当前位置: 仪器信息网 > 行业主题 > >

羟基芍药苷

仪器信息网羟基芍药苷专题为您提供2024年最新羟基芍药苷价格报价、厂家品牌的相关信息, 包括羟基芍药苷参数、型号等,不管是国产,还是进口品牌的羟基芍药苷您都可以在这里找到。 除此之外,仪器信息网还免费为您整合羟基芍药苷相关的耗材配件、试剂标物,还有羟基芍药苷相关的最新资讯、资料,以及羟基芍药苷相关的解决方案。

羟基芍药苷相关的资讯

  • 利用MALDI质谱成像技术揭示牡丹和芍药根的空间代谢组
    关键词:MALDI-MSI 质谱成像、Paeonia suffruticosa 牡丹、Paeonia lactiflora 芍药、Monoterpene glycoside 单萜苷、Spatial distribution 空间分布01 前言 芍药属植物具有较高的观赏价值和经济价值,以及重要的药用价值,引起园艺学家、植物学家和草药学家的极大关注。芍药属植物约有35种,其中牡丹 (Paeonia suffruticosa,PS)和芍药(Paeonia lactiflora ,PL)是两种主要的东方药草。牡丹和芍药同属,外形也极为相似,从植株形态上进行区分:牡丹,是小灌木,有木芍药之称;而芍药是多年生草本植物。在中国、日本和韩国,牡丹皮(牡丹的干燥根皮)和白芍(芍药的根部)是具有镇痛和抗炎活性的重要中药。尽管 PS 和 PL 的植物化学和药理作用的相似性和差异性已经被广泛研究,但其空间代谢组的比较几乎没有报道。空间代谢组学是代谢组学研究发展中的一个分支,它提供了组织结构和个体代谢物之间的直接联系。阐明PS和PL的空间代谢组差异在植物分类和药用植物质量控制等领域具有重要意义。02 摘要 2021年4月,中国药科大学天然药物与中药学院国家重点实验室李萍教授、李彬教授在 New Phytologist 期刊上发表了题目为:“Unveiling spatial metabolome of Paeonia suffruticosa and Paeonia lactiflora roots using MALDI MS imaging”的研究论文,本研究结合多基质和正负离子检测模式,对牡丹和芍药的根切片进行了高质量分辨率基质辅助激光解吸电离质谱成像(MALDI MSI)和 AP-SMALDI 串联质谱(MS/MS)成像,系统地研究了单萜糖苷类和丹皮酚苷类、单宁类、黄酮类、糖类、脂类等多种代谢产物的空间分布。利用 Li DHB 基质的串联质谱成像技术来准确区分芍药苷和芍药内酯苷两种结构异构体的组织分布。此外,参与没食子单宁生物合成途径的主要中间产物在根部成功定位和显示。03 结果 3.1MALDI MSI的PS和PL根代谢产物的原位分析采用高分辨率 MALDI MSI 和 MALDI MS/MS Imaging 相结合的方法,获得了 PS 和 PL 根横截面的综合代谢产物分布图,并进一步用 LC-MS/MS 进行了验证。代表性部位的质谱图从根的四个区域获得,包括木栓层、皮层、韧皮部和木质部(图1)。在正离子模式下,使用 DHB 基质,检测到两种主要特定类别的次级代谢物单萜糖苷类(monoterpene glycosides,MGs)和没食子单宁(gallotannins)。在 PS 和 PL 中均观察到共同的代谢物 MGs,如芍药苷/芍药内酯苷(m/z 519.1263,结构异构体)、氧化芍药苷(m/z 535.1212)、苯甲酰芍药苷(m/z 623.1525)、牡丹皮苷 A(m/z 653.1631)、牡丹皮苷 B/J(m/z 669.1580)、牡丹皮苷 E(m/z 565.1318)和苯甲酰氧芍药苷/牡丹皮苷 C (m/z 639.1475,同分异构体)。牡丹/芍药中生物合成的没食子单宁是没食子酸葡萄糖酯(即没食子酰葡萄糖,GGs)。如图1所示,观察到具有相邻峰间距为 152.01 Da 的 m/z 分布,表明母体分子上连续添加了没食子酸基团。在 PS 和 PL 中,检测到12个没食子酰基残基的取代产物(2GG-12GG,m/z 523.0485-2043.1581)。作者还发现了 PS 特有的成分—丹皮酚苷类(PGs),如牡丹酚甙(m/z 367.0790)、牡丹酚原甙和牡丹酚新甙(m/z 499.1212,同分异构体)。图1. 正离子模式下牡丹(左)和芍药(右)根横截面不同区域的 MALDI 质谱图3.2MALDI MSI比较PS和PL根单萜和丹皮酚苷类成分的空间分布图a中,通过 PS 和 PL 的横截面可以看到解剖结构中的物种多样性,PS 根木质部区域高度木质化;PS 韧皮部约占整个横切面的45-55%,PL 根的韧皮部仅占10-20%。图b中,可以看到 PS 和 PL 中单萜糖苷类的空间分布模式,芍药苷(m/z 519.1263,[M+K]+)及其衍生物主要分布在 PS 和 PL 的木栓层、韧皮部区域,PL 的木质部射线区,但在 PS 的木质部(木芯处)检测信号较低。此外,在图c中,可看到丹皮酚苷的空间分布,在 PS 根的木栓层和韧皮部中可以解吸出丹皮酚苷类化合物,如丹皮酚苷(m/z 367.0790)、牡丹酚原甙和丹皮酚新甙(m/z 499.1212,同分异构体)、丹皮酚苷A/B/C/D(m/z 651.1322,同分异构体)和丹皮酚苷E(m/z 661.1741),而 PL 的根中不存在丹皮酚苷类物质。图2 牡丹和芍药根的 MALDI 成像 (a. 甲苯胺蓝O染色的组织切片的光学图像;b. 单萜糖苷类(MGs)的离子图像;c. 丹皮酚苷(PGs)的离子图像)。3.3AP-SMALDI MS/MS成像分析结构异构体的空间分布由于存在高丰度 [M+K]+ 断裂困难、[M+Na]+ 丰度太低等问题,Li DHB 被应用于本实验 AP-SMALDI MS/MS 成像。如图3(a)所示,Li DHB 显示为产生芍药苷和芍药内酯苷的 [M+Li]+ 二级碎片的有效基质,其中两个差异片段 m/z 253.13(芍药内酯苷)和 m/z 255.11(芍药苷)被检测到。在 50μm 空间分辨率下进行 AP-SMALDI MS/MS 成像实验,并在 m/z 487.1777处检测到 [芍药苷/芍药内酯苷+Li ] + 的前体分子离子。前体分子离子和二级碎片离子的离子图像如图3(b)所示,显示了前体分子离子和最终产物离子的空间分布,在 PS 中,仅检测到 m/z 255.11,且主要在木栓层中观察到;在 PL 中检测到 m/z 255.11 和 m/z 253.13,二者分布趋势相似,且木栓层、韧皮部和木质部射线区的信号强度高于皮层和木质部维管束。通过 AP-SMALDI MS/MS 成像,芍药苷和芍药内酯苷的空间分布被清晰的呈现出来。作者使用 LC-MS 方法进一步验证 MALDI 成像结果,PS 和 PL 的根被人工分成木质部和木质部外两个部分。如图3(c)所示,LC-MS 结果与 MALDI 成像结果一致,在牡丹中仅检测到芍药苷;在芍药中,检测到了两者,并且在外层中观察到更高丰度的芍药苷和芍药内酯苷,因此,Li DHB 基质是可行的,以获得用于分辨异构体空间分布的不同片段。图3 MALDI MSI 及 LC-MS 验证。(a)前体物质m/z 487.18的串联质谱,分别来自芍药内酯苷和芍药苷。(b)像素大小为50μm的牡丹(PS,上)和芍药(PL下)根中芍药苷和/或芍药内酯苷的 MSI图。(c)用 LC-MS 从 PL 和 PS 根切片的不同部位相对定量芍药苷和/或芍药内酯苷。3.4MALDI MSI的PS及PL根部没食子单宁生物合成途径的空间分布分析下图4显示了在牡丹和芍药的根切片中显现的没食子酸生物合成途径和离子图像,在牡丹和芍药根中观察到总共13种参与没食子酸生物合成途径的代谢物,包括没食子酸、没食子酰葡萄糖、2GG -12GG。如图4所示,没食子酸(m/z 169.0142,[M-H]-)是合成没食子单宁的起始化合物。没食子酸主要分布于 PS 的木质部区域(木芯),广泛分布于 PL 的根部,形成层部位含量明显增高。β-葡萄糖苷作为没食子单宁的基本单元和主要的酰基供体,主要分布于 PS 的韧皮部,PL 的木质部射线和皮层。从 2GG-12GG 途径观察到没食子单宁空间分布的动态变化。2GG、3GG 主要分布于 PS 的木栓层和韧皮部区域,在 PL 中含量明显较低。4GG、5GG 主要分布在 PS 的木栓层、韧皮部和木质部中,PL 的木质部和韧皮部。其中,作为 6GG-12GG 合成的前体物质,5GG 相对均匀地分布于牡丹和芍药根中。从 6GG -12GG 的第二个序列中,复合单宁主要集中在 PS根的木质部导管区和PL的楔形木质部区域和皮层中,且覆盖面积呈明显下降趋势(尤其是 11GG 和 12GG )。图4 MALDI 质谱成像技术研究牡丹和芍药根中没食子单宁生物合成途径。(a)没食子单宁的生物合成途径。(b)从 PS (左)和 PL (右)根切片获得的参与没食子单宁生物合成途径的主要中间体的质谱成像图。3.5MALDI MSI比较PS和PL根中其他代谢物的空间分布槲皮素(m/z 303.0499,[M+H]+)主要存在于 PS 和 PL 的皮层中(图5)。单糖(m/z 219.0266,[M+K]+)、二糖(m/z 381.0794,[M+K]+)、三糖(m/z 543.1322,[M+K]+)和四糖(m/z 705.1850,[M+K]+)主要积累在 PS 的皮层和韧皮部以及 PL 的皮层和木质部射线区。脂质 PC(34:2) (m/z 796.5253,[M+K]+)和 PC(36:4) (m/z 820.5253,[M+K]+)主要分布于 PS 的根系形成层和 PL 的木质部射线区。图5 从牡丹(PS,左)和芍药(PL,右)根部切片中选取的类黄酮、糖类和脂类的离子图04 总结 本研究采用 MALDI MSI 结合 LC-MS 代谢物检测技术,系统表征了单萜和丹皮酚苷类、鞣质类、黄酮类、糖类和脂类等多种代谢产物(65种)的空间分布。用高分辨 MALDI MSI 研究了两种芍药科植物牡丹和芍药共同代谢物和特定代谢物在空间分布上的相似性和差异性,为代谢物的生物合成、运输和积累研究提供了重要信息。为了解决异构代谢物空间分布不明确的问题,作者进行了 MALDI 串联质谱成像,明确了芍药苷和芍药内酯苷的空间分布。本研究表明牡丹和芍药的皮以及中心部位都含有丰富的生物活性物质,能够为传统药材加工方法的改良提供直观的依据。此外,本研究还首次绘制了参与没食子单宁生物合成途径的前体以及中间体的空间分布图,可水解的单宁主要分布在木栓层、韧皮部等,其可能在不损害细胞质成分的情况下发挥保护作用,如对抗生物压力;鞣花鞣质倾向于在木质部区域积累,这可能与木质素具有共同的支持植物的功能。综上所述,高分辨率 MALDI MSI 提供了全面、准确的代谢物空间分布,为中药的深入研究、使用和加工方法的改良提供了独特的见解。文献地址:https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.17393「科瑞恩特」独家代理质谱成像离子源在大中华区独家代理的两款质谱成像离子源,都可搭载Thermo ScientificTM Q ExactiveTM或Obitrap ExplorisTM系列质谱仪。AP-SMALDI 5AF高分辨自动聚焦3D快速质谱成像系统,常压操作环境,空间分辨率可达到3μm,独特3D检测模式可以检测凹凸不平的样品表面,快速检测模式可达18pixel/s,全像素检测大大提高检测灵敏度,高空间分辨率和高质量分辨率使样本中的分子化合物达到最佳成像效果。MALDI ESI InjectorTM 透射式超高分辨质谱成像系统,可以同时搭载MALDI离子源与ESI离子源,既可用于传统LC-MS/MS实验,也可用于质谱成像检测,通过双离子漏斗接口实现离子源快速切换,无需拆卸,操作便捷,并且接口可以进一步升级为MALDI-2和t-MALDI检测,大大提高空间分辨率和检测灵敏度。
  • 助力精准诊断!药明奥测质谱法“25-羟基维生素D测定试剂盒”获批
    维生素D是人体内重要的微量元素之一,可调节钙、磷代谢、促进骨骼生长、调节细胞生长分化、调节免疫功能,但据不完全统计,目前有50%以上的中国人群存在维生素D缺乏的现象。维生素D在体内转化成25-羟基维生素D2/D3,因其半衰期长、含量高、易于检测,已成为评估VD含量的最佳指标。传统VD测定试剂盒多采用免疫分析法,因抗体特异性差异等因素影响,常存在干扰,影响了定量的准确度。为助力精准诊断,近日,上海药明奥测医疗科技有限公司(以下简称“药明奥测”)自主开发推出了“25-羟基维生素D测定试剂盒(液相色谱-串联质谱法)”,且该试剂盒已获批二类医疗器械注册证。据了解,药明奥测是中国第一家践行整合诊断的赋能平台公司,公司依托Mayo Clinic的整合诊疗理念与经验,凭借融合多平台、多组学及临床数据驱动的开放式赋能平台,通过算法整合升级,不断推出创新诊断服务和产品,同时加速诊疗创新者从研发到应用的技术转化,创造共赢共享的产业新生态。值得关注的是,为打造领先的临床质谱平台,药明奥测独家引进Mayo Clinic的400余项质谱项目,提供肿瘤、个体化用药、人体营养和代谢、激素、金属元素检测等服务,其质谱法25-羟基维生素D测定试剂盒,更是经过严格质量体系验证,可溯源至美国国家标准与技术研究院(NIST)Standard Reference Material® 2972a。液相色谱-串联质谱法(LC-MS/MS)检测特异性及灵敏度高,可对25-羟基维生素D2、25-羟基维生素D3分别测定,保证了测试准确度。同时,作为一家高新技术企业,药明奥测始终坚持国际高标准自主创新,在试剂盒的开发过程中,药明奥测秉承以客户为中心的理念,积极提出差异化的解决方案并落实到产品性能优化中。在前处理阶段,采用“蛋白沉淀一步法”,显著减少了前处理步骤,操作方便快捷,有效地提高通量。此外,鉴于25-羟基稳定性差,目前市场上诸多解决方案采用-20℃冷冻保存或冻干粉基质,增加了客户使用成本,影响了用户体验。奥测试剂盒创新的采用独特配方新基质,产品为液体剂型,2-8℃稳定保存。据悉,截至目前,公司已累计申请体外诊断(IVD)专利近200项,涉及免疫、分子及质谱技术平台。目前,国内疫情仍处于不平静阶段,疫情常态化推动了诊疗场景拓展,在社区、在第三方检测机构、在家庭,方便快捷地采集、检测,已成为广大人民群众的需求,药明奥测国际高标准的试剂开发与整体解决方案创新,不仅大大提高了维生素D检测准确性与便捷性,实现了应用场景拓宽,也让更多人获益于高质量的医疗服务。此后,药明奥测将持续凭借强大的医疗及商业资源整合能力,基于临床需求布局丰富的研发管线,通过算法整合升级,不断创新整合诊断服务和产品,以“自主研发+授权合作”双模式,推动诊疗药险全新生态,促进诊疗场景的融合与拓展,让更多人在医院、在社区、在家庭中,都能获得高品质的医疗服务。
  • 新品上市 | 液态发酵食醋中对羟基苯甲酸酯类色谱检测预处理方法包
    对羟基苯甲酸酯类作为食品防腐剂被广泛应用在各类食品中,其中对羟基苯甲酸甲酯(MP)、对羟基苯甲酸乙酯(EP)、对羟基苯甲酸丙酯(PP)和对羟基苯甲酸丁酯(BP)一直是国家食品安全检测抽查的重点项目,并且MP和EP在酱油和醋中的zui大添加限量(以对羟基苯甲酸计)均为250mg/kg。月旭科技之前已推出了酿造酱油和固态发酵食醋中对羟基苯甲酸酯色谱检测预处理方法包,此次针对液态发酵食醋,新研发推出了液态发酵食醋(如白醋、米醋等液态发酵工艺的食醋)中对羟基苯甲酸酯类色谱检测样品预处理方法包,其操作步骤相较前两种食品的方法包更为简单,但净化效果依旧很好,可实现从食醋样品中同时提取、分离、净化这4种对羟基苯甲酸酯类(对羟基苯甲酸甲酯、对羟基苯甲酸乙酯、对羟基苯甲酸丙酯和对羟基苯甲酸丁酯),以用于气相色谱和液相色谱技术对这些防腐剂的检测。样品稀释液:将食醋样品溶解稀释以备上样;净化专用SPE柱:吸附食醋中的杂质;SPE淋洗液:将被SPE柱吸附的杂质淋洗出来;SPE洗脱液:将被SPE柱吸附的目标物洗脱下来;洗脱净化管:进一步吸附残留杂质并除水;萃取液:将洗脱收集液中的目标物萃取出来。1)食醋样品称量:准确称取5g食醋样品;2)稀释溶解:使用“样品稀释液”,稀释溶解食醋样品;3)净化:使用“净化专用SPE柱”,用“SPE淋洗液”和“SPE洗脱液”进行SPE操作,洗脱液收集在“洗脱净化管”内,然后氮吹浓缩;4)萃取:使用“萃取液”,类似于QuEChERS的操作,上清液收集后旋蒸蒸干;5)残留样品用溶剂复溶,过滤后上色谱检测。1) 气相色谱柱分析柱:WM-5色谱柱,柱长30m,内径0.32mm,膜厚0.25μm,月旭科技(货号:03902-32001);2)进样口:温度260℃,分流比1:10,进样量1μL;3)升温程序:4)检测器:氢火焰离子化检测器(FID),温度:280℃;5)载气:氮气,纯度≥99.999%,流速2.0mL/min;6)检测色谱图:1) 液相色谱柱分析柱:Ultimate® XB-C18色谱柱,4.6mm×250mm,5μm,月旭科技(货号:00201-31043);保护柱:Ultimate® XB-C18,4.6mm×10mm,5μm,月旭科技(货号:00808-04001)(配不锈钢保护柱柱套,月旭科技,货号:00808-01101);2)流动相:A相:含1%乙酸的40%乙腈水溶液;B相:含1%乙酸的乙腈;3)梯度洗脱程序:4) 流速:1.0mL/min;5) 检测波长:260nm;6) 柱温:35℃;7) 进样体积:1~20μL(视目标物浓度而定)。8) 检测色谱图:
  • 新品上市 | 固态发酵食醋中对羟基苯甲酸酯类色谱检测预处理方法包
    对羟基苯甲酸酯类作为食品防腐剂被广泛应用在各类食品中,其中对羟基苯甲酸甲酯(MP)、对羟基苯甲酸乙酯(EP)、对羟基苯甲酸丙酯(PP)和对羟基苯甲酸丁酯(BP)一直是国家食品安全检测抽查的重点项目,并且MP和EP在酱油和醋中的zui大添加限量(以对羟基苯甲酸计)均为250mg/kg。国标中预处理技术存在的问题现行的《食品安全国家标准 食品中对羟基苯甲酸酯类的测定》(GB 5009.31-2016)中,针对气相色谱法检测的样品预处理技术主要是多次液液萃取+液液洗涤的技术,该方法操作繁琐、检测耗时长、有机溶剂消耗量大(其中包括消耗大量的易制毒化学试剂),且回收率较低、稳定性差,另外净化效果也不佳,往往存在着干扰检测的杂质成分。月旭科技针对固态发酵食醋这种复杂基质食品,开发出了固态发酵食醋中对羟基苯甲酸酯类色谱检测预处理专用方法包,这个方法包所采用的双柱SPE法可实现高效、稳定可靠地从各种复杂基质的固态发酵食醋中提取、分离和净化4种对羟基苯甲酸酯类(对羟基苯甲酸甲酯、乙酯、丙酯和丁酯),大幅度减少对色谱柱及色谱管路污染、甚至堵塞情况,可以很好地保护色谱系统。提取液:从食醋样品中提取对羟基苯甲酸酯类;提取吸附剂:吸附食醋样品中的大颗粒杂质;萃取液:使对羟基苯甲酸酯类提取液中的杂质沉淀分离;萃取管:管中的吸附剂可吸附萃取时沉淀的杂质;净化专用SPE柱(双柱):吸附食醋中不同种类的色素;SPE淋洗液:将被SPE柱吸附的杂质淋洗出来;SPE洗脱液:将被SPE柱吸附的目标物洗脱下来。主要操作流程1)食醋样品称量:准确称取5g食醋样品;2)分离提取:使用“提取液”和“提取吸附剂”,振荡分离提取;3)萃取:取试样提取上清液进行萃取,使用“萃取管”和“萃取液”,类似于QuEChERS的操作;4)净化:使用双柱串联的“净化专用SPE柱”,上样用“SPE淋洗液”和“SPE洗脱液”进行SPE操作,洗脱液收集后旋蒸蒸干;5)残留样品用溶剂复溶,过滤后上色谱检测。1) 气相色谱柱分析柱:WM-5色谱柱,柱长30m,内径0.32mm,膜厚0.25μm,月旭科技(货号:03902-32001);2)进样口:温度260℃,分流比1:10,进样量1μL;3)升温程序:4)检测器:氢火焰离子化检测器(FID),温度:280 ℃;5)载气:氮气,纯度≥99.999 %,流速2.0mL/min;6)检测色谱图:1) 液相色谱柱分析柱:Ultimate® XB-C18色谱柱,4.6mm×250mm,5μm,月旭科技(货号:00201-31043);保护柱:Ultimate® XB-C18,4.6mm×10mm,5μm,月旭科技(货号:00808-04001)(配不锈钢保护柱柱套,月旭科技,货号:00808-01101);2)流动相:A相:含1%乙酸的40%乙腈水溶液;B相:含1%乙酸的乙腈;3)梯度洗脱程序:4) 流速:1.0mL/min;5) 检测波长:260nm;6) 柱温:35℃;7) 进样体积:1~20μL(视目标物浓度而定)。8) 检测色谱图:
  • 新型毒饮料伪装上市,“合法”“非法”仅在“氨基”“羟基”一字之差
    这两天,一条关于某种“新毒品”在各大酒吧流行的“预警”信息,在记者朋友圈掀起了一阵转发热潮。相关信息称,这种“新毒品”是一款含有“γ-氨基丁酸”成分的饮料——咔哇,多地有人喝了这个东西可以连续嗨三个晚上,据说之前吸k粉的人很多都嗨这种东西了。 据了解,咔哇是生长在南太平洋岛国、海拔500-1000英尺地区的一种植物,系胡椒科多年生灌木。当地民间医生广泛应用咔哇改善睡眠、缓解焦虑、战胜抑郁、松弛肌肉、消除疲劳。咔哇可榨制一种饮料,即咔哇酒。2015年,国内一旅途探秘综艺真人秀节目中,节目嘉宾率领的旅行达人,曾在瓦努阿图制作饮用所谓“最幸福的饮料”——咔哇酒,从而引起国内关注,并在年轻人、时尚人士中流行。 但是仔细阅读配料表后我们发现,我国出现的这种含有“γ-氨基丁酸”成分的饮料,并非来自太平洋岛国的“最幸福的饮料——咔哇”。在太平洋岛国流行的咔哇饮料,是由卡瓦胡椒制成的,卡瓦胡椒当中含有的卡瓦内脂和二氢醉椒素,是“γ-氨基丁酸”的激动剂,能够调节人体内“γ-氨基丁酸”的传输,所以能够起到安神、镇定的作用。 饮料中标示的“γ-氨基丁酸”(gamma aminobutyric acid, gaba),是一种天然存在的功能性氨基酸,广泛分布于动植物体内,如豆属、参属、中草药等的种子、根茎和组织液中都含有,2009年9月27日由卫生部批准使用γ-氨基丁酸为新食品原料,并不是毒品。参见卫生部网站http://www.moh.gov.cn/mohbgt/s9513/200910/43090.shtml 这批咔哇饮料之所以引起关注,是因为经公安机关毒品实验室对其进行检验和分析,发现其中含该饮料含有 γ-羟基丁酸(我国一类精神药品)和 γ-丁内酯( γ-羟基丁酸的前体),并不是商品介绍的γ-氨基丁酸,这两种物质虽然只有一字之差,却有天壤之别。 γ-羟基丁酸(gamma hydroxybutyrate, ghb),是属于中枢神经抑制剂,它曾被用来当做全身麻醉剂,后由于有报导其可导致癫痫发作或昏迷使得使用率降低。滥用“γ-羟基丁酸”会造成暂时性记忆丧失、恶心、呕吐、头痛、反射作用丧失,甚至很快失去意识、昏迷及死亡,与酒精并用更会加剧其危险性。在过去的十几年,美国、东南亚国家以及中国港台地区γ-羟基丁酸的滥用呈快速增长趋势,ghb及其相关物质γ-丁内酯(gamma-butyrolactone, gbl)和1,4-丁二醇(1,4-butanediol, 1,4-bd)常被用作迷奸药,因此,2005年我国就将“γ-羟基丁酸”列入二类精神药物予以管制,并于2007年变更为一类。 据了解,目前夜场各种打着咔哇旗号的所谓潮饮数不胜数,不排除部分饮料“挂羊头卖狗肉”,打着合法成分的旗号使用违禁药物。文中提到的“毒饮料”已被勒令全面下架,但是我们仍要保持警惕,尤其在酒吧、ktv这样的地方,建议青少年朋友不要因为好奇去尝试一些“小众”“特色”的饮品。相关检测标准品
  • 透过红外光谱法,洞察石英玻璃羟基含量的秘密
    玻璃中的羟基会严重影响玻璃的性能,即使羟基重量含量低于1%,它也会明显地影响玻璃的粘度、密度、折射率和热膨胀系数。同时,由于玻璃中羟基的存在,它将对某种波长的红外光波形成强烈的吸收,这对于光纤通讯中光学材料的选择是一个十分重要的问题。在电光源行业中,玻璃中羟基含量的高低是直接影响气体放电灯的质量。因此,需要严格监控玻璃中的羟基含量。此外,为了研究羟基含量与玻璃性能之间的关系,以便为设计与制造具有一定特性的玻璃提供必要的数据,这也需要定量地测定玻璃中羟基的含量。你知道吗?利用红外光谱仪可以快速、准确地检测石英玻璃中的羟基含量!这是怎么做到的呢?让我们一起来揭开这个谜底。红外光谱仪是一种神奇的科学仪器,它能够通过测量样品对红外光的吸收情况,分析出样品的化学成分和结构信息。测定玻璃中羟基含量的方法有两类:一、水的热除气法 二、光谱法。比较这两类方法,光谱法更具有其优越性,该法在测试过程中,玻璃内所有羟基都将被探测,但该法需要已知羟基含量的校准标准。对于石英玻璃来说,其中的羟基会在特定的红外波长范围内产生吸收峰。通过检测这些吸收峰的强度和位置,我们就能分析出石英玻璃中羟基的含量。在水晶或者石英玻璃行业做相关分析的老师如何需要了解具体方案可以联系能谱科技,我们将给您一套完整的解决方案!
  • 广东省农药协会发布《农药产品中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》团体标准征求意见稿
    各有关单位及专家:广东省农药协会立项的《农药产品中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》团体标准已完成征求意见稿,为保证团体标准的科学性、严谨性和适用性,现公开征求意见。请有关单位及专家提出宝贵意见或建议,并请于2023年12月3日前将《标准征求意见汇总表》(见附件1)以电子邮件的形式反馈至广东省农药协会秘书处,逾期未回复将按无异议处理。感谢您对我们工作的大力支持!联系人:沈文胜;联系电话:020-37288797, 13802631090;电子邮箱:swsg@163.com 附件:1. 标准征求意见汇总表2. 《农药产品中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》征求意见稿 广东省农药协会2023年11月3日广东省农药协会关于征求《农药产品中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》团体标准意见的通知.pdf附件1:标准征求意见汇总表.docx附件2:农药产品中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定(征求意见稿).pdf
  • 欧盟科学委员或将对羟基苯甲酸酯修改意见
    2012年11月1日消息,欧盟消费者安全科学委员会(Scientific Committee for Consumer Safety ,SCCS)被要求就潜在的内分泌干扰物羟基苯甲酸丙酯(propylparaben)和羟苯丁酯(butylparaben)提供建议,这两种物质作为防腐剂被用于个人护理产品中。   2011年3月,SCCS认为一种产品中羟苯丁酯和对羟基苯甲酸丙酯的单独的浓度总量不超过0.19%,那么这两种物质都是安全的。与此同时,丹麦通知委员会,该国已禁止在三岁以下儿童用化妆品中使用对羟基苯甲酸丙酯和羟苯丁酯。2011年10月,SCCS在其之前的意见上添加了一项说明,结论为六个月以下婴幼儿尿布中的“风险不能排除”。   SCCA被要求考虑其对羟基苯甲酸的意见是否需要更新。
  • 欧盟拟放宽番茄中8-羟基喹啉的最大残留限量
    近日,欧洲食品安全局就放宽番茄中8-羟基喹啉(8-hydroxyquinoline)的最大残留限量发布意见。   依据欧盟委员会(EC)No396/2005法规第6章的规定,西班牙收到一家公司要求修订番茄中8-羟基喹啉的最大残留限量的申请。为协调8-羟基喹啉的最大残留限量(MRL),西班牙建议对其残留限量进行修订。   依据欧盟委员会(EC)No396/2005法规第8章的规定,西班牙起草了一份评估报告,并提交至欧委会,之后转至欧洲食品安全局。   欧洲食品安全局对评估报告进行评审后,做出如下决定:建议将番茄(商品代码:0231010)中8-羟基喹啉的最大残留限量放宽至0.1mg/kg(现行标准是:0.01mg/kg)。
  • 欧盟限制化妆品中对羟基苯甲酸酯类的使用
    4月10日,欧盟委员会发布官方公报(EU) No 358/2014,修订了欧洲化妆品法规No 1223/2009附件Ⅱ,限制物质清单新增尼泊金异丙酯、羟苯异丁酯、羟苯苄酯、4-羟基苯甲酸苯酯、戊烷基对羟苯甲酸酯5种对羟基苯甲酸酯类物质。   此外,修订案还规定二氯苯氧氯酚在漱口水中使用最大浓度为0.2%,在其他化妆品如牙膏、手皂、扑面粉中使用最大浓度为0.3%。羟基苯甲酸及其盐和酯类作为单酯中的酸用于制作配制品中的最大浓度为0.4%,作为混合酯中的酸最大允许浓度为0.8%。2014年10月30日前,不符合新规的化妆品仍可在市场上正常销售,2015年6月30日起,所有市场上流通的化妆品必须符合新规。   对此,检验检疫部门提醒相关企业:一是密切关注欧盟化妆品修订案,及时掌握法规变化动态 二是强化同进口商的沟通,做好过渡期期间的合同评审,避免因法规认识偏差导致的退运风险 三是加强产品质量管控,通过优化升级生产工艺、第三方检测,确保降低对羟基苯甲酸酯类限制物质含量,确保平稳过渡。
  • 广东省食品流通协会发布《农药中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》团体标准征求意见稿
    由广东省食品流通协会提出的《农药中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》团体标准已完成征求意见稿,为保证团体标准的科学性、实用性及可操作性,现公开征求意见。请有关单位及专家认真审阅标准文本,对标准的征求意见稿提出宝贵的意见和建议,并将意见反馈表于2023年10月28日前反馈至协会标准化专委会处,意见接收邮箱:gdfcastandard@126.com。附件1、《农药中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》(征求意见稿)附件2、《农药中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》(征求意见稿)编制说明附件3、广东省食品流通协会团体标准征求意见表关于对《农药中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》团体标准征求意见的函.pdf附件1、《农药中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》(征求意见稿).pdf附件2、《农药中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》(征求意见稿)编制说明.pdf附件3、广东省食品流通协会团体标准征求意见表.docx
  • 文献解读丨利用DHB-GO复合基质提高MALDI-TOF MS分析中药皂苷的性能
    本文为中国药科大学天然药物国家重点实验室药物代谢与药代动力学重点实验室所作,发表于JOURNAL OF MASS SPECTROMETRY (2019)10.1002/jms.4385。 基质辅助激光解吸/电离飞行时间质谱(MALDI‐TOF MS)是一种出色的分析技术,可以通过简单的样品预处理快速分析各种分子。MALDI‐TOF质谱的性能在很大程度上取决于基质的类型,新型MALDI基质的开发引起了人们的广泛关注。本研究以人参皂苷Rb1、Re和三七皂苷R1为模型皂苷,寻找更合适的MALDI基质。 在本研究的开始阶段,发现2,5‐二羟基苯甲酸(DHB)在四种传统的MALDI基质中为皂苷分析提供了最高的强度,然而DHB与分析物的非均相共结晶使信号采集有些“不稳定”。氧化石墨烯(graphene oxide, GO)由于其单层结构和良好的分散性,被认为是改善DHB结晶均匀性的辅助基质,从而提高皂苷分析的shot-to-shot和spot-to-spot重现性。令人满意的精度进一步证明了微量氧化石墨烯(0.1 μg/spot)可以大大降低真空条件下氧化石墨烯从MALDI靶板脱离造成仪器污染的风险。更重要的是,DHB-GO复合基质能显著提高皂苷标准曲线的灵敏度和线性。最后,利用大鼠血浆开展了复杂生物样品中Rb1的检测,证明其可快速适用于大鼠药代动力学研究。这不仅为DHB‐GO在中药皂素分析中的应用开辟了新领域,也为开发复合基质提高MALDI质谱性能提供了新思路。 使用仪器:岛津MALDI‐TOF/TOF MS 图1 氧化石墨烯(GO)对2,5 -二羟基苯甲酸(DHB)结晶和灵敏度的影响。A, 分别在5 - 0.01、5 - 0.02、5 - 0.05、5 - 0.1、5 - 0.2和5 - 0.5 mg/ml浓度下DHB - GO复合基质的光学图像 B, 使用一系列的DHB - GO浓度(5 - 0.01,5 - 0.02,5 - 0.05,5 - 0.1,5 - 0.2和5 - 0.5 mg/ml)在MALDI - TOF MS上测定三七皂苷的信号强度;C, 使用DHB (5mg/ml,蓝线)、GO (0.1mg/ml,黑线)和DHB - GO (5 - 0.1mg/ml,红线)基质生成的Rb1、Re和R1的代表性质谱[颜色图可在wileyonlinelibrary.com上查看]图2 在一个点内的随机位置(n = 7)采集的人参皂苷Rb1、人参皂苷Re和三七皂苷R1的质谱图谱。A:Rb1, B: Re, C:R1, 以2,5 -二羟基苯甲酸(DHB)为基质;D:Rb1, E: Re, F:R1, 以DHB‐氧化石墨烯(GO) 为基质;[彩色图可在wileyonlinelibrary.com上查看] 图3 MALDI-TOF MS测定的人参皂苷Rb1、人参皂苷Re和三七皂苷R1的标准曲线,以A:2,5-二羟基苯甲酸(DHB)和B:DHB-氧化石墨烯(GO)为基质[彩色图可在wileyonlinelibrary.com查看] 一般来说,MALDI-MS的性能在很大程度上取决于基质的类型,并且最近提出的使用不同基质是改善解吸/电离过程和质谱质量的有效方法。在本研究开始时,发现DHB比其他常规基质对皂苷具有更高的灵敏度,然而DHB在MALDI靶板上的非均相共结晶使得自动化质谱信号采集有些“不稳定”。于是,我们致力于开发更合适的皂苷MALDI基质。 氧化石墨烯GO是一种碳材料,已被证明有助于DHB在亲水表面上形成均匀的晶体层,并改善质量峰强度的区域差异。我们推测氧化石墨烯具有高度的水分散性和强缺陷效应,这使得其能够均匀地吸附分布在其表面的分析物和基质。不出所料,MALDI-TOF质谱分析皂苷在shot-to-shot和spot-to-spot重现性方面取得了显著改善。精度的提高进一步表明,微量氧化石墨烯(0.1 μg/spot)可以大大降低真空条件下氧化石墨烯从MALDI靶板脱离造成仪器污染的风险。氧化石墨烯中π共轭结构的强吸收可以使其获得较强激光吸收,从而有助于化学基质电离,提高光谱质量。此外,灵敏度和线性也大大提高。 文献题目《The improved performance of MALDI-TOF MS on the analysis of herbal saponins by using DHB-GO composite matrix》使用仪器岛津MALDI‐TOF/TOF MS 作者Zhangpei Zhu,Jiajia Shen,Yangfan Xu,Huimin Guo,Dian Kang,Tengjie Yu,He Wang,Wenshuo Xu,Guangji Wang,Yan Liang 声 明1、本文不提供文献原文。2、所引用文献仅供读者研究和学习参考,不得用于其他营利性活动。
  • 拉曼光谱分析法在古陶瓷真伪的应用-羟基无损科学检测(二)
    文物是文化的产物,是人类社会发展过程中的珍贵历史遗存物。它从不同的领域和侧面反映出历史上人们改造世界的状况,是研究人类社会历史的实物资料。我国古陶瓷源远流长,不仅种类繁多、风格各异,而且工艺精湛,文化、科技内涵丰富。由于不法者在仿制过程中借用高科技手段,使一些高仿赝品几乎达到了乱真的程度。  拉曼光谱技术是一种分析技术,由于它能够获得物质的分子信息而被应用于文物的鉴定分析中。  我们主要依据是否在陶瓷釉面发现“羟基”这种化学分子结构去判断陶瓷是不是老的,因为“羟基”是天然生成, 而且生长速度非常缓慢,大概在100年左右的时间,如果在陶瓷釉面发现“羟基”,说明是古董,最起码是清未、民国早期的瓷器。“羟基”和年代成正比,“羟基”峰值越高,年份越老。  检测陶瓷样品的拉曼特征峰,通过3700cm-1附近的羟基峰判断古陶瓷真伪。图1:拉曼光谱图,没有检测到羟基峰图2:拉曼光谱图,可以检测到3632cm-1的羟基峰图3:拉曼光谱图,可以检测到微弱的3601cm-1的羟基峰  拉曼光谱——羟基古陶瓷真伪检测鉴定法的依据和原理是现代仿品和古代真品的成岩过程有着本质区别,而时间是造成的这种区别的根本原因,造假者无法跨越时间所产生的鸿沟。时间所造成的古陶瓷的物理、化学变化是造假者无法仿制的。基于此,古陶瓷真伪拉曼光谱——羟基鉴定法的技术研发者把古陶瓷真品在地表环境下其釉面所产生的化学反应中生成的羟基作为古陶瓷鉴定的定性及定量物质,从而做出准确而科学的鉴定结论。
  • 入选2023年度中医药十大学术进展:空间代谢组学技术助力中药复杂体系物质基础解析
    2024年3月22日,由中华中医药学会主办的2023年度中医药十大学术进展发布会在京召开。中国药科大学李萍教授和李彬教授团队的研究成果“空间代谢组学技术助力中药复杂体系物质基础解析”入选2023年度中医药十大学术进展。该团队突破中药复杂化学成分空间分布成像技术瓶颈,系统构建了基于质谱成像的空间代谢组学新技术,高灵敏、高覆盖、高分辨解析中药复杂化学成分空间分布异质性及其体内外空间代谢规律。研究论文发表于Angewandte Chemie International Edition、Analytical Chemistry等。该进展促进了空间代谢组学技术的完善与发展,从空间维度精准揭示中药复杂物质组成与其代谢变化,为诠释中药科学内涵提供了全新视角。近年来,基于质谱成像的空间代谢组学技术备受国内外专家学者的关注和认可,热度持续攀升。科瑞恩特(北京)科技有限公司多年来致力于质谱成像技术的推广与应用,并积极投身中药研究,为国内多所知名科研院提供技术支持,合作完成的研究成果相继发表于Food Chemistry、Journal of Advanced Research、New Phytologist 等权威期刊。01 利用多组学和MALDI-MSI揭示三七“狮子头”形成及皂苷积累的调控机制2024年4月7日,中国中医科学院黄璐琦院士团队在 Journal of Advanced Research 发表了题目为“Unveiling the regulatory mechanisms of nodules development and quality formation in Panax notoginseng using multi-omics and MALDI-MSI” 的文章。该文基于多组学分析、MALDI-MSI 质谱成像技术、拟南芥侵染回补、转录调控验证实验揭示了三七“狮子头”形成及皂苷积累的调控机制。为探究“狮子头”与三七品质间的联系,对活血性成分三七皂苷及止血性成分三七素进行含量测定,显示皂苷含量与“狮子头”数目呈正相关,而三七素含量则与该性状无关。同时皂苷 AP-SMALDI-MSI 质谱成像显示,“狮子头”皮层组织高丰度积累人参皂苷 Rb1,暗示 “狮子头”的形成与皂苷积累具有相关性(图1F)。图1 与三七“狮子头”相关的活性成分组成研究基于发育解剖学、激素质谱成像、转录组测序、拟南芥侵染回补、转录调控验证等实验,解析三七“狮子头”的形成机制(图2)。图2 三七“狮子头”形成的调控机制模型02 基于LC-MS和MALDI-MSI的代谢组学方法揭示苦荞瘦果发育的时空代谢谱2024年3月,中国中医科学院中药研究所孙伟教授和黑龙江中医药大学马伟教授合作在 Food Chemistry 发表了题目为“LC-MS and MALDI-MSI-based metabolomic approaches provide insights into the spatial–temporal metabolite profiles of Tartary buckwheat achene development”的文章。该研究利用液质联用结合质谱成像技术构建了黑色和黄褐色苦荞瘦果三个重要发育阶段的时空代谢谱,并揭示了黄酮类成分在瘦果发育过程中的时空特异性分布情况,解析了类黄酮成分对苦荞瘦果胚发育和种壳颜色形成的潜在调控机制。该研究采用 AP-SMALDI-MSI 技术对发育中的苦荞瘦果切片中的主要黄酮类化合物进行原位信息定位分析。瘦果纵横切面图显示,鞑靼荞麦瘦果由果壳、种皮、胚乳和胚组成(图3A)。与 LC-MS 的结果一致,黄酮类化合物,包括槲皮素、山奈酚、芦丁和烟花苷等,随着瘦果的发育而积累(图3C)。相反,原花青素 A、原花青素 B 和黄烷醇(表)儿茶素的含量随着瘦果的成熟而减少(图3B),表明它们在保护未成熟瘦果方面可能发挥潜在作用,从而防止瘦果在完全成熟前过早消耗。将代谢组学与 AP-SMALDI-MSI 中黄酮类化合物强度的研究相结合发现黄酮类化合物的组织特异性分布取决于化学修饰的类型。图3 苦荞瘦果发育过程中主要黄酮类化合物相对时空分布MALDI MSI图本研究利用 AP-SMALDI-MSI 技术阐明了代谢物在鞑靼荞麦瘦果发育过程中的空间分布,黄酮醇作为鞑靼荞麦瘦果中的主要黄酮类化合物,根据化学修饰类型的不同,呈现出特定的空间分布,作者提出了鞑靼荞麦瘦果中主要黄酮类化合物与瘦果发育之间的调控关系(图4)。图4 黄酮类化合物在苦荞瘦果发育过程中参与调节胚发育和果壳颜色的模式图03 利用MALDI质谱成像技术揭示牡丹和芍药根的空间代谢组2021年4月,中国药科大学李萍教授、李彬教授在 New Phytologist 期刊上发表了题目为:“Unveiling spatial metabolome of Paeonia suffruticosa and Paeonia lactiflora roots using MALDI MS imaging” 的研究论文,本研究结合多基质和正负离子检测模式,对牡丹和芍药的根切片进行了高质量分辨率基质辅助激光解吸电离质谱成像(MALDI MSI)和 AP-SMALDI 串联质谱(MS/MS)成像,系统地研究了单萜糖苷类和丹皮酚苷类、单宁类、黄酮类、糖类、脂类等多种代谢产物的空间分布。利用 Li DHB 基质的串联质谱成像技术来准确区分芍药苷和芍药内酯苷两种结构异构体的组织分布(图5)。此外,参与没食子单宁生物合成途径的主要中间产物在根部成功定位和显示。图5 AP-SMALDI MS/MS成像和LC-MS验证上述研究中空间代谢组结果均采用了德国 TransMIT AP-SMALDI 10 离子源,搭载 Thermo ScientificTM Q ExactiveTM 超高分辨质谱仪,对不同药用植物中活性成分的空间分布进行了精准解析。科瑞恩特(北京)科技有限公司先后引进德国 TransMIT AP-SMALDI10、AP SMALDI5 AF 常压 MALDI 离子源和美国 Spectroglyph LLC. MALDI ESI Injector 系列离子源,所有离子源均可与赛默飞 Q ExactiveTM 或 Obitrap ExplorisTM 系列质谱仪搭载使用,实现高空间分辨率、高质量分辨率、高质量精度、高灵敏度质谱成像检测。AP-SMALDI 5AF Orbitrap 质谱成像系统TransMIT AP-SMALDI 5AF 高分辨自动聚焦3D快速质谱成像系统在 AP-SMALDI 10 的基础上完成了升级,常压操作环境,空间分辨率可达到3μm,独特3D检测模式可以检测凹凸不平的样品表面,快速检测模式可达18pixel/s,全像素检测大大提高检测灵敏度,高空间分辨率和高质量分辨率使样本中的分子化合物达到最佳成像效果。T-MALDI-2 透射式超高分辨率质谱成像系统MALDI ESI Injector 离子源,MALDI 源采用新型双离子漏斗设计,兼容ESI、APCI等离子源,实现 MALDI ESI 成像和 LC-MS 检测,在生物样本中可实现组织成像与结构鉴定。通过配置 t-MALDI(1μm空间分辨率)、MALDI-2(激光诱导后电离)等技术并搭载赛默飞 Q ExactiveTM 或 Obitrap ExplorisTM 系列超高分辨率质谱检测仪。 参考文献:[1] Yu M, Ma C, Tai B, et al. Unveiling the regulatory mechanisms of nodules development and quality formation in Panax notoginseng using multi-omics and MALDI-MSI[J]. Journal of Advanced Research, 2024.[2] Liu T, WangP, Chen Y, et al. LC–MS and MALDI–MSI-based metabolomic approaches provide insights into the spatial–temporal metabolite profiles of Tartary buckwheat achene development[J]. Food Chemistry, 2024, 449: 139183.[3] Li B, Ge J, Liu W, et al. Unveiling spatial metabolome of Paeonia suffruticosa and Paeonia lactiflora roots using MALDI MS imaging[J]. New Phytologist, 2021, 231(2): 892-902.[4] Tang W, Shi J J, Liu W, et al. MALDI Imaging Assisted Discovery of a Di‐O‐glycosyltransferase from Platycodon grandiflorum Root[J]. Angewandte Chemie International Edition, 2023, 62(19): e202301309.[5] Sun S, Tang W, Li B. Authentication of single herbal powders enabled by microscopy-guided in situ auto-sampling combined with matrix-assisted laser desorption/ionization mass spectrometry[J]. Analytical Chemistry, 2023, 95(19): 7512-7518.[6] Sun R, Tang W, Li P, et al. Development of an Efficient On-Tissue Epoxidation Reaction Mediated by Urea Hydrogen Peroxide for MALDI MS/MS Imaging of Lipid C═ C Location Isomers[J]. Analytical Chemistry, 2023, 95(43): 16004-16012.— 关于科瑞恩特 —科瑞恩特(北京)科技有限公司成立于2012年,总部设立在北京市经济技术开发区,毗邻京东,京东方,Corning,GE,Bayer等世界五百强科技企业中国研发中心。科瑞恩特公司是一家基于前沿生物成像(质谱成像、动植物活体成像、细胞成像)、国产化高端设备研发的实验室仪器设备和服务供应商,服务于生命科学、疾病控制、生物安全、食药健康等领域。无论是科研实验室、临床研究中心,还是企业研发基地,我们都能够提供专业的实验室综合解决方案,协助客户实现科研产出和成果转化目标。— 科瑞恩特产品线 —德国TransMIT:AP SMALDI质谱成像离子源、基质喷涂仪(全国独家代理)Spectroglyph LLC.:MALDI ESI Injector离子源(USA)(全国独家代理)瑞孚迪Revvity:多模式读板仪、核酸提取仪、小动物活体光学成像、细胞计数仪、液闪计数器、均质器日本Yamato:灭菌器、烘箱、马弗炉、CO2培养箱、喷雾干燥仪、旋转蒸发仪等广纳慧川:智能试剂柜、智能标准品柜、智能防爆(火)柜、智能危化品柜等美的Midea:医用冷藏箱、冷藏冷冻箱、低温冷冻箱、-86℃超低温冰箱等莱普LabPre:LabPre超低温冷冻研磨仪,高通量组织研磨机、球磨机等(自研发)全思美特:VHP移动式空间灭菌器(自研发)— 科瑞恩特服务方案 —全思美测:AP SMALDI质谱成像检测服务全思美特:VHP过氧化氢空间灭菌服务
  • 基于三维电子衍射技术解析含有序硅羟基纯硅分子筛结构
    近日,大连化物所低碳催化与工程研究部(DNL12)郭鹏研究员、刘中民院士团队与南京工业大学王磊副教授团队合作,在分子筛结构解析研究中取得新进展,利用先进的三维电子衍射技术(cRED)直接解析出含有序硅羟基的纯硅分子筛结构。分子筛是石油化工和煤化工领域重要的催化剂及吸附剂,分子筛的性能与其晶体结构密切相关。分子筛通常为亚微米甚至纳米晶体,传统的X-射线单晶衍射法无法对其结构进行表征。在前期工作中,郭鹏和刘中民团队聚焦先进的电子晶体学(包括三维电子衍射和高分辨成像技术)和X-射线粉末晶体学方法,对工业催化剂等多孔材料进行结构解析,并且在原子层面深入理解构—效关系,为高性能的工业催化剂/吸附剂的设计及合成提供理论依据。团队开展了一系列研究工作,包括针对定向合成SAPO分子筛方法的开发(J. Mater. Chem. A,2018;Small,2019)、酸性位点分布的研究(Chinese J. Catal.,2020;Chinese J. Catal.,2021)、吸附位点的确定(Chem. Sci.,2021)、利用三维电子衍射结合iDPC成像技术解析分子筛结构并观测局部缺陷(Angew. Chem. Int. Ed.,2021)等。本工作中,研究人员利用先进的三维电子衍射技术,从原子层面直接解析出一种含有序硅羟基排布的新型纯硅沸石分子筛的晶体结构,其规则分布的硅羟基与独特的椭圆形八元环孔口结构息息相关。研究人员通过调变焙烧条件,在有效去除有机结构导向剂的同时保留了分子筛中有序硅羟基结构,实现了丙烷/丙烯高效分离,并从结构角度揭示了有序硅羟基和独特的椭圆形八元环孔口对丙烷/丙烯的分离作用机制。相关研究成果以“Pure Silica with Ordered Silanols for Propylene/Propane Adsorptive Separation Unraveled by Three-Dimensional Electron Diffraction”为题,于近日发表在《美国化学会志》(Journal of the American Chemical Society)上。该工作的第一作者是我所DNL1210组博士后王静,该工作得到了国家自然科学基金、中科院前沿科学重点研究等项目的资助。
  • 欧盟批准硒代蛋氨酸羟基类似物用作饲料添加剂
    5月15日,欧盟委员会发布(EU)No445/2013号条例,批准硒代蛋氨酸羟基类似物用作动物饲料添加剂。硒代蛋氨酸羟基类似物添加于饲料时,分属的添加剂类型为“营养添加剂”,功能组为“微量元素化合物”,需保证硒元素在12%含水量的饲料成品中的含量不超过0.5mg/kg,有机硒不超过0.2mg/kg。   硒代蛋氨酸羟基类似物用作饲料添加剂时,可作为蛋氨酸营养补充剂,促进动物生长发育。但该物对皮肤和眼睛有刺激作用,在使用该产品后,必须用水冲净皮肤。对此,检验检疫部门提醒相关企业:一是根据欧盟委员会发布的法规,严格按照相关要求来用作动物饲料添加剂。二是与相关部门合作,加大检测力度,确保出口产品符合欧盟标准。三是推进生产工序升级和优化,并建立自检自控体系,分析关键控制点并予以重点关注,确保其含量符合法规要求,避免退运或召回。
  • 【瑞士步琦】近红外光谱法定量测定多元醇中羟基值和浊点
    近红外光谱法定量测定多元醇中羟基值和浊点近红外应用”1简介多元醇见图1是用于生产各种最终用途的聚合物和塑料的基本组成部分。例如,我们日常使用的聚氨酯产品就是用多元醇来制造的。多元醇是从多功能醇或胺开始,通常与环氧乙烷(EO)或环氧丙烷(PO)反应制成的。▲ 图1. 多元醇真正的多元醇是复杂的,具有混合和不同的链长和末端。羟基值(OH值)是有机化合物质量的快速评价指标。它是可用于反应的活性羟基数量的量度,并提供有关链长分布和范围的信息。羟值既是衡量多元醇分子量及质量的主要参数之一,又是聚氨酯制品生产厂家在配方设计时决定各原料投用量的重要参考依据。 因此羟值测定的准确性非常重要。目前,检测羟值的方法主要有化学分析法和仪器分析法。化学分析法中最常用的是滴定法,基于滴加试剂与被测溶液中物质的反应,利用滴加滴定试剂的量来推测被测物质的浓度。该方法中使用吡啶作为溶剂,吡啶易挥发且有恶臭气味,被世界卫生组织国际癌症研究机构列入2B 类致癌物清单,对实验人员的身体健康有一定的危害,且该方法反应时间较长( 需回流加热 1h),操作复杂,分析时间较长,测试效率低,测试准确性受人为因素影响较大。仪器分析法主要有核磁共振法和近红外光谱法。核磁共振法操作简单,测试快速且准确度较高。但是该方法所需要的设施昂贵,且实验室环境要求高,在企业中并未得到广泛推广。近红外光谱法是近红外光源照射下分子发生能级跃迁时产生的,记录的是分子中单个化学键的基频振动的倍频和合频信息,受含氢基团 X-H(X 为C,N,O)的倍频和合频的重叠主导,其光谱信息与样品的结构和成分组成相关。 多元醇在近红外光谱区的吸收主要包括 C-H、N-H,O-H 个含氢基团基频振动的合频和倍频振动吸收,通过这些含氢基团分子振动从基态到高能级跃迁的过程中记录的羟基的合频和倍频吸收信息,从而进行羟值的定量分析。 该方法在测试过程中无需对样品进行稀释、分散处理,因其操作简单、检测快速、绿色安全的特点而被广泛应用。浊点是当混合物从足够高的温度缓慢冷却以使混合物成为单相时,多元醇混合物中形成薄雾或云状的温度。浊点随着多元醇分子量的增加而减小,随着 EO 的加入而增大。这一分析被用来衡量多元醇的水溶性、表面活性剂性质和反应性。浊点控制反应系统中多元醇的相行为,这种行为对最终产品质量有极其重要的影响。由于多元醇在水中具有反溶解度,较高的浊点表明这些重要性能属性的增加。2应用设备及附件本文重点介绍步琦近红外光谱 N-500 用于快速测定多元醇的 OH 值和浊点。它可以应用于:最终产品或来料的检测和过程的监控支持。使用的仪器介绍如下:N-500 是市面上第一台商业化偏振干涉仪的傅里叶变换近红外光谱仪。▲步琦近红外光谱仪 N-500多至 6 通道同时检测0.5, 1, 2, 4, 5,8, 10mm 的比色皿控温,室温至 65 度3实验仪器配置:液体样品 NIRFlex Liquids,配备样品腔用于液体透射分析,可控温(室温~65℃),可自动切换背景测量通道,同时容纳 6 个比色皿。测量参数:波长:4500-10000;分辨率:8cm-1;温度设定 60°C,扫描次数:液体样品 64 次。测量要求:多元醇样品装入比色皿 8mm 后测量,每个样品测量三次光谱,每条光谱采集前都进行相同的混匀、取样。测量多元醇的样品光谱谱图:如图2▲图2. 测量多元醇的样品光谱谱图从光谱本身来看,样品的信号加强,反射率在 0.3 以上可以满足近红外分析。模型参数如下表:从表中可以看出:模型的相关系数均大于 0.99,样品羟值和浊点的准确度较高完全符合国家标准《塑料 聚氨酯生产用多元醇近红外光谱法测定羟值》的误差要求,分析方法重复性较好,可以用于实验室日常检测。4结论结果表明,近红外光谱技术可以成功地监测 OH 值和浊点,并具有良好的精度。该技术不需要样品制备用于测定 OH 值的标准湿化学方法可以被更快,更便宜和更简单的近红外分析所取代,以更快的批 QA 审核通过。近红外法具有分析效率高、制样简单、环保等优势,测试成本低,被实验室和企业广泛应用。
  • 中药研究系列专题——中药有效成分分析
    中药中的有效成分是中药发挥药效作用的物质基础,认识和研究这些成分是实现中药现代化的关键所在。成分分析是一项复杂而困难的工作,岛津的色谱系统提供了充分的灵活性、分离度,同时易于操作使用。这些技术能够可靠地描述中药中多组分的特征,适用于研究和质量控制。 Nexera LC-40超高效液相色谱仪★ 可靠性最大化,停机时间最小化 ★ 远程监控以及实验室一体化管理 ★ 快速、可靠的流动相自动配置 ★ 双进样模式支持样品同时分析 应用案例 Nexera LC-40用于银杏叶提取物指纹图谱分析 指纹图谱分析是中药分析领域进行宏观监测的有效措施,它可以全面地反映中药中所含的化学成分种类、数量以及相互间比例关系,从而有效表征其内在质量。银杏叶提取物由于成分较多,采用常规液相分析耗时较长,因此目前也普遍采用指纹图谱的研究方式。 采用Nexera LC-40高效液相色谱系统建立银杏叶提取物指纹图谱的测定方法,供试品和银杏叶对照提取物中17个主色谱峰能够在较短的分析时间内获得良好的分离效果,且全峰相似度在0.927以上。 参照物芦丁色谱峰 银杏叶对照提取物指纹图谱 供试品和对照提取物指纹图谱相似度比较(S1:对照品 S2:供试品) Nexera-e全二维液相色谱仪 全二维液相色谱法是针对复杂样品的一种新分离方法,Nexera-e全二维液相色谱仪联合两个独立的分离系统,极大地扩大了色谱的应用范围、增加峰容量。使用Nexera-e 对中药中的天然产物等复杂样品进行分析,可以从中得到新的发现,并对待测中药有更深入的理解。 ★ 基于超高效液相色谱的超快速全二维分离★ 不同的分离条件的组合实现更高的分离度 应用案例 Nexera-e全二维液相色谱测定葛根汤 葛根汤主要由葛根、麻黄、甘草和芍药等中药材组成,其中包含的麻黄碱、甘草酸和肉桂酸对抑制各类感冒症状非常有效。在生药的质量管理和研究过程中,需要同时识别药物中存在的多种成分,使用全二维液相色谱仪Nexera-e可以对复杂的中医方剂成分进行高度分离。二维自动梯度功能可以为全二维色谱带来良好的峰形,通过对甘草酸进行定量分析,保留时间和峰面积均能获得出色的重复性。 有无自动梯度功能时的葛根汤全二维分离对比(红箭头所指为甘草酸) 甘草酸标准曲线(R2=0.9998) 定量分析5次甘草酸的重复性
  • 【瑞士步琦】干货!聚醚多元醇羟基含量分析,BUCHI FT-NIR 快速检测技术助您一臂之力!
    聚醚多元醇羟基含量分析 聚醚(又称聚醚多元醇)主要是由环氧丙烷、环氧乙烷等为原料,以碱金属氢氧化物为催化剂,按阴离子机理开环聚合,可以是均聚或共聚而制得分子末端带有羟基基团的线型聚合物, 聚醚在聚氨酯以及合成润滑材料上得到广泛的应用,对聚醚多元醇羟基含量的测定是监测反应程度和产品质量的主要手段。传统的聚醚羟值分析一般采用化学法,其原理是:样品中羟基与酸酐定量地进行反应,生成酯或酸。过量的酸酐水解成酸。 用已知浓度的碱标准溶液滴定酸。同量的酰化剂,不加样品,其他条件与样品滴定相同,做空白滴定。空白滴定和样品滴定两者所耗用碱标准溶液的体积差就是样品中的羟基所相当于耗用碱标准溶液的体积。由于这种方法反应时间长需要 3-4h, 操作比较复杂, 已不能适应工业分析的需要。近红外光是介于可见光与中红外光之间的电磁波, 波长为 780~2500nm。 有机物分子中 C-H , O-H , C=O 等基团振动频率的合频与倍频吸收在近红外区。 光谱中 OH 伸缩振动所引起的吸收峰的强弱决定于羟值的高低, 即单位质量聚醚羟值含量的多少。羟值高则吸收峰强度大, 反之则强度小。 所以可以应用此关系来测量聚醚羟值。BUCHI FT-NIR 的优点1无损利用近红外光以透射或透反射的方式采集被照样品的近红外光谱,对样品没有破坏性。2快速平均 1-2min 可以完成 1 个样品的检测,采集一次样品光谱,可以同时分析多组分含量。3利润高,成本低无需化学试剂消耗,实现零成本,可以大大提高检测效率。4绿色环保无需样品前处理,避免使用有毒,有害的化学试剂,从而对环境造成污染。▲ 建模样品集的近红外吸收光谱▲ 羟值含量的化学值与模型校正值、模型预测值的相关关系图▲ 羟值含量检测的液体附件配置多至6个孔位, 0.5,1,2,5,8,10mm 比色皿根据样品可选,控温室温到 65 度。用近红外光谱法,克服了化学方法测定羟值费时费力且大量使用有害试剂的缺点,此外,使用比色皿作样品吸收池,省去了每次测试后需要花费大量时间清洗吸收池的麻烦。这种方法不仅在聚醚多元醇生产中具有很大实用价值,而且在其他类似黏度较大、清洗不便的样品测试中也具有很大推广价值。步琦近红外光谱仪可以提供各种型号的光谱,以适用于实验室检测、旁线检测和在线检测的应用过程设备。如您对以上应用产品感兴趣,欢迎咨询了解!
  • 前沿 | 安捷伦质谱助力七叶树药效成分研究,揭示七叶皂苷和七叶素生物合成进化机制
    2023 年 10 月,陈士林团队在《自然-通讯》(Nature Communications) 发表“Characterization of the horse chestnut genome reveals the evolution of aescin and aesculin biosynthesis”的文章,作者采用多组学研究策略和质谱技术揭示了天然药物七叶皂苷和七叶素特异性合成的分子机制,并在大肠杆菌中实现了七叶素的绿色生物合成。研究背景现代植物化学和药理学的研究证明,草药中特异性积累的有效成分是其发挥药效的物质基础,七叶树属植物是一种温带北半球的多年生树木,该属植物由于分别含有药用活性成分七叶皂苷和七叶素被广泛应用于临床。七叶皂苷(玉蕊醇型三萜皂苷)制剂已经在临床中以口服、静脉注射和局部涂抹的方式广泛使用,用于治疗慢性静脉功能不全、水肿和痔疮等疾病。七叶素(香豆素类成分),也被称为 6,7- 二羟基香豆素 -6-O- 葡萄糖苷,与地高辛一起被广泛用作常见的眼药水七叶洋地黄双苷滴眼液的原料,以缓解眼疲劳、眼痛和干眼等症状。然而,目前对于这两种有效成分的合成、调控和转运机制的分子遗传学研究还相对薄弱。研究结果此次发表的研究通过空间代谢组揭示七叶皂苷在七叶树属植物娑罗子的子叶中特异性积累,解析了中华七叶树高质量基因组,并通过代谢组学、转录组学以及合成生物学技术等方法,成功解析七叶皂苷生物合成途径中关键的环化、氧化、酰基化和葡萄糖醛酸化等催化步骤。同时,课题组通过全被子植物基因组层面共线性研究发现该类三萜代谢基因簇的招募和进化模式,更好地理解了玉蕊醇型三萜类化合物在无患子目植物中的形成机制。针对七叶素的合成途径,研究团队根据关键基因在基因组中存在的拷贝数目及表达模式,筛选和验证了合成过程中关键基因的功能,在大肠杆菌中重建了七叶素的生物合成途径并完成了七叶素的绿色合成。研究结论本文以具有重要药用价值的七叶树为研究对象,综合运用基因组、转录组、代谢组、空间代谢组以及合成生物学等多种技术手段,揭示了七叶树中高价值代谢物七叶皂苷和七叶素的生物合成及进化过程。其意义在于,一方面为推动这些活性化合物的生物合成研究进展以促进其生产应用提供了良好的基础,另一方面为其他药用树木代谢物相关研究提供了良好的研究范式。专家团队此次发表的论文的共同第一作者为中国中医科学院中药研究所孙伟、尹青岗、万会花、高冉冉,共同通讯作者是中国中医科学院/成都中医药大学陈士林、北京化工大学孙新晓、东北林业大学徐志超。本草基因组学团队负责人陈士林院士 2022 年组织发布了千种本草基因组研究计划,在《创新》(The Innovation)、《自然-植物》(Nature Plants)、《分子植物》(Molecular Plant)、《自然-通讯》(Nature Communications) 等国际著名刊物发表了一系列的草药基因组学研究成果,极大地推动了学术界从分子遗传学层面理解中草药中有效成分的合成、转运、积累和调控,助力天然产物药物的绿色生物合成以及高含量药效成分品种的精准选育。参考文献:[1] Sun W, Yin Q, Wan H, et al. Characterization of the horse chestnut genome reveals the evolution of aescin and aesculin biosynthesis[J]. Nature communications, 2023, 14(1): 6470.
  • 岛津液相色谱仪亮相新闻联播,助力抗疫用中药检测和研究
    疫情快讯从2020年1月23日到3月4日,国家卫健委与中医药管理局已多次更新和发布“新型冠状病毒肺炎诊疗方案”,中医治疗方案越来越系统化和全面。医疗机构参照方案已在医疗救治工作中积极发挥中医药作用,据统计,湖北确诊病例中医药使用率为88.93%。截至2月28日24时,全省43家定点中医医院累计收治确诊病例7246人,中医药使用率为97.71%,患者发烧、乏力、咳嗽等症状和影像学表现均明显改善。(数据来源:新华社)岛津高效液相色谱仪亮相新闻联播 3月6日,中央电视台综合频道《新闻联播》栏目报道了疫情防控科技攻关工作进展。科技部介绍,目前已经部署了42个国家应急项目,科技攻关的一批药物和救治技术已在疾病救治当中扩大应用,中医药当中的有关方剂和注射液等一批推荐的药物也纳入到诊疗方案。 《新型冠状病毒肺炎诊疗方案(试行第七版)》提到根据病情、当地气候特点以及不同体质等情况,参照方案进行辩证论治,治疗方案共涉及到80种药材和饮片,17种制剂,其中包括喜炎平、血必净、热毒宁等8种中药注射液。岛津长期致力于为中医药生产、质控、研究和治疗中贡献一份力量,下面简要介绍岛津液相色谱技术应用于中药注射液中质量控制及药代动力学的研究案例。 案例1 热毒宁注射液与栀子苷单体在大鼠体内的药动学比较1热毒宁注射液是由栀子、青蒿、金银花三味药材精制而成,具有清热、疏风、解毒功效,用于外感风热所致感冒、咳嗽。热毒宁注射液质量标准执行局颁YBZ08202005-2009Z,栀子苷属于环烯醚萜类化合物,是热毒宁注射液中含量较大且发挥药效的指标性成分。 作者在参阅了“栀子苷在大鼠血浆中的药代动力学”文献基础上,使用岛津高效液相色谱仪,建立了RP-HPLC测定大鼠血浆中栀子苷含量,该方法灵敏、快速、准确,定量下限可达0.1mg/L。作者利用建立的方法对栀子苷在大鼠体内的药动学进行了研究,结果表明热毒宁注射液中其他成分对栀子苷在大鼠体内的药动学行为无显著性影响。大鼠给予热毒宁注射液与栀子苷单体的平均血药浓度-时间曲线案例2 HPLC法测定血必净注射液内11种主要成分2血必净注射液是由红花、赤芍、川芎、丹参、当归5味中药材精制而成,主要有效成分包括红花色素、酚酸、黄酮苷和苯乙基苷类等。该注射液具有化瘀解毒功效,用于温热类疾病,症见发热、喘促、心悸、烦躁等。 作者使用岛津高效液相色谱仪,建立了11种成分同时测定方法。血必净注射液为中药注射液,成分复杂且较难分离,研究强调有机相采用混合物(甲醇、乙腈)加酸的方法,注射液成分分离效果好,基线平稳,研究为血必净注射液的质量控制与综合评价提供科学的参考依据。1:尿苷 2:没食子酸 3:鸟苷 4:丹参素 5:原儿茶醛 6:芍药苷 :7:阿魏酸 8:红花黄色素 9:洋川芎内酯I 10:洋川芎内酯H 11:丹酚酸B血必净注射液样品(A)和及混合对照品(B)的HPLC图 附注1、郑卫华,王艳娟,梁佳佳, 等.热毒宁注射液与栀子苷单体在大鼠体内的药动学比较[J].中国实验方剂学杂志,2014,20(3):95-99. 2、冀兰鑫,黄浩,姜民,白钢,罗国安.HPLC测定血必净注射液内11种主要成分[J].中国中药杂志,2010,35(18):2395-2398.
  • 岛津战略合作伙伴和合诊断集团自主研发25-羟基维生素D试剂盒,获批国家二类医疗器械注册证
    2020年2月,和合诊断集团全资子公司合肥和合医疗科技有限公司自主研发的25-羟基维生素D检测试剂盒(液相色谱-串联质谱法)、25-羟基维生素D校准品、25-羟基维生素D质控品正式通过审批,获得国家二类医疗器械注册证!上图为25-羟基维生素D检测试剂盒、校准品、质控品的国家二类医疗器械注册证件 合肥和合医疗科技有限公司自主研发的25-羟基维生素D系列检测试剂盒产品基于液相色谱-串联质谱检测方法,该方法为国际公认的维生素D项目检测金标准,可以大大提高血清维生素D检测的精确性,为相关疾病的临床诊断提供重要依据。产品适用机型广、组成全面,能很好的满足临床客户的检测需求。 和合诊断集团自2011年开始与岛津合作,现在拥有多台岛津LCMS-8050CL、Nexera系列液相色谱仪。LCMS-8050CLNexera X2(LC-30A系列) 岛津液相色谱仪历经50年在技术积淀,从输液泵、自动进样器到柱温箱和检测器,各个方面做到最优,为用户获得最优、最稳定的检测结果,提供最优秀的仪器平台。 和合诊断尤以开展高效液相色谱、串联质谱法检测擅长,是国内第一家也是目前规模最大的临床“色谱/质谱检验技术平台”,可提供临床化学和分子遗传学检验专业的百余项检测项目。集团率先在国内开展血清维生素检测,为全国2000余家医院提供诊断技术服务。集团各实验室执行国际通用标准ISO15189,拥有与世界同步的检验技术和实验室管理系统,检测结果为全球100多个国家和地区认可。科研能力突出,截至目前,集团共获得国家专利局审批及受理的专利近百余项、其中维生素D检测发明专利10余项。 研究表明,人体血清维生素D水平与免疫力息息相关,维生素D可以使细胞因子水平提高,从而增强人体免疫力。所以高度关注血清维生素水平,及时干预,可使肌体抗病毒感染能力提升。
  • 山东林学会批准发布《食用林产品中69种农药及其代谢物残留量的测定 气相色谱-质谱联用法》等4项团体标准
    各有关单位:根据《山东林学会团体标准管理办法》有关规定,《食用林产品中69种农药及其代谢物残留量的测定 气相色谱-质谱联用法》《食用林产品中82种农药及其代谢物残留量的测定 液相色谱-质谱联用法》《多头芍药切花生产技术规程》《观赏芍药种苗生产技术规程》团体标准已完成相应程序,现予以批准发布。特此公告。 附件:团体标准编号、名称及实施日期 山东林学会2024年6月5日关于批准发布《食用林产品中69种农药及其代谢物残留量的测定 气相色谱-质谱联用法》等4项团体标准的公告.pdf
  • 离子色谱分析氨基糖苷类药物及在各国药典中的应用
    离子色谱自上世纪70年代开始经过近40多年的发展,已成为色谱分析领域中十分重要的分支,被广泛应用于无机阴阳离子、有机酸、糖醇类化合物、氨基酸、氨基糖苷类抗生素等,具有方便快速、灵敏度高、选择性好、可同时分析多种化合物、样品用量少等优点。离子色谱的检测器主要有电化学检测器与光学检测器,在药品控制领域,应用得最多的为电化学检测器,包括电导检测器和安培检测器。电导检测器主要用于测定无机阴阳离子与部分极性有机物如羧酸等。安培检测器又可分为直流安培检测器与积分安培(包括脉冲安培)检测器,其中积分安培检测器主要用于测定糖类、氨基酸类及氨基糖苷类抗生素等。氨基糖苷类抗生素具有相似的化学结构与理化性质,都是以碱性环己多元醇为苷元,与氨基糖缩合成苷,是临床应用较早的一类抗生素。氨基糖苷类抗生素根据其来源可分为发酵与半合成2种,其中发酵来源的主要有链霉素、新霉素、卡那霉素、巴龙霉素、妥布霉素、庆大霉素、核糖霉素及大观霉素等;半合成是以发酵来源的抗生素为前体,再进行结构改造而得到,主要有阿米卡星、奈替米星、异帕米星及我国自主研发的依替米星等,具有更强的抗菌活性、低耐药性及低毒性等。氨基糖苷类抗生素结构中无紫外吸收基团,难以采用常规的高效液相色谱-紫外检测器控制质量,目前国内常用的分析方法为高效液相色谱-蒸发光散射检测法(HPLC-ELSD)。由于其结构中含有多个氨基(-NH2)与羟基(-OH),在强碱性溶液中易解离成阴离子,在一定电压下,可在金电极表面发生氧化反应,实现脉冲安培检测,因此国外药典中多采用离子色谱法检测该类药物。本文概述了本实验室近十几年来采用离子色谱法分析氨基糖苷类抗生素的实例,并简述离子色谱法在各国药典中控制该类药物的应用与发展趋势。1. 硫酸阿米卡星、硫酸阿米卡星注射液与注射用硫酸阿米卡星有关物质1.1 色谱条件YMC ODS-Aq C18(4.6mm×250mm, 5µm)色谱柱,流动相为1L无二氧化碳的去离子水中加三氟乙酸20mL,五氟丙酸300μL,七氟丁酸300μL,50%(V/V)氢氧化钠溶液8mL,用50%(V/V)氢氧化钠溶液调节pH为3.3,加乙腈10mL;流速1.0 mLmin-1;柱后加碱2.1%(V/V)氢氧化钠溶液,流速为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。柱温为35℃,进样量20μL。1.2 结果硫酸阿米卡星与其杂质A、杂质B、杂质 C、杂质D、杂质E、杂质G、杂质H、杂质I均能分离,见图1。阿米卡星质量浓度在0.4985~9.969 µgmL-1范围内峰面积线性关系良好,阿米卡星峰检测限为2.0ng,定量限为5.0ng。供试品溶液中除辅料峰外,各杂质均以主成分自身对照法计算,其中杂质B校正因子为1.4,杂质C校正因子为1.3,杂质D校正因子为0.8,杂质E校正因子为1.2,杂质H校正因子为1.4,杂质I校正因子为0.6。结果8批次硫酸阿米卡星原料总杂质含量为1.2%~1.7%,77批次硫酸阿米卡星注射液总杂质含量为1.1%~2.3%,10批次注射用硫酸阿米卡星总杂质含量为1.2%~2.2%。1. 杂质I 2.杂质B 3.杂质G 4.杂质A 5.杂质C 6.杂质D 7.杂质E 8.杂质H图1 硫酸阿米卡星系统适用性色谱图中国药典2020年版(ChP2020)采用高效液相色谱紫外末端吸收法测定硫酸阿米卡星及其制剂的有关物质。英国药典2024年版(BP2024)与欧洲药典11.0版(EP11.0)均采用离子色谱法测定,流动相体系均为辛烷磺酸钠-无水硫酸钠-四氢呋喃,其中四氢呋喃是影响该方法测定的关键因素,同样纯度不同品牌、甚至同一品牌不同批号的的四氢呋喃都会影响该方法的重复性。此外,EP 11.0 与BP2024的方法还存在运行时间太长大于100min,三电位检测对金电极损耗较大,盐浓度较大对仪器损耗大等缺点。本实验室同样采用离子色谱法,用多氟烷酸体系代替辛烷磺酸钠体系,简化了流动相的配制,缩短了分析时间为35min,用四电位取代三电位保护了工作电极,检测的杂质数量与杂质总量均多于ChP2020的紫外末端吸收法,可用于硫酸阿米卡星及其制剂的有关物质控制。2. 硫酸庆大霉素注射液、硫酸庆大霉素片与硫酸庆大霉素颗粒2.1 色谱条件TSK-gel ODS-81Ts C18(4.6mm×250mm,5µm)色谱柱;流动相为0.7%三氟乙酸(含0.025%五氟丙酸,50%(V/V)氢氧化钠4ml,用50%(V/V)氢氧化钠调节pH值至2.6)-乙腈(97:3);流速为1.0mLmin-1;柱后加碱为2%(V/V)氢氧化钠溶液,流速为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(3mm),参比电极为Ag-AgCl复合电极,四电位检测:同前;柱温为35℃;进样量20µL。2.2 结果硫酸庆大霉素含有4个主组分,分别为C1、C1a、C2a、C2,还含有结构相似的小组分西索米星与小诺霉素。该方法可完全分离4个主组分,并可同时分离出22个有关物质。庆大霉素C1a、西索米星与小诺霉组分的检测限分别为5.3ng、3.5ng与8.0ng,定量限分别为17.8ng、11.6ng与26.7ng。ChP2020采用HPLC-ELSD法测定硫酸庆大霉素注射液的组分,而BP2024与EP11.0均采用离子色谱法测定硫酸庆大霉素原料的组分与有关物质,USP现行版采用离子色谱法测定其原料的组分,均未采用离子色谱法对硫酸庆大霉素注射液进行控制。本实验室对比了离子色谱法与HPLC-ELSD法同时测定硫酸庆大霉素注射液的有关物质,发现两种方法的分离效能相当,但采用离子色谱法时各组分的响应值随其电化学活性不同而差异明显,如西索米星的响应因子大于小诺霉素,在以西索米星为外标法进行有关物质测定时,结果小于HPLC-ELSD。 3 硫酸庆大霉素片组分与有关物质3.1 色谱条件Thermo AcclaimTMAmG C18(4.6mm×150mm, 3µm)色谱柱,流动相为0.7%三氟乙酸(含0.025%五氟丙酸,50%(V/V)氢氧化钠4mL,用50%(V/V)氢氧化钠溶液调节pH至2.6)-乙腈(96.5:3.5),流速1.0mLmin-1,柱后溶液为2%(V/V)的氢氧化钠溶液,柱后加碱为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。柱温为35℃,进样量20μL。3.2 结果该方法中庆大霉素C1、C1a、C2a、C2分别在1.328~132.8µgmL-1、1.606~160.6µgmL-1、7.378~737.8µgmL-1、1.276~127.6µgmL-1浓度范围内线性关系良好,回收率为98.2%~101.8%。有关物质测定中,西索米星在2.632~52.64µgmL-1、小诺霉素在2.006~25.07µgmL-1浓度范围内线性关系良好,西索米星检测限为0.01µg,小诺霉素检测限为0.02µg,各杂质与庆大霉素各组分均能完全分离,见图2。156批次中148批次的硫酸庆大霉素片各C组分的绝对含量分别为C1a为26.3%~37.1%,C2+ C2a为41.8%~49.3%,C1为16.5%~22.2%,4个组分总含量为90.6%~105.0%。148批次的有关物质为小诺霉素1.8%~2.8%,西索米星为未检出~1.5%,其他最大单杂为 0.3%~0.9%,其他总杂为1.2%~4.2%。发现其余8批次样品组分与有关物质均不符合规定,原因为企业采用不符合标准规定的原料所致。1-5,7-8.未知杂质 6. 西索米星 9.小诺霉素图2 硫酸庆大霉素片有关物质典型色谱图ChP2020采用微生物检定法控制其含量,未控制有关物质。BP2024、EP11.0与USP现行版均未收载该品种。本实验室在参考国外药典离子色谱法测定其原料的基础上建立了硫酸庆大霉素片组分与有关物质的方法。方法对乙腈的比例进行了调整,工作电位由四电位取代三电位,可有效的分离硫酸庆大霉素片各组分与各杂质。4.硫酸庆大霉素颗粒组分与有关物质 4.1 色谱条件YMC-Pack Pro C18 RS(4.6×250mm,5μm)色谱柱,流动相为1.6%三氟乙酸(含0.05%五氟丙酸,50%(V/V)氢氧化钠8ml,用50%(V/V)氢氧化钠溶液调节pH值至2.6)-乙腈(94:6),流速1.0 mLmin-1,柱后加碱为2%(V/V)的氢氧化钠溶液,柱后加碱为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。柱温为35℃,进样量20μL。4.2 结果硫酸庆大霉素颗粒的辅料主要为蔗糖,含量较高,与主成分的比例约为200:1,出峰时间约为5min。采用硫酸庆大霉素片的方法测定颗粒时,蔗糖的拖尾峰会导致前15min的基线抬高,严重干扰颗粒有关物质的测定。因此本实验室在硫酸庆大霉素方法的基础上增加了三氟乙酸、五氟丙酸与乙腈的比例,成功解决了蔗糖对硫酸庆大霉素颗粒有关物质测定的干扰。该方法中庆大霉素C1、C1a、C2a、C2分别在5.264~131.6µgmL-1、5.032~125.8µgmL-1、5.595~139.9µgmL-1、3.410~85.24µgmL-1浓度范围内线性关系良好,回收率为98.7%~100.8%。有关物质测定中,西索米星在1.987~39.74µgmL-1、小诺霉素在2.045~51.13µgmL-1浓度范围内线性关系良好,西索米星检测限为0.003µg,小诺霉素检测限为0.01µg,各杂质与庆大霉素各组分均能完全分离,见图3。1-14,16-18-未知杂质;15-西索米星;19-小诺霉素图3 硫酸庆大霉素颗粒有关物质典型色谱图5.盐酸大观霉素与注射用盐酸大观霉素有关物质 5.1 色谱条件采用离子色谱法及HPLC-ELSD法同时分析注射用盐酸大观霉素的有关物质。两法色谱柱均为Apollo C18 (250mm× 4.6mm,5µm),流动相均为0.1molL-1三氟乙酸溶液,柱温均为30℃,进样量均为20µL。离子色谱检测:柱后加减为21g/L氢氧化钠溶液,流速0.5mlmin-1,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。ELSD检测:漂移管温度110℃,载气流速2.6Lmin-1,增益1。5.2 结果ChP2020采用HPLC-ELSD法控制其原料,BP2024与EP11.0采用离子色谱法控制其原料。注射用盐酸大观霉素为无菌原料直接分装,本实验室参考国外药典方法测定了盐酸大观霉素及其制剂的有关物质,并同时与HPLC-ELSD方法进行比较。结果两种方法检测出的有关物质种类和数量基本一致,但离子色谱灵敏度比ELSD高,离子色谱检测限为2.4ng,ELSD为72.8ng。两种方法测定的31批次注射用盐酸大观霉素,杂质D与杂质E结果基本一致,但杂质A、4R-双氢大观霉素及总杂质结果差异较大,原因为杂质A、4R-双氢大观霉素杂质在两种检测器上响应不一致。因此采用离子色谱测定时需对杂质A与4R-双氢大观霉素杂质进行校正因子计算,按校正因子计算后的有关物质结果两种方法基本一致。6.青霉胺与青霉胺片含量与有关物质6.1 色谱条件Dikma Spursil C18(4.6mm×250mm,5µm)色谱柱;流动相为5.3g无水磷酸二氢钠-0.25g己烷磺酸钠,加去离子水1L溶解后,用磷酸调节pH值为2.85,加乙腈9ml;流速为1.0mLmin-1;柱后加碱为21gL-1氢氧化钠溶液,流速为0.3mLmin-1;脉冲积分安培电化学检测器,工作电极为金电极(1mm),参比电极为Ag-AgCl复合电极,六电位检测(T1为0~0.04s,E1为0.13V;T2为0.05~0.21s,E2为0.33V;T3为0.22~0.46s,E3为0.55V;T4为0.47~0.56s,E4为0.33V;T5为0.57~0.58s,E5为-2.0V;T6为0.59~0.60s,E6为0.93~0.13V);柱温为30℃;进样量20µL。6.2 结果含量测定方面,青霉胺浓度在49.88~199.5µgmL-1范围内线性关系良好,回收率为98.4%~101.5%,31批次青霉胺片含量为97.6%~101.5%。有关物质测定方面,各杂质与主成分青霉胺均能完全分离(见图4),青霉胺浓度在3.118~49.88µgmL-1,青霉胺二硫化物杂质浓度在1.616~19.39µgmL-1范围内线性关系均良好,青霉胺与青霉胺二硫化物杂质的检测限均为0.02µg;青霉胺二硫化物结果为0.4%~0.8%,最大单杂为0.9%~2.9%,其他总杂为2.4%~7.3%。1. EDTA 2.辅料3~8.未知杂质 9.青霉胺10.青霉胺二硫化物图5 青霉胺片有关物质典型色谱图ChP2020采用电位滴定法测定其含量,USP现行版采用HPLC法测定其含量,二者均未控制其有关物质。青霉胺虽不属于氨基糖苷类抗生素,但其结构中含有多个氨基与羧基,无共轭双键,同样可以采用离子色谱法测定。离子色谱法测定该品种的关键点为检测电位的选择,直接采用糖四电位时主成分响应很弱,采用仪器自带的六电位时峰型严重拖尾,因此本实验室采用循环伏安法分别对青霉胺与杂质青霉胺二硫化物进行扫描,确定了最佳的六电位波形,解决了主成分严重拖尾的问题。讨论讨论1: 操作过程中遇到的问题与解决方法离子色谱电化学检测在操作过程中常存在背景信号较高、基线噪音较大,重复性差等问题,导致试验耗时耗力,进展缓慢。如硫酸阿米卡星及其制剂测定过程中会出现响应信号下降的现象,原因为流动相中的三氟乙酸可使金电极表面钝化,使用一段时间后需用水擦拭金电极。硫酸庆大霉素制剂测定过程中,出现了背景信号缓慢增加,基线噪音增大的情况,使用一段时间后需用硝酸冲洗管路或打磨电极。为解决该问题,本实验室与离子色谱工程师们查找问题与原因,耗时近3年,终于初步解决了上述问题。首先,所有涉及的容器、试剂与过滤装置均应单独使用,试剂均应为高纯度试剂。其次,对仪器的部分管路用聚醚醚酮材料的管线取代原白色塑料管线,降低管路的透氧性。再次,仪器使用前分别用1.5molL-1的硝酸溶液、2.4gL-1的EDTA溶液、乙腈与去离子水依次冲洗管路。接着,使用时分别对流动相、柱后碱液的水离线脱气15min,除去溶解在其中的氧气,脱气完成后再用氮气或氦气保护。使用时所有的管路须充满液体,防止氧气进入系统中导致重复性降低。最后,更换了进样阀。初步解决了重复性差的问题,但测定时仍需要在碱液中加入一定浓度的EDTA,降低金属离子的影响。虽然重复性差的问题初步得到解决,但背景信号较高,剂型噪音较大等问题在日常操作中还存在着,还需要继续磨合。讨论2:各国药典中离子色谱法分析氨基糖苷类药物的情况(1)中国药典ChP2005年版在“附录V D 高效液相色谱法”检测器下提到了电化学检测器。从2010年版开始在附录中单独列出了“离子色谱法”,对离子色谱的色谱柱、洗脱液、检测器、测定法均进行了详细说明。直到2015年版才首次将该法收录至正文中,涉及的品种为硫酸依替米星,检测项目为有关物质与含量,同时还设有第二法为HPLC-ELSD法,二者选其一。现行2020年版药典仍沿用2015年版方法测定硫酸依替米星。收载的氨基糖苷类药物主要都采用HPLC-ELSD法。硫酸依替米星是我国自主研发的一种半合成氨基糖苷类抗菌药物,也是ChP 2020年版唯一一个采用离子色谱法安培检测器控制的品种。有关物质方法与含量测定方法均一致,为采用C18色谱柱,以0.2molL-1三氟醋酸溶液[含0.05%五氟丙酸、1.5gL-1无水硫酸钠、0.8%(V/V)的50%氢氧化钠溶液、用50%氢氧化钠溶液调节pH值至3.5]-乙腈(96:4)为流动相,四电位检测,柱后加碱(50%氢氧化钠溶液1→25),柱后流速为0.5mLmin-1。(2)国外药典美国药典USP25-NF20首次采用高容量的三乙胺阴离子交换色谱柱,以氢氧化钠为淋洗液测定了阿米卡星(包括硫酸阿米卡星及阿米卡星注射液)、卡那霉素(包括硫酸卡那霉素、卡那霉素注射液及硫酸卡那霉素胶囊)的含量。随后,USP27-NF22开始采用耐强酸、强碱和高浓度盐的聚苯乙烯-二乙烯基苯共聚物填料色谱柱代替传统的阴离子交换柱,并首次用四电位取代三电位测定了硫酸链霉素原料、硫酸链霉素注射液及注射用硫酸链霉素的含量。随着离子色谱不断发展,USP37-NF32及之后的版本用十八烷基键合硅胶代替了聚苯乙烯-二乙烯基苯共聚物色谱柱,流动相以烷基化有机酸如三氟乙酸、五氟丙酸等作为离子对试剂测定庆大霉素原料的组分。该方法采用柱后加碱的模式,较美国药典常用的氢氧化钠淋洗液体系更能避免空气中二氧化碳的影响,分析系统更稳定。BP从2002年版、EP从4.0版开始收载了硫酸新霉素的离子色谱方法,方法采用柱后加减模式测定了硫酸新霉素原料的有关物质。随后,BP2003年版、EP5.0版及之后的版本陆续将离子色谱法应用于奈替米星、妥布霉素、庆大霉素、大观霉素及阿米卡星等品种。方法的共同特点为采用耐强酸碱的聚苯乙烯-二乙烯基苯柱或耐酸的C18柱,以烷基磺酸盐或三氟乙酸等离子对试剂作为流动相,与氨基糖苷类药物形成离子对增强其保留,再加入少量的有机改进剂改善分离,三电位检测。直到BP2007年版、EP6.0版开始陆续采用更为普及的辛烷基键合硅胶或十八烷基键合硅胶色谱柱测定了盐酸大观霉素、硫酸庆大霉素、阿米卡星与硫酸阿米卡星等。其中从BP2011年版、EP7.0版开始,硫酸庆大霉素有关物质与组分方法中,流动相由烷基磺酸盐体系变更为三氟乙酸-五氟丙酸体系,减少了流动相中的盐在金电极表面沉积并使检测信号更稳定。发展趋势与展望中国药典是药品研制、生产、经营、使用和监督管理等均应遵循的法定依据,是我国保证药品质量的法典。中国药典具有使用范围广,权威性强的特点,因此其收载的质量标准应具有操作性强、重现性好、耐用性好、成本适中等特点。目前中国药典中采用离子色谱安培检测法测定的品种仅硫酸依替米星一个,而国外药典多采用安培检测法测定氨基糖苷类药物。离子色谱安培检测法在中国药典中发展缓慢的原因主要有2点:一是国内外离子色谱仪的普及率不同。国内制药企业规模参差不齐,离子色谱仪价格较高,仅一些规模较大的企业采购了离子色谱仪;而国外制药企业规模通常较大,大多有条件购买价格昂贵的仪器。二是国内外离子色谱仪使用情况不同。国内使用离子色谱电导检测比较多,而国外电导检测与安培检测发展基本持平。由于离子色谱安培检测器在分析无紫外吸收或紫外吸收较弱的药物方面具有一定的优势,无需衍生化可直接检测,灵敏度高、选择性好,具有一定的发展前景。而且目前国产离子色谱仪蓬勃发展,日趋成熟与稳定,为今后离子色谱在药物分析方面提供了更多的技术支持和选择性。但相关离子色谱生产企业也需解决操作过程中仪器存在的一些问题,如提高仪器的重复性和易操作性,使离子色谱在今后的应用更加深入和广泛。本文作者:李茜,王立萍,刘英*(河南省药品医疗器械检验院,郑州,450018)作者简介:李茜,女,副主任药师 研究方向:抗生素质量分析与质量控制*通讯作者:刘英,女,主任药师 研究方向:抗生素质量分析与质量控制
  • 脑心通胶囊含量的测定
    脑心通胶囊,由黄芪、赤芍、丹参、当归、川芎、桃仁、红花、醋乳香、醋没药、鸡血藤、牛膝、桂枝、桑枝、地龙、全蝎、水蛭等中药材制备而成。具有益气活血,化瘀通络的功效。用于气虚血滞、脉络瘀阻所致中风中经络,半身不遂、肢体麻木、口眼歪斜、舌强语謇及胸痹心痛、胸闷、心悸、气短;脑梗塞、冠心病心绞痛属上述证候者。文中参照中国药典2020年版的方法,采用月旭Ultimate® Plus C18色谱柱,同时对丹酚酸B和芍药苷两个含量测定项目进行检测,结果能满足检测需求。丹酚酸B含量测定色谱条件色谱柱:月旭Ultimate® Plus C18(4.6×250mm,5μm)。流动相:乙腈/甲醇/甲酸/水=10/27/1/63;检测波长:286nm;柱温:30℃;流速:1.0mL/min;进样量:10μL。谱图和数据结论用月旭Ultimate® Plus C18(4.6×250mm,5μm),在此色谱条件下测定,能满足检测的需求。芍药苷含量测定色谱条件色谱柱:月旭Ultimate® Plus C18(4.6×250mm,5μm)。流动相:甲醇/水/冰醋酸=25/75/0.2;检测波长:230nm;柱温:30℃;流速:1.0mL/min;进样量:10μL。谱图和数据结论用月旭Ultimate® Plus C18(4.6×250mm,5μm),在此色谱条件下测定,能满足检测的需求。
  • 药典委公示24个中药配方颗粒国家药品标准(2023年第一期)
    近日,国家药典委发布了关于2023年第一期中药配方颗粒国家药品标准。本次拟公示的中药配方颗粒标准共24个,公示期为三个月。以下为公示原文:按照国家药品监督管理局统一部署要求,根据国家药品标准工作程序,我委组织相关企业开展中药配方颗粒国家药品标准研究,形成了2023年第一期24个中药配方颗粒拟公示标准。为确保标准的科学性、合理性和适用性,现就上述中药配方颗粒品种国家药品标准公示征求社会各界意见(详见附件),公示期为三个月。请相关单位认真研究,鼓励企业参照国家药品监督管理局发布的《中药配方颗粒质量控制与标准制定技术要求》,开展从标准汤剂到生产工艺及中药配方颗粒产品的标准研究与复核。若有异议,请及时来函提交反馈意见,并附相关说明、实验数据和联系方式。来函需加盖公章,同时将公函扫描件电子版发送至指定邮箱。公示期满未回复意见即视为对公示标准无异议。联系人:张雪 祁进电话:010-67079632,010-67079633电子邮件:zypfklzx@chp.org.cn收文单位:国家药典委员会办公室地址:北京市东城区法华南里11号楼邮编:100061 附件: 盐荔枝核配方颗粒.pdf桃仁(山桃)配方颗粒.pdf土鳖虫(地鳖)配方颗粒.pdf葶苈子(播娘蒿)配方颗粒.pdf牵牛子(裂叶牵牛)配方颗粒.pdf络石藤配方颗粒.pdf熟大黄(唐古特大黄)配方颗粒.pdf荔枝核配方颗粒.pdf贯叶金丝桃配方颗粒.pdf酒大黄(唐古特大黄)配方颗粒.pdf覆盆子配方颗粒.pdf地榆炭(地榆)配方颗粒.pdf大黄(唐古特大黄)配方颗粒.pdf醋鳖甲配方颗粒.pdf大腹皮(大腹皮)配方颗粒.pdf赤小豆(赤豆)配方颗粒.pdf炒桃仁(山桃)配方颗粒.pdf炒葶苈子(播娘蒿)配方颗粒.pdf炒牵牛子(裂叶牵牛)配方颗粒.pdf炒赤芍(芍药)配方颗粒.pdf炒瓜蒌子(栝楼)配方颗粒.pdf燀桃仁(山桃)配方颗粒.pdf荜茇配方颗粒.pdf白前(柳叶白前)配方颗粒.pdf
  • 我国将制定化妆品中48种物质检测国家标准
    仪器信息网讯 日前,国家标准委发布了2014年第一批国家标准制修订计划的通知,通知中提出将制定化妆品中11种青霉素类抗生素、15种喹诺酮类抗生素、5种重金属、7种性激素,以及黄芪甲苷、芍药苷、连翘苷和连翘酯苷A等48种物质的测定方法。   以上物质测定采用的仪器主要为高效液相色谱法、高效液相色谱/串联质谱法、电感耦合等离子体质谱法等。   2014年第一批国家标准制修订计划拟制定的化妆品检测标准:   《化妆品中4-异丙基-m-甲苯酚等6种酚类抗菌剂的测定 高效液相色谱法》   在化妆品中,酚类抗菌剂既可作为防腐剂,又可用于皮肤护理肤液和腐蚀痘痘。在我国化妆品卫生规范((2007年版))和GB7916-1987《化妆品卫生标准》中,对以下酚类物质做出规定,4-异丙基-3-甲酚(&le 0.1%)、4-叔丁基苯酚(禁用)、4-氯-3-甲酚(&le 0.2%)、2,4,6-三氯苯酚(禁用)、苯酚(禁用)和五氯苯酚(禁用)。   目前我国尚无酚类抗菌剂检测的国家标准方法,本研究拟通过酚类抗菌剂检测方法的探索,制定相应的标准检测方法,为化妆品品产品的市场监督提供有力的技术支撑。   《化妆品中阿莫西林、氨苄西林、哌拉西林等11种青霉素类抗生素的测定 液相色谱-串联质谱法》   《化妆品中恩诺沙星、环丙沙星、诺氟沙星等15种喹诺酮类抗生素的测定 液相色谱-串联质谱法》   为了使消费者在使用化妆品后能够迅速改善肤质,一些厂商可能会在其产品中违禁添加一些抗生素。使用添加了抗生素的化妆品,消费者最初会觉得皮肤明显变好,但长期使用会造成色素沉着、皮肤萎缩、变薄、变黑,甚至导致皮炎。如果长期局部使用,最容易对该抗生素所对抗的细菌产生耐药,从而无法杀死细菌。虽然消费者使用后在短期内不会有任何异常反应,但当人们为了治病而选择该抗生素时,体内可能早已经产生了抗药性,甚至有可能导致全身性损害。   因此我国《化妆品卫生规范》(2007年版)中明确规定抗生素类药物不得作为生产原料及组分添加到化妆品中。目前对于化妆品中青霉素类抗生素的测定还缺乏统一的国家检测方法标准,因此研究相关的检测技术是十分有必要的。   《化妆品中铬、锑、镉、砷、铅的测定-电感耦合等离子体质谱法》   化妆品的材料多来源于自然界的天然矿物质,并且在加工过程中有害重金属很难除去。化妆品中的重金属易通过皮肤吸收进入人体,经过长时间的蓄积产生危害,目前尚无针对化妆品中铬、锑的标准。目前化妆品中砷、镉、铅的检测方法主要是原子吸收和氢化物原子荧光光谱法。   ICP/MS法具有快速、高灵敏度和同时检测多元素的优点,广泛运用于环境、半导体、医学、生物、冶金、石油、核材料分析等领域中,其溶液的检出限大部份为ppt级,对化妆品中多种重金属的同时检测具有明显的优势。   《化妆品中黄芪甲苷、芍药苷、连翘苷和连翘酯苷A的测定 高效液相色谱法》   黄芪甲苷是黄芪中特征的生物活性成分,具有益气,固表,止汗等药用功效。中国药典明确记述,黄芪还具有增强免疫、抗癌、抗衰等药理作用。黄芪逐渐被应用于化妆品行业,目前已经有售含黄芪甲苷的牙膏系列产品和基础护肤类的相关产品化妆品。目前,我国尚无化妆品中黄芪甲苷的测方法,造成监管无据可依的现状,部分违规化妆品产品上标注含有中药成分但实际产品中不含或含量不够,欺骗消费者,逃避监管。   因此,为加强对黄芪相关化妆品的消费者权益,急需建立化妆品中黄芪甲苷的快速、准确的检测标准方法,特此建议立项。   《化妆品中七种性激素的测定 超高效液相色谱/串联质谱法》   我国的《化妆品卫生规范》(2007版)明确规定了7种性激素(包括雌酮、雌二醇、雌三醇、己烯雌酚、睾丸酮、甲基睾丸酮和黄体酮)为化妆品中禁用物质。由于在化妆品中添加性激素能够快速促进毛发生长,防止皮肤老化,增加皮肤弹性,并具有丰乳、除皱、治疗暗疮粉刺等作用,因此常被非法添加到各类护肤品中。然而,长期使用含性激素的化妆品会导致皮肤色素沉积、产生黑斑、皮肤层变薄等副作用,甚至具有致癌危险。   本标准适用于化妆品中7种性激素的定性和定量分析 取一定量的化妆品样品,膏霜类、精油类及面膜类化妆品用饱和氯化钠溶液分散,用甲醇从分散液中提取性激素类药物,经固相萃取小柱净化 水类化妆品用甲醇提取后可直接上样 用超高效液相色谱/串联质谱法测定,通过外标法计算试样化妆品中7种性激素的浓度。   色谱质谱法一直是化妆品中相关物质检测的重要方法,在2013年第一批国家标准制修订计划当中涉及的20项化妆品检测方法中,高效液相色谱法、质谱法占13项。具体立项标准如下表所示。
  • 氨基糖苷类抗生素检测新方案 样本富集净化新选择——AGs免疫亲和柱!
    氨基糖苷类化合物(AGs)是由两个或两个以上氨基糖通过糖苷键与氨基环醇骨架连接而成的碱性低聚糖抗生素。这类抗生素包括:链霉素、新霉素、卡那霉素、庆大霉素、壮观霉素等。他们共同特点是水溶性好、性质稳定、抗菌谱较广,又因其价格低廉,在兽药领域应用广泛。AGs存在一定程度的耳毒性、肾毒性和神经肌肉阻滞作用。目前世界多个国家和组织建立了AGs在动物源食品中的相关限量标准,我国GB 31650-2019规定AGs在动物源食品中的限量如下所示:AGs检测方法及制约因素AGs分子中因富含氨基和羟基而呈强极性,其分子中缺少发色团和荧光团,反相色谱保留较差,因此动物源食品中 AGs的检测比其他抗生素更为复杂。目前 AGs的检测方法主要有免疫分析法、高效液相色谱-质谱/质谱法(HPLC-MS/MS)、液相色谱-串联质谱法(LC-MS-MS),其中免疫分析法方便快速更适合定性筛查检测,HPLC-MS/MS、LC-MS-MS定量准确、灵敏度高更适合确证检测。在乳及乳制品中,GB/T 22969-2008《奶粉和牛奶中链霉素、双氢链霉素和卡那霉素残留量》,虽然只规定了链霉素、双氢链霉素和卡那霉素3种氨基糖苷类药物残留量的高效液相色谱-串联质谱测定的确证方法,但GB 31650-2019《食品中兽药最大残留限量》中还规定了其他氨基糖苷类药物包含大观霉素、安普霉素、庆大霉素、新霉素等,这些项目也是实验室对乳及乳制品安全检测过程的必检项目。目前HPLC-MS/MS、LC-MS-MS方法可对多种AGs进行同时检测,但是一次性不能对多种氨基糖苷类药物富集净化是提高检测效率的主要制约因素之一!在动物组织中,GB/T 21323-2007《动物组织中氨基糖苷类药物残留量的测定 高效液相色谱-质谱/质谱法》规定了动物组织中大观霉素、潮霉素B、双氢链霉素、链霉素、丁胺卡那霉素、卡那霉素、安普霉素、妥布霉素、庆大霉素和新霉素10种氨基糖苷类药物残留量的高效液相色谱-串联质谱测定的确证方法。但此检测AGs的方法前处理过程使用C18富集净化,检测限仅为20-100μg/kg。美正氨基糖苷类免疫亲和柱美正通过多年的积累,开发出一种使用氨基糖苷类免疫亲和柱前处理的方法,解决了动物源性食品中氨基糖苷类抗生素检测过程中前处理富集净化的难点。使用氨基糖苷类免疫亲和柱的前处理方法,可以将动物源食品中11种氨基糖苷类抗生素进行一次性特异性富集净化,能够更好地消除基质干扰,既提高了前处理富集净化效率又提高了分析的准确度和灵敏度。药物种类壮观霉素潮霉素B双氢链霉素链霉素丁胺卡那霉素卡那霉素安普霉素妥布霉素庆大霉素新霉素巴龙霉素产品特点特异性强:免疫学原理,对样本中AGs选择性高、特异性结合能力强;操作简单:可穿透式柱塞,使用便捷;性能优异:AGs加标回收率80-120%,准确度高样本类型动物源性食品,包括乳制品、动物组织及水产品等。药物残留类免疫亲和柱免费试用!美正在药物残留检测领域有更多的前处理富集净化方法,值美正十五周年之际,意向用户可对我司药物残留类免疫亲和柱进行免费试用。
  • 《中药配方颗粒液相色谱图谱集》来了!160个已公布国家标准品种!
    分析实验员小李的内心独白我是一名分析实验员,新的一年,从立Flag开始,突然转念一想,去年还留了个小尾巴。几个月前,领导和我确认工作计划的场景还历历在目。 如今,翻翻实验记录,时间过去大半,依旧还有一半项目标记为“未完成”。 要说这里面让我最闹心的还属特征图谱,我们都知道,特征图谱或指纹图谱是中药整体质量评价的重要手段,也是标准汤剂的关键参数之一。 总结下来,主要5大难点, 正当我伤心迷茫时,经理来了,拍了拍我的肩,递给我一份资料《中药配方颗粒液相色谱图谱集》,让我参考参考。我如获至宝,可不?160个已公布中药配方颗粒国家标准品种,所有品种均包含特征图谱或指纹图谱,部分品种涵盖含量测定图谱。简直是雪中送炭啊!我仿佛看到了胜利的曙光,今年的工作计划,必须再来40个品种… … 岛津工程师的经验分享一起来先听听岛津应用工程师的标准复现实践经验!我是一名应用工程师,也做过配方颗粒国家标准复现,也遇到过“难点封神榜”上的几种情况,总结下来:中药配方颗粒特征图谱分析难度相对较大,实验能否顺利进行,设备的稳定性是首要因素!来看两个案例:案例一 前10min中有机相变化增幅只有0.0007 mL/min2梯度变化非常缓(蜜紫菀配方颗粒特征图谱6次重复性实测图谱) 案例二流动相中含有离子对试剂流动相中带气泡类似这些情况对仪器性能要求都较高只有在仪器能精密稳定送液的情况下保留时间才能稳定、准确(枳实配方颗粒特征图谱重复性实测图谱) 《中药配方颗粒液相色谱图谱集》直观展示了特征图谱或指纹图谱、含量测定图谱的实测数据。 目录部分展示一、中药配方颗粒液相色谱分析应用(UHPLC法)(共88种,举例显示5种)巴戟天配方颗粒白芷(白芷)配方颗粒百部(对叶百部)配方颗粒百合(卷丹)配方颗粒半枝莲配方颗粒 二、中药配方颗粒液相色谱分析应用(HPLC法)(共72种,举例显示5种)白芍配方颗粒白鲜皮配方颗粒板蓝根配方颗粒侧柏叶配方颗粒燀苦杏仁(西伯利亚杏)配方颗粒 三、HPLC法与UHPLC法快速转换的应用白芷(白芷)配方颗粒赤芍(芍药)配方颗粒醋延胡索配方颗粒 厉害了!忍不住想看看全文了吧,上链接咯!《中药配方颗粒液相色谱图谱集》即刻下载
  • 《古代经典名方关键信息表(25首方剂)》发布
    近日,国家中医药管理局办公室、国家药品监督管理局综合和规划财务司联合印发《古代经典名方关键信息表(25首方剂)》(以下简称《信息表》),旨在贯彻落实《中医药法》、《中共中央国务院关于促进中医药传承创新发展的意见》,加快推动古代经典名方中药复方制剂简化注册审批。此次发布的25首方剂分别是桃核承气汤、芍药甘草汤、半夏泻心汤、真武汤、黄芪桂枝五物汤、瓜蒌薤白半夏汤、大建中汤、麦门冬汤、温胆汤、小续命汤、开心散、当归饮子、泻白散、清心莲子饮、羌活胜湿汤、当归补血汤、地黄饮子、清金化痰汤、金水六君煎、济川煎、清肺汤、保元汤、半夏白术天麻汤、易黄汤、宣郁通经汤。《信息表》涵盖每首方剂出处、处方、制法及用法、药味名称、基原及用药部位、炮制规格、折算剂量、用法用量、功能主治等信息。附件:古代经典名方关键信息表(25首方剂).pdf
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制