当前位置: 仪器信息网 > 行业主题 > >

羟甲基糠醛

仪器信息网羟甲基糠醛专题为您提供2024年最新羟甲基糠醛价格报价、厂家品牌的相关信息, 包括羟甲基糠醛参数、型号等,不管是国产,还是进口品牌的羟甲基糠醛您都可以在这里找到。 除此之外,仪器信息网还免费为您整合羟甲基糠醛相关的耗材配件、试剂标物,还有羟甲基糠醛相关的最新资讯、资料,以及羟甲基糠醛相关的解决方案。

羟甲基糠醛相关的资讯

  • 葡萄酒也是越陈越好吗?——葡萄酒中5-羟甲基糠醛含量测定
    葡萄酒,味香色美,很多人的最爱!那葡萄酒是不是越陈越好呢?理论上,葡萄酒是一种有生命的东西,装瓶后仍然会继续成熟和变化。在良好的储藏条件下,葡萄酒会在岁月的历练中使得单宁酸逐渐柔顺圆润,酒香更加富有深度,口感也更为均衡协调。 事实上,大部分(99%)葡萄酒不具有陈年能力,最佳饮用期一般在2—10年之间。只有少部分特别好的葡萄酒才具有陈年能力。不具陈年能力的葡萄酒在不适宜的环境中长期存储不仅口感不会变好,而且还有可能产生5-羟甲基糠醛(5-HMF)。 5-羟甲基糠醛是一种黑色的具有难闻气温的有毒物质,对人体横纹肌及内脏有损害,且具有神经毒性,能与人体蛋白质结合产生蓄积中毒。葡萄酒在生产及不合适的储存条件下不可避免会发生热降解反应,从而导致5-羟甲基糠醛的产生或含量增加。2017年7月1日SN/T 4675.8-2016《出口葡萄酒中5-羟甲基糠醛的测定 液相色谱法》开始实施,葡萄酒中5-羟甲基糠醛的含量成为国际贸易中判断葡萄酒优劣的重要指标。 大连依利特分析仪器有限公司,参考SN/T 4675.8-2016《出口葡萄酒中5-羟甲基糠醛的测定 液相色谱法》,对5-羟甲基糠醛进行了检测。仪器配置色谱条件流动相:甲醇:水=10:90色谱柱:依利特C18色谱柱流量:1.0mL/min检测波长:285nm进样体积:10μL柱温:30℃实验结果
  • 水相中氧化亚铜-锐钛矿异质结上太阳光驱动的5-羟甲基糠醛催化选择氧化
    1.文章信息标题:Sunlight-drivenphotocatalyticoxidationof5-hydroxymethylfurfuraloveracuprousoxide-anataseheterostructureinaqueousphase中文标题:水相中氧化亚铜-锐钛矿异质结上太阳光驱动的5-羟甲基糠醛催化选择氧化页码:AppliedCatalysisB:Environmental320(2023)122006DOI:https://doi.org/10.1016/j.apcatb.2022.1220062.文章链接https://doi.org/10.1016/j.apcatb.2022.1220063.期刊信息期刊名:AppliedCatalysisB:EnvironmentalISSN:0926-33732021年影响因子:24.319分区信息:中科院一区Top涉及研究方向:化学4.作者信息第一作者是:云南大学张奇钊;通讯作者:云南大学方文浩。5.光源型号:CEL-HXF300-T3文章简介将5-羟甲基糠醛(HMF)选择氧化为2,5-二甲酰基呋喃(DFF)是糠醛类生物质平台分子转化利用的重要途径之一。DFF是合成糠基生物聚合物、药物中间体、杀菌剂以及荧光剂等的重要单体。传统的热催化氧化技术通常依赖于苛刻的温度和氧压,容易诱发安全和环境隐患。因此,迫切需要开发在温和条件下高效转化HMF为DFF的环境友好型催化体系。于是,光催化氧化技术,因为具有光生空穴和氧气存在下产生的活性氧物种可以在温和条件下驱动该反应的进行而成为科学家们研究的热点。然而现有的金属氧化物光催化剂的制备大部分较为复杂或者以有机试剂(即乙腈、三氟化苯等)作为反应溶剂导致较高的制备成本和环境污染。因此,非常需要低成本、易于制备和易于调节的氧化物催化剂。此外,使用水代替有机溶剂作为反应介质更环保,但对于金属氧化物催化剂来说可能具有很大的挑战性。因为作为副产物的水往往会阻碍正向反应,并且水也可能加剧金属浸出。基于上述研究背景,云南大学化学科学与工程学院方文浩教授课题组通过化学还原沉淀法制备了具有p-n异质结的(Cu2O)x‖TiO2光催化剂,实现了以H2O为反应溶剂,O2作为氧化剂,在无任何添加剂条件下高效利用太阳光催化氧化HMF制DFF。通过调变两种金属的比例和二氧化钛的晶相,深入研究了催化剂能带结构对反应机理的影响。研究发现Cu2O的含量决定HMF的转化率,而TiO2的晶相(即锐钛矿和金红石)影响DFF的选择性。通过清除剂实验研究揭示了空穴(h+)会将HMF深度氧化为CO2,而单线态氧(1O2)能够将HMF选择氧化为DFF。结合莫特肖特基曲线和价带谱数据可以推出半导体的能带结构,由此可得Cu2O的价带位置显然比HMF氧化为DFF的氧化电位更正,但比DFF的氧化电位更负。这表明Cu2O的价带上的光生空穴可以将HMF氧化成DFF,但不能进一步氧化DFF。相反,TiO2的价带位置比DFF的氧化电位更负,因此TiO2价带上的光生空穴能够进一步氧化DFF。p-n异质结的形成不仅抑制了TiO2上羟基自由基(•OH)的产生,而且还促进了O2在Cu2O上活化产生1O2。因此p-n异质结的形成增强了Cu2O的氧化还原能力同时增强了TiO2光利用效率。此外,通过光致发光谱,光电流响应以及电化学阻抗谱表征发现(Cu2O)0.16‖TiO2(A)具有最佳的光生电子和空穴的分离效率以及最佳的电荷迁移效率。与此相对应的,(Cu2O)0.16‖TiO2(A)催化剂在水相、35℃、10mLmin-1O2和模拟太阳光下的温和条件下(如图1所示),产生64.5mggcatal.-1h-1的DFF生成速率。这是目前文献报道的以水为反应介质金属氧化物光催化剂上取得的最佳结果。此外,该催化剂可直接在太阳光和空气下工作,且多次循环使用未见失活。该工作通过一系列的光电性质与形貌表征,深入揭示了异质结催化剂中两种半导体间的强相互作用。研究了在光催化反应过程中光生空穴与各个活性氧物种的作用。并通过能带结构解释了晶相与催化活性的构效关联问题。期望本研究建立的反应选择性和能带结构之间的关系可以应用于其他异质结光催化体系。
  • 自动乌氏黏度仪在羟丙甲基纤维素中的应用
    羟丙基甲基纤维素(hydroxypropyl methyl cellulose),亦有简化作羟丙甲纤维素(缩写作HPMC),是属于非离子型纤维素混合醚中的一个品种。它是一种半合成的、不活跃的、黏弹性的聚合物,常于工业助剂、眼科学用润滑剂,又或在口服药物中充当辅料或赋型剂。在工业领域中,羟丙甲基纤维素的主要用途是为聚氯乙烯生产中做分散剂,系悬浮聚合制备PVC的主要助剂。另外,在其他石油化工、涂料、建材、除漆剂、化妆品等产品生产中,羟丙甲基纤维素也可作增稠剂、稳定剂、保水剂、成膜剂等。在合成树脂领域,添加羟丙甲基纤维素可使获得的产品具有颗粒规整、疏松、视比重适宜,加工性能优良等特点。羟丙甲基纤维素在生产和研发中关键的指标是分子量,根据分子量不同,羟丙甲基纤维素制品可用于不同的用途,低分子量级别(分子量)的羟丙甲基纤维素用于片剂包衣材料,高分子量(分子量100000)的羟丙甲基纤维素可用作片剂骨架的阻滞剂、有延缓药物释放的作用。目前羟丙甲基纤维素分子量常用的测试方式是乌氏毛细管法,乌氏毛细管法实验操作简单,数据重复性好,在大多数高分子材料研发及相关质量控制中都起到关键作用,尤其是ZVISCO自动乌氏黏度仪因其自动化程度高,节省人力的同时进一步提高了实验数据的可靠性。以IV2000系列自动乌氏黏度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度可达180℃。3. 测试过程IV2000系列自动乌氏黏度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可达到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV2000系列自动乌氏黏度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。
  • 自动乌氏黏度仪在羟丙甲基纤维素中的应用
    羟丙基甲基纤维素(hydroxypropyl methyl cellulose),亦有简化作羟丙甲纤维素(缩写作HPMC),是属于非离子型纤维素混合醚中的一个品种。它是一种半合成的、不活跃的、黏弹性的聚合物,常于工业助剂、眼科学用润滑剂,又或在口服药物中充当辅料或赋型剂。在工业领域中,羟丙甲基纤维素的主要用途是为聚氯乙烯生产中做分散剂,系悬浮聚合制备PVC的主要助剂。另外,在其他石油化工、涂料、建材、除漆剂、化妆品等产品生产中,羟丙甲基纤维素也可作增稠剂、稳定剂、保水剂、成膜剂等。在合成树脂领域,添加羟丙甲基纤维素可使获得的产品具有颗粒规整、疏松、视比重适宜,加工性能优良等特点。羟丙甲基纤维素在生产和研发中关键的指标是分子量,根据分子量不同,羟丙甲基纤维素制品可用于不同的用途,低分子量级别(分子量100000)的羟丙甲基纤维素可用作片剂骨架的阻滞剂、有延缓药物释放的作用。目前羟丙甲基纤维素分子量常用的测试方式是乌氏毛细管法,乌氏毛细管法实验操作简单,数据重复性好,在大多数高分子材料研发及相关质量控制中都起到关键作用,尤其是ZVISCO自动乌氏黏度仪因其自动化程度高,节省人力的同时进一步提高了实验数据的可靠性。以IV2000系列自动乌氏黏度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度可达180℃。3. 测试过程IV2000系列自动乌氏黏度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可达到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV2000系列自动乌氏黏度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。
  • 江苏省农学会发布《水果制品中5种糠醛类物质的测定 液相色谱法》等8项团体标准征求意见稿
    各有关单位及专家:根据《江苏省农学会团体标准管理办法(试行)》规定,由江苏省农业科学院牵头制定的《江苏黄河故道区中低产粮田有机肥替减化肥技术规程》《水果制品中5种糠醛类物质的测定 液相色谱法》,由南京农业大学牵头制定的《5―ALA用于桃树防寒疏花和提质技术规程》《江苏省大蒜氮高效利用与膨大技术规程》《江苏省大蒜施硫及膨大期追硫肥增产技术规程》《江苏省独头蒜林下栽培技术规程》,由苏州市农产品质量安全监测中心牵头制定的《粮谷中多氯联苯残留量的测定 气相色谱-质谱法》,由江苏里下河地区农业科学研究所牵头制定的《预制式速冻扬州炒饭专用水稻“扬香玉200”绿色优质生产技术规程》等8项团体标准,均已完成标准征求意见稿。为进一步提高标准质量和水平,保证标准的科学性、严谨性和实用性,现公开征集意见。欢迎各有关单位及专家对标准内容提出修改意见和建议,填写《江苏省农学会团体标准征求意见表》,并于2023年6月15日前以电子邮件形式反馈至江苏省农学会。逾期未回复视为无异议。联 系 人:李 倩联系电话:13776548284邮 箱:jaassnxh@126.com4606_217_附件1. 《江苏黄河故道区中低产粮田有机肥替减化肥技术规程》征求意见稿.pdf4607_454_附件2 .《江苏黄河故道区中低产粮田有机肥替减化肥技术规程》编制说明.pdf4608_1248_附件3.《水果制品中5种糠醛类物质的测定 液相色谱法》征求意见稿.pdf4609_1267_附件4.《水果制品中5种糠醛类物质的测定 液相色谱法》编制说明.pdf4610_241_附件5.《5_ALA用于桃树防寒疏花和提质技术规程》征求意见稿.pdf4611_181_附件6.《5_ALA用于桃树防寒疏花和提质技术规程》编制说明.pdf4612_229_附件7.《江苏省大蒜氮高效利用与膨大技术规程》征集意见稿.pdf4613_670_附件8.《江苏省大蒜氮高效利用与膨大技术规程》编制说明.pdf4614_217_附件9.《江苏省大蒜施硫及膨大期追硫肥增产技术规程》征集意见稿.pdf4615_389_附件10.《江苏省大蒜施硫及膨大期追硫肥增产技术规程》编制说明.pdf4616_212_附件11.《江苏省独头蒜林下栽培技术规程》征集意见稿.pdf4617_482_附件12.《江苏省独头蒜林下栽培技术规程》编制说明.pdf4618_396_附件13.《粮谷中多氯联苯残留量的测定 气相色谱-质谱法》征求意见稿.pdf4619_886_附件14.《粮谷中多氯联苯残留量的测定 气相色谱-质谱法》编制说明.pdf4620_282_附件15.《预制式速冻扬州炒饭专用水稻扬香玉200绿色优质生产技术规程》征求意见稿.pdf4621_318_附件16.《预制式速冻扬州炒饭专用水稻扬香玉200绿色优质生产技术编制说明》编制说明.pdf4622_13_附件17.江苏省农学会团体标准征求意见表.docx
  • 酸奶中不良副产物5-HMF,您了解吗?
    导读 酸奶作为一种营养健康食品,几乎渗透到每个家庭,越来越多的消费者已将其作为一种休闲饮品,在饭后及休闲时饮用。据调查:2020年,中国人均酸奶消费量约达到8.4千克。但是您是否了解:酸奶在巴氏杀菌过程中发生美拉德反应(Maillard reaction),在改变酸奶的风味口感和功能特性时,5-羟甲基-2-糠醛(5-HMF)作为一种不良副产物也同时生成,并藏身于美味的酸奶之中。 来了解下5-HMF 酸奶是以牛(羊)乳或乳粉为原料,经过均质、巴氏杀菌及发酵等过程制成的,具有独特的风味。巴氏杀菌通常保持在90至95°C温度下近一分钟至几分钟,或保持在约85°C温度下30分钟。在热处理过程中,氨基和还原糖之间发生美拉德反应的产物之一即 5-HMF,此化合物是衡量美拉德反应程度的重要指标,其经水解可产生糠醛(F)、2-乙酰基呋喃(FMC)和5-甲基-2-糠醛(5-MF)。据报道,5-HMF很容易通过胃肠道从食物中吸收,代谢成不同的衍生物后,通过尿液排出体外,同时,5-HMF还会转化为5-磺酰甲基-2-糠醛(SMF),一种不可排泄的遗传毒性化合物。另外,有研究表明,5-HMF会对人体粘膜、皮肤和上呼吸道产生细胞毒性,并具有致突变性和致癌性。 岛津应对方案 迄今为止,国内外已经发表了多篇关于食品中糠醛类化合物检测方法的报道,其中有分光光度法、HPLC法、顶空固相微萃取-GCMS法和GC-MS/MS法等。其中GC-MS/MS法具有灵敏度高、选择性好,能够更好地满足复杂基质中痕量目标化合物定性和定量分析要求,据此,岛津公司开发了使用GC–MS/MS同时测定包括酸奶在内的食品中四种糠醛类化合物的分析方法。 气相色谱-三重四极杆串联质谱仪 标准谱图气相色谱-三重四极杆串联质谱仪 标准谱图MRM谱图图2. 4种糠醛类化合物MRM图 实际样品检测结果 表2. 酸奶样品检测结果 结语 酸奶中5-羟甲基-2-糠醛及其水解产物糠醛、2-乙酰基呋喃、5-甲基-2-糠醛等4种糠醛类化合物的内标定量方法结合了岛津GCMS-TQ系列气相色谱-三重四极杆串联质谱仪及QuEChERS法的优势,在简化样品制备过程的同时,有效地去除基质对糠醛类化合物的干扰,保证了方法的灵敏度及准确度,此方法是酸奶中5-HMF检测的优选方案。 本文内容非商业广告,仅供专业人士参考。
  • 专业蜂蜜测评:百花和同仁堂麦卢卡蜂蜜涉嫌造假
    真蜂蜜?假蜂蜜?蜂蜜的营养价值有多大?  ——8款蜂蜜测评报告  蜂蜜,被誉为大自然最完美的营养食品之一。  从事蜂蜜的生产与加工,被称为“甜蜜的事业”。  然而,这些也可能只是自赋的光环和营销的话语。  100%纯正蜂蜜?蜂蜜还能杀菌?要知道,多年来,蜂蜜行业的造假技术一直在和监管(检测)赛跑。  两年之后的2016年1月,《消费者报道》再向权威第三方检测机构送检了中粮山萃、汪氏、百花牌、冠生园、农大神蜂、宝生园等6款洋槐蜜,以及同仁堂(28.830, 0.00, 0.00%)和康维他2款麦卢卡蜂蜜。  通过检测糖浆、淀粉酶、羟甲基糠醛、甘油等新鲜度和品质指标,葡萄糖、果糖等特征性指标,以及氯霉素、菌落总数等安全性指标,本刊再追踪蜂蜜的掺假行为,并衡量蜂蜜的品质变化。  本次检测结果显示,百花洋槐蜜和同仁堂麦卢卡蜂蜜均有掺杂糖浆,涉嫌造假。汪氏洋槐蜜菌落总数超标,宝生园延安刺槐蜜品质排名则靠后。  如何选购一款既新鲜品质又好的蜂蜜?看完测评报告或许你就有了答案。  检测结果显示,百花牌洋槐蜜和同仁堂麦卢卡蜂蜜在糖浆标志物呈现阳性,涉嫌造假。农大神蜂洋槐蜜葡萄糖和果糖总含量较低,在该项目评级中低于其它5款洋槐蜜。  测评报告一:百花牌洋槐蜜、同仁堂麦卢卡蜂蜜掺杂糖浆,涉嫌造假  天然、甜蜜、滋润的蜂蜜深受人们喜爱的同时,也深陷造假的困扰。  蜂蜜造假,是蜂蜜市场持续不变的话题,其造假手段又多以掺糖为主。  你买的蜂蜜掺糖了吗?  2016年1月,《消费者报道》向权威第三方检测机构送检了6款洋槐蜜和2款麦卢卡蜂蜜,检测蜂蜜中是否掺杂糖浆。  检测结果显示,百花牌洋槐蜜和同仁堂麦卢卡蜂蜜在糖浆标志物检测(SMX)指标中呈现阳性,涉嫌造假。农大神蜂洋槐蜜葡萄糖和果糖总含量较低,在该项目评级中低于其它5款洋槐蜜。  百花和同仁堂麦卢卡蜂蜜涉嫌造假  蜂蜜是否造假是消费者在选购蜂蜜类产品时所关心的头等大事。  根据本刊的蜂蜜调查问卷结果显示,143名消费者中,有近一半的消费者在选购蜂蜜时关心造假问题。(如图1)  “普通的消费者很难从口感就能分辨出蜂蜜是否有掺假,因蜂蜜本身的含糖量较高,很甜,而企业在掺假过程中也会选择甜味很高的糖浆来迷惑消费者的口感。”国家一级营养师焦通接受《消费者报道》记者采访时说。  他指出,企业之所以在蜂蜜中掺杂糖浆是为了以次充好,以假乱真,降低成本,谋得暴利。  在《GH/T 18796-2012》蜂蜜的行业标准中规定:蜂蜜中不得添加当前明确或不明确的添加物。  “蜂蜜中掺入糖浆是欺骗消费者的行为。但其鉴别起来却难度颇大,当前蜂蜜的国家标准《GB 14963-2011 蜂蜜》尚不能解决这个问题。”广东省昆虫研究所蜜蜂与蜂产品研发中心负责人罗岳雄强调。  中国蜂产品协会曾公开表示,在一些地区甚至出现了掺假蜂蜜也能符合国家标准的现象。  江苏出入境检验检疫局动植物与食品检测中心专门负责检测蜂蜜的工程师费晓庆告诉记者,随着糖浆制作工艺的提升,蜂蜜鉴定的难度也越来越大。对于像木薯、小麦等新型糖浆,目前还没有可靠的检测方法。  目前对掺假蜂蜜鉴别的方法主要有SMR (大米糖浆检测)、SMB (甜菜糖浆检测)和SMX (糖浆标志物检测)等。  2013年12月,《消费者报道》曾发布8款蜂蜜测评报告,所采用的鉴别糖浆的方法是碳-4植物糖。而如今,掺糖的技术日新月异,掺杂手段也由掺杂一种升级为多种混合糖浆。  “SMX糖浆标志物检测方法可以鉴别蜂蜜中是否掺入了糖浆,但具体掺杂的是什么糖浆,则不能辨别。如果检测结果呈阳性,代表蜂蜜有掺糖浆。”费晓庆表示。  本刊此次实验室盲检检测结果显示,同仁堂麦卢卡蜂蜜和百花牌洋槐蜜在糖浆标志物检测的测试中呈阳性,检出糖浆,涉嫌造假。(如图2)  对于检测结果,百花牌洋槐蜜的生产商北京百花蜂业科技发展股份公司的相关负责人接受记者采访时表示其每批原料都会使用包括SMX方法在内的多种方法检测合格后才入库,市售产品并没有掺杂糖浆。  麦卢卡蜂蜜是一种新西兰的进口蜂蜜。在本刊测试结果知会之后,北京同仁堂健康药品经营有限公司亦将同一批次的产品送检测机构进行检测,不过,从其提交给本刊的检测结果来看,糖浆标志物检测呈阴性,与本刊结果相反。“不排除检测方法存在一定的不确定性。”同仁堂相关人士回应本刊。  不过,根据本刊了解,这一检测方法是目前行业内比较认可的检测方法,在本刊前期将检测方法知会受测企业时,企业亦表示认可。而且,这一方法也得到了国家食药监总局的认可,并有意列入新的国标。  同仁堂方面亦表示,也已将其他批次的在售蜂蜜送检,保证各产品的质量。“从我们已送检的其他批次产品来看,并未发现掺假情况。”  蜂蜜掺假对糖尿病人不利  蜂蜜掺糖是否会给消费者的身体健康带来一定的隐患?  大连工业大学食品学院教授农绍庄表示,对于普通消费者它不会危害身体健康。但特殊人群如糖尿病患者,会无形中摄入更多的未知糖分,给身体健康带来一定的风险。  为什么企业存在掺糖浆的造假行为,但关于辨假的检测方法却尚未写入国家标准呢?  国家蜂产品质量监督检验中心实验室负责人李子健曾在 “国标《GB 14963 蜂蜜》的修订意见”中指出,蜂蜜中添加其他物质是掺假、造假、贸易欺诈的行为,而非食品安全问题。  此外,多方专家均对记者表示其背后的原因很复杂,如果把检测方法列入国标,可能会造成部分市售蜂蜜的不合格,这恐怕会触及到企业利益。  农大神蜂葡萄糖和果糖总糖含量较低  蜂蜜的主要成分是糖,包括果糖、葡萄糖和蔗糖。其中,果糖和葡萄糖的总含量是划分蜂蜜等级的一个重要理化依据。  一位业内人士指出,蜜蜂在采摘、酿造的过程中会将花蜜中的蔗糖转化为葡萄糖和果糖,未经充分酿造的蜂蜜产品这两种单糖含量会相对较低。  在《T/CBPA 0001-2015中国蜂产品协会团体标准》中规定:合格蜂蜜中葡萄糖和果糖的含量应不低于其质量的60%,优级品不低于65%,特级品不低于70%。  本刊关于葡萄糖和果糖总含量对比检测结果显示,6款洋槐蜜中有5款达到了特级要求,农大神蜂仅为优级品。(如图3)    检测结果显示,冠生园洋槐蜜和康维他麦卢卡蜂蜜的品质较优。宝生园洋槐蜜的淀粉酶值为2.7,羟甲基糠醛含量为54.4mg/kg,属8品牌中品质最差的蜂蜜。  测评报告二:宝生园品质较差 两款麦卢卡蜂蜜符合标称  色泽明亮,入口新鲜?你真的知道如何分辨蜂蜜的品质吗?  消费者单从蜂蜜的口感和外观很难比较蜂蜜的品质好坏。  2016年1月,《消费者报道》向权威第三方检测机构送检了6款洋槐蜜和2款麦卢卡蜂蜜,检测反映其品质的淀粉酶酶值、羟甲基糠醛含量,氯霉素的残留和麦卢卡UMF。  检测结果显示,宝生园洋槐蜜的淀粉酶值和羟甲基糠醛均未达到《GH/T18796-2012供销合作行业标准》标准要求,品质较差。8款蜂蜜均未检出氯霉素,2款麦卢卡蜂蜜其UMF等级与标签相符。  冠生园洋槐蜜的品质较好  “淀粉酶值和羟甲基糠醛是判断蜂蜜品质的重要指标。”大连工业大学食品学院教授农绍庄接受本刊记者采访时强调。  国家高级营养师李岩冰指出,蜂蜜产品中的淀粉酶主要来自于蜜蜂自身分泌的唾液,它是蜂蜜主要的活性物质和生物酶。蜂蜜中的羟甲基糠醛主要由葡萄糖或果糖转化而来。  “刚采收下来的蜂蜜羟甲基糠醛含量甚微甚至没有,它是由于储存温度高或者经过加热产生的,后期含量越高代表加工、储存条件对蜂蜜的品质破坏程度越大。”江苏出入境检验检疫局动植物与食品检测中心专门负责检测蜂蜜的工程师费晓庆指出。  不过,蜂蜜的国家标准《GB 14963-2011》并未对这两项指标做出要求。因此此次测试本刊同时参考了《GH/T18796-2012供销行业标准》和《T/CBPA 0001-2015中国蜂产品协会团体标准》。  在《GH/T18796-2012供销行业标准》中,对于蜂蜜的淀粉酶值和羟甲基糠醛的要求是不低于4和不高于40mg/kg 在《T/CBPA 0001-2015中国蜂产品协会团体标准》中规定优级品蜂蜜淀粉酶值不低于4,羟甲基糠醛不高于40mg/Kg 特级品蜂蜜淀粉酶值不低于8,羟甲基糠醛不高于20mg/Kg。  检测结果显示,冠生园洋槐蜜和康维他麦卢卡蜂蜜的品质较优。宝生园洋槐蜜的淀粉酶值为2.7,羟甲基糠醛含量为54.4mg/kg,属8品牌中品质最差的蜂蜜。(如图4)    对于该检测结果,广东省昆虫研究所蜜蜂与蜂产品研发中心主任罗岳雄表示酶值也与品种、产区、气候等多方面因素有关,部分广东的蜂蜜会达不到标准要求。  农绍庄则指出,淀粉酶值较低主要和两方面因素有关:一是蜂蜜的储藏条件不佳,温度较高,导致酶值下降 二是有可能蜂蜜采收后进行了加热的加工程序,导致了酶值下降。  同时农绍庄也指出,羟甲基糠醛超标并不会对人体造成危害,它只是蜂蜜储存过程中的一个产物。  8款蜂蜜均未检出氯霉素  氯霉素是一种强力抗生素,只允许作为药物用于人。氯霉素残留量曾是中国企业蜂蜜出口所遭遇的壁垒之一。  食品工程博士云无心曾撰文指出,蜜蜂容易感染一种细菌从而产生“幼虫腐烂病”。这种病对蜂产业危害极大,可能会导致整个蜂群死亡。在其他手段都使用无效的情况下,有些蜂场用抗生素来处理蜂房,控制幼虫腐烂病。这就导致蜂蜜中可能会检出氯霉素残留。  本刊此次检测结果显示,8款蜂蜜氯霉素均小于0.1ug/Kg,因此8款产品不存在氯霉素残留的安全性问题。  麦卢卡蜂蜜因其含有独特的抗菌成分独麦素(UMF)而倍受追捧,行业也以UMF的高低对麦卢卡蜂蜜进行分级。  UMF是麦卢卡蜂蜜中含有的独特抗菌活性物质,UMF标注越高,其抗菌作用越明显。  本刊对两款麦卢卡蜂蜜的UMF检测结果显示,其UMF含量均符合其标称值UMF10+。  检测结果显示,汪氏洋槐蜜菌落总数超过国家标准要求,较容易腐败。宝生园和冠生园洋槐蜜发酵程度较高,容易变酸。  测评报告三:汪氏洋槐蜜菌落总数超标 冠生园洋槐蜜易变酸  网上传言,1913年美国考古学家在埃及金字塔古墓中发现了一坛蜂蜜,经鉴定这坛蜂蜜已历时3300多年,但一点也没有变质,至今还能食用。  普通消费者有时对这样的传言难辩真假。蜂蜜是否真的具有永久保质期?  这得看是在什么样的使用和保存条件下。2016年1月,《消费者报道》向权威第三方检测机构送检了6款洋槐蜜和2款麦卢卡蜂蜜,检测其菌落总数和甘油含量,衡量其保存效果。  检测结果显示,汪氏洋槐蜜菌落总数超过国家标准要求,生产卫生条件较差。宝生园和冠生园洋槐蜜发酵程度较高,容易变酸。  汪氏洋槐蜜卫生条件较差  美国食品药品监督管理局(FDA)给出了一个在没有食品保质期标注的情况下,未开封、未经烹饪食物的建议保质期。其中蜂蜜在常温条件下,属于永久、不过期食品。  中国农业大学食品学院副教授范志红也曾撰文指出,天然成熟蜂蜜中,总的糖含量超过85%,足以抑制各种微生物。  蜂蜜的杀菌作用主要体现在其高渗透压和多种抑菌元素的综合作用。  “蜂蜜的含糖量高达70%以上且水分活度低,渗透压极大。当细菌与蜂蜜相遇时,其本身的渗透压低于蜂蜜,会导致细胞液从细胞膜中渗出,脱水死亡。此外,蜂蜜中含有过氧化物等成分,具有杀菌、抑菌能力。”大连工业大学食品学院教授农绍庄解释说。  食品工程博士云无心指出,正常情况下蜂蜜中的菌落总数含量很低,不会超出国家标准的要求。如果菌落总数超标了,则意味着加工过程中清洁程度不够或者产品不纯。  在《GB 14963-2011》蜂蜜的国家标准中对菌落总数的要求是不高于1000CFU/g。  本刊检测结果显示,汪氏洋槐蜜菌落总数1100CFU/g,未达到国标的要求。(如图5)    “菌落总数超标可能是蜂蜜在采收加工等过程受到了微生物污染或其糖浓度不足,部分微生物只是被抑制,但并没有被杀死,达不到杀菌效果。”大连工业大学食品学院教授农绍庄指出。  但是,从本刊对葡萄糖和果糖的检测结果来看,汪氏洋槐蜜的含糖量并不低,葡萄糖和果糖总含量达到73.18%,处于中上水平。(详见测评报告1)  广东省昆虫研究所蜜蜂与蜂产品研发中心负责人罗岳雄认为有可能是盛装蜂蜜的容器被污染了。  对于检测结果,江西汪氏蜜蜂园有限公司的相关负责人回应,汪氏的内控标准是不高于500CFU/g,其对自己的产品很有信心。  那么,如若食用菌落总数超标的蜂蜜是否会带来安全隐患?  罗岳雄表示,现在还不能下一个定论,无法判断是何种微生物超标,如是有害微生物则需要引起警惕。  国家高级营养师李岩冰表示,根据自己以往的经验,蜂蜜菌落总数超标的情况很少见,不过耐高糖或高盐的嗜渗酵母超标的情况倒是遇见过。  冠生园洋槐蜜发酵程度较高,或已变酸  “蜂蜜中的甘油主要由蜂蜜中存在的一些嗜渗酵母菌,发酵葡萄糖产生。其含量与嗜渗酵母菌数量,以及发酵的程度有关。”李岩冰强调。“如果其含量过高,则该款蜂蜜或许已经变酸。”  在《T/CBPA 0001-2015中国蜂产品协会团体》的标准中规定:特级品的蜂蜜中甘油含量不高于300mg/Kg。  本此测评结果显示,中粮山萃洋槐蜜的甘油含量最低,达到特级品的要求。宝生园和冠生园洋槐蜜的甘油含量较高,或已变酸。(如图6)    对此冠生园相关负责人解释:蜂蜜中的甘油变化,通常与蜂蜜的储存条件、储存时间、蜂蜜产地、品种、养蜂采蜜方式等因素有关,一般来说,若蜂蜜储存时间较长或贮存温度较高,甘油会有所升高。同时,企业对与本刊同批次的洋槐蜜进行检测,甘油含量低于1502mg/Kg。  福建农林大学峰学院院长苏松坤解释道,甘油发酵不一定会造成蜂蜜有致病性,只是对品质有影响。  汪氏洋槐蜜菌落总数超标,百花牌洋槐蜜和同仁堂麦卢卡蜂蜜因糖浆标志物检测呈现阳性,均被本刊列为不推荐产品。  测评报告四:综合测评中粮山萃洋槐蜜较优 蜂蜜的价值需多角度评价  甜蜜,是多数人无法抗拒的味道。  《消费者报道》对143名消费者的调查问卷结果显示,有50%的消费者会每天或者经常食用蜂蜜。  然而,你选的蜂蜜掺假了吗?它的品质如何?该选购哪款蜂蜜?  2016年1月,《消费者报道》向权威第三方检测机构送检了6款洋槐蜜和2款麦卢卡蜂蜜,检测其酶值、羟甲基糠醛、甘油等品质指标,果糖和葡萄糖含量、SMX糖浆标志物检测等造假鉴别指标,以及菌落总数和氯霉素等安全性指标。  综合测评结果显示,冠生园洋槐蜜、中粮山萃洋槐蜜和康维他麦卢卡表现较佳。汪氏洋槐蜜菌落总数超标,百花牌洋槐蜜和同仁堂麦卢卡蜂蜜因糖浆标志物检测呈现阳性,均被本刊列为不推荐产品。(图7)  成熟蜜与未成熟蜜众说纷纭  蜂蜜行业除了掺糖这个亘古不变的话题以外,近年来成熟蜜与未成熟蜜的话题又引起了众多的争议。那它们的营养价值有何区别?  成熟蜜是指蜜蜂采完花蜜后,将其唾腺分泌物装到巢房中,经过酿造、脱水,使含水量降至20%以下,并使双糖充分转化为单糖,直至蜜蜂将其封盖。而未成熟蜜则是未经蜜蜂的充分酿造,在尚未封盖的情况下将蜂蜜取出。  一位业内人士告诉记者,目前国内企业收购的蜂蜜大多属于未成熟蜜,后续会蒸发水分,便于储存。  冠生园技术人员贾先生表示,国内很多企业生产未成熟蜜以及国外生产成熟蜜的区别在于养蜂产业的不一样。国内养蜂都是蜂农小规模生产,人工成本高,国外都是大规模生产,规范化管理,人工成本相对低。其在研发过程中曾进行过对比试验,结果显示成熟蜜与未成熟蜜的各项指标并没有多大的区别。  但福建农林大学蜂学学院院长苏松坤认为,未成熟的蜂蜜,其水分含量相对高,尽管后续经人为浓缩加工,浓缩后的蜜的酶值和香味会受到影响,由于蜜蜂酿造时间不够,风味物质含量偏低,其分泌的活性物质也会偏低,影响产品的品质和营养保健功能。  多角度看待蜂蜜的价值  本刊对145名消费者进行的问卷调查结果显示,有超过三分之一的消费者看重蜂蜜的润肠通便效果。  食品工程博士云无心曾撰文解释蜂蜜通便的原因是因其果糖含量高,部分人体食用后会出现果糖不耐受,具体表现就是拉肚子。同时他也表示,蜂蜜的主要成分百分之八十以上是糖,百分之十几是水,其他营养成分则不足百分之一。因此,单从营养成分上来说,蜂蜜是一种热量高、营养高度单一的食品,其不管真假,都没有什么值得称赞的营养。  而苏松坤则认为,蜂蜜是蜜蜂从蜜粉植物采集花蜜、花粉并经过复杂的酿造过程形成的天然甜味食品,具有独特的风味和营养,有的还有特殊的医疗保健功能,和普通的糖有相当的区别,不能单从营养成分化学分析的角度来理解蜂蜜的营养和保健功能。  特殊人群食用蜂蜜须留意  北京友谊医院营养科营养师顾中一提醒消费者,并非每一个人都适合食用蜂蜜。12个月以内的婴儿不宜服用蜂蜜,因其存在肉毒杆菌中毒的风险。此外,消费者如有果糖不耐受,那么也容易出现腹泻的症状。  他指出,蜂蜜较适用于运动员、健美人群、手术创伤患者。它可以被机体迅速吸收,补充能量。  至于糖尿病人能否食用蜂蜜一直以来存在较大的争议。  大连工业大学食品学院教授农绍庄指出,洋槐蜜的果糖含量高于葡萄糖含量,食用洋槐蜜有助于提供能量又不至于引起血糖过高反映。  洋槐蜜在《GH/T18796-2012供销社合作行业标准 蜂蜜》的感官特性中注明颜色为水白色。一位业内人士指出,洋槐蜜的颜色越接近水白色越纯正、质优。颜色深,代表其可能掺杂其它花蜜或储存条件越不当。  而营养师顾中一并不建议糖尿病人食用蜂蜜,如果需要甜味可以换成其他的甜味剂。  国家一级营养师焦通指出,特殊人群食用蜂蜜时应将其用水大量稀释,且每天不能食用过多,以半小勺为限。【原标题:8款蜂蜜测评:百花和同仁堂麦卢卡蜂蜜涉嫌造假】
  • 首届“闵恩泽能源化工奖”获奖人员名单公布
    闵恩泽院士是我国德高望重的著名科学家,中国石油石化科技界的泰斗,是我国炼油催化技术的奠基者、石油化工技术自主创新的先行者、绿色化学的开拓者,曾获2007年度国家最高科学技术奖。   2013年4月3日,中国石油化工集团公司和中国工程院联合设立&ldquo 闵恩泽能源化工奖&rdquo 奖励基金,用于奖励在能源化工领域从事研发和产业化过程中作出突出贡献的优秀科技人员,激励高端领军人物奋发创新,吸引优秀青年人才积极投入,大胆创新,培养国际一流的能源化工科技人才。该奖励基金由闵恩泽院士创议并发起。奖励基金包括闵恩泽院士个人捐资和中国石油化工集团公司捐资,本金运作和保值增值部分用于奖励。&ldquo 闵恩泽能源化工奖&rdquo 设&ldquo 杰出贡献奖&rdquo 和&ldquo 青年进步奖&rdquo 两类奖项,每两年评选一次。   奖励基金设立理事会和评审委员会。基金理事会设在中国石油化工集团公司,理事长由中国石油化工集团公司董事长傅成玉担任,常务副理事长由中国石油化工股份有限公司高级副总裁戴厚良担任,副理事长由中国工程院副院长谢克昌院士担任。评审委员会设在中国工程院,主要由教育部、中国科学院、中国工程院、国家自然科学基金委员会、中国石油化工集团公司、相关高等院校等单位在相关领域具有较高造诣的院士及专家学者组成。评审委员会分设提名委员会和专家委员会,第一届提名委员会和专家委员会主任分别由闵恩泽院士和王基铭院士担任。   依据《闵恩泽能源化工奖基金章程》和《闵恩泽能源化工奖评选办法》等相关规定,经&ldquo 闵恩泽能源化工奖&rdquo 提名委员会提名、专家委员会评选和基金理事会审批,决定授予清华大学陈国强、中国石油化工股份有限公司石油化工科学研究院杜泽学、北京大学刘海超、北京化工大学谭天伟等4人&ldquo 杰出贡献奖&rdquo 授予南京工业大学郭凯、中国科学院大连化学物理研究所李昌志、中国科学院青岛生物能源与过程研究所牟新东、中国科学院过程工程研究所王岚、中国石油化工股份有限公司北京化工研究院许宁、中国石油化工股份有限公司石油化工科学研究院曾建立、北京化工大学范立海等7人&ldquo 青年进步奖&rdquo 。   上述获奖者在生物质燃料和生物基有机化工科技前沿领域取得了优异成果,主要包括:微流场技术在生物基材料应用研究、离子液体介导的纤维素水解等国际领先的制备技术 催化选择一步氢解和近临界水条件下水解耦合加氢转化纤维素的绿色新途径、纤维素联合生物加工等合成工艺 生物基聚氨酯、生物基尼龙、生物基无毒增塑剂以及采用秸秆、藻渣合成生物基异戊二烯等生物基有机化工产品开发。   获奖人主要贡献如下:   一、杰出贡献奖   陈国强 男,50岁,奥地利格拉茨(Graz)工业大学博士毕业,微生物和生物材料专业,清华大学教授。陈国强博士推动了我国生物塑料聚羟基脂肪酸酯产业的发展,使我国在该领域产业化和学术研究的水平处于世界前沿。其有关学术成果达200多篇,论文被他人引用超过4900次(H指数为39) 获得有关聚羟基脂肪酸酯授权专利20余件。先后获国家技术发明奖二等奖(第一完成人)、纽伦堡国际发明奖等奖励,是国家杰出青年科学基金获得者、教育部长江学者特聘教授和973&ldquo 合成生物学&rdquo 项目的首席科学家。   杜泽学 男,49岁,中国石化石油化工科学研究院工学博士毕业,有机化工(生物柴油)专业,中国石化石油化工科学研究院教授级高工。杜泽学博士提出了利用近/超临界甲醇醇解技术,开发地沟油等废弃油脂生产生物柴油的新工艺 组织开展探索研究,找到了降低反应温度和压力的办法,解决了原料深度转化、产品分离与质量达标等问题 组织开展新工艺的中试,攻克了工艺放大面临的诸多工程化难题,开发成功了适应多种原料、生产过程清洁的SRCA生物柴油绿色工艺 在生物柴油及相关领域申请国内外发明专利57件,其中获得国外专利授权4件、中国专利授权33件 发表论文22篇。   刘海超 男,45岁,中国石化石油化工科学研究院博士毕业,催化化学专业,北京大学化学与分子工程学院教授。刘海超博士主要从事分子催化与能源化学研究,在生物质选择催化转化等基础研究方面取得了原创性成果,揭示了催化剂构&mdash 效关系和反应机理,发明了选择氢解、近临界水条件下水解耦合加氢等纤维素绿色解聚转化为多元醇的新方法,发展了从纤维素直接合成丙二醇、甘油催化氧化合成乳酸等生物质化学品合成的新途径。获得授权发明专利20余件,发表学术论文80余篇,荣获&ldquo 中国催化青年奖&rdquo 等奖励。   谭天伟 男,49岁,清华大学博士毕业,生物化工专业,中国工程院院士,北京化工大学教授。谭天伟博士通过多年选育筛选出具有新基因的亚罗解脂酵母脂肪酶,并研究成功酶膜固定化新方法,实现了生物柴油、维生素A棕榈酸酯等产品的工业生产 创建了基于中间代谢物控制发酵过程优化的方法 利用发酵废弃物中的废菌丝体,提取麦角固醇和壳聚糖,显著地降低了麦角固醇生产成本 开发了喷射法制备壳聚糖吸附剂工艺,并采用分子印迹技术提高吸附容量1倍。已申请国内外发明专利37件 发表论文300余篇,其中SCI收录200余篇、 EI收录210余篇。以第一完成人先后获得国家技术发明奖二等奖2项,省部级一等奖4项、二等奖4项 是国家杰出青年基金获得者、中国青年科技奖获得者、何梁何利创新奖获得者。   二、青年进步奖   郭凯 男,31岁,英国谢菲尔德大学博士毕业,生物化工专业,南京工业大学教授。郭凯博士针对生物化工过程效率偏低和生物产业链偏短的问题,开展了微流场技术在生物基材料及精细化工品领域的应用研究,逐步形成了以微流场技术为核心的技术平台、以生物基材料为核心的产品体系。其从尺度效应对反应本征的影响研究入手,通过流体场结构设计,有效拓展流场边界,推进了微流场技术的工程化应用,并成功将微流场技术应用于生物基无毒增塑剂、生物基尼龙单体、生物基聚氨酯单体的制造过程中 创新了3D打印技术和粉末冶金技术等微流场反应装备的快速制造模式,开发了针对生物化工和化学化工工艺特异性微流场反应装备。累计发表论文30余篇 申请及授权专利近20件 参与编写书籍1部 获省部级科技进步一等奖1项。   李昌志 男,34岁,中国科学院大连化学物理研究所博士毕业,有机化学专业,中科院大连化学物理研究所副研究员。李昌志博士针对纤维素利用中的两个科学难题,在国际上率先提出离子液体介导的纤维素水解技术,并将其成功应用于天然生物质原料水解 实现由纤维素高选择性转化制备生物质关键平台化合物5-羟甲基糠醛,尤其是进一步开发了高浓度反应过程,对工业放大生产5-羟甲基糠醛具有重要科学意义和应用价值 发展了天然生物质原料全组分催化氢解制二元醇和单酚类化合物的催化过程,该过程亦表现出潜在的工业应用价值。共发表SCI论文19篇,申请发明专利11件,获得专利授权3件。   牟新东 男,34岁,北京大学博士毕业,生物质绿色转化专业,中国科学院青岛生物能源与过程研究所研究员。牟新东博士及其带领的绿色化学催化团队针对木质纤维素生物质利用中的瓶颈问题,设计开发了节能省水的动态挤压预处理工艺,并建成千吨级/年预处理量的中试系统 完成了由单糖制备呋喃二甲醇、呋喃二甲酸的公斤级小试生产与下游呋喃二甲醚产品的开发 开发了由单糖制备混合二元醇,和经糠醛和羟甲基糠醛制备高附加值&alpha ,&omega -二元醇和1,2-二元醇的催化体系,具备一定的工业化潜力。他先后主持国家863计划、国家自然科学基金、山东省及青岛市重大科学研究计划等项目。作为第一或通讯作者,已在SCI期刊上发表论文20余篇,其中第一作者论文单篇最高引用次数达160余次,申请专利30余件,其中国际专利2件,获得专利授权4件。   王岚 女,32岁,中国科学院研究生院博士毕业,生化工程专业,中国科学院过程工程研究所助理研究员。王岚博士建立了汽爆和水流筛分组合处理新方法,使汽爆秸秆酶解效率提高1倍,提出了提高纤维素酶解效率的秸秆组分分级思路。发现了秸秆降解物中的可溶性木质素是抑制丁醇发酵的主要抑制物,建立了活性炭去除汽爆秸秆酶解液中的抑制物用于发酵丁醇的新方法。首次提出了采用秸秆中易于降解的半纤维素为发酵原料,建立了汽爆秸秆半纤维素水解液发酵丁醇的方法。采用与其技术配套的自主加工的工业化装置系统,完成了年产600吨秸秆丁醇中试试验,并建成了年产5万吨丁醇以及联产乙醇、丙酮、聚醚多元醇和纸浆的生产线。在国内外学术期刊上发表论文10余篇 申请中国发明专利7件、国际PCT专利1件,获得中国专利授权4件 出版中英文专著2部。   许宁 女,33岁,北京大学博士毕业,高分子化学专业,中国石化北京化工研究院高级工程师。许宁博士进行了生物可降解聚酯的改性工作,设计并合成了多种结构新颖、性能独特的聚酯 开展了含糖聚酯研究,合成了一系列结构精细可控的侧链含糖聚己内酯,构筑了国际上首个可降解的胰岛素控制释放体系模型 在聚乳酸合成与改性领域进行了研究,制备了增韧聚乳酸材料。作为第一作者发表论文5篇 申请专利21件,获得专利授权9件。   曾建立 男,32岁,中国科学院过程工程研究所博士毕业,生物化工专业,中国石化石油化工科学研究院高级工程师。曾建立博士针对废弃油脂生产的生物柴油酸值容易超标的问题开展研究,确定了影响产物酸值的关键因素,并完成了亚临界两段醇解反应制备生物柴油的小试实验 在此基础上,提出了第二代生物柴油新工艺(SRCA-Ⅱ),并完成了2000吨/年中试试验,为第二代生物柴油工艺开发作出了突出贡献。发表文章12篇,申请专利6件。   范立海 男,31岁,浙江大学博士毕业,生物化工专业,北京化工大学副教授。范立海博士成功实现了单株酵母以纤维素为唯一碳源直接转化燃料乙醇技术路线 首次解决了结晶型纤维素无法被酵母直接降解利用的国际性难题。已发表SCI论文10余篇,其中作为第一作者在《美国科学院院刊》(PNAS)1篇,申请国内发明专利3件。   特此公告。   &ldquo 闵恩泽能源化工奖&rdquo 基金理事会   2013年12月20日
  • 《苹果醋饮料》《浓缩苹果汁》两项国家标准在京通过审定
    日前,《苹果醋饮料》和《浓缩苹果汁》两项国家标审定会在北京召开,来自饮料协会、科研院校、相关企业的专家及部分饮料标委会的委员代表一致通过了两项标准的审定。   中国作为苹果种植大国,浓缩苹果汁是主要加工产品,并在同类产品的国际贸易中占据主导地位。此次《浓缩苹果汁》国家标准的制定,整合了原行业标准QB2657-2004《浓缩苹果浊汁》和原国家标准GB/T18963-2003《浓缩苹果清汁》。新标准中对浓缩苹果汁的定义进行了充实和完善,结合行业实际,明确提出不允许添加的原料如其他水果汁液、果葡糖浆等 同时考虑原料及生产实际,理化指标中调整了可溶性固形物及可滴定酸的要求,参照国际食品法典委员会、欧洲果汁联盟等相关国际标准,对清汁类产品增加了富马酸、乳酸、羟甲基糠醛的指标,有利于企业进行原料及工艺控制。   以发酵工艺为基础的苹果醋饮料,近年来呈现较快的增长趋势,生产企业多数以中小企业为主,由于缺乏标准规范,真正发酵苹果醋饮料与纯原料调配型饮料混杂,市场秩序混乱。此次标准制定对苹果醋使用的原辅料、特征性有机酸进行了规定,有利于提高使用苹果醋原料的质量和真实性,也为饮料企业在选择原料时提供了依据 标准还明确提出不得使用粮食等非苹果发酵产生或人工合成的食醋、乙酸、苹果酸、柠檬酸等调制苹果醋饮料 此外标准还对苹果醋饮料中苹果醋、苹果汁、总酸、苹果酸、柠檬酸、乳酸的进行了规定。以上内容,有利于维护产品的真实性,保护消费者利益,为质量监管提供依据,提高行业整体水平。   审定会上,两项标准课题组所开展的工作得到了专家的一致认可,特别是苹果醋饮料的样品收集、检验等工作为标准的顺利通过奠定了扎实的基础。会后协会技术工作委员会根据审定会的修改意见对标准分别进行修改、整理,并按要求于2月份上报国家有关部门,实施时间建议为2012年5月1日。
  • 我国蜂业首部团标发布 明确蜂蜜掺假碳-4检验方法
    为了促进蜂蜜优质优价,确保消费者权益,日前,中国蜂产品协会发布实施中国蜂产品协会团体标准《蜂蜜》。中国蜂产品协会负责人表示,制定团体标准必须严于和高于国家标准、行业标准和地方标准,这是国家规定的标准制定的基本原则。  中国蜂产品协会制定的《蜂蜜》团体标准与《蜂蜜》国家标准相比主要增加了以下四项内容:  一是增加了蜂蜜真实性判定的检验方法。新出台的中国蜂产品协会《蜂蜜》团体标准,明确了对蜂蜜掺假检测碳-4植物糖检验方法,并在“真实性要求”中增加了可以涵盖其他若干检验方法的语句表述“采用GB/T18932.1和已实施的国家标准、行业标准、本团体标准规定的其他方法”。  二是蜂蜜中的主要理化指标优于国家标准。《蜂蜜》团体标准中规定的优级品和特级品两个等级的蜂蜜中水分、果糖和葡萄糖等蜂蜜的特征指标都优于《蜂蜜》国家标准。  三是《蜂蜜》团体标准增加了《蜂蜜》国家标准中没有设定的一些理化指标,以确保蜂蜜的高质量。相比《蜂蜜》国家标准,《蜂蜜》团体标准增加了蜂蜜中酸度、羟甲基糠醛、淀粉酶活性、灰分和甘油等指标的检测并提出数值要求。  四是《蜂蜜》团体标准划分了产品等级。《蜂蜜》团体标准根据蜂蜜的理化指标不同,分为合格品、优级品、特级品三个等级。符合《蜂蜜》国家标准的为合格品,符合《蜂蜜》行业标准的为优级品,符合协会《中国蜂产品证明标志》的蜂蜜质量要求并加贴《中国蜂产品证明标志》的为特级品。
  • 食品安全检测仪 如何通过检测保障食品安全?
    食品安全问题与我们的身体健康息息相关,食品安全检测仪是目前检测食品安全的主要仪器。现在随着科技的进步,市面上的食品安全检测仪都能适应多种情况,不论是工作环境还是食物材料,都能够准确分析出是否符合安全和卫生标准。 食品安全检测仪原理是什么呢?我们每天食用的水果蔬菜中可能含有农残含量超标,食用的肉类食品中可能是注入了瘦肉精、水分,我们食用的色香味俱全的食品中可能加入了漂白剂、色素、各种添加剂。这些不健康的人为添加因素将会严重侵害着我们人类自身。食品安全检测仪可以快速检测食品中品中有农药残留、有毒有害物质、添加剂、非法添加剂、水质安全、重金属残留、等多种含量。 具体常见项目有:食品色素(柠檬黄、日落黄、胭脂红、苋菜红、诱红、亮蓝、赤藓红)、病害肉(组胺检测、挥发性盐基氮含量、肉类细菌毒素)、重金属(铅、汞、铬、 砷、镉)、蛋白质、粗蛋白、茶多酚、甜蜜素、安赛蜜、吊白块、淀粉含量、二氧化硫、二氧化氯、过氧化氢(双氧水)、过氧化值、食用油酸价、食品甲醛、酱油氨基酸态氮、酱油中食盐、酱油中铁强化剂、酱油总酸、食醋总酸、食盐碘、蜂蜜水分、蜂蜜酸度、蜂蜜中果糖葡萄糖、羟甲基糠醛、饴糖、蔗糖、硼砂、亚硝酸盐、亚硫酸盐、亚铁*化钾、硝酸盐、工业火碱(氢氧化钠)、过氧化苯甲酰、面粉中溴酸钾、面中铝、明矾、苯甲酸钠、焦磷酸二氢钠、硫氰酸钠、山梨酸含量、山梨酸钾、苯甲酸钠、木耳硫酸镁、粮食新鲜度、味精谷氨酸钠含量、味精硫化钠、葡萄酒中铁含量、真假葡萄酒、糖精钠、芝麻油纯度、甲醇含量、乙醇、碱性橙II、脂肪含量、猪油中丙二醛含量、三*胺、苏*红、罗丹明B等。 食品安全检测仪是根据待检测样品中相关指标成分与显色剂能够发生特异性反应,生成不同颜色深度的产物,这些产物对不同波长可见光会产生选择性吸收,颜色的深浅即吸光度的高低与样品中该指标成分的浓度成相关性,其规律呈现符合朗伯—比尔定律。即被检食品样品中的相关指标成分与显色剂在一定的条件下发生特异性反应,可生成不同颜色深度的产物,这些产物对不同波长可见光会产生有选择性吸收,颜色的深浅即吸光度的高低与样品中该指标成分的浓度成相关性,并在适当的浓度范围内服从朗伯—比尔定律。因此检测的吸光度值经仪器内置的标准曲线软件自动计算可得出样品中该指标成分的准确浓度及是否超标的结果。 深圳市芬析仪器制造有限公司生产的食品安全检测仪快速检测食品,可以让不合格的产品直接规避掉,让消费者购买到的食品都是安全健康可食用的产品,目前仪器已经广泛应用于食品安全检测部门、卫生防疫、环境保护、蔬菜生产基地、超市等部门,能够快速有效的保证食品安全。
  • 卷烟香气知多少?岛津GCMS、NDI一起来解惑(上篇)
    烟叶种类繁多,即使是同一品种烟叶,其香气也因干燥的方法、时间、发酵过程中的温度和湿度等不同而相异。此外,不同地区的烟叶成分和化学特性也不同,烟叶的营养价值和风味也因土壤成分和气候条件而异。某些品牌的卷烟为了增强口感和香气,并减少烟叶特有的臭味化合物,会在烟叶天然香气的基础上,添加调味剂;部分卷烟的过滤嘴中会添加甜味微胶囊。卷烟点燃后的气味会随着燃烧而变化——初期平淡气味之后,随之会感觉到微甜,继而是强烈而苦涩的烟味。气味也与烟丝的填充情况有关,如果碎叶填充过多,烟气气味会变强,有时会有刺激性的香味;如果碎叶填充松散,烟气气味就会变淡,有时甚至感觉不到香气。本文使用岛津气相色谱质谱联用仪GCMS-TQ8040NX结合固相微萃取(SPME)对三种不同品牌卷烟的烟叶气味组分进行分析,并利用岛津台式X射线CT系统Xseeker 8000测量卷烟烟丝的填充度,与GCMS测量数据相结合,综合分析不同品牌特征气味化合物、卷烟点燃后的香气变化以及烟丝填充度对卷烟香味的影响。使用岛津特色香味物质数据库(Smart Aroma Database)和异味数据库(Off-Flavor Analyzer)快速筛查卷烟气味成分(GCMS)香味数据库和异味数据库是岛津基于GCMS针对气味检测开发的专业性数据库,数据库包含数百种香味或异味化合物的保留时间、保留指数、特征离子/离子对、半定量校准曲线以及非常重要的气味特征等信息,无需标准品即可轻松进行气味组分的泛靶向分析。01分析流程三种不同品牌的市售香烟,将卷筒纸展开,称取约500 mg的干燥烟叶于固相微萃取小瓶中(每个品牌3支,n=3)。将50 mL气密注射器从过滤嘴侧插入香烟中,点燃后每1分钟收集30mL,并将10mL密封在小瓶中进行固相微萃取。02各品牌烟叶特征化合物分析使用多组学方法包(Multi-omics analysis Package)对在香味数据库筛查出的206种气味化合物和异味数据库筛查出的89种化合物进行主成分分析。如图中的载荷图所示,在PC1的右侧检测到许多甜味化合物,如5-甲基糠醛和香叶醇。因此,以绿色显示的样本组被指定为“香烟A品牌(甜香烟)”。同样在PC1的左侧,在PC2的下部检测到坚果味的2-甲基吡嗪和咖喱味的对乙烯基愈创木酚,红色显示的样本组被指定为“香烟B品牌(辛辣香烟)”。由于含有大量具有塑料气味的间二甲苯,蓝色样品组被标记为“香烟C品牌(标准香烟)”。并通过层次聚类分析的柱状图证实了用主成分分析直观识别的聚类分离(如下图所示)。03火山图分析,捕捉随时间变化将甜烟点燃后两分钟内检测到的化合物浓度与燃烧最后两分钟内的化合物浓度进行比较(如下图)。图中左上方绿色显示的是在前2分钟内检测到的浓度较高的化合物,右上方红色显示的是在最后2分钟内检测到的浓度较高的化合物。04小结利用香味数据库和异味数据库可以轻松建立卷烟烟叶气味成分中及点燃卷烟后气味成分变化的筛查方法,并利用检测到的气味组分,通过主成分分析、层次聚类分析、火山图分析等多种手段,综合分析不同品牌、不同燃烧过程中气味差异,基于此可以更好地指导卷烟品质的提升或是开发新香型卷烟。本文内容非商业广告,仅供专业人士参考。
  • ELISA生物制药产业发展广阔
    中投顾问医药行业研究员郭凡礼指出,从08年开始,受到全球金融危机的影响,许多行业在此次金融危机中都受到重创,但对我国的医药企业来说,ELISA试剂盒受到的冲击相对较小,特别是对于我国的生物制药产业来说,由于受到政策利好的影响,仍然保持着稳定的增长。  郭凡礼指出,09年开始,新医改的推行更是让生物制药产业的发展如虎添翼,5月,国务院通过了《促进生物产业加快发展的若干政策》,强调要大力发展以生物医药等为重点的现代生物产业,这项战略部署为我国生物制药领域注入了一针强心针。  中投顾问研究总监张砚霖认为,09年,国家发改委安排新增中央投资4.42亿元,支持生物制药产业的专项化建设,此举可直接带动社会投资40亿元,对于促进生物制药产业的发展具有重要作用,我国生物制药产业在这种利好政策的促进下,增速将超过医药产业中的其他行业。  中投顾问发布的《2009-2012年中国生物制药行业投资分析及前景预测报告》指出,受新医改扩容的影响,预测到2010年,我国医药制造业的复合增速为15%左右,到2020年,我国生物产业总产值将达到25000亿-30000亿元,而ELISA试剂盒生物制药作为生物产业重要的一环,未来发展前景看好。67-47-0 5-羟甲基糠醛 5-hydroxymethyl-2-furaldehyde HPLC≥95%7235-40-7 β-胡萝卜素 β-Carotene HPLC≥90%5986-55-0 百秋李醇 虎尾草醇 广藿香醇 Patchouli alcohol HPLC≥98%477-43-0 去氢木香内酯 Dehydrocostus Lactone HPLC≥98%553-21-9 木香烃内酯 Costundide HPLC≥98%66-97-7 补骨脂素 制斑素 Psoralen HPLC≥98%523-50-2 异补骨脂素 Angelicin HPLC≥98%140-10-3 肉桂酸 桂皮酸;桂酸;皮酸 trans-Cinnamic acid HPLC≥98%104-54-1 肉桂醇 桂皮醇;苯丙烯醇;桂醇 Cinnamyl alcohol HPLC≥98%104-55-2 肉桂醛 Cinnamaldehyde HPLC≥98%7660-25-5 果糖 Fructose HPLC≥98%4773-96-0 芒果苷 芒果甙 Mangiferin HPLC≥98%64809-67-2 新芒果苷 新芒果甙 Neomangiferin HPLC≥98%89-78-1 DL-薄荷醇 DL-Menthol HPLC≥98%501-94-0 酪醇 对羟基苯乙醇 4-羟基苯乙醇 Tyrosol HPLC≥98% (R型)人参皂苷Rh1 20(R)Ginsenoside Rh1 HPLC≥98%120-08-1 滨蒿內酯 6,7-二甲氧基香豆素 香豆素二甲醚 Scoparone HPLC≥98%524-17-4 蝙蝠葛碱 北豆根碱 Dauricine HPLC≥98%ELISA试剂盒18524-94-2 马钱苷 马钱素 马钱子苷;番木鳖苷 Loganin HPLC≥98%76-66-4 钩藤碱 Rhyncholphylline HPLC≥98%1811243 异钩藤碱 Isorhynchophylline HPLC≥98%6902-91-6 吉马酮 大根香叶酮 Germacrone HPLC≥98%58479-68-8 桔梗皂苷D Platycodin D HPLC≥98%315-22-0 野百合碱 单响尾蛇毒蛋白 大叶猪尿青碱 农吉利碱 猪屎豆碱 Crotaline HPLC≥99%28608-75-5 荭草苷 荭草素 Orientin HPLC≥98%4261-42-1 异荭草苷 异红草素 luteolin-6-C-glucoside HPLC≥98%480-10-4 紫云英苷 紫云英甙;莰非醇-3-O-葡糖苷;山奈酚-3-葡萄糖苷 黄芪苷 Astragaline HPLC≥98%1818546 对叶百部碱 Tuberstemonine HPLC≥98%85643-19-2 仙茅苷 仙茅甙 Curculigoside HPLC≥98% (R型)人参皂苷Rh2 20(R)Ginsenoside Rh2 HPLC≥98%
  • 甲基化成肿瘤检测新靶标?五种新型DNA甲基化酶检测技术进展揭秘
    DNA甲基化是哺乳动物基因组中最常见的表观遗传事件之一,即DNA中核苷酸与甲基基团的共价修饰[2]。DNA甲基化与人的生命进程有着密不可分的关系。细胞的增殖与分化、染色体完整性的维护或者X染色体的活性等等都离不开DNA甲基化的控制,DNA甲基化流程在胚胎发育中是无处不在的[1]。如果DNA甲基化进程出现异常,会导致生物体出现各种各样的疾病以及身体的生长缺陷或生理紊乱。DNA与蛋白质之间的相互作用如果出现异常,会影响基因的表达,从而引起人体内肿瘤的发生或者肿瘤的转移,这一切的源头都是DNA甲基化进程出现异常的结果[3]。DNA甲基化酶是肿瘤治疗靶点DNA甲基化酶是一种修饰酶,经常与限制性内切酶一同出现。在真核生物基因组以及原核生物基因组中,普遍存在DNA甲基化酶维持以及催化DNA甲基化过程的现象。DNA甲基化酶被广泛认为是一种治疗靶点以及预测生物甲基化过程的标志物,在单细胞水平上准确灵敏地检测DNA甲基化酶对于肿瘤医学上的临床诊断以及临床治疗甚至是生物学研究有着至关重要的作用。根据甲基化的核苷酸和位置被分为三组,即腺嘌呤的甲基化、胞嘧啶的4-N甲基化和胞嘧啶的5-C甲基化。所有已知的DNA甲基化酶在其甲基化过程中以s-腺苷甲硫氨酸作为甲基供体。最常见的DNA甲基化不仅发生在胞嘧啶嘧啶环5-C位置的CpG位点上,还发生在对称四核苷酸5’-G-A-T-C-3’ 中腺嘌呤环的6-N位置[4,5]。传统DNA甲基化酶检测方法有局限 DNA甲基化酶活性的高灵敏度检测在基因调控、表观遗传修饰、临床诊断和治疗等方面具有重要意义。传统用于检测DNA甲基化酶活性的方法包括高效液相色谱法(HPLC)[6], 聚合酶链反应(PCR)[7],凝胶电泳[8],高效毛细管电泳(HPCE)[9],以及使用同位素标记的s-腺苷甲硫氨酸甲基化检测[10,11]。尽管这些技术在实验室实践中被证明是有用的,但它们具有局限性。例如,大多数技术不仅使用笨重昂贵的设备,而且需要复杂的样品制备和数据分析所需的大量时间。同位素标记等技术是有效的,但它们往往需要费力的样品制备、同位素标记、复杂的设备和大量的DNA,使得它们不适合在医护点使用。所以,DNA甲基化酶活性检测迫切需要简单、便携、高灵敏度和低成本的检测方法。在最近的技术进步中,许多替代的DNA甲基化酶活性测定方法,如放射法、比色法、荧光法、电化学法等已被提出。此外,其中许多与纳米材料或酶结合,以显著提高它们的敏感性。放射法、蛋白质纳米孔等新型检测技术兴起 放射法:同位素标记作为最早检测DNA甲基化酶活性的方法之一,早期广泛应用于检测DNA甲基化酶和DNA甲基化的活性[12,13]。在由DNA甲基化酶催化的甲基化过程中,同位素标记的甲基部分转移到DNA上,从而赋予甲基化的DNA放射性。这种放射性可以很方便地用闪烁计数器或放射自显像仪来检测。可惜的是,放射性试剂的介入是限制这种试验在中央实验室进行的最大缺点。对无辐射DNA甲基化酶活性检测的研究导致了甲基化特异性PCR[14]、HPCE[9]和HPLC等替代品的发展[7,14],而甲基化特异性PCR被认为是较好的方法。尽管非放射性,上述DNA甲基化酶活性检测需要庞大且通常昂贵的设备,冗长且耗时的样品制备和数据分析,以及繁琐的检测方案,这在临床实践中也比较难以实现全覆盖。比色法:比色法用于DNA甲基化酶活性检测依赖于颜色变化的目视观察或与DNA甲基化酶相关的吸收光谱的光谱测量。它们具有成本低、简单、可移植性和在某些情况下无需仪器的优点。虽然紫外-可见光谱法可以量化DNA,但甲基化和未甲基化DNA在紫外-可见吸收特性上的低灵敏度和不显著差异基本否定了紫外-可见光谱法直接检测DNA甲基化酶活性[15~17]。金纳米粒子:金纳米粒子(AuNPs)由于其表面的等离子体共振吸收的高消光系数且强依赖于粒子间距离,在DNA甲基化酶活性检测的比色法研究中引起了广泛关注。如图1 所示,金纳米粒子表面包覆有双链DNA (ds-DNA),其中一条链包含DNA甲基化酶识别序列和5’-硫醇末端。在DNA甲基化酶存在的情况下,如图1 B 所示,DNA甲基化酶被共价标记在ds-DNA中碱基环的6-C位置,因为在5-N位置缺乏一个质子阻止了β-消除,甲基化的DNA不能被核酸外切酶 ExoⅠ剪切,因此金纳米粒子仍然均匀地分散在溶液中 [18]。从而实现DNA甲基化酶活性的检测。结果表明,在526 nm处,金纳米粒子聚集物的吸光度与DNA甲基化酶的活性呈2 ~ 32 U / mL的线性关系,检出限为0.5 U/ mL。图1. (A)基于ABP的比色生物传感器的示意图(B) DNA甲基化酶的检测机制 荧光法:荧光指吸收激发荧光团的光,以促进电子从基态到激发态,电子迅速地回到激发态的最低能级,然后当电子最终返回基态时,发出波长较长的光。与其他DNA甲基化酶活性测定法相比,荧光法检测DNA甲基化酶活性的优点是检测过程简单,灵敏度高,但其复杂的光学性能限制了其在集中实验室的应用[19~20]。图2. 基于外切酶的靶循环的DNA甲基化酶活性检测原理图电化学法:电化学生物分析技术的发展一直是现代分析化学研究的热点之一。电化学法用于DNA甲基化酶分析包括测量电流、电压、电荷和电阻等电量,以反映DNA甲基化酶的活性。与许多其他类型的DNA甲基化酶活性的检测相比,它们具有低成本、高灵敏度、执行现场监测的能力以及非常适合微型化和集成微制造技术的优点[22~23]。Zhi-Qiang Gao等人在2014年报道了一种简单、高灵敏度的DNA甲基化酶电化学活性测定方法。该方法采用电催化氧化抗坏血酸(AA)的信号放大手段,通过一个螺纹插层N,N -2(3-丙基咪唑)-1,4,5,8-萘二酰亚胺(PIND)电催化氧化还原Os(bpy)2Cl+ (PIND-Os),包含5’-CCGG-3’ 对称序列的ds-DNA首先固定在金电极上。然后用DNA甲基化酶孵育电极,经过酶催化特定CpG二核苷酸的甲基化,然后用识别5’-CCGG-3’ 序列的限制性内切酶 Hpa II 剪切酶处理电极,从而实现DNA甲基化酶活性检测的目的[24]。图3. DNA甲基化酶活性的检测原理示意图蛋白质纳米孔:蛋白质纳米孔检测技术是在单分子水平上以低成本、无标签和高通量的方式研究生物分子的检测技术。近年来,纳米孔技术正从生物传感的角度进行研究[25]。应用于核酸特征鉴定、化学反应过程的测量、蛋白质分析、疾病相关蛋白状态的检测以及酶动力学的研究等[26]。α-溶血7素是一种蛋白质纳米孔,它自发地插入到脂质双层膜中,形成一个纳米孔[27]。当一个带电分子在外加电势下通过蛋白质纳米孔时,它会引起离子电流的瞬态变化,电流变化事件被记录下来。被分析物可以通过当前电流发生的频率进行量化,特征电流信号则可以揭示被分析物的各种特征[28~30]。该检测方法不需要对DNA探针进行任何化学修饰,既方便又节约成本,减少了样品消耗。 图4. 用于分析DNA甲基化酶活性的纳米孔试验的示意图 在过去的十几年中,DNA甲基化酶活性的检测取得了重大进展。有几种方法有希望可在临床检测,使得该方法在用于癌症诊断、预后和治疗方面显示出了希望。比色法依赖于颜色变化的目视观察或与DNA甲基化酶相关的吸收光谱的光谱测量,具有成本低、简单、可移植性和在某些情况下无需仪器的优点,但是检出限相对较高。荧光法检测DNA甲基化酶活性的检测过程简单,检出限相对理想,但其复杂的光学性能以及昂贵的仪器设备限制了其在生活中的应用。电化学法由于需要构建较复杂的反应电极材料而使得其在临床上受到了一定的限制。蛋白质纳米孔的检测方法不需要对DNA探针进行任何化学修饰,既方便又节约成本,减少了样品消耗,检出限相对较为理想,并且已经成功应用于人类血清样本。这类检测可能最终为常规DNA甲基化酶活性的检测和分子诊断打开大门,为疾病的管理和诊断带来新的前景。 作者:王家海、骆 乐 作者简介:王家海,博士,教授,硕士生导师/博士生导师,广州大学化学化工学院;分析化学专业;主要研究领域为“基于核算纳米结构为信号传导载体的纳米孔传感器”;在核酸探针和仿生纳米孔两方面开展了一系列分子识别的工作,也为将来进一步开展分析化学研究打下了坚实的基础,期间积累了多种前沿分析方法和技术:仿生纳米孔制备和检测;微纳米加工技术;核酸探针人工合成技术。参 考 文 献 [1] 陈晓娟,闫少春,邵国,等.人DNA甲基化转移酶的分类及其功能[J].包头医学院学报,2014,30(04):136-138.[2] Das PM, et al. DNA methylation and cancer[J]. Clin. Oncol. 2004 22: 4632-4642.[3] Jurkowska RZ, et al. Structure and function of mammalian DNA methyltransferases[J]. ChemBioChem 2011 12: 206-222.[4] Lee GE, et al. DNA methyltransferase 1-associated protein (dmap1) is a co-repressor that stimulates DNA methylation globally and locally at sites of double strand break repair[J]. Biol. Chem. 2010 285: 37630-37640.[5] Liu SN, et al. Assay Methods of DNA Methylation and Their Applications in Cancer Diagnosis and Therapy[J]. Chinese J.Anal. Chem. 2011 39: 1451-1458.[6] Boye E, et al. Quantification of dam methyltransferase in Escherichia coli[J]. Bacteriol. 1992 174: 1682-1685.[7] Eads CA, et al. CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression[J]. Cancer Res. 1999 59: 2302-2306.[8] Bergerat A, et al. Allosteric and catalytic binding of s-adenosylmethionine to escherichia coli DNA adenine methyltransferase monitored by 3H NMR[J]. Proc. Natl. Acad. Sci. U. S. A. 1991 88: 6394-6397.[9] Fraga MF, et al. Rapid quantification of DNA methylation by high performance capillary electrophoresis[J]. Electrophoresis 2000 21: 2990-2994.[10] Yokochi T, et al. DMB (dnmt-magnetic beads) assay: measuring DNA methyltransferase activity in vitro[J]. Methods Mol. Biol. 2004 287: 285-296.[11] Adams RLP, et al. Microassay for DNA methyltransferase[J]. Biochem. Bioph. Methods 1991 22: 19-22.[12] Jurkowska RZ, et al. DNA methyltransferase assays[J]. Methods Mol. Biol. 2011 791: 157-177.[13] Pradhan S, et al. Recombinant human DNA (cytosine-5) methyltransferase [J]. Biol. Chem. 1999 274: 33002-33010.[14] Herman JG, et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands[J]. Proc. Natl. Acad. Sci. U. S. A. 1996 93: 9821-9826.[15] Kattenhorn, L. M. Korbel, G. A. Kessler, B. M. Spooner, E. Ploegh, H. L. Mol. Cell 2005, 19, 547−557.[16] Mosammaparast, N. Shi, Y. Annu. Rev. Biochem. 2010, 79, 155−179.[17] Barglow, K. T. Cravatt, B. F. Angew. Chem., Int. Ed. 2006, 45, 7408−7411.[18] Wu Z, et al. Activity-based DNA-gold nanoparticle probe as colorimetric biosensor for DNA methyltransferase/glycosylase assay[J]. Anal. Chem. 2013 85: 4376-4383.[19] Zhu, C. Wen, Y. Peng, H. Long, Y. He, Y. Huang, Q. Li, D. Fan, C. Anal. Bioanal. Chem. 2011, 399, 3459−3464.[20] Chen, F. Zhao, Y. Analyst 2013, 138, 284−289.[21] Xing XW, et al. Sensitive detection of DNA methyltransferase activity based on exonuclease-mediated target recycling[J]. Anal. Chem. 2014 86: 11269-11274.[22] Wu, H. Liu, S. Jiang, J. Shen, G. Yu, R. Chem. Commun. 2012, 48, 6280−6282[23] Wang, M. Xu, Z. Chen, L. Yin, H. Ai, S. Anal. Chem. 2012, 84, 9072−9078[24] Deng H, et al. Highly sensitive electrochemical methyltransferase activity assay[J]. Anal. Chem. 2014 86: 2117-2123.[25] Howorka, S. Siwy, Z. Nanopore Analytics: Sensing of Single Molecules. Chem. Soc. Rev. 2009, 38, 2360−2384.[26] Song, L. Hobaugh, M. R. Shustak, C. Cheley, S. Bayley, H. Gouaux, J. E. Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore. Science 1996, 274, 1859−1865.[27] Lin, L. Yan, J. Li, J. Small-Molecule Triggered Cascade Enzymatic Catalysis in Hour-Glass Shaped Nanochannel Reactor for Glucose Monitoring. Anal. Chem. 2014, 86, 10546−10551.[28] Li, J. Yan, H. Wang, K. Tan, W. Zhou, X. Anal. Chem. 2007, 79, 1050−1056.[29] Wood, R. J. Maynard-Smith, M. D. Robinson, V. L. Oyston, P. C. F. Titball, R. W. Roach, P. L. PLoS One 2007, 2, e801−e801.[30] Wood, R. J. McKelvie, J. C. Maynard-Smith, M. D. Roach, P. L. Nucleic Acids Res. 2010, 38, e107−e107.[31] Jinghong Li, et al. Nanopore-based, label-free, and real-time monitoring assay for DNA methyltransferase activity and inhibition[J]. Anal. Chem. 2017 89: 13252−13260.
  • 五道检测关口看护原料 鉴别蜂胶真假
    发明专利鉴别蜂胶真假 五道检测关口看护原料   ――杭州蜂之语蜂业有限公司十年潜心钻研蜂产品检测防假技术抵御假冒   “到底现在有多少蜂产品的质量是安全可靠?”   “潜规则存在有10年了,到底有没有人能够鉴别出蜂产品的真伪?”   最近一段时间以来,蜂蜜和蜂胶等蜂产品造假的潜规则被媒体揭露,一时间引起了消费者的高度关注,他们为了自己的消费安全大声疾呼。   其实媒体曝光的这些假冒蜂产品还是有技术手段可以鉴别出来的。在接受记者采访时,不止一位业内专家表示,虽然目前法定的检测标准有些滞后,但是鉴别蜂产品的办法还是有的,只不过是这些办法目前还是属于科学研究的成果,还没有上升到国家标准,还不能成为执法检查的依据。   专家介绍说,浙江大学和一些有良心和责任感的企业在科研和生产实践中积极开展研究,已经形成了几种成熟的鉴别检测方法。杭州蜂之语蜂业有限公司就是这样一家企业,他们自1998年首次发现蜂产品原料存在掺假现象以来,就一直把防假技术研究作为公司的核心工作,并且成功地把这些技术方法应用到实际生产中。   图为质检中心实验室一角。   虽然亚洲养蜂业联合会主席SIRIWAT WONGSIRI教授第一次到这家公司就大声惊叹:“我非常震惊在中国蜂业界能看到如此好的加工企业,我要让全世界的蜂业同仁都来中国看一看。”   虽然这家公司10年来陆续在检测设备和检测技术的软硬件建设上投入了上千万元巨资,建立了国家认可的业内一流的检测实验室,研究出了获得国家专利的真假蜂胶原料鉴别技术,建立了有五道关口的蜂蜜原料检测程序,来保证产品纯正。   虽然最挑剔的日本人也对这家公司产品给予充分肯定,让公司的蜂皇浆产品占据日本市场三分之一的份额。   但是在国内失灵的市场中,它却没有办法从假冒伪劣的包围中脱颖而出,无法有效把自己安全优质的蜂产品送到尽可能多的消费者手中。   这家公司就是杭州蜂之语蜂业股份有限公司。   资料显示,蜂之语有累积10多年的品牌美誉度,有占地约6.7公顷的现代化厂房,数千名员工,还有遍布江浙沪的200多家专卖店和近10万名会员……在很多人看来,拥有这些资本的保健食品生产企业,销售应该至少在5亿元以上,而蜂之语现在的年销售只有1亿元。   公司负责人钱志明不无伤感地说,蜜蜂养殖和蜂产品加工,向来被人称为甜蜜的事业,但是面对横行的假货,他们的内心却是充满了苦涩。面对泛滥的假冒,他们选择了坚守,坚守良心和品质,苦练内功,等待市场规范的那一天。   为什么好产品没有人要。   那是因为假冒太强大,强大到了以假乱真,劣币驱良币的程度。   钱志明说,由于便宜的假货、劣质货太多,慢慢的,蜂之语的新客户少了,老的客户虽然买你的东西,但也怨声载道,以为企业有暴利,一边吃,一边抱怨。   每每听到这样的反馈,钱志明都感觉像是哑巴吃黄连,有苦说不出。   据介绍,从2004年~2007年,“蜂之语”每年的增长速度保持在30%左右,而近两年,这一数字下降到了10%,今年前10个月,销售居然刚刚和上年持平。   尽管日子越过越艰难,但是钱志明和他的“蜂之语”并没有气馁,在国内蜂产品假冒伪劣愈演愈烈的情形之下,依然坚守洁身自好、踏踏实实追求品质。   钱都花在“里子”上   建成国内一流实验室   对于保健品行业来说,“面子”工程最重要。一般企业都会把大把的钞票花在广告宣传上,但是“蜂之语”却反其道而行之,而是把大部分的资金都花在了如何提高产品质量上。而且钱志明和同事们有一个朴实的观点,一流的产品品质需要有一流的检测手段做保证。因而从1995年起,蜂之语就筹资投建检测中心。当业界几乎所有企业还在用人工品尝的方式来测定蜂王浆质量时,“蜂之语”已经开创行业先河,引进全国第一台高效液相色谱仪。   此后企业在检测装备上的投入就没有停止过,为了提高检测水平,先后投入了1000多万元资金购置检测设备。目前,检测中心现有试验面积1500平方米,配有LC/MS/MS液质联用仪、高效液相色谱仪、气相色谱仪、酶联免疫分析仪、紫外可见分光光度计、原子吸收分光光度计等检测设备。   2007年,浙江出入境检验检疫局领导来蜂之语检查指导工作时特别指出,蜂之语检测中心已具备了完善的检测能力,要积极推进国家实验室的认可。为此,蜂之语检测中心开展了包括完善管理制度、规范检测标准、补充各种操作规程、提高检测人员业务素质培训等工作。   2008年,浙江出入境检验检验局将蜂之语公司检测中心列入省级出口企业实验室认可的6家试点实验室之一,并于当年10月顺利通过了专家组的审核。   “完全没有想到在我国蜂产品企业中会有这样的实验室规模和管理水平。”2009年9月,国家认证认可委员会专家在考察了蜂之语的实验室后对蜂之语检测中心大加赞赏,认为蜂之语检测中心在蜂产品行业里是顶尖的。同年10月国家认可委安排专家对蜂之语检测中心进行初评。   2010年4月16日,国家实验室认证认可委员会寄来了认可证书,从此,杭州蜂之语蜂业股份有限公司检测中心,成为我国蜂行业企业中率先获国家实验室认可的企业实验室。   加强与科研院专家的技术合作,积极与质检主管部门的沟通,是“蜂之语”加强企业检测科研实力的另一个有力手段。“蜂之语”与浙江大学签订5年的合作协议,与浙江省中医药研究院,中国养蜂学会等单位形成了长期合作的机制。而与浙江出入境检验检疫局不定期的交流,特别是请浙江出入境检验检疫局的专家每年1~2次为全体职工进行产品质量安全方面的讲座培训,极大地提高了职工产品质量安全意识。同时,“蜂之语”每年定期与日本蜂产品实践家进行技术交流,使“蜂之语”对产品的检测水平和对产品质量要求的把握始终走在前面,保持了“蜂之语”在蜂产品行业中的领先水平。   钻研防假冒技术   率先建立了我国蜂胶指纹图谱库   “蜂之语一直从原料控制着手,与假冒伪劣作斗争,发现行业内有什么问题,马上就解决。”   在蜂之语采访,碰巧看到了一本大红证书,是由杭州市科技局颁发的,原来蜂之语研究的一种鉴别蜂胶真假的科研成果――《一种利用液相指纹图谱鉴别蜂胶真伪技术的研究》获得了杭州市科技进步奖三等奖。公司检测中心主任周萍告诉记者,这个鉴别方法是12年前开始研究的,已经在2009年获得了国家发明专利保护。也就是说,蜂之语与假蜂胶的斗争,已经持续了10多年了。   周萍说,蜂之语第一次发现蜂胶有假是在1998年。当时的假蜂胶可以用感官鉴别的方法来作明确判断,但如果制假手段越来越高明,以至于用感官方法不能鉴别真伪的时候,该怎么办?他们首先想到的是应该可以使用仪器检测的手段来解决,于是他们就从利用现有的仪器开始,研究蜂胶真伪鉴别的方法,2006年又去买国际上最先进的仪器,200万元一台,仪器买回来之后,又开始收集全国及世界各国的蜂胶原始样本,全部收集回来,总共是56个样本,然后利用HPLC指纹技术,一个样本一个样本地建立蜂胶的指纹图谱,通过比较液相指纹图谱中的选定共有峰的特征来判断蜂胶真伪,经过多年的摸索,方法不断成熟,最终建立起了我国蜂产品行业的种类最齐全的蜂胶指纹图谱库。   到现在为止,蜂之语是我国蜂产品行业率先拥有这样的蜂胶指纹图谱库的企业,有了这个蜂胶指纹图谱库,什么样的蜂胶产品,只要测出来一对照,是真是假就全都清楚了。   在研究中,蜂之语公司的技术人员先后撰写了《蜂胶在生产加工过程中的几个关键问题》、《一种利用液相指纹图谱鉴别蜂胶真伪技术的研究》、《蜂胶在不同载体中的抑菌试验研究》等多篇高水准的论文,发表在国家一级专业期刊《蜜蜂杂志》和《中国蜂业》上。   2009年,蜂之语的蜂胶真伪鉴别技术被国家知识产权局授予了发明专利,专利号是ZL200510060230.8。   从源头防假   五道关口筛查蜂蜜原料   和蜂胶一样,蜂蜜的造假多年来也十分严重,而且造假手段不断升级。   据了解,控制蜂蜜质量的现行蜂蜜国家标准GB18796-2005,是国家强制性标准,其中的真实性指标是用来判断蜂蜜的真伪的,是强制性质量指标,蜂蜜产品必须符合要求。这个蜂蜜的真实性指标就是碳4植物糖,检测标准是秦皇岛出入境检验检疫局发布的国家检测标准GB/T18932.1《蜂蜜中碳-4植物糖含量测定方法 稳定碳同位素比率法》。国家标准出台的当时,确实对蜂蜜的掺假行为起到了很好的抑制作用,蜂蜜市场得到了净化。然而,没有多久,市场上就出现了碳-3植物糖,即以大米、甜菜等为原料的糖浆,而国家标准检测的是碳-4植物糖(即以玉米、甘蔗为原料的糖浆)含量。所以,近来越来越多的碳-3植物糖浆开始用于蜂蜜的掺假,而这种掺假的蜂蜜完全能够通过碳-4植物糖检测,也就是说符合国家标准。因此,现行国家标准已经不适用现在蜂蜜市场的实际情况,大部分掺假蜂蜜按现行国家标准检验都符合要求,而新版蜂蜜国家标准正在修订之中。这也是不法厂家造假猖獗的一个原因。   为了保证自己不受假冒侵害,蜂之语潜心搜集国内外各种检测方法并结合自己的研究,制定了蜂蜜原料的五步检测法,即每一批蜂蜜原料在入库前都要经过五道检测关口。   第一关是蜂蜜感官鉴别。   第二关是国家标准要求的碳-4植物糖检测。   第三关是TLC试验:通过薄层层析的方法检测蜂蜜中的寡糖。   第四关是羟甲基糠醛(HMF)含量检测。   第五关是蛋白质含量分析。   在五次检测中只要有一项达不到要求,原料都被退回。   要保证蜂蜜的真实性,还必须从源头和原料抓起。蜂之语还建立了一套严密的蜂农管理制度,把握好蜂农源头关。蜂之语早于2002年建立了蜂业合作社,对加入合作社的蜂农进行信誉评定、登记,并报出入境检验检疫局备案,公司聘请专家、技术员对合作社蜂农进行养蜂指导和现场养蜂生产监督,确保产品的真实性。   在生产过程中,蜂之语蜂蜜还需要检测二次质量指标,一次是在浓缩后,检测蜂蜜的水分、色度和微生物 另一次是灌装前,检测同样项目,以监控生产过程中是否存在异常,确保生产的顺利进行。   蜂之语蜂蜜在包装完毕前要取样按照国家标准要求进行检测,另有留样备查。只有成品检测结果完全符合国家标准要求,才可以出具产品检验合格证。   整个生产进程中,蜂之语蜂蜜生产车间的洁净度为10万级,完全按照保健食品GMP的要求进行生产环境洁净度的设计要求,其生产过程的生产管理要求也是完全按照GB17405保健食品GMP的要求。同时,执行ISO9001国际质量管理体系标准、ISO22000(HACCP)国际食品安全管理体系标准、ISO14001国际环境管理体系要求,四大管理体系整合,对产品生产全过程进行控制与监督,确保产品质量。   相关链接   蜂之语蜂蜜原料   五道检测关口   第一关是蜂蜜感官鉴别:蜂蜜与高果糖浆有着不同的感官,蜂蜜有花香,味鲜而甜润略酸,滋味饱满,富于光泽,而糖浆就没有。掺入糖浆的蜂蜜,天然的花草香气弱小,味道也比较单一,口感不丰满,没有蜂蜜独有的鲜味,颜色比不掺假的蜂蜜要浅。   第二关是碳-4植物糖检测:这是目前蜂蜜国家标准真伪鉴别的一个指标,市场中仍有碳-4植物糖的假蜜在流通,因此很有必要检测。   第三关是TLC试验:即通过薄层层析的方法检测蜂蜜中的寡糖,因为高果糖浆在制备过程中,淀粉中的高分子糖类被残留在蜂蜜中,检测这些糖能够判定蜂蜜的真伪。出口日本的蜂蜜必需通过TLC试验,我国有一个国家检测标准:GB/T18932.2-2002蜂蜜中高果糖淀粉糖浆测定方法――薄层色谱法。现在已经有部分糖浆生产企业能够生产高纯度的产品,能够通过TLC的试验。   第四关是HMF的控制检测:蜂之语研究发现,新鲜的蜂蜜羟甲基糠醛(HMF)含量为零,随着贮存时间延长、或者蜂蜜加工时受热,其含量会慢慢升高 而高果糖浆是淀粉的水解物,淀粉水解、脱色精制后,最后需要加热浓缩,以达到蜂蜜相似的水分含量,才有利于产品的保存。经过检测,糖浆中的HMF在16mg/kg~163mg/kg之间,因此掺入糖浆的蜂蜜原料HMF必须被检测出来。国家《蜂蜜》标准中HMF的质量标准是小于40mg/kg,而蜂之语原料蜂蜜中HMF的质量标准是小于2mg/kg。   第五关是蛋白质含量分析:蜂蜜因为蜜蜂在采蜜时混入蜂花粉,因此蜂蜜中有一定的蛋白质,其含量一般为0.1~1%之间,如果原料中的蛋白质未被检出,或者小于0.05%,则怀疑掺假。   蜂胶、树胶和掺黄酮类化合物的指纹图谱     典型的蜂胶HPLC指纹图谱(1、2、3、5号峰信号强)     典型的杨树胶HPLC指纹图谱(1、2号峰信号弱, 3、5号峰无信号或者很弱)     典型的杨树胶中掺入芦丁、槲皮素的蜂胶制品HPLC指纹图谱(1、2号峰信号弱, 3、5号峰无信号或者很弱,芦丁、槲皮素峰信号异常高)
  • TF-SPME萃取法帮你分析,你的橄榄油品质是否过关?
    特级初榨橄榄油EVOO是在果实处于*成熟阶段时通过机械和其他物理方法从橄榄中获得的,无需任何进一 步提炼即可食用。橄榄油富含但不饱和脂肪酸,对心脑血管健康有一定作用,定期食用 EVOO 对健康有益。西班牙的橄榄油产量占全球的45%,被西班牙人誉为“黄金液体”。 由于其挥发性化合物,EVOO 还是一种具有极佳感官香气的植物油,香气是食品的主要质量指标之一。同时EVOO的特征挥发化合物会受气候、土壤、地理来源、橄榄品种、果实成熟度或其储存条件等因素影响。EVOO 香气由大量挥发性化合物构成,如醇类、酯类、醛类、酮类、呋喃类、碳氢化合物等。挥发性化合物的主要前体是脂肪酸,因为在榨油过程中, 内源性酶的作用通过降解多不饱和脂肪酸形成这些挥发性化合物。在以下实验中,我们采用两种不同技术进行对比:HSSE-PDMS和TF-SPME。对比实验过程01 样品制备:5g橄榄油,放置在20mL顶空瓶中,分别使用TF-SPME固相微萃取薄膜和磁力搅拌吸附萃取搅拌子顶空式萃取,37℃恒温水浴萃取60min;02 涂层:薄膜固相微萃取 (TF-SPME),采用两种不同的涂层,二乙烯基苯/聚二甲基硅氧烷涂层 (DVR/PDMS) 或羧烯/聚二甲基硅氧烷 (CAR/PDMS) 作为萃取相,PDMS Twister® 长度为10 mm,涂层为24µ L EG/S Twister® 长度为10 mm,涂层为32µ L TF-SPME装置为20 × 4.8 mm碳网片,浸渍有涂层相。分析使用了Agilent 6890气相色谱系统和Agilent 5975惰性四极杆质谱仪(Agilent, Santa Clara, CA, US),配备了Gerstel热解吸系统(TDS2)和CIS-4PTV进样口冷却系统。03 解吸温度程序如下:温度保持在 35℃ 0.1 分钟,然后以 60℃/min 的速度升温至 220℃并保持 5 分钟; 色谱柱:50 m × 0.25 mm×0.20 µ m J&W CPWax-57CB 载气:He; 流速:1ml /min; 气相色谱升温程序如下: 35℃保持 4分钟,然后以2.5℃/min升至220℃(保持15分钟) ; 四极杆、离子源和传输线温度分别维持在150℃、230℃和280℃。实验结果在70 eV的全扫描模式下记录了电子电离质谱,电子能量在29 ~ 300 m/z之间。在Picual品种EVOO中,用2TF-SPME和hsse - pdms分别测定了49个和43个化合物)。在Hojiblanca品种EVOO中,HSSE-PDMS提取的化合物数量(34)与2TF-SPME(32)相似。然而,在这两种情况下,使用2TF-SPME方法获得的总面积值最高(如图1所示)。 图1:通过 HSSE-PDMS 和 2TF-SPME 获得的 EVOO Picual 和 Hojiblanca 品种的总峰面积值(除以 107)和挥发性化合物的数量。误差条显示标准偏差 (SD) 值在 Picual 橄榄油的醛和内酯采样技术与 Hojiblanca 的萜烯采样技术之间观察到了统计学上的显着差异。在所有情况下,均使用 2TF-SPME 方法达到最高值(如图 2所示)。2TF-SPME装置是检测以下8种挥发性化合物的*方法:丙酸、1-丙醇、2-甲基-2-戊烯醛、5-羟甲基糠醛、4-己烯-1-醇乙酸、2-环戊烯- 1,3 -二酮和对花癸烯。 图2:通过HSSE-PDMS和2TF-SPME获得的EVOO Picual和Hojiblanca品种主要化学基团的总峰面积值的百分比总结两种提取方法均可根据橄榄品种对EVOO样品进行分离和区分。然而,考虑到线性和获得的峰面积值,以及测定的挥发性化合物的数量,2TF-SPME方法更适合于最好地表征这些类型的EVOO。薄膜固相微萃取 薄膜固相微萃取,简称TF-SPME或ThinFilm SPME,是把吸附相涂在碳网片上的固相微萃取新技术,由加拿大皇家科学院院士以及滑铁卢大学的JanuszPawliszyn教授发明,德祥科技旗下品牌INNOTEG英诺德和JanuszPawliszyn教授一起合作研发,用于分析痕量的VOSs和SVOCs等挥发性有机物。TF-SPME通过增加萃取相体积和表面积,不牺牲分析时间的同时,大大提高了灵敏度,解决了传统固相微萃取过程中所存在的吸收速率和吸收能力限制的问题,是一种应用广泛的提取浓缩新技术,与GC/MS联用,特别适用于食品、香料、饮料和环境监测等行业。固相微萃取 固相微萃取(SPME)由手柄和萃取头或纤维头 (fiber)构成。萃取头是一根1cm/2cm长的熔融石英纤维头,涂有不同的固定相和吸附剂,是一种集采样,萃取,浓缩和进样于一体的无溶剂萃取技术。操作更简单,携带更方便,操作费用也更加低廉;另外克服了传统样品前处理所存在的 回收率低、吸附剂孔道易堵塞的缺点。 可以与气相、气相-质谱联用,广泛应用于环保及水质处理、食品香精、公安法检分析、临床 药理、制药、化工等领域。应用范围产品涂层应用范围TF-SPMEPDMS适用于非极性化合物SVOCs分析PDMS/DVB适用于非极性化合物VOCs和SVOCs分析PDMS/HLB (1um)对极性和非极性化合物具有平衡亲和力,适用于极性和非极性VVOCs,VOCs,SVOCs分析PDMS/HLB (5um)对极性和非极性化合物具有平衡亲和力,适用于极性和非极性VVOCs,VOCs,SVOCs分析SPME94um聚二甲基硅氧烷(PDMS)挥发性物质,胺类,硝基芳香类化合物44um聚二甲基硅氧烷(PDMS)非极性半挥发性、挥发性物质空针(无涂层,可定制) _德祥科技德祥集团成立于1992年,总部位于香港特别行政区。作为卓越的科学仪器供应商和服务商,德祥服务于大中华区和亚太地区,每年都为数以千计的客户提供全套解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。作为深耕科学仪器行业的供应商与服务商,德祥现已服务于政府、高校、科研、制药、检测、食品、医疗、工业、环保、石化以及商业实验室等众多领域。公司目前在亚太地区设有13个办事处和销售网点,3个维修中心和1个样机实验室。2009至2021年间,德祥先后荣获了“最具影响力经销商”、“年度*代理商“、”年度最高销售奖“等殊荣。我们始终秉承诚信经营的理念,致力于成为*的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每*都在使这个世界变得更美好!INNOTEG英诺德INNOTEG英诺德是德祥科技旗下一家专业从事科学仪器设备研发生产的高科技企业,是集实验室设备研发生产、方法开发、实验室仪器销售和技术服务为一体的专业厂家。公司十分重视技术的研究和储备,一直保持高比例研发投入,创建了一支由博士、硕士和行业专家等构成的经验丰富,技术精湛的研发团队,在仪器分析技术领域开展了卓有成效的研究开发工作。此外,INNOTEG英诺德还与各大科研院所、高校合作,积极推进科技成果项目的产业化。INNOTEG英诺德凭借强大的研发能力,注重前瞻性技术研发,已推出多款科学仪器设备及实验室耗材产品。
  • 姚建年院士:中国化学给世界带来诸多惊喜
    国家自然科学基金委员会副主任、中国化学会理事长、中国科学院院士姚建年谈中国化学科学研究发展   改革开放30年来,与国内各行各业一样,我国的化学科学研究获得了全方位发展,步入了高速发展时期,无论在基础、应用基础研究还是成果转化、实现产业化方面都取得了骄人的成绩。不仅如此,这一领域还涌现出了许多完全自主知识产权的创新成果,发表的学术论文数量和质量都有明显增加和提高,在国际上的影响进一步扩大,国际学术地位得到进一步提升,我国已成为国际化学社会中一支彰显巨大影响的重要力量。   2010年已经过去,盘点我国化学科研事业在这一年中所取得的突出进展,我们可以看到具有科研成果丰硕、基础研究更加扎实深入、原始创新不断涌现的明显特点。   科研工作取得丰硕成果   科研成果的数量与质量是衡量科研水平的重要指标之一。2010年,一批化学成果获得了国家科技奖励。继闵恩泽和徐光宪两位老科学家先后获得国家科学技术最高奖之后,在2009年度国家科学技术奖励大会上,化学工作者共获国家自然科学奖、国家技术发明奖和国家科技进步奖40项,占全部获奖项目总数的13.8%。   数据表明,2010年的化学延续了其在国家科技奖励方面的良好势头,充分展示了我国化学科学的发展和取得的成就,有力证明了化学无论在基础研究还是技术和应用创新研究方面,都对科学、国民经济和社会发展作出了十分重要的贡献。   发表学术论文是科学家进行学术交流的主要工具,其数量和质量也是检验基础研究水平的重要信标。在2010年,化学学科学术论文的质量与数量齐增长。仅据美国信息科学研究所(ISI)知识网公布的截至2010年6月底的过去10年半的资料统计,由我国科学工作者在被“期刊引文报告”数据库所收录的期刊(即所说的SCI收录期刊)上发表的化学论文总数已经超过日本,居世界第2位。   2010年,这种势头得到了延续,截至12月20日,Web Science数据库统计的我国发表的化学论文达到16385篇。这些论文中,有许多原创性新成果在国际学术界产生了很大的影响,被包括美国《科学》、英国《自然》、美国《国家科学院院刊》、《美国化学会志》、德国《应用化学》、英国《化学通讯》等在内的国际最著名期刊所评述。   基础研究更加深入原始创新不断涌现   2010年发表的学术论文表明,我国的传统化学学科不断创新,在新方法新技术的开发、新概念新理论的提出等方面取得了一大批新成果 新兴学科发展迅速,在同一起跑线上参与了国际竞争,部分学科与项目已经崭露头角,该领域在国际上颇具影响力。   2010年化学学科研究的新方法、新技术不断涌现。光谱分析研究人员提出并建立的壳层隔绝纳米粒子增强拉曼光谱(SHINERS)方法,首次在电化学条件下获得了铂、铑等各种原子级平滑单晶上的表面拉曼光谱,成功检测到半导体硅表面的成键物种、活细胞壁的组分乃至橘子皮的残留微量农药。该突破使得表面增强拉曼光谱技术得以检测各类材料的最表层化学组分和应用于任何形貌的基底,作为一种新型超高灵敏度的普适检测技术,将在食品安全、环境保护、医学诊断、材料表面分析、公安等领域具有广阔应用前景。同时,该方法不仅使表面拉曼光谱技术发展得更通用和实用,还有望拓展至表面红外光谱、和频振动光谱和荧光光谱等其他谱学技术。   化学学科还发展了一种利用水溶性阳离子型共轭聚合物作为荧光探针实现DNA甲基化水平探测的新方法,其灵敏度高、成本低、引物无需荧光标记,而且检测在均相溶液中进行,无需分离、纯化手段,可以方便地用于肿瘤特异性基因标志物的筛选研究 了解相关抑癌基因启动子区CpG岛的甲基化状态,对于及时发现和治疗癌症非常重要,在临床肿瘤早期诊断上具有潜在应用价值。   此外,我国科学家还提出了包括高温裂解商品化SiC颗粒实现规模化制备高品质无支撑石墨烯材料的方法、模板剥离制备超平滑表面金属纳米结构的方法 实现细胞图案化以及快速高灵敏度高通量检测分析细胞培养、药物刺激与细胞代谢物的微流控分析方法 在纯水溶剂体系中,对氟离子进行快速检测的氟离子检测试纸和对氟乙酰胺等含氟毒物的快速电化学检测的方法 利用苯—氟苯相互作用调控晶体堆积实现单体自组织辅助的无催化剂点击聚合方法,以室温本体聚合所得到的生物相容性好且可降解的类磷脂超支化聚合物为载体,通过连接结合配体或抗体的策略,将不同种类的抗肿瘤药物(如氮芥、阿霉素、紫杉醇等)输送到肿瘤细胞内部来达到抗肿瘤的目的 以聚烯烃或回收聚烯烃为碳源材料制备碳纳米管材料的方法 没有金属参与的、温和条件下合成芳香硼酸酯的方法,以及含氮杂环化合物的不对称氢化策略 胶体和界面化学的“自模板法”和气液界面单层胶体晶体模板新方法 利用同步辐射装置,建立了把同步真空紫外光解离质谱技术与普通的实验室手段相结合用于燃烧化学研究不同方面的方法……   这些研究对于推动和促进材料制备、有机合成、纳米科学和生命科学的发展显示了重要的科学意义和作用。   2010年化学基础研究新理论、新概念不断取得突破。科学家通过设计一个世界上最高分辨率的交叉分子束散射实验,首次成功观测到了理论预测的转动量子态为12、13和14的反应共振态分波所引起的3个振荡峰,并且发现理论预测的共振态能量完全达到了光谱精度,又一次实现了反应共振态研究方向上的新突破。   科学家还利用限域效应机理,在铂表面构建了具有配位不饱和的亚铁纳米结构催化剂,不仅成功实现了在质子交换膜燃料电池真实操作条件下氢气中微量一氧化碳的完全脱除,而且发展出了“界面限域催化”的概念。   除此之外,科学家还采用蒙特卡罗方法获得了对ABA两亲性三嵌段共聚物在选择性溶剂中自组装形成囊泡状胶束的动力学过程的模拟结果,对囊泡这一特殊结构的形成机理赋予了新的解释,还对嵌段共聚物在选择性溶剂中的自组装动力学过程有了更深层次的认识。   新材料不断被发现,并得到研制:新的碳同素异形体——大面积石墨炔薄膜(graphdiyne) 潜在的深紫外非线性光学晶体材料——具有无心空间群的新型碱金属硼铍酸盐类 通过控制所施加的电信号就可以实现可控电驱动的碳纳米管/壳聚糖复合物薄膜 利用扫描隧道显微术构筑的存在手性的二维笼目网格结构 可直接释放抗癌药喜树碱且能增加载药量而大大降低了初始暴释,并可同时释放两种药物起到协同治疗效果的生物高分子材料 对丁二烯和异戊二烯聚合有非常高的催化活性并突破了顺1,4-选择性97%极限的催化体系 可以使超过90%的大肠杆菌被抑制且对哺乳动物细胞产生的细胞毒性很小的纸片样宏观石墨烯膜 可以在溶液中的纳米级“中国地图”表面,实现DNA杂交反应并实现可寻址的高灵敏基因检测,以及通过原子力显微镜技术实现对单碱基变异性的高特异性分辨的液态DNA芯片 还有中国古代建筑用糯米灰浆成分之谜的破解等,都是具有重要理论和应用价值的进展。   我国一直处于国际先进水平的有机/聚合物白光电致发光器件,2010年又取得一系列的新进展,仅据前9个月的统计,“期刊引文报告”数据库收录的有关该领域的961篇论文中有374篇是我国作者发表的,占38.9%,足见我国在该领域的学术地位与影响。   有机反应是化学和材料科学的基础。2010年新反应与新化合物的分离、表征亦取得较大突破。   金属催化的碳碳键形成反应是有机化学中最为重要的一类反应,钯催化的交叉偶联反应正是由于其在形成碳碳键方面的重要作用而被授予了2010年的诺贝尔化学奖。   我国化学家在这方面也取得了很有意义的进展,特别是采用廉价的铜、铁及其盐为催化剂的炔基化反应、三氟甲基化反应、氧化酰胺化/双酮化反应、不活泼芳烃与卤代芳烃的直接偶联反应、3组分生成1,3-二取代联烯的反应等。在钯催化的交叉偶联反应的应用范围拓展至多氟芳烃方面,也取得了突破。   还有,多种环肽类生物活性物质的全合成以及50余种(其中不少具有抗癌、抗肿瘤、抗菌、抗细胞毒和抑制微生物等生物活性)的新生物碱、萜类等化合物和骨架的分离和结构确定等,也都是有机化学领域的重要进展。   可持续发展成为化学研究工作主题   在坚持科学发展、可持续发展的理念指导下,我国对绿色溶剂——离子液体的基础物化性质进行了深入的研究,成功应用天然、价廉、可再生的原料制备了多种离子液体 在CO2的转化,分子氧和过氧化氢的绿色氧化、纤维素、木质素、糖类等生物质的转化等方面都有很好的进展,具有重要的借鉴意义。   比如以手性膦酸为催化剂,用H2O2可以把3位取代的环丁酮通过不对称Baeyer-Villiger反应高选择性地得到相应产物,反映体过量值可以高达93% 在水和有机溶剂中和氢氧化钌催化下,用分子氧实现了伯胺的高选择性氧化 以TiO2担载的Au-Pd双金属为催化剂,高选择性地用空气氧把甘油氧化得到乳酸 用金属纳米粒子和质子酸性离子液体组成的双功能催化体系,将酚类木质素模型化合物一锅有效且低能耗地转化成烷烃 将廉价的三维连通孔结构的介孔活性炭担载的碳化钨用于纤维素的催化转化,使担载的碳化钨催化剂在反应中表现出更高的活性、选择性和稳定性,可以把乙二醇的收率提高到70%以上 在离子液体中,实现了把玉米秆、稻秆和松木等以及糖类等生物质直接转化成重要的化石产品替代物——5-羟甲基糠醛和糠醛的高效低成本方法……   新型、清洁能源已经成为实现社会和经济可持续发展的关键。目前,国际上的热点领域有:氢能源(燃料电池)及储氢、生物燃料、有机/聚合物太阳能电池和有机染料敏化太阳能电池等。   2010年,我国科学家在这些领域都做出了突出的工作。比如理论研究发现并由实验证实,水溶液电解质锂离子电池的负极材料会被氧气氧化是造成此类电池容量衰减的主要原因 通过密封除氧和选择合适的电极材料实现了水溶液电解质锂离子电池循环性能的大幅度提高,对推动其在风力、太阳能发电等能量储存、智能电网峰谷调荷和短距离电动公交车等的应用具有重要意义。   科学家还利用基于含时密度泛函电子动力学的第一性原理对染料敏化太阳能电池中的染料分子的计算结果,为精确调控微观、超快过程,进一步优化此类新型电池的光电转化效率提供了基础 在理论模拟基础上,由1,3,5-三乙炔苯催化聚合制备得到了刷新同等条件下物理吸附储氢纪录的三维微孔共轭聚合物 用模拟天然形成化石燃料地质条件的高温高压水热环境中进行反应的水热液化工艺,将海洋水体富营养化造成海上“绿潮”的大型海藻浒苔转化为生物油,把这一污染“元凶”变成为制造新能源的原材料。   还有一项有意思的研究:以经过酸预处理的乳牛粪便为原料生产生物氢的最大氢产量高于此前所有报道,既得到了清洁能源,又有助于解决环境污染,还提供了一种同时供应生产甲烷的理想原料的有机废物处理方法,可谓一举三得。   科学家还使用由研制的新型受体材料构筑的聚合物太阳能电池的填充因子、开路电压和能量转换效率等多项指标为同类体系的文献最高值。   资源的合理、高效、洁净利用是实现循环经济和可持续发展的有效途径。比如,采用双氧水与乙酸原位产生的过氧酸直接氧化,实现了甾体皂甙元资源100%利用和“零排放”,完成了“百kg”规模的试验。一旦推广,每年将减少约8000吨含铬工业废弃物的产生,同时回收约500吨手性试剂 油田废水处理以及处理后废弃物的高值化应用项目及300吨/年的油田废水处理成套工艺和装置获得成功,都是具有很好的经济与社会效益的重要进展。   应用研究和成果转化有新突破   在2010年,我国的应用及应用基础研究也取得了极其重要的进展,在把科研成果转化为生产力方面有了新的突破。   “煤制乙二醇”等产业化示范装置的平稳顺利运行和成功试车投产,标志着我国煤基能源化工产业化取得了重大突破,奠定了我国在世界煤基化工产业中的领先地位,对于实施我国以煤代油战略、煤炭资源清洁高效利用和保障国家能源安全具有重要意义。   大型储能系统和智能电网是太阳能和风能等新型清洁能源的可持续发展所不可或缺的,而且对于安全用电也是极其重要的。继先后研制成功650Ah的钠硫储能单体电池和全钒液流储能电池之后,作为国家电网上海世博园智能电网综合示范工程一部分的100kW/800kWh钠硫储能系统和“太阳能光伏发电—5kW/50kWh液流电池储电”联合供电系统,已分别成功启动运行和实现了连续无故障安全运行。这些成果的取得是产学研合作机制的一大创新。   纳米材料绿色印刷制版技术在成功建成中试线的基础上,开展了进一步的产业化开发,其成功将对推动印刷行业的技术转化、实现快速环保印刷具有革命性的意义。   国际学术影响力明显提升   我国化学科学的发展引起了国际学术界的高度关注,发表的论文屡屡被作为热点、亮点、顶级十佳论文等给予评述。特别是2010年,英国皇家化学会出版社(RSC)、《先进材料》、《配位化学评论》和《亚洲化学学报》等都为纪念北京大学化学研究与教育百年而出版了专集 《先进材料》还出版了中国科学技术大学专集。   另外,目前我国已有一批化学家在国际著名学术期刊出任副主编等要职。仅以高分子科学领域为例,就有6种该领域最著名的期刊由我国内地的化学家担任副主编。还有近年来,国际著名期刊约请中国化学家撰写特邀论文的情况屡见不鲜,据对影响因子在10以上的7份专门刊登综述论文的著名期刊统计,仅2010年前7个月就已经发表了中国内地科学家的综述论文68篇,创下了前所未有的新纪录。   2010年夏天,美、英、德、日等国化学会都派出了高级别的代表团到会参加了在厦门举行的中国化学会第27界学术年会,共同见证了中国化学会成立以来规模最大、水平最高的学术盛典,并主动表示希望加强合作。目前,中国化学会已先后与他们签订了合作协议或合作框架意向书等,使合作进一步制度化并推向深入持久。   所有这一切都是国际化学界对我国化学家工作的充分肯定,也是我国化学科学的学术影响力明显提升的力证。   2011年,我们迎来了“十二五”的起步之年,也是联合国的“国际化学年”。我们将围绕国际化学年的主题“化学——我们的生活,我们的未来”开展一系列的活动,以增进公众对化学的认知和了解,提高年轻人对化学科学的兴趣,培养他们对化学未来发展的热情。   我们一定要继承老一辈化学家的优良传统,以更踏实的工作、更昂扬的精神状态和充满激情的斗志,积极做好“十二五”的规划和各项工作,更进一步提高我国化学科研的原始创新能力,为化学科学的不断发展作出应有的贡献。
  • 中科院生物物理所在蛋白调节DNA去甲基化的新发现
    11月10日,《分子细胞》(Molecular Cell)杂志在线发表了题为Cooperative Action between SALL4A and TET Proteins in Stepwise Oxidation of 5-Methylcytosine 的研究文章,报道了在小鼠胚胎干细胞中,SALL4A蛋白与TET家族双加氧酶共同调节增强子上5-甲基胞嘧啶(5mC)的氧化过程。  哺乳动物DNA的胞嘧啶甲基化修饰被认为是最稳定的表观遗传修饰,在维持性DNA甲基转移酶的作用下,亲代细胞基因组的DNA甲基化信息经过有丝分裂以半保留复制的方式传递给子代细胞。近年来的研究发现,TET家族蛋白能够将5mC逐步氧化成5-羟甲基胞嘧啶(5hmC)、5-醛基胞嘧啶(5fC)和5-羧基胞嘧啶(5caC),并走向最终的去甲基化。这种动态变化拓展了DNA甲基化所承载的表观遗传信息的可塑性。在基因组上,5mC的氧化受到严格地控制,在某些基因组区域,5hmC会稳定存在,而在别的基因组区域5hmC只是进一步氧化和去甲基化的中间体。这一选择性事件的分子基础尚不明朗。  该研究利用稳定同位素标记的细胞培养(SILAC)联合亲和纯化与蛋白质定量质谱技术,发现锌指结构域蛋白SALL4A倾向于结合含有5hmC修饰的DNA。SALL4是早期胚胎发育过程中的一个重要基因,它的突变会导致常染色体显性遗传的Duane-radial ray综合症。Sall4基因敲除的小鼠胚胎在围着床期即停止发育,并很快死亡。该研究发现,在小鼠胚胎干细胞中,SALL4A蛋白主要定位于增强子,其与染色质的结合在很大程度上依赖于TET1蛋白。进一步分析基因组上SALL4A结合位点的胞嘧啶修饰状态发现,这些位点上缺乏稳定的5hmC,却富集了进一步氧化的产物5fC和5caC,提示SALL4A可能促进5hmC的进一步氧化。果然,敲除Sall4导致在原先的SALL4A结合位点上积累较高水平的5hmC,因为敲除Sall4降低了TET2的稳定结合,不利于5hmC的进一步氧化。  这一工作丰富了对TET家族蛋白调控的DNA氧化和去甲基化过程的理解,并提出了5mC的协同性递进氧化概念。促进了对DNA甲基化的动态性及其在胚胎干细胞功能及重编程中作用的理解。  中国科学院生物物理研究所研究员朱冰和副研究员张珠强为本文的共同通讯作者。朱冰课题组熊俊和张珠强为本文的并列第一作者。同济大学教授高绍荣和博士陈嘉瑜,北京生命科学研究所研究员陈涉、丁小军和许雅丽,中科院生态环境研究中心研究员汪海林和博士黄华,中科院上海生命科学研究院生物化学与细胞生物学研究所研究员徐国良,日本熊本大学教授Ryuichi Nishinakamura也参与了该项研究。该研究得到国家自然科学基金委、科技部、中科院战略性先导专项和美国霍华德?休斯医学研究所国际青年科学家项目的资助。图示:SALL4A促进由TET1和TET2介导的5mC氧化过程
  • 酱香拿铁里面到底有没有“酱香”?用禾信质谱一探究竟
    9月4日,某品牌咖啡与某品牌白酒合作推出的联名咖啡“酱香拿铁”火爆全网!据相关报道称“酱香拿铁每一杯都含有53度的酱香型白酒”。那么,“酱香拿铁”到底有没有酒精成分呢?“酱香拿铁”的“香”,到底是由哪些物质带来的?禾信仪器利用先进的全二维气相色谱-飞行时间质谱联用,带您一探究竟。实验方案前处理:取5 mL酱香拿铁,加入3 g氯化钠,待测。分析仪器:禾信仪器全二维气相色谱-飞行时间质谱联用仪GGT 0620柱系统:Welchrom® WM-FFAP (30 m*0.25 mm*0.25 μm) + HV + DB-17 (1.3 m*0.18 mm*0.18 μm)进样方式:顶空固相微萃取(SPME)禾信仪器全二维气相色谱-飞行时间质谱联用仪 GGT 0620实验结果 酱香拿铁经禾信仪器GGT 0620分析可显著发现酒精成分及许多香味成分,选择信噪比大于15的化合物进行分析,共发现有354种风味物质,主要包括醇类、酯类、酸类、醛类、吡嗪、酮类等物质。酱香拿铁的全二维色谱轮廓图 醇类物质是酱香拿铁中化合物种类最多的物质。共检出53种化合物,其中包括常见的乙醇成分,以及其他香气成分如:正丁醇、异丁醇、异戊醇等。 酯类物质是酱香拿铁中含量最高的物质,共鉴定出49种酯类香气物质,主要呈果香香气,部分物质还呈甜香、花香、脂肪香等气味。据相关文献报道,酯类物质中,本次酱香拿铁检出的丙酸乙酯呈香蕉气味、丁酸乙酯呈菠萝香味、2-甲基丁酸乙酯、己酸乙酯呈典型的果香。 酸类物质同样是酱香型白酒中重要香气物质,酱香拿铁中检出的酸类主要包括乙酸、丁酸、己酸、辛酸。而醛类物质中,己醛、3-甲基丁醛是曾被报道酱香型白酒中的主要香气物质,在本次酱香拿铁检测中同样有检出。 除此以外,还鉴定出20种吡嗪类化合物,吡嗪类物质在酱香型白酒中主要呈烤香味,吡嗪类化合物在不同香型白酒中的种类和含量均有差异,在酱香型白酒中吡嗪类化合物含量最高,其次则是浓香型白酒、清香型白酒。分析结果化合物的种类数量占比分析结果化合物的含量占比 另外,根据相关文献结果可知[1],酱香型白酒中关键香气物质主要有:乙酸乙酯,2-甲基丙酸乙酯、3-甲基丁酸乙酯、己酸乙酯、乳酸乙酯、丙醇、3-甲基丁醇、乙酸、3-甲基丁酸、3-甲基丁醛、3-羟基-2-丁酮、4-甲基愈创木酚、三甲基吡嗪、糠醛、二甲基三硫。在本次实验中,除3-羟基-2-丁酮、二甲基三硫外,上述化合物均有检出。两个物质未检出的原因,可能与添加酒样的含量较低、含水率较高等因素有关。 综上可见,酱香拿铁中含有大量与酱香型白酒相符的成分,且特征成分几乎都有检出,商家的“酱香拿铁每一杯都含有53度的酱香型白酒”的宣传语可信度非常高,该产品中含有白酒。建议未成年人、孕妇、驾驶人员、酒精过敏者要谨慎饮用酱香拿铁。[1] 酱香拿铁3D轮廓图参考文献:[1]朱全. 茅台酒香气组成及香韵结构协同作用研究[D].上海应用技术大学,2020.DOI:10.27801/d.cnki.gshyy.2020.000050. 全二维气相色谱-飞行时间质谱联用仪GGT 0620是一套集合了全二维气相色谱和高时间分辨率飞行时间质谱的分析系统,主要用于复杂样品的精准定性定量检测,可应用于:环境分析、材料分析、石油化工产品分析、食品风味研究、非法添加与真假鉴别、香精香料分析、中药有效成分分析、代谢组学研究等。
  • FATS Fair助力食品安全快检设备成为餐桌上的安全屏障
    亚硝酸盐超标 致癌辣条引发思考   FATS Fair助力食品安全快检设备成为餐桌上的安全屏障   由雅森国际和国家会议中心联合主办的&ldquo 2015北京国际食品及农产品检测技术展览会&rdquo (简称&ldquo FATS Fair&rdquo ),将于今年7月18-20日在国家会议中心举办。食品安全快检设备及耗材企业仍是本届展会的重要参展企业,FATS Fair也将继续设置&ldquo 食品安全快检体验专区&rdquo 邀请公众亲临现场体验,并在展后进入北京各大社区巡回举办多场&ldquo 食品安全快检体验活动&rdquo 。   在刚刚过去的3.15消费者权益日期间, &ldquo 最牛零食&mdash &mdash 辣条&rdquo 被推上了风口浪尖,因其低廉的价格和香浓的口感而深受学生族的欢迎。然而,这种看起来不起眼的小零食却因添加了过量的食品添加剂(包括亚硝酸盐)而对孩子们的身体健康造成威胁。亚硝酸盐是一种常用的食品添加剂,对肉制品具有发色和防腐保鲜作用。但是,亚硝酸盐并非人体所必需,摄入过多对人体产生危害,如腹痛、腹泻、心跳加快等,引起急慢性中毒,甚至诱发癌症。   那么,如何快速检测出常见的食品中的亚硝酸盐含量呢?下面我们以火腿肠为例进行简单说明。   检测方法一:实验室检测(将食物送至检测机构,付费检测)   检测过程:取1克火腿肠,将其剪碎,放入提取瓶中,加入5毫升70℃热水,浸泡5分钟。随后,吸取1毫升上清液至离心管中,滴加3滴亚硝酸盐检测试剂A,静置2分钟。再滴入亚硝酸盐检测试剂B和亚硝酸盐检测试剂C各3滴,摇匀后静置5分钟。观察离心管液体颜色,与色阶卡进行比较。   (国家标准:火腿、肉肠等亚硝酸盐含量不超过30mg/kg。)   送检的过程比较繁琐,等待检测结果的时间长,有没有更好的方法在家中、在饭店的操作间、在农贸市场的检测区自己快速检测呢?食品安全快检设备可以帮助您!   检测方法二:多功能食品安全快速检测仪(快速、准确的自行检测)   这种小巧的检测仪,是如何在十分钟内,简单准确地检测出食物中的亚硝酸盐含量呢?还请您亲临FATS Fair现场体验,请您亲自评定该设备能否成为舌尖安全的屏障。   多功能食品安全快速检测仪,不仅可以用于检测亚硝酸盐,还可以检测农残、二氧化硫、甲醛、吊白块、蛋白质(乳及乳制品)、硝酸盐(果蔬)、重金属铅(果蔬)、茶多酚、双氧水、糖精钠、芝麻油、过氧化值、过氧化苯甲酰、尿素、溴酸钾、蜂蜜脯氨酸、蜂蜜中羟甲基糠醛、蜂蜜果糖、甲醇等。   像这样的仪器在2015FATS Fair上将大放异彩。作为国内唯一专注食品和农产品安全技术的展览会,2014FATS Fair展出面积10000平方米,吸引了120余家中外名企参展,其中法国梅里埃、勤邦、智云达、维科维康、赛必达、芬德、德国拜发等业内发展较为成熟的食品安全快检设备企业备受关注,得到党和国家领导人及商务部、农业部、工信部、食药总局等部委领导的高度认可,引发新华社、中央电视台、人民网、中新社、凤凰网、北京电视台等60余家媒体竞相报道。据统计,2014FATS Fair现场有10%的餐展商在展会现场达成交易,45%的参展商约定了后续合作。   2015FATS Fair将继续通过行业合作、数据库营销邀请:各级政府食品安全监督、检验检疫部门的设备采购负责人 各大科研机构、院校的食品相关专业领域的专业研究人员 ,食品生产、仓储、物流、零售领域的众多企业 第三方检测机构、认证机构的相关决策人士 大型饭店、餐饮集团、食品原料采购供应商等专业观众,邀请他们到展会现场共商食品安全检测行业发展趋势、探讨行业最新技术、寻找合作伙伴、采购一起设备。   据相关数据显示,我国食品及农产品安全检测仪器设备总需求7450亿,年检测耗材需求500亿,对于仍在培育期的食品安全检测行业,这是一块巨大的市场蛋糕。2015中央一号文件首次重点强调了食品及农产品安全和追溯的问题,显示出国家治理食品安全问题的决心,势必会推动食品安全检测产业的加速发展。而食品安全快检设备在整个行业前景中扮演着重要的角色,FATS Fair致力于食品安全快检设备的普及应用,将与快检企业携手为食品安全构筑一道安全屏障,为老百姓舌尖上的安全保驾护航。   联系人:李向军(项目经理)   T:0086 10-57970814   F:0086 10-57970999   M:13901254173   Email:lixiangjun@yasn.com.cn   2015年7月18-20日,北京国家会议中心,FATS Fair与您不见不散!
  • 军工的传承 国家的栋梁——第三届“阿达玛斯”学术论文奖优秀课题组专题报道
    引言:阿达玛斯学术论文奖——中国科学精英励志计划,从第一届到第三届,越来越多的科研精英们加入到这个计划中来,鼓励创新,给科研精英科研团队更多的展示机会,促进跨学科交流互助,这是我们坚持活动的初衷。 第三届“阿达玛斯学术论文奖”落下帷幕,优秀课题组专题报道正式开篇。今天我们要介绍的是本届论文奖新设奖项“人气团队奖”得主——中国科学技术大学化学系傅尧教授课题组。在正式介绍之前,我们先来回顾下,在网络评选时,网友是怎么发声的: ......看来已经是一方名人,并且群众感情基础着实深厚呢!团队介绍 生物质洁净能源重点实验室依托中国科学技术大学。中国科技大学自九十年代开始进行生物质能源研究,2001年在校内跨学科成立了生物质洁净能源实验室,由朱清时院士任实验室主任。 安徽省生物质洁净能源重点实验室自成立以来,本着围绕国家和地方“加强生物质能源开发”的战略目标、瞄准生物质能源的科学前沿的建所宗旨,以中国科技大学为依托,整合了校内化学、化工、生物、能源和材料等相关学科的科研力量,联合了省内外其它高校、科研院所和相关企业的研发资源,形成了以生物能源基础理论与应用技术研究为主的完整的科研体系,开展了一系列关于生物质的结构、生物质的热化学气化、生物质的微生物转化、生物质的产品化、生物质催化转化为甲醇等液体燃料、和生物质固态燃料电池等的基础理论与应用技术研究。研究成果 傅尧教授及其团队在生物质基平台分子例如烯烃的转化方面开展了较为系统和深入的研究工作。 烯烃是有机合成化学中极为重要的一类合成分子,也是重要的生物质基平台分子。烯烃的来源非常广泛,价格低廉,容易获得,并且品类丰富。简单烯烃既是石油化工行业的原料也是产品。例如,最为简单的却也最为大宗的乙烯气体,来源于蒸汽裂解。乙烯气体在石化行业,转化成为更高级的烯烃、聚乙烯材料以及多种多样的化学品。从另一个角度考量,烯基官能团也广泛存在于天然产物中,往往这些天然产物也富含大量的其他官能团以及复杂的结构。烯烃能够吸引有机化学家的,不光是他丰富广泛的来源。烯烃的化学性质也着实让有机化学工作者着迷,烯烃有着大量的合成转化途径或方式。一些特殊的过渡金属催化剂或催化体系可以活化烯烃的双键,从而发展了诸多优秀且实用的反应。著名的例子包括wacker氧化反应,烯烃复分解反应,烯烃的氢甲酰化反应,以及heck反应等,这些反应为实验室或工业中合成复杂的有机分子提供了有效的手段和途径。一. 镍催化烯烃与烷基或芳基亲电试剂的还原偶联反应 傅尧教授及其团队实现了镍催化烯烃与烷基或芳基碳亲电试剂的还原偶联反应。该工作展示了烯烃氢碳化反应及其在复杂分子修饰方面的应用,所提出的“以烯烃替代传统有机金属试剂”的概念为金属催化交叉偶联反应开拓了新的思路,为烯烃的直接利用提供了新的途径。在硅烷的参与下,烯烃扮演了烷基金属试剂等价物的角色,参与碳碳键成键反应。以廉价、易得、相对稳定的烯烃,替代传统有机金属试剂,不仅是新颖的概念,更是实用的方法:克服了金属试剂来源、储存以及操作方面的困难。同时,该反应具有出色的官能团兼容性,能够用于复杂天然产物的修饰:诸如,维生素d2的高化学选择性修饰和奎宁的果糖侧链修饰等。这一研究成果发表在《nature communications》上。 原文链接:http://www.nature.com/ncomms/2016/160401/ncomms11129/full/ncomms11129.html二. 配体调控的铜催化区域选择性可控的烯烃硼化烷基化反应 傅尧教授及其团队发展了一例铜催化配体调节的区域选择性可控的烯烃硼化烷基化反应,研究成果发表在德国应用化学杂志(angew .chem. int. ed., 2015, doi: 10.1002/anie.201506713),并在同行评审中被评为vip(very important paper)论文。 从简单易得的原料出发快速高效地构建复杂分子和对多组分反应体系中复杂的选择性进行有效调控一直以来都是有机合成化学中的重要挑战。该方法在铜催化的条件下,实现了从商业可得的烯烃、频哪醇联硼酯和烷基卤素出发一步合成具有复杂结构的烷基硼酯的反应(图1)。在该反应中,通过对配体结构的微调,可以实现对反应区域选择性的高度控制(两种选择性可分别高达23:1和1:13)。此外,该工作还通过设计利用烯烃分子的螯合作用促进烯烃硼化加成的策略,有效地解决了三组分反应中复杂的化学选择性问题。 图1 配体调节的区域选择性可控的烯烃硼化烷基化反应 碳碳键作为生物界最基本的结构单元,其构建方法始终是有机化学家的重要研究方向。该工作提出的通过烯烃的加成-偶联反应构建c(sp3)-c(sp3)键的策略相对于传统的交叉偶联反应(如kumada反应),既避免了大量敏感的烷基金属试剂的使用,又在构建碳碳键的同时引入烷基硼。而烷基硼作为有机合成中重要的合成中间体,可以高效地转化为醇、胺、氟、芳杂环等重要官能团。由此可见,该工作为构建c(sp3)-c(sp3)键提供了一种新的绿色高效的方法。此外,作者证明了其使用的区域选择性可控的“配体对”(xantphos & cy-xantphos)对烯烃的硼氘化反应和硼胺化反应同样适用,这为区域选择性可控的烯烃硼化双官能化反应提供了一对通用的配体。 该论文的共同第一作者为中国科学技术大学化学与材料科学学院博士生苏伟和博士后龚天军。这项研究得到国家973计划(2012cb215306)和国家自然科学基金 (21325208, 21172209, 21361140372)等项目资助。原文链接:http://onlinelibrary.wiley.com/doi/10.1002/anie.201506713/abstract团队/实验室风采团队黄山行 中试生产线双相固体酸连续催化脱水装置制备5-羟甲基糠醛空气氧化装置制备呋喃二甲酸酯化装置制备呋喃二甲酸二甲酯二酯精华装置制备高纯制备呋喃二甲酸二甲酯期望合作领域生物质平台分子转化利用:1)羧酸脱羧及相应偶联反应研究2)烯烃的转化利用3)多元醇的转化利用如有深度交流或合作意向,敬请联系我们:marketing@titansci.com不忘初心,只因感动!
  • 生活饮用水水源地特定项目分析方法发布
    中国环境监测总站发布《集中式生活饮用水地表水源地特定项目分析方法》 各省、自治区、直辖市及环境保护重点城市环境监测中心(站): 为进一步做好饮用水源地保护工作,更好地完成国家环境监测任务,我站会同重庆、江苏、四川、辽宁、浙江、宁波等监测站,结合全国环境监测系统的监测设备现状,立足高效、实用的原则,参考相关国家标准、行业标准、国外分析方法与实践经验,共同编制了《集中式生活饮用水地表水源地特定项目分析方法》(见附件),供各监测站在地表水水质监测工作中参考。 由于时间和水平所限,《集中式生活饮用水地表水源地特定项目分析方法》中可能存在不够完善的问题,望各监测站在工作实践中,提出修改反馈意见。 联系人: 吕怡兵 010-84943183,13621344720,lvyb@cnemc.cn 付 强 010-84943180,13910330572,fuqiang@cnemc.cn 附件:集中式生活饮用水地表水源地特定项目分析方法 二〇〇九年八月二十六日 附:集中式生活饮用水地表水源地特定项目分析方法目录 检测项目 分析方法 对应页码 三氯甲烷、四氯化碳、三溴甲烷、二氯乙烷、1,2-二氯乙烷 8 (一)顶空-毛细管气相色谱法 8 (二)吹脱捕集-毛细管气相色谱法 11 (三)吹脱捕集-毛细管气相色谱质谱法 13 环氧氯丙烷 19 (一)吹扫捕集-毛细管气相色谱质谱法 20 (二)液液萃取-气相色谱法 20 氯乙烯 22 (一)吹扫捕集-毛细管气相色谱质谱法 22 (二)顶空-毛细管气相色谱法 22 1,1-二氯乙烯,1,2-二氯乙烯,三氯乙烯、四氯乙烯 24 (一)吹扫捕集-毛细管气相色谱法 25 (二)吹扫捕集-毛细管气相色谱质谱法 25 氯丁二烯 25 (一)吹扫捕集-毛细管气相色谱法 25 (二)吹扫捕集-毛细管气相色谱质谱法 25 (三)顶空-毛细管气相色谱法 25 六氯丁二烯 27 (一)顶空-毛细管气相色谱法 27 (二)吹扫捕集-毛细管气相色谱法 27 (三)吹扫捕集-毛细管气相色谱质谱法 28 苯乙烯、苯、甲苯、乙苯、二甲苯和异丙苯 28 (一)顶空气相色谱法 28 (二)吹脱捕集-毛细管气相色谱法 31 (三)吹脱捕集-毛细管气相色谱质谱法 33 甲醛 33 乙酰丙酮光度法 34 乙醛 36 (一)顶空-毛细管气相色谱法 36 (二)2,4-二硝基苯肼柱后衍生液相色谱法 39 丙烯醛 41 顶空-毛细管气相色谱法 41 三氯乙醛 41 顶空-毛细管气相色谱法 41 氯苯、1,2-二氯苯、1,4二氯苯 44 (一)吹脱捕集-毛细管气相色谱法 44 (二)吹脱捕集-毛细管气相色谱质谱法 44 三氯苯 44 气相色谱质谱法 44 四氯苯 51 (一)气相色谱质谱法 51 (二)气相色谱法 52 六氯苯 54 气相色谱质谱法 54 硝基苯、二硝基苯、2,4-二硝基甲苯、2,4,6-三硝基甲苯、硝基氯苯,2,4二硝基氯苯 54 (一)气相色谱质谱法 54 (二)液液萃取-气相色谱法 54 2,4-二氯苯酚、2,4,6-三氯苯酚、五氯苯酚、苯胺 57 气相色谱质谱法 57 联苯胺 57 (一)液液萃取-气相色谱质谱法 57 (二)固相萃取-高效液相色谱质谱联用法 61 (三)分光光度法 63 丙烯酰胺 65 (一)固相萃取-高效液相色谱法 65 (二)衍生化液液萃取-气相色谱法 67 (三)溴化衍生-液液萃取-气相色谱三重四极杆质谱法 70 丙烯腈 72 (一)吹扫捕集-毛细管气相色谱质谱法 72 (二)顶空-毛细管气相色谱法 72 (三)吹扫捕集-毛细管气相色谱法 72 邻苯二甲酸二丁酯、邻苯二甲酸二(2-乙基己基)酯 72 气相色谱质谱法 73 水合肼 73 (一)对二甲氨基苯甲醛直接分光光度法 73 (二)糠醛衍生化-液液萃取-气相色谱质谱法 74 四乙基铅 77 (一)双硫腙目视比色法 77 (二)液液萃取-气相色谱质谱法 79 吡啶 82 (一)气相色谱质谱法 82 (二)顶空-毛细管气相色谱法 82 松节油 84 (一)气相色谱质谱法 85 (二)气相色谱法 85 (三)吹扫捕集-气相色谱质谱法 87 苦味酸 90 (一)气相色谱-ECD方法 90 (二)直接进样-液相色谱-三重四级杆质谱方法 92 丁基黄原酸 94 铜试剂亚铜分光光度法 94 活性氯 95 N,N-二乙基-1,4-苯二胺光度法 96 滴滴涕、林丹和环氧七氯 98 (一)气相色谱质谱法 98 (二)气相色谱法 98 对硫磷、甲基对硫磷、马拉硫磷、乐果、敌敌畏、敌百虫、内吸磷 101 气相色谱法 102 百菌清 105 (一)气相色谱质谱法 105 (二)气相色谱法 105 甲萘威 107 (一)高效液相色谱法 107 (二)高效液相色谱法-质谱法 109 溴氰菊酯 111 (一)气相色谱质谱法 111 (二)气相色谱法 112 阿特拉津 112 (一)气相色谱质谱法 112 (二)液液萃取-气相色谱法 112 (三)液相色谱法(HPLC) 114 (四)液液萃取-气相色谱-质谱法 115 (五)液液萃取-液相色谱-三重四极杆质谱联用法 117 苯并[a]芘 119 高效液相色谱法 120 甲基汞 123 (一)气相色谱法 123 (二)高效液相色谱-原子荧光法 126 多氯联苯 129 液液萃取-气相色谱法(GC-ECD) 129 微囊藻毒素 135 (一)液相色谱法 135 (二)固相萃取-液相色谱-质谱联用法 138 黄磷 140 钼-锑-抗分光光度法 141 钼、钴、镍 142 (一)石墨炉原子吸收法 142 (二)电感耦合等离子发射光谱法(ICP-AES) 144 (三)电感耦合等离子体质谱法(ICP-MS) 148 铍 152 (一)石墨炉原子吸收法 152 (二)电感耦合等离子发射光谱法(ICP-AES) 154 (三)电感耦合等离子体质谱法(ICP-MS) 154 硼 154 (一)甲亚胺-H分光光度法 154 (二)电感耦合等离子发射光谱法(ICP-AES) 155 (三)电感耦合等离子体质谱法(ICP-MS) 155 锑 155 原子荧光光度法 156 钡 158 (一)石墨炉原子吸收法 158 (二)电感耦合等离子发射光谱法(ICP-AES) 160 (三)电感耦合等离子体质谱法(ICP-MS) 160 钒 160 (一)电感耦合等离子发射光谱法(ICP-AES) 160 (二)电感耦合等离子体质谱法(ICP-MS) 160 钛 161 (一)水杨基荧光酮分光光度法 161 (二)电感耦合等离子发射光谱法(ICP-AES) 162 (三)电感耦合等离子体质谱法(ICP-MS) 162 铊 162 (一)石墨炉原子吸收法 162 (二)电感耦合等离子体质谱法(ICP-MS) 164
  • 千呼万唤始出来,测定N-二甲基亚硝胺的新标准终于上线啦!
    测定N-二甲基亚硝胺的新标准!本次标准更新,新增了QuEChERS法测定,Detelogy带你一起解读!亚硝酸盐广泛存在于食品之中,很容易与胺化合,生成亚硝胺。亚硝胺与苯并(α)芘、黄曲霉素是世界公认的三大强致癌物质。N-二甲基亚硝胺是N-亚硝胺类化合物的一种,食品中天然存在的N-亚硝胺类化合物含量极微,但其前体物质亚硝酸盐和胺类广泛存在于自然界中,在适宜的条件下可以形成N-亚硝胺类化合物。N-二甲基亚硝胺是国际公认的毒性较大的污染物,具有肝毒性和致癌性。N-二甲基亚硝胺在啤酒、肉制品及鱼类腌制品等食品和环境中广泛存在。肉制品加工过程中会使用亚硝酸盐添加剂,使其产生理想的粉红色,增加风味,且还具有抗氧化的效果。但是,亚硝酸盐在腌肉中可以转化为亚硝酸,极易反应生成致癌性物质:N-亚硝胺类化合物;水产品腌制过程中使用的粗盐通常含有硝酸盐、亚硝酸盐,加上微生物能将硝酸盐还原成亚硝酸盐,从而蓄积亚硝酸盐。在适宜的条件下,亚硝酸盐与胺类发生亚硝基化作用,最终生成N-二甲基亚硝胺。2023年9月25日,国家卫生健康委员会发布了85项食品安全国家标准和3项修改单(卫健委2023年第6号公告),其中就有GB 5009.26-2023《食品中N-亚硝胺类化合物的测定》。此次更新,大家的目光都聚焦在新增的第二法:QuEChERS-气相色谱-质谱/质谱法上,相比起其他实验方法,不仅精简了实验设备,在一定程度上也加快了实验的效率。下面一起来看看!实 验 步 骤 提 取 干制品称取5g于50mL离心管,加入5mL水,振荡混匀(鲜样品称取10g置于50 mL离心管中),加入N-二甲基亚硝胺内标中间液(1μg/mL)50μL,向其准确加入10mL乙腈,MultiVortex多样品涡旋混合器调节3000rpm,涡旋振荡2min后置于-20℃冰箱冷冻20min,取出后加入陶瓷研磨珠1粒以及4g硫酸镁和1g氯化钠,放入MGS-24高通量智能动植物研磨均质仪振荡2min,置于冷冻离心机中,转速9000r/min,10℃离心5min,上清液待净化。 净 化 称取150mgPLS-A粉末(或1g增强型脂质去除EMR-Lipid萃取粉剂或同级品)于15mL离心管中,加入5mL水于MultiVortex多样品涡旋混合器涡旋振荡,立即加入5mL待净化上清液涡旋振荡1min,置于冷冻离心机,9000r/min,10℃离心5min,待除水。 除 水 称取1.6g硫酸镁和0.4g氯化钠于另一15mL离心管,加入上述待除水净化液于MultiVortex多样品涡旋混合器涡旋振荡2min,置于冷冻离心机中,转速9000r/min,10℃离心5min。取上层有机相经0.22μm微孔滤膜过滤后。上机测定。“PreferenceDetelogy优选仪器
  • NAR | 许伟团队揭示BAF155蛋白的精氨酸甲基化修饰水平影响恶性肿瘤转移的新机制
    蛋白质精氨酸甲基化修饰是一类由精氨酸甲基转移酶(Arginine methyltransferases, PRMTs)介导的翻译后修饰作用。PRMTs不仅能够通过甲基化修饰组蛋白上特定位点的精氨酸来调控下游靶基因的转录活性,还参与修饰了多种非组蛋白类作用底物,以此来影响RNA剪接、蛋白质翻译、细胞周期等一系列细胞生物学行为。近年来,越来越多的证据表明蛋白质精氨酸甲基化水平的失调与恶性肿瘤的发生、发展密切相关。因此,PRMTs作为潜在的肿瘤治疗靶点,逐渐引起了全球科学家的关注。2021年11月19日,威斯康星大学麦迪逊分校医学院许伟教授团队在Nucleic Acid Research上发表题为BAF155 methylation drives metastasis by hijacking super-enhancers and subverting anti-tumor immunity的研究成果。该研究发现,精氨酸甲基化修饰的BAF155蛋白可以通过操纵增强子、破坏机体的抗肿瘤免疫能力,从而促进恶性肿瘤的转移 。BAF155是染色质重组复合物SWI/SNF的重要亚单位之一。2014年,许伟课题组在Cancer Cell发文,首次证实了PRMT4(又称CARM1)能够通过甲基化修饰BAF155蛋白第1064位精氨酸,起到促进三阴性乳腺癌转移的作用【1】。近日,该课题组以基因编辑的乳腺癌细胞系与小鼠模型为基础,结合多组学技术揭示了me-BAF155促进乳腺癌转移的内在分子机制。超级增强子(Super-enhancers, SEs)是基因组中大量增强子富集的转录调控区域。在转录过程中,通过富集多种转录因子和辅因子(BRD4等)来大幅度激活下游靶基因的转录活性。本研究中,作者采用ChIP-seq技术对me-BAF155的基因组结合位点进行全局定位分析,发现me-BAF155和BRD4在SEs处共定位,以此调节关键癌基因的表达水平。CARM1抑制剂(CARM1i)的处理,能够使得me-BAF155和BRD4从SE上解离,减少SE数量,激活干扰素α/γ通路,增强宿主免疫反应,起到抑制肿瘤生长和转移的治疗效果。最后,作者采用VERSA技术分离循环肿瘤细胞,证实me-BAF155在高转移特性的三阴性乳腺癌患者的循环肿瘤细胞中呈稳定、持续的强阳性表达(图1)。该研究首次揭示了me-BAF155在促进恶性肿瘤转移中具有双重作用:通过招募BRD4激活增强子依赖的癌基因转录活性;通过抑制干扰素α/γ通路以削弱宿主免疫反应。尽管CARM1抑制剂具有较低的细胞毒性,但是在体外依然能够显著抑制三阴性乳腺癌细胞的迁移,在体内显著抑制肿瘤生长和转移。因此,作者提出CARM1抑制剂有望被开发成为单独使用的抗癌药物,或与其他治疗药物(如免疫治疗)联合使用,用于治疗转移性恶性肿瘤。另外,相较于现有的CARM1抑制剂,开发me-BAF155(R1064)靶点特异性的小分子抑制剂,有望产生抑癌效果更好、副作用更少的新型抗肿瘤药物。
  • 卫生部就71项食品安全国家标准征求意见
    卫生部办公厅关于征求《食品添加剂 庚酸烯丙酯》等71项食品安全国家标准(征求意见稿)意见的函 卫办监督函〔2011〕561号 各有关单位:   根据《食品安全法》及其实施条例的规定,我部组织制定了《食品添加剂 庚酸烯丙酯》等71项食品安全国家标准(征求意见稿)。现征求你部门意见并向社会公开征求意见(征求意见稿可从卫生部网站http://www.moh.gov.cn下载),请于2011年8月16日前以传真或电子邮件形式反馈我部。   传 真:010-67711813   电子信箱:gb2760@gmail.com。   二○一一年六月十四日   附件:   《食品添加剂 庚酸烯丙酯》等71项食品安全国家标准(征求意见稿) 序号 标准名称 1 食品添加剂 庚酸烯丙酯 2 食品添加剂 苯甲醛 3 食品添加剂 月桂酸乙酯 4 食品添加剂 肉豆蔻酸乙酯 5 食品添加剂 乙酸香茅酯 6 食品添加剂 丁酸香叶酯 7 食品添加剂 乙酸丁酯 8 食品添加剂 乙酸己酯 9 食品添加剂 乙酸辛酯 10 食品添加剂 乙酸癸酯 11 食品添加剂 顺式-3-己烯-1-醇乙酸酯(又名乙酸叶醇酯) 12 食品添加剂 乙酸异丁酯 13 食品添加剂 丁酸戊酯 14 食品添加剂 丁酸己酯 15 食品添加剂 顺式-3-己烯醇丁酸酯(又名丁酸叶醇酯) 16 食品添加剂 己酸顺式-3-己烯酯(又名己酸叶醇酯) 17 食品添加剂 2-甲基丁酸乙酯 18 食品添加剂 2-甲基丁酸 19 食品添加剂 乙酸薄荷酯 20 食品添加剂 乳酸l-薄荷酯 21 食品添加剂 二甲基硫醚 22 食品添加剂 3-甲硫基丙醇 23 食品添加剂 3-甲硫基丙醛 24 食品添加剂 3-甲硫基丙酸甲酯 25 食品添加剂 3-甲硫基丙酸乙酯 26 食品添加剂 乙酰乙酸乙酯 27 食品添加剂 乙酸肉桂酯 28 食品添加剂 肉桂醛 29 食品添加剂 肉桂酸 30 食品添加剂 肉桂酸甲酯 31 食品添加剂 肉桂酸乙酯 32 食品添加剂 肉桂酸苯乙酯 33 食品添加剂 5-甲基糠醛 34 食品添加剂 苯甲酸甲酯 35 食品添加剂 茴香醇 36 食品添加剂 大茴香醛 37 食品添加剂 水杨酸甲酯(又名柳酸甲酯) 38 食品添加剂 水杨酸乙酯(又名柳酸乙酯) 39 食品添加剂 水杨酸异戊酯(又名柳酸异戊酯) 40 食品添加剂 丁酰乳酸丁酯 41 食品添加剂 乙酸苯乙酯 42 食品添加剂 苯乙酸苯乙酯 43 食品添加剂 苯乙酸乙酯 44 食品添加剂 苯氧乙酸烯丙酯 45 食品添加剂 二氢香豆素 46 食品添加剂 2-甲基-2-戊烯酸(又名草莓酸) 47 食品添加剂 4-羟基-2,5-二甲基-3(2H)呋喃酮 48 食品添加剂 2-乙基-4-羟基-5-甲基-3(2H)-呋喃酮 49 食品添加剂 4-羟基-5-甲基-3(2H)呋喃酮(又名菊苣酮) 50 食品添加剂 2,3-戊二酮 51 食品添加剂 靛蓝 52 食品添加剂 靛蓝铝色淀 53 食品添加剂 植物炭黑 54 食品添加剂 酸性红 55 食品添加剂 β-胡萝卜素(发酵法) 56 食品添加剂 栀子蓝 57 食品添加剂 玫瑰茄红 58 食品添加剂 葡萄皮红 59 食品添加剂 辣椒油树脂 60 食品添加剂 紫草红 61 食品添加剂 番茄红(天然) 62 食品添加剂 核黄素磷酸钠 63 食品添加剂 辛癸酸甘油酯 64 食品添加剂 辛烯基琥珀酸淀粉钠 65 食品添加剂 可得然胶 66 食品添加剂 普鲁兰多糖 67 食品添加剂 磷脂 68 食品添加剂 乳酸钾 69 食品添加剂 瓜尔胶 70 食品添加剂 L-精氨酸 71 食品添加剂 麦芽糖醇和麦芽糖醇液
  • 卫生部发布71项食品安全国标
    根据《中华人民共和国食品安全法》和《食品安全国家标准管理办法》的规定,经食品安全国家标准审评委员会审查通过,现发布《食品添加剂核黄素5'-磷酸钠》(GB28301-2012)等71项食品安全国家标准。其编号和名称如下:   GB 28301-2012食品添加剂 核黄素5'—磷酸钠   GB 28302-2012食品添加剂 辛,癸酸甘油酯   GB 28303-2012食品添加剂 辛烯基琥珀酸淀粉钠   GB 28304-2012食品添加剂 可得然胶   GB 28305-2012食品添加剂 乳酸钾   GB 28306-2012食品添加剂 L-精氨酸   GB 28307-2012食品添加剂 麦芽糖醇和麦芽糖醇液   GB 28308-2012食品添加剂 植物炭黑   GB 28309-2012食品添加剂 酸性红(偶氮玉红)   GB 28310-2012食品添加剂 β-胡萝卜素(发酵法)   GB 28311-2012食品添加剂 栀子蓝   GB 28312-2012食品添加剂 玫瑰茄红   GB 28313-2012食品添加剂 葡萄皮红   GB 28314-2012食品添加剂 辣椒油树脂   GB 28315-2012食品添加剂 紫草红   GB 28316-2012食品添加剂 番茄红   GB 28317-2012食品添加剂 靛蓝   GB 28318-2012食品添加剂 靛蓝铝色淀   GB 28319-2012食品添加剂 庚酸烯丙酯   GB 28320-2012 食品添加剂 苯甲醛   GB 28321-2012 食品添加剂 十二酸乙酯(月桂酸乙酯)   GB 28322-2012 食品添加剂 十四酸乙酯(肉豆蔻酸乙酯)   GB 28323-2012 食品添加剂 乙酸香茅酯   GB 28324-2012 食品添加剂 丁酸香叶酯   GB 28325-2012 食品添加剂 乙酸丁酯   GB 28326-2012 食品添加剂 乙酸己酯   GB 28327-2012 食品添加剂 乙酸辛酯   GB 28328-2012 食品添加剂 乙酸癸酯   GB 28329-2012 食品添加剂 顺式-3-己烯醇乙酸酯(乙酸叶醇酯)   GB 28330-2012 食品添加剂 乙酸异丁酯   GB 28331-2012 食品添加剂 丁酸戊酯   GB 28332-2012 食品添加剂 丁酸己酯   GB 28333-2012 食品添加剂 顺式-3-己烯醇丁酸酯(丁酸叶醇酯)   GB 28334-2012 食品添加剂 顺式-3-己烯醇己酸酯(己酸叶醇酯)   GB 28335-2012 食品添加剂 2-甲基丁酸乙酯   GB 28336-2012 食品添加剂 2-甲基丁酸   GB 28337-2012 食品添加剂 乙酸薄荷酯   GB 28338-2012 食品添加剂 乳酸 l-薄荷酯   GB 28339-2012 食品添加剂 二甲基硫醚   GB 28340-2012 食品添加剂 3-甲硫基丙醇   GB 28341-2012 食品添加剂 3-甲硫基丙醛   GB 28342-2012 食品添加剂 3-甲硫基丙酸甲酯   GB 28343-2012 食品添加剂 3-甲硫基丙酸乙酯   GB 28344-2012 食品添加剂 乙酰乙酸乙酯   GB 28345-2012 食品添加剂 乙酸肉桂酯   GB 28346-2012 食品添加剂 肉桂醛   GB 28347-2012 食品添加剂 肉桂酸   GB 28348-2012 食品添加剂 肉桂酸甲酯   GB 28349-2012 食品添加剂 肉桂酸乙酯   GB 28350-2012 食品添加剂 肉桂酸苯乙酯   GB 28351-2012 食品添加剂 5-甲基糠醛   GB 28352-2012 食品添加剂 苯甲酸甲酯   GB 28353-2012 食品添加剂 茴香醇   GB 28354-2012 食品添加剂 大茴香醛   GB 28355-2012 食品添加剂 水杨酸甲酯(柳酸甲酯)   GB 28356-2012 食品添加剂 水杨酸乙酯(柳酸乙酯)   GB 28357-2012 食品添加剂 水杨酸异戊酯(柳酸异戊酯)   GB 28358-2012 食品添加剂 丁酰乳酸丁酯   GB 28359-2012 食品添加剂 乙酸苯乙酯   GB 28360-2012 食品添加剂 苯乙酸苯乙酯   GB 28361-2012 食品添加剂 苯乙酸乙酯   GB 28362-2012 食品添加剂 苯氧乙酸烯丙酯   GB 28363-2012 食品添加剂 二氢香豆素   GB 28364-2012 食品添加剂 2-甲基-2-戊烯酸(草莓酸)   GB 28365-2012 食品添加剂 4-羟基-2,5-二甲基-3(2H)呋喃酮   GB 28366-2012 食品添加剂 2-乙基-4-羟基-5-甲基-3(2H)-呋喃酮   GB 28367-2012 食品添加剂 4-羟基-5-甲基-3(2H)呋喃酮   GB 28368-2012 食品添加剂 2,3-戊二酮   GB 14930.2-2012 消毒剂(代替GB14930.2-1994)   GB 11676-2012 有机硅防粘涂料(代替GB11676-1989)   GB 11677-2012 易拉罐内壁水基改性环氧树脂涂料(代替GB11677-1989)   附件:71项食品标准文本.rar
  • 沃特世为分析饮料中的2-甲基咪唑和4-甲基咪唑含量提供解决方案
    沃特世ACQUITY UPLC H-CLASS-PDA系统和ACQUITY UPLC/Xevo TQ MS系统分析饮料中的2-甲基咪唑和4-甲基咪唑含量 赵嘉胤.蔡麒.孙庆龙 引言 焦糖色素是一种允许使用的着色剂,我国对焦糖色使用量的规定除个别产品外均为按生产需要适量使用,其中规定仅有亚硫酸铵法生产地焦糖色允许使用在碳酸饮料中。而以加氨或其铵盐制成的焦糖(Ⅲ类氨法焦糖和Ⅳ类亚硫酸铵法焦糖)会产生4-甲基咪唑,并且4-甲基咪唑是一种能够诱发肿瘤的高水平的化学物质。 焦糖色素被广泛用于食品以及饮料中,所以4-甲基咪唑的含量监控也是必须被重视的,由于4-甲基咪唑分子极性很大,含量很低,所以如何快速、准确地检测出其含量,就成为人们现阶段研究的重点。目前我国国家标准中只有《焦糖色中的4-甲基咪唑的测定-高效液相色谱法》,而对于饮料中的4-甲基咪唑则没有相关检测方法。 沃特世(Waters® )公司所提供的整体解决方案,同时来监控饮料中的4-甲基咪唑以及2-甲基咪唑。使用沃特世SPE的固相萃取策略来对于复杂的样品基质进行净化,完成对于4-甲基咪唑以及2-甲基咪唑的提取浓缩,而沃特世HILIC模式的色谱保留,对于极性分子的色谱分离提供完美的效果,最后通过UPLC® H-CLASS PDA以及UPLC/Xevo® TQ MS的分析,完成出色的定性定量工作。 实验条件 样品前处理方案 固相萃取SPE解决方案&mdash &mdash Oasis® MCX (3cc/60mg) 小柱净化取3g饮料样品,超声5分钟,后待净化。 ACQUITY UPLC H-CLASS PDA超高效液相色谱分离条件: 色谱柱: ACQUITY UPLC® BEH HILIC Column 2.1x100 mm,1.7&mu m 流动相 A: 乙腈 流动相 B: 5mM甲酸铵 柱温: 35˚ C 检测波长: 215nm 进样量: 5&mu L 运行时间: 3min 梯度表: Time (min) Flow (mL/min) %A Curve 0.00 0.5 80 6 3.00 0.5 80 6 ACQUITY UPLC Xevo TQ MS超高效液相色谱-串联质谱分析条件: 色谱柱: ACQUITY UPLC BEH HILIC Column 2.1x100 mm,1.7&mu m 流动相 A: 乙腈 流动相 B: 5mM 甲酸铵 柱温: 35˚ C 进样量: 2&mu L 运行时间: 3min 梯度表: Time (min) Flow (mL/min) %A Curve 0.00 0.5 80 6 3.00 0.5 80 6 实验结果及讨论 1、ACQUITY UPLC H-CLASS PDA分析 混合标准品色谱图 饮料空白样品图 基质添加回收色谱图 2、ACQUITY UPLC/Xevo TQ MS分析 混合标准品TIC 3.2.3 茶饮料样品加标与空白对比分析 3.2.4 可乐样品加标与空白对比分析 通过分析结果可以看出,4-甲基咪唑和2-甲基咪唑分子极性很大,一般反相很难保留,多用离子对试剂来增加保留,但由于离子对色谱方式平衡时间很长,增加整体分析周期,同时对于色谱柱以及仪器的损耗很大,最关键是无法进行有效的质谱方法分析。而沃特世公司HILIC模式的极性分析方案可以非常好的进行极性分子的保留,流动相简单,优异兼容质谱条件,使4-甲基咪唑和2-甲基咪唑有非常好的分离效果以及灵敏度。 同时由于目标化合物极性很大,对于前处理的要求非常高,分离提取是个难点,而沃特世公司的固相萃取方案能使样品达到非常好的净化效果,通过Oasis MCX进行保留分离,同时能够减少样品杂质对于色谱柱以及整个仪器系统的损害。由沃特世ACQUITY UPLC H-CLASS-PDA和ACQUITY UPLC / Xevo TQ MS所提供的超高效性能以及灵敏度,使得4-甲基咪唑和2-甲基咪唑的分析达到理想效果。 结论 1.采用ACQUITY UPLC H-CLASS-PDA和ACQUITY UPLC / Xevo TQ MS可以快速高效地对4-甲基咪唑和2-甲基咪唑的含量进行测定,ACQUITY UPLC H-CLASS-PDA灵敏度可以达到1mg/kg,ACQUITY UPLC / Xevo TQ MS灵敏度可以达到1&mu g/kg。 2.应用沃特世固相萃取SPE解决方案配合HILIC模式色谱保留,对于大极性的小分子有很好的保留以及分离提取的作用,达到理想净化效果以及色谱分离效果。 3.从样品前处理到样品色谱质谱分析的整体解决方案,给客户提供一体化的服务解决样品分析过程中可能遇到的所有问题,帮助客户成功! 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 联系方式: 叶晓晨 沃特世科技(上海)有限公司 市场服务部 xiao_chen_ye@waters.com 周瑞琳(GraceChow) 泰信策略(PMC) 020-83569288 13602845427 grace.chow@pmc.com.cn
  • “100家实验室”专题:访农业部蜂产品质量监督检验测试中心(北京)
    为广泛征求用户的意见和需求,了解中国科学仪器的市场情况和应用情况,仪器信息网自2008年6月1日开始,对不同行业有代表性的“100家实验室”进行走访参观。近日,仪器信息网工作人员参观访问了本次活动的第四十四站:农业部蜂产品质量监督检验测试中心(北京)。该中心常务副主任赵静研究员、检测室主任薛晓峰博士热情地接待了仪器信息网的到访人员。   我国蜂产品半数用于出口,近年来日本、欧盟设置了越来越严格的蜂产品进口监测标准,这对我国蜂产品出口前的把关提出了更高的检测技术要求。农业部峰产品质量监督检验测试中心(北京)作为一家专门从事蜂产品检测的机构,一直专注如何提高蜂产品的检测水平,希望能为蜂产品的质量安全保驾护航。   “农业部蜂产品质量监督检验测试中心(北京)”(简称“中心”)为1998年11月以农科院蜜蜂所中心实验室为基础组建。2000年通过国家质量监督局的计量认证和农业部机构认可,2005年通过复评审验收;2009年通过国家计量认证、农业部审查认可和机构考核复评审。中心具有第三方公正地位,是非营利事业技术执法单位,在国家认监委、农业部质量办公室和中国农业科学院领导下独立开展检验工作。   同时,该中心也是农业部农产品质量安全中心授权的《无公害农产品定点检测机构》、《农产品地理标志产品品质鉴定检测机构》和中绿华夏有机认证中心委托的有机农产品检测机构,承担产品无公害、绿色和有机认证的产品检测。   农业部蜂产品质量监督检验测试中心外景   赵静常务副主任首先介绍了中心的概况。“中心现有工作人员11人,正高级职称2人,副高级职称3人,中级职称6人,其中80%具有硕、博士学位。”   “中心主要检测工作是承担来自国家下达的检验任务和来自市场的蜂产品质量安全委托检验,也随时为蜂产品企业与地方蜂产品质检站提供技术服务咨询。”   专注于蜂产品质量检测,优势在于——“全”   赵静常务副主任在提到中心的测试业务时说到:“农业部蜂产品质量监督检验测试中心专注于蜂产品的检测,在蜂产品检测方面的优势可总结为一个字——‘全’,这体现在两个方面:一是检测的蜂产品种类之‘全’,中心不仅检测蜂蜜,还检测蜂王浆、蜂胶、蜂花粉、峰腊、蜂产品制品等产品;二是检测项目之‘全’,包括营养成分、功效成分、农兽药残留、重金属残留、微生物、生物毒素等项目。”   “目前,中心是国内专做蜂产品检测的机构中设施最好的一家,不仅拥有覆盖蜂产品所有检测需求的国际先进设施设备,同时拥有一支技术水平较高的团队,能承担很多难度较大的蜂产品和其他一些食品检测项目。”   先进检测仪器配备齐全   薛晓峰博士介绍了实验室的仪器情况。“中心现有建筑面积1024平方米,固定资产约2500余万元,配备了国际先进水平的液-质-质联用仪、气-质-质联用仪、液质联用仪、气质联用仪、同位素质谱仪、等离子发射光谱仪、原子吸收和原子荧光分光光度计、液相和气相色谱仪、离子色谱仪、微生物分析设备以及各类先进的前处理装置等仪器110多台。”   Agilent公司6460高效液相色谱-串联质谱仪(左)   Agilent公司7500 ICP-MS(右)   (图注:Agilent 6460高效液相色谱-串联质谱仪可用于蜂产品中四环素族、硝基呋喃类、磺胺类、氯霉素、链霉素类、硝基咪唑类、氟喹诺酮类兽药的残留检测以及其他痕量污染物检测。Agilent 7500 ICP-MS为近期购入,还未来得及安装使用。此外,该实验室还有Agilent 1200高效液相色谱仪、Agilent 6510四极杆-飞行时间串联质谱各一台。)   Waters公司超高效液相色谱(左)   Waters公司Quattro micro GC/MS/MS气相色谱-串联质谱仪(右)   (图注:Waters超高效液相色谱用于蜂蜜中葡萄糖、果糖、蔗糖含量,蜂胶中黄酮类化合物含量,蜂王浆中10-HAD含量,蜂产品活性成分以及农兽药残留等指标的测定。)   Shimadzu公司UV-2550紫外分光光度计(左)   Foss公司全自动凯氏定氮分析仪(右)   (图注:两仪器主要用于羟甲基糠醛、淀粉酶值、总黄酮含量、蛋白质、酸度、高果糖淀粉糖浆等常规指标测定。)   Sercon公司Hydra 20-20型CF-IRMS连续流稳定同位素质谱仪   (图注:该仪器可用于蜂蜜中碳-4植物糖、C与N同位素丰度的检测,目前主要用于蜂蜜的真实性鉴别分析,也可以用于蜂产品品种鉴定及产地溯源技术研究。)   CAMAG公司TLC SCANNER3薄层色谱扫描仪   Shimadzu公司 GC/MS QP2010气相色谱-质谱仪(左)   Shimadzu公司UFLC液相色谱仪(右)   (图注:Shimadzu GC/MS QP2010气相色谱-质谱仪可用于蜂产品中氯霉素、有机氯、有机磷等农药残留的检测,以及挥发性物质的检测分析。)   DIONEX公司ICS-3000型多功能离子色谱(左)   DIONEX公司Surveyor MSQ plus单级四极杆液质联用仪(右)   北京吉天形态分析预处理装置(左)   北京吉天AFS-9130双道原子荧光光度计(右)   (图注:AFS-9130原子荧光分光光度计用于蜂产品中铅、砷、汞、镉等重金属残留及其它元素分析,也可用于元素形态分析。)   “中心近期引进了一台瑞典IBD公司的表面等离子共振(SPR)检测仪,该仪器主要用于检测蜂产品中生物分子间的相互作用。除该仪器外,我们还有氨基酸分析仪、凝胶成像系统等生化仪器。”   “目前,蜂产品检测已不停留在以往的元素分析检测层面上,而是往更深层次发展,即在分子、基因层面上研究蜂产品的成分。换言之,我们不仅要检测出蜂产品中是否含有某种成分,而且还要利用生物技术和仪器探明产品中为什么会含有这些成分。   瑞典必安科公司表面等离子共振(SPR)检测仪(左)   HITACHI公司氨基酸分析仪(右)   (图注:表面等离子共振(SPR)检测仪为近期购入,价格为160多万人民币。据悉,中国农业科学院蜜蜂研究所联合瑞典IBD公司8月10日在北京香山举行“SPR快速筛查食品质量与安全检测分析技术应用”研讨会。HITACHI氨基酸分析仪主要用于项目课题研究,很少用于对外检测产品,因为目前国内现阶段还没有蜂产品中氨基酸含量的标准测定方法。)   BIO-RAD公司超高灵敏度化学发光成像系统(左)   J2 Scientific公司GPC AccuPrep MPS凝胶色谱净化系统(右)   Applied Separations公司SPEED SFE prime超临界流体萃取仪(左)   Millipore公司Cogent μScale研究级小试规模半自动切向流系统(右)   “中心还作为中国农业科学院蜜蜂所质量安全研究与评价室,承担蜂业方面的各项国家课题研究工作,主持和参与制、修订近30余项国家和农业标准,完成国家攻关、行业公益性科研、国家科技基础条件平台重点项目、国家自然基金等10余项质量安全相关课题研究。中心参与制定的标准多为蜂产品的行业标准。近三年已发表核心期刊论文60余篇,其中SCI论文20余篇,这在其他行业的检测中心中是不多见的。”   薛晓峰博士(右)为仪器信息网工作人员介绍仪器   附录1:农业部蜂产品质量监督检验测试中心(北京)   http://www.beeindustry.org.cn/   附录2:农业部蜂产品质量监督检验测试中心(北京)检测项目   http://www.beeindustry.org.cn/xmjc.asp (项目检测)   http://www.beeindustry.org.cn/cpjc.asp (产品检测)
  • 李灵军合作成果:mNeuCode支持精氨酸二甲基化的靶向蛋白质组分析
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation1,文章的通讯作者是威斯康星大学麦迪逊分校的李灵军教授和国家蛋白质科学中心的常乘、贾辰熙教授。  蛋白质精氨酸甲基化是一种广泛存在于真核生物中且相对保守的翻译后修饰,参与包括RNA加工、DNA修复、染色体组织、蛋白质折叠和基因表达在内的多种生物学过程。蛋白质精氨酸二甲基化在生物过程和人类疾病中发挥着重要作用,但与此同时,精氨酸二甲基化的相对丰度和化学计量通常很低,并且表现出较宽的动态变化范围,这些问题都给分析带来了巨大的挑战。在这篇文章中,作者设计了一种用于二甲基精氨酸代谢标记的mNeuCode标签,并开发了一个名为NeuCodeFinder的软件工具,用于在MS全扫描中筛选NeuCode信号,从而能够在蛋白质组范围内对蛋白质二甲基化进行靶向LC-MS/MS分析。作者将该方法应用到HeLa细胞精氨酸二甲基化的全蛋白质组分析中,证实了该方法的有效性:在70种蛋白质上鉴定到176个精氨酸二甲基化位点,其中38%是新位点。  图1 用于细胞培养代谢标记的mNeuCode的化学设计。含有由稳定同位素标记的甲硫氨酸和精氨酸的不同组合的mNeuCode-I(红色)和mNeuCode-II(蓝色)分别用于两组细胞培养。同位素标记的甲硫氨酸经过代谢转化为甲基供体S-腺苷甲硫氨酸(AdoMet ),随后由蛋白质精氨酸甲基转移酶(PRMT)催化转移到精氨酸侧链的甲基上。细胞裂解后,将两种样品混合并制备用于高分辨率LC-MS分析。含有二甲基精氨酸的肽的NeuCode同源物被解析后,将显示出43 mDa的质量差异并作为诊断峰。  图2 基于mNeuCode的精氨酸二甲基化靶向蛋白质组分析。(A)NeuCodeFinder从高分辨率质谱数据中筛选NeuCode同位素峰对的工作流程。从原始数据文件中提取全扫描质谱。单峰被配对以形成NeuCode等值线簇。最终的NeuCode对列表与提取的离子色谱(XIC)值一起导出。(B)靶向LC-MS/MS分析的工作流程,包括样品制备、富集以及MS1和MS2分析。  在mNeuCode-I标记组中,使用含有正常L-精氨酸和同位素标记L-蛋氨酸[D3]的培养基 在mNeuCode-Ⅱ标记组中,则使用同位素标记的L-精氨酸[15N4]和L-甲硫氨酸[13C]进行培养(图1)。收集两组全细胞蛋白提取物并等量混合,蛋白经还原烷基化与酶切后,得到的肽段通过StageTip分级分离和HILIC tip富集,以提高样品肽段的识别率。处理的样品先进行LC-MS全扫描,通过作者的自制软件NeuCodeFinder生成包含列表,此包含列表用于辅助进一步的平行反应监测(PRM)模式分析(图2)。    图3 已鉴定的精氨酸甲基化位点的生物信息学分析。(A)鉴定的精氨酸二甲基化位点和(B)精氨酸二甲基化蛋白质。橙色柱表示未报道的精氨酸二甲基化位点或蛋白质。绿色柱表示只有单甲基化是已知的,但是二甲基化还没有报道。(C)韦恩图显示,通过使用胰蛋白酶和镜像胰蛋白酶作为消化试剂,从两组实验中鉴定的精氨酸二甲基化位点。(D)蛋白质上位点数目的分布。每个蛋白质上精氨酸二甲基化位点的数量显示在饼图周围,蛋白质的数量列在饼图中。鉴定的精氨酸-二甲基化蛋白质的(E) GO富集和(F)KEGG途径分析。(G)使用STRING数据库将二甲基化蛋白质映射到蛋白质相互作用网络上。综合得分 0.4。(H)已鉴定的精氨酸二甲基化位点中-6和+6氨基酸残基的序列标志。  通过对数据结果的分析,最终共鉴定到70种蛋白质上的176个精氨酸二甲基化位点,其中37-38%的精氨酸二甲基化位点是新的修饰位点,29%的精氨酸二甲基化蛋白没有被报道过,这证明了mNeuCode方法的有效性。与常规的鸟枪法蛋白质组学策略所获得的数据相比,mNeuCode方法在鉴定低丰度精氨酸二甲基化肽方面具有独特的优势,并且能够补充许多传统鸟枪法蛋白质组学所无法鉴定到的精氨酸二甲基化位点。对mNeuCode方法鉴定到的精氨酸二甲基化蛋白进行生物信息学分析后,发现这些蛋白质主要与RNA的加工、剪接和稳定性相关,参与了RNA的代谢过程。  图4 FAM98A上精氨酸二甲基化位点的突变抑制了细胞迁移。(A)通过蛋白质印迹检测FAM98A在HeLa细胞中敲除和重建的效果。用siFAM98A-1和siFAM98-2沉默HeLa细胞,然后用Flag标记的WT或突变的FAM98A质粒重建。Anti-FAM98A显示内源性FAM98A的干扰。Anti-Flag显示外源FAM98A的重建。(B)图像和(C)柱状图显示了HeLa细胞的细胞迁移。  FAM98A是一种微管相关蛋白,与结直肠癌和非小细胞肺癌的增殖有关。有研究者发现FAM98A是PRMT1的底物,但未能确定确切的甲基化位点。而在作者的研究结果中,成功鉴定到FAM98A上五个新的精氨酸二甲基化位点。为了验证这些二甲基化位点是否参与细胞迁移的调节,作者使用FAM98A敲除和FAM98A WT或突变重建细胞系进行了伤口愈合试验。将HeLa细胞的FAM98A基因敲除后,分别用WT或突变的flag-FAM98A重建FAM98A沉默细胞,其中突变的flag-FAM98A将二甲基化位点R351、R360、R363、R371和R375突变为赖氨酸以抑制甲基化。实验结果显示,当FAM98A基因被敲除时,细胞的迁移能力受到抑制,WT FAM98A的重建挽救了FAM98A敲除导致的细胞迁移缺陷,但是突变型FAM98A的重建却不能挽救。该结果证实了FAM98A上的二甲基化位点在细胞迁移中起到的作用。  总之,在这篇文章中作者发明了一种mNeuCode方法,并开发了NeuCodeFinder软件,使得能够以全蛋白质组的方式进行精氨酸二甲基化的靶向MS/MS分析。实验结果证明了mNeuCode技术对于精氨酸二甲基化的靶向蛋白质组分析的能力和有效性,并证实HeLa细胞FAM98A上新的精氨酸二甲基化位点在细胞迁移调节中的功能,有助于更好地理解癌症发展的潜在机制,为蛋白质组分析的方法学提供了新的思路。  撰稿:梁梓欣  编辑:李惠琳  文章引用:mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  Wang, Q., Yan, X., Fu, B., Xu, Y., Li, L., Chang, C., & Jia, C. (2023). mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation. Analytical chemistry
  • 岛津应用:酸浸提-HPLC-ICP-MS 法测定农田土壤中的甲基汞和乙基汞
    汞及其化合物是一种具有慢性剧毒的环境污染物,其存在的形态不同毒性有所区别,有机汞的毒性比无机汞强,尤其甲基汞毒性更是无机汞的几百倍。环境中,特别是土壤中的无机汞容易在微生物和化学作用下甲基化转化成有机汞。转化成的有机汞难以降解分离,容易迁移至土壤种植的农作物中,并通过食物链富集进入到人体而对人类健康构成威胁。因此,土壤污染状况详查除了需要测定总汞的含量之外,不同形态汞的准确定量分析也有极其重要的意义,更能正确评估土壤的重金属污染程度和潜在风险。 HPLC-ICP-MS 联用技术具有较高的分离能力和灵敏度,是形态汞分析的主要技术,本文建立了使用岛津高效液相色谱 LC-20Ai 和电感耦合等离子体质谱 ICPMS-2030 联用测定农田土壤中甲基汞和乙基汞含量的方法。方法以0.5 mol/L的硝酸溶液为浸提剂,前处理简单快速,检出限低,甲基汞和乙基汞的检出限分别为0.16 μg/L和0.21 μg/L,定量准确,可满足农田土壤中甲基汞和乙基汞含量的同时分析。 岛津电感耦合等离子体质谱 ICPMS-2030 了解详情,敬请点击《酸浸提-HPLC-ICP-MS 法测定农田土壤中的甲基汞和乙基汞》关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制