当前位置: 仪器信息网 > 行业主题 > >

冬凌草甲素

仪器信息网冬凌草甲素专题为您提供2024年最新冬凌草甲素价格报价、厂家品牌的相关信息, 包括冬凌草甲素参数、型号等,不管是国产,还是进口品牌的冬凌草甲素您都可以在这里找到。 除此之外,仪器信息网还免费为您整合冬凌草甲素相关的耗材配件、试剂标物,还有冬凌草甲素相关的最新资讯、资料,以及冬凌草甲素相关的解决方案。

冬凌草甲素相关的资讯

  • “合成生物学技术及应用进展”嘉宾报告大放送
    合成生物学的快速发展正在改变生物技术行业的产业布局。目前,合成生物技术已经广泛应用于食品、农业、医疗等多个领域。伴随我国《“十四五”生物经济发展规划》的颁布,被誉为“第三次生物科技革命”的合成生物学研究热度高涨,但当前构建合成生物系统的内在逻辑尚处于摸索阶段,整个合成生物学领域正处于发展初期,需要先进的使能技术及解决方案推动合成生物学产业快速发展。为帮助广大科研工作者及时了解合成生物技术的最新研究及应用进展,仪器信息网将于2023年10月10 日-11日举办第一届“合成生物学技术及应用进展”网络会议。届时将邀请业内专家做精彩报告,为广大用户搭建一个即时、高效的交流和学习的平台。~~~~~报告嘉宾~~~~~报告题目:《高效细胞工厂构建及产业应用》【摘要】 化学品绿色生物制造是实现人类社会可持续发展的重要路径,人工高效细胞工厂构建是实现绿色生物制造的核心。本报告介绍了现阶段细胞工厂构建存在的科学、技术问题及挑战,从新生化反应发现、非天然途径设计构建、稳定自调控共培养系统建立及群体感应调控原理及应用等角度阐述了高效细胞工厂构建的新技术及策略,为化学品的绿色生物制造提供了参考。报告题目:《HMOs的生物“智”造以及产业化》【摘要】 人乳寡糖(HMO)对婴幼儿消化系统、肠道健康及免疫系统完善具有不可替代的作用。因此,生物合成HMOs,形成规模化生产被市场所期待。 本项目中,我们通过“HLBrain”的计算云平台,形成了自主技术路线,实现了产业化,产品纯度达到了98%以上,实现了我国在HMOs领域的突破。报告题目:《赛默飞合成生物学中的高分辨质谱策略》【摘要】 合成生物学是近年来迅速发展的一门综合性交叉学科,涉及了生物工程、制药工程、食品工程、生物学、化学等多领域多学科内容。在合成生物学中核心内容即构建DBTL循环,赛默飞Orbitrap高分辨质谱仪是将扫描速度,高分辨率,高灵敏度,谱图质量,质量精度完美融合,将高性能定性和定量能力有机的统一,助力合成生物学难题攻克!报告题目:《利用合成生物学方法增加小分子结构多样性》【摘要】 天然产物长期以来一直是小分子药物的宝贵来源,但它们在自然来源中的含量通常很低,且其化学结构复杂,这使得它们的提取或化学合成变得十分困难和成本高昂。异源生物合成复杂天然产物已成为一种有吸引力的方法,因为它们成本低且供应稳定。我们已经建立了几种不同的方法,用于在细菌和酵母中异源生物合成各种天然产物,包括抗生素和抗癌药物。更重要的是,我们通过理性设计或定向进化及高通量筛选,成功的改造了途径中的酶,以实现天然产物类似物的生产,这显著扩展了当前天然产物的化学空间。我们还开发了自动化系统来辅助酶进化和菌株构建,这将有助于发现具有多种结构、靶向选择性和药代动力学特性的天然产物或其类似物。报告题目:《优化“启动子-RNA聚合酶”以实现目标产物的高产》【摘要】 启动子及RNA聚合酶是转录水平的两个关键调控元件,控制细胞内代谢流量的分配。目标产物的合成与宿主细胞的生长竞争利用有限的RNA聚合酶。启动子招募过多或过少RNA聚合酶都不利于高产目标产物。研究发现,适度串联的启动子能明显提高3-羟基丙酸和吡咯喹啉醌的产量,而过度消耗RNA聚合酶导致宿主细胞生长变慢,从而阻碍目标产物3-羟基丙酸的生成。此外,受诱导的CRISPRi可协调和切换细胞生长和产物合成,从而高产目标产物。报告题目:《岛津最新色谱质谱技术在合成生物学中的应用》【摘要】 主要介绍岛津分析方法包及LCMSMS、LCMS-QTOF、MALDI-TOF等仪器在合成生物学质量控制中的应用。报告题目:《人工智能驱动的合成生物制造创新模式》【摘要】 当前合成生物制造产业发展瓶颈是如何从无到有构建生物合成途径,我们开发了全球最大的生物合成反应/途径数据库,进而构建了全球领先的合成生物设计技术体系,创建了人工智能驱动的合成生物制造研发链条,正在打造人工智能驱动的合成生物制造创新模式。报告题目:《基于DNA纳米框架结构的仿病毒分子工具》【摘要】 利用DNA折纸技术构建框架核酸纳米结构,可以指导各类分子在纳米尺度的精确空间排布和组装,构建纳米器件并实现功能化,为合成生物学提供了全新的研究工具和应用平台。受到病毒启发设计的三维框架核酸被用于组装具有明确尺寸形状的磷脂膜囊泡;组装仿病毒被动侵染颗粒和抑制侵染颗粒等。报告题目:《基于液滴微流控技术氧化还原酶分子改造及其合成生物学应用研究》【摘要】 液滴微流控超高通量筛选技术,基于互不相溶的两液相产生分散的油包水微液滴,可以在短时间内生成大量的液滴,大小均匀、互不干扰、性能稳定且一致,每个液滴可作为独立的单位进行培养,筛选通量高达10^7个/天,广泛应用于酶定向进化研究。本项目基于酿酒酵母表面展示技术液滴液滴微流控超高通量筛选技术,基于互不相溶的两液相产生分散的油包水微液滴,可以在短时间内生成大量的液滴,大小均匀、互不干扰、性能稳定且一致,每个液滴可作为独立的单位进行培养,筛选通量高达10^7个/天,广泛应用于酶定向进化研究。本项目基于酿酒酵母表面展示技术液滴微流控高通量筛选氧化还原酶,获取高性能突变体,为生物医药酶定向进化及合成生物学代谢途径关键酶性能优化提供了技术平台。报告题目:《安捷伦高通量自动化流程在合成生物学领域的创新应用》【摘要】 安捷伦高通量自动化流程在合成生物学领域的创新应用。报告题目:《Hamilton自动化移液工作站在合成生物学领域的应用和卓越技术》【摘要】 合成生物学领域需要严谨准确无交叉污染的DNA基因合成、基因克隆、微生物或细胞的克隆挑选与培养、发酵培养以及产物纯化鉴定等步骤,且往往需要较高的通量。Hamilton以其卓越的自动化移液技术及先进的台面内设备,为合成生物学领域的各个步骤均提供了优秀的硬件和自动化解决方案,其中多种设备和技术是业内独有,且对合成生物学关键步骤的长时间稳定准确运行至关重要。本报告将通过合成生物学的各种实验需求介绍Hamilton公司的解决方案和技术优势,为科学家和企业研发人员的相关研发工作提供助力。报告题目:《创建可视化高通量策略定向筛选酚羟基化合物合成途径中关键羟化酶》【摘要】 酶作为生物合成中的催化剂,其活性高低决定了目标产物能否高产。蛋白质工程介导的酶改造需快速简易的筛选方法。由此,以高值化合物没食子酸合成途径中羟化酶PobA为例,基于催化产物的独有特性,建立了一种肉眼可视化筛选方法,并从突变库中筛选到高活性突变体。高活性突变体的引入实现了没食子酸从葡萄糖起始的高效生物合成。报告题目:《植物二萜的合成生物学研究》【摘要】 二萜类化合物广泛存在于自然界,因其化学结构的多样性和良好的生物活性,在工业、医疗等领域具有广阔的应用前景。二萜合酶以及糖基化酶、羟基化酶等后修饰酶是二萜化合物生物合成过程中影响其化学结构多样性的主要因素。在过去几年,本课题组针对三尖杉烷二萜、贝壳杉烷二萜为代表的二萜化合物的合成过程进行了深入的研究。如通过对柱冠粗榧(Cephalotaxus harringtonia)转录组基因的挖掘,报道了三尖杉属植物二萜生物合成途径的关键萜类环化酶,揭示了三尖杉烷型二萜前体骨架三尖杉-12-烯的生物合成过程,为裸子植物二萜代谢多样性的起源和演化提供了深入见解;通过对冬凌草(Isodon rubescens (Hemsl.)Hara)基因组学的研究,揭示了贝壳杉烷二萜冬凌草甲素的氧化修饰机制;通过对甜叶菊等转录组学的挖掘,揭示了贝壳杉烷二萜糖基化修饰过程中底物识别专一性和产物生成特异性的分子机制。基于这些研究,本课题组以大肠杆菌为底盘高效地实现了11种不同氧化形式的对映-贝壳杉烷类二萜化合物的从头生物合成,实现了多种稀有二萜糖苷的高效合成,并实现了产业化推广。报告题目:《技术瓶颈的突破—BioLector高通量微型生物反应器助力合成生物学科研与产业化》【摘要】 1.合成生物学科研与产业化流程与技术痛点 2.技术瓶颈的突破性新技术 3.应用案例介绍。报告题目:《过程数据驱动下的精准高通量筛选技术》【摘要】 合成生物学的DBTL研究循环中,T环节急需要开发高通量、自动化和在线多参数测控技术的新型生物反应器,规避过去基于三角瓶培养方式测试菌种和工艺的结果误判和漏选现象。建立基于过程多尺度参数相关分析方法的高通量菌种筛选和工艺开发平台,形成过程数据驱动的理性决策方法。报告题目:《翻译机制启发的氨基酸高产菌株筛选策略》【摘要】 氨基酸是构成蛋白质的基本单元,也是动物生长和生产所需的大量营养素之一,全球市场总量已接近300亿美元。商业化的氨基酸主要由微生物发酵法制成,然而,除了谷氨酸、赖氨酸等少数大宗氨基酸品类,大多数氨基酸的发酵产量仍处于较低水平,部分氨基酸生产菌株与国外存在代差,因此,选育优良的生产菌株已成为填补氨基酸产能与需求差距的关键。基于自然界普遍存在的“密码子偏好性”规律及氨酰化反应的动力学特征,报告人开发了基于稀有密码子和人造tRNACUA的氨基酸高产菌株筛选策略,实现了对20种标准氨基酸乃至非蛋白质类氨基酸的快速指征,解决了长期困扰氨基酸生物制造的菌株选育难题,促进了氨基酸高产新机制的发现。扫码报名~~~~~赞助单位~~~~也欢迎各位对合成生物学感兴趣的小伙伴进群交流~扫码进群
  • 博纳艾杰尔开设2015版《中国药典》分析案例专题
    《中华人民共和国药典》,简称《中国药典》。是由国家药典委员会负责组织编纂,国家食品药品监督管理部门批准颁布实施。2015年6月,国家食品药品监督管理总局正式颁布了《中华人民共和国药典》2015版,并于12月1日起实施。《中国药典》2015年版加强了药物中的杂质分析,对色谱柱提出了更高的要求。博纳艾杰尔科技紧密贴合药典要求,及时推出一系列分析案例,并在不断更新中。以下应用均可在博纳艾杰尔科技官方网站(www.agela.com.cn)首页——医药分析分类中的“2015版药典”专题内浏览下载:1) 曲克芦丁分析 —— Venusil MP C182)《中国药典》2015 年版盐酸水苏碱采用的亲水色谱柱—— Venusil HILIC3) 阿奇霉素有关物质分析专用柱 —— Durashell C18-AM Plus4) 磷酸肌酸钠含量测定项的分析——Durashell C18-AM5) 头孢羟氨苄及其颗粒剂分析 —— Innoval AQ C186) 头孢泊污酯有关物质检测的分析 —— Venusil MP C187) 复方丹参片(胶囊、颗粒)中三七检测项的分析 —— Venusil XBP C18(L)&Venusil MP C18(2)8) 头孢羟氨苄分析 —— Innoval AQ C189) 头孢米诺钠分析 —— Innoval AQ C1810) 头孢他啶分析 —— Innoval AQ C1811) 注射用头孢拉定分析 —— Durashell C18-AM12) 头孢尼西钠分析 —— Durashell C18-AM13) 头孢美唑钠分析 —— Venusil XBP C18(L)14) 头孢噻肟钠分析 —— Venusil XBP C18(L)15) 甲钴胺分析 —— Durashell C18-AM16) 盐酸布桂嗪分析 —— Venusil XBP C18(L)17) 法莫替丁分析 —— Durashell C1818) 醋酸地塞米松分析 —— Innoval AQ C1819) 尼莫地平片分析 —— Venusil XBP C18(2)20) 冬凌草分析 —— Venusil XBP C18(2)21) 藿香正气水分析 —— Promosil C18
  • 甘肃新增草地农业系统国家重点实验室
    4月14日,记者从省科技厅了解到,科技部2010年依托高校和科研院所新建国家重点实验室的评审工作于日前结束,兰州大学申报的草地农业系统国家重点实验室获准立项。这是“十二五”开局之年甘肃省获批的首个国家重点实验室,也是我省第七个国家重点实验室。   草地农业系统国家重点实验室的立项建设将对加强我国草业科学基础研究,培养草业科学领域科技创新人才发挥重要作用,为国家生态安全、食物安全与可持续发展等战略目标及甘肃省富民强省战略提供科技支撑。为保证国家重点实验室的建设水平和质量,科技部将组织专家对草地农业系统国家重点实验室名称、研究方向、队伍建设、平台建设和运行机制等进行可行性论证。通过可行性论证后科技部将正式批准立项建设。
  • 浙江省计量院主持起草《卤素检漏仪》国家计量技术规范
    近日,浙江省计量科学研究院主持起草的国家计量校准规范JJF1964-2022《卤素检漏仪》经国家市场监督管理总局批准发布,将于2022年10月29日实施。   卤素检漏仪是广泛用于化工、制冷、电力等涉及卤素气体生产及使用相关行业的分析仪器,多用于泄漏报警和安全防护,因此其计量性能指标尤为重要。新发布的校准规范主要规定了卤素检漏仪漏率示值误差、报警响应时间等计量特性的校准方法,为卤素检漏仪校准工作提供了科学统一的技术依据,为制冷、电力、化工、消防等行业和相应的质检机构服务,确保各领域中漏率检测的准确可靠。   浙江省计量院长期以来一直致力于漏率检测及检测方法的研究,主持制定《空气微泄漏检测仪校准规范》,参加制定《真空氦漏孔校准规范》,具备开展空气微泄漏检测仪CNAS校准资质能力,同时还建有真空氦漏孔校准装置和通道型标准漏孔校准装置等。   目前漏率检测不仅是汽车、制冷、电器制造等产业产品质量的保证,更是关乎大气污染和环境安全,省计量院将不断研究漏率计量检测技术,进一步提高计量供给和服务能效,助力企业产品质量和公共安全,为市场监管作出新的计量贡献。
  • 科技部:批建甘肃甘南草原生态系统等69个国家野外站
    11日,科技部官网公布《关于批准建设甘肃甘南草原生态系统等69个国家野外科学观测研究站的通知》,经部门(地方)推荐和专家咨询,科技部决定批准“甘肃甘南草原生态系统”等69个野外站为国家野外科学观测研究站(以下简称“国家野外站”)。这69个国家野外站依托相应单位而建,比如,依托兰州大学建设甘肃甘南草原生态系统国家野外科学观测研究站,依托东北师范大学建设吉林松嫩草地生态系统国家野外科学观测研究站,依托中国电力科学研究院有限公司、国网西藏电力有限公司建设西藏羊八井高海拔电气安全与电磁环境国家野外科学观测研究站等。记者获悉,国家野外站是重要的国家科技创新基地之一,是国家创新体系的重要组成部分。国家野外站面向社会经济和科技战略,依据我国自然条件的地理分布规律布局建设,经过多年发展,获取了大量第一手定位观测数据,取得了一批重要成果,锻炼培养了大批野外科技工作者,促进了相关学科发展,为经济社会发展提供有力科技支撑。附件:批准建设的69个国家野外科学观测研究站名单序号国家野外站名称依托单位主管部门1甘肃甘南草原生态系统国家野外科学观测研究站兰州大学教育部、甘肃省科学技术厅2吉林松嫩草地生态系统国家野外科学观测研究站东北师范大学教育部3江苏南京长三角大气过程与环境变化国家野外科学观测研究站南京大学教育部、江苏省科学技术厅4福建台湾海峡海洋生态系统国家野外科学观测研究站厦门大学教育部、福建省科学技术厅5上海长三角区域生态环境变化与综合治理国家野外科学观测研究站上海交通大学教育部6甘肃庆阳草地农业生态系统国家野外科学观测研究站兰州大学教育部、甘肃省科学技术厅7甘肃武威绿洲农业高效用水国家野外科学观测研究站中国农业大学教育部8河北曲周农业绿色发展国家野外科学观测研究站中国农业大学教育部9湖北巴东地质灾害国家野外科学观测研究站中国地质大学(武汉)教育部10陕西神木侵蚀与环境国家野外科学观测研究站西北农林科技大学教育部11广西平果喀斯特生态系统国家野外科学观测研究站中国地质科学院岩溶地质研究所自然资源部12海南南沙珊瑚礁生态系统国家野外科学观测研究站国家海洋局南海环境监测中心、自然资源部第三海洋研究所自然资源部13北极黄河地球系统国家野外科学观测研究站中国极地研究中心自然资源部14江苏东海大陆深孔地壳活动国家野外科学观测研究站中国地质科学院地质研究所自然资源部15河北沧州平原区地下水与地面沉降国家野外科学观测研究站中国地质环境监测院、中国地质科学院水文地质环境地质研究所自然资源部16广东大湾区区域生态环境变化与综合治理国家野外科学观测研究站深圳市环境监测中心站生态环境部17北京大杜社公路材料腐蚀与工程安全国家野外科学观测研究站交通运输部公路科学研究所交通运输部18青海花石峡冻土公路工程安全国家野外科学观测研究站中交第一公路勘察设计研究院有限公司、青海省交通科学研究院交通运输部19广东港珠澳大桥材料腐蚀与工程安全国家野外科学观测研究站港珠澳大桥管理局交通运输部20内蒙古阴山北麓草原生态水文国家野外科学观测研究站中国水利水电科学研究院水利部21山西寿阳旱地农业生态系统国家野外科学观测研究站中国农业科学院农业环境与可持续发展研究所农业农村部22云南大理农业生态系统国家野外科学观测研究站农业农村部环境保护科研监测所农业农村部23海南儋州热带农业生态系统国家野外科学观测研究站中国热带农业科学院农业农村部24山东长岛近海渔业资源国家野外科学观测研究站中国水产科学研究院黄海水产研究所农业农村部25江苏南京水稻种质资源国家野外科学观测研究站南京农业大学28河南黄河小浪底地球关键带国家野外科学观测研究站中国林业科学研究院林业研究所林草局29陕西秦岭大熊猫金丝猴生物多样性国家野外科学观测研究站
  • 国家药典委员会发布关于9305中药中真菌毒素测定指导原则草案的公示
    2022年12月19日,药典委发布《中国药典》(2025年版)编制大纲。《大纲》指出, 到2025年,全面完成新版《中国药典》编制工作。符合中医药特点的中药标准进一步完善,化学药品、生物制品、药用辅料和药包材标准达到或基本达到国际先进水平,药品质量控制和安全保障水平明显提升。近期,国家药典委员会发布了一系列的修订草案,目的是将中药标准进一步完善,逐步完成新版《中国药典》编制工作。关于9305中药中真菌毒素测定指导原则草案的公示我委拟修订《中国药典》2020年版9305中药中真菌毒素测定指导原则。为确保标准的科学性、合理性和适用性,现将拟修订的标准公示征求社会各界意见(详见附件)。公示期自发布之日起3个月。请认真研核,若有异议,请及时来函提交反馈意见,并附相关说明、实验数据和联系方式。相关单位来函需加盖公章,个人来函需本人签名,同时将电子版发送至指定邮箱。联系人:徐昕怡电话:010-67079522电子邮箱:xuxinyi@chp.org.cn通信地址:北京市东城区法华南里11号楼 国家药典委员会办公室邮编:100061附件:1. 9305中药中真菌毒素测定指导原则公示稿.pdf2. 9305中药中真菌毒素测定指导原则修订说明.pdf国家药典委员会2023年04月24日9305中药中真菌毒素测定指导原则修订说明一、目的意义 2015 年版《中国药典》9305 中药中真菌毒素测定指导原则,涵盖了7类11种真菌毒素检测方法。但经过方法转化,7类11种真菌毒素的具体检测方法已经收录入 2020年版《中国药典》2351真菌毒素测定法。此外,随着近年来研究的深入,发现了中药材、饮片及中成药中真菌毒素感染的新现象和特点,新的毒性明确的真菌毒素种类不断在中药材和饮片中检出,中成药中也相继发现真菌毒素感染,高通量筛查方法的建立和验证等内容急需纳入指导原则。因此,国家药典委员会委托上海市食品药品检验研究院对《中国药 典》9305中药中真菌毒素测定指导原则进行修订。 二、总体思路与起草过程按照国家药典委员会标准提高课题任务要求,对真菌毒素种类、检测方法及应用策略、新的真菌毒素测定方法进行了研究,并探究了中药中真菌毒素感染规律,对监控品种提出建议。经过研究,起草了以下内容:(1)增订了真菌毒素种类,涵盖主要五大产毒菌属所产的毒性强、污染率大、关注度高的真菌毒素种类,并引入2 / 3了隐蔽型真菌毒素的概念。(2)系统介绍了真菌毒素的多种检测方法,并针对每种方法的特点与实际检验的需求与应用特点,详细表述了各种测定方法的应用策略。(3)增订了桔青霉素高效液相色谱法与液相色谱-串联质谱法两种定量检测方法。开发了通用样品前处理方法,建立了色谱质谱条件,考察了多个代表性中药基质,完成方法学验证,回收率为 80.7%~140.9%,精密度为 0.8%~7.1%。(4)增订了采用高效液相色谱-三重四极杆质谱技术同时对 33 种真菌毒素进行高通量快速筛查的检测方法,系统研究了提取和净化前处理技术,建立了色谱质谱条件,选取代表性中药基质进行了方法学验证,中药材和中成药中 33 种化合物的检出限为 0.5~200mg/kg。(5)建立了中药中 75 种真菌毒素污染数据库,采用了真菌毒素筛查技术对 40 余种药材、10 余种中成药共 2000 余批样品进行了筛查,分析了相关感染规律,对相关检测品种提出了指导意见。山东省食品药品检验研究院、天津市药品检验研究院、 浙江清华长三角研究院三家单位对指导原则中新增订的方法进行了复核。经复核,三家复核单位的复核结果均与标准起草单位基本一致,复核意见均认为:增订的33种真菌毒素快速筛查方法和桔青霉素的测定方法均具有较强的可操作性、灵敏、快速、高效、专属。课题组根据协作研究结果,参考国外药典收载的内容,起草了 9305 中药中真菌毒素测定指导原则修订草案,并于 2020 年报送国家药典委员会,药典委理化分析专委会对本草案进行了审议。起草小组按照审核意见,对增订的真菌毒素种类按照国内外法定限量标准和毒理学数据进行了调整,并对文字进行了多次修改规范描述,完成了《中国药典》“9305 中药中真菌毒素测定指导原则”修订草案。
  • 【瑞士步琦】SFC分离木犀草素的应用
    瑞士步琦SFC 分离木犀草素SFC应用”1简介紫苏(Perilla frutescens)是一种草本植物,其叶和种子中含有多种生物活性成分,包括木犀草素(Luteolin),这是一种具有多种药理作用的黄酮类化合物。木犀草素具有抗氧化、抗炎、抗肿瘤等生物活性。▲ Luteolin采用传统的 Prep HPLC 方式虽然可以将木犀草素从紫苏提取物中进行分离,但是制备时间较长且流动相损耗量较高,无论从时效性还是经济效益角度出发,都不是最佳的选择。2常规制备色谱洗脱条件C18, 10x250mm, 15um梯度洗脱, 水/乙醇 +1% 甲酸进样量:0.5mL流速:15mL/min▲ 木犀草素色谱峰在 36min 之后除了洗脱时间较长之外,由于流动相中水的存在,也给后续木犀草素样品的浓缩带来一定的麻烦。(即使步琦的旋转蒸发仪能够解决这一问题)。3采用 SFC 样品纯化那么是否可以采用超临界流体色谱(SFC)的方式进行样品的纯化呢?首先我们采用 Sepmatix SFC 8X 平行液相色谱快速筛选适合于木犀草素分离的色谱柱。实验条件:流速:3mL/min运行时间:15min梯度洗脱 10-60% 甲醇▲ 紫苏提取物在 PEI 色谱柱上具有更好的分离效果之后采用 Prep SFC-50 对样品进行大量分离与制备。实验条件:PEI, 10x250mm, 5um梯度洗脱 20-40% 甲醇 5min进样量:0.3mL流速:20mL/min▲ 木犀草素色谱峰在 2min 之后两种不同分离方式对比:萃取条件Prep HPLCPrep SFC木犀草素色谱峰36min 之后2min 之后总运行时长42 min + 15 min平衡8 min + 1 min 平衡总溶剂使用390ml ethanol + 240ml water50 ml methanol4实验结论通过对比发现,SFC 在分离木犀草素的过程中,无论从时效性还是溶剂消耗量上都优势明显。
  • 国家药典委员会发布中药重金属、农残、黄曲霉毒素等的限量标准草案
    为进一步加强中药材的质量控制,进一步增加中药的安全性指标控制项目,尤其是加强对中药材中重金属及有害元素、黄曲霉毒素、农药残留量的控制,2012年10月25日,国家药典委员会在2010年版《中国药典》的基础上,发布了有关中药重金属、农残、黄曲霉毒素等物质的限量标准草案。   1、关于重金属及有害元素限量标准   在《中国药典》附录中规定“除矿物、动物、海洋类以外的中药材中,铅不得过10mg/kg 镉不得过1mg/kg 砷不得过5mg/kg 汞不得过1mg/kg 铜不得过20mg/kg。”   2、关于黄曲霉毒素限量标准   对《中国药典》收载的柏子仁、莲子、使君子、槟榔、麦芽、肉豆蔻、决明子、远志、薏苡仁、大枣、地龙、蜈蚣、水蛭、全蝎等14味药材及其饮片品种项下增加“黄曲霉毒素”检查项目,限度为“黄曲霉毒素B1不得过5μg/kg 黄曲霉毒素G2、黄曲霉毒素G1、黄曲霉毒素B2总量不得过10μg/kg”。   3、关于农药残留量限量标准   对《中国药典》收载的人参、西洋参药材及其饮片品种项下增加“农药残留量”检查项目,限度为“含总六六六(α-BHC、β-BHC、γ-BHC、δ-BHC之和)不得过0.2mg/kg 总滴滴涕(pp′-DDE、pp′-DDD、op′-DDT、pp′-DDT之和)不得过0.2mg/kg 五氯硝基苯不得过0.1mg/kg 六氯苯不得过0.1mg/kg 七氯(七氯、环氧七氯之和)不得过0.05mg/kg 艾氏剂不得过0.05mg/kg 氯丹(顺式氯丹、反式氯丹、氧化氯丹之和)不得过0.1mg/kg。”。   目前,该草案已于发布之日起上网公示并向公众征求意见,相关企业、利益相关者或机构可于2013年4月24日前将相关意见反馈给药典委员会。
  • 二极管阵列检测器——从现象到本质看木犀草素
    二极管阵列检测器——从现象到本质看木犀草素沈国滨 施磊 金燕 01紫外检测器的进阶版本——二极管阵列检测器(Diode Array Detector, DAD)紫外检测器(Ultraviolet Detector, UV)是目前HPLC应用最广泛的检测器,其工作原理是朗伯-比尔定律。紫外检测要求被检测样品组分具有紫外吸收,通常选择在被分析物有最大吸收的波长处进行检测,以获得最大灵敏度和抗干扰能力。可惜这会导致其它组分在该通道下的吸收变弱甚至无紫外吸收。因此,单通道紫外检测器在对目标化合物,特别是未知化合物进行纯度及定量分析时,结果可能会产生严重的偏差。图1 朗伯-比尔定律(A=lg(1/T)=Klc) 二极管阵列检测器(Diode Array Detector, DAD)是一种新型的光吸收检测器,它采用光电二极管阵列作为检测元件,形成多通道并行工作,可对光栅分离的所有波长的光信号进行检测,从而迅速决定具有最佳选择性和灵敏度的波长。可得任意波长的色谱图及任意时间的光谱图,具有色谱峰纯度鉴定、光谱图检索等功能,为定性、定量分析提供更丰富的信息。图2 二极管阵列检测器 02 DAD在天然产物构型变化监测时的妙用独一味(学名:Lamiophlomis rotata)是唇形科独一味属植物,有活血祛瘀,消肿止痛的功效,是青藏高原特有的一种重要药用植物。木犀草素是独一味叶中的主要成分 (Luteolin, CAS No. 491-70-3 ),是一种天然弱酸性的黄酮类化合物。木犀草素具有抗炎、抗过敏等作用,可用于治疗COPD、支气管哮喘以及慢性咽炎、变应性鼻炎等引起的慢性咳嗽。图3 木犀草素结构式本文基于赛默飞液相色谱系统和二极管阵列检测器,开发了一种可用于检测中药独一味胶囊提取液中木犀草素含量的方法。通过DAD检测器不仅可以实现定量分析,也可以用于色谱峰的定性分析。同时利用DAD全波长扫描的结果以证实木犀草素在流动相pH变化时会发生最大吸收波长红移,从而影响其在C18色谱中的保留等现象进行解释。 03 实验部分色谱条件流动相pH值对色谱行为的影响图4 流动相不同pH对于保留时间和吸收波长的影响 实验结合文献表明木犀草素对于流动相的pH敏感,依据计算模拟表明木犀草素的pKa 为 6.5±0.4。即在中性时,部分木犀草素可能以极性较强的离子形式存在,保留较弱;当调节pH为酸性时,抑制了电离,使得该分子以分子形式存在。借助二极管阵列检测器(DAD),可以实现全波长扫描,可以获得更全面的紫外光谱信息。木犀草素的紫外吸收波谱也对流动相的pH敏感,不仅保留时间产生了较大的差异,且随着碱性增强,最大吸收波长产生红移。表明该物质会在不同pH条件下产生不同的构象,且构象的变化会引起共轭结构的变化。 样品分析结果图5 标准品与样品对照色谱图(蓝色:标准品,黑色:样品) 图6 样品DAD三维色谱图(插图:8.640分钟的紫外吸收光谱图) 木犀草素保留良好,色谱峰形对称,无杂质干扰,可用于定性和定量分析。在0.3~100 μM 的范围内线性良好,相关系数R2达0.9999。进样精密度良好,标准品和样品的保留时间RSD均小于为0.2 %,峰面积RSD均小于为0.9 %。根据分析标准品保留时间的紫外吸收光谱,可见样品中对应色谱峰的最大吸收波长与木犀草素一致,推断该物质为木犀草素。根据校正曲线计算可得独一味胶囊提取液中木犀草素的摩尔浓度为27.4 μM。通过在样品中加入已知浓度的标准品来判断方法的准确性,该方法的回收率在95.9~103.0%之间。 04 结论本文基于赛默飞液相系统和二极管阵列检测器,开发了一种可用于检测中药独一味胶囊提取液中木犀草素含量的方法。通过DAD检测器不仅可以实现定量分析,也可以用于色谱峰的定性分析。利用DAD全波长扫描结合其它有关计算,验证了木犀草素在不同pH条件下最大吸收波长产生了红移,从而影响其在C18色谱中的保留。本文报道的方法能为极性小分子检测方法的开发提供定性和定量分析实验基础,为阐明色谱柱中的保留机理提供了理论依据,凸出了全波长扫描DAD检测器在分析物质变化过程和监测反应过程时的优势。
  • 应用表面增强拉曼技术快速检测食品中虫草素
    拉曼光谱能够不受各种溶剂的影响可靠地提供分子的结构信息。自1928年拉曼散射被Raman发现以来,该散射光线的光谱称为拉曼光谱,拉曼光谱技术因简便、快速、无损样品等特点,成为近年来发展最快、最有潜力的光谱分析技术之一。拉曼光谱技术包括共振拉曼光谱、傅里叶变化拉曼光谱、显微拉曼光谱、表面增强拉曼光谱、激光共聚焦拉曼光谱等。1974年Fleischmann等发现的表面增强拉曼散射使痕量物质检测成为可能,表面增强拉曼光谱技术利用痕量分子吸附于Ag、Au等金属溶胶和电极表面,其拉曼光谱信号可增强104~106,克服了常规拉曼光谱法灵敏度低的缺点。表面增强拉曼光谱技术因其抗荧光干扰、灵敏度更高,获取的信息更多,目前对于表面增强拉曼光谱的研究主要集中在化学、材料分析、艺术品鉴别、医药分析等领域的定性定量分析,同时,拉曼光谱技术在食品、生物、天然产物领域的研究和应用也有广泛的开展,如食品非法添加鉴别、农残兽药的快速检测、有效成分分析等,在食品科学领域得到广泛关注。虫草素是来源于蛹虫草、洋葱、冬虫夏草等植物的核苷类抗生素,具有多种生物活性,如:抗炎、抗肿瘤、促生长、神经保护作用等。近年来表面增强拉曼光谱技术已开始应用于很多功效成分等的检测,但利用表面增强拉曼光谱技术研究食品中功效成分如虫草素等还未见报告。本研究利用拉曼光谱技术建立食用菌中虫草素这一特色功效成分的快速检测技术,期望能够为食品的品质评价、标准建立、产业升级以及深入开发利用提供技术保障。河北省食品检验研究院王一玮、张斌、张岩研究员、张兰天博士等利用表面增强拉曼光谱技术快速检测食品中虫草素。该团队建立并验证了一种表面增强拉曼光谱技术可快速检测食品中虫草素,具有高效快速、节约成本、操作简便等优点。拉曼基底的选择不同的拉曼基底对于其拉曼信号的强度有一定的影响,为了考察未添加拉曼基底、以金纳米胶体为拉曼基底、以银纳米胶体为拉曼基底对于拉曼光谱信号强度的影响,分别选取400 μL的金纳米胶体、银纳米胶体,将虫草素标准溶液的添加量设定为100 μL,然后采集添加不同拉曼基底下的拉曼光谱图。由图1可知金纳米胶体对虫草素的拉曼信号的增强效果要好于银纳米胶体,相比于银纳米胶体,金纳米粒子能够将自由空间中的光子波长集中起来,并聚集在其表面,使金纳米粒子周围具有较强的电磁场效应,进而增强虫草素的拉曼信号。金纳米胶体相比于不添加拉曼基底或添加银纳米胶体具有更好的增强效果,因此选作为最佳基底。图1 不同拉曼基底的虫草素拉曼光谱图A:未添加拉曼基底;B:金纳米胶体;C:银纳米胶体拉曼基底添加量的优化拉曼基底的添加量对于其拉曼信号的强度也有一定的影响,为了考察金纳米胶体的添加量对于拉曼光谱信号强度的影响,分别选取100、200、300、400、500 μL的金纳米胶体,将虫草素标准溶液的添加量设定为100 μL,然后采集不同拉曼基底添加量下的拉曼光谱图。由图2可知,随着金纳米胶体的添加量由100 μL增加到500 μL,质量浓度为1 000 mg/L的虫草素的拉曼光谱信号强度有所增强,但增强效果并不明显。因此在检测时不必添加过多的金纳米胶体,金纳米胶体添加量为200 μL即可。图2 不同拉曼基底添加量对虫草素拉曼光谱图的影响A:拉曼基底添加量为100 μL;B:拉曼基底添加量为200 μL;C:拉曼基底添加量为300 μL;D:拉曼基底添加量为400 μL;E:拉曼基底添加量为500 μL被测样品添加量的优化虫草素标准溶液的添加量对于其拉曼信号的强度也有一定的影响,为了考察浓度为1 000 mg/L的虫草素的添加量对于拉曼光谱信号强度的影响,分别选取0.5、1、5、10、100 μL的虫草素标准溶液,将金纳米胶体基底的添加量设定为200 μL,然后采集不同虫草素溶液添加量下的拉曼光谱图。结果如图3所示,当虫草素标准溶液的添加量从0.5 μL增加到5 μL时,虫草素的拉曼信号强度不断增加,当虫草素标准溶液的添加量超过5 μL时,虫草素的拉曼信号强度降低。产生这一现象的原因可能是由于当虫草素标准溶液的添加量适当增加时,虫草素与金纳米粒子之间的相互作用也会逐渐加强,虫草素晶体在金纳米粒子附近产生了聚集,合适的聚集条件会产生加强的拉曼信号,过多的虫草素标准溶液的添加,可能会将金纳米粒子基底冲散从而影响基底的等离子共振,从而造成拉曼信号的下降。因此虫草素的最佳样品添加量为5 μL。图3 不同样品添加量对虫草素拉曼光谱图的影响A: 样品添加量为 0.5 μL ; B: 样品添加量为 1 μL ; C: 样品添加量为 5 μL ; D: 样品添加量为 10 μL ; E: 样品添加量为 100 μL虫草素检出限的测定根据优化的最佳条件,最终确定了最佳合成和检测条件。取200 μL拉曼基底金纳米溶胶加入检测小瓶,再向检测小瓶中加入5 μL的待测样品,混匀后上机检测。虫草素的质量浓度分别为1、5、10、100 mg/L,测得拉曼光谱图如图4所示。由此看出,虽然虫草素浓度的降低使拉曼信号强度明显的下降、变弱,但是在1 mg/L低浓度下,仍然可以看出虫草素的主要特征峰。由此,虫草素的检出限为1 mg/L。图4 不同浓度的虫草素拉曼光谱图样品预处理方法优化不同样品预处理方法对于其拉曼信号的强度也有一定的影响,为了考察不同样品预处理方法对于拉曼光谱信号强度的影响,分别用水提取法、乙醇提取法、甲醇提取法、三氯甲烷与甲醇混合提取法处理两种蛹虫草样品,然后按最佳条件采集不同样品预处理方法下的拉曼光谱图。结果如图5、6所示,三氯甲烷提取法得到的样品拉曼光谱图强度和峰型均较好。图5 不同预处理得到蛹虫草1号样品的拉曼光谱图A:水提取法;B:乙醇提取法;C:甲醇提取法;D:三氯甲烷与甲醇混合提取法图6 不同预处理得到蛹虫草2号样品的拉曼光谱图SERS定性检测虫草素对质量浓度为100、200、250、500、1 000 mg/L的虫草素标准品待测液采用最佳方法进行检测得到的拉曼光谱图如图7所示,可以看到,不同浓度虫草素标准品均有较好的信号响应且峰形相似,(1 319 ± 3) cm-1、(1 469 ± 3) cm-1处有特征峰。图7 不同浓度虫草素标准品拉曼光谱图SERS检测实际样品中的虫草素以蛹虫草1号、蛹虫草2号为实际样品,按照三氯甲烷提取法进行实际样品的前处理,按最佳条件进行拉曼光谱检测。如图7、8所示,拉曼光谱检测有虫草素的特征峰(1 319、1 469 cm-1),为了验证结果的正确性,进行了高效液相色谱法的验证,如图10、11所示,证实了实际样品中含有虫草素,进一步了验证所建立方法与拉曼基底的实用性,因此此实验方法具有实际应用性。图8 虫草素标准溶液与蛹虫草1号样品的拉曼光谱图A:质量浓度为1 000 mg/L的虫草素标准溶液;B:经三氯甲烷提取法得到的蛹虫草1号样品图9 虫草素标准溶液与蛹虫草2号样品的拉曼光谱图A:质量浓度为1000 mg/L的虫草素标准溶液;B:经三氯甲烷提取法得到的蛹虫草1号样品图10 蛹虫草1号样品的高效液相色谱图图11 蛹虫草2号样品的高效液相色谱图将三氯甲烷提取技术与表面增强拉曼光谱分析法结合,实现从复杂的样品基质中将目标物提取出来,再利用表面增强拉曼光谱对于目标物灵敏和快速检测分析的特性,检测食品中的虫草素并绘制出拉曼光谱图。实验以虫草素作为目标物,金纳米胶体为拉曼基底,对实验条件的优化得到最佳的实验条件为:金纳米胶体最佳添加量为200 μL;虫草素样品添加量为5 μL,最优条件下的虫草素的最低检出限为1 mg/L。将所建立的SERS检测方法对两种蛹虫草实际样品中的虫草素进行了检测,该SERS检测方法都能检出虫草素,且该法操作简便,检测时间短,因此SERS具有很好的实际应用性和应用前景。
  • 徐州申报虫草素含量测定地方标准 填补国内空白
    近日,徐州市质检所申报了江苏省地方标准项目《蛹虫草中虫草素含量的测定》,填补了国内标准的空白。   冬虫夏草是一种传统的名贵滋补中药材,深得人们喜爱,而各种原因所造成天然产品的稀少。随着生物工程技术的发展,近年来,人工培养的虫草产品开始进入市场,其中利用微生物技术开发的蛹虫草最为突出。由于生产过程的安全性得到了有效保障,卫生部于今年三月份发文(二〇〇九年第三号),将蛹虫草的子实体作为新资源食品发布。据悉,目前虫草的质量标准仍引用药典的指标内容,检测项目较少,且缺乏特殊性和专一性。不仅不利于蛹虫草生产过程的质量控制及相关企业的科学使用,而且也不利于政府有关部门对其相关产品质量的检测和监管。为此,徐州市质检所在充分调研的基础上,申报了江苏省地方标准项目《蛹虫草中虫草素含量的测定》。   《蛹虫草中虫草素含量的测定》方法是专门针对蛹虫草中的特定组分——虫草素开展的测定方法研究。虫草素作为具有奇特功效的成分,通过测定方法的建立可以在生产过程中研究影响其积累量的工艺条件,从而大大提高蛹虫草子实体的品质,为纯品生产奠定基础。以徐州某公司为例,如果子实体的虫草素含量提高十个百分点,产品的利用价值便可以提高百分之三十,以其现有生产水品衡量,年增加利润可以提高近五百二十万元。   该项目完成后,可以为虫草及其相关产品的市场保驾护航,对开发创新技术的企业具有较强的技术支持作用。
  • 关注|药典委公示药包材元素杂质测定法标准草案
    2022年12月19日,药典委发布《中国药典》(2025年版)编制大纲。《大纲》指出, 到2025年,全面完成新版《中国药典》编制工作。符合中医药特点的中药标准进一步完善,化学药品、生物制品、药用辅料和药包材标准达到或基本达到国际先进水平,药品质量控制和安全保障水平明显提升。今年上半年,国家药典委员会曾发布了一系列的方法通则的修订草案,公开征求意见。近期,药典委再次集中发布一批标准草案,涉及多个方法通则。相关新闻可点击下方专栏关注其中,4214药包材元素杂质测定法标准草案公示稿公开征求社会意见,以下为公示原文:https://www.chp.org.cn/#/business/standardDetail?id=0613de93-f9ff-4f6e-8cad-4415a22ef115 4214药包材元素杂质测定法标准草案的公示一、药包材元素杂质测定法起草说明:制定的目的意义 药品包装容器及组件在生产加工过程中因原料引入、工艺残留的有害元素杂质可能影响药品质量和安全,因此对其进行控制是非常有必要的。形成 “药包材元素杂质测定法”方法标准,科学有效指导药品包装容器及组件元素杂质的测定。二、制修订的总体思路遵循药典委对药包材标准体系的架构思路,基于《国家药包材标准》中塑 料类、玻璃类、橡胶类包材金属元素及金属离子的测定方法,以及国内外药典 中关于元素杂质的测定方法,制定本测定法。三、需说明的问题 1. 供试品的制备:“元素杂质总量”项下塑料类及含纸类的制样方法按 照 YBB 标准中相关方法,增加了微波消解法。“元素杂质浸出量”项下塑料类及弹性体类、金属类参照药包材溶出物测定法(通则 4204)项下或各品种 项下溶出物试验的方法制备样品;玻璃类、陶瓷类的制样方法按照 YBB 标准 中相关方法。2. 测定法:本方法收载了《中国药典》2020 版四部通则中电感耦合等离子质谱法、电感耦合等离子体原子发射光谱法、原子吸收分光光度法、砷盐检查法。新增了原子荧光光谱法测定砷、锑浸出量,未收录前处理复杂、污染环境的紫外-分光光度法。本方法中各测试方法项下载明的元素杂质已经过方法学验证,本方法中未载明的元素杂质如采用上述方法进行测定,需进行方法学验证。1.4214 药包材元素杂质测定法公示稿.pdf2. 反馈意见表.xlsx
  • 西藏高寒草地生态系统呼吸与甲烷通量的流域尺度格局及控制因素
    生态系统呼吸(Re)和甲烷(CH4)通量是两个重要的土壤-大气碳交换过程,已经在局地尺度上得到充分记录。然而,在流域尺度上,对青藏高原多年冻土区这些过程的空间格局和控制因素尚不清楚。基于此,为了填补研究空白,在本研究中,来自四川大学、中国科学院成都山地灾害与环境研究所、山西农业大学、中国科学院西北生态环境资源研究院和西南民族大学青藏高原研究所的研究团队在青藏高原风火山(34°40′-34°46′ N和92°50′–92°62′ E;4580-5410 m a.s.l.;图1a)测量了两个生长季节(2017年和2018年)不同坡向(北向(阴坡)和南向(阳坡))和不同海拔(低、中和高坡位)的生态系统呼吸(Re)和CH4通量,旨在阐明青藏高原草地流域尺度的Re和CH4通量模式并量化生物和非生物因子调节Re和CH4通量的相对贡献。作者利用LGR UGGA便携式温室气体分析仪+PS-3000便携式土壤呼吸系统(北京理加联合科技有限公司)+SC-11便携式呼吸室(北京理加联合科技有限公司)于2017年和2018年生长季节(6-12月)每30天测量一次Re和CH4通量。同时,还测量了土壤温度、体积含水量、地上生物量和地下生物量、土壤有机质、pH、土壤全氮、土壤容重、溶解性有机碳、微生物量碳、微生物量氮、土壤蔗糖酶活性、NH4+-N和NO3--N浓度。 图1 西藏高寒草地研究区和样地位置。(a)青藏高原植被类型图显示了研究区位置。(b)2个沟谷的2个坡向的3个海拔位置的18个研究地块。(c)山坡上的高寒草甸。(d)阳坡低坡位的高寒沼泽草甸。【结果】微生物因子对高寒草地流域Re空间变异具有控制作用。在高海拔阴坡位置,较低的土壤温度和土壤有机质含量降低了土壤微生物活性,从而抑制了Re的产生。作者发现高寒草地是大气CH4的净汇,流域内平均CH4通量率表现出很大的空间变异性,范围为-1.6~-10.48μg CH4 m-2 h-1。土壤体积含水量的空间变异解释了流域内76%的CH4通量变异。作者认为在高寒草地流域,永冻层对水文状况的影响可能会增加土壤水分(土壤体积含水量和充水孔隙空间)的空间变异性,通常在Re和CH4吸收受到抑制的低坡位形成排水不良的地貌。结果强调了地形和永冻层通过对生物物理化学因子的影响间接影响着Re和CH4通量。作者建议在地球系统模型中应重视青藏高原草地流域尺度上Re和CH4通量的空间变异性,尤其是CH4通量随海拔位置的变异性。 图2 两个生长季节生态系统呼吸(Re)速率(a-c)和CH4通量(d-f)及其范围(g和h)的季节性变化。 图3生态系统呼吸(Re)和生物物理化学因子之间的关系。 图4 变异划分分析(a)和结构方程模型(b)研究了驱动因素对生态系统呼吸(Re)的多变量影响。图(a)中,ST代表土壤温度,SOM代表土壤有机质。图(b)中,实线箭头表示显著相关(P<0.05);虚线箭头表示无显著相关(P>0.05);箭头宽度与关系强度成正比。多层矩形表示土壤有机质和微生物因子的主成分分析的第一成分;土壤有机质包括土壤有机碳(SOC)和土壤全氮(STN),微生物因子包括微生物量碳(MBC),微生物量氮(MBN)和蔗糖酶活性。 图5 CH4通量率和土壤温度(a)、土壤体积含水量(b)、充水孔隙度、NH4+-N(d)和NO3—N(e)之间的关系。【结论】为期两年的西藏高寒草地野外研究发现,由于流域内沟壑斜坡沿线的土壤水分差异,海拔位置显著影响CH4通量。在流域尺度上,生物和微生物因子相互作用影响Re,微生物因子对Re具有直接调控作用。研究结果表明,在山坡水文中永冻层可能会进一步增加土壤水分的空间异质性,这可能会改变高寒草地的碳交换,尤其是考虑到低坡CH4净吸收率弱于其他坡位。这些发现对于估算西藏多年冻土区山地的碳交换具有重要指示意义。山地覆盖了青藏高原约60.58%的区域,忽视流域尺度Re和CH4通量的空间变异性可能会误导对碳交换的评估。因此,作者建议在地球系统模式中应该考虑流域尺度Re和CH4通量的空间变异性,以改进对西藏高寒草地碳交换的评估。请点击如下链接,下载原文:西藏高寒草地生态系统呼吸与甲烷通量的流域尺度格局及控制因素
  • 微塑料和敌草隆对硅藻的毒性效应研究迎新进展
    近日,广东省科学院生态环境与土壤研究所研究员贺斌团队对微塑料和敌草隆对淡水及海洋硅藻的毒性效应进行了研究,发现微塑料和敌草隆对淡水硅藻的单一和联合毒性均高于海洋硅藻。相关成果发表于《整体环境科学》(Science of the Total Environment)。该研究通过开展微宇宙实验,分析了微塑料和敌草隆对两种硅藻的单一及联合毒性。结果发现,两种硅藻的生长均受到微塑料和敌草隆的单独、联合毒性显著影响。研究显示,单一微塑料暴露对硅藻产生物理损伤,而单一敌草隆暴露诱导硅藻发生氧化应激反应;微塑料和敌草隆的联合毒性表现为拮抗效应,微塑料对敌草隆的吸附行为减轻了敌草隆对硅藻的细胞内损伤,敌草隆诱导的氧化应激减轻了微塑料对硅藻的物理损伤。该研究结果表明,微塑料和/或敌草隆对淡水硅藻(小环藻)的毒性效应均高于海洋硅藻(骨条藻),并且两种硅藻的毒性机制不同。该研究的相关结果有助于深入理解淡水和海洋环境中微塑料和敌草隆的毒性效应。上述研究得到广东省重点研发计划、国家自然科学基金项目、广东省科技计划项目等项目的支持。
  • 首次在集约化管理草地上进行N2O的在线同位素表征测量
    首次在集约化管理草地上进行N2O的在线同位素表征测量 文献信息:B. Wolf1, L. Merbold, C. Decock et al. First on-line isotopic characterization of N2O above intensively managed grassland. Biogeosciences, 2015. doi:10.5194/bg-12-2517-2015 文献摘要:对四种主要的N2O同位素(14N14N16O,14N15N16O,15N14N16O,14N14N18O)进行了分析,特别是15N的分子内的分布(“位置偏好”,SP)被认为是区分源过程和帮助限制全球N2O预算的工具。然而,由于离散烧瓶取样和随后的实验室质谱分析相结合的研究受到有限的空间和时间分辨率的限制。量子级联激光吸收光谱(QCLAS)可以选择性高精度地分析痕量的N2O同位素,用于原位测量。这里,我们介绍了第一次实地考察的结果,这是在瑞士中部一个集中管理的草地上进行的。利用连接到自动N2O预浓缩装置的改良光谱仪,以高时间分辨率测定了大气表层(2.2m高度)的N2O摩尔分数和同位素组成。通过对压缩空气罐的重复测量确定了分析性能,结果表明δ15Nα、δ15Nβ和δ18O的测量重复性分别为0.20、0.12和0.11‰。同步涡动协方差N2O通量测量确定了土壤中N2O的通量平均同位素特征。我们的测量结果表明:总体上,硝化反硝化作用和反硝化作用是活动期间N2O的主要来源,同位素组成的变化是由于N2O被还原为N2而不是其他途径,例如羟胺氧化。管理和灌溉事件表现为分子内15N位点偏好(SP)、δ15Nbulkandδ18O值较低,表明了硝化菌反硝化和不完全异养细菌反硝化对诱导干扰的响应最强烈。集约经营草地N2O的通量平均同位素组成SP、δ15Nbuk和δ18O分别为6.9±4.3、-17.4±6.2和27.4±3.6‰。本文提出的方法能够为其他N2O排放生态系统提供长期数据集,可用于进一步限制全球N2O库存。文献监测方案:从注入S1(锚定)开始,动态稀释至50ppm,预浓缩后环境N2O的摩尔分数。用合成空气冲洗吸收池后,注入S2(校准标准)并稀释至50ppm。为了确定已经报告的轻微浓度依赖性,再次注入S1,但注入的摩尔分数更高,为67ppm(后来称为S1h)。该摩尔分数表示高浓度表层空气预浓缩后预期的摩尔分数。随后,再次注入S1并稀释至50ppm,然后将然后将细胞充满预先浓缩的环境N2O(A)。注射S1和预浓缩环境N2O的子程序(S1+A)耗时35分钟,重复三次。为了独立测定重复性,第四个样品是预先浓缩的压缩空气(目标气体)。在实验中,使用了两个压缩空气钢瓶(C1和C2,称为目标气体)。试验开始前,在实验室测定了两个储气罐的同位素组成和N2O混合比(表1)。实验室和现场分析的N2O摩尔分数和同位素组成在其分析不确定度范围内。表1为实验期间使用的参考气体和压缩空气罐。S1和S2代表锚定和校准标准。C1和C2是用于确定系统性能的目标气体。报告精度为1σ。 N2O同位素比值分析仪器装置:四种最丰富的N2O同位素物种采用了改良的QCLAS(Aerodyne Research Inc.,Billerica MA,USA)进行量化,该系统配备了光谱发射为2203cm?1的连续波量子级联激光器(cw-QCL)、像散的Herriott多通道吸收池(204 m路径长度,AMAC-200)和一个短(5 cm)的参考路径充满N2O的吸收池,以锁定激光发射频率。实验期间,QCLAS在位于涡流协变(EC)塔以西60米处的空调拖车中运行。该拖车位置对主通量的贡献小于20%,且位于主导风向的远端。样品空气入口装置布设在EC塔入口附近(2.2m高)。样气经过一个膜泵(PM 25032022,KNF Neuberger,Switzerland)通过聚四氟乙烯管(内径4mm)吸入。在泵的上端,用渗透干燥器(MD050-72S-1,PermaPure Inc.,USA)对样气进行预干燥。继泵之后,使用减压阀将压力维持在4棒过压。通过使用一个包住Mg(ClO4)2的烧碱石棉的化学捕集器定量去除气流中的湿度和CO2。最后,样气通过烧结金属过滤器(SS-6F-MM-2,Swagelok,USA)并被引导至之前详细描述的预浓缩装置。为了将N2O混合比从环境水平增加到约50 ppm N2O,需要预浓缩大约8 L的环境空气。然后,预浓缩的N2O被引入QCLAS的真空多道吸收池中。预富集过程中的同位素分馏(δ15Nα、δ15Nβ和δ18O分别增加0.31±0.10、0.34±0.16和0.29±0.07‰)通过具有已知同位素组成的N2O的预富集来量化并随后进行校正。最近在实验室间比较活动中证明了通过QCLAS进行的N2O同位素组分分析与同位素比值质谱(IRMS)实验的兼容性。 测量和校准策略确保分析系统的高精度和可重复性,测量和校准策略采用了类似于Mohn等人(2012)提出的一种方法。它基于两种不同于N2O同位素组成的标准气体,这两种气体是由纯医用N2O(瑞士Pangas)的动态稀释产生的,包含其同位素纯度(98%)14N15N16O(美国剑桥同位素实验室)和(99.95%)14N14NO(ICON Services Inc.,USA)的规定量。随后用高纯度合成空气(99.999%,Messer-Schweiz AG)进行重量稀释,得到含有90 ppm N2O(每摩尔干空气含有10-6摩尔微量气体)的加压气体混合物。这两种标准都是根据东京理工学院(TIT、Toyoda和yoshida)先前测量的主要标准进行校准,以将δ值固定在国际同位素标准刻度上。第一个标准(S1,表1)用作国际δ标度的锚定点,并用作数据分析算法的输入数据(见数据处理)。数据采集方式及频率:数据处理基于仪器软件(TDLWintel,Aerodyne Research Inc.,Billerica,MA,USA)记录的四种主要N2O同位素物种的单独混合比和光谱仪特征。 结果:(1)δ值和N2O摩尔分数无明显漂移,表明所用测量技术的稳定性。(2)土壤中N2O摩尔分数的增加与δ值的降低有关,表明土壤释放到表层的N2O比大气背景下的N2O减少了15N。(3)相比之下,溶解有机碳浓度(DOC)对管理事件没有反应,但在活动的干燥阶段较高(p组之间存在显著差异。(6)对于上述平均值中包括的一些中午至中午时段,因此包括夜间N2O摩尔分数至少增加12 ppb,EC系统检测到负的N2O通量(?0.17±2.1 nmol m?2s?1;n=14)。 Aerodyne仪器特点:(1)可以区分多个N2O同位素,可以实现14N14N16O,14N15N16O,15N14N16O,14N14N18O的测量;(2)量子级联激光吸收光谱(QCLAS)可以选择性地高精度地分析痕量的N2O同位素,弥补其他仪器的不足;(3)该方法能够为其他N2O排放生态系统提供长期数据集。 咨询联系电话:010-82675321
  • 烟台海岸带所、海洋所等联合起草的国家标准《虾青素旋光异构体含量的测定 液相色谱法》颁布
    近日,中国科学院烟台海岸带研究所、海洋研究所研究人员等联合起草的国家标准《虾青素旋光异构体含量的测定 液相色谱法》颁布,并将于7月1日起实施。  《虾青素旋光异构体含量的测定——液相色谱法》(GB/T 38478-2021)由中国标准化研究院提出并归口承担,标准起草工作组专家主要来自烟台海岸带所、海洋所、中国标准化研究院、山东省标准化研究院、中科院过程工程研究所等单位。该标准从起草制定到颁布,历经6年,起草任务列入国家标准化管理委员会计划项目课题,由烟台海岸带所研究员秦松团队承担。  该标准主要包括八部分内容,对测定范围、原理、试剂材料、仪器设备、不同样品的提取方法和酶解与测定条件与步骤、计算方法、重复性、限量和标准图谱等进行了详细阐述与约定。标准的制定和颁布实施,将规范虾青素产品分析测定操作流程,可为国内虾青素生产企业实现标准化规模生产提供技术支撑。同时,也有利于企业与管理部门在产品质量控制管理的协调统一,使我国虾青素产品质量监督有标准可依。
  • 二次公示|药典委发布药包材元素杂质测定法标准草案
    2022年12月19日,药典委发布《中国药典》(2025年版)编制大纲。《大纲》指出, 到2025年,全面完成新版《中国药典》编制工作。符合中医药特点的中药标准进一步完善,化学药品、生物制品、药用辅料和药包材标准达到或基本达到国际先进水平,药品质量控制和安全保障水平明显提升。一段时间以来,国家药典委员会发布了一系列的方法通则的修订草案,公开征求意见。近期,药典委再次集中发布一批标准草案,涉及多个方法通则。相关新闻可点击下方专栏关注其中,此前曾经公开征求过意见的4214药包材元素杂质测定法标准草案进行了第二次公示。第一次公示新闻请见:https://www.instrument.com.cn/news/20230918/684450.shtml 4214药包材元素杂质测定法标准草案的公示 本次公示期自发布之日起三个月。相关人员若有异议,可及时在线反馈,并附相关说明、实验数据和联系方式。公示网站:https://www.chp.org.cn/#/business/standardDetail?id=65e05db7bd8cfbb6c02c8f37。药包材元素杂质测定法起草说明:一、制定的目的意义1. 药品包装容器及组件在生产加工过程中因原料引入、工艺残留的有害元素杂质可能影响药品质量和安全,因此对其进行控制是非常有必要的。2. 形成“药包材元素杂质测定法”方法标准,科学有效指导药品包装容器及组件元素杂质的测定。二、制修订的总体思路遵循药典委对药包材标准体系的架构思路,基于《国家药包材标准》中塑料类、玻璃类、橡胶类包材金属元素及金属离子的测定方法,以及国内外药典中关于元素杂质的测定方法,制定本测定法三、需说明的问题1. 本标准分为三个部分,第一部分为供试液的制备,包括“元素杂质总量”和“元素杂质浸出量”,按各品类制样法分别制备供试液;第二部分为标准溶液的制备;第三部分为测定法,包括电感耦合等离子体质谱法、电感耦合等离子体原子发射光谱法、原子吸收分光光度法、原子荧光光谱法、砷盐检查法。2. 供试品的制备:“元素杂质总量”项下塑料类及含纸类的制样方法按照 YBB 标准中相关方法,增加了微波消解法。“元素杂质浸出量”项下塑料类及弹性体类、金属类参照药包材溶出物测定法(通则 4204)项下或各品种项下溶出物试验的方法制备样品;玻璃类、陶瓷类的制样方法按照 YBB 标准中相关方法。3.测定法:本方法收载了《中国药典》2020 版四部通则中电感耦合等离子质谱法、电感耦合等离子体原子发射光谱法、原子吸收分光光度法、砷盐检查法。新增了原子荧光光谱法测定砷、锑浸出量,未收录前处理复杂、污染环境的紫外-分光光度法。本方法中各测试方法项下载明的元素杂质已经过方法学验证,本方法中未载明的元素杂质如采用上述方法进行测定,需进行方法学验证。4214 Determination of Elemental Impurities inPharmaceutical Packaging Materials (公示稿).pdf4214 药包材元素杂质测定法公示稿.pdf
  • Labthink起草的GB/T 34445-2017《热塑性塑料及其复合材料热封面热粘性能测定》正式颁布
    2017年9月29日,国家质量监督检验检疫总局、国家标准化管理委员会发布公告,正式颁布GB/T 34445-2017《 热塑性塑料及其复合材料热封面热粘性能测定》,实施日期为2018年4月1日。  这是软塑材料行业首个热粘性能相关测试方法国家标准,规定了热塑性材料及其复合材料的热封面在热封刚结束,尚未冷却时的热粘力的测试方法。包材热粘性测试,不但能很好地解决生产线灌装破袋的问题,同时也会为包材的合理选择和使用提供了有力的数据支持。  该标准是根据国家标准化管理委员会2012年第二批国家标准计划,由全国塑料制品标准化技术委员会归口,北京市海淀区产品质量监督检验所、济南兰光机电技术有限公司、厦门顺峰包装材料有限公司、厦门金德威包装有限公司、广东德冠包装材料有限公司共同负责起草。  起草小组对行业情况和国际标准进行了充分的调查研究,在利用Labthink热粘性能测试仪器进行的相关试验验证基础上,历时三年完成了标准的起草、征求意见、修改完善和审查等各阶段工作,按规定程序上报中国国家标准化管理委员会做最终审核。  Labthink兰光,致力于通过包装检测技术提升和尖端检测仪器研发帮助客户应对包装难题,助力包装相关产业的品质安全。
  • 江苏科地与河南农大签订烟草研究中心合作协议
    3月1日,江苏科地现代农业有限公司与河南农业大学签订了现代烟草农业研究中心合作项目协议。   江苏科地现代农业有限公司是一家从事烟草烤房研发、生产、销售及烟草农业现代化服务的外商独资企业。该企业是国内最早介入烟叶烘烤行业的专业公司之一,同时也是国内最大的密集烤房生产厂家,市场规模及覆盖率在全国同行业内遥遥领先。去年,该公司销售烤房量占全国份额35%以上,销售额超过6亿元。日前,江苏科地正式通过香港联交所批准成功上市。企业上市后,该公司将围绕烟草农业集约化种植、机械化操作、专业化服务和信息化管理,向大农业领域进军。
  • 欧盟发布与食品接触的塑料材料和制品法规草案
    欧盟发布了与食品接触的塑料材料和制品法规草案,该拟定法规是一项第(EC)1935/2004号法规框架内的专项措施,它规定了适用于食品接触材料的主要原则和程序。该专项法规将欧盟塑料制品协调框架合并为一个法规。当前这些法规分列在6条指令和8个修改案内,包括塑料基本法规、批准物质名单及塑料迁移测试法规。   此外,它将明确源自(EC)1935/2004号法规有关纳米材料只有经事先批准后才可使用的解释。本法规还批准使用21中新物质。   附件:欧盟“与食品接触的塑料材料和制品法规草案”详细内容
  • 江苏省市场监督管理局发布《江苏省检验检测条例(草案征求意见稿)》
    为进一步推进我省检验检测领域健康有序发展,根据《计量法》《产品质量法》《食品安全法》《大气污染防治法》《道路交通安全法》等法律法规规章以及上级文件精神,我局草拟形成《江苏省检验检测条例(草案征求意见稿)》。现向社会公开征求意见建议,有关单位和个人可以在2024年9月30日前,通过以下两种方式提出意见建议:1.通过信函将意见建议发至南京市鼓楼区草场门大街107号,江苏省市场监督管理局认可检测处,邮编210036,请在信封上注明“《江苏省检验检测条例(草案征求意见稿)》修改意见”字样。2.通过电子邮件将意见建议发至jsscjgrkjc@163.com,邮件主题请注明“《江苏省检验检测条例(草案征求意见稿)》”字样。附件:江苏省市场监督管理局2024年8月30日江苏省检验检测条例(草案征求意见稿)目录第一章 总则第二章 检验检测机构和人员第三章 检验检测活动第四章 监督管理第五章 发展与促进第六章 法律责任第七章 附则第一章 总则第一条【立法目的和立法依据】 为了规范检验检测活动,营造公平竞争的市场环境,促进检验检测高质量发展,根据有关法律、行政法规,结合本省实际,制定本条例。第二条【适用范围】 本省行政区域内依照法律、行政法规规定,需要取得行政许可和应当实施监督管理的检验检测机构,面向社会接受委托从事检验检测活动及其监督管理,适用本条例。第三条【检验检测、检验检测机构的定义】 本条例所称检验检测,是指依据相关标准、技术规范或者约定的方法,利用仪器设备、环境设施等技术条件和专业技能,确定被检对象特性,并出具数据、结果或者报告(以下统称检验检测报告)的活动。本条例所称检验检测机构,是指依法成立,面向社会接受委托从事检验检测活动的专业技术组织。第四条【基本原则】 从事检验检测活动,遵循守法诚信、客观独立、科学准确、公平公正的原则,承担社会责任,促进创新驱动,推动高质量发展。第五条【各级地方人民政府的职责】 县级以上地方人民政府应当加强对检验检测管理工作的领导,将检验检测发展纳入国民经济和社会发展规划,促进产学研测融合,健全扶持、奖励政策,促进检验检测资源整合和社会共享。第六条【各级监督管理部门的职责】 市场监管部门负责本行政区域内检验检测活动监督管理综合工作,指导、协调其他有关部门履行检验检测活动监督管理职责,组织实施本条例。市场监管、公安、司法行政、生态环境、住房与城乡建设、交通运输、水利、农业农村、卫生健康、应急管理、气象、国防动员、通信管理、自然资源、海关等依法对检验检测机构负有资质许可或者行政监督管理职责的部门(以下统称检验检测监督管理部门)按照各自职责,做好检验检测活动的监督管理工作。有关行业领域中涉及的检验检测活动监督管理职责不明确的,由本级人民政府决定。第七条【行业协会的职责】 检验检测相关协会应当加强行业自律和诚信建设,制定行业服务规范和相关标准,规范和引导检验检测行业有序发展。第二章 检验检测机构和人员第八条【基本条件】 检验检测机构应当具备与其从事检验检测活动相适应的人员、工作场所、环境、设备设施和管理体系。法律、行政法规对从事检验检测活动有资质许可规定的,检验检测机构应当依法取得相应资质许可;依法应当取得资质许可但未取得的,不得从事相应的检验检测活动。第九条【检验检测能力保障】 检验检测机构应当采取必要措施,持续具备与其开展检验检测活动相适应的能力。取得资质许可的检验检测机构应当按照规定参加检验检测监督管理部门开展的能力验证,以保证持续符合资质许可条件和要求。能力验证相关检验检测项目结果不合格的检验检测机构,应当在规定期限内完成整改,整改期间不得向社会出具包含该检验检测项目的数据、结果。鼓励检验检测机构参加有关政府部门、国际组织、专业技术评价机构组织开展的检验检测机构能力验证或比对活动。 第十条【信息公开】 检验检测机构应当在办公场所、官方网站或者以其他公开方式对其遵守法定要求、独立公正从业、履行社会责任、严守诚实信用等情况进行自我承诺,公开其取得的资质信息,并对公开内容的真实性、全面性、准确性负责。第十一条【人员基本要求】 检验检测机构不得聘用法律、法规禁止从事检验检测活动的人员。法律、行政法规对检验检测人员的执业资格或者从业要求另有规定的,从其规定。第十二条【公正原则】 检验检测机构及其人员应当独立于其出具的检验检测报告所涉及的利益相关方,不受任何可能干扰其技术判断的因素影响,保证其出具的检验检测报告真实、客观、准确、完整。第十三条【保密义务】 检验检测机构及其人员对其在检验检测活动中知悉的国家秘密、商业秘密和个人信息等负有保密义务。第十四条【责任归属】 检验检测机构及其人员应当对其出具的检验检测报告负责,依法承担民事、行政和刑事法律责任。第十五条【监管配合】 检验检测机构应当配合检验检测监督管理部门开展的监督检查、统计调查等工作。第三章 检验检测活动第十六条【检验检测合同的要求】 检验检测机构接受委托开展检验检测活动,应当与委托人签订检验检测服务合同,约定检验检测项目、标准依据、样品获取及处置方式、报告形式等内容。检验检测机构与委托人约定的检验检测规程或者方法等不得违反国家有关法律法规规定和强制性规定。第十七条【样品管理的要求】 检验检测机构通过采样、抽样等方式获取样品的,应当按照相关标准、技术规范实施,并与委托人约定采样、抽样的具体要求,样品的代表性和真实性由检验检测机构负责。委托人送样检验的,送检样品的代表性和真实性由委托人负责。 检验检测机构和委托人应当对样品的来源、识别信息和基本状态进行确认。检验检测机构应当依据相关标准、技术规范对样品进行保管和处置,确保样品的可追溯性。第十八条【检验检测报告的出具】 检验检测机构及其人员应当按照相关标准、技术规范、规程或者约定的方法进行检验检测,并出具检验检测报告。检验检测机构应当在其检验检测报告上加盖检验检测机构公章或者检验检测专用章,并依法依规使用相关资质标识。第十九条【报告存档的要求】 检验检测机构应当对检验检测活动的原始记录、检验检测报告和电子数据记录建立档案,并至少保存六年。法律、行政法规另有规定的,从其规定。检验检测报告、纸质原始记录和电子储存数据记录应当互为印证,可追溯、可溯源。不得存在下列行为:(1) 检验检测报告、纸质原始数据和电子存储数据记录不一致,不能对应;(2) 所保存的检验检测报告和发放的检验检测报告信息不一致;(三)检验检测报告所载明的时间与存档原始记录的时间相矛盾;(四)其他违反报告存档要求的情形。第二十条【数据安全】 检验检测机构应当建立健全数据安全管理制度,采取相应的技术措施和其他必要措施,保障检验检测活动中获取的相关数据的安全性、完整性和正确性。第二十一条【不得出具不实报告】 检验检测机构及其人员不得出具不实检验检测报告。检测检验活动形成的数据、结果以及相关记录与客观实际不一致,导致检验检测机构出具的检验检测报告错误或者无法复核,存在下列情形之一的,属于不实检验检测报告: (一)样品的采集、标识、分发、流转、制备、保存、处置不符合标准等规定,存在样品污染、混淆、损毁、性状异常改变等情形的;(二)使用未经检定或者校准的仪器、设备、设施的;(三)违反国家有关强制性规定的检验检测规程或者方法的;(四)未按照标准等规定传输、保存原始数据和报告的;(五)违反规定要求,在多个检验检测数据中选择性使用或者不合理修约,对检验检测结果的准确性造成影响的;(六)其他检验检测过程不符合规定的情形。第二十二条【不得出具虚假检验报告】 检验检测机构及其人员不得出具虚假检验检测报告,任何单位和个人不得指使、利诱、胁迫检验检测机构及其人员出具虚假检验检测报告。检验检测机构和其人员故意使检测检验活动形成的数据、结果以及相关记录与客观实际不一致,存在下列情形之一的,属于虚假检验检测报告:(一)未经检验检测的;(二)伪造、变造原始数据、记录,或者未按照标准等规定采用原始数据、记录的;(三)减少、遗漏或者变更标准等规定的应当检验检测的项目,或者改变关键检验检测条件的;(四)调换检验检测样品或者改变其原有状态进行检验检测的;(五)伪造检验检测机构公章或者检验检测专用章,伪造签名或者签发时间的;(六)使用可以实现非法修改、非法自动生成检验检测数据的仪器设备或者软件程序的;(七)违反规定要求,私自比对、串通、虚报能力验证数据、结果的;(八)其他出具虚假检验检测报告的情形。第二十三条【超出许可范围】 依法取得资质许可的检验检测机构不得超出许可能力范围、时间范围、地点范围开展检验检测活动。第二十四条【检验检测报告的公布】 任何单位和个人依法向社会公布检验检测数据、结果,应当保证检验检测数据、结果的真实、完整,不得伪造、变造检验检测数据、结果,不得作误导性的解释和说明。检验检测报告确有错误的,检验检测机构应当及时进行更正,按规定召回,并予以标注或者说明。第四章 监督管理第二十五条【协同监管】 检验检测监督管理部门应当按照职责分工建立健全跨部门监督管理协同机制,综合协调检验检测机构监督管理工作,实现违规线索互联、监管标准互通、处理结果互认。第二十六条【信用分级分类监管】 省级社会信用综合管理部门应当建立检验检测机构信用监管机制,结合风险程度、能力验证及监督检查结果、投诉举报情况等,对检验检测机构开展信用分级分类监管。各级社会信用综合管理部门应当依法归集检验检测机构资质资格、监督检查结果以及行政处罚等信息,根据信用等级采取差异化的监督管理措施。第二十七条【智慧监管】 各级数据管理部门应当加强检验检测信息化建设,完善数据信息收集、处理上报和全过程追溯制度,建立健全风险监测预警机制,实施数据信息共享,强化数据分析和运用,提升检验检测智慧监管水平。第二十八条【监督检查的职权】 检验检测监督管理部门进行监督检查时,可以行使下列职权: (一)进入检验检测机构进行现场检查;(二)向检验检测机构、委托人等有关单位及人员询问、调查有关情况或者验证相关检验检测活动;(三)查阅、复制有关检验检测原始记录、报告、发票、账簿及其他相关资料;(四)根据已经取得的违法嫌疑证据或者投诉举报线索,对涉嫌出具虚假检验检测报告的检验检测机构相关场所、仪器设备实施登记保存或者采取强制措施;(五)法律法规规定的其他职权。第二十九条【政府采购服务排除的情况】 各级国家机关、事业单位、社会团体等因履行职责或者提供公共服务的需要,使用财政性资金进行委托检验检测的,应当按符合法律法规要求的方式进行。对因出具虚假检验检测报告受到处罚的检验检测机构,列入严重违法失信名单,按照失信惩戒措施清单执行联合惩戒。第三十条【能力验证】 省检验检测监督管理部门按照各自职能统筹组织本行业领域的检验检测机构能力验证工作,核查检验检测机构持续符合资质许可的技术能力要求。设区的市检验检测监督管理部门根据监督管理需要制定能力验证计划,报经相关省检验检测监督管理部门同意,组织开展本行政区域内的检验检测能力验证工作。第三十一条【专家管理】 检验检测监督管理部门应当聘请检验检测技术专家,承担资质许可和监督管理工作的专业咨询和技术支持,建立技术专家动态管理机制,建立健全责任追究机制,并提供必要的经费保障。第三十二条【社会监督】 任何单位和个人发现检验检测机构有违反本条例规定的行为,有权向县级以上检验检测监督管理部门举报。接到举报的检验检测监督管理部门应当依法及时调查处理,并为举报人保密。第五章 发展与促进第三十三条【公共服务平台建设】 县级以上地方人民政府发展改革、科学技术、工业和信息化、市场监督管理及其他有关部门应当支持检验检测公共服务平台建设,优化平台布局,为产业创新发展提供质量基础设施一站式服务。第三十四条【资源共享】 县级以上地方人民政府及其有关部门应当支持科研院所、高等学校和企业设立独立的检验检测机构,开放共享检验检测资源。第三十五条【公平竞争】 县级以上地方人民政府及其有关部门应当构建公平竞争的检验检测市场环境,充分发挥市场机制作用,实现资源配置效率最优化和效益最大化,保证各种所有制检验检测机构依法平等使用生产要素、公平参与市场竞争、同等受到法律保护。第三十六条【技术自主创新】 县级以上地方人民政府及其有关部门应当支持检验检测机构联合科研院所、高等学校和企业等加强检验检测领域基础研究、原始创新和仪器设备研制,提升自主创新能力和自主知识产权实力,推动创新成果转化应用。第三十七条【产业协同】县级以上地方人民政府及其有关部门应当推动检验检测机构嵌入全产业链,加强与企业需求对接,健全检验检测服务体系,提升检验检测供给和服务水平。第三十八条【检验检测标准化】 省、设区的市人民政府标准化行政主管部门及有关行政主管部门应当支持检验检测机构牵头或者参与相关领域的标准制(修)订,加强标准宣贯,推动标准实施。鼓励检验检测机构承担或者参加国内外检验检测相关领域标准化组织工作,参与标准验证。第三十九条【人才培养及激励】 县级以上地方人民政府及其有关部门应当支持高等学校、职业学校、教育培训机构等加强与检验检测机构合作,建设教育培训示范基地,开发适应社会需求的教育培训课程,提供专业培训,培养高素质专业人才。人力资源社会保障部门和有关行业主管部门应当将检验检测专业能力、业绩和成果纳入专业技术人员职称评价内容,对在检验检测工作中作出突出贡献的人员,可以按照规定放宽职称申报条件和纳入高层次人才认定范围。第四十条【区域协作】 县级以上地方人民政府及其有关部门应当推进区域检验检测协同发展,加强技术能力、专家选用等领域合作,促进检验检测资源共享、平台共用、结果互认。第四十一条【国际合作】 县级以上地方人民政府及其有关部门应当支持检验检测机构开展国际合作与交流,拓宽合作与交流渠道,加大检验检测服务品牌培育力度,提升机构品牌知名度与贸易便利化水平。第六章 法律责任第四十二条【法律责任适用范围】 对违反本条例规定的行为,法律、行政法规已有处罚规定的,从其规定。第四十三条【未取得资质的处罚】 检验检测机构违反本条例八条第二款规定,未依法取得资质许可擅自从事相应检验检测活动的,由县级以上检验检测监督管理部门按照职责分工责令限期改正,并处五万元以上十万元以下罚款;有违法所得的,没收违法所得。第四十四条【未按规定参加能力验证的处罚】 检验检测机构违反本条例第九条第二款,未按规定参加能力验证的,由县级以上检验检测监督管理部门按照职责分工暂停在相应项目参数上的资质,并责令限期改正;逾期未改正的,处五千元以上二万元以下罚款,并缩减其资质许可项目参数。第四十五条【信息公开的处罚】 检验检测机构违反本条例第十条规定,公开的资质信息不真实、不全面、不准确的,由县级以上检验检测监督管理部门按照职责分工责令限期改正;逾期未改正的,处五千元以上五万以下罚款。第四十六条【违反从业规定的处罚】 检验检测机构违反本条例第十一条规定,聘用法律、行政法规规定禁止从业或者无执业资格的检验检测人员的,由县级以上检验检测监督管理部门按照职责分工责令限期改正;逾期未改正的,处五千元以上三万元以下罚款。第四十七条【拒不配合监督管理的处罚】检验检测机构违反本条例第十五条,拒不配合监督管理工作的,由县级以上检验检测监督管理部门按照职责分工责令改正,并处二万元以上十万元以下罚款;情节严重的,责令停产停业整顿。第四十八条【检验检测报告的处罚】 检验检测机构违反本条例第十八条第二款规定,未按要求使用检验检测机构公章或检验检测专用章的,由县级以上检验检测监督管理部门按照职责分工责令限期改正;逾期未改正的,处五千元以上三万元以下罚款。第四十九条【报告存档的处罚】 检验检测机构违反本条例第十九条第一款规定,未按要求保存检验检测报告及原始记录和电子储存数据记录的,由县级以上检验检测监督管理部门按照职责分工责令限期改正,并处一万元以上十万元以下罚款。第五十条【出具不实报告的处罚】 检检验检测机构违反本条例第二十一条规定,出具不实检验检测报告的,由县级以上检验检测监督管理部门按照职责分工责令限期改正,没收违法所得,并处三万元以上十万元以下罚款,对直接责任人员给予一年的行业禁入。第五十一条【出具虚假报告的处罚】 检验检测机构违反本条例第二十二条规定,出具虚假检验检测报告或者指使、利诱、胁迫检验检测机构及其人员出具虚假检验检测报告的,由县级以上检验检测监督管理部门按照职责分工责令限期改正,没收违法所得,并处十万元以上五十万元以下罚款,给他人造成损失的,依法承担赔偿责任;改正期间不得对外出具检验检测报告;情节严重的,吊销资质许可;对直接责任人员给予一至三年的行业禁入,并处一万元以上五万元以下罚款;构成犯罪的,依法追究刑事责任。第五十二条【超范围出具报告的处罚】 检验检测机构违反本条例第二十三条规定,超范围出具检验检测报告的,由县级以上检验检测监督管理部门按照职责分工责令限期改正,没收违法所得,并处一万元以上十万元以下罚款;情节严重的,吊销资质许可。第五十三条【部门责任】 违反本条例规定,检验检测监督管理部门或者其他有关部门、单位及其工作人员在检验检测监督管理工作中,滥用职权、玩忽职守、徇私舞弊的,依法给予处分;构成犯罪的,依法追究刑事责任。第七章 附则第五十四条【生效日期】 本条例自20XX年X月X日起施行。
  • 《中国药典》高效液相色谱法测定维生素D的标准草案公示
    近日,国家药典委员完成《中国药典》0722 维生素D测定法的修订。为确保标准的科学性、合理性和适用性,现将拟修订的标准草案公示征求社会各界意见(详见附件)。公示期自发布之日起三个月。本标准的修订由广州市药品检验所牵头,江苏省食品药品监督检验研究院、辽宁省药品检验检测院、上海市食品药品检验研究院、厦门市食品药品质量检验研究院、浙江省食品药品检验 研究院、中国食品药品检定研究院参与。一、修订基本思路在课题承担单位按规定的测定条件、实验方法和工作要求协作测定,获得了前维生素D相对于维生素D校正因子(F值)相对准确值的基础上,启动通则“0722 维生素D测定法”的修订,将第一法的“测定法”计算公式修订为加校正因子的外标法,将校正因子数值直接列于公式中。修订未改变原方法原理,仅改变了计算方式。并对第二法到第四法与计算公式相关的部分进行相应修订。原通则中每次试验需要同步操作的“校正因子测定”步骤,在通则修订后不需要每次同步操作,而是改为直接采用获得的校正因子F值。这样不仅避免了每次同步测定带来的偶然误差,提高了测定准确度,而且简化了操作步骤,缩短了分析时间,减少了试剂消耗。二、修订的依据全体承担单位严格按照作业指导书的要求进行协作测定,获得了前维生素D2和前维生素D3在254nm和265nm两个波长下各70个数据的校正因子统计值。同一波长下的前维生素D2和前维生素D3的F值差异不大,为了方便使用,取小数点后两位,前维生素D2和前维生素D3使用相同的F值,即254nm下前维生素D校正因子F值按2.05计,265nm下前维生素D校正因子F值按2.25计。将相应波长下的F值带入公式“维生素D总量=(维生素D峰面积+前维生素D峰面积×F)×f1”计算维生素D总量。 前维生素D校正因子是在严格控制条件下测得的统计值,其准确性能满足维生素D含量测定的需要。此值的获得为简化通则0722维生素D测定法奠定了基础。三、修订的主要内容1. 删去原通则第一法中的“校正因子测定”部分,将“测定法”的计算公式由ci=fiAi1+f₂A₂变更为:ci=(c1/A1)•(Ai1+F•A₂),其中F值为前维生素D相对于维生素D的校正因子,以2.25计。2.25的数值是在265nm下获得的,各论也有可能是采用254nm进行检测的,故进行了说明“如各论项下检测波长为 254nm,F值为2.05”。2.原通则第一、二、三法采用254nm检测,第四法采用265nm检测,本次修订全部统一为维生素D2、D3的最大吸收波长265nm。经比较,在254nm与265nm下系统分离行为一致,系统适用性的要求无需变化,详细参数见附图和附表。3.第一法相应增加供试品溶液的制备、对照品溶液的制备。第一法明确了系统适用性溶液、对照品溶液、供试品溶液的进样量。4.第二法删除了“校正因子测定”测定部分,相应增加“对照品溶液制备修订“测定法”文字、修改波长为265nm。5.第三法未做修订。6.第四法删除了“校正因子测定”测定部分,相应增加“对照品溶液制备”、“定位溶液制备”、“系统适用性溶液制备”,修订“测定法”文字。附图附件:0722维生素D测定法公示稿.pdf
  • 豆浆推荐性国家标准起草工作启动
    为了指导企业生产、规范市场、保障消费者明明白白消费,维护消费者利益、促进豆浆产业健康发展,由中国食品工业协会豆制品专业委员会着手起草豆浆的推荐性国家标准。   豆浆在中国是有百年历史的饮品,也是一种富含植物蛋白和磷脂,还含有维生素B1、B2和烟酸的营养食品,由于不含乳糖,所以对中国人特别适合。这样一种符合中国人营养需求的传统饮品,发展速度一直不尽人意。其中有很多原因:传统观念、保质期不长等等,除此之外,没有技术标准,也是影响市场发展的一个重要因素。近几年,特别是三聚氰胺事件后,豆浆类产品出现高速发展,但是由于缺乏相关的标准致使市场上的产品名称混乱,产品的质量良莠不齐。因此,低速时期需要标准的促进,高速发展需要标准的引导。   虽然目前一些规模较大的早餐连锁企业对于豆浆有自己的内控标准,但企业间还是存在很大的差异,给消费者的感觉是这家浓那就淡。除了这些表象,还有更深层次的问题:营养成分含量是多少?涉及到安全性的有毒有害成分限量控制在什么范围?微生物限制?保质期多长甚至还有是否使用转基因大豆等等。虽然目前与豆浆有关的标准有国家卫生标准《非发酵性豆制品及面筋卫生标准》和推荐性国家标准《非发酵豆制品》前者是卫生标准,后者虽然是产品标准,但是其中针对豆浆的要求太宽泛不够科学,无法起到规范和指导企业生产的作用。反观国外,日本的JAS法规就明确规定了豆浆的规格标准和品质标准。   这种局面不久将得到改观,记者从工业和信息化部获悉,为了指导企业生产、规范市场、保障消费者明明白白消费,维护消费者利益、促进豆浆产业健康发展,由食品工业协会豆制品专业委员会着手起草豆浆的推荐性国家标准。该标准将规定豆浆类产品的分类、定义、技术要求、试验方法、检验规则、标志、包装、储存和运输。豆浆推荐性国家标准的起草今年开始,最迟明年发布实施。
  • 内地烟草类研究10年7获国家科技进步奖
    “烟草院士”的评选风波尚未远去,近日,一项与烟草有关的科学研究再次将烟草字眼与科技荣誉捆绑在一起,引发一番争议。   国家发明专利42项,软件著作权3项,国内外学术刊物发表学术论文54篇,省部级科技进步一等奖2项、二等奖2项、三等奖1项在还未像今天这样引起公众高度关注之前,《中式卷烟特征理论体系构建及应用》(以下称“中式卷烟”)这项研究就已经斩获颇丰,这一次,它盯上的是一块更大的勋章国家科学技术进步奖。   上月,中式卷烟研究出现在科技部、国家科学技术奖励工作办公室网站公示的2012年度国家科学技术奖受理名录中,与其他800多个项目一决高下。此举顿时引来一片争议之声,“荒唐!”“给卷烟加香的烟草商也能评奖?”以控烟人士为代表的反对者率先提出了异议。   在这场争议中,有人调侃,骂声一片的烟草项目不花毫厘却占尽各大媒体版面,使得原本被明令禁止广告宣传的烟草业反倒成了最大赢家。争议的当事人该项目推荐方中国烟草总公司则一直保持沉默。4月9日,中国青年报记者致电该公司,对方表示对此无可奉告。   烟草类研究10年7次获国家科技进步奖   去年,谢剑平以“降焦减害”为成就之一当选院士。当时,控烟人士站在了质疑队伍的前列,他们的板子打在“降焦减害”这一科技的真伪上。   而在此次备受争议的中式卷烟项目公示材料中,“创造性”、“首次”字眼频频出现:“实现了卷烟风格特征的系统、规范和定量评价,填补了中式卷烟风格特征感官评价的空白”、“首次以风格特征评价结果为目标导向和判定依据,创造性地提出了"中式卷烟系统调香"理论”等。   从技术层面来看,该研究参评国家科学技术进步奖似乎并无太大异议。然而,这正是让控烟人士所担心的地方。   在该项目的公示材料中,一组数据引人注意:“研究成果的应用,提升了产品质量和市场适应性,近3年累计实现新增销售收入1735.74亿元,新增利税1421.8043亿元。”   有网友就此评论:“堂堂中国,世界第二经济体,为了几根烟卷的蝇头小利不惜甘愿毒害13亿人民的长期健康?”   控烟人士、中华预防医学会伤害预防与控制分委会原副主委吴宜群在接受中国青年报记者采访时表示,这1700多亿元利税背后,是更多鲜活的生命在惨遭荼毒。   “我是一个过去、现在都受到二手烟危害的人。是一个和不尊重别人健康权、不遵守室内公共场所禁烟规定的人较劲的人。让所有的人远离烟草是我的追求。”吴宜群在微博中这样介绍自己。中式卷烟项目出现在国家科技进步奖受审名单上,让这个多年致力于控烟的人感到失望,她甚至称这是“又一个奇耻大辱”、是“科技的堕落”。   不过,这并非国家科学技术进步奖第一次向烟草类研究敞开口子。中国青年报记者查阅国家烟草专卖局下属《中国烟草》杂志发现,一篇题为《中式卷烟减害新探索》的文章列举了新世纪以来,全国烟草行业获国家科技进步奖的项目名单,包括2002年《红河卷烟厂自动化物流系统》、2003年《提高白肋烟质量及其在低焦油卷烟中的应用研究》、2004年《根结线虫生防真菌资源的研究与应用》、《降低卷烟烟气中有害成分的技术研究》、2005年《二醋酸纤维素浆液精细过滤及高密度生产技术研究》和2010年《卷烟危害性评价与控制体系建立及其应用》,加上该文章并未提及,但同样在2010年获奖的《烟草物流系统信息协同智能处理关键技术及应用》,10年来,烟草行业已陆续有7项研究获得国家科学技术进步奖。   但这7项研究中,明确提及降低卷烟有害成分、减轻烟草对人类危害的研究,仅有两项。
  • 关于征集《智能实验室 信息管理系统 功能要求》国家标准起草工作组专家的通知
    p style=" text-indent: 2em " strong 全国实验室仪器及设备标准化技术委员会于2018年6月14日发布了关于征集《智能实验室 信息管理系统 & nbsp 功能要求》国家标准起草工作组专家的通知,通知内容如下: /strong /p p 各位专家: br/ /p p   实验室信息管理系统(LIMSIMS)基于物联网、大数据等新一代信息技术,能够实现系统与设备间的协调一致,以及对实验室安防、环境、资源等多方面统一控制,将实验室人、机、料、法、环等核心要素相互衔接并有机协作,促进实验室运行管理更加规范高效。 /p p   鉴于行业的强烈需求,全国实验室仪器及设备标准化技术委员会拟开展国家标准《智能实验室信息管理系统功能要求》(国家标准计划编号20180717-T-604)的起草工作,现征集标准起草工作专家组成员,欢迎在从事相关领域工作的专家积极参加。 /p p   请拟参加标准起草工作组的专家,于2018年7月15日前,将盖章后的专家报名表(见附件)寄回标委会秘书处,或扫描后通过电子邮件发至秘书处。 /p p br/ /p p 联系人:机械工业仪器仪表综合技术经济研究所 王成城 /p p 地址:北京西城区广安门外大街甲397号 邮编:100055 /p p 电话:010-63461918 传真:010-63490489 /p p Email:18511696673@163.com /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201806/ueattachment/91439beb-d238-4bcb-aa93-7459e31ddbf1.pdf" 附件:通知全文及专家报名表 /a /p
  • 征集智能实验室仪器设备国家标准起草专家
    p style=" text-align: center " strong 关于征集《智能实验室仪器设备 气候环境试验设备的数据接口》与 /strong /p p style=" text-align: center " strong 《智能实验室仪器设备 通信要求》国家标准起草工作组专家的通知 /strong /p p 各位委员: /p p   检测实验室涉及到设备、人员、耗材、方法和环境等多个要素,而随着社会的发展,实验室人员快速增加,设备和耗材越来越庞大,所使用的方法越来越精密高效,对仪器设备的要求也越来越高。现代信息技术的发展,给我实验室仪器设备的智能化提供了先进技术手段,利用物联网、云计算等新一代信息技术促进实验室仪器设备智能化,使得实验室管理更加规范高效,成为了实验室建设者和管理者重要的任务。 /p p   为解决智能实验室仪器设备通信技术领域的标准缺失,为智能实验室的建设提供数据支撑,全国实验室仪器及设备标准化技术委员会计划组织开展《智能实验室仪器设备 气候环境试验设备的数据接口》与《智能实验室仪器设备 通信要求》2项国家标准的起草工作,现征集标准起草工作专家组成员,欢迎在设备研发、信息化技术等领域从事相关工作的单位积极参加。 /p p   请拟参加标准起草工作组的专家,于2018年4月5日前,将盖章后的专家报名表(见附件1)寄回标委会秘书处,或扫描后通过电子邮件发至秘书处。 /p p   联系人:机械工业仪器仪表综合技术经济研究所 王成城 /p p   地 址:北京西城区广安门外大街甲397号 邮编:100055 /p p   电 话:010-63461918 传真:010-63490489 /p p   Email:18511696673@163.com /p p   附件1: /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a href=" http://img1.17img.cn/17img/files/201803/ueattachment/5ad7a786-9c30-4ad0-b75d-d1f7df244b54.doc" 专家报名表.doc /a /p p style=" text-align: right "   全国实验室仪器及设备标准化技术委员会秘书处 /p p br/ /p
  • Sumspring三泉中石参与的《关于无菌药品包装系统密封性指导原则标准草案的公示》发布
    2024年2月19日国家药典委发布了《关于无菌药品包装系统密封性指导原则标准草案的公示》。 济南三泉中石实验仪器有限公司积极参与国标起草工作,在2021年参与起草的国标《GB/T 15717-2021真空金属镀层厚度测试方法 电阻法》正式发布。此次《9650 无菌药品包装系统密封性指导原则》标准起草过程中,Sumspring三泉中石承担了《附1真空衰减试验法》和《附4压力衰减试验法》两个方法标准起草工作。在标准起草过程中Sumspring三泉中石重点进行了“死腔体积和密封性对于检出限影响”、“设备技术参数对于检测结果的影响”、“检测结果的判定方式”、“参数的设定对于大漏和中漏试验结果的影响”等不同课题研究工作,为《9650 无菌药品包装系统密封性指导原则》标准起草做出了自己应有的贡献。 同时,在标准起草过程中Sumspring三泉中石积累了大量测试数据及验证经验,对于后期仪器设备的改进和为用户提供更多技术支持奠定了扎实的理论基础。
  • 国家烟草专卖局对《电子烟管理办法》和《电子烟》国家标准等有关问题的解答
    制定《电子烟管理办法》、《电子烟》国家标准及配套政策,是认真贯彻党中央、国务院推进电子烟产业法治化、规范化治理要求、深入落实《中华人民共和国烟草专卖法》及其实施条例、解决目前电子烟市场与产业存在的突出问题、保障人民群众身体健康和消费者合法权益的重要举措。2022年3月11日,国家烟草专卖局公布《电子烟管理办法》;4月8日,国家市场监督管理总局(国家标准化管理委员会)发布《电子烟》国家标准。4月13日,国家市场监督管理总局和国家烟草专卖局有关部门就公众关注的有关问题进行了解答。一、《电子烟管理办法》的主要内容是什么?答:《电子烟管理办法》共六章四十五条,对电子烟生产、销售、运输、进出口和监督管理等作出了规定,主要明确了以下几个方面:(一)明确了监管对象。电子烟、雾化物、电子烟用烟碱及其他新型烟草制品等均纳入了监管范围。电子烟包括烟弹、烟具以及烟弹与烟具组合销售的产品等。禁止销售除烟草口味外的调味电子烟和可自行添加雾化物的电子烟,将不含烟碱的电子烟产品纳入监管范围。加热卷烟属于卷烟,已纳入卷烟管理,《电子烟管理办法》对此进行了强调。目前,我国未批准加热卷烟在境内上市销售,任何市场主体不得非法经营加热卷烟。(二)明确了监管主体。国务院烟草专卖行政主管部门(即国家烟草专卖局,下同)主管全国电子烟监督管理工作,各省、市、县级烟草专卖行政主管部门(即各省、市、县级烟草专卖局,下同)依据规定职权负责本行政区内的电子烟监督管理工作。(三)明确了监管措施。一是对生产、批发和零售市场主体实行许可证管理。二是严格质量管控,建立电子烟产品技术审评、抽检抽测和追溯管理制度。三是实行销售渠道管理。建立全国统一的电子烟交易管理平台,将电子烟有关经营活动纳入平台管理。依法取得烟草专卖许可证的电子烟产品生产企业、电子烟品牌持有企业等应当通过电子烟交易管理平台将电子烟产品销售给电子烟批发企业。取得烟草专卖零售许可证、具备从事电子烟零售业务资格的企业或者个人应当通过电子烟交易管理平台从当地电子烟批发企业购进电子烟产品,并不得排他性经营上市销售的电子烟产品。四是对运输依法实施监管。电子烟、雾化物、电子烟用烟碱等的运输应当接受烟草专卖行政主管部门监管。五是国务院烟草专卖行政主管部门对电子烟生产企业、雾化物生产企业和电子烟用烟碱生产企业等境内外首次公开发行股票并上市进行前置审查。六是对电子烟进出口贸易和对外经济技术合作依法进行监督管理,完善管理措施,优化工作流程,服务好符合相关要求的电子烟出口。二、《电子烟》国家标准的制定背景和主要内容是什么?答:2021年11月,国务院印发了《关于修改的决定》(国令第750号,以下简称《决定》),增加第六十五条,“电子烟等新型烟草制品参照本条例卷烟的有关规定执行”。2022年3月11日,国家烟草专卖局制定发布了《电子烟管理办法》,将于5月1日正式施行,办法提出“电子烟产品应当符合电子烟强制性国家标准”。因此,制定《电子烟》强制性标准是落实上述法律法规的重要手段,也是建立电子烟监管体系的重要技术支撑。2022年4月8日,市场监管总局(标准委)发布了GB 41700-2022《电子烟》强制性国家标准。该标准由市场监管总局会同国家烟草专卖局,组织全国烟草标准化技术委员会和相关技术机构制定。标准内容主要包括:一是明确了电子烟、雾化物等相关术语、定义;二是对电子烟设计和原材料的选用等提出原则要求;三是对电子烟烟具、雾化物和释放物分别提出明确的技术要求,并给出了配套的试验方法;四是对电子烟产品标志及说明书进行了规定。三、过渡期什么时候结束?过渡期的政策是什么?答:根据《中华人民共和国烟草专卖法》及其实施条例的规定,自《决定》2021年11月10日公布施行之日起,开展电子烟生产经营活动应当获得准入许可,产品应当符合国家标准,电子烟进出口应当遵守相关规定等要求。考虑到《电子烟管理办法》、《电子烟》国家标准及配套政策出台、实施有个过程,为保障有关电子烟生产经营主体合法权益,更好落实相关监管要求,维护人民群众身体健康,保护消费者合法权益,国务院烟草专卖行政主管部门在《决定》公布施行后,设置了过渡期,并明确了过渡期的相关要求。鉴于《电子烟管理办法》将于2022年5月1日起施行、《电子烟》国家标准将于2022年10月1日起实施,现确定过渡期到2022年9月30日结束。    过渡期内,2021年11月10日《决定》发布前既存的电子烟生产经营主体(即存量电子烟生产经营主体)可继续开展生产经营活动,并应按照《电子烟管理办法》、《电子烟》国家标准及配套政策要求,申请有关许可证及产品技术审评等,对产品进行合规性设计,完成产品改造,配合各级烟草专卖行政主管部门有序开展电子烟监管工作。同时,为规范电子烟市场秩序,将电子烟产业平稳纳入法治化、规范化轨道,与新修改的《中华人民共和国烟草专卖法实施条例》和《电子烟管理办法》、《电子烟》国家标准及配套政策等相衔接,继续执行过渡期内的相关要求:各类投资者暂不得投资新设电子烟生产经营企业;存量电子烟生产经营主体暂不得新建或扩大生产能力,暂不得新设电子烟零售点。各级烟草专卖行政主管部门不受理在过渡期内违规新设的电子烟、雾化物、电子烟用烟碱生产企业等或生产点的许可申请;不受理过渡期内违规新增的零售市场主体的许可申请;暂不受理《决定》发布前既存的电子烟、雾化物、电子烟用烟碱生产企业等扩大生产能力的许可申请等(具体受理时间将另行通知)。市场监管部门根据相关规定不核发过渡期内违规新设的电子烟、雾化物、电子烟用烟碱生产企业等或生产点和零售市场主体的营业执照。过渡期结束后,电子烟生产经营主体必须严格按照《中华人民共和国烟草专卖法》《中华人民共和国烟草专卖法实施条例》和《电子烟管理办法》、《电子烟》国家标准等开展生产经营活动。四、从事电子烟相关生产、批发、零售的市场主体分别需要办理何种烟草专卖许可证?答:从事电子烟、雾化物、电子烟用烟碱等生产经营活动,应当依法向烟草专卖行政主管部门申请领取烟草专卖生产企业许可证;取得烟草专卖批发企业许可证的企业,应当经烟草专卖行政主管部门批准,变更许可范围后方可从事电子烟产品批发业务;从事电子烟零售业务,应当依法向烟草专卖行政主管部门申请领取烟草专卖零售许可证或者变更许可范围。五、如何申请烟草专卖生产企业许可证?答:电子烟、雾化物、电子烟用烟碱生产企业等,应当申请取得烟草专卖生产企业许可证。申请人可以向其住所(主要经营场所或经营场所,下同)所在地的省级烟草专卖行政主管部门(包括大连市、深圳市烟草专卖局,下同)许可证办理窗口或国务院烟草专卖行政主管部门政务服务行政许可网上办理平台提出申请。详细的办理流程、所需材料等可登录国务院烟草专卖行政主管部门政府网站查询。过渡期内,烟草专卖行政主管部门受理2021年11月10日《决定》发布前已在市场监管部门登记注册,且如实完成电子烟生产经营主体信息申报的市场主体(即存量电子烟、雾化物、电子烟用烟碱生产企业等)的许可申请;暂不受理存量电子烟、雾化物、电子烟用烟碱生产企业等扩大生产能力的许可申请(具体受理时间将另行通知);不受理在过渡期内违规新设的电子烟、雾化物、电子烟用烟碱生产企业等或生产点的许可申请。自2022年5月5日起,存量电子烟、雾化物、电子烟用烟碱生产企业等可以向其住所所在地的省级烟草专卖行政主管部门提出烟草专卖生产企业许可证的申请意向,再按照排期要求提交正式申请。过渡期结束后,烟草专卖行政主管部门将受理符合法律法规和相关规定的市场主体的许可申请。六、如何申请烟草专卖批发企业许可证?答:已取得烟草专卖批发企业许可证的企业方可申请从事电子烟批发业务。已取得烟草专卖批发企业许可证的企业,经烟草专卖行政主管部门批准变更许可范围后方可从事电子烟批发业务。七、如何申请烟草专卖零售许可证?答:从事电子烟(包括烟弹、烟具以及烟弹与烟具组合销售的产品等)零售业务的市场主体,可以通过经营场所所在地的地市级、县级烟草专卖许可证办理窗口或国务院烟草专卖行政主管部门政务服务行政许可网上办理平台,申请领取烟草专卖零售许可证。详细的办理流程、所需材料等可登录国务院烟草专卖行政主管部门政府网站查询。过渡期内,烟草专卖行政主管部门受理2021年11月10日《决定》发布前已在市场监管部门登记注册,且如实完成电子烟生产经营主体信息申报的电子烟零售市场主体(即存量电子烟零售市场主体)的许可申请;不受理在过渡期内违规新增的电子烟零售市场主体的许可申请。自2022年6月1日起,存量电子烟零售市场主体可以向其经营场所所在地的地市级、县级烟草专卖行政主管部门提交烟草专卖零售许可证的申请。过渡期结束后,烟草专卖行政主管部门将受理符合法律法规和相关规定的市场主体的许可申请。八、为什么要进行电子烟产品技术审评?如何申请?答:技术审评是维护人民群众身体健康和消费者合法权益,保障产品质量安全的必要措施。技术审评工作由国务院烟草专卖行政主管部门组织专业机构实施。《电子烟管理办法》施行后,申请人可通过电子烟技术审评管理系统,向企业住所所在地的省级烟草专卖行政主管部门提交技术审评申请。九、电子烟交易管理平台什么时候上线?答:建设全国统一的电子烟交易管理平台是规范电子烟市场秩序、促进电子烟产业有序运行的重要环节。交易管理平台上线运行后,取得烟草专卖相关许可证的电子烟相关生产企业、批发企业和零售市场主体,通过技术审评的电子烟产品等,均应在平台上进行交易。自2022年6月15日起,取得烟草专卖相关许可证的电子烟相关生产企业、批发企业和零售市场主体逐步在平台上进行交易。十、《电子烟》国家标准技术内容的突出特点是什么?答:《电子烟管理办法》明确禁止销售除烟草口味外的调味电子烟和可自行添加雾化物的电子烟。基于《电子烟管理办法》的监管要求,并接轨国际监管趋势,借鉴国际监管经验,《电子烟》国家标准提出了科学适用的技术内容,其突出特点体现在:第一,规定电子烟是“用于产生气溶胶供人抽吸等的电子传送系统”,将不含烟碱的电子烟纳入电子烟定义范围。第二,鉴于水果、食品、饮料等调味电子烟和无烟碱电子烟对未成年人具有较强的吸引力,容易诱导未成年人吸食,标准明确规定不应使产品特征风味呈现除烟草外的其他风味,并明确要求“雾化物应含有烟碱”,即不含烟碱的电子烟产品不得进入市场销售。第三,标准依据添加剂的使用原则,经过充分安全风险评估论证、实验验证并广泛征求意见后,明确列出允许使用的101种添加剂,纳入添加剂“白名单”。十一、《电子烟》国家标准将于今年10月1日正式实施,设置该实施日期是基于什么样的考虑?答:根据《中华人民共和国标准化法》第二十五条有关规定,不符合强制性标准的产品、服务,不得生产、销售、进口或提供。标准正式实施后,市场上销售的电子烟产品必须符合国家标准。考虑到《电子烟》国家标准发布后,电子烟生产企业需要根据标准要求对产品进行合规性设计,完成产品改造,并向有关部门申请产品检测和技术审评等工作,这些都需要一定的时间,因此设定了5个月的实施过渡期。在实施过渡期期间,电子烟生产企业要开展标准的宣贯培训,深入了解标准技术内容,尽早实现产品达标。十二、各级烟草专卖行政主管部门将在电子烟有关政务服务方面重点开展哪些工作?答:各级烟草专卖行政主管部门将积极开展政策宣传,引导电子烟生产经营主体诚实守信,履行产品质量安全责任,依法依规开展生产经营活动。按照“放管服”改革要求,提升政务服务标准化规范化便利化水平,完善政务服务平台,加强对相关经营主体的业务指导和政务服务,引导电子烟生产经营主体按照《电子烟管理办法》、《电子烟》国家标准以及相关政策要求,申请有关许可证及产品技术审评等,充分保障行政相对人合法权益。十三、近期,烟草专卖行政主管部门重点采取哪些举措查处涉电子烟违法违规行为?答:烟草专卖行政主管部门将按照《中华人民共和国未成年人保护法》《中华人民共和国烟草专卖法》《中华人民共和国烟草专卖法实施条例》和《电子烟管理办法》等规定,督促各类电子烟市场主体依法依规开展生产经营业务,依法查处违反过渡期有关政策要求的行为。会同、配合有关部门加强专项治理,重点清理中小学校园周边电子烟销售网点及电子烟自动售卖机,删除网上销售电子烟信息,查处向未成年人售卖电子烟等违法案件,侦破添加合成大麻素等“上头电子烟”新型毒品违法犯罪典型案件,有效保障和维护未成年人和消费者合法权益。十四、发现违法生产经营电子烟的如何举报?答:发现向未成年人销售电子烟、生产销售伪劣电子烟产品、通过信息网络销售电子烟等有关违法行为的,可以拨打12313烟草市场监管服务热线或通过各地烟草专卖行政主管部门政府网站公布的举报渠道提供违法行为线索,烟草专卖行政主管部门将依法核实处理,维护消费者合法权益。十五、下一步还有哪些涉及电子烟的规定出台?答:国务院烟草专卖行政主管部门即将公布电子烟相关许可证管理、技术审评、产品追溯等有关政策文件,陆续出台电子烟产品质量监督抽查、鉴别检测、产品包装等配套政策和实施细则,协调有关部门研究制定警语标识、检验检测机构、税收、寄递、入境携带等相关政策,建立健全配套政策体系。
  • 细菌内毒素检测技术应用及光度法细菌内毒素定量检测实操培训班的通知
    各有关单位: 为了进一步帮助药品检验检测机构和相关制药生产企业提升细菌内毒素检测能力,海南省药师协会联合科德角国际生物医学科技(北京)有限公司定于2023年11月14日-15日在海口举办“细菌内毒素检测技术应用及光度法细菌内毒素定量检测实操培训班”。现将有关事项通知如下:一、培训组织主办单位:海南省药师协会协办单位:科德角国际生物医学科技(北京)有限公司二、培训对象药品生产企业、医疗器械生产企业、药检所以及医疗机构从事细菌内毒素检查工作的质检人员。三、培训时间、地点及费用(一)培训时间:11月14日-15日,培训为期1.5天;(二)培训地点:海南省海口市龙华区金盘南侧建设一横路1号吉兴雅苑1栋一楼109会议室。(三)培训费500元/人(含资料费、中餐费、证书费等)。四、培训讲师尹雪雁 科德角国际资深技术主管秦焕甲 科德角国际高级应用工程师五、培训内容(一)细菌内毒素基础知识及2025版中国药典细菌内毒素检查法趋势介绍1、内毒素、鲎试剂和内毒素检测概述2、鲎反应干扰因素及方法选择3、细菌内毒素检查法法规介绍(二)细菌内毒素光度法检测开发实例分享1、细菌内毒素光度检测开发实例2、基因重组鲎试剂方法介绍(三)细菌内毒素定量检测系统的应用指导1、计算机要求2、数据库3、Pyros® eXpress 软件安装和注册4、通用设置的介绍5、库的介绍6、检测模板介绍7、软件扩展(四)细菌内毒素定量检测系统的现场实操培训六、报名(一)参训人员用微信扫以下二维码报名,报名截止时间为:2023年11月10日18:00,有特殊情况请与李老师联系联系方式:400-860-5168转5075 七、其他事项联系电话:400-860-5168转5075办公地址:海口市龙华区金盘建设一横路1号吉兴雅苑西门1栋一楼102室。
  • “100家实验室”专题:访中国农业大学北京市草业科学重点开放实验室
    为广泛征求用户的意见和需求,了解中国科学仪器市场的实际情况和仪器应用情况,仪器信息网自2008年6月1日开始,对不同行业有代表性的“100家实验室”进行走访参观。日前,仪器信息网工作人员参观访问了本次活动的第二十九站:中国农业大学北京市草业科学重点开放实验室。   北京市草业科学重点开放实验室隶属于中国农业大学草地研究所,坐落于神内中国农牧经营研究中心大楼。该实验室下设草地管理与生态、牧草栽培与草产品加工、草坪与城市绿化和牧草种子与生物技术4个研究室,拥有省部级开放实验室2个、部级质检中心1个和教学科研试验站4个;该实验室主要研究草产品加工和利用、草坪与城市绿化和牧草与草坪草种子、育种与生物技术3个方向,为北京市绿化美化、农业产业结构调整和畜牧业的发展提供技术支撑,为环京津风沙源治理、农业结构调整和城市美化绿化提供草种。也是神内中国农牧经营研究中心在草业行业进行研究、对外服务、提供政策咨询的窗户和平台。 中国农业大学神内中国农牧经营研究中心王若军博士   中国农业大学神内中国农牧经营研究中心(隶属农学与生物技术学院)的研究部主管、副研究员王若军博士,热情接待了仪器信息网的到访人员,介绍了神内中国农牧经营研究中心的历史和发展现状,并邀请大家参观了位于神内中心的北京市草业科学重点开放实验室以及王博士本人进行研究和对外从事饲料、食品、土壤和水质检测和评价的神内中心研究实验室。   据王若军博士介绍,北京市草业科学重点开放实验室现有在职研究人员23人,其中留学归国人员6人,客座研究员5名,在国际学术团体任职者1人,在国内一级学会任副理事长以上者1人,北京市市政府顾问3人;围绕实验室主要研究方向,先后承担“973”、“863”等国家和省部级科研课题21项,经费累积3102万元,获省部级奖6项,科技成果转化与转让3项,登记新品种6个。   目前,该北京市草业科学重点开放实验室主要承担北京市自然科学基金重点项目“北京抗旱、抗病、长绿草坪草种选育及管理技术”,中美合作项目“草坪草适应性评价”,农业部“草坪质量评价与分级”,科技部农业科技成果转化“绿汁发酵液技术在紫花苜蓿青贮中应用”和北京市科委“优质高产紫花苜蓿生产关键技术”等项目。   北京市草业科学重点开放实验室位于中国农业大学西区神内中国农牧经营研究中心三楼,实验室仪器设备先进,拥有10万元以上的设备30余台/套,全部对校内外开放使用。主要配备了纤维分析仪、全自动凯氏定氮仪、DNA扩增仪、傅里叶近红外光谱仪、便携式近红外光谱仪、酶标仪、冷冻干燥机、原子吸收分光光度计、高效液相色谱、气象色谱、凝胶成像系统、紫外可见分光光度计等分析仪器。这些设备主要用于草业科学师生进行教学和科研及对外检测服务。 美国ANKOM纤维分析仪 图片说明:主要检测饲料(牧草)中的中性洗涤纤维(NDF)和酸性洗涤纤维(ADF)及食品中的总膳食纤维(TDF)。 瑞士FOSS凯氏定氮仪 图片说明:测定饲料、食品、水和土壤中的氮(粗蛋白质、氨氮)含量。 杭州LongGene DNA扩增仪 图片说明:用于植物和微生物分子生物研究。 赛默飞世尔傅里叶近红外光谱 图片说明:根据湿化学方法测定的化学成分,通过与近红外光谱数据建立模型,进行定性和定量检测青贮中的挥发性脂肪酸(乳酸、丁酸)以及霉菌毒素。 日本KHB ST-360自动多功能酶标仪 图片说明:进行基于ELISA的多种检测如霉菌毒素、三聚氰胺、抗生素、抗体滴度,也可以进行多通道微量比色。 LABCONCO冷冻干燥机 图片说明:对生物体液(瘤胃液、血液、植物提取液)和生物材料(牧草、动物组织)进行低温干燥,以保持一些待测活性组分的活性。岛津AA-6800原子吸收分光光度计 图片说明:用于分析生物组织(牧草、动物组织或体液)、土壤和水体中的微量元素。 普析通用L6高效液相色谱仪 图片说明:2009年年底购买,多用于氨基酸、霉菌毒素、三聚氰胺、糖分含量的测定。 北京第二光学仪器厂(北京瑞利分析仪器公司前身)WFZ800-D2型紫外可见分光光度计 图片说明:比较老的设备了,但仍然在使用,主要测定乳中尿素氮、磷和油中的叶绿素含量等,需要比色的试验都可以使用。 美国Polychromix手持式近红外快速分析仪 图片说明:王若军博士自行出资购买,主要用于野外/现场快速检测淀粉含量、淀粉种类定性以及测定饲料和食品中的养分含量。该设备通过定性模型还可以检测织物纤维的种类、饲料的种类、药物的种类、塑料种类等。   参观神内中心和北京市草业科学重点开放实验室的过程中,王若军博士“寓工作于生活,因工作而快乐”的态度给笔者留下了深刻印象:实验室绿植随处可见,办公桌上装饰品是小麦和狗尾巴草;鱼缸里养了大大小小近百条鱼,用来做饲料及微生物对水质(控制COD和氨氮及改善透明度)影响的检测实验。 附录1:北京市草业科学重点开放实验室/中国农业大学草地研究所     http://www.cau.edu.cn/grass/index.htm 附录2:王若军博士简介   中国农业大学农学与生物技术学院副教授、神内中国农牧经营研究中心副研究员。博士研究生毕业,先后在河南农业大学(畜牧专业,本科)、内蒙古农业大学(动物营养,硕士)、中国农业科学院研究生院(北京畜牧研究所,博士研究生)、美国Langston University 和Cornell University(博士研究生、访问学者)、中国农业大学(博士后研究)从事学习和研究。多年来,一直在世行中国项目、美国、加拿大、澳大利亚农业项目活动中从事畜牧、饲料、兽医和生物遗传资源技术及英语翻译工作,具有在美国、加拿大、英国、意大利、澳大利亚、爱尔兰、墨西哥、日本、韩国、越南、泰国、马来西亚、文莱等国家的工作经验。具有良好的英语沟通、翻译、写作和报告编制经历和能力以及与国际专家合作工作的经验。长期从事生物实验室管理和操作,曾任农业部饲料工业中心中心实验室主管和培训主管,美国奥特奇亚太生物技术研究中心主任,“中国高致病性禽流感及人流感大流行防控能力建设项目”中央联办项目协调员,通威股份独立董事。现任神内中国农牧经营研究中心实验室主管和研究主任,兼任通威股份外部董事以及加拿大双低油菜理事会(Canola Council of Canada)、加拿大豆类作物协会(Pulse Canada)和加拿大国际谷物研究院(Canadian International Grains Institute)中国饲料工业技术顾问。   关于王若军博士更多的资讯、文章和论著请参考http://cab.cau.edu.cn/main/index.php?go0=teacher&tid=293
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制