀气动气缸原理简图 在使用六通阀启动控制时候,一般都是采用自动控制的,即仪器设置程序到一定的时间来自动切换气体,这个时候就需要使用到两位五通阀,工作原理见下图6http://ng1.17img.cn/bbsfiles/images/2017/10/2016071819212584_01_1856270_3.png 图示6 两位五通阀控制六通阀的气动切换 即气源接在两位五通阀的1位置,作为进气端;在初始状态下1、4连通,2、3排气或者1、2连通,4、5排气,从而带动传动轴的运动使六通阀切换。3 使用平面四通阀代替两位五通阀进行气动控制 两位五通阀坏掉之后,由于手头暂时没有新的两位五通,要继续进行实验,就需要寻找替代品,这个替代品就需要满足两个要求:(1)可以手动或者自动切换;(2)一端进气的同时,另外一端需要排气,而平面四通阀刚好可以满足以上要求,工作原理如下图7所示:http://ng1.17img.cn/bbsfiles/images/2017/10/2016071819450736_01_1856270_3.png 图示7 平面四通进行气动切换的原理图 平面四通的原理就是相邻的两个相通,这种情况下如图所示,当两个孔相连进气时候,另外两个孔相连正好可以排气——唯一的不方便就是需要手动切换四通阀。平面四通的实物图如下图8:http://ng1.17img.cn/bbsfiles/images/2016/07/201607181955_600988_1856270_3.png 图示8 平面四通实例 总结:从实际使用上来看,使用平面四通和使用两位五通阀所需要的气路是一样的,两者的共同点就是:在一端进气的同时,可以保证另外一端的出气。唯一的不同大概就是使用两位五通是自动控制的,使用平面四通则需要手动计时切换。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制