当前位置: 仪器信息网 > 行业主题 > >

轮层炭菌属

仪器信息网轮层炭菌属专题为您提供2024年最新轮层炭菌属价格报价、厂家品牌的相关信息, 包括轮层炭菌属参数、型号等,不管是国产,还是进口品牌的轮层炭菌属您都可以在这里找到。 除此之外,仪器信息网还免费为您整合轮层炭菌属相关的耗材配件、试剂标物,还有轮层炭菌属相关的最新资讯、资料,以及轮层炭菌属相关的解决方案。

轮层炭菌属相关的论坛

  • 【转帖】【资料】室内有关液态炭健康涂层的问与答

    室内有关液态炭健康涂层的问与答Q1 什么是健康涂层Health Coat? A 是超细粉末炭(约为头发的1/6~1/2)和液态呢绒树脂混合而成的涂料。 Q2 为什么要跟液态呢绒树脂混合呢? A 液态呢绒树脂是接合超细粉末炭的接合剂。同时也起到粘合剂的作用。 Q3 什为什么其他粘合剂或者树脂是不可以的? A 液态呢绒不透水,但透水蒸气(水是0.3μ的粒子,而水蒸气是0.002μ的粒子)。 它保持了超细粉末木炭的吸附功能,不堵塞木炭的多孔结构,使木炭的呼吸没有丝毫障碍,并具备保湿性和粘贴性。由于其他粘合剂和合成树脂缩不具备上述特征,液态呢绒便成为必然的选择。 Q4 为什么使用超细粉末木炭? A 将木炭粉碎成超细粉末,可以扩大与空气接触的表面面积,提升工效。 另外,超细粉末化处理可以使木炭活化,作为触媒发挥工效。 Q5 人们经常说在木炭中效果最好的是备长炭? A 以1,000℃~1,200℃烧成的备长具有碱性,可以很好地吸附酸性物质。同时具备半导体的特性,吸附电磁波的能力也较强。 但消臭和调湿等效果要来得慢一些。 Q6 备长炭或者其他固态炭显得更像是木炭,似乎是只要大量使用,就可以得到很好的效果,感觉比较放心。 健康涂层Health Coat是用来涂刷的,涂层那么薄,也没有木炭的直观形象,令人担心它的效果是不是不如备长炭等? A 不需要担心。木炭的效果不是按体积,而是按表面面积。 健康涂层Health Coat的木炭使用量是每1平米大约有100g(不包括树脂)。 虽然没有木炭的形状和外观,也没有任何形态的固体物,但重要的是如何能够把木炭均匀的分布在材料的表面上,这就是取得效果的关键。 Q7 扩大木炭的表面面积是什么意思? A 氨气的吸附试验表明,固态炭往往是表面吸附臭味,剖开后,内层并未吸附。所以,不能按炭的容积衡量其性能的发挥。 超细粉末炭的表面上有着几种官能基,石墨化了的多孔结构均匀的分布在表面上,科学的发挥着吸附分解功能。健康涂层Health Coat的表面上也不会留有异味。 就调湿功能来说,是由炭素表层反复吸附、释放空气中的水分,从而控制环境湿度。通过1年的测试,平均调湿效果为8.3% 。 Q8 听说健康涂层可以减少空气中正离子的含量,这是怎么回事? A 健康涂层的表层是木炭炭素。由于同周围环境的电位差,碳素中活跃的负电子被大量释放。在正离子的多的环境中时,依靠炭素的还原能力,所释放的负电子可以中和空气中的正离子。从而创造出富含负离子的环境。 Q9 为什么居住环境中的负离子含量越多,对人体越好? A 木炭具备充沛的还原能力,自古以来人们便认识到,木炭可延长动植物的寿命。在负离子含量高的环境中居住,可促进新陈代谢,使生理状态保持年轻,同时还能激活人体,促进健康。 因此,将健康涂层应用到住宅中,便会创造出极为理想的健康环境。 Q10 普通的住房,一般涂刷多少健康涂层可以得到理想的效果? A 木炭的比表面积越大,触媒功能越具活性,创造出来的负离子环境也就越好。 如果在天棚和墙面均涂刷健康涂层,则可获得最理想的负氧环境。 Q11 我想在卧式使用健康涂层,可以得到什么样的效果? A 睡眠时,人体会释放出大量的氧化气体和物质,形成各类异味。 尤其是新陈代谢旺盛的年轻人及新陈代谢呈弱势的老年人更为显著。 吸入自身释放的异味和气体,自律神经崩溃、无法熟睡,肩酸背疼,因无法缓解压力而导致疲劳在体内积蓄。 在天棚和墙壁上涂刷健康涂层后,可彻底消除室内的异味,创造出负离子环境,刺激人体的副交感神经,使身体放松,压力解除,提高睡眠效果,身体健康得以全面提升。 Q12 涂刷健康涂层后,外表用壁纸或其他涂料进一步装修,会不会影响健康涂层的效果? A 凡是透气性的材料,都不会影响健康涂层的效果。 至于粘合剂,淀粉系、纤维素系等自然素材及或其他透气性素材都没有问题。值得注意的是,高温炭具有若干金属的特征,透气性壁纸的表面如经过防水处理,这类壁纸用于健康涂层的外表时,时间长了可能产生绣斑,最好用我们推荐的壁纸。 Q13 虽然说只要是自然的、具有透气性的任何材料都可以在Health Coat上使用,但似乎这些材料盖住了健康涂层的表面,且表面上用的材料越多或者越厚,对健康涂层效果的影响越大,不是这样吗? A 试想一下,只要没有障碍物,电波便可以在空气中、大气层中被传播、接收。完全相同的是,只要是合乎健康涂层要求的素材(可吸收空气中水分的素材),不论多厚,均可与健康涂层视为一体,基于健康涂层对空气中物质的吸附、分解及电子特性的作用,调湿、消臭,创造负氧环境。

  • 舒肤佳抗菌效果遭质疑不是第一次:2005年曾被调查

    舒肤佳X 滴露X 美国将禁售 据说会“影响荷尔蒙”,你知道吗?  昨天,一则名为《舒肤佳抗菌皂被曝干扰人体荷尔蒙,发达国家或禁售》的新闻在网上传得沸沸扬扬:美国食品药品监督管理局(以下简称“FDA”)称抗菌皂中添加的化学成分三氯生和三氯卡班可能会干扰人体荷尔蒙,将拟定议案禁止抗菌皂和沐浴露在商店货架的实体销售。议案的制定可能对涉及抗菌产品的舒肤佳、利洁时等多个品牌造成影响。使用抗菌肥皂会干扰人体荷尔蒙?记者昨天采访了南京多位皮肤科专家。专家表示,盲目夸大“抗菌”的作用或是“草木皆兵”对待抗菌产品都不可取。三氯生的使用官方早有剂量的规定。    专家解读  三氯生是否危险要看浓度  报道称抗菌皂中添加的化学成分“三氯生”和“三氯卡班”可能会干扰人体荷尔蒙,产生激素方面的副作用。那么“三氯生”到底是什么物质?  “三氯生”:外科医生洗手也用它  科学松鼠会曾刊载过一篇文章,介绍三氯生的“前世今生”,“三氯生(Triclosan,简称TCS)是一种合成的广谱杀菌剂,能够杀灭细菌和真菌。三氯生最初是在1972年作为外科手术前洗手用的杀菌剂的活性成分而为人所知。”  安全标准:0.3%为最大使用浓度  科学松鼠会刊载的这项数据也得到了中国医学科学院皮肤病研究所中心实验室主任蒋明军教授的认同。蒋教授告诉记者,三氯生的使用有着严格的规定,目前最为确切的规定来自2011年3月22日,欧洲消费者安全委员会专门发布的《三氯生意见书》。《意见书》从医学、毒理等各个方面记载了对三氯生的调查研究成果,并最终得出结论:在洗手液、沐浴露等用品中,以0.3%的最大浓度使用三氯生被认为是安全的。  而现在主要用于消毒香皂、漱口水、牙膏、厨房洗涤剂、洗发剂、沐浴露和除臭剂等个人护理品,其中三氯生在这些产品中的含量大概为0.1%-0.3%。蒋主任表示,不需要对“三氯生影响人体荷尔蒙”过度反应。“三氯生在对人体产生影响时,一定会加上其他条件,如多大的剂量、使用多长时间等。消费者在选择抗菌产品时保持谨慎的态度就可以,不用对这则新闻‘反应过度’。”  探访南京市场  不少妈妈都特意为孩子选“杀菌”产品  记者昨天走访南京超市,找到舒肤佳香皂,观察后面的配方表后却没有从中看到“三氯生”及“三氯卡班”成分。但有网友表示,早年前生产的“舒肤佳”香皂背面成分列表中确实有“三氯卡班”及“三氯生”并晒出照片。而在滴露等抗菌清洁产品中,记者发现了配方中含有“三氯卡班”。  “孩子太小太娇嫩,所以我给她吃的用的都尽可能买‘零添加’的。”三十多岁的许敏直言不讳地告诉记者,自己给6岁的女儿一直都使用舒肤佳的产品。“大人用的沐浴露掺杂的东西肯定很多,不适合宝宝,所以我家一直都给孩子用舒肤佳。洗手液也用的是威露士。”  和许敏的想法如出一辙的还有白领王女士。“小孩子从幼儿园回来肯定会有很多细菌。舒肤佳的广告语里不是说能洗掉99%的细菌嘛,应该是很靠谱的。”记者昨天走访了南京部分超市,舒肤佳香皂、威露士洗手液等备受家长青睐的产品被摆在了非常显眼的位置。其中舒肤佳香皂上标明了“洗去99%细菌”的字样,威露士清香抑菌洗手液上也粘贴着大大的标识,“魔术泡沫易冲洗,有效杀灭99.9%细菌”。  “买贵的吧,贵的肯定品质更好一些。现在的人健康意识可强了。”站在货架旁的售货员看到记者后,连忙上前来推销产品,并很认真地告诉记者,这些名牌抗菌洗化产品的销量一直都很不错。  B 能杀菌99%涉嫌虚假宣传  2005年就曾被工商局调查  其实早在2005年,美国食品药品监督管理局(FDA)就质疑抗菌类产品的功效。  根据卫生部的规定,从2005年7月1日起,新生产的化妆品禁止在其包装、标签、说明书及其他相关宣传材料中宣传或暗示“抗菌、抑菌、除菌”及其他医疗作用。舒肤佳抗菌效果遭质疑已不是第一次了,早在2005年其抗菌99%的数字来源,就已经被工商部门作为涉嫌虚假宣传而展开调查。专家解读  勤洗手能抵抗99%的细菌?  99%杀菌是什么概念?外科手术的消毒水准  据新快报报道,广医附一皮肤科卢浩锵主任表示,洗护产品宣称可以100%除菌、杀灭99%的细菌,但实际上,“外科大夫用消毒洗手液洗手之后,还要戴上无菌橡胶手套才能达到这个水平。”南医大二附院皮肤科主任蒋艺解释,含有抗菌成分的抗菌肥皂、洗手液等的确能对细菌起到杀灭作用,但如果真如宣传中所言,消灭了99%的细菌,反倒会对手部常驻菌群的“生态平衡”造成破坏。  皮肤科医生表示:洗手习惯比洗手液更重要蒋明军是皮研所中心研究室的主任,日常的工作里常常要和各种病菌打交道。“我家里也有用肥皂的习惯,各种品牌的肥皂都买过,滴露等品牌的产品也用过。”蒋明军的孩子年龄很小,但作为爸爸的蒋明军,在为家人购买从来不会“职业病发作”去翻看产品的标签牌,过多地考虑产品的化学成分。“基本是看到什么就买什么,不会考虑太多的因素。”  作为专业的皮肤科医生,蒋明军建议,消费者在日常生活中不用过多介意购买的抗菌肥皂或是洗手液的产品构成,相反,掌握正确的洗手方法则更为重要一些。  到底应该怎样洗手才可以是最为标准的?蒋艺介绍,首先掌心相对,手指并拢相互摩擦;然后手心对手背沿指缝相互搓擦,交换进行;第三步,掌心相对,双手交叉沿指缝相互摩擦;第四步,一手握另一手大拇指旋转搓擦,交换进行;第五步,弯曲各手指关节,在另一手掌心旋转搓擦,交换进行;第六步,搓洗手腕,交换进行。

  • 層析法概論

    各位先進好:本內容是將書本內層析概論的相關公式推導,由簡化繁,將如何運算的過程說明清楚,包含理論板數、板高、分配係數等說明。

  • 防腐层探测检漏仪检测长输管道

    长输管道敷设施工在完成焊接、防腐、下沟回填作业之后,还要进行管线水压试验。管线试压直接影响管线投产、质量评定竣工验收,管道工程的业主、旋工方、监理方都很关心这道工序。若在试压过程中压力稳不住又难以确定漏点所在处,施工单位通常采用重新分段试压再开挖的方法寻找管线渗漏点,有时要投入很大的力量并需要较长的时间,经济损失也很大。为了有效解决这个问题,运用国产地下[url=http://www.dscr.com.cn/show.asp?id=248]管道防腐层检漏仪[/url]寻找长输管线水压试验的渗漏点,可以取得良好的效果。  (一)发射机的使用  1、发射机接线地点的选择  找出被测管道裸露在地面或可以连接的地方,(一般可以从调压箱,楼前进户管,阀门井,长输管道从测试桩施加信号)取出磁铁,将磁铁与防腐层管道裸露在外的金属部分紧密连接在一起。  找出裸露在外的管道 小锉刀清除表面锈迹 磁铁连接处  *尽量避开多支路的中心点,如计量站,联合站,集输站这些四面八达的管网,会使信号很快的衰减,除掉上面的防腐层和锈迹。  2、发射机接地方式的选择  接地棒一般打在跟管道垂直方向5-10米外的地方,跟管道成垂直方向。  接地棒插入地下  接地线下方的管道感应到很强的信号,会被误判为目标管线,增加探测难度。  3、发射机的连接  取出发射机,连接好输出线,将输出线红色鱼夹连接到磁铁上,将输出线另一端红色\式插头跟接地线上的黑色的式插头连接起来,接地线另一端的黑色鱼夹连接到接地棒上。  4、发射机的调节  打开发射机,观察面板上的参数(功率W)(电压V)(电流MA)(电阻Ω)。通过↑ ↓键调节并查看这些参数,使之阻抗匹配。发射机调好后,便可以进行探测和检漏。  如不匹配工作指示灯发暗或不亮,则需要重新调节,一般发射机的功率,控制在5-10W之间,可根据现场情况来调节发射功率,增大或减小功率。  (二)探管仪的使用  1、探管仪的调节  将探头与探管仪连接好,(未连接不开机),打开接收机 通过↑ ↓键来调节增益的高低。  探杆与探管仪连接  探管仪  当发射机的信号太强,增益已经调到最低信号任然显示1000或1的时候,则必须降低发射机的功率,或通过移动接地棒的位置来解决。  2、 管道定位探测方法  2.1 峰值法:用峰值法(极大值),探头平行于大地,与管线的走向保持垂直探测。  以发射机接线点为圆心,10-20m 为半径做环形探测,边走边转动探头角度,当接收机收到由小变大的信号时,接收机表头数值有小—大—小的变化信号,最大点即为管线位置。  最大值法(示意图)  2.2零值法:选择零值法(极小值)探测时,将探头垂直于大地平面,围绕发射机接线点10m-20m做环形探测时,接收信号将有大—小—大的变化,小点即为管线位置。  3、管道深度探测方式  探管仪测试:一般用45度法。  45度法:管位探到后在正上方做一记号A,将探头转到45度的地方,与管道走向垂直方向移动,当信号最小时再做一记号B,A和B之间的距离即为管到中心到地面的深度。  检漏的方式  常用检测方法:人体电容法  1、 检漏仪的连接  将检漏线跟仪器连接,由两名检测人员各持检漏线一个检漏环,必须与人体紧密接触,保持3-5米 的距离。  检漏线连接处  检漏环跟人体紧密接触  检漏员之间保持3—5米的距离  (注:检漏线绷直尽量不要拖地,检漏员不能穿绝缘鞋)  2、检测仪的调节  打开检漏仪,通过↑ ↓键调节增益,保持表头读数有0-50左右的静态信号。  静态信号在0-50之间  3、检漏的方式  检测时,必须有一个人走在管道正上方,(横向,纵向都可以)。当检漏人员走到破损点处时,检漏仪的声音和表头数值会增大,在漏点的正上方最大。  当破损点较大时,表头读数可能显示为“1”此时应降低增益使显示有读数可比较。  上述检漏方法被称为“人体电容法”,即以人体作为检漏仪的感应元件去寻找发射机发出的信号,正常时信号平稳。当检漏员走到漏点时,由于电流突变,信号也随之变化,喇叭声响和表头指针都有增大显示。为了使漏点处的信号变化更加明显而易于接收和识别,检漏人员在工作中总结以往经验采取了一系列有效的措施。  对检漏仪的操作一定要准确无误,F1-T检漏仪是国内常用的检漏仪器,是长输管道运营单位常备的仪器之一,管道阴级保护人员都能操作。使用地下管道防腐层检漏仪寻找水压试验的渗漏点,首要一条就是操作者必须熟练掌握仪器的操作方法,而且对讯号的判别要有足够的经验。

  • 噬菌体-----双层平板

    我想请问一下,就是做噬菌体的实验时,为什么要用双层平板啊?这个双层平板有什么作用吗?跟单层的话有什么区别

  • 3i流式快讯|层浪生物完成亿元B轮融资

    近日,北京层浪生物科技有限公司(以下简称“层浪生物”)完成了由荷塘创投领投、毅达资本跟投、跃为资本担任独家融资顾问的[color=#c00000][b]近亿元B轮融资[/b][/color]。此轮融资将促进层浪生物在流式技术高端化、常规化方向上大踏步迈进。[align=center][img=8f519e22a12b896da8a821c2aa6c579e_1679640780723520.png]https://img1.17img.cn/17img/images/202403/uepic/85ef9b11-9a8c-43af-a752-891b2729af42.jpg[/img][/align][color=#0070c0][b]回顾层浪生物的重要时刻:[/b][/color]2023年10月,层浪生物荣获北京“专精特新”企业认证。[align=center][img=image.png]https://img1.17img.cn/17img/images/202403/uepic/60478371-b1eb-4887-8bfa-896f9dc58ea6.jpg[/img][/align]2023年7月,层浪生物与流式头部企业碧迪医疗就MateCyte双激光流式细胞仪签订中国独家代理销售合作![align=center][img=image.png]https://img1.17img.cn/17img/images/202403/uepic/76c5c9ac-a4c1-49b2-890b-6615c79d89a9.jpg[/img][/align]2023年2月,三激光流式细胞仪LongCyte获得二类医疗器械注册证(京械注准20222220495)[align=center][img=image.png]https://img1.17img.cn/17img/images/202403/uepic/f819a232-4cb8-4782-ae90-69a25ca7e4cb.jpg[/img][/align]2022年11月,层浪生物获得北京高新技术企业认定。[align=center][img=image.png]https://img1.17img.cn/17img/images/202403/uepic/57c345a2-2fa0-40d4-8489-d30c6588af20.jpg[/img][/align]2022年7月,层浪生物就完成了A轮融资,由IDG资本投资。2021年1月,[font=微软雅黑, 宋体, 黑体]2激光8色流式细胞仪 MateCyte 获得二类医疗注册证(湘械注准20212220172)。[/font]......据相关市场研究机构统计,2023年全球流式细胞仪市场收入为47亿美元,预计到2028年将达到70亿美元。2023年至2028年复合增长率为8.3%。公司创始人兼总经理刘铁夫本科与硕士均就读于清华大学机械工程学院,2007年毕业后加入迈瑞北京研究院,作为迈瑞流式BriCyte E6的系统工程师,从立项开始全程参与了中国第一台临床流式细胞仪的诞生,并见证了中国流式细胞仪从无到有,从萌芽到火热的全过程。公司核心团队均在流式技术有10余年经验,‘十年如一日’专注流式技术研究,致力于研发生产稳定、可靠、性能优异的产品。2激光8色流式细胞仪已在市场上广有应用,仪器稳定性获得客户的高度认可,未来销量可观,最新研发的3激光14色流式细胞仪已在科研市场有一定的销量,其优异的性能和智能化的表现得到了客户的一致好评,这给我们很大的信心,也让我们对其在临床上的表现充满了希望。在市场表现和技术领先性上,层浪生物都走在了前列。[b]关于北京层浪生物科技有限公司[/b]北京层浪生物科技有限公司成立于 2020 年 3 月,注册地址位于北京市大兴区生物医药产业基地,在大兴和昌平均有研发办公场地,另外在湖南成立了全资子公司。公司主要从事 IVD 诊断仪器试剂以及生物医疗科研仪器的研发生产销售,层浪聚焦流式细胞领域,致力于实现流式技术系统化、自动化、智能化,在临床领域推动流式技术的进一步普及,在科研领域助力国产流式产品迈向国际前沿行列。目前产品主要涵盖LongCyte? 和FongCyte? 两大流式产品系列及配套诊断试剂和全自动流式样本前处理仪,已通过ISO9001及ISO13485体系认证;临床型产品3激光14色流式细胞仪LongCyte? 26种型号均获得CE认证。层浪正在为全球近500家客户,提供临床诊断、生物治疗、生物医学基础研究、药物研发、环境材料、食品毒性监测等解决方案。公司核心团队均在流式技术领域拥有10余年技术研究经验,致力于研发生产稳定、可靠、性能优异的流式产品。层浪未来将推出更多产品,为中国流式技术发展尽绵薄之力,争做流式技术的行业普及者和值得客户信赖的合作伙伴,助飞中国流式技术临床和科研事业发展。[来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 你提,我问——对话安捷伦、赛默飞、聚光、天美高层

    中国科学仪器发展高峰论坛即将召开,此次我们邀请了:杜 平 赛默飞世尔科技色谱质谱产品中国区商务总监李 林 安捷伦科技化学分析集团新兴市场测量系统事业部总经理刘明达 聚光科技(杭州)股份有限公司市场总监徐国平 天美(控股)有限公司董事总经理参与论坛,共话行业发展前景及行业热点问题。现在论坛举行“你提,我问”活动,对于上述仪器行业领袖企业高层有什么关心的问题,快快提出来。如果届时被选中,将有小礼物赠送。------提问格式------------------------------------------------------------------------------提问对象:问题:

  • 【国产好仪器讨论】之杭州迅数科技有限公司的迅数_G6型全自动菌落分析仪(G6型)

    http://www.instrument.com.cn/show/Breviary.asp?FileName=C56942%2Ejpg&iwidth=200&iHeight=200 杭州迅数科技有限公司 的 迅数_G6型全自动菌落分析仪(G6型)已参加“国产好仪器”活动并通过初审。自上市以来,这款产品已经被多家单位采用,如果您使用过此仪器设备或者对其有所了解,欢迎一起聊聊它各方面的情况。您还可以通过投票抽奖、参与调研等方式参与活动,并获得手机电子充值卡。【点击参与活动】 仪器简介: G6全自动菌落分析仪是迅数公司推出的旗舰型产品,融合了迅数最新技术精华:可变光比的宽光带悬浮式暗视野;1000 万像素的CMOS;Colonfast菌落智能识别技术,不仅保证了菌落识别的精准,更细腻体现菌落的每一个细节。G6同时具备自动抑菌圈测量、抗生素效价测定、舒巴坦敏感β-内酰胺酶检验功能,为高级科研、检测机构在微生物领域提供了最佳的操作平台。 菌落形态数字化分析的利器 真实展现菌落每个细节 G6采用了F/1.4大光圈镜头,其锐利的光学影像通过1000万像素的真彩CMOS转化为数字影像,超清晰展现培养皿表层和深层的细微菌落。 全封闭、宽光带、悬浮式暗视野照明系统 保证菌落计数精度的基本要求是获得清晰、背景平整的图像,消除外界杂散光的干扰。迅数公司对G系列的照明系统进行精密的设计,上下光源采用了宽光带的LED柔光系统,并结合专利设计的悬浮式暗视野,不仅消除了玻璃培养皿的折射光斑,通过改变光比,使得菌落表面的皱折、凹陷、边缘的锯齿更富立体感。 菌落形态自动分析,描述每个菌落的数字特征 系统能瞬间分析出每个菌落的直径、圆度、面积、周长等特征,所有数据可以导出到excell表,为深入分析研究提供帮助。 综合的智能分析系统 “迅数colonfast菌落智能识别技术,统计结果更精准 自动菌落计数准确与否的关键是算法,作为研究级的旗舰,G6采用“迅数专利的colonfast菌落智能识别技术,融合了通用分割、多通道分割、同色分割等多种图像处理算法,适合各种复杂的培养皿。 21种图像处理功能,为科研的特殊要求提供强大的工具 菌落分析过程中经常会有这样的现象:深层的浅菌落被遗漏;为避免污染,不开盖计数时,会发现菌落图像模糊;或因为培养过程在培养皿上盖形成的水气,菌落轮廓不清……G6具有的21种图像处理功能就为解决上述类似情况提供了很好的帮助。 针对FDA标准设计的螺旋菌落分析功能,支持所有品牌的螺旋接种仪 “迅数螺旋平皿分析系统最大特点是它的包容性,不仅严格按照美国FDA螺旋计数法则设计,而且已经纳入中华人民共和国出入境检验检疫行业标准《食品和化妆品中的细菌计数检验法--螺旋平板法》,可以适应所有品牌螺旋接种仪的接种模式要求。 灵活的分类统计功能,自动筛选出培养皿中....【了解更多此仪器设备的信息】

  • 【原创】层析实验冷柜

    层析实验冷柜专为生化层析实验而研制的特殊用途冷柜,也可用于其他需要低温环境的实验,或用于物品冷藏。主要特点:进口制冷压缩机,工作可靠,噪音低;风冷散热方式,不需水冷却;可选多功能型配置,三层可调开放式钢架;不作层析实验亦可用于样品冷藏保存,一柜多用; 柜内空间高大,便于层析操作; 全透视双层玻璃门,具防露功能,双门锁扣可独立开启;全不锈钢内壁,清洁卫生,美观耐腐蚀; 2根层析固定立柱,2层(YC-2为3层)开放式载重托板;自带照明灯,消毒灯,上下内电源插座; 内胆全部采用优质不锈钢材料;全新改进型智能温控仪表,温度设定、测量均为数显,且设定值可加密码锁定保护;自带超温、差温报警功能 ;下设脚轮,移动方便;

  • 【转帖】ESCO将采用最新型的ISOCIDE防菌涂层

    ESCO 在Labculture系列产品产品中(LA2,LB2, 以及细胞毒素安全柜系列 )将采用最新研制的ISOCIDE防菌涂层,这种ISOCIDE防菌涂层较之前采用的防菌涂层具有更好的防菌效果,有效杀灭并抑制微生物在安全柜机体表面附着和繁殖,为工作人员提供了更好的安全防护。由于抑菌材料是混合在安全柜外表面上的粉末涂层中的,因此其抑菌作用是在生物安全柜的产品寿命周期中都有效的,而不会因为表面清洗而被消除。 根据市场的需求,ESCO也将把ISOCIDE防菌涂层应用到其他各款的安全柜和生物科技设备中。您可以联系ESCO或跟本地的ESCO代理商了解最新产品情况。

  • ED-XRF测试CdS膜层均匀性

    求助: 最近希望利用ED-XRF测试CdS膜层的均匀性。1,测试时会有Ar K线系与Cd L线系重叠;2,但样品室不能抽真空,也没法在探测器附近吹N2气,排除Ar的影响;3,如果能通过Auto focus让探测器与每个测试点的距离保持一致; 是否可以认为每个点的测试结果中Ar的影响是一样的,可以相对的测试出Cd的信号强弱变化,从而得出不同位置的CdS的膜层厚度?

  • 【原创】给论坛管理层的建议

    本人从2005年12月申请到现在也在论坛上活动了1年多了很明显今年人气不如去年,从快乐老家的帖子就可以看的出来这里向论坛管理层提一点个人的小小意见:第一:将连续一个月(这个时间论坛来定)不上线的斑竹开除,就算他或她是老油条,既然没时间何必占着这个位置。第二:积极招募新斑竹,版面冷热很大一部分因素在于斑竹。为什么很多版面一直没什么人去看,主要原因——长期没斑竹或者斑竹长期不在线。我不太清楚,之前是怎么招募斑竹的,我看到的结果是很多版面长期没斑竹或者斑竹长期(再加上管理层在线时间也不多)不在线,导致很多新用户上传的附件很长一段时间得不到验证,影响其他用户看帖——直接影响到积极性。第三:希望管理层的责任心能更强点,在线时间能更多点。第四:就拿“申请开设新版” http://www.instrument.com.cn/bbs/forum_502.htm来说,我不太清楚用户申请的,论坛开了几个,当然原因是多方面的。是否一定要有20个人支持才能开设新版面?可以进去看看,肯定打击了很多人的积极性。[em53] 是否可以通过管理层发个投票贴或者其他方式决定?当然也包括管理层自行决定增加的版面。如果决定做一件事,就应该尽快落实。第五:论坛改版后系统错误多多,希望尽快维护好。个人就暂时提上述几个建议。各位斑竹都可以积极响应[em61]

  • 乳酸乳球菌温敏水凝胶对糖尿病小鼠全层皮肤缺损创面愈合的影响及其机制

    【序号】:4【作者】: 卢毅飞邓君王竞【题名】:乳酸乳球菌温敏水凝胶对糖尿病小鼠全层皮肤缺损创面愈合的影响及其机制【期刊】:中华烧伤杂志. 【年、卷、期、起止页码】:2020,36(12)【全文链接】:https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDZHYX&filename=ZHSA202012044&uniplatform=NZKPT&v=qyaaPKggepGp2i48QFbRV6y-8E8KHCZskOCUhbnUh7PMDkFUs0xFyMEv-SpofRuG

  • 弯曲菌属及其检验

    1.弯曲菌属的主要特点及分类弯曲菌属(Campylobacter) 是一类呈逗点状或S形的革兰阴性杆菌,广泛分布于动物界,其中有些可引起动物和人类的腹泻、胃肠炎和肠道外感染。目前弯曲菌属共有18个菌种和亚种,引起人类疾病的主要是空肠弯曲菌空肠亚种,其次是胎儿弯曲菌和大肠弯曲菌等。2.细菌特性(1)形态染色 本属细菌为革兰阴性无芽孢的弯曲短杆菌,不易染色,菌体弯曲呈S状或海鸥展翅状等,一端或两端各有一根鞭毛,运动活泼,暗视野显微镜下呈“投标样”运动。(2)培养特性微需氧菌,最适生长环境是含氧气5%、二氧化碳10%、氮气85%;孵育温度通常取决于所需要分离的菌株,在不同的温度下培养基的选择性也不同,通常绝大多数实验室用42℃作为初始分离温度,这一温度对空肠弯曲菌、大肠弯曲菌的生长有利,相反其他菌株在37℃生长良好。营养要求高,在普通培养基上不生长,分离弯曲菌常用的选择性培养基大多含有抗生素(主要为头孢哌酮),以抑制肠道正常菌群。常用的有含血的Skirrow培养基、头孢哌酮-万古霉素-两性霉素琼脂培养基(CVA)和不含血的碳-头孢哌酮-去氧胆酸盐(CCDA)、碳基选择性培养基(CSM)和半固体动力培养基等。(3)生化反应 氧化酶和触酶阳性,可还原硝酸盐为亚硝酸盐,不分解和不发酵各种糖类,不分解尿素,具体生化反应见表13-1。(4)抵抗力 本属细菌的抵抗力弱,对一般消毒剂敏感,但耐寒,在4℃冰箱或水中可存活达4周。http://www.foodmate.net/file/upload/201106/17/16-11-11-54-510998.jpg注:+,>90%阳性;-,<10%阳性;V,可变;ND,未定;W,反应较弱;S,敏感;R,耐药

  • 【求助】小模数齿轮硬度如何测量

    工作中需要测试一些小齿轮的硬度,看了很多资料心中还是没数:1.使用HRC测试试样被测表面最小多大?2.网上说对模数小于2mm的齿轮“使用锉刀法或其他测试方法”,请问具体如何测试(我的齿轮大部分都属于这些情况)?3.如果齿轮是属于表面热处理,那么是否是热处理层的厚度需要达到HRC/HRA对应的测试样品最小厚度,还是另外有规定?(我理解是HRC/HRA测的话需要热处理层厚度不小10h)另外需要说明的是我测试的齿轮式电动工具用的,要求比较低,而且我们测试设备目前只有洛氏硬度计,希望尽量使用现有设备[em09502]本人刚接触这方面,又没有懂行师傅指点,还望各位大侠不吝指导[em09511]=========以下2009.7.15更新================今天又仔细的看了一些资料,有如下结果:1.从现有资料查询最小表面有3mm和5mm两种说法,应为没有办法直接获知压痕直径,[color=#00008B]所以这两种说法都有什么依据没有?哪个比较真实?[/color]2.如果按3所说不更换现有设备是否可以测量?如果需要添置新设备哪种比较适合我们(我们是外贸公司,测量的内容可能较杂一些)3.对于3所描述的表面热处理情况,如果淬透层在0.8mm以下,那么需要用HV来测试。但是根据维氏硬度的试样“最小厚度-试验力-硬度”关系,对于常用的齿轮表面50-60HRC的范围,淬层深度0.2-0.5的情况,需要选用HV10/HV20是比较合适的,但是我们现有的HBRUV-187.5试验仪只有HV30和HV100,又不适用。[color=#DC143C]所以想请问就用这个设备是否可以将就使用?误差有多大范围?[/color]

  • 钢材脱碳层深度检测

    [font=&][size=16px][color=#333333]点击链接查看更多:[url=点击链接查看更多:https://www.woyaoce.cn/service/info-39684.html]https://www.woyaoce.cn/service/info-39684.html[/url]服务背景[/color][/size][/font][font=&][color=#333333][/color][/font][font=微软雅黑, Tahoma, Helvetica, Arial, 宋体, sans-serif][back=#f8f8f8]钢表层碳的损失,脱碳会明显降低钢的淬火硬度、耐磨性和疲劳性能。实质是钢中碳在高温下与氧和氢等发生作用,生成一氧化碳或甲烷,逸出钢件表面[/back][/font][font=&][size=16px][color=#333333]检测内容[/color][/size][/font]脱碳层测定 [table=897][tr][td=1,1,155]脱碳层类型[/td][td=1,1,155]组织特征[/td][td=1,1,258]脱碳深度[/td][/tr][tr][td=1,1,155]全脱碳层[/td][td=1,1,155]全部为铁素体[/td][td=1,1,258]表面至全铁素体结束[/td][/tr][tr][td=1,1,155]半脱碳层[/td][td=1,1,155]铁素体+其他组织[/td][td=1,1,258]全脱碳层结束至刚和芯部组织一致为止[/td][/tr][tr][td=1,1,155]总脱碳层[/td][td=1,1,155]全脱碳层+半脱碳层[/td][td=1,1,258]表面至刚和芯部组织一致为止[/td][/tr][/table][font=&][size=16px][color=#333333]检测标准[/color][/size][/font][font=&][color=#333333][/color][/font][table][tr][td]产品名称[/td][td]检测项目[/td][td]检测标准[/td][/tr][tr][td]钢材[/td][td]脱碳层深度[/td][td]GB/T 224-2019[/td][/tr][/table][font=&][size=16px][color=#333333]我们的优势[/color][/size][/font][font=&][color=#333333][/color][/font][font=微软雅黑]一、[/font][font=微软雅黑]专业技术[/font][font=微软雅黑]的技术人员,提供详细的技术咨询、结果分析[/font][font=微软雅黑]一条龙[/font][font=微软雅黑]二、[/font][font=微软雅黑]提供[/font][font=微软雅黑]先进高端及自动化一体的检测设备,[/font][font=微软雅黑]出具[/font][font=微软雅黑]多种检测方案[/font][font=微软雅黑]三、完整的测试与结果报告流程,精确可靠的检测结果[/font][font=微软雅黑],[/font][font=微软雅黑]帮您快速解决问题[/font]

  • 【每食每刻】荷兰研究一石激起千层浪----质疑益生菌致死事件

    正常人通过乳酸菌饮料、酸奶补充益生菌,绝对安全 说到“益生菌”,既然以“益”字当头,自然是对身体有好处的。可近日,一项荷兰研究却给益生菌戴上了“杀手”的帽子……[size=4] [font=黑体] 荷兰研究一石激起千层浪[/font][/size] 1月23日,荷兰乌德勒支大学医学中心发表声明,由其牵头,于2004—2007年在荷兰15家医院开展了一项益生菌辅助治疗重症急性胰腺炎(SAP)患者的研究,最终在296名受试者中(实验组148人,通过导管直接向肠内注入益生菌;对照组148人,仅给予不含益生菌的安慰剂),实验组最终24人死亡,占16%,对照组最终9人死亡,占6%。“我们觉得非常不可思议,益生菌对于重症急性胰腺炎病情的缓解‘丝毫没有帮助’,反而增加了死亡率。” 该中心发言人表示。由于该实验以双盲对照为原则设计(即为保证客观性,实验设计者、受试者均不知道自己服用的是益生菌还是安慰剂,由第三方随机安排),所以直到实验结束,专家才发现这个“惊人”的结果。 随后,经多国媒体多番转载,这个实验的结论也开始走入“寻常百姓家”,人们日常饮用的酸奶、益生菌饮料都被扣上了“致死”的帽子。“荷兰24名患者疑因喝益生菌酸奶死亡”、“益生菌饮料荷兰遭调查”等耸人听闻的标题,更让许多消费者不禁惊呼,益生菌原来这么可怕?

  • 【转帖】金刚石复合镀层的研究现状

    0 引言  工业上应用的材料经常是根据对强度的要求来选用的,但其表面性能,例如耐磨损性、抗腐蚀性、耐擦伤性、导电性不一定能满足要求。因此,需要选择不同的镀层以满足表面性能的要求。镀层的制备可通过机械镀、摩擦电喷镀、流镀、激光镀、浸镀、电泳涂装、复合电镀等技术来实现。近年来,高速发展起来的复合镀层以其独特的物理、化学、机械性能成为复合材料的新秀,得到广泛的关注,并已经被公认为一种生产技术。复合镀层是通过金属电沉积或共沉积的方法,将一种或数种不溶性的固体颗粒、纤维均匀地夹杂到金属镀层中所形成的特殊镀层。以超硬材料作为分散微粒,与金属形成的复合镀层称为超硬材料复合镀层。文中介绍的金刚石复合镀层就属于这一类。金刚石复合镀层的制备方法主要有化学复合镀和复合电沉积法。1 金刚石颗粒与金属离子共沉积机理  在复合镀液中加入的金刚石颗粒具有很强的化学稳定性,施镀过程中它不参与任何化学反应,只是与化学(电化学)反应产生的金属离子共同沉积在基体的表面上。故化学镀和电沉积复合镀层都可用相同的机理来解释。在研究复合电镀共沉积过程中,人们曾提出3种共沉积机理,即机械共沉积、电泳共沉积和吸附共沉积。目前较为公认的是由N.Guglielmi在1972年提出的两段吸附理论。Gugliemi提出的模型认为,镀液中的微粒表面为离子所包围,到达阴极表面后,首先松散地吸附(弱吸附)于阴极表面,这是物理吸附,是可逆过程。其次,随着电极反应的进行,一部分弱吸附于微粒表面的离子被还原,微粒与阴极发生强吸附,此为不可逆过程,微粒逐步进入阴极表面,继而被沉积的金属所埋入。  该模型对弱吸附步骤的数学处理采用Langmuir吸附等温式的形式。对强吸附步骤,则认为微粒的强吸附速率与弱吸附的覆盖度和电极与溶液界面的电场有关。王森林等研究耐磨性镍 金刚石复合镀层的共沉积过程,结果表面:镍 金刚石共沉积机理符合Guglielmi的两步吸附模型,其速度控制步骤为强吸附步骤。到目前为止,复合电沉积和其它新技术、新工艺一样,实践远远地走在理论的前面,其机理的研究正在不断的发展之中。2 金刚石复合镀层的制备及应用2.1 化学复合镀金刚石  化学镀是不外加电流,在金属表面的催化作用下经控制化学还原法进行的金属沉积过程。在镀液中加入不溶性微粒,使之与金属共沉积,即可得到复合镀层。化学复合镀不需电源和辅助阳极,不受基体材料形状的影响,可在材料的各部位均匀沉积,镀层致密硬度高,以及自润滑性、耐热性、耐腐蚀性和特殊的装饰性。在航空、机械、化工、冶金及核工业等方面有广泛的应用。复合化学镀镍镀层的性质随着选用微粒种类不同而异。金刚石有多种类型,大致可分为两类:单晶和多晶。制备复合材料所选用的金刚石类型取决于复合材料的最终用途。单晶金刚石适用于研磨和磨削,因其表面特征是具有尖锐的边角。  金刚石锉和砂轮等是用复合镀层作为功能面,易采用天然单晶金刚石。耐磨的复合材料不能含有单晶金刚石,因其粗糙的表面易磨损配对面,一般采用爆炸法人造多晶金刚石。化学镀镍-多晶金刚石复合材料具有良好的表面防护和抗擦伤性能。薄层的化学镀镍-金刚石作为中间层可以提高镍 铬电镀沉积物的抗腐性,是最早镀制的化学镀复合材料之一,现在此种镀层则主要用于抗磨。表1是Taber实验机测定金刚石镀层耐磨性结果[6],较对比试样硬铬高4倍,也优于工具钢及硬质合金。  国内有不少学者都研究过化学镀金刚石复合镀层。吴玉程等[7]研究表明在镍磷合金沉积溶液中加入金刚石颗粒(平均尺寸14μm),可以明显的强化镀层,提高耐磨性能。王正等[8]研究表明金刚石复合镀层除了硬度高,耐磨性好之外,还具有优良的导热性和耐腐性,因此可以大幅度提高铸塑模具和冷加工模具的使用寿命。张信义等研究表明热处理工艺对Ni P 金刚石(1μm)化学复合镀层结构及性能的影响,研究表明复合镀层在镀态具有非晶态特征,镀层在300℃开始晶化,在200℃~400℃镀层有良好的耐磨性能。2.2 复合电镀金刚石  用电镀的方法将金刚石固结在金属镀层中得到金刚石复合镀层。在实际工作中,金属镀层起结合剂的作用,金刚石起主要作用。我国金刚石电镀制品是与树脂结合剂和青铜结合剂金刚石磨具一起,于60年代发展起来的。后来逐渐开发了各种非磨削工具。现已形成了比较成熟的工艺。金刚石电镀制品现已广泛的应用在机械加工业、电器电子工业、光学玻璃工业、地质钻探工业、建筑工业、工艺美术及日用品工业。起着不可替代的作用。电镀金刚石复合镀层在新领域的应用也是现在研究的热点。  于金库等]研究表明复合电刷镀金刚石制造工艺简单,得到的镀层硬度耐磨性良好,具有广泛的工业应用前景。余火昆等]对银基金刚石复合镀层的性能进行了研究,其研究表明复合镀层中金刚石含量越高,粒径越小,其磨损率越小,接触电流较大时效果更明显,从而提高了接触头的使用寿命及其耐大接触电流的能力。李云东等提出了一种能很好的适应电镀金刚石工具要求的新型镀层镍钴锰三元合金镀层。研究结果表明,镍钴锰三元合金镀层具有比镍钴或镍锰镀层更高的综合机械性能和低得多的钴含量,更适用于制造电镀金刚石工具,是一种有发展前途的更新替代镀层。王维等针对硬齿面齿轮加工中的刮削,磨削等加工方法中存在的问题,提出了在滚齿机上用金刚石镀层蜗杆珩轮强制珩磨硬齿面的新方法。结果表明工具加工表面质量好,加工效率高。周振君等将金刚石复合镀应用到柔性磨具上,结果表明复合镀层提高了磨具寿命及磨削效率。此外,用复合镀法制造的高硬度的梯度功能材料,如Ni 金刚石、Co 金刚石已经成功的在航空航天领域得到了应用。2.3 复合镀纳米金刚石  复合镀早期添加的金刚石大多是微米级的。随着纳米材料与纳米技术研究的不断深入,把纳米级的金刚石微粒引入到复合镀层中已成为复合镀发展的新趋势。纳米金刚石具有超微粒子的一般性质,如体积效应、表面效应以及小尺寸量子效应等。同时它还具有金刚石的一般性质,如高硬度、高导热性、高弹性模量、高耐磨性、低的比热容与极好的化学稳定性。近年来,俄罗斯、西方各国竞相研究开发纳米金刚石工业产品,并在复合镀层、研磨、抛光、润滑、高强度树脂和橡胶等领域得到了广泛的应用,我国也有多家单位从事这方面的研究。纳米金刚石兼备超硬材料和纳米颗粒的双重特性。具有减磨耐磨,自润滑性,在刀具、研磨、复合镀、润滑、摩擦等方面,都会有广泛的应用。特别是对于精密仪器、高光洁度表面精细加工用刀具等方面纳米金刚石具有其它材料无法比拟的特性。表2列出了有铬 纳米金刚石镀层零件的使用期限与普通表面硬化方法的对比数据。      此外,纳米复合镀在电接触材料中也大有发展前途。吴元康等使用纳米金刚石颗粒来增强银基镀层,降低了电磨损率,提高了电触头的使用寿命及耐大电流强度的能力。国内在该领域的研究尚在探索起步阶段。加快这方面的研究并尽快将其投入使用,不论对国防和民用都具有重要意义。现在研究中存在的主要问题有:  (1) 纳米金刚石在镀液中的分散。纳米级金刚石粉现在主要是由爆炸法制备。平均粒径4~10nm。复合电镀要求将金刚石粉均匀的分散在镀液中,按照胶体分散体系的定义(半径为10 9~10-7m),此时镀液应为胶体分散体系。溶胶中胶团的结构较为复杂,从真溶液到溶胶是从均相到开始具有相界面的超微不均匀相,且由于分散相的颗粒小,表面积大,其表面能也高,这就使得胶粒处于不稳定状态,它们有相互聚结起来变成较大的粒子而聚沉的趋势。实验表明掺有金刚石微粉的镀液其团聚情况严重,且得到的镀层中,纳米级金刚石粉团聚情况也很严重,这很大程度上影响了纳米金刚石粉在实际中的应用。

  • 【原创大赛】渗碳层深的检测

    【原创大赛】渗碳层深的检测

    [align=center]渗碳层深的检测[/align][align=center]西安国联质量检测技术股份有限公司[/align][align=center]材料室:张锃[/align][align=center][b] [/b][/align][align=center][b] [/b][/align][b]零件表面渗碳的目的:[/b]零件表面渗碳,使零件组织发生转变,达到需要的硬度范围和层深要求(表层硬度高,心部硬度底)。从而提高了零件的耐磨性,也保障了零件的韧性。[b]渗碳层深的检测方法: [/b]表面渗碳层深的检测分为金相法和硬度法。金相法是借助光学显微镜研究表层组织到心组织的转变过程(过共析层→共析层→亚共析层)。①过共析层:针状回火马氏体+残余奥氏体+颗粒状碳化物;②共析层:隐针状马氏体;③亚共析层:隐针状马氏体+低碳马氏体(隐针状马氏体逐渐减少,低碳马氏体逐渐增减)。硬度法它是借助显微硬度计从零件的表面做硬度与深度的曲线,根据所做曲线与要求界限值的交点确定渗层深度。①零件技术要求的硬度下限值的80%确定层深。②常用界限值有550HV1、580HV1、513HV1。[b] 实验数据:[/b]金相法:(1)总层深(过共析层+共析层+亚共析层):0.93mm,(2)有效层深(过共析层+共析层+50%亚共析层):0.43mm[align=center][img=,468,254]http://ng1.17img.cn/bbsfiles/images/2018/07/201807051629277973_232_2904018_3.png!w468x254.jpg[/img] [/align]硬度法:以从表面到心部的距离为横坐标,以硬度值为纵坐标建立曲线图(表面0.1mm处硬度必须大于700HV1;零件层深硬度界限为550HV1;心部硬度为:327HV1)[table][tr][td][align=center]层深(mm)[/align][/td][td]0.1[/td][td]0.2[/td][td]0.3[/td][td]0.4[/td][td]0.5[/td][td]0.6[/td][td]0.7[/td][td]0.8[/td][td]0.9[/td][td]1.0[/td][td]1.1[/td][/tr][tr][td]标准界线值HV1[/td][td]550[/td][td]550[/td][td]550[/td][td]550[/td][td]550[/td][td]550[/td][td]550[/td][td]550[/td][td]550[/td][td]550[/td][td]500[/td][/tr][tr][td]硬度HV1[/td][td]713[/td][td]682[/td][td]643[/td][td]572[/td][td]523[/td][td]489[/td][td]412[/td][td]381[/td][td]328[/td][td]325[/td][td]327[/td][/tr][/table][align=center][img=,424,251]http://ng1.17img.cn/bbsfiles/images/2018/07/201807051630097743_8653_2904018_3.png!w424x251.jpg[/img] [/align]分析:①测量值与标准值的相交位置为该零件的有效层深0.43mm;②曲线在0.9mm位置接近于之前确定的零件心部硬度值327HV1,并持续打出1.0mm、1.1mm、其硬度值均没有较大的变化。因此,该零件的总层深为0.9mm。

  • 【转帖】环保NGO开展"衣年轮"调查呼吁穿着低碳装

    人类以自然界的草木藤蔓、动物皮毛来遮羞取暖的时代结束后,对服装的选择更注重审美的需求。在着装上,现代人又颇为喜新厌旧,特别是年轻人,一件衣服经常是穿一两次就被压在箱底,“不见天日”了。疯狂衣橱的背后,并没有多少人知晓服装带来的碳排放量。  服装从原材料的制作,到其自身的生产、运输、使用,以及废弃后的处理,在其生命周期内的每一个环节都与环境、资源密切相关。  近日,珍古道尔及根与芽(北京)环境教育项目机构提出了创新环保概念“衣年轮”和“低碳装”。这家机构针对全国4个城市的2294名公众着装习惯进行了调查,并发布了《“衣年轮”中国城市调研报告》,号召更多人关注服装的碳排放问题,从穿着低碳装开始,呵护地球家园。  “衣年轮”用来衡定每件衣服在生命周期内碳排放总量和年均碳排放量  从原材料生成开始,到对其进行废弃处置为止,每件衣服都有自己的生命周期。一件普通的衣服,从它的生命周期一开始,就对环境资源造成危害。从原料开始,变成面料,经历成衣制作、物流和使用,到最终降解到土壤里,这样的一生中,它会消耗多少的资源,带来多少的碳排放呢?  英国环境资源管理公司计算过一件约400克的100%涤纶裤子在其“一生”中消耗的能量。这条裤子在中国台湾生产原料,在印度尼西亚制作,运到英国销售。假定其使用寿命为两年,经历了92次洗涤,用50℃温水的洗衣机洗涤,烘干机烘干后,平均花两分钟熨烫。这样算来,全部耗电量约为200千瓦时,如果电能由煤提供,就会排放出约47千克的CO2,相当于裤子本身重量的117倍。  针对每一件衣服在制造、运输、使用及处置的整个过程,这家环保机构用服装的碳排放指数组成“衣年轮”,来判断个人对服装的使用是否有益于环保和低碳。  就像从树的年轮可以看出它的年龄和状况一样,衣服也有自己的年轮,用来衡定每件衣服的使用年限、生命周期内的碳排放总量以及年均碳排放量。每件衣服的材质、每个人的使用方式和回收与否,都会影响到“衣年轮”的变化,也会影响到碳排放量。  面料选择能降低碳排放,棉、麻等天然纤维在一定程度上更环保  每个人占有衣服的碳排放量都会像年轮一样逐年增加,那么如何计算公众个人拥有的“衣年轮”,日常生活中如何做才能做到减碳环保?  在北京一家广告公司工作的李晶是低碳一族。她一直坚持吃素,喜欢选择棉麻类服装,从不选用动物皮革类服饰。  李晶的选择是有根据的。因为在动物皮加工的过程中,使用了包括甲醛、煤焦油、染料和氰化物在内的有毒物质。为了增加柔软和耐水性,皮革要经过鞣制。多数皮革使用硫酸铬等铬盐鞣制,产生含铬的废料。除此之外,皮革的生产过程中消耗大量的水和能源,经过鞣制后不能被生物降解,对环境也有极大的危害。  在服装中占有半壁江山的化纤类服装则是利用石油等原料人工合成的,其生产过程需要耗费大量的能源和水,并且产生污染物。化纤本身不易降解,不符合环保的要求。  而棉、麻等天然纤维没有化纤那样的生产过程,在一定程度上更环保。因此,棉麻类服装近年来大受公众追捧。但是,纯棉或纯麻绝不等同于环保。其种植过程中也需要耗费农药、化肥、杀虫剂和水,也会对环境造成污染。  此次调查显示,在面料的选择上,消费者普遍以棉麻为主,并且这一点在各种不同的消费群体之间差别不大。  多数消费者认同环保着装理念,赞成选择低碳面料、延长使用寿命、提高服装的再利用率  低碳服装仅用环保材料是不够的,还要向环保的5R原则靠拢,真正把Reduce(节约能源及减少污染)、Reeval-uate(环保选购)、Reuse(重复使用)、Re-cycle(分类回收再利用)、Rescue(保证自然与万物共存)落在实处。  此次调查显示,绝大多数消费者都对于环保着装持认同态度,对环保服装理念的响应度也比较接近,主要集中在选择低碳面料、延长使用寿命、提高服装的再利用率上。  罗先生是一位从事外贸工作的白领,生活中他十分注重环保,将低碳的生活方式融入到生活的每一个细节。  “以前我想买什么就买什么,购买过大量的衣服,现在购物时不自觉地会考虑到它的功能性。”他说起曾经买过的一件登山服。“这种服装既防寒保暖,透气性又好,春、秋、冬3个季节都可以穿,一衣多穿,提高了服装的使用率。有了这件衣服,外出旅行时不必带太多衣服,能真正实现低碳。”  衣橱中沉睡的衣服意味着更多的碳排放,低碳着装第一步是少买新衣  衣橱中沉睡的衣服,意味着更多的服装消耗和更多的碳排放,从而带来更多的环境问题。  珍古道尔及根与芽(北京)环境教育项目机构给出低碳着装建议,第一步少买新衣、多穿旧衣、旧物利用。如果每人每年少买一件衣服,按腈纶衣服的能耗标准,每吨衣服消耗5吨标准煤计算,则少买一件0.5千克的衣服能够减少5.7千克CO2。  此次调查显示,不同类型的消费者对于服装的使用周期差别不大,大多集中在一个季度到两年,而其预期服装寿命集中在1~3年。在服装购买频率上,女性的服装购买频率高于男性;21~40岁区间的人群购买服装的频率相对较高;白领阶层购买服装的频率相对较高。  调查也显示,消费者对环保的考虑普遍较少,年轻消费者更注重服装的品牌和款式,而老年消费者对环保和耐穿性的考虑较多。  在废旧衣物处理上,年轻人更容易将废旧衣物丢弃或者长期存放,女性更倾向于转赠他人;消费者普遍希望开拓捐赠渠道来处理废旧衣物。  珍古道尔及根与芽(北京)环境教育项目机构认为,在废旧衣物处理的方式中,最好的一种就是旧衣翻新,这既可以避免衣物被闲置或者被作为垃圾焚烧,又可以增加衣物利用率,减少新衣添置,从而减少碳排放。  目前,旧衣翻新不仅是一种环保行为,也逐渐成为一种时尚趋势。许多媒体,包括杂志、电视、网络等,都有关于旧衣翻新方法的详细介绍,一些大城市也出现了专门提供旧衣翻新服务的缝纫店。  日常生活中,废旧衣物如果不适合翻新或者捐赠,那么还有一种常见的处理方式,即旧物利用。  罗先生告诉记者,旧衣通过一定的处理,比如剪裁、缝纫等,变成生活中所需的其他物品,包括抹布、墩布、口袋等,既可以避免旧衣被当作垃圾扔掉,对环境造成污染,同时又可以开发出新的用途,同样也避免了新物品的购买,从而减少了碳排放。  76%的碳排放在衣服使用过程,低碳着装第二步是尽量减少洗涤次数  有关数据显示,一件衣服76%的碳排放来自其使用过程中的洗涤、烘干、熨烫等环节。其洗涤过程不仅耗费大量的水和电,而且洗涤剂和干洗溶剂还会造成环境污染。  低碳着装的第二步是在衣物的使用过程中,尽量减少洗涤次数,用手洗代替洗衣机洗涤,并且在洗涤时使用更加环保的方式。  北京市崇文区前门街道的张阿姨有节水节物的习惯。她经常教育小孙子要注意爱护衣物,尽量避免弄脏。小孙子穿脏的衣服,她会先用洗衣粉浸泡,再用手搓洗。这样既省水,衣服又洗得白亮。  珍古道尔及根与芽(北京)环境教育项目机构建议,洗涤过程中要做到低碳,可以从机洗改为手洗。机洗过程中耗费的电力会导致碳排放,而机洗比手洗用水量大,自来水的生成、运送和污水处理也需要耗费能源,从而导致碳排放。同时,这家机构还建议,洗涤衣服不可避免,而烘干环节则可以避免。降低洗涤温度,改烘干为自然晾干,可以减少衣物熨烫,降低能耗。

  • 水涂层的防腐性

    [size=21px]水涂层的防腐性[/size] 1.涂层表面形貌 所示为不同配方涂层表面光学显微镜图(显微镜光源为正置,通过反射金属表面的涂层来进行光学表征)。如图所示,涂覆在镀锌贴片上的纯PUA固化涂层组成单一(图(A)),颜色深浅不一的细条纹主要是在清洗金属基底时用砂纸打磨出来的沟槽。当固化体系中加入氧化石墨烯GO时图像中出现黑色的斑点,在光学显微镜宏观尺度下主要为团聚以后的氧化石墨烯片状颗粒,较为均匀的分散在整个PUA树脂中,类似于混凝土中的“砖块”结构,可以起到阻隔外界离子的渗透,具体将在防腐性能中进行详细讨论(图(B))。图为树脂掺杂纳米SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]颗粒的光学显微镜图,可以明显地看出大块白色块状形态,形成的主要原因为纳米颗粒的团聚效应造成大量SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]团聚,展现出宏观尺度的白色片状物质,这种结构对阻隔外界离子渗透作用甚微,但是对增加涂层表面粗糙程度起到至关重要的作用。图为同时掺杂了GO/SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]的PUA树脂的涂层,相较于前两幅图,既有团聚以后的成片SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]结构,同时黑色的氧化石墨烯GO穿插分散在树脂中,涂层的离子阻隔和表面粗糙程度将会有进一步的提升,下文将借助其他测试手段对其展开讨论。 [img]https://ng1.17img.cn/bbsfiles/images/2024/09/202409180958033432_6898_5898744_3.png[/img] [align=left]不同涂层的光学显微镜图片:(A)纯PUA树脂(B)PUA树脂掺杂GO(C)PUA树脂掺杂SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]纳米颗粒(D)掺杂GO/SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]的PUA树脂涂层[/align] 受限于光学显微镜的成像原理,对材料表面的形貌表征只能到微米级别。因此,我们利用扫描隧道电子显微镜(SEM)对其表面形貌进行了进一步地表征。如图3所示。从SEM放大5万倍测试的图片可以看出,(A)为掺杂了纳米SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]颗粒的PUA树脂涂层,可以明显的看到大量SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]颗粒较为均一地分散于整个PUA树脂涂层当中,构筑出纳米尺度的表面结构,同时,部分团聚以后的纳米颗粒构筑起微米级别的粗糙结构,两者一起共同形成了微纳两种尺度的表面粗糙结构,这是材料形成超疏水特性的结构基础。图(B)为同时掺杂了GO/SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]的PUA树脂涂层,和只掺杂了SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]的PUA涂层不同,GO的片状结构如同层层叠加的“砖块”,构筑出涂层中的立体“迷宫”,正式这种结构,能够有效阻碍外界离子的渗透和入侵,提升涂层的综合保护性能。 [img]https://ng1.17img.cn/bbsfiles/images/2024/09/202409180958036521_4616_5898744_3.png[/img] [align=center]图 不同涂层SEM图:(A)PUA树脂掺杂SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]纳米颗粒(B)掺杂GO/SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]的PUA树脂涂层[/align] 不论是光学显微镜还是更高阶的扫描隧道电子显微镜,都只能对材料的二维形貌进行表征,因此,我们利用3D轮廓仪对材料表面的三维形貌进行了表征测试。如图所示。从图中可以清晰地看到,固化以后的PUA树脂涂层表面较为平整,利用3D轮廓仪测出的表面平均粗糙度为16.63μm,当PUA树脂体系中加入氧化石墨烯GO以后,图中出现了片状凸起结构,非常直观地体现出氧化石墨烯的片状/层状结构特征,整体表面粗糙度上升到了79.12μm。相应的,只加入了纳米SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]颗粒的PUA树脂涂层,表面凹凸起伏不一,表面平均粗糙度为75.33μm。当纳米SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]颗粒和氧化石墨烯GO同时加入PUA以后,表面三维形貌涤荡起伏,粗糙不平,表面粗糙度进一步提升至108.76μm。有上述数据可知,无机颗粒的加入对有机涂层材料的粗糙程度起到关键作用。

  • 【讨论】ICP-MS7500CS在开机的前1小时内出现仪器内部的声音不稳定。初步推断是分子涡轮泵的转速不均匀。

    [url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]7500CS在开机点火后的前1小时内出现仪器内部的声音不稳定。初步推断是分子涡轮泵的转速不均匀。在NG模式运行下,经常听到声音时而低沉时而高扬,感觉像是蜜蜂一会飞来一会飞去的。再看看元素分析的数据RSD偏差很大!在10%以上,有些到了80%。由于仪器已经运行近2年半了,这期间基本是每天都SHUTDOWN,工程师曾提醒过说这样很伤涡轮泵的,但是由于公司上层领导的刚愎自用,依旧不购置备用电源。为了以防万一只好每天都SHUTDOWN。不知道这样的声音和分析的数据状态是否真的和分子涡轮泵相关?有哪些解决办法不?

  • 【转帖】地壳辉长岩层发现细菌 更深地底或有生命

    在我们生活着的地球,“生命无所不在”这一观点已一次次得到证实。无论是在温度极高的火山口附近,还是在南极洲异常寒冷的冰天雪地中,科学家们都发现了生命的存在。如今他们将目光投向了地底未知的世界,去寻找那些“隐藏最深”的生命。据美国《大众科学》杂志报道,国外科考人员日前首次在地壳辉长岩层发现了生命,同时还找到了能够证明有生命存在于更深地底的证据。在一项名为“联合大洋钻探计划”的国际科考项目中,科研人员旨在探索和分析海底地壳并提取样本。他们选择对大西洋中部海底一个在构造上非常活跃的断层地块进行钻探,该地块的玄武岩层厚度只有70米。

  • 【求助】请教怎样制备均匀的单层纳米膜

    最近用200nmSiO2(水溶液)制备单层纳米膜,用旋转成膜的方法,但是膜很不均匀,用液液自组装的方法也失败,因为看不出分层,请教各位怎样才能制备均匀的单层膜呢?如果用旋转的方法怎样设定时间和速度,而掖液自组装又应该怎么做呢?谢谢大家了,急用啊

  • 【求助】求助:怎么制备均匀的纳米单层膜

    最近用200nmSi(水溶液)制备单层纳米膜,用旋转成膜的方法,但是膜很不均匀,用液液自组装的方法也失败,因为看不出分层,请教各位怎样才能制备均匀的单层膜呢?如果用旋转的方法怎样设定时间和速度,而掖液自组装又应该怎么做呢?谢谢大家了,急用啊

  • 金屬涂層檢測儀器

    各位網友:現在公司使用的涂層儀必須平面探點才能檢測涂層,現公司有些金屬產品為圓形位,沒有平面點,請求各位網友提供意見現在市場使用最新的涂層儀,最經濟及最方便檢測的涂層儀種類?

  • 珍稀野生药用菌——桑黄

    桑黄是近几年才火热起来的一个名词,那是由于人们对健康的高度关注和癌症患者的剧增。毫无疑问,桑黄的确是一种十分珍贵的药用真菌,对增强人体免疫功能及治疗疾病,尤其是防治癌症等方面都有着突出的显著效果。桑黄是人们熟知的一种药用真菌的俗称,属担子菌亚门(Basidiomycota)、多孔菌科、木层孔菌属,又称桑臣、桑耳、胡孙眼、桑黄菇,是一种珍贵的药用真菌,有“森林黄金”之美称。最早的文字记载出现在400多年前李时珍的《本草纲目》中。据《药性论》记载:桑黄味微苦,性寒,在我国传统中药中用于治疗痢疾、盗汗、血崩、血淋、脐腹涩痛、脱肛泻血、带下、闭经;在日本作为利尿剂使用。目前主要应用于肝炎及癌症的治疗,因其治疗效果显著,风靡于日本及韩国,畅销不衰,并已经开始人工栽培并批量生产,美国和西欧对桑黄也略有研究。国内外桑黄研究较多集中于深层发酵条件优化、多糖分子结构、抗癌免疫学机理等。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制