当前位置: 仪器信息网 > 行业主题 > >

苄基鸟嘌呤

仪器信息网苄基鸟嘌呤专题为您提供2024年最新苄基鸟嘌呤价格报价、厂家品牌的相关信息, 包括苄基鸟嘌呤参数、型号等,不管是国产,还是进口品牌的苄基鸟嘌呤您都可以在这里找到。 除此之外,仪器信息网还免费为您整合苄基鸟嘌呤相关的耗材配件、试剂标物,还有苄基鸟嘌呤相关的最新资讯、资料,以及苄基鸟嘌呤相关的解决方案。

苄基鸟嘌呤相关的资讯

  • 食品添加剂6-苄基腺嘌呤等检测国标通过评审
    近日,江门检验检疫局承担制定的“进出口食品添加剂6-苄基腺嘌呤的检测方法”和“进出口食品添加剂蔗糖聚丙烯醚的检测方法”两项国家标准顺利通过了国家认监委、国家标准委和中国检科院等部门的专家评审。   由于此前国内外均无相关标准,江门检验检疫局这两项国家标准的顺利通过评审为今后我国对进出口食品添加剂6-苄基腺嘌呤、蔗糖聚丙烯醚的检测提供了保证。这也是江门局首次承担国家标准的制定,填补了该局国家标准制修订工作的空白,为继续参与国家标准的制修订打下了良好的基础,标志着该局的科研能力迈上了一个新的台阶。
  • 哈医大通过色谱法建立食物嘌呤数据库
    哪些食物中含有嘌呤物质?每种食物中的嘌呤含量又是多少?今后,痛风的“原凶”——嘌呤物质,将首次得到准确、科学的“再现”,为痛风患者健康膳食提供指导依据。日前,一项规范测定常见食物中嘌呤含量的研究在哈尔滨医科大学进入研究阶段。科研人员将初步建立我国食物中嘌呤含量的数据资料,并补充到国家食物成分数据库中,为降低国内高尿酸血症和痛风病的患病率及症状减轻提供科学数据。   据了解,随着经济发展和人们膳食结构的改变,我国人群高尿酸血症和痛风的患病率呈直线上升趋势。有资料显示,我国20岁以上的人群约2.4%—5.7%存在血尿酸过高的情况,从而引起痛风的发病。而在对痛风患者的治疗中,医生发现,低嘌呤膳食是治疗该病的关键。   据哈医大公共卫生学院潘洪志副教授介绍,在我国食物成分表中,目前尚无食物中嘌呤含量的准确数据,临床及有关网站上公布的嘌呤含量数据普遍来源不清且彼此不一致,对嘌呤含量高低类别的划分标准也不尽相同,给广大痛风患者治疗时带来极大疑惑。   哈医大科研人员此次开展的嘌呤含量研究拟采用高效液相色谱法,通过现代科技手段,测定我国常见各类食品中的嘌呤含量,包括腺嘌呤、鸟嘌呤、次黄嘌呤、黄嘌呤等,并计算总嘌呤含量,提高嘌呤测定方法的准确度、精密度和重现性,获得准确的常用食物嘌呤含量数据。   测定结果评出后,将初步建立我国食物中嘌呤含量的数据资料,并补充到国家食物成分数据库中,以此作为痛风患者健康膳食指导的依据。专家表示,该项研究预计在今年内完成,它将为降低我国高尿酸血症和痛风病的患病率和减轻症状提供科学数据,对公共卫生具有重大意义。   嘌呤为有机化合物,在人体内嘌呤氧化会变成尿酸,而尿酸过高就会引起痛风。据了解,痛风是长期嘌呤代谢障碍、血尿酸增高引起组织损伤的一种疾病。其临床特点为高尿酸血症、急性关节炎反复发作、痛风石形成、关节畸形、肾实质性病变等。   痛风俗称“富贵病”。该病一般在男性身上发病,且会遗传。有痛风的病人发病时,除用药物治疗外,重要的是平时注意忌口,以限制饮食中嘌呤的含量。
  • 精准基因编辑时代到来!华人科学家重排原子精准编辑基因!
    p   当我们在谈论生命时,我们谈论的都是化学分子。DNA也好,蛋白质也罢,正是这些生物大分子发生的原子重排,才催生出无数生化反应,为地球带来生命。 /p p style=" text-align: center " img title=" 001.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/c0bbe2b5-3415-4594-bc51-72b794f474de.jpg" / /p p style=" text-align: center " strong   本研究的主要负责人David Liu教授(图片来源:Broad研究所) /strong /p p   今日,Broad研究所的华人学者David Liu教授公布了一项了不起的研究!他的团队开发了一种“碱基编辑器”,能在细胞内用简单的化学反应,使DNA的一种碱基进行原子重排,让它变成另一种碱基。与CRISPR-Cas9等流行的基因编辑手段不同,这种技术无需使DNA断裂,就能完成基因的精准编辑。这项研究发表在了顶尖学术期刊《自然》上。 /p p style=" text-align: center " img title=" 002.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/25395cd0-f659-4486-b95c-07cbee1c729a.jpg" / /p p style=" text-align: center "   strong  将近一半的致病变异来源于C-G组合到A-T组合的改变(图片来源:《自然》) /strong /p p   要看懂这项研究,我们先来看看DNA本身。我们知道,DNA的双螺旋结构由4种碱基:腺嘌呤(A)、胸腺嘧啶(T)、胞嘧啶(C)与鸟嘌呤(G)组成。它们A和T配对,C和G配对,就像字母一样,编写了人类的遗传信息。然而由于化学结构的问题,C这个字母不大稳定,容易出现自发的脱氨突变,把原本的好好的C-G组合,变成A-T组合。据估计,每天人类的每个细胞里都会出现100-500次这样的突变。而人类已知的致病单碱基变异,高达一半属于这种突变。 /p p style=" text-align: center " img title=" 003.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/3079c9ad-aff8-4c2e-b7ab-54dc17de1cbe.jpg" / /p p style=" text-align: center " strong   合适的脱氨反应能将腺嘌呤转变为结构类似于鸟嘌呤的肌苷(图片来源:《自然》) /strong /p p   换句话说,如果我们能定点修复这些基因突变,把A-T变回C-G,就有望从根源上纠正人类的许多遗传疾病。这正是Liu教授团队的研究思路。在实验室中,他们观察到了一个很有意思的现象——腺嘌呤(A)在出现脱氨反应后,会变成一种叫做肌苷的分子,而它与鸟嘌呤(G)的结构非常接近,也能成功骗过细胞里的DNA聚合酶。简单的几轮DNA复制后,A-T组合就能变回C-G。 /p p   但科学家们遇到一个棘手的问题——自然界中并没有能够在DNA中催化腺嘌呤进行脱氨反应的酶。 /p p   如果没有现成的道路,那就开辟一条!在人体中,科学家们发现了一种叫做TadA的酶,它能催化转运RNA上的腺嘌呤(A),使它脱氨。尽管催化的对象不同,但Liu教授的团队认为它有足够的应用潜力。于是,利用演化的力量,科学家们对TadA进行了改造。他们将编码TadA的基因引入大肠杆菌内,并寄希望于这种酶能在大肠杆菌快速的繁衍中,突变出催化DNA腺嘌呤的能力。 /p p style=" text-align: center " img title=" 004.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/77d2e2cb-4181-4432-b16c-f701f36c851b.jpg" / /p p style=" text-align: center "   strong  本研究中,碱基编辑器的作用机理(图片来源:《自然》) /strong /p p   同时,科学家们也想到,DNA上的腺嘌呤特别多,总不能把他们全都转化为鸟嘌呤吧。因此,特异性地对某个碱基进行催化,是这套系统迈入实际应用的关键。Liu教授想到了自己的实验室邻居张锋教授,这名华人学者以CRISPR基因编辑技术而闻名于世。如果我们借助CRISPR-Cas9系统的精准,但不让它切开双链DNA,或许就能定点对腺嘌呤进行原子重排,让它变成另一种碱基。为此,科学家们在筛选TadA酶的过程中,也同样引入了一套切不动DNA的特殊CRISPR-Cas9系统,用于精准定位。 /p p   功夫不负有心人!这套系统虽然极为复杂,但在经历了漫长的7代筛选后,Liu教授团队终于开发出了一款全新的“碱基编辑器”,其核心正是能有效针对DNA的TadA酶。无论是在细菌里,还是在人类细胞中,这款编辑器都能顺利发挥作用。在人类细胞里,它的编辑效率超过了50%! /p p style=" text-align: center " img title=" 005.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/e1500d56-ca99-4809-932c-2bd6c898751f.jpg" / /p p style=" text-align: center "   strong  这套系统能有效用于人类细胞(图片来源:《自然》) /strong /p p   尽管这套系统利用了CRISPR-Cas9系统,但科学家们在这篇论文里指出,他们开发的技术与CRISPR-Cas9系统各有千秋。在矫正单碱基突变方面,它比CRISPR-Cas9系统更为有效,也更“干净”。它几乎没有引起任何随机插入和删除等突变,在全基因组里的脱靶效应也要好于CRISPR-Cas9技术。要知道,这可是人们对CRISPR-Cas9技术安全性的最大担忧之一。 /p p   先前,研究人员们也同样开发了编辑其他碱基的方法。目前,Liu教授的团队已经有了把C变成T,把A变成G,把T变成C,以及把G变成A的工具。诚然,这些工具目前距离人类临床应用还有不小的距离。但要知道,它只涉及碱基的原子重排,无需让DNA双链断裂,从而降低了基因治疗过程中的风险。此外,许多遗传病都是单基因突变,用这些工具进行治疗也显得更为有的放矢。 /p p   我们感谢Liu教授的团队为我们带来如此令人兴奋的基因编辑新工具。毫无疑问,基因编辑的时代已经到来,你准备好迎接冲击了吗? /p p   参考资料:[1] Programmable base editing of AT to GC in genomic DNA without DNA cleavage /p p & nbsp /p
  • Nature Biotechnology综述,叩响CRISPR之门 -- 基因编辑进化史
    近年来,CRISPR被认为是最简单高效的基因编辑方式,也成为了生物技术发展史上进展最为迅猛的新兴技术之一。2022年6月,正值CRISPR发文十周年,Nature Biotechnology 同步发表了一篇名为《Knock-in on CRISPR' s door》的Reviw,梳理了10年来科学家们对CRISPR基因编辑技术不断探索突破的成果[1]。图1. 2022年6月Nature Biotechnology 发文基于CRISPR的基因疗法如火如荼基因治疗(Gene Therapy)是指将外源正常基因导入靶细胞,以纠正或补偿缺陷和异常基因引起的疾病,以达到治疗目的。基因治疗以其一次给药终生治愈遗传疾病的独特潜力让一切不可能变为有可能。截止今日,通过对clinicaltrials.gov检索,全球已有56项基于CRISPR的临床试验正在进行,中国就有21项,占到3成以上。目前大部分的基因疗法为体外疗法(ex vivo),即细胞在体外通过CRISPR编辑后再输注到体内发挥功能,常见疾病如肿瘤免疫疗法CAR-T,遗传性疾病如地中海贫血,镰刀状贫血症血红蛋白遗传病等在内的各种血液病。与之相对的即体内疗法(in vivo)则是直接将治疗基因递送到患者病患部位,从而治疗疾病,目前已在先天性黑蒙、遗传性甲状腺转淀粉样变性和遗传性血管性水肿等疾病表现出巨大潜力。图2. 全球CRISPR临床试验分布热点图图源:clinicaltrials.gov基因编辑的发展历程早期基因编辑--ZFN和TALEN基因编辑技术主要发展了三代,早期的两代基因编辑主要以ZFN和TALEN为主,这两种基因编辑技术相对简单,可以理解为“基因剪刀”——切割特定 DNA 序列的限制酶。但ZFN技术存在很明显的缺点,如容易脱靶,且可能产生一系列不可预测的基因突变,引发细胞毒性。TALEN技术的出现,在一定程度上优化了ZFN技术存在的脱靶问题,具有设计简单,特异性和活性更高的优点,因此成为基因功能研究和基因治疗研究中有力的工具。美中不足的是,由于TALEN针对不同靶点,每次都需重复构建融合蛋白,因此会造成一定的工作繁琐。第三代基因编辑--CRISPRCRISPR/Cas9是继ZFN、TALEN之后出现的第三代“基因组定点编辑技术”。CRISPR/Cas9 系统由两部分组成,分别是Cas9 蛋白和guide RNA(single-guide RNA,sgRNA)。Cas9蛋白具有解旋酶活性,可以将DNA链解旋,同时具有核酸内切酶活性,可以切割DNA链。其原理是核酸内切酶 Cas9 蛋白通过向导 RNA (guide RNA, gRNA)识别特定基因组位点,并对双链 DNA 进行切割造成 DSB后,通过HDR和NHEJ实现基因的定向敲除或插入。图3. CRISPR/Cas9 示意图[2]相比于传统的ZFN和TALEN技术,CRISPR/Cas9技术更为简单,只需要构建针对特定位点的sgRNA,而且效率也比前面几种技术更高,在疾病治疗研究中发挥越来越重要的作用。然而,CRISPR/Cas9系统仍然存在着一定的局限性,这种局限性主要体现在功能发挥时系统对DNA上PAM序列的依赖性以及切割时潜在的脱靶效应。因此科学家们在CRISPR/Cas9的基础上开发了更加高效且广谱的精准基因编辑工具—单碱基编辑技术BE(Base Editor)和精准基因编辑工具PE(Prime Editors)。单碱基编辑技术BE(Base Editor)单碱基编辑技术是一种基于脱氨酶与CRISPR/Cas9系统融合形成的技术。2016年哈佛大学David Liu实验室首次报道开发出CBE单碱基编辑工具,通过将SpCas9与胞嘧啶脱氨酶(cytidine deaminase, CyD, 如APOBEC1)融合,可以在一定的突变窗口内实现胞嘧啶(C)到胸腺嘧啶(T)的单碱基转换(图4)[3]。2017年10月底,该实验室进一步开发出ABE单碱基编辑工具,实现了从腺嘌呤(A)到鸟嘌呤(G)的精确转换(图5),为基因编辑提供了新的研究工具[4]。图4. CBE示意图[3]图5. ABE示意图[4]相比于CRISPR/Cas9技术,BE技术可以既不引入DNA双链断裂,又不需要重组修复模板,整体提高了编辑的安全性和精准性,而且其效率远远高于由发生DSB引起的HDR和NHEJ修复方式,对于许多点突变造成的遗传疾病具有很大的应用潜能。近年来,多个实验室也发表了类似的工具,并在这些工具的基础上进行了更为深入的改造与优化。邦耀生物科学家团队以不同单链DNA脱氨酶结构域与Cas9切口酶相结合为基础,开发全新一代的DNA碱基编辑工具—超高活性的HyCBEs和双碱基编辑器A&C-BEmax以及等多种碱基编辑新工具,提高了编辑活性并拓宽靶点范围,以实现更广泛、更精确的基因编辑,相关研究成果也发表在Nature Cell Biology、Nature biotechnology等国际著名期刊[5]。图6. 超高精度碱基编辑器HyCBE示意图图7. 双碱基编辑器示意图精准基因编辑工具PE(Prime Editors)2019年10月21日,哈佛大学David Liu实验室开发出了全新的精准基因编辑工具PE (Prime Editors)[6],PE是以CRISPR/Cas9系统为基础,在两方面加以优化:1. pegRNA:pegRNA(prime editingguide RNA)是一段改造后的sgRNA,它在传统sgRNA的3' 末端增加了一段RNA序列。这个RNA序列包括一段引物结合位点(Primer-binding site, PBS),用于与被切割的目标DNA链互补;还包括一段进行逆转录的模板(RT template)的序列,它与切口下游的DNA序列同源,且在RT序列上存在有相应的编辑突变(如点突变或插入缺失突变)。图8. pegRNA的改造[4]2.融合蛋白:将nCas9(H840A)与M-MLV逆转录酶融合。图9. PE结构示意图[4]在pegRNA的引导下,融合蛋白会到达基因组上的目的序列,并对含PAM的靶DNA链进行切割(pegRNA的非互补链)。此后,PBS序列与被切割的目标DNA链互补配对,逆转录酶即从端口空缺处启示逆转录。逆转录产物(DNA)即包含我们所期待的编辑突变。这段逆转录DNA会入侵并进入基因组DNA,发生整合,并进行切口的修复。只要RT序列允许,那么就可以采用此原理完成碱基的点突变(任意转换或颠换)以及片段的插入和缺失。图10. PE原理示意图[4]相比于其它基因编辑工具(采用ZFN,TALEN,CRIPSR/Cas9等产生DSB进行HDR或NHEJ修复或通过base editing系统进行单碱基编辑),PE的优势在于可以在不依赖DSB的前提下,能够实现更精准的编辑,更广的试用范围。但同时相比CBE和ABE,PE的劣势也随之体现,编辑效率不如前者,并且产生随机Indels的可能也会随之提高。图11. PE与ABE、CBE的效率比较[6]最后,除了上述几种基因编辑工具以外,科学家们还发现了除Cas9外的Cas家族的其它一系列蛋白,如 Cas12、Cas13、CasX等。这些新的发现有望使基因疗法能够解决更广泛的遗传疾病,推动生物医学的基础研究和临床基因治疗研究。
  • Nature|天津工生所:新一代碱基编辑技术开发获进展
    碱基编辑(base editing,BE)作为前沿的基因组编辑技术,能够在基因组水平上实现精确、高效的单碱基编辑。该技术广泛应用于基础研究、基因治疗和细胞工厂构建等领域。常用的DNA碱基编辑器主要是通过将可编程的DNA结合蛋白(如Cas9)与碱基脱氨酶融合实现的,包括胞嘧啶碱基编辑器(CBE)、腺嘌呤碱基编辑器(ABE)以及糖基化酶碱基编辑器(GBE)等,可以实现C-to-T、A-to-G以及C-to-G等种类的碱基编辑。然而,这些碱基编辑器是针对C和A碱基的直接编辑,且所包含的脱氨酶可能导致非Cas9依赖的DNA或RNA脱靶。 中国科学院天津工业生物技术研究所研究员毕昌昊带领的合成生物技术研究团队,联合研究员张学礼带领的微生物代谢工程研究团队,开发了不依赖脱氨酶(deaminase-free,DAF)的碱基编辑器DAF-CBE和DAF-TBE,分别在大肠杆菌中实现C-to-A、T-to-A的碱基颠换,在哺乳动物细胞中实现C-to-G、T-to-G的碱基颠换编辑。 该研究通过定向进化改造了人源尿嘧啶糖基化酶(UNG)的两个突变体UNG(N204D)和UNG (Y147A),获得了两种高活性的DNA糖基化酶,分别可以作用于胞嘧啶碱基的CDG4和胸腺嘧啶碱基的TDG3。进而,研究将这两种DNA糖基化酶与nCas9(Cas9、D10A)融合,构建了CDG4-nCas9和TDG3-nCas9两种碱基编辑器,用于在大肠杆菌中进行C-to-A和T-to-A的编辑。实验结果显示,CDG4-nCas9和TDG3-nCas9在大肠杆菌中的编辑效率最高分别达到58.7%和54.3%。进一步,研究针对Homo sapiens密码子优化版本的CDG4-nCas9和TDG3-nCas9,在HEK293T细胞中实现了C-to-G和T-to-G的颠换编辑,编辑效率分别达到38.8%和48.7%。这两种编辑器的脱靶效果低于常用的胞嘧啶碱基编辑器(BE4max)和糖基化酶碱基编辑器(CGBEs)。因此,研究将这两个编辑器命名为DAF-CBE和DAF-TBE。此外,通过进一步的工程改造,该团队优化了CDG和TDG的空间位置,得到了DAF-CBE2和DAF-TBE2的新版本。它们的编辑窗口从原来的间隔序列(protospacer sequence)5'端移动到中间区域,且C-to-G和T-to-G的编辑效率分别提高了3.5倍和1.2倍。DAF-CBE和DAF-TBE实现了人诱导多功能干细胞(hiPSC)高效编辑。 综上所述,经过定向进化改造,该团队开发的DAF-CBEs和DAF-TBEs碱基编辑器在大肠杆菌和哺乳动物细胞中实现了高效的碱基颠换编辑,无需使用脱氨酶。与现有的引导编辑器(prime editing)或糖基化酶碱基编辑器(GBEs)相比,DAF-BEs具有相当的编辑效率、更小的尺寸和更低的脱靶率,这扩展了碱基编辑器的编辑类型,为工业菌株铸造和生物医药等领域的相关研究提供了新的技术工具。 近日,相关研究成果发表在《自然-生物技术》(Nature Biotechnology)上。研究工作得到国家重点研发计划、国家自然科学基金、天津市合成生物技术创新能力提升行动专项、中国科学院青年创新促进会和天津市自然科学基金的支持。论文链接DAF-BEs碱基编辑器的设计及进化
  • 上海市食品学会立项团体标准《豆制品中嘌呤的测定 高效液相色谱-串联质谱法》
    各有关单位:根据《上海市食品学会团体标准工作管理办法》的相关规定,由上海清美绿色食品(集团)有限公司牵头申报的《豆制品中嘌呤的测定 高效液相色谱-串联质谱法》团体标准,经审核,该标准符合立项条件,同意立项。请起草单位按照《上海市食品学会团体标准工作管理办法》有关要求,严格把控标准质量关,切实提高标准制定的质量和水平,增加标准的适用性和实效性,按期完成标准编制的相关工作。联系人:上海市食品学会 郭燕茹 021-54891268 18018674491邮箱:ssfs_office@163.com关于《豆制品中嘌呤的测定 高效液相色谱-串联质谱法》团体标准立项的通知.pdf
  • 工欲善其事,必先利其器——基因编辑工具的开发
    基因编辑已经被越来越广泛的用于生物学的研究和应用当中,例如合成生物学,基因治疗,药物靶点发现,mRNA剪接,蛋白定向进化等等。我们在使用各种各样的基因编辑工具时,不禁感叹这些工具是多么的精巧绝伦。但科研人员发现基因编辑工具,改进这些工具的功能、效率并非易事。高效、精准、便捷的基因编辑工具,一直是人们梦寐以求的科研神器。我们熟知的CRISPR系统,最常听到、见到的是Cas9蛋白,但Cas蛋白并不是只有Cas9,下图中为Cas蛋白的分类。Cas蛋白功能分类图[1]在如此多的Cas蛋白中,发现如Cas9、Cas12a、Cas13a等可以作为基因编辑工具的,可谓凤毛麟角,少之又少。从1987年报道CRISPR重复序列,到2002年发现Cas4基因具有核酸外切酶功能,直到2012年发现Cas9可以通过RNA介导控制基因组编辑,历经20余年。在CRISPR风靡全球后,对于该系统的开发并未停止,技术大牛们又开发出: 基于CRISPR系统,通过sgRNA介导突变后不具有切割活性的Cas9蛋白(dCas9)对于基因表达进行激活或抑制的CRISPRa和CRISPRi技术; 将失去催化活性的Cas蛋白(dCas)或只有切割一条链活性的Cas蛋白(nCas)和可作用于单链DNA的脱氨酶进行融合,实现对靶点碱基替换的胞嘧啶碱基编辑器(CBE)和腺嘌呤碱基编辑器(ABE)[2];工欲善其事,必先利其器。对于基因编辑而言,需要基因编辑工具这个金刚钻。对于基因编辑工具的开发,更需要一把“利器”。Beckman可以为科研工作者提供基因编辑技术与工具开发的整套解决方案。
  • 毒豆芽检测色谱耗材选择指南
    豆芽常检有毒有害成分:2,4-D(2,4-二氯苯氧乙酸)、4-氯苯氧乙酸钠、6-苄基腺嘌呤、尿素、恩诺沙星、亚硝酸盐与硝酸盐、亚硫酸盐、赤霉素 据中新网沈阳4月18日报道,沈阳市公安局皇姑分局端掉6个黄豆芽黑加工点,查获掺入非食品添加剂豆芽25余吨,主要送往饭店做水煮鱼和水煮肉片底料。经检测,豆芽中含有亚硝酸钠、尿素、恩诺沙星、6-苄基腺嘌呤激素,其中,人食用含亚硝酸钠的食品会致癌,恩诺沙星是动物专用药,禁止在食品中添加。我司现根据DB33/625.2-2007《无公害豆芽质量安全要求》和《DB11/T 379-2006》豆芽中4-氯本氧乙酸钠、6-苄基腺嘌呤、2,4-滴、赤霉素、福美双的测定方法汇总出其中所需要色谱耗材供大家参考和选择。 下载pdf: 毒豆芽检测色谱耗材选择指南.pdf 粮食和蔬菜中2,4-滴残留量的测定(GB/T 5009.175-2003) 试样中2,4-滴用有机溶剂提取,用三氟化硼丁醇溶液将2,4-滴衍生成2,4-滴丁酯,液液萃取,柱层析净化除去干扰物质,以气相色谱电子捕获检测器测定,依据色谱峰保留时间定性,外标法面积定量。 上述带*号产品选择的说明: a.在订购2,4标准品(CDCT-C11940000)后是进行甲酯还是丁酯衍生化? 国标方法中是采用14%三氟化硼丁醇溶液(CFFC-X0034-1SET)进行丁酯化,北京地方标准方法上采用的是14%三氟化硼甲醇溶液(CFEQ-4-110056-0250)进行甲酯化后检验,从经济的角度和购买的方便性上考虑,我们推荐使用甲酯化的方法,当然,您也可以根据方法需要选择丁酯化方法。 b. 是否还需要购买2,4-D甲酯标准品(CDCT-C11945000)或者2,4-D丁酯标准品(CDCT-C11941000)? 若您选择甲酯化方法,2,4-D经14%三氟化硼甲醇溶液(CFEQ-4-110056-0250)衍生化为2,4-D甲酯,您可选择购买2,4-D甲酯标准品(CDCT-C11945000); 若你选择丁酯化方法,2,4-D经10-20%三氟化硼丁醇溶液(CFFC-X0034-1SET)衍生为2,4-D丁酯,您可选择购买2,4-D丁酯标准品(CDCT-C11941000)。 选择2,4-D甲酯标准品或者2,4-D丁酯标准品有助于判断2,4-D甲酯或者2,4-D丁酯气相色谱出峰保留时间和计算2,4-D甲酯或者丁酯衍生化过程转化率。 2,4-D甲酯标准品和2,4-D丁酯标准品都是备选产品,可根据您需要选择购买或者不购买。 豆芽中4-氯苯氧乙酸钠的测定(DB11/T 379&mdash 2006) 试样中的4-氯苯氧乙酸钠用稀碱提取后,在酸性条件下用固相萃取柱将样品中的4-氯苯氧乙酸吸附,使其与基体干扰物分离,再用甲醇洗脱并用高效液相色谱法测定,以保留时间定性,外标法峰面积定量。 豆芽中6-苄基腺嘌呤的测定(DB11/T 379&mdash 2006) 豆芽中残留的6-苄基腺嘌呤经酸化甲醇提取后,高效液相色谱法测定,以保留时间定性,外标法峰面积定量。 豆芽菜中尿素测定 参考《豆芽菜中尿素测定的异常现象分析及方法改进》 正常的绿豆芽在生芽过程中,应不添加任何物质,但其生长过程缓慢、周期长,为加速生长周期,人为的加入尿素促进其生长,使芽变粗变长,但也使豆芽中尿素残留增加,对人体健康构成危害。 检测原理:尿素和亚硝酸钠在酸性溶液中生成二氧化碳和氨的气体,当加入格里斯千试剂时,掺有尿素的样品呈现黄色外观,正常的样品呈现紫红色。 注意事项: a.浓硫酸加入量 由于样品的取样量少,少量的浓硫酸即可达到所需的强酸性,因此,建议将浓硫酸的加入量改为0.5ml,为原方法用量的一半; b.亚硝酸钠加入量,当溶液中亚硝酸盐含量高时,与显色剂作用,可呈现黄色,是因为产生的偶氮色素被过量的亚硝酸氧化褪色适当的稀释后方可产生正常紫红色。因为样品中尿素的含量相对较低,它只能与少量的亚硝酸钠作用,当加入过量的亚硝酸钠时,剩余的亚硝酸钠就会将产生的偶氮色素氧化,使之褪色而产生黄色,造成假阳性,故亚硝酸钠的添加量非常关键。当亚硝酸钠的用量减少一半时,但显色效果不明显,当减少到1/4用量时,颜色反应非常灵敏,空白及阴性对照管呈紫红色,阳性管呈黄色,根据尿素的有无样品呈现出不同的颜色。 除产品描述外,上述内容均摘自宋晶瑶、赵玉梅、王琳《豆芽菜中尿素测定的异常现象分析及方法改进》   毒豆芽中恩诺沙星检 参考:GB/T 21312-2007 动物源性食品中14中喹诺酮药物残留检测方法 液相色谱-质谱/质谱法 方法提要:用0.1mol/LEDTA-Mcllvaine缓冲液(pH4.0)提取样品中的喹诺酮类抗生素,经过滤和离心后,上清液经HLB固相萃取柱净化,高效液相色谱-质谱/质谱测定,用阴性样品基质加标法定量。 GB 5009.33-2010 食品中亚硝酸盐与硝酸盐的测定 第一法 离子色谱法 试样经沉淀蛋白质、除去脂肪后,采用相应的方法提取和净化,以氢氧化钾溶液为淋洗液,阴离子交换柱分离,电导检测器检测。以保留时间定性,外标法定量。 第二法 分光光度法 亚硝酸盐采用盐酸萘乙二胺法测定,硝酸盐采用镉柱还原法测定。试样经沉淀蛋白质、除去脂肪后,在弱酸条件下亚硝酸盐与对氨基苯磺酸重氮化后,再与盐酸萘乙二胺偶合形成紫红色染料,外标法测得亚硝酸盐含量。采用镉柱将硝酸盐还原成亚硝酸盐,测得亚硝酸盐总量,由此总量减去亚硝酸盐含量,即得试样中硝酸盐含量。 GB/T 5009.34-2003食品中亚硫酸盐的测定 第一法 盐酸副玫瑰苯胺法 亚硫酸盐与四氯汞钠反应生成稳定的络合物,再与甲醛及盐酸副玫瑰苯胺作用生成紫红色络合物,与标准系列比较定量。 SN 0350-95 出口水果中赤霉素残留量检验方法 以丙酮提取样品中赤霉素,然后用乙酸乙酯提取,再用缓冲溶液凡提取后,在薄层层析板上除去干扰物质,最后用荧光分光光度法测定。 了解更多检测方法请进入上海安谱公司网站: www.anpel.com.cn
  • 上海市食品学会发布《豆制品中嘌呤的测定 超高效液相色谱-串联质谱法》团体标准征求意见稿
    各相关单位代表及专家:《豆制品中嘌呤的测定 超高效液相色谱-串联质谱法》团体标准已完成征求意见稿的编制,根据《团体标准管理规定》的要求,为保证标准的科学性、严谨性和可操作性,现在《全国团体标准信息平台》面向社会各界公开征求意见。请各相关单位代表及专家审阅标准文本,对本标准提出宝贵意见和建议,并于2023年5月27日前将《团体标准征求意见反馈表》(附件二) 以E-mail形式反馈给上海市食品学会。逾期未复函,将按无异议处理。此致! 附件一:《豆制品中嘌呤的测定 超高效液相色谱-串联质谱法》(征求意见稿)附件二:《团体标准征求意见反馈表》联系人:郭燕茹联系电话:18018674491电子邮箱:ssfs_office@163.com上海市食品学会2023年4月28日关于《豆制品中嘌呤的测定 超高效液相色谱-串联质谱法》团体标准征求意见函.pdf《豆制品中嘌呤的测定 超高效液相色谱-串联质谱法》(征求意见稿).pdf《豆制品中嘌呤的测定 超高效液相色谱-串联质谱法》征求意见反馈表.doc
  • 上海市食品学会批准发布《豆制品中嘌呤的测定 超高效液相色谱-串联质谱法》团体标准
    各会员单位、有关单位:根据《上海市食品学会团体标准工作管理办法》相关规定,现批准发布《豆制品中嘌呤的测定 超高效液相色谱-串联质谱法》团体标准(T/SSFS0007-2023),2023年7月18日发布,2023年8月1日实施,现予公告。附件一:关于批准发布《豆制品中嘌呤的测定 超高效液相色谱-串联质谱法》团体标准的公告上海市食品学会2023年7月25日上海市食品学会关于批准发布《豆制品中嘌呤的测定 超高效液相色谱-串联质谱法》团体标准的公告.pdf
  • 新型安全高效的单碱基编辑系统—TaC9-CBE
    近十年来,以 CRISPR 系统为代表的基因编辑技术迅猛发展,在包括农业、畜牧业和生物医药等各个领域的基础科研和应用中不断涌现出耀眼成果。2020年 CRISPR 技术因其强大的功能和影响力摘得诺贝尔化学奖。然而,随着研究的深入,其引起的 DNA 双链断裂和高脱靶效应等一系列副反应也逐渐走入人们的视野,CRISPR 技术的安全性开始备受关注。单碱基编辑技术以其高效和精确的基因编辑能力,成为目前最有希望治愈各种遗传疾病的明星工具。由 gRNA 与 Cas9-脱氨酶形成 RNP 复合物,gRNA 引导复合物结合在基因组目标位点,Cas9 负责解开 DNA 双链,并将靶向链切断,脱氨酶对非靶向单链 DNA(ssDNA)上的碱基进行脱氨,细胞修复过程中实现碱基转换。然而,单碱基编辑工具被发现具有明显的脱靶编辑效应,主要包括 Cas9 非依赖的 DNA 和 RNA 脱靶效应和 Cas9 依赖的 DNA 脱靶效应。通过对脱氨酶的修饰可大大降低蛋白对核酸链的非特异结合,从而最大限度地减少 Cas9 非依赖的脱靶效应。但由于 Cas9 蛋白本身存在的 Cas9 依赖性脱靶,人们依然对其临床应用的安全性表示担忧。尽管目前已有多种方法尝试解决这一问题,但都无法在保持目标效率的同时解决 Cas9 依赖性脱靶问题。2022年3月,中国科学院广州生物医药与健康研究院赖良学研究员与五邑大学邹庆剑副教授团队合作,首次将腺苷脱氨酶与转录激活因子样效应子(TALE)融合,开发了一种新型腺嘌呤碱基编辑系统——TaC9-ABE。该新型碱基编辑系统可以完全消除Cas9依赖性脱靶,而不影响任何靶向编辑效率。相关成果以:Elimination of Cas9-dependent off-targeting of adenine base editor by using TALE to separately guide deaminase to the target site 为题在线发表在 Cell Discovery 期刊上。TaC9-ABE单碱基编辑技术原理近日,该团队再次证实将 TALE 技术与 Cas9 技术结合起来,同样可以实现更加安全高效的胞嘧啶碱基编辑系统——TaC9-CBE。相关成果以:Eliminating predictable DNA off-target effects of cytosine base editor by using dual guiders including sgRNA and TALE 为题于在线发表在 Molecular Therapy 期刊上。TaC9-CBE单碱基编辑技术原理在 TaC9-ABE 和 TaC9-CBE 碱基编辑系统中,研究人员将脱氨酶与 nCas9 分离,脱氨酶与 TALE 连接,nCas9 与 gRNA 结合,由 TALE 和 gRNA 分别将两个效应器引导到 DNA 靶位点,同时发挥作用,实现靶位点的 A to G 或 C to T 的突变。如果 nCas9 被 gRNA 带到错误的位点,由于没有脱氨酶的存在,碱基转换就不能发生;同理,如果脱氨酶被 TALE 引导至错误的位点,由于没有 nCas9 的存在,不能形成单链 DNA,脱氨酶发挥不了作用,碱基转换也不能发生,这样就彻底地排除了发生 Cas9 依赖性脱靶的可能性。研究结果证实,TaC9-碱基编辑系统在保证高效但碱基编辑的同时,对 gRNA 依赖的脱靶位点以及 TALE 依赖的脱靶位点进行深度测序均未检测到脱靶现象。图3.各种CBE编辑器的Cas9依赖脱靶测试这项研究为基因编辑动植物的培育和人类遗传性疾病的基因治疗提供了一个安全的单碱基编辑工具。TaC9-ABE 论文中,中国科学院广州生物医药与健康研究院博士研究生刘洋和蓝婷、五邑大学周小青博士和广东工业大学博士研究生周继曾为论文共同第一作者。中国科学院广州生物医药与健康研究院赖良学研究员和五邑大学邹庆剑副教授为论文的共同通讯作者。TaC9-CBE 论文中,广东工业大学博士生周继曾、中国科学院广州生物医药与健康研究院博士生刘洋、硕士生魏愈惠和五邑大学硕士生郑淑文为论文共同第一作者。中国科学院广州生物医药与健康研究院赖良学研究员、五邑大学张焜教授和邹庆剑副教授为论文的共同通讯作者。论文链接:https://www.nature.com/articles/s41421-022-00384-4https://doi.org/10.1016/j.ymthe.2022.04.010
  • 基因编辑技术,最后一块拼图补齐:线粒体中实现A到G碱基转换
    生物技术重大发现的历史时间表。图片来源:韩国基础科学研究所  科技创新世界潮韩国基础科学研究所(IBS)基因组工程中心研究人员开发了一种新的基因编辑平台,称为类转录激活因子效应相关脱氨酶(TALED)。TALED是能够在线粒体中进行A到G碱基转换的碱基编辑器。这一发现是长达数十年治愈人类遗传疾病之旅的结晶,而TALED,也被认为是基因编辑技术中最后缺失的一块拼图。研究成果发表在最新一期《细胞》杂志上。“基因剪刀”的魔力与缺憾从1968年第一个限制性内切酶的发现、1985年聚合酶链式反应的发明到2013年CRISPR介导的基因组编辑的示范,生物技术的每一个新突破发现都进一步提高了操纵DNA的能力。特别是,新近开发的CRISPR—Cas系统(“基因剪刀”)允许对活细胞进行全面的基因组编辑。这为通过编辑人类基因组中的突变来治疗以前无法治愈的遗传疾病开辟了新的可能性。虽然基因编辑在细胞的核基因组中取得了很大的成功,然而,科学家们在编辑拥有自己基因组的线粒体方面并不成功。线粒体,即所谓的“细胞的动力室”,是细胞中的微小细胞器,充当能量产生工厂。由于它是能量代谢的重要细胞器,如果基因发生突变,则会导致与能量代谢相关的严重遗传疾病。韩国IBS基因组工程中心主任金镇秀解释说:“由于线粒体DNA缺陷,出现了一些非常严重的遗传性疾病。例如,导致双眼突然失明的Leber遗传性视神经病变是由线粒体DNA中的简单单点突变引起的。”另一种线粒体基因相关疾病包括伴有乳酸性酸中毒和卒中样发作的线粒体脑肌病,它会缓慢破坏患者的大脑。一些研究甚至表明,线粒体DNA异常也可能是阿尔茨海默病和肌肉萎缩症等退行性疾病的原因。线粒体DNA可以编辑了线粒体基因组遗传自母系。线粒体DNA中有90个已知的致病点突变,总共影响至少5000人中的1人。由于向线粒体递送方法的限制,许多现有基因组编辑工具无法使用。例如,CRISPR—Cas平台不适用于编辑线粒体中的这些突变,因为引导RNA无法进入细胞器本身。另一个问题是缺乏这些线粒体疾病的动物模型。这是因为目前不可能设计出创建动物模型所需的线粒体突变。”金镇秀补充道,“缺乏动物模型使得开发和测试这些疾病的治疗方法变得非常困难。”因此,编辑线粒体DNA的可靠技术是基因组工程的前沿领域之一,为了征服所有已知的遗传疾病,必须探索这一前沿领域,世界上最优秀的科学家多年来一直在努力使其成为现实。2020年,由美国哈佛大学博德研究所和麻省理工学院刘如谦领导的研究团队创建了一种新的碱基编辑器,名为DddA衍生的胞嘧啶碱基编辑器,可从线粒体中的DNA进行C到T转换。这是通过创造一种称为碱基编辑的新基因编辑技术来实现的,该技术将单个核苷酸碱基转化为另一个碱基而不会破坏DNA。但是,这种技术也有其局限性。它不仅仅限于C到T转换,而且主要限于TC基序,使其成为有效的TC-TT转换器。这意味着它只能纠正90个已确认的致病性线粒体点突变中的9个,也就是10%。长期以来,线粒体DNA的A到G转换被认为是不可能的。研究第一作者赵兴义说:“我们开始思考克服这些限制的方法。因此,我们创建了一个名为TALED的新型基因编辑平台,可实现A到G的转换。我们的新碱基编辑器极大地扩展了线粒体基因组编辑的范围。这不仅可为建立疾病模型作出巨大贡献,还可为开发治疗方法作出巨大贡献。值得注意的是,其在人类mtDNA中能够进行A到G的转化可纠正90种已知致病性突变中的39种,约为43%。”研究人员通过融合三种不同的成分创造了TALED。第一个组分是转录激活子样效应子,它能够靶向DNA序列。第二个组分是TadA8e,一种用于促进A到G转化的腺嘌呤脱氨酶。第三个组分DddAtox,是一种使DNA更容易被TadA8e获取的胞嘧啶脱氨酶。TALED的一个有趣的方面是TadA8e在具有双链DNA的线粒体中执行A到G编辑的能力。这是一种神秘的现象,因为TadA8e是一种已知仅对单链DNA具有特异性的蛋白质。金镇秀说:“以前没有人想过使用TadA8e在线粒体中进行碱基编辑,因为它应该只对单链DNA具有特异性。正是这种跳出框框的思维方法真正帮助我们发明了TALED。”诺贝尔奖级别的成果研究人员推测,DddA tox允许通过瞬时解开双链来访问双链DNA。这个转瞬即逝的临时时间窗口允许TadA8e作为一种超快作用的酶,快速进行必要的编辑。除了调整TALED的组件外,研究人员还开发了一种能够同时进行A到G和C到T碱基编辑以及仅进行A到G碱基编辑的技术。研究团队通过创建包含所需mtDNA编辑的单个细胞衍生克隆来展示这项新技术。他们发现TALED既不具有细胞毒性,也不会导致mtDNA不稳定。此外,核DNA中没有不良的脱靶编辑,mtDNA中的脱靶效应也很少。研究人员现在的目标是通过提高编辑效率和特异性来进一步改善TALED,最终为纠正胚胎、胎儿、新生儿或成年患者中的致病mtDNA突变铺平道路。研究团队还专注于开发适用于叶绿体DNA中A到G碱基编辑的TALED,叶绿体DNA编码植物光合作用中的必需基因。基础科学研究所科学传播者苏威廉称赞道:“我相信这一发现的意义可与2014年获得诺贝尔奖的蓝色LED的发明相媲美。就像蓝色LED是让我们拥有高能效白光LED光源的最后一块拼图一样,预计TALED将迎来基因组工程的新时代。”
  • 太原食安委毒豆芽整治因无检测能力“形同虚设”
    3月12日,太原市食品安全委员会在全市范围内展开为期3个月的豆芽质量安全专项整治行动。记者4月15日采访得知,一个月里,12315(消费者投诉举报电话)和12331(食品药品投诉电话)没有接到一起群众关于问题豆芽的投诉,因为群众根本不知道自己买到的是不是问题豆芽。   当记者带着疑似问题豆芽拨通举报电话,被客服人员告知需自己到工商、食药监局、山西省检验检疫技术中心进行检测取证,但这几个部门均无法给出定论,疑似问题豆芽就这样因为检测难,逃脱了被举报的命运。   市民不知何为&ldquo 毒豆芽&rdquo 购买豆芽全凭感觉   &ldquo 您知道什么样的豆芽是问题豆芽吗?&rdquo 4月11日时许,正值早市高峰期,记者来到省城康乐街菜市场,向正在买菜的市民提出了这个问题,得到的答案大都是&ldquo 不知道&rdquo 。   在菜市场入口处的一家菜摊,一名约40多岁的阿姨正在挑选豆芽。记者问她选择豆芽的标准是什么,阿姨说:&ldquo 这家的豆芽又长又细,而且还有根尾巴。我觉得这样的豆芽就是新鲜的,应该不会有问题。&rdquo   记者随后走访了该市场的其余4家豆芽摊位,发现这里出售的主要是黄豆豆芽和绿豆豆芽。黄豆豆芽售价均为2.5元一斤,绿豆豆芽售价均为2元一斤。   有3家菜摊的摊主告诉记者,他们出售的豆芽是从河西批发市场批发的。只有一家摊主称豆芽是自己发的。   记者观察到,虽然豆芽的价格统一,但每家出售的豆芽粗细长短都有着明显的区别。各家摊主都称,自家的豆芽很新鲜、很安全,至于为何粗细长短不同,是因为&ldquo 发豆芽的时间长短不一&rdquo 导致的。   记者采访了解到,市民对于如何挑选豆芽标准不一,大多数人不知道问题豆芽有什么特征,只是凭感觉来购买。   一位市民对&ldquo 又细又长的豆芽是新鲜豆芽&rdquo 的说法并不赞同,她认为那样的豆芽是催熟的。还有的市民认为,&ldquo 粗短带弯&rdquo 的豆芽才是好豆芽&hellip &hellip   记者投诉疑似问题豆芽客服称需自己检测   3月12日,太原市食品安全委员会在全市范围内开展为期3个月的豆芽质量安全专项整治行动,全面整治豆芽生发、销售环节,依法打击豆芽生发过程中使用非食用物质和滥用食品添加剂的违法犯罪行为。   按照《豆芽卫生标准》《食品添加剂使用卫生标准》等,重点检查豆芽中是否含有亚硝酸钠、尿素、恩诺沙星、6-苄基腺嘌呤激素等食品禁止使用的添加剂。对于抽检发现使用上述添加物的,要及时送当地公安部门依法查处。并鼓励群众发现问题豆芽后,拨打12315、12331进行举报。   记者以消费者的身份拨通了消费者投诉举报电话12315,称买到了粗短且有些发黄的豆芽,怀疑是问题豆芽。客服人员表示,是否问题豆芽需要该辖区的工商所来鉴别,若情况属实,他们才受理投诉。   那么,如何鉴别豆芽是否有问题?记者采访了迎泽区工商所的一位工作人员,对方解释说:&ldquo 我们这里是无法鉴别问题豆芽的,需要联系太原市食药监局,如果真的检测出豆芽有问题,我们会做出进一步处理。&rdquo   记者接着拨通了食品药品投诉电话12331,称自己买到了疑似问题豆芽。客服人员表示,不能简单地凭描述就判断豆芽有问题。记者紧接着询问如何辨别问题豆芽,有无标准可供参考。   记者了解到,在打击问题豆芽行动开展的这一个月里,12315和12331均未接到群众投诉问题豆芽的举报电话。   省城仅一家单位能检测但目前不承揽业务   4月14日,记者带着分别在7家摊位购买的豆芽样品来到太原市食品药品监督管理局,询问如何检测问题豆芽。工作人员闫滨表示,目前市食药监局无法用实验来证实豆芽是否有问题,只能凭一些简单的方法来初步判断。而且现在也没有全国性的统一检测标准,即使检测出来,也没有标准作为参照。   哪个部门能检测豆芽是否含有禁止使用的添加剂呢?市食药监局综合协调处处长刘红保告诉记者,目前太原市只有山西省进出口检验检疫技术中心可以检测出豆芽是否有问题,且只能检测豆芽是否含有尿素和6-苄基腺嘌呤激素这两项,但需要举报人自己带样品去检测。   据记者了解,仅检测豆芽中是否含有6-苄基腺嘌呤激素这一项就需要花费上千元。太原市食品安全委员会相关负责人告诉记者,打击问题豆芽行动开始前,他们在万柏林区发现了3家制作疑似&ldquo 毒豆芽&rdquo 的小作坊。工作人员带着豆芽样品在省进出口检验检疫技术中心做了检测,测出含有6-苄基腺嘌呤激素,取缔了这3家豆芽作坊。这一检测过程持续了半个月,花费近7000元。   记者随后致电山西省进出口检验检疫技术中心,询问是否可以检测问题豆芽,接电话的工作人员表示,要请示领导。半小时后,记者再次拨通电话,工作人员回复:&ldquo 单位现在任务比较重,不承揽问题豆芽的检测业务。&rdquo 记者举报疑似问题豆芽的路就这样被堵上了。 晨报记者 赵云涛   编后语   豆芽虽小问题很大   面对日益严峻的食品安全问题,相关部门行动起来了,这是件好事。可豆芽质量安全专项整治行动开展一个月,没接到一起群众投诉举报。难道是老百姓对食品安全问题不在乎?还是太原市场上没有问题豆芽?应该都不是。   豆芽虽小,但只要牵涉到食品安全,问题就大了。我们的记者带着疑似问题豆芽走访了多个部门,始终无法判定豆芽是否有问题。没有证据就没办法举报,但去哪里找证据?我们陷入了死循环。退一步,即便山西省进出口检验检疫技术中心承揽个人申请的豆芽检测业务,又有多少人愿意为了检测2.5元一斤的豆芽而付出上千元的检测费呢?   现在,政策有了,行动也有了,但在离消费者最近的一环,豆芽质量安全专项整治行动被卡住了。所以,请再多走一步,给我们开一条从政策到行动的顺畅通道。
  • 实验室中首次“撞”出构建生命的四种基本碱基
    大约40亿年前,地球上开始出现早期生命。目前较为流行的一种理论认为,是陨石或小行星等地外天体的撞击触发了关键的化学反应,从而产生了一些与生命有关的物质。现在,捷克科学院的研究人员在实验室中重演了这一过程:他们利用激光轰击黏土和化学物质汤,模拟一颗高速小行星撞击地球时的能量,最终生成了构建生命的至关重要的基本组件&mdash &mdash 形成RNA必需的4种碱基。   研究人员在发表于美国《国家科学院学报》上的论文中称:&ldquo 这些发现表明,地球生命的出现并非意外,而是原始地球及其周围环境条件的直接结果。&rdquo   实验并未证明地球生命就是由此诞生的,因为从这四种碱基到生命的出现,中间还有很多必不可少的神秘步骤,但这可能是这一过程的一个起点。   论文领导作者、捷克科学院海依罗夫斯基物理化学研究所的斯瓦托普卢克· 思维斯说,科学家们此前已经能够用其他方法制造这些RNA碱基,比如使用化学混合物和高压,但这是首次通过实验来检验&ldquo 撞击产生的能量可触发关键化学反应&rdquo 的理论。   据物理学家组织网12月9日(北京时间)报道,研究人员用一个长约152米的激光器产生的无形激光束,轰击名为甲酰胺的化学物质汤,这种液体据认为存在于我们的原始星球上。该激光的功率非常高,在不到十亿分之一秒时间内的输出相当于几个核电站,产生的能量高达十亿千瓦,甲酰胺样本的温度瞬间升高至4200摄氏度以上,从而发生了一系列化学反应。研究人员在最终产品中,发现了RNA的四种碱基&mdash &mdash A(腺嘌呤)、G(鸟嘌呤)、C(胞嘧啶)和U(尿嘧啶),其中前三种也是DNA的碱基。   专家对这项实验的重要性看法不一。美国佛罗里达州应用分子进化基金会的杰出生物化学家史蒂夫· 本纳说,这项研究意义重大,因为它生成了早期地球上可能存在的原始材料。但英国医学研究委员会分子生物实验室的约翰· 萨瑟兰认为,产生的碱基量太少了,没有什么价值。   总编辑圈点   科学家们一般相信,生命起源可以追溯到天外来客,如宇宙射线和小行星。虽然已有很多办法在实验室里制造出了生命的&ldquo 零件&rdquo ,但我们对于生命的发生史只能猜想,不能实证。除非我们找到一颗适合的行星,制造高能量的撞击,再等上几亿年,看看有没有生命诞生。假如有那本事,地球人早就移民过去了。研究生命的诞生史好像没什么用,但自己的身世来历,人类哪能不关心呢!
  • 质检总局:食品添加剂剔除33种产品
    国家质检总局日前发布公告,从即日起,禁止对羟基苯甲酸丙酯等33种产品作为食品添加剂生产、销售和使用,其中包括对羟基苯甲酸丙酯等食品防腐剂、二氧化氯等食品用消毒剂。已批准的生产许可证书,由监管部门撤回并注销,并于今年12月20日前完成。与此同时,所有食品添加剂生产企业禁止生产上述33种产品,已生产的禁止作为食品添加剂出厂销售。食品生产企业也一律不得使用。 国家质量监督检验检疫总局《关于食品添加剂对羟基苯甲酸丙酯等33种产品监管工作的公告》(2011年第156号公告)   根据卫生部办公厅《关于〈食品添加剂使用标准〉(GB2760-2011)有关问题的复函》(卫办监督函[2011]919号,见附件),现就监管工作有关事项公告如下:   一、自本公告发布之日起,各省级质量技术监督局不再受理对羟基苯甲酸丙酯、对羟基苯甲酸丙酯钠盐、噻苯咪唑、次氯酸钠、二氧化氯、过氧化氢、过氧乙酸、氯化磷酸三钠、十二烷基苯磺酸钠、十二烷基磺酸钠、1-丙醇、4-氯苯氧乙酸钠、6-苄基腺嘌呤、单乙醇胺、二氯异腈氰尿酸钠、凡士林、硅酸钙铝、琥珀酸酐、己二酸、己二酸酐、甲醛、焦磷酸四钾、尿素、三乙醇胺、十二烷基二甲基溴化胺(新洁尔灭)、铁粉、五碳双缩醛、亚硫酸铵、氧化铁、银、油酸、脂肪醇酰胺、脂肪醚硫酸钠等33种产品的食品添加剂生产许可申请。   二、自本公告发布之日起,食品添加剂生产企业禁止生产上述33种产品,企业已生产的上述33种产品禁止作为食品添加剂出厂销售,食品生产企业禁止使用。   三、国家质检总局和省级质量技术监督局应当撤回并注销已批准的上述食品添加剂生产企业的生产许可证书。国家质检总局发证的企业由总局注销,省级质量技术监督局发证的企业由省局注销。2011年12月20日前应完成证书注销工作。   四、各级质量技术监督部门要加大监督执法力度,加强相关生产企业的监督检查,依法查处违法违规生产行为。相关情况及时报告当地政府和国家质检总局。   特此公告。   附件:卫生部办公厅《关于〈食品添加剂使用标准〉(GB2760-2011)有关问题的复函》(卫办监督函[2011]919号) 二〇一一年十一月四日
  • 液质联用仪证实"基因编辑猪"产生人胰岛素
    中国科学院广州生物医药与健康研究院29日发布消息称,该院赖良学课题组利用精确基因编辑技术对猪胰岛素基因进行了无痕定点修饰,使猪胰岛素基因编码生产人胰岛素,成功建立了完全分泌人胰岛素的基因编辑猪。这一研究成果近期被《分子细胞生物学杂志》在线发表。  根据国际糖尿病联盟在2015年发布的数据,世界范围内共有4.15亿名成年人患有糖尿病。2015年有500万人因糖尿病而死亡,超过了疟疾、肺结核与HIV的致死人数总和。  据课题组介绍,目前,对糖尿病的治疗包括胰岛素注射和胰岛移植。猪源胰岛素曾经被广泛采用,利用猪胰岛进行异种移植治疗糖尿病最近也取得良好进展。但猪与人相比,胰岛素蛋白存在一个氨基酸的差异,人胰岛素B链第30位氨基酸是苏氨酸,而猪胰岛素是丙氨酸。这一个氨基酸的差异使猪胰岛素在人体中的降血糖效价较低,而且长期使用容易诱发抗体产生。  研究人员李小平博士、杨翌博士和王可品博士研究生等将TALENs(转录激活因子样效应物核酸酶)及CRISPR(RNA介导的DNA核酸酶)技术与单链寡核苷酸结合,建立了猪基因组无痕定点编辑技术,利用该技术在体细胞中将猪胰岛素基因编码B链第30位丙氨酸的密码子GCC修改为编码苏氨酸的ACG,并获得了纯合子细胞株。同时,研究人员利用该细胞株作为核供体,通过体细胞核移植技术成功构建了人源化胰岛素克隆猪,利用高分辨率液相色谱串联质谱仪检测证实,从该基因修饰猪胰腺中提取的胰岛素完全为人胰岛素,而不含猪胰岛素。  研究人员说,该研究获得的人源化胰岛素基因修饰猪将为糖尿病的治疗提供人胰岛素,同时也将为临床异种胰岛移植治疗提供更为理想的供体来源。从技术层面来说,该成果也是第一次在大动物中实现无痕的基因组定点修饰,这种定点无痕技术的建立,将推动基因突变大动物疾病模型和具有农业育种价值的基因修饰大动物的培育。
  • “基因编辑”新突破能对抗恶性肿瘤?
    【英国《独立报》网站7月27日报道】题:科学家宣布用DNA编辑技术Crispr对抗致命疾病有突破性进展  一项极其精确地“编辑”人类基因组的革命性技术,首次被用于“剪贴”一种关键类型的免疫细胞的基因。该型免疫细胞参与保护机体免受从糖尿病、艾滋病病毒到癌症等范围广泛的一系列疾病的侵害。  科学家相信,这一新进展最终能够带来对抗病毒感染和恶性肿瘤的新方法。  研究人员首先在实验室中对免疫系统的T细胞进行“基因编辑”,然后把它们放回患者体内来预防疾病。  医疗研究人员多年来一直尝试对血液中的T细胞进行精确的基因治疗。T细胞参与防范病菌入侵和癌症,以及免疫系统攻击机体自身组织的自体免疫性疾病,比如I型糖尿病等。  牵头进行这项最新研究的美国加利福尼亚大学旧金山分校的亚历山大弗朗西斯科说,此前,研究人员在切除突变,然后准确地用健康DNA链取而代之的技术上一直未能取得成功。
  • 中科院PLOS发表RNA编辑新成果
    7月28日,来自中科院上海生命科学研究院植物生理生态研究所李轩研究组、上海巴斯德研究所郝沛研究组以及密歇根州立大学王红兵教授,在国际著名遗传学期刊《PLOS Genetics》发表一项合作研究,题为“The Landscape of A-to-I RNA Editome Is Shaped by Both Positive and Purifying Selection”。这项研究通过对多生物物种RNA编辑事件的系统发现和分析,首次揭示了RNA编辑表观遗传学位点的系统进化规律,以及其在动物神经功能和神经发育中发挥的主要作用。 自从20年前第一次被发现以来,RNA编辑已经成为多种生命形式的遗传编码变异的重要来源。RNA编辑的一个突出机制是,前体mRNA分子中腺苷的去氨基。脱氨基的事件,即A-to-I编辑,将特殊的腺苷(A)转换为肌苷(I)。在翻译中,肌苷被解码为鸟苷(G),从而导致密码子的变化,往往会引起蛋白质产物中的氨基酸替换。除了遗传再编码,A-to-I编辑已知也影响可变剪接,修改microRNA,和改变microRNA靶位点。A-to-I RNA编辑机械的主要组成部分,是作用于RNA(ADAR)家族酶的所谓的腺苷脱氨酶,ADAR酶作用于底物分子内的双链RNA(dsRNA)。关于底物靶向和编辑活性调节的细节,还是较少的;但是,有证据表明A-to-I编辑是共转录的,并且ADAR靶位点倾向于某些非随机的序列模式,并且很大程度上依赖于双链RNA的三级结构。 A-to-I RNA编辑生成的遗传变异,可扩展转录组的多样性和复杂性,它作为一个重要的机制可帮助支持关键的生物学功能。由于ADAR突变而缺乏A-to-I RNA编辑的动物模型,可导致小鼠胚胎或出生后致死,或在果蝇中显示神经缺陷。以前的研究在人类、小鼠、猴和果蝇中记录了许多A-to-I编辑靶基因。报道的编辑靶标情况,包括神经受体、离子转运蛋白和免疫反应受体。虽然多年来,科学家们都知道某些关键基因上A-to-I RNA编辑的例子,但是从进化的角度看,A-to-I编辑如何使转录组和蛋白质组多样化,以及到了何种程度,还是完全没有表征的。我们对于RNA编辑本身在进化中如何受到选择性力量的限制,还知之甚少。关于A-to-I RNA编辑提供的适应潜能,有各种不同的观点。 新一代测序技术和Model Organism ENCyclopedia Of DNA Elements (modENCODE)项目,成为模式生物的一种前所未有的资源,像果蝇和秀丽隐杆线虫,使得我们能够进行多基因组规模分析,以比较进化中的RNA编辑模式。 为了探讨RNA编辑的全景以及表征进化过程中施加在A-to-I编辑上的选择性限制,该研究小组基于modENCODE资源构建了一项研究,涉及这七种果蝇,它们有相应的参考基因组和转录组测序数据可用。该研究还补充了来自其他资源的数据,包括NCBI Sequence Read Archive (SRA)、NCBI Gene Expression Omnibus (GEO)、FlyBase和FlySNPdb数据库。 利用果蝇属作为一个模型系统——其代表了大约4500万年的进化时间,研究人员共确定了9281个A-to-I RNA编辑事件。通过与前人的研究成果,以及来自果蝇组织/发育样本或ADAR突变体的数据进行比较,并进行大规模阵列为基础的验证性实验,研究人员验证了这些事件。 通过系统发育分析,研究人员基于编辑位点的保守性,将A-to-I RNA编辑事件归类为三种不同类型。第一类位点发生在单基因家族基因上 第二类发生在多基因家族基因上,但位点不保守 第三类发生在多基因家族基因上,且位点保守。对这三类位点及其基因进行选择分析发现,第一和第二类位点均受到纯化选择(负选择)影响,而只有第三类位点受到正选择压力。重要的是,发现第三类位点高度富集于神经系统的元件和功能中。通过对这三类编辑位点进行不同组织、不同发育时期以及动物变态发育过程中的分布及变化分析,第一次发现了A-to-I RNA编辑在动物发育、交配(mating)等生理过程中动态变化的证据,进一步支持了三类不同编辑位点的重要功能。这些结果都指向神经系统功能,说明了RNA编辑表观遗传作用的适应性主要通过神经系统功能实现。神经系统功能是检验有益RNA编辑位点主要标准。以上发现,揭示了由RNA编辑表观遗传机制引入的编码可塑性,而产生一类新的二分变异。在二倍体有性生殖系统中,它是维持基因表达杂合性的一个重要机制,对克服等位杂合子分离有不可替代的优势。
  • Mol Cell|北大伊成器课题组开发新型RNA编辑技术RESTART
    2022年12月14日,北京大学伊成器课题组在Molecular Cell杂志在线发表了题为CRISPR-free, programmable RNA pseudouridylation to suppress premature termination codons的研究论文,首次报道了名为RESTART(RNA Editing to Specific Transcripts for Pseudouridine-mediAted PTC-ReadThrough)的新型RNA单碱基编辑技术。该技术利用改造的guide snoRNA,招募细胞内源的假尿苷合成酶复合物,在RNA特定位点处实现高效、准确地尿苷(U)到假尿苷(Ψ)的编辑。在mRNA的无义突变位点精准引入假尿苷修饰,将提前终止密码子转换成ΨAA、ΨAG或ΨGA,以实现提前终止密码子的通读及功能蛋白的全长表达。无义突变(Nonsense mutation)是基因序列中编码氨基酸的密码子突变成终止密码子(TAA,TAG,TGA)的单碱基突变。无义突变产生提前终止密码子(Premature termination codon,PTC),导致翻译提前终止,产生较小、不具功能的蛋白产物。根据人类基因突变数据库(Human Gene Mutation Database, www.hgmd.org)的统计,无义突变占据了超过20%的疾病相关单碱基突变。目前有多种潜在的技术可用于治疗无义突变疾病,但仍存在局限性。例如:(1)CRISPR/Cas9依赖的DNA碱基编辑技术可实现精准的碱基修复,但是仍存在安全性问题。细菌来源的Cas蛋白可能会引发人体免疫反应;并且一旦出现基因组水平上的脱靶,将会是永久性的。此外编辑元件尺寸较大,使药物的体内递送受到限制。(2)RNA碱基编辑技术是在RNA水平上进行的,不会对基因组序列进行永久改变,因此安全性较高。但是,RNA编辑工具的脱靶效应仍存在安全隐患。因此,领域内亟需拓展新型RNA编辑工具,开发更加特异和安全的RNA编辑器。图一、RESTART技术原理研究表明,RESTART技术具有广泛的适用性。在多种不同组织来源的细胞系以及人的原代细胞——例如支气管上皮细胞和皮肤成纤维细胞中,RESTART都可以介导高效和精准的编辑。在对疾病无义突变修复和蛋白功能恢复的诸多应用尝试中,RESTART的高效性均得到了充分验证,反映了该技术在疾病治疗中的巨大潜力。例如,RESTART成功恢复了来源于Hurler综合征小鼠的α-L-艾杜糖醛酸酶缺陷细胞中IDUA蛋白的功能。该技术为无义突变疾病的治疗和RNA假尿苷修饰的基础研究都提供了一种全新的工具。传统的RNA编辑技术主要是通过脱氨反应(如A-to-I或者C-to-U)实现碱基编辑,其产生的脱靶会在RNA上引入突变,从而存在安全隐患。与这些技术不同,假尿苷修饰不会改变碱基互补配对,不会影响密码子的编码信息;RESTART产生的少量脱靶也不会影响RNA的稳定性和蛋白的翻译。此外,RESTART系统是由人源的snoRNA和修饰酶衍生而来的,理论上可以避免免疫原性。因此RESTART是一个高效且安全的潜在治疗技术。综上,RESTART技术作为一种可编程的不依赖CRISPR的RNA假尿苷编辑技术,拓展了RNA编辑的策略,可通过高效编辑mRNA上的无义突变位点介导翻译通读和蛋白功能的恢复,并且具有较好的安全性,展现了良好的疾病应用前景。在递送方面,RESTART适用于装载至腺相关病毒(AAV)等载体中进行递送;并且guide snoRNA可以通过体外转录和体外合成等多种方式制备,未来也可以与小RNA递送体系,例如GalNAc3进行偶联。除此之外,RESTART技术也将推动假尿苷修饰领域的研究,为该领域基础研究和无义突变疾病治疗领域都提供有利的工具。北京大学生命科学学院伊成器教授为该论文的通讯作者,课题组博士后宋靖慧(已出站)、博士生董利婷、孙含笑、罗楠、博士后黄强为共同第一作者。该工作得到农业部项目、科技部重点研发计划、国家自然科学基金等项目资助以及北大-清华生命联合中心、蛋白质与植物基因研究国家重点实验室等的支持。北京大学高性能计算平台,生命科学学院仪器中心及凤凰工程等多个平台对本项目提供了重要的技术支撑。原文链接:https://www.cell.com/molecular-cell/fulltext/S1097-2765(22)01100-5
  • 分析科学仪器助力!陨石中发现DNA的主要成分
    日本北海道大学的大场康弘(Yasuhiro Oba)和合作者研究发现,组成DNA和RNA必不可少的嘧啶碱基可能是由富碳陨石带来地球的。相关研究4月26日发表于《自然—通讯》。 组成DNA和RNA离不开两类化学成分,也称碱基。这两类化学成分是嘧啶和嘌呤,其中嘧啶包括胞嘧啶、尿嘧啶、胸腺嘧啶,嘌呤包括鸟嘌呤、腺嘌呤。 目前为止,只有嘌呤碱基和尿嘧啶在陨石中发现过。然而,研究人员在模拟星际介质——恒星之间的空间——条件的实验中发现了嘧啶,有人据此推测它们可能是通过陨石抵达地球的。 大场康弘和同事使用了专门针对碱基进行优化的小规模量化的先进分析技术,分析了3颗富碳陨石:默奇森陨石、默里陨石和塔吉什湖陨石。 除了之前在陨石中已检测到的化合物,如鸟嘌呤、腺嘌呤、尿嘧啶之外,他们还首次发现了达到十亿分比浓度的各种嘧啶碱基,如胞嘧啶和胸腺嘧啶。 这些化合物存在的浓度与模拟太阳系形成前条件的实验预测的差不多。 作者认为,研究结果表明,这类化合物可能是在星际介质中经由光化学反应产生的,随后又在太阳系形成的过程中融入了小行星。这些化合物最终通过陨石抵达地球,对于早期生命出现的遗传学功能可能起到了一定作用。
  • 《科学》杂志评2017年度十大成就 生命科学占半壁江山
    p    strong 引力波:当之无愧的头号突破 /strong /p p   2017年8月,全世界科学家目睹了从未见过的“奇观”:在1.3亿光年之外,两颗中子星在一场壮观的爆发中相互螺旋上升。这次爆发证实了几个重要的天体物理学模型,揭示了许多重金属的诞生地,并对广义相对论进行了前所未有的测试。这是人们第一次观察到中子星的合并,而它所揭示的科学成果,也成为《科学》评选出的2017年突破之一。 /p p   美国“激光干涉引力波天文台”(LIGO)和欧洲“处女座”引力波探测器两个项目组在一份声明中说,最新的引力波信号于2017年8月14日被探测到,与前3次类似,均由双黑洞合并产生。 /p p   引力波是由黑洞、中子星等碰撞产生的一种时空涟漪,宛如石头丢进水里产生的波纹。一百年前,爱因斯坦广义相对论预言了引力波的存在,但直到2016年年初,科学家才宣布于2015年首次发现引力波。 /p p   “引力波是一个不断产生惊喜的礼物。”《科学》新闻编辑蒂姆· 阿彭策勒解释道,“观测到此类剧烈事件的完整图景有望带来天体物理学的变革。正是这一点,令这个观测成为无可争议的2017年头号突破。” /p p   引力波观测从来都是典型的大科学工程项目,美国在过去几十年为此累计投入11亿美元,这篇论文仅署名作者就有3674人,他们来自全球953个机构。美国引力波项目资助方、美国国家科学基金会主席France Cordova在一份声明中说,相隔万里的探测器首次共同探测到引力波,这对旨在破解宇宙奥秘的国际科学探索是一个“令人激动的里程碑”。 /p p    strong 冷冻电镜:窥见原子尺度生命 /strong /p p   科学发现往往建立在对肉眼看不见的微观世界进行成功显像的基础上,但在很长时间里,已有的显微技术无法充分展示分子生命周期全过程,在生物化学图谱上留下很多空白,而低温冷冻电子显微镜(Cryo-EM)将生物化学带入了一个新时代。 /p p   2017年诺贝尔化学奖授予Jacques Dubochet、Joachim Frank和Richard Henderson,以表彰他们研发出能对生物分子进行三维成像的冷冻电子显微镜技术,评选委员会如是说。 /p p   在科学史上,冷冻电子显微镜是一项十分罕见的技术创新,凭借近原子水平的高清分辨率,冷冻电子显微镜技术带来了对许多关键生命分子的新认识,快速重塑结构生物学领域。 /p p   冷冻电子显微镜就是应用冷冻固定术,在低温下使用透射电子显微镜观察样品的显微技术。冷冻电子显微镜是重要的结构生物学研究方法,是获得生物大分子结构的重要手段。这项技术本身仍处在高速发展的阶段,其影响力还在持续高速增长。 /p p   通过展现科学家从未见过的原子级结构,冷冻电子显微镜帮助解释了生物化学和遗传学数十年的观察结果。2017年,该技术给了研究者了解剪接体功能以及洞察DNA断裂修复酶的新方法。这项技术还能制作高分辨率模型,反映在阿尔茨海默病患者的大脑中积累的缠结和空斑形成纤维,并能展示基因编辑技术CRISPR如何捕捉和操纵DNA。 /p p   研究人员还提高了冷冻电子显微镜处理大小分子的能力,弄清了红藻巨大的捕光复合体以及之前无法触及的诸多小蛋白质复合体的结构。2016年拉丁美洲暴发寨卡疫情,研究者利用冷冻电子显微镜技术,成功观测到寨卡病毒的结构,这是传统电子显微镜无法做到的。 /p p    strong 便携式中微子探测器:最小的粒子探测器 /strong /p p   2017年,物理学家发现了最难以捉摸的亚原子粒子 ——中微子,开始以一种新方式侦测原子核。这一成就的背后是长达40年的探索,而它不需要通常用于检测中微子的大型硬件。取而代之的是,研究人员用一种便携式探测器就完成了这项壮举,它的重量和微波炉差不多。 /p p   在特定的核过程中,中微子与其他物质的相互作用非常罕见。然而,中微子偶尔会在原子核中撞击一个中子,把它变成一个质子,而它自身也会变成一个可检测的粒子,比如电子。或者它会简单地被质子或中子反弹,并使原子核飞起来。这两种相互作用都非常罕见,探测器必须包含大量的目标物——物理学家已经使用了各种材料,但也仅发现其中的一小部分。 /p p   实际上,1974年,理论物理学家提出了中微子—原子核相干性弹性散射理论,认为中微子和其他粒子一样具有波粒二象性。当处于高能状态时,中微子会与某个质子或中子发生相互作用 而处于低能状态时,中微子就会从原子核弹回,从而发出可以检测到的信号。 /p p   2017年,来自4个国家20多个机构的80余名科学家合作发现了长期以来一直寻求的相干散射。他们使用的是一台14.6千克的探测器,由一种含钠碘化铯的大晶体制成,当原子核内出现反作用时,它就会闪光。 /p p   这样的中子探测器也许有一天会帮助人们监测核反应堆、寻找更难捉摸的“惰性中微子”,或者帮助物理学家用一种新方法探测核结构。 /p p    strong 30万年前的智人化石:人类新起源 /strong /p p   在摩洛哥的一个山洞里,一块长期被忽视的头骨,打破了人类化石纪录,并激发了科学家对现代人类起源的研究。研究人员确定,该智人化石距今有30万年,把人类的起源向前推进了约10万年。 /p p   智人是生物学分类中“人属”中的一个“种”,是目前全人类共有的生物学名称。学术界一直无法确定智人出现的确切地点和时间。很长一段时间以来,被归为智人的最古老化石来自东非,约有20万年历史。因此,不少观点认为人类起源于东非。 /p p   在1961年被矿工发现的这块头骨,长期以来被认为属于非洲尼安德特人,因为它有一些在尼安德特人和其他古人属中发现的原始特征。但它也有一些现代的特征,比如面孔在头骨下收拢而不是向前突出,这引起了德国莱比锡马普学会进化人类学研究所古人类学家Jean-Jacques Hublin的好奇,他想知道它是否属于智人的早期成员。 /p p   最终,研究结果显示,这些化石可以追溯到距今31.5万年前,至少来自5个智人个体,他们的面部及下颌形态与现代人类非常相似,脑部大小也较为接近,但头骨相对更平、更长。研究人员认为,新发现揭示了智人进化的早期阶段。 /p p   这一发现并不意味着智人起源于北非地区。它表明早期智人的进化实际上遍布了整个非洲大陆。 /p p    strong 新剪刀:精确的基因编辑 /strong /p p   超过6万个遗传畸变与人类疾病有关,其中有近3.5万个是由最微小的错误造成的: DNA只有一个特定位点发生突变。2017年,研究人员宣布了一项名为“碱基编辑”的新技术,可以纠正DNA和RNA中的这种突变。未来,这项技术可能会在医疗领域有广泛的应用。 /p p   基因是DNA上的片段,而DNA双链螺旋结构由4种化学碱基组成,即腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)和胸腺嘧啶(T),其中鸟嘌呤和胞嘧啶配对,腺嘌呤和胸腺嘧啶配对。 /p p   由美国哈佛大学化学家David Liu开创的碱基编辑技术借鉴了“分子剪刀”CRISPR的特点。CRISPR擅长在特定位点切割DNA,并引入关闭基因的错误。而Liu团队修改了CRISPR的工具箱,创建了一个碱基编辑器,该编辑器可以在不断开DNA双链的情况下,将A· T碱基对转换成G· C碱基对,也就是说能实现高效、可选择性地在基因中替换碱基。 /p p   此外,美国布罗德研究所张锋团队报告说,他们在CRISPR工具基础上开发出了REPAIR编辑系统,其基本元件是一种特定酶和一种特定蛋白质,能高效修改与疾病相关的RNA单个碱基。 /p p   2017年,凭借单碱基基因编辑技术,中国科学家首次在人体胚胎中修复单个突变碱基。这种新碱基编辑器的效率约为50%,高于任何其他基因组编辑方法的效率,而且几乎没有副作用。 /p p    strong 生物学预印本兴起:先发表了再说 /strong /p p   2017年,生物学预印本开始兴起,数千名生物学家在预印本网站上发表了他们未经审阅的学术论文。4年前,美国纽约冷泉港实验室(CSHL)推出免费生物预印本服务器bioRxiv。在2017年年初,美国和英国的一些机构和组织发布了鼓励印前分享的政策,使得生物学预印本的发展得到了极大的推动。 /p p   上世纪60年代,美国国立卫生研究院(NIH)向一群生物学家发送论文手稿的影印本。这个短命的项目启发物理学家在1991年成立arXiv。这是一个如今位于康奈尔大学的非营利性预印本服务器。1999年,诺贝尔奖获得者、NIH时任院长Harold Varmus提议为生物学领域设立类似服务器,但期刊出版商认为这是一个威胁。不过,2003年,arXiv开设了定量生物学专区。 /p p   这一概念真正获得广泛关注是在2013年11月。当时,CSHL发起bioRxiv,将其作为一种促进科学交流的方法。2017年,bioRxiv获得财力雄厚的陈—扎克伯格计划(CZI)的支持。其他该领域服务器也如雨后春笋般出现。 /p p   bioRxiv拥有1.1万余名通讯作者,其中56%来自美国以外的国家。上百名生命科学家在其他免费的非营利性以及PeerJ预印本等商业服务器上发表文章。诸如生物信息学、基因组学等计算领域的研究人员是bioRxiv的早期采用者。 /p p   预印本的一个优势是你能在论文被同行评议的期刊接受的数月甚至几年前,便将其和同行分享。而且,为最新发现获得时间戳记也形成了部分吸引力。诸如bioRxiv、PeerJ预印本等服务器会为提交的论文提供发表日期和数字对象标识符,本质上是为建立优先级树立一面旗帜。此外,预印本会促进健康的竞争和合作。 /p p    strong 广谱抗癌药:将癌细胞“一网打尽” /strong /p p   2017年,美国第一次基于基因突变类型而不是肿瘤组织来源批准药物,实现一种药物治疗多种实体瘤。 /p p   人们一直期待有这样一种治疗癌症的药物:它不是针对某个特定的癌症发病的器官,而是根据癌细胞的DNA,无差别地进行治疗。 /p p   2017年5月,美国食品药品监督管理局(FDA)批准了一种名为帕姆单抗的药物。此前,该药物已被批准用于治疗黑色素瘤和少数几种其他肿瘤 现在,它已经可以治疗儿童和成人的任何包含错配修复缺陷的晚期实体肿瘤。 /p p   这意味着,对于胰腺、结肠、甲状腺,或其他十几个组织中的任何一个细胞癌变,药物帕姆单抗都能根据突变的DNA锁定包含错配修复缺陷的癌细胞,并进行治疗。 /p p   FDA的这项批准对于癌症治疗领域意义非凡。这是因为不同器官产生的肿瘤可能比生长在同一部位的肿瘤更常见,但将这些知识转化为治疗并不容易:人们对于癌症的治疗还局限在发病器官上,哪里出现癌症,就对哪里进行治疗。 /p p   2015年,约翰斯· 霍普金斯大学的Luis Diaz及同事用帕姆单抗治疗结肠癌患者,结果13名患者中有8位错配修复缺陷患者接受治疗后,肿瘤减小,但另外4名患者无反应。另外一项试验也印证了这一结果,无错配修复缺陷的结肠癌患者对帕姆单抗治疗无反应。于是研究者发现,携带有这些缺陷往往能够增强免疫系统对肿瘤细胞的识别,进而对其进行杀伤。 /p p    strong 新种类人猿:90年后再添新成员 /strong /p p   2017年11月,科学家在印度尼西亚的苏门答腊岛发现了一个新的猩猩物种——打巴努里猩猩,这是时隔近90年后人类再次发现新类人猿物种。 /p p   类人猿是灵长目中智力较高的动物,主要生活在非洲和东南亚的热带森林中。多年来,研究人员确认了两种生活在印度尼西亚的猩猩:婆罗洲猩猩和苏门达腊猩猩。打巴努里猩猩是第三个猩猩物种,同时是第七个非人类的类人猿。2013年,研究人员得到了被人类杀死的一头成年雄性打巴努里猩猩的骨骼。研究人员将打巴努里猩猩和33只其他猩猩的头骨和牙齿进行了比较,结果显示打巴努里猩猩的头骨比其他两个物种小。同时,它的上牙和下牙都比苏门答腊猩猩宽很多。 /p p   雄性打巴努里猩猩会发出在1公里外都能听到的“长长的叫声”。这能赶走竞争对手并且吸引雌性。它们“长长的叫声”比婆罗洲猩猩长21秒 和苏门答腊猩猩相比,则以更高的最大频率传递。 /p p   这种猩猩生活在印度尼西亚北苏门答腊省巴当托鲁。研究人员表示,巴当托鲁的猩猩是从亚洲大陆迁徙过来猩猩的后代,但打巴努里猩猩直到一两万年前才彻底独立出来。目前,打巴努里猩猩只剩下大约800只,并且面临失去栖息地和人类狩猎的威胁,使得这个物种成为面临最大灭绝威胁的类人猿。 /p p    strong 270万年前的地球气候:藏身冰雪气泡 /strong /p p   冰封在世界底部的是通往另一段时光的入口,即拥有古代地球空气的气泡。 /p p   2017年8月,美国普林斯顿大学和缅因大学研究人员宣布,他们挖掘出了在南极冰封270万年之久的冰块。这次发掘的冰块比之前的冰雪样本古老170万年,这也将直接的气候记录向前推进到一个对地球历史非常重要的时期。 /p p   这块冰来自于南极艾伦山,这是一个荒凉的地区,强风把雪和冰剥开,露出密集的、有光泽的古代冰层。早在2015年,科学家就发掘出最古老的冰芯,它形成于最初的几次冰河世纪期间,那时的冰河世纪每4万年发生一次,而不是像现代每10万年发生一次。 /p p   为了追寻气候变化产生的线索,研究人员测量了冰芯中的气体。但解释这样的气体记录极具挑战性:不像传统的南极冰芯具有层状结构,这些样本则更加混乱。前期的分析表明,在冰河期开始时,百万分之一二氧化碳的含量保持在300ppm(百万分之一)以下,远低于今天的400 ppm。 /p p   但这个结论与来自那个时代的间接记录存在矛盾,后者显示二氧化碳的比例应该更高。但这一分析结果验证了气候模型的预测:只有这样的低浓度才能使地球进入冰河期的周期循环。 /p p   科学家希望能重新研究艾伦山,以钻探更多的岩心,他们希望最终能在该地区发现500万年前的冰川,那时地球上的温室气体环境可能与今天一样。 /p p    strong 基因疗法胜利:为治疗神经退行性疾病带来希望 /strong /p p   2017年,一项小型临床试验取得了巨大成功,使基因治疗领域受到鼓舞。 /p p   研究人员通过在脊髓神经元中添加一个缺失的基因,挽救了身患I型脊髓性肌萎缩症的婴儿的生命。脊髓性肌萎缩症是一类由于以脊髓前角神经细胞为主的变性导致肌无力和肌萎缩的神经退行性疾病。 /p p   研究人员先在实验室制备了一种携带能编码正常运动神经元生存蛋白基因的腺相关病毒亚型9(AAV9),然后医生将经过改造的AAV9静脉注射到15名患者体内,所有患者都表现出不同程度的改善,生存期都超过了20个月。 /p p   同时,该基因可以突破血脑屏障到达中枢神经,这对于用基因疗法治疗其他退行性神经疾病具有开创性和里程碑式的意义。 /p p   此外,3种基因疗法在美国获批投入使用。8月,美国政府批准一种基于改造患者自身免疫细胞的疗法治疗白血病,这是第一种在美国获得批准的基因疗法,开辟了癌症治疗的新篇章。新疗法是一种嵌合抗原受体T细胞(CAR-T)疗法,它先从患者自身采集在免疫反应中发挥重要作用的T细胞,然后重新“编程”,所得T细胞含有嵌合抗原受体,能识别并攻击癌变细胞,因此可重新注入患者体内用于治疗。 /p p   一个多月后,美国风筝制药公司的Yescarta基因疗法获批上市。该疗法用于治疗对至少两种治疗方案无响应或治疗后复发的特定类型成人大B细胞淋巴瘤患者。 /p p   美国食品药品监督管理局去年12月宣布,已批准火花基因疗法公司的Luxturna基因疗法,用于治疗特定遗传性眼疾的儿童和成人患者。这是第一种治疗遗传性疾病的基因疗法在美国获准上市。 /p p /p
  • 北大王初课题组发展顺铂结合蛋白的组学鉴定方法
    近日,北京大学化学与分子工程学院、北大-清华生命联合中心、北京大学合成与功能生物分子中心王初课题组在RSC Chemical Biology杂志上发表了题为“ Discovery of Cisplatin-binding Proteins by Competitive Cysteinome Profiling”的研究文章。在这项工作中,作者应用基于竞争的定量化学蛋白质组学策略rdTOP-ABPP,在MCF-7活细胞体系中全局性地鉴定了顺铂(cisplatin)结合蛋白与其结合顺铂的位点,发现并证明了顺铂可以结合谷氧还蛋白1(GLRX1)与具有硫氧还蛋白结构域的蛋白17(TXNDC17)的活性位点。除此之外也发现了一个全新的顺铂结合蛋白甲硫氨酸氨肽酶1(MetAP1),并发现其对顺铂的细胞毒性有一定的保护作用。顺铂是1965年被发现的化疗药物,其在如睾丸癌,卵巢癌等癌症的治疗过程中被广泛应用。其在进入细胞后生成的活性的二价铂离子会进攻DNA上的腺嘌呤或鸟嘌呤,从而引起DNA损伤,最终杀死癌细胞,这个过程被认为是顺铂细胞毒性的主要原因。而近年来很多研究也发现活性二价铂离子除了结合DNA之外,其也会与细胞质中大量亲核性物质反应,比如GSH,RNA以及金属硫蛋白等进行结合,据统计,仅有1%左右的铂是结合到DNA上。大量游离的活性二价铂离子会与细胞中多种有功能的蛋白质结合,从而影响其正常的功能,因此对顺铂结合蛋白的研究有助于我们更完整的理解顺铂细胞毒性的机理以及帮助我们避免顺铂耐药性。目前已经有很多组学上鉴定顺铂结合蛋白的方法,例如利用Pt的特征同位素分布的特点,在一级质谱层面筛选那些潜在的顺铂结合蛋白 或者将ICP-MS与二维凝胶电泳结合,从而在组学层面鉴定潜在的顺铂结合蛋白等,但这些方法受限于较低的灵敏度和通量。对顺铂进行生物正交基团改造,从而通过生物素-亲和素富集来鉴定顺铂结合蛋白的方法也被开发,并成功在酵母细胞中鉴定到数百种潜在的顺铂结合蛋白。但由于顺铂的分子较小,并且其作为无机药物,在其上进行官能团化修饰可能会一定程度上改变顺铂本身的性质,并影响最终的鉴定结果。鉴于活性二价铂离子易与半胱氨酸残基反应并结合,因此作者考虑使用基于竞争的定量化学蛋白质组学策略rdTOP-ABPP来鉴定顺铂结合蛋白。首先作者在活细胞水平上证明了顺铂可以与半胱氨酸特异性反应的探针IAyne竞争结合蛋白质的半胱氨酸残基。在优化了质谱条件后,作者在三次重复的质谱实验中共鉴定并定量到1947个肽段,对其进行条件筛选,定义顺铂处理后肽段的色谱强度与对照组中相同肽段色谱强度比值为Ratio,作者认为三次重复的Ratio平均值与对应的p value满足-log10(p value) x log2(ratio) 1.5的是潜在的顺铂结合位点,共筛选到125个肽段归属于107种蛋白。这些蛋白显著富集于核质交换通路以及氧化还原相关通路,这与之前报道的顺铂会引起DNA损伤以及顺铂会引发细胞产生氧化应激相对应。  随后作者在筛选的107种蛋白中,选择了归属于氧化应激通路的已知的与顺铂有关的靶点蛋白GLRX1以及TXNDC17进行验证,纯蛋白层面的竞争标记与ICP-MS结果均表明这两种蛋白为顺铂结合蛋白,并且其顺铂结合位点均是质谱鉴定到的位点,且均是两个蛋白的活性中心位点,暗示了顺铂结合可能会影响两种氧化还原相关的酶的活性,进而引起氧化应激。纯蛋白质谱实验中,二级谱也表明两个蛋白与顺铂的结合均是桥连结合,这与文献中报道过的其中一种顺铂与蛋白结合的模式是相对应的。  之后作者选择了另一种尚未明确是否与顺铂有相互作用的蛋白MetAP1进行了后续的生化验证。纯蛋白层面的竞争标记实验与ICP-MS的实验结果证明MetAP1是顺铂结合蛋白,且其顺铂结合位点为我们鉴定到的C14位。随后我们测量了顺铂对MetAP1活性的影响,发现顺铂不会明显影响MetAP1纯蛋白的活性,但可以抑制MetAP1在体内的活性,表明顺铂会在活细胞中影响新生成蛋白的N端甲硫氨酸切割,最后通过比较MetAP1的敲除细胞系和野生型的细胞系对顺铂的MTT曲线,作者发现MetAP1在顺铂引起的细胞毒性中起到了一定程度的保护作用。  总之,作者应用竞争性ABPP策略,在MCF-7活细胞中鉴定到了107种潜在的顺铂结合蛋白,并对其中的三个靶标进行了验证。作者发现顺铂可以结合与氧化还原相关的酶GLRX1与TXNDC17的关键酶活中心,暗示了顺铂结合可能会影响两种氧化还原相关的酶的活性,进而可能影响细胞的ROS水平。也证明了顺铂通过结合来影响MetAP1的活性从而影响新生成蛋白的N端甲硫氨酸的加工,并表明MetAP1可以作为提高顺铂细胞毒性以避免肿瘤耐药性的潜在靶点。本文的通讯作者为北京大学化学与分子工程学院、北大-清华生命联合中心、北京大学合成与功能生物分子中心的王初教授。其指导的化学与分子工程学院2019级博士研究生王相贺为本文的第一作者。该工作得到了国家自然科学基金委、国家重点研发计划的经费支持。  本文作者:WXH  责任编辑:JGG  原文链接:https://pubs.rsc.org/en/content/articlehtml/2023/cb/d3cb00042g  文章引用:DOI: 10.1039/D3CB00042G
  • 单克隆抗体制备的基本原理与过程
    单克隆抗体制备的原理:B淋巴细胞在抗原的刺激下,能够分化、增殖形成具有针对这种抗原分泌特异性抗体的能力、B细胞的这种能力和量是有限的,不可能持续分化增殖下去,因此产生免疫球蛋白的能力也是极其微小的、将这种B细胞与非分泌型的骨髓瘤细胞融合形成杂交瘤细胞,再进一步克隆化,这种克隆化的杂交瘤细胞是既具有瘤的无限生长的能力,又具有产生特异性抗体的B淋巴细胞的能力,将这种克隆化的杂交瘤细胞进行培养或注入小鼠体内即可获得大量的高效价、单一的特异性抗体.这种技术即称为单克隆抗体技术。单克隆抗体制备的过程:免疫动物免疫动物是用目的抗原免疫小鼠,使小鼠产生致敏B淋巴细胞的 过程。 一般选用6-8周龄雌性BALB/c小鼠,按照预先制定的免疫方案进行免疫注射。 抗原通过血液循环或淋巴循环进入外周免疫器官,刺激相应B淋巴细胞克隆,使其活化、增殖,并分化成为致敏B淋巴细胞。细胞融合采用二氧化碳气体处死小鼠,无菌操作取出脾脏,在平皿内挤压研磨,制备脾细胞悬液。 将准备好的同系骨髓瘤细胞与小鼠脾细胞按一定比例混合,并加入促融合剂聚乙二醇。在聚乙二醇作用下,各种淋巴细胞可与骨髓瘤细胞发生融合,形成杂交瘤细胞。选择性培养选择性培养的目的是筛选融合的杂交瘤细胞,一般采用HAT选择性培养基。在HAT培养基中,未融合的骨髓瘤细胞因缺乏次黄嘌呤-鸟嘌呤-磷酸核糖转移酶,不能利用补救途径合成DNA而死亡。 未融合的淋巴细胞虽具有次黄嘌呤-鸟嘌呤-磷酸核糖转移酶,但其本身不能在体外长期存活也逐渐死亡。 只有融合的杂交瘤细胞由于从脾细胞获得了次黄嘌呤-鸟嘌呤-磷酸核糖转移酶,并具有骨髓瘤细胞能无限增殖的特性,因此能在HAT培养基中存活和增殖。杂交瘤阳性克隆的筛选与克隆化在HAT培养基中生长的杂交瘤细胞,只有少数是分泌预定特异性单克隆抗体的细胞,因此,必须进行筛选和克隆化。通常采用有限稀释法进行杂交瘤细胞的克隆化培养。采用灵敏、快速、特异的免疫学方法,筛选出能产生所需单克隆抗体的阳性杂交瘤细胞,并进行克隆扩增。经过全面鉴定其所分泌单克隆抗体的免疫球蛋白类型、亚类、特异性、亲和力、识别抗原的表位及其分子量后,及时进行冻存。单克隆抗体的大量制备单克隆抗体的大量制备主要采用动物体内诱生法和体外培养法。(1)体内诱生法 取BALB/c小鼠,首先腹腔注射0.5ml液体石蜡或降植烷进行预处理。1-2周后,腹腔内接种杂交瘤细胞。杂交瘤细胞在小鼠腹腔内增殖,并产生和分泌单克隆抗体。约1-2周,可见小鼠腹部膨大。用注射器抽取腹水,即可获得大量单克隆抗体。(2)体外培养法 将杂交瘤细胞置于培养瓶中进行培养。在培养过程中,杂交瘤细胞产生并分泌单克隆抗体,收集培养上清液,离心去除细胞及其碎片,即可获得所需要的单克隆抗体。但这种方法产生的抗体量有限。各种新型培养技术和装置不断出现,大大提高了抗体的生产量。单克隆抗体制备的意义:用于以下各种生命科学实验并具有医用价值(1)沉淀反应:Precipitation reaction(2)凝集实验:haemaglutination(3)放射免疫学方法检测免疫复合物(4) 流式细胞仪:用于细胞的分型和细胞分离.(5)ELISA 等免疫学检测(6)BIAcore biosensor:检测Ab-Ag或与蛋白的亲和力 .(7)免疫印记(western blotting)(8) 免疫沉淀:(9) 亲和层析:分离蛋白质(10) 磁珠分离细胞(11)临床疾病的诊断和治疗;
  • Illumina透露半导体测序仪的更多细节
    2016年度的基因组生物学技术进展大会(AGBT)于上周在美国奥兰多举行。Illumina的CEO Jay Flatley在大会上宣布了其半导体测序平台,即Firefly计划的更多细节。  Flatley表示,Firefly将打开新的市场,因为它是如此简单。最终目标是制成这样一种设备,输入的是原始样本,而输出的是报告。尽管Illumina还没有实现,但Firefly无疑是朝着那个方向迈进了一步。  正如Illumina之前提到的,Firefly是基于它在2008年收购Avantome时获得的CMOS技术。Illumina一直在开发Avantome的技术,但从未商业化,因为这项技术离不开emulsion PCR。然而,Illumina希望将边合成边测序技术(SBS)与半导体芯片相融合。  Firefly设备本质上是一个带有纳米孔的CMOS传感器。纳米孔嵌入光电二极管中,让DNA沉积。簇生成和测序都在CMOS芯片上直接发生。由于CMOS是个单通道的设备,Flatley表示,研究人员必须弄清楚如何开发单通道的边合成边测序技术。  Firefly将采用一种新的编码技术。对于Illumina HiSeq测序仪采用的四通道技术,每个核苷酸被一种单独的荧光染料标记,并在四个不同的光学通道中检测。而之后推出的NextSeq则采用了一种双通道技术。这种技术使用两种荧光染料,其中鸟嘌呤总是暗的,腺嘌呤和胞嘧啶用单个染料标记,而胸腺嘧啶用两个染料标记。  在单通道技术中,胸腺嘧啶将有一个永久的荧光标记。腺嘌呤将有相同的荧光标记,但这种染料是可以去除的。鸟嘌呤将永远是暗的。另外,胞嘧啶一开始是暗的,但之后会加上荧光标记。  Flatley随后演示了这个方案如何读取DNA。在四个核苷酸的第一幅图像中,A和T同时被标记并可以检测。之后,在第二幅图像中,A的染料切除,并添加到C上。这样,第二幅图像中只有C和T发荧光。通过综合两幅图像的信息,所有四种碱基很容易被区分。在内部测试中,Illumina已经证明了99%的原始读取准确性和2x150 bp读长,与HiSeq X的表现相当。  这个平台将包含两个模块,总体积达1立方英尺。一个模块将用于文库制备,能够在3.5小时内平行制备8个文库,且无人值守。文库制备卡盒将利用Illumina NeoPrep所使用的数字微流体技术。用户只需加入样品和引物。这个设备将带来8个单独的文库,或合并成一个文库,用于测序。  制备好的文库随后上样到测序卡盒中,其中包含CMOS芯片。测序大约需要3.5-13小时,具体取决于应用,随后结果可上传到BaseSpace云计算环境,进行数据分析。这个系统将由iPad驱动,因此可无线监控。  Firefly有望在2017年下半年商业化,售价低于3万美元,而每个样品的耗材成本约为100美元。Flatley表示,Firefly的产量达到1 Gb,使其特别适合靶向研究、耐药性监控以及个人基因组测序等应用。
  • 海南大学新检测技术将有效预警海洋核污染物
    海南大学南海海洋资源利用国家重点实验室王宁和袁益辉研究团队提出利用DNA结构实现超灵敏和高选择性锶离子检测的方法,可快速有效实现海洋放射性污染物监测,助力核电产业绿色可持续高质量发展。相关成果近日发表在国际学术期刊《自然可持续发展》上。  随着核能的广泛应用,防治放射性核污染成为人们关注的话题。作为235U的裂变产物,90Sr是最常见的放射性核污染元素之一。其化学性质与钙相似,易在环境与生物体内富集,对人体的辐射可引起骨癌、白血病等疾病,此外,因其半衰期长达29年,具有长期危害性,是人类不可忽视的一大隐患。然而,由于锶离子缺乏特征能量射线,使用现有技术无法快速、全面且精准地进行锶元素检测,如何精准检测一直是个行业难题。  鉴于此,王宁和袁益辉研究团队提出了一种以鸟嘌呤-四联体DNA(脱氧核糖核酸)结构实现超灵敏和高选择性检测Sr2+离子的方法。该团队通过利用荧光染料硫黄素T触发DNA折叠,形成鸟嘌呤-四联体DNA结构,并利用Sr2+与该DNA结构的高结合亲和力,取代结构中的荧光染料硫黄素T,从而导致荧光强度衰减。  此项研究提供了一种快速高选择性核污染检测技术的方法,首次实现低至2.11纳摩的检测限,具有超高灵敏度、高选择性、广泛适用性和高可靠性。
  • 分子植物卓越中心等发现新型植物RNA低温感受器
    低温胁迫是限制植物分布的主要环境因素之一,感知低温信号是植物适应寒冷环境的基础。植物在低温中呈现出生长减缓、开花延迟等表型以适应低温环境。鉴定植物的冷感受器是解析植物低温感知分子机制的关键。   10月20日,中国科学院分子植物科学卓越创新中心/CAS-JIC植物和微生物科学联合研究中心研究员杨小飞研究组、东北师范大学教授张铧坤研究组,以及英国约翰英纳斯中心(John Innes Centre,JIC) 研究员丁一倞研究组合作,在《自然-通讯》(Nature Communications)上,发表了题为RNA G-quadruplex structure contributes to cold adaptation in plants的论文。   温度依赖的大分子结构变化决定生物大分子发挥细胞温度计的功能,如蛋白质、核糖核酸等。为寻找与温度感知有关的RNA结构域特征,科研团队对1000种植物转录组项目(1KP)的RNA序列开展研究。该研究对其中的906种陆生植物与环境因素的相关性分析表明,生长在低温地区的植物RNA中普遍富含鸟嘌呤(Guanine)。鸟嘌呤(G-rich)序列在体外可以折叠为特殊的鸟嘌呤四链体(RNA G-quadruplex,RG4)结构,耐寒植物中具有更多的RG4结构,暗示富含G-rich序列与植物的耐寒性有关。   为探究RG4折叠与冷响应间的关系,科研人员对模式植物拟南芥进行低温处理,并利用此前开发的RG4检测方法SHALiPE-seq对体内RG4折叠进行定量检测。结果表明,低温处理显著诱导植物体内RG4结构的折叠,证明植物RG4具有感知低温的能力。研究系统分析了拟南芥的mRNA降解组数据,发现包含有冷诱导RG4的mRNA降解速率明显降低,暗示RG4或抑制了mRNA的降解。为验证RG4结构在mRNA降解中的作用,科研团队挑选了一个受低温显著诱导的RG4基因,命名为CORG1。通过碱基替换将G突变为A,可将包含RG4结构的野生型wtRG4-CORG1突变为不能形成RG4结构mutRG4-CORG1基因。进一步研究发现,mutRG4-CORG1在冷胁迫中的降解速率显著高于wtRG4-CORG1的降解速率,证明低温诱导的RG4结构形成抑制mRNA的降解。同时,低温对mutRG4-CORG1的转基因植物的生长抑制也明显弱于wtRG4-CORG1的拟南芥,表明RG4结构突变降低植物对低温响应的敏感性。   综上所述,冷处理诱导植物mRNA的RG4折叠,进一步选择性抑制mRNA的降解从而减缓植物在低温环境下的生长速度。转录组中RG4结构的选择性富集帮助陆生植物感知低温信号,促进植物对寒冷环境的适应性进化。该研究迄今为止首次发现RG4结构抑制mRNA的降解,阐明了RG4结构的全新分子调节功能,且RG4结构是植物中发现的第一个RNA低温感受器。美国哈佛大学和耶鲁大学研究人员对动物细胞的同期研究工作表明,多种胁迫因素(如低温、饥饿)促进3’UTR的RNA结构折叠,并提高mRNA的稳定性(https://www.biorxiv.org/content/10.1101/2022.03.03.482884v1)。这些研究暗示环境依赖的RNA结构折叠作为胁迫感受器,在自然界广泛存在。   研究工作得到国家自然科学基金、英国生物技术与生物科学研究委员会基金和欧洲研究委员会基金等的支持。耐寒植物中的RG4富集提高了植物对寒冷环境的感知能力
  • 我国科学家揭示特殊DNA的合成机制
    脱氧核糖核酸(DNA)是生命体的遗传物质,决定生物的特征和多样性。生命的遗传信息存储在由腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、胸腺嘧啶(T)四种碱基组成的DNA序列中。1977年前苏联科学家在感染蓝细菌的一株噬菌体中发现由2,6-二氨基嘌呤(Z)、G、C、T组成的DNA,该类特殊DNA中的Z完全取代了正常的A,且Z与T配对形成更稳定的三个氢键,极大地改变了DNA的物理化学特征。长期以来,特殊DNA的合成机制及存在的普遍性和生理意义一直是未解之谜。  国家重点研发计划“合成生物学”重点专项“新天然与人工产物的定向挖掘和高效合成的平台技术”项目在该特殊DNA的合成机制研究上取得重大进展。天津大学研究团队联合上海科技大学、美国伊利诺伊大学等研究团队,解析了该特殊DNA的合成机制,其中包括关键酶参与的2,6-二氨基嘌呤脱氧核糖核苷酸(dZTP)的生成和脱氧腺苷三磷酸(dATP)的消除,并发现这种特殊DNA遍布全球,大量能感染细菌的噬菌体都含有这种DNA。该研究还发现该特殊DNA可以规避识别位点中含有A的限制性内切酶的切割,因此含有该种特殊DNA的噬菌体可以逃避宿主的免疫防御从而具有进化优势。  该项重大发现对生命起源、物种进化、系统生物学的研究具有重要理论意义,在超级耐药菌感染的治疗、绿色无抗生素畜牧饲料和食品保存技术开发、新型纳米材料制备、DNA信息存贮等领域具有潜在应用价值。该研究成果近期发表在《Science》杂志上。   论文链接:https://science.sciencemag.org/content/372/6541/512.full  注:此研究成果摘自《Science》杂志,文章内容不代表本网站观点和立场,仅供参考。
  • 东南大学司伟博士: 纳米孔单分子测序为最具潜力DNA测序技术
    1996年,Kasianowicz等人首次发现单链DNA和RNA电泳穿过α溶血素(α-HL)纳米孔的时候会产生对应的阻塞电流信号。此后,众多科研学者在这一研究基础上开始了更为广泛的研究。经过二十余年发展,生物纳米孔技术现已开始商业化,且市面已有成型的基于生物纳米孔单分子测序技术的基因测序仪产品。纳米孔最具前景的应用之一是其可以用于第三代DNA测序技术,因其不需要复杂的酶扩增以及荧光标记,且其具有低成本高通量的特点而受到广大研究者们的青睐。纳米孔是单分子测序仪最核心部件图1 纳米孔DNA测序的基本原理图。(a)基于纳米孔的DNA测序传感器搭建示意图,图中显示一条单链DNA正在电泳穿过石墨烯纳米孔。(b)单链DNA过孔时产生的阻塞离子电流信号细节示意图,每个碱基的体积及其与纳米孔之间的相互作用强度不同导致对应的阻塞电流幅值存在差异,从而可以用来区分不同的DNA碱基。【Si Wei, et al. Chin. Sci. Bull., 2014, 59(35): 4929-4941.】纳米孔单分子DNA测序传感器基于库特计数器原理,如图1所示在固态薄膜的顺式端(cis)和反式端(trans)都注满了离子溶液,两端的溶液仅通过纳米孔进行连接,当带电的DNA分子被置入到液池的顺式端后,在纳米孔的两侧施加电压,DNA分子会在电场力的作用下电泳穿过纳米孔,由于DNA碱基自身在孔内的物理占位以及其与纳米孔间较强的相互作用使得通过纳米孔的电流会被阻塞。一条单链DNA(ssDNA)由腺嘌呤(A),鸟嘌呤(G),胸腺嘧啶(T)和胞嘧啶(C)组成。因为四种碱基的尺寸及特征各异,当单链DNA穿过跟自身尺寸相当的纳米孔时,不同的碱基会产生对应幅值的阻塞电流,通过研究这些电流之间的差异就可以实现对DNA四种碱基的辨识,如图1所示。通过分析这些阻塞电流信号(如阻塞电流幅值和过孔时间等),DNA链上所含的碱基很有可能被检测和区分开来。纳米孔作为单分子测序仪器设计与制造的核心检测部件,因此如何保证纳米孔单分子传感器的检测灵敏度、时间空间分辨率、稳定性和寿命等是影响纳米孔单分子测序仪器工作效率和稳定性的关键技术问题。三大技术突破成就了如今的纳米孔单分子测序仪自1996年纳米孔被Kasianowicz等人发现以来,众多科学家投入大量精力深入研究,在研究过程中也遇到很多难题。例如,尽管研究者们都相继报道了纳米孔离子电流可以用于四种碱基的区分,然而他们得到的结论却大相径庭,使得阻塞电流的幅值和相应碱基之间的对应关系至今仍然含糊不清。研究者们对单链DNA均聚物在过孔时产生的阻塞电流幅值跟碱基体积大小的相关性进行了研究,组成DNA四种碱基的体积大小顺序为GATC,理论上DNA碱基的尺寸对离子电流信号的影响较大,然而其与纳米孔的强相互作用在阻塞电流幅值检测方面也会起到主导作用,且在不同的纳米孔材料或者实验条件下获得的实验结果差异较大,这也制约了基于纳米孔DNA测序的发展。经历了20余年的发展,三大技术突破与革新也成就了现今的纳米孔单分子测序仪的研制。首先是纳米孔检测DNA或RNA全新技术方案的提出,其次是采用酶对DNA分子的剪切或复制用于纳米单分子测序技术中,最后是单碱基信号的测序精度精准调控。之后数年的时间,Oxford Nanopore 公司于2013年11月启动了MinION测序仪的早期试用计划,这时首款纳米孔单分子测序仪也正式开始步入人类的视野。便携、低成本和高通量 纳米孔单分子测序成为最具潜力的DNA测序技术人类基因组计划人类基因组计划在2003 年完成人体全序列的基因测定,历时12 年,耗资数十亿美元,人类基因序列图已成为全人类共同的财富。但是,第一代的 Sanger测序方法也给基因组测序贴上了数亿美元的价格标签,让人望而生畏。近两年发展迅猛的第二代测序仪让人类基因组重测序的费用降低到10 万美元以下,测序时间也缩短到6 个月。但是,这样的价格和时间,相对于个人用户仍然太高,极大地限制了其临床应用和基础理论研究。与传统Sanger测序技术相比,纳米孔单分子测序技术的核心优势在于它的便携性、低成本和高通量。强大的市场需求和探索生命科学未知领域的渴望,有力地推动着DNA 检测水平的提高。2004 年,美国国家人类基因组研究所(NHGRI)启动了“千元基因组测序研究项目”, 目的是让人类基因组的测序费用降至1000 美元以下。基于纳米孔的单分子DNA 测序方法是第三代测序技术中成本最低,最具有竞争力的技术。同年,美国国家卫生研究院(NIH)提出了“1000美元测序”的概念,而基于纳米孔的DNA测序技术是最有潜力实现这一目标的方法之一,众多实验研究也进一步验证了纳米孔DNA测序技术的可行性。该方法的优势在于它简化了对DNA 的化学修饰、扩增和表面吸附等工艺,具有结构简洁、速度快、操作简便等特点,同时省去了昂贵的荧光试剂和CCD照相机的费用。最为重要的是它的效率高,单个核苷酸分子通过纳米孔的时间仅在微秒级,如果考虑单个芯片上集成成百上千个纳米孔阵列,有望在24 小时内完成对个体的基因测序,而目前的二代基因测序仪则需要6 个月时间。 商业化进展慢 提高纳米孔稳定性迫在眉睫纳米孔单分子测序技术现有市场的典型产品是Oxford Nanopore Technologies(ONT)公司的MinION纳米孔测序仪,它具有低成本、高通量、读速快、读长长(约150kb)和高便携等特点,因此纳米孔单分子传感器目前已被广泛应用于物理学、生物学和化学等学科涉及单分子应用的科学研究,助力人类科技的发展,造福人类。基于上述纳米孔单分子测序技术的特点,相比传统测序仪器而言,它的典型应用场景之一是极端环境中病毒或细菌的高精度检测。例如,在偏远贫困地区,在疫情爆发或在没有足够的设备资源的情况下,便携的纳米孔单分子测序仪可以快速的协助病毒检测和疾病诊断。数年前西非爆发埃博拉病毒时,单分子测序仪便在病毒检测过程中起到的重要作用。再例如,存放在外太空空间站的土壤和水等是否已经出现微生物依然成谜,要将样品带至地球进行采样分析方能揭晓,而轻便的纳米孔单分子测序仪仅有u盘大小,可以方便的携带至外太空,在其他辅助条件下协助检测。虽然基于纳米孔的单分子测序仪具备很多优势,而且已经进入商业化进程,但是它的市场占有率相比传统测序技术而言依然偏低。其原因主要是目前市场已有的纳米孔测序仪采用的仍然是生物纳米孔和磷脂膜,这样的生物体系不可避免的面临着寿命短和稳定性不持久的缺陷。因此要推进纳米孔单分子测序技术的发展,这些问题必须得到解决。而固体纳米孔(例如氮化硅,二硫化钼)目前的报道也可以辨识单碱基,因此固体纳米孔有望在未来代替生物纳米孔实现稳定、可重复利用的高精度DNA测序。然而固体纳米孔在信噪比方面不如生物纳米孔,而且DNA在相同条件下通过固体纳米孔的速度偏快,因此如何提高固体纳米孔的信噪比和实现有效的DNA控速也是亟需解决的关键科学问题。作者简介:司伟,博士,东南大学硕导/讲师,2020年度东南大学“至善青年学者”,江苏省2019年度优秀博士学位论文和东南大学2019年度优秀博士学位论文获得者,入选2019年、2020年东南大学机械工程学院“优才培育计划”,担任《MaterialsInternational》(ISSN: 2668-5728)期刊助理编辑和《Bioengineering International》(ISSN 2668-7119)期刊编委,获得2019年Nanotechnology期刊杰出审稿人奖。主要研究方向:(1)机械操控及机器人技术、(2)工程流体动力学及传感器、(3)结构工艺设计及加工制造、(4)程序语言算法和三维建模与仿真。
  • 食品添加剂检测方法两项国标通过评审
    “进出口食品添加剂6-苄基腺嘌呤的检测方法”等两项国家标准通过专家评审 近日,江门检验检疫局承担制定的“进出口食品添加剂6-苄基腺嘌呤的检测方法”和“进出口食品添加剂蔗糖聚丙烯醚的检测方法”两项国家标准顺利通过了国家认监委、国家标准委和中国检科院等部门的专家评审。 由于此前国内外均无相关标准,江门检验检疫局这两项国家标准的顺利通过评审为今后我国对进出口食品添加剂6-苄基腺嘌呤、蔗糖聚丙烯醚的检测提供了保证。
  • 我国科学家研发出检测DNA中第五种碱基的新技术
    DNA的基本元素包括腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)、胞嘧啶(C)和脱氧尿嘧啶(dU),然而目前还无法从单碱基分辨率水平上检测dU,严重影响了对dU功能的理解。近期,我国科学家研发出在单碱基分辨率水平上精准检测dU的新技术,研究成果发表在《Journal of the American Chemical Society》期刊,标题为“UdgX-Mediated Uracil Sequencing at Single-Nucleotide Resolution”。  该方法被命名为Ucaps-seq法(UdgX cross-linking and polymerase stalling sequencing)。研究人员利用从耻垢分枝杆菌中发现的新型糖苷酶UdgX,特异性地识别和切除DNA中的dU,形成的缺口与对应的核糖形成共价键,从而将其捕获。由于DNA高保真聚合酶碰到UdgX标记的dU缺口能原地“停车”,研究人员利用的DNA高保真聚合酶这一特性进一步确认了dU的位置。最后,结合高通量测序技术将“停车”信号放大,从而在单碱基水平上精准定位dU在DNA乃至基因组上的位置。  Ucaps-seq法是国际上第一个酶法检测DNA中的dU碱基的技术,灵敏性好、特异性强、分辨率高,将大大推进核酸序列检测、遗传密码破译和人类对核酸的认知。  注:此研究成果摘自《Journal of the American Chemical Society》期刊原文章,文章内容不代表本网站观点和立场,仅供参考。   论文链接:https://pubs.acs.org/doi/10.1021/jacs.1c11269
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制