当前位置: 仪器信息网 > 行业主题 > >

牛胚气管细胞

仪器信息网牛胚气管细胞专题为您提供2024年最新牛胚气管细胞价格报价、厂家品牌的相关信息, 包括牛胚气管细胞参数、型号等,不管是国产,还是进口品牌的牛胚气管细胞您都可以在这里找到。 除此之外,仪器信息网还免费为您整合牛胚气管细胞相关的耗材配件、试剂标物,还有牛胚气管细胞相关的最新资讯、资料,以及牛胚气管细胞相关的解决方案。

牛胚气管细胞相关的资讯

  • 干细胞分化成肝类器官并且进行串联培养
    干细胞分化成肝类器官并且进行串联培养方案1 实验目的 该 SOP 描述了由肝癌细胞系(HepaRG)和原代人肝星状细胞 (SteCs) 组成的肝球体的培养,形成肝脏类器官。此外,还描述了将肝脏类器官整合到 MOC 中,可以与其他类器官串联起来共培养。肝球体的生长大约需要 3 小时。从 384 孔微孔板中去除肝球体大约需要 2~5 小时,具体取决于所需的肝球体数量。将肝球体整合到 MOC 中至少需要 1 小时,这也取决于所需 MOC 的数量及所需的肝球体数量。应计算准备细胞培养的额外时间(约 1 周)以及 MOC 的交付时间。 本 SOP 深入描述了 Corning® Spheroid Microplate 384 孔板(参考号 3830)的装载、这些肝球体的后续收集和计数以及它们与 MOC 的集成以进行进一步的动态培养。 所有描述的工作步骤都应在无菌操作条件下执行。应特别遵循正确洗手以及始终使用手套。 2 负责人 主要负责人:Alexandra Lorenz SOP 作者:Naomia Sisoli-Sambo、Juliane Hübner 与本 SOP 中描述的工作步骤的偏差必须立即报告给 Alexandra Lorenz 女士。如果更改获得批准,则必须相应地修改 SOP。 3 多器官芯片(MOC) 的无菌处理 为避免污染,必须遵守无菌实验室工作的通用准则。在将 MOC 放入生物安全柜之前,应先喷洒经批准的杀菌剂(例如 80% 乙醇)对其进行消毒,然后用无菌纸巾擦拭(建议使用浸泡在消毒剂中的市售纸巾)。必须特别注意引入的任何部件(注射器适配器、组织培养小室支架和泵连接端口)它们的连接和盖子。掉在地上的部件必须用无菌、高压灭菌的备件更换。因此,在运行 MOC 时,必须始终提供适当数量的无菌备件。 除离心、细胞计数和培养(37°C,5% CO2)外,所有工作步骤均应在超净工作台中进行。 4 所需材料 名称备注分化的HepaRG细胞8 mio cells/vial HPR116NS, Biopredic星状细胞 (SteCs)SC-5300 (Provitro)ScienCellSteCs培养基SC-5301 (Provitro)ScienCell80%乙醇消毒组织例如 Bode Chemie GmbH(德国)的 Bacillol AF 纸巾HepaRG 培养基Williams E基础培养基(500 ml) 不含酚红,含 2.24 g/L NaHCO3),例如PAN-Biotech P04-29510 或 HIMEDIA AL240-500ML 10% FCS (50 ml);5 x 10-5mol/L 氢化可的松半琥珀酸盐(500 µ l 来自 25 mg/ml 原液);5 µ g/ml 胰岛素(250 µ l 来自 10 mg/ml 储备液),例如PAN P07- 04300 2mM 谷氨酰胺(5 ml 来自 200 mM 原液);5 µ g/ml 硫酸庆大霉素(50 µ l 来自 50 mg/ml 原液);0.25 µ g/ml 两性霉素 B(500 µ l 来自 250 µ g/ml 原液);分化培养基含 2% DMSO 的 HepaRG 培养基Trypsin/EDTA 5x用于收集 HepaRGs0.25% 胰蛋白酶/2.21mM EDTA,例如康宁 25-053-CITrypsin/EDTA 1x用于收集 SteCs0.05% 胰蛋白酶/0.53mM EDTA,例如康宁 25-052-CIPBSw/o Ca 和 Mg,例如康宁 21-031-CVR Gilson Platemaster 96 道移液器用于 384 孔板的 Gilson Platemaster 适配器移液器吸头试剂容器灭菌Axygen RES-SW96-HP-SI 或 RES-SW12-HP-SI用于 15/50ml 管的离心机二氧化碳培养箱显微镜细胞计数装置泵控制单元TissUse 有限公司泵管2 毫米 x 1.6 毫米聚氨酯泵管,SMC(美国)扳手 1扳手尺寸 7 毫米 (ISO 272)扳手 2扳手尺寸 10 毫米 (ISO 3318)内六角扳手扳手尺寸 1.5 毫米 (ISO 4762)泵连接端口来自 SMC(美国)的 KJS02-M3 型,内六角,端口尺寸 M3微孔板384 孔黑色透明圆底超低吸附肝球体微孔板康宁 3830大口径提示康宁 TF-205-WB-R-S24孔超低吸附板康宁3473细胞培养处理的培养瓶和培养皿例如康宁定轨振荡器PS-M3D Grant Instruments灰色和斜体字部分由 TissUse GmbH 提供 5 实验操作5.1 样品准备在肝球体形成前 5 天,根据实验需要解冻尽可能多的分化 HepaRG 细胞。一个循环需要 40 个肝球体(每个由 24,000 个 HepaRG 细胞和 1,000 个星状细胞组成)。每个接种满的 384 孔微孔板将提供大约 300 个肝球体。要完全接种满一个 384 孔微孔板,需要 921.6 万个分化的 HepaRG 细胞。由于一瓶分化的 HepaRG 细胞含有大约 800 万个活细胞,因此应计算每个接种满的 384 孔板需要两瓶。请注意:细胞是在完全融合时接种的,以避免去分化。因此,在接种过程可以丢掉一些细胞,因为准备有富余。 每个小瓶 500 µ l 分化的 HepaRG 细胞(订单号 116NS)应在 9.5 ml HepaRG 培养基中稀释,以将 DMSO 降低至0.5%的终浓度。以0.2 x 106/cm2的密度将活细胞计数后种到适当的细胞培养皿中(例如,800 万个细胞种到60 mm 2培养皿上,2个培养皿;或1600 万个细胞种到一个 T75 培养瓶上)。5-12 小时后必须在无菌条件下将培养基更换为 10 ml 分化培养基(2% DMSO)。随后,每两到三天将培养基更换为 10 ml 新鲜分化培养基。 SteCs 应在肝球体形成前约 2 天解冻并放入培养物中。一个装有 SteCs 的 T175 培养瓶将提供至少五个 384微孔板。首先需要预热SteCs 的培养基,一个小瓶约 1-2 x 106 SteCs 需用 9 ml 培养基,离心,重悬于 1 ml 新鲜培养基中,然后接种到含有 24 ml 温热的星状细胞培养基的 T175 细胞培养瓶中。第二天更换培养基以去除死细胞。 对于扩大培养,SteCs 可以生长到 70% 的融合,然后细胞开始增殖。无菌条件下的培养基更换必须每两到三天进行一次。不应使用通道数高于 P8 的 SteCs。 图 1 单层分化的 HepaRG 细胞和 HHSteC 的相差显微镜。 (A) HHSteC 在第 9 代的相差图像和(B) 在接种后 4 天分化的 HepaRG 细胞。比例尺 100 µ m。 5.2 细胞的收集准备 HepaRG 细胞进行收集,用 10 到 20 ml PBS 冲洗两次。洗涤后,使用胰蛋白酶/EDTA(5x;0.25% 胰蛋白酶/2.21mM EDTA;室温)从细胞培养瓶底部分离细胞。为此,将培养皿中的适量胰蛋白酶/EDTA 涂抹在细胞上,并在 37°C 下孵育 5 至 10 分钟。开始 HepaRGs 的胰蛋白酶消化后,使用胰蛋白酶/EDTA(1x;0.05% 胰蛋白酶/0.53 mM EDTA)收集星状细胞,并在 37°C 下孵育 5 至 10 分钟。通过这种方式,几乎可以同时收集细胞。用显微镜检查细胞的溶解情况并轻轻敲击细胞培养瓶的侧面以加速该过程并脱壁仍贴壁的细胞。一旦所有细胞从培养容器底部脱离,通过添加相同量的胰蛋白酶抑制剂或两倍量的培养基来抑制反应。将细胞溶液转移到 50 ml 离心管中, 然后用 10 ml PBS 冲洗培养容器两次,并将 PBS 添加到离心管中。细胞团块可以通过溶液的重复再悬浮来分散。此时可以合并来自多个培养容器的相同类型的细胞。 一旦进入溶液,将细胞以 300 x g 离心 5 分钟,然后吸出上清液并将细胞沉淀重悬于 1 至 2.5 ml 细胞培养基中。对 SteCs 和 HepaRG 细胞都使用 HepaRG 培养基(不含 DMSO)。用细胞计数跟踪细胞的再悬浮。请彻底混合细胞溶液(HepaRG 和 SteCs)。用 40 µ l HepaRG 培养基(1:5 稀释)稀释 10 µ l HepaRG 细胞溶液。彻底混合新溶液并用 10 µ l 台盼蓝工作溶液(1:2 稀释,总共 1:10 稀释)稀释 10 µ l HepaRG 溶液。彻底混匀 StesCs 细胞悬液,并用 10 µ l 台盼蓝工作溶液(1:2 稀释)稀释成 10 µ l 细胞悬液。在室温下孵育计数溶液 2 至 3 分钟。计数前充分混合。 将计数溶液加载到先前准备好的血细胞计数板中,并在计数室的四个大方格内对每种细胞类型的活细胞和死细胞进行计数。计算每个细胞类型的每个大方块的活细胞的算术平均值。 每毫升的细胞计数计算如下: 或者根据操作说明使用 SOL Counter (半导体式全自动细胞计数仪) 自动确定每毫升的细胞计数。 5.3 在384 孔微孔板中培养肝球体5.3.1 细胞悬液的制备每个肝球体需要 50 µ l 细胞悬液。这相当于每个微孔板 19.2 ml (50 µ l x 384)。由于移液过程中的波动,每板应制备至少 22 ml(最好是 23 ml)的细胞悬液。要在 50 µ l 的体积中生成具有 1,000个 SteCs 和 24,000 个HepaRGs(1:25 比例)的肝球体,细胞悬浮液的浓度应为 20,000个 SteCs/ml 和 480,000 HepaRGs/ml。 使用 (1) 中计算的每毫升细胞计数生成肝球体细胞悬液所需的收集 HepaRG 细胞和 SteCs 的确切体积,具体取决于所需的肝球体细胞悬液体积: HepaRG 和 SteCs 悬浮液的计算体积用于球状细胞悬浮液,添加培养基以达到所需的体积(例如,一个 384 孔球状板为 23 ml)。 5.3.2 将细胞种到 384 孔微孔板中移液器和所有其他设备需要用乙醇 (80%) 擦拭,并在使用前放置在无菌细胞培养工作台下。先前制备的肝球体细胞悬浮液应彻底混合,并将加载一个微孔板所需的大致量填充到试剂储液罐中(推荐储液罐:RES-SW12-HP-SI,Rillenreservoir)。使用 Gilson Platemaster 96 通道移液器和 384 孔板适配器将 50 µ l 细胞悬液种到 384 孔微孔板的每个孔中。 注意:- 将 50 µ l 细胞悬液直接放在每个孔的底部- 确保所有移液器吸头都牢固地推到 96 通道移液器上。- 对于没有气泡的精确移液,推荐使用反向移液技术。- 为确保细胞在悬浮液中均匀分布,在每次移液步骤前轻轻摇动悬液管。 应将接种满的微孔板短暂离心(250 g,1-2 分钟),以确保孔壁上没有细胞悬浮液,并将细胞收集在孔底。肝球体在 37 °C 和 5% CO2 条件下连续 3 天。图 2 肝球体形成的光学显微镜。 HepaRG 细胞和 SteCs 在肝球体形成的第 1 天和(B)第 3 天的 384 孔超低吸附板(A)的孔中。比例尺 100 µ m。5.4 从 384 孔微孔板中取出肝球体为了收集肝球体,将 384 孔微孔板放在层流罩下。使用 200 µ l 移液器和大口径移液器吸头,小心地将肝球体从 384 孔微孔板中取出。可以在一个移液器吸头中收集多个肝球体。在平底 24 孔低吸附板的每个孔中收集 40 个肝球体。计数肝球体,并将 40 个肝球体放入每个孔中。可用深色背景(例如黑色铝箔纸)更容易看到 24 孔低吸附板中的肝球体。将 40 个肝球体转移到一个孔中后,小心取出旧培养基并加入约 1.5 ml 新鲜 HepaRG 培养基。之后,在显微镜下对每个孔中的肝球体进行计数。丢弃任何看起来太小或聚合不良的肝球体,类似于薄层而不是肝球体。 注意:用移液器吸头收集肝球体时不要吸入任何空气。肝球体应始终悬浮在培养基中。空气的吸入会导致肝球体卡在移液器尖端。应该习惯于在拿起肝球体之前用培养基润湿移液器尖端。此外,使用移液器的时候使用超过所需的程量。这两点都可以降低肝球体粘附在内移液器吸头表面或肝球体漂浮在培养基表面上的风险。 为避免融合并进一步提高肝球体的圆度,将 24 孔低吸附板置于振荡器上,直到 MOC 实验开始(12 至 48 小时)。为此,用乙醇彻底消毒振荡器,并将其放入培养箱(37 °C;5 % CO2)中。将超低吸附板放在振荡器上,使用以下设置并确保培养基不会因摇晃而溢出: 轨道式往复式Vibrio循环式模式4030°5°00时间25OFF5ON 5.5 将肝球体转移到多器官芯片平台(MOamily:宋体 "用新鲜培养基填充培养小室时,不要超过培养小室内盖的螺纹。
  • CERO全自动3D细胞培养系统——助力类器官研究的绝佳利器
    尊敬的科研工作者们!你们一定听说过CERO 3D Incubator & Bioreactor这款细胞培养系统吧!它在类器官研究领域具有显著优势,让我们一起来了解一下吧!首先,CERO提供了最佳的细胞培养环境,通过独特的3D细胞培养技术,监测和控制温度、pH和二氧化碳水平,为类器官的生长和发育提供最适宜的条件。其次,CERO能够提高类器官的复杂性和成熟度,模拟更真实的生理结构和功能。这对于研究类器官在特定生理环境下的反应和功能具有重要意义,让我们的研究更加接近真实,更有说服力。再次,CERO减少了对嵌入基质的依赖,提供最大的均匀性和稳定性(如CEROtubes有独特的鳍状设计),使得类器官的培养更加标准化和可重复。这对于研究结果的可靠性和可比较性非常重要,让我们的实验更精准,更可信。最后,CERO适用于各种组织类型的类器官培养,如肝脏、肾脏、肠道、皮肤等,具有广泛的应用价值。无论你是研究肝脏还是皮肤,CERO都能满足你的需求。我们一起了解一下类器官的前世今生类器官的起源——自组织现象:类器官的起源可以追溯到1907年,当时44岁的美国贝克罗莱那大学教授威尔逊 (H. V. Wilson)发现通过机械分离的海绵(sponge)细胞可以重新聚集并自组织成为新的具有正常功能的海绵有机体,他的研究结果于1910年发表。Wilson, H. V. Development of sponges from dissociated tissue cells(1910)我们要知道类器官是由多个不同类型的细胞组成,协同工作以执行特定的功能,类似于真正的器官。它们可以是人工合成的,也可以是通过再生医学技术生长出来的。类器官的来源总结还有如下图六种:Xu et al. Journal of Hematology & Oncology (2018)近年来火热的干细胞研究,主要开始于上世纪末。1987年,A.J. Friedenstein发现间充质干细胞 (Mesenchymal Stem Cell,MSC)。1998年,美国生物学家James Thomson首次分离得到人胚胎干细胞。2007年,Thomson教授成功制造出人诱导多能干细胞 (induced Pluripotent Stem Cells,iPSC).如今,绝大多数类型的非肿瘤来源的人源类器官均可由MSC或iPSC发育而来,干细胞研究的飞速进展为类器官研究带来新的活力。近十余年类器官的发展,如下图类器官发展历程(Claudia Corrò et al. Am J Physiol Cell Physiol, 2020) CERO是如何促进类器官的研究进展的呢?我们这里有几个案例可以给大伙儿一起分享一下吧CERO进行心脏组织模型的研究(心脏类器官的研究案例)干细胞来源的心肌细胞在心血管研究、疾病模型和药物开发等领域受到越来越多的关注。研究方法:使用CERO作为一个完整的工作流平台,让干细胞以均匀的聚集体形式扩增,然后直接诱导成为大量的跳动的心脏体。使用CERO进行多能干细胞的扩增和心肌分化,与传统的轨道振荡器相比,可以提高心肌细胞的质量、均匀性、完整性和产量。研究结果:使用CERO可以实现从干细胞到心肌细胞的高效转化,形成具有生理功能的心脏组织模型,用于各种应用。CERO 3D与轨道振荡器的比较—鼠胚干细胞诱导心肌细胞后的3、8和13天分化研究 这里有一段来自CERO的客户(Jaya Krishnan教授,法兰克福歌德大学心血管再生研究所,Genome Biologics联合创始人)的评价:“我们所有研究的最终目标是识别和开发具有临床相关性的治疗人类心脏病的药物。为此,我们利用人类自组织的心脏类器官进行高通量药物筛选,以及利用体内的人类先天性疾病的遗传模型,作为我们的实验平台,结合腺相关病毒(AAV)和反义RNA作为治疗剂。CERO 3D大大简化了我们的心脏类器官生成的工作流程,并使我们能够显著提高类器官的生产规模。使用CERO 3D生成的类器官显示出更好的细胞组织,以及在生产批次内外的均匀性和一致性。” 不仅如此,CERO还应用于猪的肌源性类器官的研究(该研究于2022年在Cells上发表,影响因子≥4.9)三维细胞培养技术比平面表面更适合模拟体内细胞环境。球体是多细胞聚集体,我们旨在使用中型培养箱和生物反应器混合设备,制备无支架的肌源性起源球体,称为肌球体。首次使用这种技术从原始猪肌细胞(PMC)获得球体,并将其形态学和生长参数、标记物表达和肌源潜能与C2C12来源的球体进行了比较。两种细胞类型都能在生物反应器中在24小时后形成圆形球体。C2C12球体的平均直径(44.6µ m)大于PMC球体(32.7µ m),最大直径超过了1mm。C2C12细胞形成的聚集体较PMC更少,并具有更高的密集度(细胞核/平方毫米)。从球体中分离后,C2C12细胞和PMC开始再次增殖,并能够分化为肌源系谱,通过肌管形成和FActin、Desmin、MyoG和Myosin的表达来证明。在C2C12中,球体中观察到多核合体和Myosin的表达,表明加速了肌源分化。总之,中型培养箱和生物反应器系统适用于从原始肌细胞中形成和培养球体,并保持其肌源潜能。Cells 2022, 11,1453. https://doi.org/10.3390/cells11091453CERO还应用于脑类器官的发育研究:“跨发育过程中从中等到纳米尺度成像三维脑器官结构”并在2022年发表于HUMAN DEVELOPMENT文献索引:Development(2022)149,dev200439.doi:10.1242/dev.200439根据Paş ca等人(2015)的改良方案,使用CERO 3D培养箱-生物反应器的步骤如下:1、iPSCs解离:使用StemProAccutase将iPSCs解离成单细胞悬浮液。2、类器官形成:将1.5×106个iPSCs转移到AggreWell800板中,每个微孔中含有5000个细胞。使用培养基,包括50% DMEM-F12 GlutaMax、50%神经基底培养基。添加以下成分到培养基中:1:100 B-27、1:200 N-2、1:200 MEM-NEAA、1mM L-谷氨酰胺、1:1000 β-巯基乙醇、10μg/ml胰岛素。添加两种SMAD途径抑制剂dorsomorphin(1μM)和SB-431542(10μM),以及ROCK抑制剂Y-27632(10μM)。将具有和不具有霍乱弧菌诱导eGFP构建物的iPSC按10/90的比例混合。在最初的5天里,每天更换不含ROCK抑制剂的培养基。类器官培养:将类器官转移到CEROtubes中,放入旋转的CERO 3D生物反应器。从第5天到第12天,每隔一天喂养类器官。在第12天,改用含有bFGF(10ng/ml)而不是SMAD抑制剂的培养基培养4天。从第16天开始,类器官在未添加补充物的情况下维持,每隔一天更换一次培养基。LSFEM的器官样本准备LSFEM的器官样本准备包括固定、渗透化、免疫染色、嵌入和消化等步骤。通过对样本的处理和扩张,可以实现清晰的成像和超分辨率的分析。(F,G)示例展示了根据II方案(CERO培养制备)的3个月大脑器官样本(F)和根据I方案(6孔板培养制备)的2个月大脑器官样本(G)的光学切片。两者都经过Hoechest和ZO1的染色。综合以上步骤,CERO 3D生物反应器能够在中-纳米级光学分辨率下对整个脑器官体进行缩放,获得关于脑器官体结构和亚细胞细节的全面视图。同时,通过LSFEM的超分辨率成像,可以可视化保留有空间信息的突触,实现对超分辨率下的扩展神经回路的分析。通过LSFM和LSFEM的结合,CERO为成熟的脑类器官的分析提供了一种有效的方法。 总的来说,CERO在类器官研究方面具有多种优势,如提供最佳细胞培养环境、提高类器官成熟度与复杂性、标准化和可重复培养,适用于多种组织类型。类器官的优势在于模拟人体生理状态、提高实验可靠性与准确性,广泛应用于基础研究、药物研发、临床试验和再生医疗。让我们共同努力,将类器官研究推向新的高度!
  • ibidi解决方案|3D细胞培养与类器官模型的构建
    01、3D矩阵中的单细胞    在许多情况下,3D环境比2D细胞培养物更接近于体内情况。单细胞可以在3D凝胶中培养和成像,以分析各种生物学问题,例如细胞变形、迁移、管形成或ECM降解。除了只有一种细胞类型的培养物外,还可以通过在同一容器中共同培养两种不同细胞类型(例如癌症细胞和成纤维细胞)来研究它们的侵袭行为。    为了从凝胶基质中分离细胞,基质可以被酶降解(例如,胶原蛋白被胶原酶降解)。之后,细胞可以在新的凝胶基质中扩增,或者进一步处理以分离DNA、RNA或蛋白质。      在µ -Slide Chemotaxis中的I型胶原蛋白、鼠尾层中表达LifeAct的HT-1080细胞(绿色)    ibidi解决方案      ibidi I型胶原蛋白是一种非胃蛋白酶化的天然胶原蛋白,用于在凝胶基质中模拟生物ECM。其快速凝胶有助于在3D凝胶中实现最佳的细胞分布。      在µ -Slide III 3D Perfusion中,单个细胞嵌入3D矩阵中。特殊的通道几何形状允许以低流速进行灌流(例如,当使用ibidi Pump System泵系统/流体剪切力系统时)。与静态培养不同,灌流可确保最佳的氧气和营养供应。这种设置使得长达数周的长期培养成为可能。此外,超薄的盖玻片底部可实现高分辨率成像。      µ -Slide 15 Well 3D和µ -Plate 96 Well 3D可以在3D凝胶上或内部对单细胞和共培养物进行简单、经济高效的培养和显微镜检查。凝胶层直接连接到上方的培养基储存器,通过扩散实现快速、轻松的培养基交换。对于特殊应用,ibidi还可以提供带有1.5H玻璃底部的µ -Slide 15孔3D玻璃底细胞培养载玻片。      μ -Slide I Luer 3D设计用于在具有确定流量的3D凝胶基质上或其中培养细胞。三个孔中的每一个都可以填充凝胶,其中可以嵌入细胞。对于限定流量的应用,顶部的通道可以连接到泵(例如,连接到ibidi Pump System泵系统/流体剪切力系统),以确保最佳的氧气和营养供应。      µ -Slide Chemotaxis和Sticky-Slide Chemotaxis非常适合分析2D和3D中的单细胞迁移。在水基3D凝胶(例如Collagen I凝胶和 Matrigel ® )中可以轻松建立趋化梯度,因为凝胶结构不会阻碍通过扩散形成可溶梯度。      大多数ibidi实验室器具,例如µ -Dish 35mm, high 或µ -Slide 8 Well high,可用于在3D矩阵中培养单细胞,是高端显微镜的理想选择。    02、球体和类器官培养    球体是在3D非贴壁培养条件下相互粘附的细胞。它们缺乏干细胞,这意味着它们由完全分化的细胞组成。例如,可以通过使用悬滴或强制漂浮方法将它们放入无支架悬浮液中来生成它们。    球体不能自我更新和进一步分化。肿瘤细胞球体是一个例外,因为肿瘤细胞具有无限的增殖能力,它们能够分裂和更新。因此,球体是检查肿瘤细胞行为(例如大规模药物筛选)的有用模型。    在µ -Plate 96 Well 3D中球体生成实验方案可点击查看→AN 32: Generation of Spheroids      NIH-3T3细胞在ibidi µ -Pattern上形成明确的球体。将细胞接种在 µ -Slide VI 0.4中的200 µ m粘附点上,并在流动(3dyn/cm² )下保持14天。    类器官是培养的“微型器官”。它们可以由成体干细胞(ASC)或多能干细胞(PSC)产生。当在3D基质/支架(例如Matrigel ® 或胶原蛋白)中培养时,这些细胞分化成器官特异性细胞类型,从而构建小型功能器官。    Sato等人利用Lgr5 +干细胞创建了第一代肠道类器官,启动了许多从不同器官(如肠、肝脏、大脑、前列腺、肾、胰腺、肺和甲状腺)生成类器官的方案。重要的是,它们可以使用CRISPR等技术进行编辑,使其成为个人治疗、器官发生和药物筛选研究的强大工具。     球体是细胞聚集体,通常由癌细胞产生     类器官是由干细胞培育而成的微型器官    参考文献:    Sato T, et al. (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459(7244):262–265. 10.1038/nature07935.    Drost J, Clevers H (2018) Organoids in cancer research. Nat Rev Cancer 18:407–418. 10.1038/s41568-018-0007-6.    Tuveson D, Clevers H (2019) Cancer modeling meets human organoid technology. Science 364(6444):952–955. 10.1126/science.aaw6985.    ibidi解决方案      µ -Slide Spheroid Perfusion是用于长期球体培养的专用流动室。每个3x 7孔形成自己的生态位,在其中培养标本。通过孔顶部通道进行灌注可确保整个实验过程中营养和氧气的最佳扩散,而不会使样本受到显着的剪切力。      µ -Slides With Multi-Cell µ -Pattern可实现空间定义的细胞粘附,用于球体和类器官的生成、长期培养和高分辨率成像。确定的粘附点能够从细胞悬浮液中捕获所有粘附的单细胞。周围的生物惰性表面完全不可细胞附着。这迫使所有细胞在粘附点处相互聚集,从而以明确且可控的方式形成球体。      生物惰性是一种稳定的生物惰性表面,适用于在非粘附表面上对球体、类器官和悬浮细胞进行长期培养和高分辨率显微镜观察,没有任何细胞或生物分子粘附。目前可提供µ -Dish 35 mm高壁生物惰性、µ -Slide 8孔高壁生物惰性、µ -Slide 4 孔生物惰性和µ -SlideVI 0.4生物惰性。      在µ -Slide III 3D Perfusion中,球体或类器官可以在凝胶层中或凝胶层上培养,或嵌入 3D 基质中。特殊的通道几何形状允许以低流速进行灌流(例如,当使用ibidi Pump System泵系统/流体剪切力系统时)。这种设置使得长达数周的长期培养成为可能。此外,超薄的盖玻片底部可实现高分辨率成像。      µ -Slide 15 Well 3D 和µ -Plate 96 Well 3D 可以在3D凝胶上或内部对单细胞和共培养物进行简单、经济高效的培养和显微镜检查。凝胶层直接连接到上方的培养基储存器,通过扩散实现快速、轻松的培养基交换。对于特殊应用,ibidi还可以提供带有1.5H玻璃底部的µ -Slide 15孔3D玻璃底细胞培养载玻片。      ibidi I型胶原蛋白是一种非胃蛋白酶化的天然胶原蛋白,用于在凝胶基质中模拟ECM。其快速凝胶有助于在3D凝胶中实现最佳的细胞分布。    03、流体状态下的3D细胞培养    间隙渗流      在体内,许多细胞类型不断暴露于液体流动中。当在体外3D基质中培养它们时,可以通过向它们灌注生长培养基或任何选择的试剂或药物来施加柔和的间隙渗流。通过这样做,可以建立接近细胞自然环境的条件。    灌流      3D矩阵内部的细胞和上面的通道的组合可以很容易地应用流体。该实验装置通过凝胶的扩散被动地给体外3D基质内的细胞提供营养,通过轻柔的流动为细胞提供氧气和营养物质。可调节的流速决定了营养水平,使长期活细胞实验成为可能。    ibidi解决方案      ibidi Channel Slides通道载玻片,包括µ -Slide III 3D Perfusion、µ -SlideI Luer 3D和µ -Slider VI系列产品,允许在3D基质中接种细胞并应用流体(例如,使用ibidi Pump System泵系统/流体剪切力系统)。
  • FGF-2 热稳定细胞因子——专为干细胞与类器官设计,解决生产难题
    植物源重组蛋白系列产品 “生长因子控制细胞的维持、增殖和分化,是干细胞研究和再生医学的关键工具“内毒素污染的微小差异会对细胞培养产生巨大影响“无动物成分和无内毒素生长因子可提高细胞培养物的一致性,这是获得可重复结果和过渡到临床应用的关键 公司介绍 Core Biogenesis是一家来自法国的以细胞因子产品线闻名业内的厂家,致力于为干细胞研究和细胞制造工业提供下一代重组蛋白。其独家研发的植物来源细胞因子,打破了传统细胞因子局限性,以无动物、无抗生素、无内毒素、无致热性,无细菌、病毒和朊病毒等优势,迅速占领国际细胞因子市场。 植物系统-生产平台 CORE BIOGENSIS研发了专有的植物系统生产平台-亚麻荠,用来进行重组蛋白的表达和生产。其生产的多个物种(如人,牛)的重组生长因子和细胞因子,广泛应用于iPSCs, MSCs,免疫细胞等领域。 FGF-2 STAB® 专为干细胞生产设计 FGF-2 STAB® FGF-2 STAB® 是一种 新型的热稳定生长因 子,可让您以更少的培养基更换更高效地生长FGF-2依赖性细胞培养物。 应用场景 干细胞培养(iPSCs、NSCs、MSC)类器官培养与生产细胞治疗生产 产品特点 “高纯度:均大于95%的纯度“不含动物成分与内毒素:无动物成分和无内毒素生长因子可提高细胞培养物的一致性,这是获得可重复结果和过渡到临床应用的关键。“半衰期长:较传统FGF-2生长因子半衰期延长10倍,长达20天“生物活性高且稳定:全部生物活性保持在稳定的蛋白质构象中“周末无需进行换液操作“降低至少50%培养成本 热稳定性=长达20天半衰期+稳定的蛋白质结果+生物活性 由于FGF-2 STAB中9个氨基酸,FGF-2 STAB® 的热稳定性有所提高。这导致细胞培养条件下的半衰期延长至 37°C,与野生型相比,蛋白质稳定性提高了 10 倍。 50%成本降低+周末无需换液工作 研究人员和制造商在多能干细胞培养过程中必须保持非常严格的每日计划,以避免自发分化会降低培养质量。FGF-2 STAB® 具有增加半衰期和蛋白质稳定性的性质,可将稳定的生长因子持续暴露于细胞中,从而为显影剂提供更简化的喂养计划,并最终在最终干细胞群中实现所需表型的更均匀的组成。实现FGF-2 STAB® 蛋白稳定性的切实好处:显著减少补料细胞所需的培养基量,并减少补料次数,节省人工成本,避免不方便的周末补料。 产品规格 产品规格FGF-2 STAB® (RUO)FGF-2 STAB® (cGMP)身份分子量质谱分析生物 活性EC50系列EC50 + - 国际单位 (IU)纯度SDS-PAGE 的 95%UPLC95-97%无菌无菌过滤 0.2 μm + 生物负荷测试无菌 USP 和欧洲药典 2.6.7内毒素低于检测水平的鲎试剂测定USP 欧洲药典2.6.14支原体不适用阴性宿主细胞DNA/蛋白质含量不适用附件测试自主批次不含动物成分不含不含批次间一致性不适用是的法规遵从性ISO9001ISO9001, USP , 欧洲药典 5.2.12
  • 锘海诚邀您参加3D 细胞培养与类器官研讨会
    2023(第三届)3D细胞培养与类器官研讨会2023年5月19日-20日上海中谷小南国花园酒店锘海展位号:58 2023年第三届3D细胞培养与类器官研讨会将于2023年5月在上海举办,汇聚行业资深学者、从业者们共话当前类器官技术当下的发展与应用。锘海诚挚邀请您参观指导和业务洽谈。展会信息01会议时间2023年5月19-20日 02会议地点上海中谷小南国花园酒店03锘海生命科学展位58展会核心产品01锘海LS18平铺光片显微镜 锘海将携平铺光片显微镜产品资料和成像视频,向您展示生物组织透明化结合光片显微镜呈现快速高分辨率的生物组织三维成像案例,可广泛应用于神经科学、脑科学、胚胎发育学、肿瘤生物学、细胞生物学、药效评价和医学影像等领域。023D成像一站式科研服务 锘海生命科学搭建了一站式服务平台,为广大客户提供专业的生物组织透明化、免疫染色、平铺光片显微镜3D荧光成像、数据分析、数据存储等一站式科研服务,旨在通过精细、快速、多样化的科研服务为每一位生命科学工作者提供个体化/定制化的解决方案。03 铭汰微流控纳米药物递送平台 锘海将向您展示纳米药物制备系统及纳米药物制备、检测服务—从处方筛选到制剂表征全线过程。纳米药物制备系统通过微流控芯片技术制造纳米颗粒包裹体,可包裹化药、mRNA、siRNA、DNA等小分子物质,实现该物质的体内递送,从低通量至高通量均可覆盖,适用于临床前研究和符合GMP的临床生产,并可在纳米颗粒表面添加标记物制造靶向药物。04 RegenHU生物3D打印机 regenHU生物3D打印机,可根据客户需求提供生物3D打印方案,具有高精度、高稳定性、打印方式广泛、应用面广等特点。应用领域:组织工程、再生医学&个性化医疗、制药、医疗器械行业、化妆品、药物开发等。 锘海诚挚邀请您参观我们的展位58,现场有锘海专业工程师与您探讨交流技术难点及实验步骤,欢迎各位老师莅临咨询!
  • 获奖作品公布 | 首届“徕伯杯”3D细胞培养和类器官摄影大赛
    首届“徕伯杯”3D细胞培养和类器官摄影大赛,自2022年9月15日开幕以来,受到了国内3D细胞培养和类器官研究领域相关科研工作者的热切关注和广泛好评。在大赛前期两个月的作品征集阶段,我们收到了众多国内类器官相关交叉学科的专家和学生积极的投稿,累计收到摄影稿件72份,由徕卡显微系统和伯桢生物市场部审核筛选出的入围作品共59份。最终,经过了一个半月的网络投票与专家组评审,分别评选出一等奖1名、二等奖2名、三等奖6名、专项奖6名,以及阳光普照奖44名。现将最终获奖名单公示如下:一等奖1名作者:张慧文作品简介:小鼠肠道研究用途:小肠发育形成过程研究方法:荧光标记不同类器官细胞群 DAPI,AF488,AF555,AF647奖品:Apple Watch Series 8 + 一等奖定制奖牌&证书二等奖2名作者:叶军作品简介:肿瘤类器官研究用途和研究方法:图中所展示的是采用三阴性乳腺癌细胞构建的肿瘤类器官。作者:李志超作品简介:肿瘤类器官研究用途和研究方法:样品为肿瘤病人来源的尿路上皮癌类器官,肿瘤类器官经过多维度验证后,将用于抗肿瘤药物的筛选及肿瘤耐药机制研究。奖品:飞利浦空气炸锅 1个+ 二等奖定制奖牌&证书三等奖6名作者:孟盛雯作品简介:正常类器官研究用途:小鼠小肠类器官P3Day9研究方法:小鼠小肠类器官培养作者:马璐瑶作品简介:肿瘤类器官研究用途和研究方法:我的样品是肝脏穿刺标本的肝癌类器官,用于体外药物实验。作者:张凤枝作品简介:肿瘤类器官点击作品图片浏览更多样品类型:心脏类器官研究用途:揭示多谱系细胞形成心脏类器官过程中的细胞命运转变及潜在的基因调控机制研究方法:单细胞测序分析,流式细胞分析,免疫细胞化学染色等作者:束琳作品简介:肿瘤类器官研究用途和研究方法:结直肠癌类器官传代后摄,用于研究结直肠癌药敏情况作者:黄琰作品简介:脑类器官样品类型:91天 脑类器官研究用途:低剂量重金属镉对大脑类器官神经细胞分化的长期影响研究方法:免疫荧光染色 RNA测序 Western Blot作者:宫千淳作品简介:人肺类器官研究用途:用于冠状病毒致病机制相关研究研究方法: 利用不同种类的冠状病毒感染人肺类器官,探究宿主-病原的相互作用机制,助力新发病毒的预警预测。奖品:东芝2T移动硬盘 1个 + 三等奖定制奖牌&证书专项奖6名类器官超现实艺术性专项奖作者:戚亚东作品简介:正常类器官研究用途和研究方法:肠道类器官细胞日常培养观察专项奖作者:郑晓源作品简介:肿瘤类器官样品类型:肝癌类器官研究用途:用于药物筛选、精准医疗、生物功能验证研究方法:ATP、live/dead(钙黄绿素/PI)、crispr-cas9系统进行生物功能验证普通光源正置显微镜下杰出图像专项奖作者:崔秀杰作品简介:肿瘤类器官研究用途和研究方法:正常胃上皮类器官+胃癌类器官;肿瘤治疗药物敏感性及药物毒性研究;类器官构建及药敏实验倒置显微镜平台共聚焦专项奖作者:代艳萍作品简介:脑类器官样品类型:第63天 脑类器官研究用途:利用大脑类器官研究NANS基因在神经发育过程中的基因功能研究方法:免疫荧光染色 RNA测序 活细胞成像共聚焦显微镜下杰出图像专项奖作者:贾功雪作品简介:正常类器官研究用途和研究方法:通过体外受精获得绵羊早期胚胎进行体外培养。体视镜下杰出图像专项奖作者:孔瑞泽作品简介:正常类器官类型:心脏类器官研究用途和研究方法:由于缺乏合适的模型,人胚胎早期心脏发育以及异常机制仍不清楚,利用多能干细胞来源的类器官作为模型可解码器官发育的事件和潜在机制。奖品:小米平板5Pro12.4 1部 + 专项奖定制奖牌&证书阳光普照奖44名黎雨尘周高适蒋成凡韩成孙星朱恩吉朱佩轩阮思颖李惠如李华善王显文倪成铭唐佩兰Bing Li琳琳李明乾葛晓民井老师孙云皓张麟腾孙千惠张一帆王心烁李羽谢诗哲邢绪东吉聪聪惠贤瑞陈先生施银杰郭健颖王倩倩吴素馨梅英秀王航薛巍松何佳郭浩翔李娇吴俊辰陈真妮王庆哲韩政界庄老师奖品:徕卡定制显微镜积木玩具1套+伯桢定制钥匙扣1套恭喜以上获奖作品!同时也感谢各位创作者对细胞培养和类器官摄影之旅的实践和付出,带我们领略微观世界中的奇遇,感受生命别有的错落和精致。未来,我们将继续推出徕伯杯系列作品赏析,更有来自评审团的专业点评,内容精彩纷呈,敬请期待吧! 了解更多:徕卡显微
  • 艾玮得受邀参加2023 年“类器官中的细胞世界”学术研讨会
    9月21日-24日,2023 年“类器官中的细胞世界”学术研讨会在南昌圆满举行。本次会议由中国细胞生物学学会信号转导分会、南昌大学类器官研究院主办、南昌大学第一附属医院,南昌大学第二附属医院协办,旨在为中国细胞生物学各领域研究者之间搭建沟通交流的桥梁和纽带,推动我国细胞生物学产学研项目的发展与落地。 类器官与器官芯片作为细胞生物学界和临床医学最热门的前沿技术之一,为疾病建模和药物筛选提供了强大的平台,备受生物医药领域的关注,并且类器官与器官芯片技术已在疾病研究、肿瘤药敏、临床免疫、药物毒理、再生医学等多学科领域中已展现出独特的优势。 作为一家专注于人体器官芯片及生命科学设备研发与生产的创新科技公司,艾玮得生物副总经理陈早早教授受邀参加本次学术研讨会,并以“类器官和器官芯片发展与其在药物评价和精准医疗中的应用”为主题,分享了艾玮得生物近期在器官芯片领域的成果,包括第一项皮肤器官芯片国标的建立,第一项人工血管器官芯片用于航天研究,首次利用心脏器官芯片数据完成新药IND申报等。 在新药研发领域,艾玮得生物可提供完善的药物有效性和安全性评价解决方案,包括肿瘤类器官药物筛选、肿瘤-复杂微环境模型构建、肿瘤-血管模型构建、3D肿瘤球药物筛选、药物抑制肿瘤迁移性检测和已上市药物扩大适应症研究等服务。 在临床应用领域,艾玮得生物通过构建高度仿生高效的肿瘤微环境,实现无介入、无破坏性、动态可持续地监测类器官对药物反应等优势特性,为临床用药提供精准研判。 陈早早教授作为“类器官精准医学产业展望”论坛的圆桌讨论主持人,与其他几位专家一起热烈畅谈,类器官与器官芯片的技术发展在精准医学中的应用,以及未来的发展前景。艾玮得生物以器官芯片技术为核心,融合生命科学设备、人工智能、试剂盒等技术和产品,能够全面覆盖新药研发评价、临床药敏检测等应用领域,为客户提供一站式解决方案。
  • 8月30日09:30直播|类器官与器官芯片专场-第六届细胞分析大会
    全日程更新|8月30日开播!31位嘉宾云聚第六届细胞分析网络会议iCCA2023(点击查看)仪器信息网将于2023年08月30日-09月01日举办第六届细胞分析网络会议(iConference on Cell Analysis,iCCA 2023)。大会首日8月30日,特设【类器官与器官芯片】专题会场,12位嘉宾在线分享类器官的构建及流式、细胞成像等表征分析技术的应用!在线免费向听众开放报名,欢迎报名参会!报名链接: https://www.instrument.com.cn/webinar/meetings/icca2023 (点击报名)分会场设置日期上午下午08月30日类器官与器官芯片08月31日单细胞分析技术(上):微流控/质谱单细胞分析技术(下):测序/代谢组学09月01日细胞治疗产品的CMC质量控制分析细胞成像分析技术iCCA 2023 交流群 8月30日|类器官与器官芯片主题日程 精彩报告 速览《细胞(类器官)力学芯片研究进展》熊春阳 北京大学工学院 教授【摘要】越来越多的研究表明,物理力学微环境是机体生长发育、结构重建以及功能维持的重要因素,也与疾病的发生发展密切相关。微流控技术既可以在体外精确构建细胞(类器官)的物理力学微环境,也可以实现对细胞(类器官)表型的高通量、精确检测,为类器官和器官芯片研究与应用提供了强有力的工具。本次报告将介绍近期我们在细胞(类器官)力学芯片方面的一些研究进展。安捷伦细胞分析技术在类器官领域的应用林鹤鸣 安捷伦科技(中国)有限公司 产品应用专家【摘要】类器官作为更接近体内真是水平的研究模型,近年来受到越来越多研究者的青睐。类器官的拍照成像,是质控类器官,了解类器官生长情况的最直接手段。 安捷伦提供了长时间,高通量自动化的成像分析方法,同时配合微孔板检测,流式细胞术以及细胞能量代谢等手段,让科研工作者更为深入全面的分析类器官模型背后的科学问题。干细胞与类器官王凯 北京大学 研究员【摘要】干细胞衍生的类器官能够复现人体组织的三维结构和特征,能够用于研究人胚胎发育的过程,构建疾病模型和作为替代性的细胞治疗疗法。Hamilton自动化解决方案在细胞高通量筛选的应用潘晓 哈美顿(上海)实验器材有限公司 应用工程师【摘要】目前有多种细胞培养类型和基于细胞的系统用于基于细胞的试验;从传统的二维(2D)单层细胞到基于支架的3D培养(例如类器官),以及最近的器官芯片Organs-On-A-Chip (OOAC)。在基于细胞的高通量筛选试验中,在培养细胞的同时需要评估大量化合物/条件。这些试验的效率及标准化通常是通过自动化得以实现。自动液体处理系统可以通过控制关键因素确保整个过程的标准化,例如吸液和分液的速度、吸头在孔内的位置、移液步骤中板的倾斜、试剂在板上的温度和工作区域的无菌性。此外,自动化液体处理工作站可以通过96和384移液头显著提高通量,并整合第三方设备进行细胞成像。 在本次网络会议中,主要讨论如何使用Hamilton自动化液体处理工作站满足基于细胞的高通量筛选要求。Application of organoid technology in prostate stem cell and cancer research蔡志伟(Chua Chee Wai) 上海交通大学医学院附属仁济医院 研究员【摘要】In the recent years, we have witnessed the emergence of androgen receptor (AR)-independent prostate cancer (AIPC) with the clinical use of second-generation androgen deprivation therapy. Upon the progression to AIPC, the remaining treatment options are mainly palliative but not curable. Therefore, understanding the cellular origins and dynamics involved in AIPC evolution is crucial for identifying timely treatment strategies for these patients. In this presentation, I will first share with you the invention of prostate organoid technology, which facilitates novel discoveries in prostate stem cell and cancer research. Subsequently, I will talk about how we integrate organoid technology and single-cell transcriptomic analysisto identify novel AR-independent prostate luminal progenitor and cancer subsets. Our findings have highlighted the capability of organoid technology in preserving progenitor potential and tumor heterogeneity. Consequently, continual investigations using organoid technology should yield novel insights into the emergence of AIPCs and identify novel therapeutic targets for AIPC patients.复杂皮肤类器官构建及其应用冷泠 中国医学科学院北京协和医院 正高级/教授【摘要】冷泠研究团队基于空间基质组学技术及其研究成果,创建了一种具有表皮及毛囊附属器、真皮及神经系统的完整细胞极性的皮肤类器官。利用该类器官进行病毒的体外感染,首次为新冠肺炎和脱发后遗症之间的关联提供了证据;进行罕见病治疗研究,实现了该疾病表皮附属器和血管的新生,推动类器官在罕见病治疗和药物筛选中的应用。实时活细胞成像分析在3D器官细胞模型中的应用陆叶舟 赛多利斯(上海)贸易有限公司 生物分析产品应用科学家【摘要】 1. 实时活细胞成像与分析技术介绍 2. 实时活细胞分析促进3D细胞模型培养及应用 应用案例解析:神经肌肉类器官、食管类器官、胰腺导管癌类器官、肾脏类器官、胶质母细胞瘤球体、直肠癌类器官等基于微流控的细胞无标记分选和打印研究陈华英 哈尔滨工业大学(深圳) 副教授【摘要】 微流控芯片在单细胞操控、培养和分析领域具有独特优势,已被广泛用于单细胞分析。本文主要介绍课题组在利用微流控芯片进行单细胞打印、克隆扩增、弹性模量测量和形貌分选方面的最新研究进展。课题组开发的一款集成两个气动微阀门的芯片,可以通过气压控制阀门的闭合程度,进而在单细胞尺度实现细胞大小的动态筛选。前后两个阀门分别控制细胞的尺寸上限和下限,符合尺寸要求的细胞可以在压力泵的驱动下被快速打印到384孔板内,实现每孔一个细胞。打印后的单细胞活性为97.2%。与对照组相比,打印过程未对细胞活性造成影响。此外,课题组还开发了一款集成颗粒分离和压力传感器以进行单细胞弹性模量精密测量的微流控芯片。该芯片可将细胞悬浮液中的杂志分离到侧通道,并使单个细胞在微流道中受挤压变形,同时由压力传感器记录导致细胞变形的压力。通过研究细胞变形量和对应的压力,并结合幂律流变模型,可以计算出细胞的弹性模量和粘度数据。利用该芯片获得了K562和人脐静脉细胞的弹性模量分别是64.2 ± 33.3 Pa 和383.4 ± 226.7 Pa。基于上述技术课题组开发了利用图像实时处理进行细胞大小、形貌和弹性分选的微流控系统,实现了混合细胞群体的无标记高通量分选打印。上述工作为微流控芯片在高通量单细胞分析领域的创新应用提供了实验基础。流式细胞术在类器官研究中的应用于化龙 贝克曼库尔特 高级应用专家【摘要】1流式用于类器官构建 2流式用于类器官质控 3流式用于类器官免疫监测 4流式用于类器官药物筛选TOPMOS类器官高通量药物筛选系统杨根 北京大学 副教授【摘要】本团队开发的肿瘤类器官精准药物芯片筛选(Tumor Organoid Precision Medicine On-chip Screening Platform, TOPMOS)平台可在短时间内高通量培养出大小可控、均一性高的肿瘤类器官,实现高仿生化模拟体内微环境和高精度模拟体内药代动力学,能与现有常规检测设备匹配,实现多药物多浓度的快速药敏测试。类器官多维度多模态显微成像应用游换阳 徕卡显微系统(上海)贸易有限公司 应用专员【摘要】针对类器官成像复杂性,Leica提供全流程需要的设备,从类器官获取,日常培养观察,高清宽场和共聚焦成像再到最后的人工智能大数据分析,徕卡提供全流程成像分析解决方案,助力类器官科研。类器官与器官芯片在细胞分析中的应用与发展陈早早 江苏艾玮得生物科技有限公司/东南大学 副总经理/副研究员【摘要】人体器官芯片并非电子产品,而是一种‘体外的活的人体器官’,简单的说,即科研人员利用人体自身的干细胞,在U盘大小的芯片上制作出微缩的人体器官,以模拟人体相应器官的功能,制造出要用显微镜才能观察到的体外迷你的‘心脏’、‘肝脏’、‘肾脏’等等。人体器官项目正逐渐从研发端走到应用端的“最后一公里”。不仅在药物发现、细胞分析、环境评估、精准医疗、航天医学方面都有器官芯片的应用。温馨提示:1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。
  • 直播预告 | 首届“徕伯杯”3D细胞培养和类器官摄影大赛颁奖典礼
    由伯桢生物科技(杭州)有限公司(下称“伯桢生物”)和徕卡显微系统(上海)贸易有限公司(下称“徕卡显微系统”)联合举办的首届“徕伯杯”3D细胞培养和类器官摄影大赛,自2022年9月15日开幕以来,受到了国内3D细胞培养和类器官研究领域相关科研工作者的高度关注和一致好评。众多国内类器官相关交叉学科的专家和学生积极投稿,踊跃地提交了自己的3D细胞和类器官摄影作品。“我们倾向于忽视大自然所提供的隐藏细节。”而在显微镜之下,细节呈递至眼前,生命之美无处不在。经过两个月的作品征集和一个半月的网络投票与专家组评审,共选出TOP前15名的优胜作品。通过这些特别的作品,我们得以窥见,被无限放大的细胞脉络,被颜色标注的关键蛋白,或是不经意间与宏观相呼应的心形,它们都呈现出生命别有的错落和精致。目前,专家组评审阶段已正式关闭,活动进入大赛颁奖阶段。首届“徕伯杯”3D细胞培养和类器官摄影大赛颁奖典礼将于2023年1月5日周四晚19:00,在伯桢生物“聊聊类器官”直播间和徕卡显微系统公众号直播间同步开启。本次活动邀请了数位大奖获得者出席颁奖典礼为大家分享研究成果和心路历程。奖品展示奖项与奖品说明:评委组专家简介曾艺中国科学院分子细胞科学卓越创新中心(生物化学与细胞生物学研究所)研究员曾艺,研究员,博士生导师,中科院上海生科院生化与细胞所研究员。获国家“杰出青年基金”、上海市“优秀学科带头人”、谈家桢“生命科学创新奖”、腾讯“科学探索奖” 。长期研究成体干细胞命运决定的调控机制,在发现新的成体干细胞的身份、建立成体干细胞的体外扩增体系、发现干细胞微环境因子方面取得一系列国际领先的研究成果。担任 eLife 期刊编辑及Development、JBC 编委, 中国干细胞生物学会委员。章永春 上海交通大学 长聘教轨副教授章永春,上海交通大学生命科学技术学院,长聘教轨副教授副教授,博士生导师,独立课题组组长,2020年入选上海市海外高层次人才引进计划项目。目前主持国家和上海市自然科学基金面上项目。先后于南开大学获得学士学位,美国罗切斯特大学获得博士学位,哥伦比亚大学从事博士后研究。目前课题组主要聚焦利用3D类器官、干细胞、转基因小鼠及多种分子生化手段研究消化道器官再生与癌症形成机理,探索开发肿瘤新型治 疗方案。课题组已在Nature、Cell Stem Cell等知名学术期刊发表多篇论文。熊春阳 北京大学 教授熊春阳,北京大学工学院力学与工程科学系教授、博士生导师。1995年于北京大学力学系获得学士学位,2000年于北京大学力学系固体力学专业获得博士学位;2000-2002年在北大电子学系进行博士后研究,2002年留校工作至今。现为北京大学工学院力学与工程科学系教授、博士生导师,北京大学前沿交叉学科研究院兼职研究员,中国力学学会/生物医学工程学会生物力学专委会委员,中国生物医学工程学会类器官与器官芯片分会委员,中国力学学会流体力学专委会微纳尺度流动专业组委员。目前主要从事力学-材料-微纳米技术-生物医学的交叉研究,包括力生物学、力材料学、类器官工程、器官芯片等。已主持国家自然科学基金项目7项,纳米973项目子课题负责人1项,主持或参加其他国家或地方课题20余项。已发表SCI论文80余篇,申请国家发明专 利20余项。Emmanuel Enoch K. Dzakah (Ph.D.)伯桢生物技术总监,加纳University of Cape Coast研究生导师,中国博士后国际引进人才,中国博士后特别资助(站前)获得者,南方医科大学皮肤病医院博士后,中国科学技术大学博士,细胞与免疫学家,传染病学专家, 多年国际生物医药产业经验。研究成果包括成功制备以及生产疟疾, HIV等传染病的检测单抗与快速诊断试剂,衣原体与HIV-1共感染的机制研究,RNA 如何调控秀丽线虫的发育与寿命以及利用肿瘤类器官模型研究癌细胞起源与高频突变基因致癌效能,以第 一/通讯作者身份于国际权威期刊Genome Biology, J. Investigative Dermatology, J. Genetics and Genomics, Malaria Journal, BMC Microbiology 等发表系列研究论文。那洁 清华大学 副教授那洁,清华大学医学院教授, 本科毕业于北京大学医学部获医学学士学位,于美国佛吉尼亚大学获细胞生物学博士,2002前往英国剑桥大学进行博士后研究,2005年获得英国医学研究学会干细胞事业发展研究员基金。2010年回国在清华大学医学院任教。主要研究方向为干细胞与再生医学,人类多能干细胞向心血管细胞、造血干祖细胞和免疫细胞分化的调控机制,应用这些细胞制作类器官模型, 研究人类器官发育和疾病机理,促进细胞治 疗 等临床转化应用。获得科技部重大科学研究计划、国家自然科学基金等的资助。在Nature、Science等国际权威刊物发表干细胞、胚胎发育、类器官方面论文70篇,他引3000余次。曾获得教育部高等学校科学研究优秀成果奖(科学技术)一等奖。获得若干项国家专 利。为多个国际学术刊物的审稿人,国际干细胞研究学会会员,中国动物学会生殖生物学分会委员,中国细胞生物学学会,生理学会会员。蒋明 浙江大学 研究员浙江大学医学院研究员,博士生导师。毕业于复旦大学生命科学学院,获得生物物理学博士学位。先后在美国罗切斯特大学、哥伦比亚大学进行研究工作。长期从事前肠起源的器官包括食管、胃和肺的干细胞在器官损伤再生及在肿瘤中的功能研究。以类器官结合动物模型,鉴定不同类型和起源的干细胞在参与损伤后再生以及在肿瘤形成过程中的作用,已发表一系列高水平SCI研究论文,包括Nature,Journal of Clinical Investigation、Developmental Cell和PNAS等多篇领域内顶 级期刊。承担科技部重 点专项和国家自然科学基金等研究课题。获得国家发明专 利1项。黄卫人 深圳大学第 一附属医院 研究员黄卫人,二级教授,深圳大学第 一附属医院(深圳市第二人民医院)泌尿外科,国家重 点研发计划项目首席科学家。国家地方联合肿瘤基因组临床应用关键技术工程实验室执行主任,广东省泌尿生殖肿瘤系统与合成生物学重 点实验室副主任,深圳市医学基因重编程技术重 点实验室主任。主要从事泌尿系统肿瘤精 准医学及合成生物学应用基础研究,在包括Nature Methods、Nature Communications、Advance Science、Genome Biology、 ACS Synthetic Biology等杂志以通讯作者或者第 一作者发表SCI论文60余篇,相关成果获得深圳市自然科学奖二等奖1项,中华医学科技奖1项,获得发明专 利授权11项。高天龙 徕卡生命科学部高级应用专员2007年毕业于中科院生化细胞所,后从事癌症相关的细胞免疫治 疗行业多年。2013年加入徕卡显微系统,负责生命科学领域的共聚焦、活细胞工作站、激光显微切割系统等高端显微成像系统的技术支持。了解更多:徕卡显微
  • 探秘类器官与器官芯片进展,锁定iCCA2024第七届细胞分析大会(扫码预约直播)
    类器官技术已进入新的发展阶段,技术发展重点主要包括器官芯片、AI高通量自动化、类器官样本库及药敏检测等,在疾病发生机理、新靶点发现、诊疗新策略探索、药敏检测、新药研发、再生医学等多方向拥有广泛的应用前景。为加强创新细胞分析技术与方法的交流,把最新的细胞分析技术与方法推介给广大生物医药领域用户,仪器信息网将于2024年07月03日举办第七届细胞分析网络会议(iConference on Cell Analysis,iCCA 2023)。会议依托成熟的网络会议平台,将为广大科研工作者、相关从业者提供一个突破时间地域限制的免费交流、学习平台,让大家足不出户便能聆听到精彩报告。报名链接及日程二维码https://www.instrument.com.cn/webinar/meetings/icca2024/ 【类器官与器官芯片】分会场精彩预览:报告主题:干细胞与血管类器官报告嘉宾:王凯北京大学 研究员严重下肢缺血(Critical limb ischemia, CLI)是由于下肢动脉狭窄或闭塞、血流灌注不足,从而导致下肢疼痛、溃疡或坏疽甚至截肢。目前,CLI的治疗尚无彻底治愈的药物,主要依赖于外科治疗,旨在通过绕过或消除动脉阻塞来重建血运,亦有复发的风险。针对以上的治疗困境,干细胞治疗等新疗法将为这些患者带来新的希望。本项目利用IPS衍生出来的可注射血管类器官在体内极强的生成血管的能力,有望孵化出一种新的细胞治疗方法,用于下肢缺血的治疗。报告主题:安捷伦细胞分析助力类器官研究报告嘉宾:周鑫安捷伦细胞分析事业部 产品应用经理1. 安捷伦类器官成像分析解决方案 2. 安捷伦类器官能量代谢分析Seahorse XF技术解决方案 3. 类器官分析案例分享报告主题:复杂类器官构建及其疾病应用报告嘉宾:冷泠中国医学科学院北京协和医院 教授冷泠研究团队基于空间基质组学技术及其研究成果,创建了多种复杂类器官模型,进行微生物感染致病机理、罕见病发病机制病等多项研究,推动类器官在罕见病治疗和药物筛选中的应用。报告主题:Hamilton自动化在细胞培养和3D类器官培养中的应用报告嘉宾:万米根哈美顿(上海)实验器材有限公司 应用工程师干细胞类的细胞系的培养一直是细胞培养中的难点。不合适的培养操作方式会对细胞克隆产生多种刺激导致细胞异常分化,细胞密度、克隆状态等因素也对干细胞的状态产生影响。Hamilton自动化液体处理系统可以自动化完成细胞接种、传代、维持培养和融合度检测等操作。3D类器官培养是疾病模型、体外药物发现和细胞治疗的重要工具。类器官药物敏感性高通量检测涉及患者类器官在微孔板(通常为96、384甚至1536孔板)中的分装、大规模药物微量施加、药物敏感性判读等多个关键环节。自动化液体处理系统可以通过控制关键因素确保整个过程的标准化,这包括培养液的自动配制、自动温敏基质胶铺板、类器官传代与铺板、自动孵育、自动高内涵染色和自动检测等多个环节。Hamilton专利的MagPip移液通道可实现基质胶和类器官的快速铺板。该系统的高精度和稳定性保证了实验结果的准确性和可靠性,助力生物医学领域的研究和创新。报告主题:工程化的胰岛类器官在糖尿病治疗中的应用报告嘉宾:王茜北京大学第三医院 研究员中国正面临着糖尿病带来的巨大医疗和经济负担,随着干细胞分化的蓬勃发展,干细胞来源胰岛类器官有望提供无限的细胞来源并应用于糖尿病患者的临床治疗中,然而其中的科学难题包括免疫排斥、缺血缺氧等仍亟待解决。针对上述关键科学问题,王茜研究员构建了一系列安全性、可大规模生产的可植入免疫隔离装置、仿生支架材料和功能增强型干细胞,用于高效地递送细胞及提高细胞移植后的存活率。报告主题:类器官模型建立和检测的要点梳理报告嘉宾:鲁扬赛默飞世尔科技 现场应用专家器官研究近几年有了迅速发展。随着多种自定义类器官模型的涌现,研究者也提出了诸如质量控制,形态观察和功能检测等更多需求。本次报告拟对类器官模型建立和检测过程中的主要步骤做出汇总和梳理,为研究者提供类器官研究的整体解决方案。报告主题:脑类器官及其在脑发育、脑疾病和系统互作模拟中的应用报告嘉宾:马少华清华大学深圳国际研究生院 副教授脑类器官,由胚胎干细胞或诱导多能干细胞培育而成,能够在体外模拟人脑的发育和功能,以及在体外模拟脑疾病的发生、发展以及治疗干预。此外,脑类器官通过与多器官、组织和细胞的共培养,能够探究神经系统与其他系统如免疫系统之间的互作及其调控机制,为脑科学研究和理解器官间的相互作用和维持生理稳态提供先进的研究工具。报告主题:一种类器官的电活动检测分析方法报告嘉宾:刘晓燕上海科技大学 工程师类器官作为目前研究的前沿技术之一,在疾病建模,抗癌药物筛选,药物毒理检测,基因和细胞疗法的领域有广大的应用前景。对于可以检测动作电位的类器官如心肌类器官,类脑器官而言,电生理活性检测是判断类器官是否能够模拟在体器官的标准之一。基于此向大家分享类器官简单培养方法的基础上,为大家介绍一种无创的可以实时监测类器官电生理活性的一种检测方法。此方法通过对类器官放电进行收集和处理,可以输出脑类器官的动作电位发放频率,发放数目,也可输出心肌类器官的FPDc,收缩频率,跳动频率等相关的心电图检测指标。可以更无创准确的反应类器官的电生理活性从而判断类器官的状态。
  • Kirkstall Quasi Vivo仿生动态多细胞共培养系统用于建立血脑屏障
    (一)文献解析英国利兹大学医学和健康学院,利兹心血管和代谢医学研究所开发了一种新的动态多细胞共培养系统,用于研究脑疾病中的个体血脑屏障细胞类型和细胞毒性测试。作者详细讨论了血脑屏障(BBB)多细胞共培养系统的开发和优化过程,以及其在研究BBB功能障碍和神经退行性疾病中的潜在应用。1. 研究背景:血脑屏障(BBB)在中枢神经系统(CNS)的生理和病理过程中扮演关键角色。BBB功能障碍与许多神经退行性疾病,包括阿尔茨海默病(AD),有关联。1. BBB的组成:BBB由毛细血管内皮细胞、包围内皮的周细胞以及向其延伸的星形胶质细胞组成。1. 研究目的:开发一种体外多细胞共培养模型,用于研究BBB中各个细胞类型在神经毒性中的具体作用,特别是在没有形成屏障的情况下评估每种细胞类型对整体反应的贡献。1. 实验仪器设备:研究者使用了英国Kirkstall Quasi Vivo培养系统,并成功开发了一种体外多细胞共培养模型,该系统允许在流动条件下培养不同类型的细胞,同时共享相同的培养基。1. 实验设计:研究者优化了人类大脑内皮细胞、周细胞和星形胶质细胞的培养条件,包括改进的培养基、适当的支架系统和最佳流速。1. 细胞表型鉴定:通过免疫细胞化学方法确认了人类星形胶质细胞、周细胞和内皮细胞的表型。1. 多细胞共培养系统:研究者建立了一个多细胞共培养系统,通过不同组合的细胞培养来确定共培养的重要性以及改进的培养基和流动对细胞活性的影响。1. Aβ25-35的影响:作为概念验证,研究者探索了Aβ25-35(AD的一个标志物)对BBB各个细胞类型的影响。1. 实验结果:发现Aβ25-35对周细胞有负面影响,降低了其活性,而对内皮细胞和星形胶质细胞在早期毒性阶段没有显著影响。1. 结论:这种多细胞共培养系统可以成为未来研究CNS疾病中特定BBB细胞类型角色以及细胞毒性测试的有价值的工具。(二)成功开展多细胞共培养实验的心得1. 选择合适的细胞类型:基于研究目的,选择具有高度特异性和代表性的细胞类型。1. 优化培养基:开发或选择适合所有共培养细胞类型的培养基,可能需要结合不同细胞类型的条件培养基。1. 控制培养条件:使用恒温培养箱和CO2控制系统来维持最佳的生长环境。1. 优化接种技术:使用适当的技术(如滴涂或悬浮接种)来确保细胞均匀分布。1. 定期更换培养基:定期更换新鲜培养基,以提供必要的营养并去除代谢废物。1. 使用支架材料:选择合适的支架材料来支持细胞附着和生长。1. 动态培养系统:使用如英国Kirkstall Quasi Vivo System这样的动态培养系统来模拟体内流动条件。1. 监测细胞间通讯:使用分子标记和示踪技术来评估细胞间的相互作用和信号传递。1. 标准化实验操作:确保所有实验步骤的一致性,包括细胞培养、操作和数据处理。1. 使用先进的成像和分析技术:利用共聚焦显微镜、流式细胞仪等技术来收集数据,并使用专业的软件进行分析。通过上述解决方案,研究者可以克服多细胞共培养实验中的技术挑战,从而更有效地模拟和研究复杂的生物学过程。参考文献:Patricia Miranda-Azpiazu, Stavros Panagiotou, Gin Jose & Sikha Saha. A novel dynamic multicellular co-culture system for studying individual blood-brain barrier cell types in brain diseases and cytotoxicity testing附: Kirkstall Quasi Vivo® 仿生动态多细胞共培养系统——产品介绍01仪器设备的功能用途 又称为微流体“芯片上器官”系统,具有相互连接的细胞培养单元,为类器官生长提供更具生理相关性的体内微环境。通过提供一种近生理的体外模型,模拟细胞微环境,具有更完整的结构和功能,解决动物与人类之间的种属差异,且可在体外模拟多种器官特异性疾病状态,反映药物在体内的动态变化规律和人体器官对药物刺激的真实响应,捕捉复杂的生理学反应,并满足高通量的要求。它是一个多室流动系统,为类器官培养提供了一个紧凑、易于使用的解决方案,包括2D、3D、屏障,或多器官。在疾病模型,药物筛选和毒性测试,再生医学和组织工程,发育生物学研究,感染与免疫研究,个性化医学,癌症研究等领域被广泛应用。兼容多种细胞来源,包括原代细胞、诱导多能干细胞(iPSC)、类器官和细胞系等,也可以引入健康细胞、患病细胞、肿瘤细胞。02性能特点Quasi Vivo® 作为一种先进的类器官芯片培养系统,专门设计用于解决学术和工业研究人员在开展体外和体内研究时遇到的主要问题,具有下列性能优势:1.功能延展性强可选择气液界面、液液界面、支架和流动方案的多样化培养方式;允许独立、可控的空气、气体或液体层流流向顶端和基底外侧;满足多器官/多细胞共培养,细胞间的信号传递等实验要求。加速类器官细胞分化和成熟,提高细胞活力,适合长期培养。2.成像友好配备了光学窗口在顶部或底部表面,便于理想的实时高分辨率成像。3.易于获取样本直接收集样本和获取组织或液体样本。4.模拟生物力学和浓度梯度 严格控制多个变量,可以模拟生理特征,如血液循环,组织间液流动态等,为细胞提供生物力学信号;可以实现免疫细胞共培养以及血管化等复杂疾病模型构建;用于研究多种生理过程,如细胞迁移、分化、免疫反应以及癌症的转移等。5.便携和易于操作紧凑型模块化腔室结构,具有更高人体生理相关性;占地面积小,节省空间,可兼容标准实验室的孵化器。03品牌制造商简介Kirkstall Ltd.成立于2006年,是Braveheart Investment Group plc 的子公司,总部位于英国约克。Kirkstall开发了一种创新的微生理系统的器官芯片模型Quasi Vivo® 。作为器官芯片技术的领导者,Kirkstall已经建立了牛津大学生物医学工程研究所等著名的大学实验室的庞大用户群,产品在全球范围内享有盛誉。北京基尔比生物科技有限公司是Kirkstall ltd.授权在中国的唯一和独家总代理商,全面负责Kirkstall公司旗下所有产品在中国的销售,市场推广和技术支持等事宜。
  • “聚焦类器官 洞悉细胞世界——类器官前沿技术及最新进展”主题研讨会圆满落幕
    仪器信息网讯: 2023年10 月 12 日,“聚焦类器官 洞悉细胞世界——类器官前沿技术及最新进展”主题研讨会圆满落幕,本次活动由Molecular Devices(中文简称“美谷分子仪器”)和仪器信息网联合主办。此次会议特别设置了类器官主题圆桌对话、学术报告分享、美谷分子类器官工作站功能演示、多轮抽奖等多个环节,吸引8000+人次观看,引发热烈讨论与交流。类器官是一种能够模拟真实器官结构和功能的微型细胞结构,不仅保留了与体内器官高度相似的组织学、遗传学特点,同时形成的组织有干细胞增殖与分化潜能。2017年类器官技术被《Nature Methods》评选为生命科学领域的年度技术,但是,类器官技术想要真正走进临床实验室完成应用转化,还要回答和解决很多实际问题。例如类器官作为模型时的主要痛点或限制有哪些以及未来如何改进?国内类器官标准化——如何真正去推动类器官在各个应用场景上被各方所认可并且支持标准化?以及类器官与转化医学和个性化医疗,面临的主要问题是?目前有哪些新进展?为回答以上问题,特别邀请北京大学基础医学院王凯研究员、中国医学科学院北京协和医院冷泠教授、银丰生物旗下银丰基因于强总经理和Molecular Devices产品经理苏园园博士四位嘉宾共同就当前类器官研究热点、前沿技术、标准化进程以及在转化医学和个性化医疗方面应用新进展等话题开展深度交流与讨论。类器官主题圆桌对话(从左往右:Molecular Devices产品经理苏园园博士、北京大学基础医学院王凯研究员、中国医学科学院北京协和医院冷泠教授、银丰生物旗下银丰基因于强总经理)王凯 北京大学基础医学院研究员对于当前类器官的研究热点和未来发展趋势,北京大学基础医学院王凯研究员认为,类器官结合微流控芯片将成为未来火热研究方向之一,尤其是近年来,微流控技术已被证明可以改善营养物质的输送和交换。引入微流控芯片技术可以使类器官可视化成为可能,同时利用微电子加工方式能够实现高通量化,而且还有助于开发高度可控、靶向性的营养物质递送系统。此外,未来类器官将会是对于现有动物模型的一种很好的补充和完善,同时类器官也有望被移植到体内进行细胞治疗,不仅仅是疾病模型研究,还能够有望实现器官的替代和修复,比如胰岛类器官移植治疗糖尿病,将干细胞分化为类似于胰岛的细胞团注射到患者体内治疗糖尿病。冷泠 中国医学科学院北京协和医院教授自2009年首类器官被建立以来, 类器官领域呈现快速发展趋势,期间取得系列突破性成果也得到了科研界和产业界的广泛认可。但是作为新兴技术,类器官在实际运用和科学研究过程中或多或少会遇到一些困难和挑战,中国医学科学院北京协和医院冷泠教授表示,均一性、成率、功能性和成本是目前面临主要难点和挑战,尤其现阶段对于类器官的定义,还没有形成一个行业共识。就均一性而言,不单单病人个体差异性,甚至同一稳态组织也存在薄厚差异,而对于多能干细胞来源的类器官,其方法研究还处于起步阶段。成本方面,类器官研究非常“烧钱”,比如培养过程使用的培养基(例如Wnt、R-Spondin、Noggin等细胞因子)、基质胶以及相关耗材等价格比较昂贵,并且这些产品绝大多数需要进口,从而导致货期不定。此外,受国际环境影响,国内类器官的研究可能会面临国际遏制。于强 银丰生物旗下银丰基因总经理2022年8月,美国FDA批准了首个基于仅来自类器官模型的疗效数据而进入临床试验的药物。这一决定不但体现了药物开发对类器官研究提供的数据的信心,也表现了FDA对类器官研究可信度的认可。对于目前国内类器官标准化的进展以及如何真正去推动类器官被各方所认可并且支持标准化,银丰生物旗下银丰基因于强总经理提出了两个维度的思考。从商业化角度来讲,从取材、培养到生长分化等整个类器官培养过程均需要建立标准化,否则得不到临床认可,也就无法实现产业化。而从探索性技术角度出发,标准即为最前沿的研究,类似登月一样,首先攻克重重难关抵达到月球表面才能成为标准。目前,国内类器官标准化路程还有很遥远,不仅需要国家相关部门大力支持,同时也需要科研工作人员,比如学会协会等组织牵头完成标准制定。圆桌讨论结束后,由Molecular Devices产品经理苏园园博士带来《从培养到检测,全自动类器官工作站赋能行业发展》精彩报告分享。报告人:苏园园博士 Molecular Devices产品经理报告题目:《从培养到检测,全自动类器官工作站赋能行业发展》类器官凭借高度仿生人体组织器官的独特优势,现已成为生命科学研究及医药研发的优良模型,但是现有的类器官培养模式缺乏标准化,导致稳定性差、通量低等问题,难以满足大规模工业化的需求。为推动这一前沿技术的发展,Molecular Devices新推出类器官自动化工作站。苏园园博士在报告中介绍到,Molecular Devices以标准化、高通量、高重复性和AI数据整合为导向,实现了类器官从大规模可重复的模型构建到药物评价的一体化生产和检测,赋能类器官基础研究和应用。直播间热烈讨论与交流更多详情请进入了解:“聚焦类器官 洞悉细胞世界——类器官前沿技术及最新进展”主题研讨会(点击进入)
  • 【会议预告】Molecular Devices与您相约2023年“类器官中的细胞世界”学术研讨会
    为推动中国细胞生物学各领域学者深入交流研究进展,展现国内细胞生物学相关领域的高水平系列代表性成果,2023年“类器官中的细胞世界”学术研讨会将于2023年9月21-24日在江西省南昌市召开。本次大会由中国细胞生物学学会信号转导分会、南昌大学类器官研究院主办,南昌大学第一附属医院,南昌大学第二附属医院协办,旨在为中国细胞生物学各领域研究者之间搭建沟通交流的桥梁和纽带,推动我国细胞生物学产学研项目的发展与落地。届时,Molecular Devices也将于论坛展位亮相,带来类器官相关的解决方案。会议时间丨2023年9月21-24日会议地点丨南昌融创施柏阁酒店(江西省南昌市红谷滩区南龙蟠街333号)展位号丨11大会议程9月21日(周四)10:00—17:00注册报道一楼大堂9月22日(周五)8:30—12:00开幕式+大会特邀报告一楼施柏阁宴会厅12:00—14:00Lunch and Poster Session各自入住酒店西餐厅14:00—17:45Session 1解析发育稳态 主持人:王晓群、高栋一楼施柏阁宴会厅17:45—18:15圆桌论坛:类器官生命科学产业展望一楼施柏阁宴会厅9月23日(周六)8:30—11:15Session 2真实细胞世界主持人:姚雪彪、卿国良一楼施柏阁宴会厅11:15—14:00Lunch and Poster Session各自入住酒店西餐厅14:00—17:15Session 3精准医学新篇主持人:金子兵、蒋明一楼施柏阁宴会厅17:15—17:45圆桌论坛:类器官精准医学产业展望一楼施柏阁宴会厅9月24日(周日)8:30—11:15Session 4变革药物发现主持人:张冬卉、刘妍一楼施柏阁宴会厅12:00—13:30Lunch and Poster Session各自入住酒店西餐厅13:30—15:30Session 5标法呼之欲出主持人:赵同标一楼施柏阁宴会厅15:30—17:20Session 6交叉迎接挑战主持人:赵冰一楼施柏阁宴会厅17:20—17:50圆桌论坛:类器官新药研发产业展望一楼施柏阁宴会厅
  • Donald E. Ingber院士官宣出席!第三届3D细胞培养与类器官研讨会即将开幕
    随着药物研发不再强制要求动物实验的FDA现代化法案2.0生效,类器官和器官芯片等新兴技术受到了大量关注。第三届3D细胞培养与类器官研讨会将于2023年5月19-20日在上海中谷小南国花园酒店举办。本次大会以“前沿交叉 融合创新”为主题,针对类器官和器官芯片领域展开论坛讨论。本次大会很荣幸邀请到哈佛大学 Wyss 生物工程研究所创始所长 Donald E. Ingber 院士在主论坛作“Human Organ Chips for Disease Modeling, Drug Development, and Personalized Medicine”主旨演讲,为大家分享其在器官芯片领域的最新研究成果!Donald E. Ingber 美国国家工程院院士哈佛大学Wyss生物工程研究所创始所长Emulate学术创始人,董事会成员嘉宾介绍Donald E. Ingber 教授是美国国家工程院(NAE)、国家医学科学院(NAM)、国家发明家科学院(NAI)和艺术与科学院(AAAS)院士。已发表了 500 多篇文献和 165 项专利。他被评为 2012 年和 2020 年全球 20 大转化研究科学家《自然-生物技术》,2015 年全球领先思想家《外交政策》。获得多项重磅荣誉,包括终身成就奖(美国体外生物学学会)、Leading Edge 奖(美国毒理学学会)、创始人奖(美国生物物理学会)。他开发的器官芯片技术被世界经济论坛评为十大新兴技术之一,是器官芯片领域的领导者。于 2010 年在 Science 上发表了世界上第一个成功的器官芯片模型:肺芯片。大会时间:2023年5月19-20日 大会地点:上海中谷小南国花园酒店大会主题:前沿交叉 创新融合主办单位:生物谷、梅斯医学联合主办:粤港澳大湾区精准医学研究院(广州)、上海市生物医药产业促进中心扫码立即报名01 大会主席02 会议日程03 榜单&路演征集04 合作媒体05 会议报名扫描上方二维码立即报名
  • 第二届3D细胞类器官应用与高内涵成像技术研讨会
    时间:2023年9月26日(星期二)地点:北京海淀永泰福朋喜来登酒店2楼宴会厅活动背景:类器官模型因其能够再现真实组织的复杂性而在生物研究和筛选中越来越受欢迎,因为它们与单层2D 培养模型相比更能代表体内环境。类器官结构为疾病建模和化合物影响评估提供了一个非常有用的工具。 对于改善类器官表型变化的定量评估以及增加实验和检测中的通量而言,类器官的自动成像和分析是非常重要的。鉴于此,美谷分子仪器(上海)有限公司举办此次3D细胞类器官应用与高内涵成像技术研讨会,旨在为科研人员带来最新的3D细胞、类器官研究与高内涵成像技术应用,我们期待您的莅临与指导! 会议日程:13:30-14:00来宾签到14:00-14:20欢迎致辞14:20-15:00类器官全自动培养及高通量检测解决方案苏园园博士 产品经理 美谷分子仪器(上海)有限公司15:00-15:40细胞(类器官)力学成像与转化应用熊春阳 教授 北京大学15:40-16:00茶歇及展台参观16:00-16:40基于类器官芯片的药物评价新方法艾晓妮 副研究员 北京大学药学院16:40-17:20类器官标准化培养与研究应用胡浩 联合创始人、市场总监 伯桢生物科技(苏州)有限公司报名二维码:
  • 从3D类器官到单细胞——珀金埃尔默邀您参加2020中国细胞生物学会年会
    细胞的3D模型培养能够更好地模拟微环境、细胞间相互作用和体内生物过程。相较于生化检测和2D模型,3D模型可提供更具生理相关性的条件。此外,其形态学和功能分化程度更高,这也赋予了它们更接近体内细胞的特征。如今越来越多的研究人员正在应用3D细胞培养、微组织和类器官技术来填补2D细胞培养与体内动物模型之间的差距。 特别是类器官的研究和使用,类器官(Organoid)是源自干细胞的体外衍生3D细胞聚集体,具有类似器官结构和功能。近年来,3D类器官培养技术逐渐成熟,正在成为药物筛选、个性化治疗和发育研究的重要模型。然而,细胞的3D培养技术面临着诸多挑战:首先,培养一致的、可再现的3D 微组织十分困难,尤其是类器官的培养;此外,大而厚的细胞样品成像难度极高;同时,处理3D细胞实验产生的海量数据则是最为严峻的挑战。针对3D微组织样品,使用传统的冰冻切片染色成像或直接使用共聚焦显微镜进行成像都有很多挑战:冰冻切片成像无法获得立体样品的全部信息,特别是Z轴的细胞位置信息;共聚焦显微镜有较高的光毒性和光漂白,不能对立体样品反复多层的成像,成像的层数有很大限制;此外,这两种拍摄方法获取的大量图片还需借助其他分析软件对其数据进行分析和统计,分析通量很低;最重要的是,这两种方法扫描速度都很慢,通量很低,一个3D微组织的扫描分析时间长达几个小时,极大的限制了3D微组织研究的开展。高内涵细胞成像能够在保持细胞结构和功能完整性的前提下,对细胞和亚细胞层次进行多通道、多靶点的荧光全面扫描,检测细胞形态、生长、分化、迁移、凋亡、代谢途径及信号转导等各个环节,在单一实验中获取大量相关信息。在细胞凋亡、细胞周期、细胞毒作用、受体蛋白转位、蛋白相互作用等方面都有很好的应用,被证明是细胞生物学,癌症研究,病原生物学,药物研发,系统生物学,心血管疾病研究,干细胞研究,神经细胞研究等领域的重要研究工具。PerkinElmer公司提供的高内涵细胞成像分析系统,它采用Nipkow转盘扫描技术配以高灵敏度sCMOS探测器,能够快速捕捉到细胞内发生的生物学过程,更因其降低光漂白和光毒性的特点,配合水浸式高数值孔径物镜,可以实现对活细胞、小型模式生物和3D微组织样品进行高通量的共聚焦高分辨率成像。再结合强大的Harmony分析软件,能够对细胞和亚细胞层面各种复杂的表型进行群体性统计分析研究。该系统在细胞生物学研究领域有着非常广泛的应用。PerkinElmer高内涵系统的3D方案不仅仅局限于3D微组织,包括模式生物、细胞伪足等立体结构都可以通过高内涵系统完成全面的检测和分析: 珀金埃尔默的单细胞ICP-MS技术,基于业界最快的的细胞脉冲信号读取速度(可达100000点每秒),能定量单个细胞中低至阿克级别的金属和纳米颗粒含量,测定细胞群中金属质量分布和含金属细胞的数量,从而评估与量化细胞群的异质程度。适用于人体、动物、植物等各种组织器官细胞的深入研究。例如,含金属药物和纳米颗粒越来越广泛的应用于癌症的治疗和检测,单细胞ICP-MS可进行精细跟踪,掌握病变组织在细胞层面上对药物的吸收和代谢,有助于了解癌症机理和提升治疗水平。两株卵巢癌细胞系A2780( 顺铂敏感型)和A2780/CP70 (顺铂耐药型)随时间变化顺铂摄入量 生物体中的铜含量通过非常有效而复杂的稳态机制得以严格调控,该机制可控制元素的吸收、分布和排出。目前数据得到的细胞铜稳态模型只是一个“骨架” ,用SC-ICP-MS来测量外周血单核细胞(PBMC)中的铜(Cu)含量,对了解稳态机制的失调或失衡可能导致生物体功能异常,并可能与某些疾病(例如炎症、哮喘、衰老过程、癌症等)方面提供了进一步研究的有效手段。外周血单核细胞(PBMC)中铜的含量应用领域举例:3D微组织类器官目前的应用主要集中在肿瘤研究(药筛模型、药筛、肿瘤免疫、个体化医疗)、干细胞和发育生物学、体外模型研究(感染模型、毒性评价)、材料及给药研究等方面:肿瘤研究2019年6月17日,Cell Death and Disease杂志在线发表了钱其军研究组的研究成果Modified CAR T cells targeting membrane proximal epitope of mesothelin enhances the antitumor function against large solid tumor。该工作致力于优化肿瘤CAR T免疫疗法。MSLN(Mesothelin,间皮素)是嵌合抗原受体(CAR)T治疗的诱人抗原,MSLN中的表位选择至关重要。在这项研究中,作者使用修饰的piggyBac转座子构建了两种针对MSLN的I区(meso1 CAR,也称为膜远端区域)或MSLN的III区(meso3 CAR,也称为膜近端区域)的两种类型的CAR系统。其中,meso3 CAR T细胞在激活后表达更高水平的CD107α,并在体外针对表达多种MSLN的癌细胞产生更高水平的白介素2,TNF-α和IFN-γ。之后,作者构建了胃癌和卵巢癌3D肿瘤细胞模型,并用该模型来测试这两种CAR T系统,通过PerkinElmer Opera Phenix高内涵系统完成3D肿瘤 CART杀伤系统的成像和分析,最终证明在3D细胞水平,meso3 CAR T细胞比meso1 CAR T细胞具有更高的杀伤作用。后续的研究中,作者借助PerkinElmer Xenogen IVIS成像系统,在胃癌NSG小鼠模型中进一步进行验证,同样证明与meso1 CAR T细胞相比,meso3 CAR T细胞介导的抗肿瘤反应更强。我们进一步确定meso3 CAR T细胞可以有效地抑制体内大卵巢肿瘤的生长。总体而言,本研究证明meso3 CAR T细胞疗法在治疗MSLN阳性实体瘤方面比meso1 CAR T细胞疗法具有更好的免疫疗法,为实体瘤的免疫治疗提供了新的有效的CAR T疗法。干细胞与发育生物学2018年11月,英国的格拉斯哥大学癌症科学研究所在Nature Communication杂志发表了名为《The Phospholipid PI(3,4)P 2 Is an Apical Identity Determinant》的文章,本文主要以MDCK囊肿为模型,研究了上皮细胞的极化机制,最终发现PI(3,4)P2磷脂酶是决定上皮细胞极化发生的重要分子,并阐明了其调控机制。在本文中,作者首先发现磷酸酯修饰酶PI(3,4)P2的分布在上皮细胞极化的过程中是至关重要的,接下来,他们用PI(3,4)P2的分布作为表型,筛选哪些蛋白的敲除影响其分布。该过程是通过PerkinElmer的Opera Phenix高内涵系统来实现的,作者先通过高内涵系统的预扫描成像功能对微球进行智能的层切式扫描,选取横截面最大的那一层,然后把细胞分区域,分细胞核、细胞质、内侧、外侧和细胞连接处等等,然后计算每个区域的荧光强度。作者使用此方法去分析一些突变过的微球的磷脂酶分布,发现一些重要的上游蛋白(如PIP蛋白)被敲掉后,会发生显著的定位变化。除此以外,作者还利用高内涵系统分析了微球的空腔表型,MDCK囊肿包含多少个空腔直接反映了其功能是否正常,只有极化正常发生的囊肿才能有正常的空腔。同样的,作者使用高内涵预扫描成像功能对所有球做了层切式扫描,选取有空腔的这些层,把它们压到一起,然后通过算法选出空腔,分析其数量。作者也用该方法做了一系列基因的筛选,筛选到几个显著影响空腔形成的基因,并在后续阐明了其调控机制。 体外模型研究——肝损伤模型2018年,王韫芳课题组在新刊Advanced Biosystems杂志上发表封面文章,研究展示一种新型的药物性肝损伤研究模型——LBS微肝球模型(Liver biomatrices scaffolds, LBSs)。该模型在HepaRG细胞的基础上引入天然脱细胞肝脏支架,可进行肝细胞的长期3D培养。在LBS提供的肝组织特异微环境下,新模型具有更高的生理相关性和毒理预测敏感度。作者使用PerkinElmer Operetta CLS 高内涵筛选系统,深入评估了8种抗抑郁药物的肝毒性。结合特定的染料组合,从细胞活力、凋亡、胆汁蓄积、脂肪变、氧化应激和线粒体毒性6个方面检测药物处理对微肝球模型的影响。其中的许多参数都使用了复杂的高内涵分析方法。结果证明LBS微肝球模型能高度特异预测药物肝毒性和协助进一步的毒理机制研究。本研究还用到了PerkinElmer的Engisht多功能成像酶标仪,研究利用Alamarblue法追踪不同培养条件下细胞活力的变化。PerkinElmer提供的分子及细胞水平检测方案贯穿本论文药物肝毒性研究的整个过程。从微肝球模型的细胞增殖、酶活分析,再到3D模型的功能验证和毒理学多指标分析,PerkinElmer均能提供针对性的应用方案。材料及给药研究2019年6月,爱尔兰都柏林大学学院生物与环境科学学院&康威研究所在Small杂志发表名为《A High‐Throughput Automated Confocal Microscopy Platform for Quantitative Phenotyping of Nanoparticle Uptake and Transport in Spheroids》的文章。该研究利用PerkinElmer高内涵Opera Phenix系统,构建了完整的在3D微组织层面研究纳米载体摄取和运输的模型。作者首先进行3D微组织培养和高内涵拍摄的优化,主要研究了培养条件和固定方法对不同浓度的基质胶的影响,并根据该实验结果确定了培养方法、固定方法和基质胶浓度及用量。此外,作者也通过顺式到反式高尔基标记物(GM130、GalT和TGN46)的分布染色考察了高内涵的拍摄质量,证明PerkinElmer高内涵系统确实有极高的分辨率,用来研究纳米颗粒的摄取情况是足够的。接下来,作者通过Harmony软件对层切扫描图片进行重构分析,获取最大亮度投影和3D重构视图,在此基础上定量测量球状体中NP吸收和渗透。最后,作者选择了在纳米颗粒胞吞作用中有功能的蛋白,通过RNAi沉默进行潜在基因筛选,确定该模型可用于评估3D微球NP的摄取和运输过程。 更多详细内容,欢迎您莅临8月4日在中国细胞生物学学会2020年全国学术大会上举办的午餐会,干货报告、午餐礼遇、惊喜礼品等您来参与。点击下方链接完成签到,即可在会议期间至珀金埃尔默展台(T3)领取精美礼品一份。http://suo.im/6tarYZ
  • 2021年 3D细胞与类器官研讨会(上海迹亚)邀请函
    展会名称:3D细胞培养与类器官研讨会参展时间:2021年5月28日-29日地点:上海虹桥万豪大酒店展位:20号2021年3D细胞培养与类器官研讨会将于5月28-29日在上海召开。本次会议由生物谷与复旦大学遗传工程国家重点实验室类器官中心联合主办,大会主委会将充分撬动领域内专业资源,共同搭建高水平交流平台,期待各位老师共襄盛会!会议亮点聚焦前沿进展:国内外类器官在生物学及医学研究最新热点、难点等问题的深入探讨,助力多方合作与研究开拓创新思路:开拓精准医疗新思路,创新发展类器官技术在生物医药领域的应用强大嘉宾阵容:力邀20+从事类器官研究与发展的产学研专家,交流分析当前研究难题参展主要产品CELLINK诞生于瑞典,是一家全球领先的生物融合公司,专注于生物打印、多层组学、细胞株开发和诊断等应用领域。赋能研究人员以3D方式培养细胞,进行高通量药物筛选,以及为医学,医药和化妆品行业打印人体组织和器官。CELLINK的产品得到了2000多家实验室的信任,包括全国20强制药公司的实验室,已有超过65个国家使用,并被1700多份出版物引用。在致力于“创造医学的未来”的同时,我们专注于细胞培养必不可少的三个应用领域:生物印刷,生物科学和工业解决方案。同时,我们在研发方面取得了重大进展,并获得了这些领域的互补技术,从而为科学家提供了由我们敬业的科学家和技 术人员支持的完整工作流程。韩国Curiosis的专家团队由世界科学家和工程师组成,致力于利用生物物理学和电子工程学的核心技术提供最佳的研究和诊断解决方案。提供最先进的技术和优化的平台使研究人员可以挑战他们的工作进度改进。活细胞自动成像系统细胞自动计数仪血细胞计数板OZ Biosciences是一家法国的新兴生物技术公司,其成立宗旨是帮助药物公司研发和生产新型的药物导入系统。研究方向主要集中在生物活性材料导入活体组织新技术的研发。研发目标是建立新一代的核酸、蛋白、多肽和其它生物分子的转染导入系统,为广大科研工作者服务。该公司与许多国际知名企业、大学和科研机构有合作往来。OZ Biosciences公司产品极具特色,主打产品是基于纳米技术和生物技术的基础上发展起来的磁转染试剂,相对常规商业化转染试剂,其转染效率更高。资料索取:info@gaiasciencechina.com联系人:王燕/吴万丹电 话:86-21-6877 9823 地 址:上海市浦东新区张江高科技园区海趣路236号1221室
  • Digital WB在基因治疗眼部疾病细胞和类器官模型中应用
    遗传性视网膜营养不良(Inherited retinal dystrophies, IRDs)是可导致进行性视网膜退化的遗传缺陷性罕见疾病,常见的IRD相关基因缺陷超过200种。近几年,眼科领域的基因治疗临床试验项目数量激增,包括基因替换、基因编辑和基因沉默多个技术方面。2017年美国FDA首次批准了视网膜Voretigene Neparvovec基因疗法(Luxturna, Spark Therapeutics),用于治疗RPE65.1双等位基因突变引起的罕见眼科疾病,称为Leber先天性黑蒙。这个里程碑意义的决定为眼科疾病基因疗法打开了大门。目前大部分临床研究疗法目标是通过导入正常功能基因,从而恢复缺陷基因编码蛋白质的正常表达。在非临床研究和临床研究中,检测转基因目的蛋白表达是基因疗法开发的一个关键方面。 目前,有多种技术可实现目的蛋白表达定量检测包括配体结合法(Ligand binding assay,LBA)如酶联免疫吸附方法(ELISA)、液相色谱-质谱(LC-MS)、流式细胞术、蛋白质免疫印迹(Western Blot)和组织染色技术。每种技术都有各自优势和局限,如目的蛋白为分泌性表达,可采用ELISA方法检测细胞培养上清液或体液系统中目标蛋白含量;如目的蛋白不能分泌表达,可采用Western Blot或质谱方法;如需要检测细胞膜蛋白,可采用流式细胞术;如要确定蛋白质在细胞和组织内分布,可采用免疫荧光检测。 在体内和体外模型中研究基因治疗产物与治疗靶点的相关作用机制和效应,选择生物相关性模型来检测目的基因表达和生物学活性非常重要。对于眼部疾病可探索选择临床前研究模型如细胞系模型、人诱导多能干细胞(hiPSC)衍生的视网膜类器官疾病模型、啮齿动物和非人灵长类动物等,根据生物学相关性和测定时间可在不同阶段综合选择特异性评估模型。眼部疾病细胞模型案例1:iPSC衍生视网膜色素上皮细胞(RPE)中低丰度大分子量蛋白质表达检测 从三名Stargardt病人皮肤活检样本产生多个iPS细胞系,这些患者都携带一个致病性ABCA4基因变异。采用RNA-Sep和Digital WB分析正常对照和患者细胞衍生的RPE。这个细胞模型与活检组织相比,可用于评估难以检测的非表达变异体,患者来源的细胞可能更密切地反映患者体内发生的剪接和编辑事件,可用于病人药物敏感性研究,指导临床试验。采用全自动Digital WB技术分析pABCA4蛋白质表达,制备了20 μg 总蛋白 dRPE 细胞匀浆,阳性和阴性对照分别是20 μg野生型和 ABCA4 敲除小鼠视网膜匀浆。参考下图,小鼠视网膜(Mouse ret)在野生型(WT)中pABCA4表达丰度很高,敲除(KO)小鼠没有表达。人类对照(NHDF)具有比WT小鼠视网膜更高表观分子量,同时有更高的表达丰度。与对照相比,所有患者细胞系(H、J和S)中均可检测到pABCA4 ,但这些低丰度pABCA4蛋白可能被降解,作为截短蛋白或降解产品形式存在(除S2外)。与mRNA表达谱结果一致,S2细胞系具有相对正常的pABCA4表达水平和修饰后成熟膜蛋白的分子量。本研究利用了Digital WB对低丰度和大分子量蛋白质分析检测能力。案例2:眼角膜内皮细胞信号通路中多重蛋白质表达检测 本研究采用人源和鼠源细胞,分别是敲低了SLC4A11表达水平的原代人角膜内皮细胞(primary human corneal endothelial cells, pHCEnC),即SLC4A11 (SLC4A11 KD pHCEnC);还有Slc4a11+/+和Slc4a11-/-鼠角膜内皮细胞系(murine corneal endothelial cells, MCEnC),即 Slc4a11-/- MCEnC和Slc4a11+/+ MCEnC。比较转录组学分析揭示了SLC4A11 KD pHCEnC和Slc4a11-/- MCEnC中细胞代谢和离子转运功能抑制以及线粒体功能障碍,导致ATP生产减少。AMPK-p53/ULK1通路激活也表明线粒体功能障碍和线粒体自噬。稳态 ATP 水平降低和随后 AMPK-p53 通路激活提供了代谢功能缺陷和转录组改变之间的联系,以及 ATP 不足以维持 Na+/K+-ATPase角膜内皮泵的证据,这是 SLC4A11 相关角膜内皮营养不良特征性水肿的原因。所以SLC4A11缺陷角膜内皮中分子作用导致内皮功能障碍,是先天性遗传性角膜内皮营养不良 (congenital hereditary endothelial dystrophy, CHED) 和Fuchs 角膜内皮营养不良的主要特征。 下图结果表明SLC4A11缺陷角膜内皮中AMPK-p53 通路激活,采用Digital WB检测信号通路中各蛋白质表达水平。图B说明与 scRNA pHCEnC 对照相比,SLC4A11 KD pHCEnC 中 p53 Ser15 磷酸化水平增加,表明p53转录翻译后激活。图C在Slc4a11-/- MCEnC晚期传代中观察到相似结果(p53 Ser18磷酸化增加,对应于人p53 Ser15)。图C和D结果表明在Slc4a11-/- MCEnC 早期和晚期传代中总 p53 水平增加,代表p53转录激活。进一步研究磷酸化和p53转录激活的激酶,根据报道AMPK介导 Ser15(小鼠中Ser18)磷酸化和p53转录激活,图B和C实验结果也说明AMPKα的Thr172磷酸化增加,AMPKβ1的Ser182磷酸化没有变化。图E和F,与 scRNA pHCEnC 相比,AMPK 另一种下游底物 Unc-51 样自噬激活激酶 1 (ULK1) 在SLC4A11 KD pHCEnC中磷酸化水平(Ser555)增加。综合这些结果表明,ATP水平下降导致AMPK及其下游底物p53 和 ULK1 激活,分别导致转录组改变和线粒体自噬增加。同样,鉴于 SLC4A11 在预防氧化损伤中的作用,SLC4A11 缺失导致线粒体 ROS 产生增加,随后线粒体功能障碍和线粒体自噬增加。此发病机制支持使用Slc4a11-/-小鼠作为SLC4A11相关角膜内皮营养不良的模型,评估各种治疗方法的转化潜力。 基于Digital WB技术的全自动蛋白质表达分析系统Jess可实现化学发光和荧光两种检测模式,是多重蛋白质表达分析有力工具。2022年,ProteinSimple发布了Stellar全自动双色荧光蛋白质表达检测方案,特别适合同步分析细胞信号通路磷酸化蛋白和总蛋白表达,将细胞信号通路研究工具带到一个新高度。iPSC衍生视网膜类器官模型案例1:Digital WB检测iPSC衍生的视网膜类器官中视紫红质表达含量 美国NIH研究人员利用成纤维细胞重编程获得诱导多能干细胞(iPSC),再分化产生视网膜类器官。通过转录组学分析,确定了视网膜类器官发育过程中调节信号,在体外生成了更成熟视网膜,可促进疾病建模和基因治疗研究。本研究采用Digital WB技术揭示了不同培养条件下类器官培养物种视紫红质(Rhodopsin)表达差异。下图结果表明,DHA处理的类器官在32天时视紫红质表达增加了30%,而亚油酸(LA)处理类器官视紫红质表达降低,这表明DHA处理的类器官中视紫红质表达增加不是脂肪酸添加带来的。案例2:AAV基因治疗的RetGC-GUCY2D视网膜类器官疾病模型 Leber先天性黑蒙可由多种不同突变基因导致包括RPE65、CEP29、GUCY2D和CRX等。其中Leber先天性黑蒙1型由GUCY2D基因突变导致,可导致严重视力损害或失明。GUCY2D基因正常拷贝编码了一种鸟苷酸环化酶(RetGC),其是感光器生理学中关键酶之一,视网膜中光敏杆状细胞和视锥细胞使用该酶将光转换为电化学信号。 英国MeiraGTx公司研究人员利用CRISPR/CAS9 技术生成 RetGC 敲除 (RetGC KO) 视网膜类器官,iPSC衍生视网膜类器官分化后,将RetGC KO 视网膜类器官与同一细胞系的野生型类器官进行对比研究。总共设计了四种 AAV 载体来测试RetGC 蛋白在光感受器中的恢复情况,所有载体采用AAV7递送。CMV 和视紫红质激酶 (RK) 两个启动子,并评估了WoodChuck肝炎病毒翻译后调控元件 (WPRE) 影响。采用Digital WB检测6组类器官中RetGC蛋白表达水平。实验结果揭示,与非转导样本组比,所有载体设计均以不同效率产生RetGC蛋白。加入WPRE似乎显示出效力降低趋势,通过其他量化指标验证了这个趋势。 Digital WB相比传统Western blot,只需要几十分之一样本量就可实现类器官等珍贵样本中蛋白质定量检测,而且重复性更高和速度更快,非常适合眼部疾病类器官模型的转基因目的蛋白及相关通路蛋白表达分析。“全自动Digital WB技术是眼部疾病蛋白质表达定量的重要工具 Jess全自动数字化蛋白质表达定量分析系统 (Digital WB) 是Bio-Techne集团旗下蛋白质分析品牌ProteinSimple所有。系统利用毛细管电泳免疫学分析技术,可从微量样品中自动吸取、分离、捕获蛋白质,并通过化学发光或荧光检测目的蛋白含量。针对眼部疾病基因治疗应用技术优势Digital WB技术适合眼科基因治疗体外和体内各种模型中转基因目的蛋白表达定量分析,用于视网膜细胞系、iPSC衍生视网膜色素上皮细胞(RPE)和类器官、小鼠动物模型和非人灵长类动物模型的关键蛋白质分析。适合于基因治疗研发的不同阶段对转基因目的蛋白及相关信号通路蛋白检测需求。满足类器官和视网膜微量样本蛋白质分析需求,Digital WB技术样本量需求是传统Western Blot几十分之一,只需要3 μL样本量就可实现多重蛋白质表达检测,特别适合眼部疾病微量珍贵样本蛋白质分析。Digital WB精准定量检测,传统Western Blot只能满足样本半定量需求,重复性比较差。基因治疗某些目的蛋白表达与临床治疗效果相关联,可作为替代生物标志物,建立量效关系。要求目的蛋白分析检测标准需要提高,要求技术需要经过严格验证,Digital WB可满足这些需求。符合基因治疗产业对自动化标准化和效率的需求,面对行业激烈竞争,需要提升研发效率。Digital WB实现了全自动化和标准化,软件符合FDA 21 CFR Part 11合规性需求。系统3个小时完成一批次蛋白质分析,比传统Western Blot快4倍,大大提高了实验效率,同时减少人力成本。 Digital WB自动化程度高、重复性好、灵敏度高和具有较宽动态检测范围,这些特点满足眼部疾病基因治疗项目不同阶段的目的蛋白定量需求。Digital WB已被国内外知名基因治疗机构采用如Biogen, Sarepta Therapeutics, MeiraGTx,ATGC, Spark Therapeutics,Regenxbio,CRISPR Therapeutics, Editas Medicine, Bluebird bio,杭州嘉因生物、中国食品药品检定研究院等,必将在基因治疗研发阶段、非临床研究和临床研究阶段发挥更大的作用。扫描下方二维码,获取更多关于Digital WB资料参考文献:
  • 持续升温的高内涵细胞成像与火热的类器官研究——横河电机高级技术顾问杨林立
    高内涵细胞成像分析系统是一种利用高倍镜成像技术对细胞进行图像采集和分析的仪器设备。得益于显微成像、自动化和计算机等技术的迅猛发展,使其能够对大量细胞进行高分辨率成像和数据分析,实时提供海量多维生物学信息,广泛应用于生物医学、药物筛选等领域。为帮助大家及时了解高内涵成像分析前沿技术、创新产品与解决方案,仪器信息网特别组织策划《窥微探秘,高内涵细胞成像前沿技术与进展》专题。本期,特别邀请到横河电机(中国)有限公司高级技术顾问杨林立谈一谈日本横河电机YOKOGAWA高内涵成像分析系统发展历程、创新技术以及他对未来市场的看法。仪器信息网:请介绍一下高内涵成像技术的发展历史。杨林立:目前,高内涵成像技术主要包括宽场和共聚焦两种,其中共聚焦又细分为激光点扫描共聚焦、单转盘共聚焦和微透镜双转盘共聚焦。相较宽场和点扫描共聚焦,转盘共聚焦兼顾了图像质量和扫描速度,可以实现高速获取高质量的动态图像,展现出广阔的应用前景。接下来,我将围绕转盘共聚焦技术展开重点介绍。1997年,美国Cellomics公司成功开发出首个高内涵高通量筛选技术平台ArrayScan system,其中的共聚焦模块采用的是Nipkow单转盘,在保证高质量图像的基础上显著提升了成像速度,实现了短时间内获取大量图像和数据的目标,帮助科研人员进一步对细胞内部或细胞与细胞之间连续发生的动态变化的研究。1996年,横河电机成功研制出首套微透镜增强双转盘共聚焦模块CSU10,在列阵单转盘的基础上引入了微透镜列阵转盘。其中,微透镜盘的使用能够大幅增加透光量,减小噪音,提高图像信噪比,同时进一步减小了激光曝光时间,实现低光漂白和低光毒性。微透镜双转盘共聚焦示意图随后,横河电机在2008年推出了首款微透镜双转盘高内涵系统CV6000,搭配4台高视角相机和水浸式镜头,进一步提升了拍照速度和图像分辨率。2015年,横河电机首款超高分辨的转盘共聚焦模块CSU-W1 SORA诞生,其分辨率可达到120 nm,使图像分辨率再次大幅提升。近年来,随着图像荧光均一度要求越来越高,原有的光路设计亟需改造升级,横河电机和英国Andor公司分别开发出Uniformizer和Borealis技术,使视野内的荧光亮度更加均一化,从而提升了高内涵系统的成像质量。仪器信息网:请点评荧光成像系统、透射光成像系统和共聚焦成像系统等不同成像方式的优劣势?杨林立:成像技术可以分为两类:一类是透射光技术,即俗称明场或明视野,另一类是荧光技术。明场的定义相对广泛,具体又可以分为明场(Bright Field,BF)、微分干涉对比(Differential Interference Contrast,DIC)、霍夫曼调制对比(Hoffman Modulation Contrast,HMC)、相差(Phase Contrast,PH)、偏光(Polarized Light)和暗场(Dark Field,DF)。而荧光技术是指光源通过透镜激发细胞染料,染料发射荧光再经透镜进入相机,将光信号转化为电信号形成细胞图像。近年来,市场不断涌现出一些新颖复杂的成像技术,例如光片显微镜、共聚焦显微镜和双光子显微镜,大体上基于荧光成像技术发展而来的。与传统显微镜不同,共聚焦显微镜采用单色光作为光源,在入射光滤光片位置附近增加一个针孔装置使入射光源变成点光源,点光源相比普通场光源方向性更强、发散更小、强度更大,能够在某一时间点激发焦平面内单个样品点的荧光信号,周围的样品点对被激发点的干扰极小,从而大大提升了显微镜的XY轴分辨率。在信号检测器的前方也设置了一个针孔装置,光源针孔和检测针孔的位置都刚好位于物镜的焦平面上,但通过分光器的作用之后,两者的位置形成“共轭”,这就是所谓的“共聚焦”。共聚焦的成像方式能很好地阻挡非焦平面的信号,进而提升显微镜的Z轴分辨率。仪器信息网:请介绍当前全球及中国高内涵细胞成像分析系统市场规模及现状。杨林立:据调研报告显示,全球高内涵筛选(HCS)的市场规模大概在6亿美元左右。从2019年到2024年间,预计将以9.8%的年复合成长率保持较高的增速发展,市场规模也将成长到10.5亿美元左右。其中,北美地区(占比38.5%)是高内涵筛选的最大市场,其次是欧洲(31.7%)、亚太地区(23.1%)、拉丁美洲(5.0%)、中东和非洲(1.6%)。北美地区由于研发投入强度高、主要医药市场参与者的存在、以及政府大力支持等多重因素导致长期占据较大的市场份额。与此同时,随着全球医药行业高速发展、新药研发投入力度持续加大、跨国公司对新兴市场的日益关注以及研发基础设施不断完善,预计亚太地区市场将在预测期内实现最高增长。目前市场主要参与者包括:美谷分子(美国)、瑞孚迪(原PE,美国)、赛默飞(美国)、思拓凡(原GE,美国)、伯腾(美国)、横河电机(日本)、帝肯(瑞士)和伯乐(美国)等。根据仪器信息网报道,从全国共享高内涵筛选系统品牌分布来看,市场被进口垄断。前二者更是抢占到总份额的60%,在高校和科研院所中占据绝对优势。根据2021上半年高内涵分析仪中标记录,从高内涵细胞成像分析系统的品牌分布来看,中标数据中瑞孚迪占比最高。横河的占比为4%,其中的CQ1型号有着最多的中标。仪器信息网:贵司高内涵细胞成像分析系统的发展历程是怎样的?有哪些里程碑事件?杨林立:横河电机的高内涵分析系统最早可追溯到2008年——首款微透镜双转盘高内涵系统CV6000的诞生,它曾一度成为当时通量最高且成像质量极高的明星产品,随后于2011年完成了重大更新,并命名为CV7000;2014年,又推出了首款桌面式微透镜双转盘共聚焦高内涵分析系统CQ1,兼顾了成像速度和质量及经济性;2018年,成功研制出集细胞培养、加样、成像和分析于一体高内涵筛选系统CV8000,通过将专有的高速共焦扫描单元、水浸式镜头、带有细胞培养环境的显微镜台和集成机器人移液器相结合,不仅实现了高内涵、高分辨率成像,还可以通过更复杂的评估系统进行细胞表型筛选;2022年,横河电机重磅推出了首款高内涵单细胞及亚细胞内容物取样系统Single Cellome™ SS2000,这也是业内首次将高内涵系统与细胞取样系统相结合,具有跨时代融合创新。是全球首次将高内涵系统与细胞取样系统结合,提高稀有细胞及细胞内容物的取样便捷度,同时保留细胞的原始形态和位置信息,流式分选系统需要大样本,需要细胞悬浮,不能获取细胞容物,它的出现弥补了流式的不足,在高内涵成像分析的基础上,通过设定取样参数可提取整个细胞或细胞内容物。仪器信息网:目前贵司主推的高内涵细胞成像分析系统产品有哪些?并谈谈该产品的核心竞争力(包括成像、数据处理、算法分析和自动化等方面)。杨林立:根据市场需求和侧重目标不同,目前横河电机主推CQ1台式高内涵分析系统、CellVoyager CV8000高内涵筛选系统和Single Cellome™系统SS2000三款产品。就核心竞争力而言,横河电机高内涵产品的成像质量在业内是有口皆碑的,采用微透镜增强双转盘共聚焦光路,通光量高达70%,而单转盘仅有1-2%,同时,微透镜双转盘凿刻的针孔能够有效阻断杂散光,图像信噪比显著高于单转盘。此外,光源使用固体激光,单色性和亮度及穿透性比LED高,此外软件功能强大,界面简洁,操作方便。综上,横河电机的高内涵产品具有图像质量高、成像速度快、分析便捷等显著优势。CellVoyager CQ1高内涵成像分析系统CellVoyager CQ1是一款小巧紧凑、简单易用且价格亲民的高内涵成像分析系统,拥有有多种配置选择,并支持智能整合从而实现全自动成像分析。得益于横河电机微透镜双转盘共焦技术可以实现快速、温和地获取3D图像。同时,微透镜双转盘共聚焦的低光毒性使延时和活细胞分析成为可能。提供类似流式细胞术分析功能,支持包括数量、形态学、荧光强度、纹理和示踪及其他自定义参数的高内涵分析。此外,CellVoyager CQ1也是开放平台,可作为图像采集或分析设备扩展为整合检测系统,也可连接机械臂实现全自动成像分析。CQ1可配备高阶的高通量高内涵分析软件CellPathfinder。CellVoyager CV8000 高内涵筛选系统作为一款高端高内涵分析系统,CellVoyager CV8000将独特的高速共焦扫描仪、水浸物镜、高视场相机、带有细胞培养环境的显微镜台和机器人移液器集于一身,不仅实现了高内涵、高分辨率成像,还可以通过更复杂的评估系统进行表型筛选。此外,配备功能强大的CellPathfinder专业分析软件,可对细胞、细胞器、蛋白颗粒、神经细胞等进行多参数分析,如形态参数、荧光参数、纹理参数、细胞示踪参数等,并且具备深度学习和机器学习能力,能够提高对目标对象识别的精度性和准确性,从而帮助用户更好地分析图像,实现批量化分析,批量化导出数据结果,导出多种可视化数据。Single Cellome™系统SS2000高内涵自动亚细胞取样系统SS2000是一套直接自动取样的系统,它可在单细胞水平上自动对细胞的特定区域或整个细胞进行采样,同时使用共聚焦显微镜对培养中的细胞进行成像。由于在培养过程中可以仅对目标细胞进行取样而无需分离细胞,因此,取样后可保留细胞的位置和形态信息。仪器信息网:贵司高内涵细胞成像分析系统主要应用哪些领域的哪些实验环节?有哪些代表性用户单位?杨林立:横河电机的高内涵产品广泛应用于各种生物学实验环节,例如药物毒性与活力、类器官的培养与杀伤评价、神经细胞的发育与调节、胚胎干细胞的生长发育和分化、转录因子调控、TPD靶向蛋白复合体水解和细胞自噬等。凭借值得信赖的产品质量和快速细致的服务,横河电机的高内涵产品获得了广大用户的认可和赞誉,比如诺华制药、阿斯利康、强生制药等国际知名药企,哈佛大学医学院、美国国立卫生研究院(NIH)和食品药品监督管理局(FDA)等美国研究机构,以及北京大学、中科院微生物所、西湖大学和香港科技大学等国内科研院校。仪器信息网:未来高内涵细胞成像分析系统技术发展趋势如何?最看好哪些应用细分?杨林立:现阶段一线科研工作者们对高内涵成像仪器操作和数据分析的熟练程度仍有很大进步空间,比如,一些研究单位时常因为高内涵使用不熟练,而不能得到清晰的图像以及准确的分析结果。为此,高内涵成像分析系统需要更具智能化和智慧化,通过先进的语音交互系统将录入的语音准确无误地转化为操作指令或者编程语言,帮助操作人员熟练地使用各项功能。这也是横河电机未来重要发展方向之一。2019年,类器官技术被The New England Journal of Medicine杂志评为优良的人类临床前疾病模型,它在细胞水平和个体水平药物评价之间建立了一座关口,能更高效提升药物进入临床的成功率,在3D水平上筛除低效药物。在医院科室,患者的组织可用于体外肿瘤类器官培养,进而药敏筛查,指导病人的临床用药及组合用药。此外,改造后的免疫细胞对肿瘤组织是否具有杀伤或抑制作用,同样需要类器管模型进行检测评价。因此,类器官拥有众多且重要的应用场景,而对3D类器官的成像和分析,目前只有高内涵能够胜任,尤其微透镜双转盘高内涵能够更好地成像与分析。我认为,在类器官研究领域,高内涵细胞成像分析系统是明确、持续且重要的需求。杨林立 横河电机(中国)有限公司高级技术顾问杨林立,生物学博士,毕业于上海交通大学,专注于细胞功能及表型研究,具有丰富的高内涵成像和分析经验,对于高内涵的整体解决方案,对于类器官的研究有着深入的理解和经验。欢迎投稿!投稿文章将在《高内涵成像技术》专题展示并在仪器信息网相关渠道推广。投稿邮箱:zhaoyw@instrument.com.cn,关于征稿内容要求也可邮件咨询或电话联系:13331136682(同微信)。
  • 视频回放|近千人云聚iCCA2024 单细胞分析/类器官技术尽收眼底
    仪器信息网讯 07月03日,由仪器信息网举办的第七届细胞分析网络会议(iConference on Cell Analysis,iCCA 2024)顺利在线召开,近千人云端出席参会。会议紧跟技术市场前沿,上半场围绕单细胞分析技术,就微流控、单细胞蛋白质组学、原位测序、单细胞脂质组、单细胞质谱分析展开精彩技术分享。下半场就近两年异军突起的类器官与器官芯片技术,特别邀请国内第一梯队研究专家分别就类器官技术的发展,在疾病发生机理、新靶点发现、诊疗新策略探索、药敏检测、新药研发、再生医学等多方向拥有广泛的应用前景展开了讨论。现根据广大直播间网友呼吁,征求专家老师意见,现公布部分报告回放视频供大家学习。——01分会场——【单细胞分析技术】报告主题:微流控单细胞分析方法研究新进展报告嘉宾:林金明 清华大学 教授细胞是生物体结构和功能的基本单位。近年来,不同种细胞间、同种细胞不同个体间以及同个细胞不同位置间广泛存在的细胞异质性,使得单细胞分析成为了一个热门的研究领域。单细胞分析可以从结构、功能、遗传、行为等方面揭示和解释细胞异质性,为我们更细致的了解生命活动提供了新的方向。微流控技术,藉由其诸多优点,成为了单细胞分析中举足轻重的一件工具。本次报告将结合我们实验室的部分研究结果,重点介绍近几年来国内外有关微流控单细胞分析方法研究的最新进展。报告主题:全新4D-质谱解锁单细胞蛋白质组学应用新场景报告嘉宾:邵钰银 布鲁克生命科学质谱 应用工程师布鲁克 timsTOF Ultra 2 捕集离子淌度质谱系统品牌:布鲁克型号:timsTOF布鲁克自2017年发布了第一代timsTOF Pro产品,至今发布新一代超高灵敏度质谱仪timsTOF Ultra2已历经7年。报告从《Nature》年度关注技术来看组学发展趋势,其中单细胞、多组学、原位分析等关键词一直倍受业内关注。单细胞蛋白质组学目前面临的挑战主要有:亟需高灵敏度的分析系统;亟需一套成熟可复制的单细胞分析流程;要求超快的仪器扫描速度和稳定性。新一代 timsTOF Ultra 质谱仪 timsTOF Ultra 2,与强大的 CaptiveSpray Ultra 2 离子源相结合,这一动态组合释放出无与伦比的灵敏度,使您能够征服具有挑战性的样本,检测低丰度肽段,为组学研究的突破性提供助力。报告主题:亚细胞分辨率原位空间转录测序报告嘉宾:黄岩谊 北京大学 教授空间转录组技术已经彻底改变了我们对细胞类型和组织结构的理解,为研究人员探索亚细胞水平的转录分布开辟了新的可能性。然而,现有的方法在分辨率、灵敏度或速度方面存在限制。为了克服这些挑战,我们研发了SPRINTseq(空间分辨和信号稀释的下一代靶向测序)方法,这是一种创新的原位测序策略,结合了混合块编码和分子稀释策略。我们的方法能够实现快速且灵敏的高分辨率数据采集,可以在不到两天内从四个小鼠脑冠状切片的453,843个细胞中获取超过1.42亿个转录本。利用这种技术,我们揭示了阿尔茨海默病的细胞和亚细胞分子结构,为异常细胞行为及其亚细胞mRNA分布提供了更加细致的数据。这种改进的空间转录组技术对于探索复杂的生物过程和疾病机制具有巨大的潜力。报告主题:单细胞结构脂质组分析报告嘉宾:马潇潇 清华大学 长聘副教授单细胞分析经过几十年的发展,已成为基础生物学、疾病标志物筛查及新药研发等领域的关键技术。当前,单细胞代谢分析技术蓬勃发展,并与单细胞转录组和蛋白组技术融合,驱动单细胞多组学分析和应用研究。但是,代谢物的结构表征是单细胞代谢组分析亟需解决的关键问题。本报告介绍单细胞结构脂质组学的新技术进展及其在生物医学领域的应用。报告主题:利用单细胞质谱技术定量分析细胞中的小分子报告嘉宾:杨志柏 俄克拉荷马大学 副教授细胞是生命的基本单位。许多疾病的产生,发展,治疗需要在单细胞层面上进行研究。然而传统分析方法只能得到样品的平均结果。质谱以其灵敏度高、检测范围广的特点,已成为单细胞分析的一种很有前途的技术。Single-probe是我们开发了一种微型采样和电离装置,与谱仪耦合能够对单个活细胞直接进行质谱并获得代谢组学特征,并且可以定量分析单个细胞中分子(如抗癌药物)的量和浓度。——02分会场——【类器官与器官芯片】报告主题:干细胞与血管类器官报告嘉宾:王凯 北京大学 研究员严重下肢缺血(Critical limb ischemia, CLI)是由于下肢动脉狭窄或闭塞、血流灌注不足,从而导致下肢疼痛、溃疡或坏疽甚至截肢。目前,CLI的治疗尚无彻底治愈的药物,主要依赖于外科治疗,旨在通过绕过或消除动脉阻塞来重建血运,亦有复发的风险。针对以上的治疗困境,干细胞治疗等新疗法将为这些患者带来新的希望。本项目利用IPS衍生出来的可注射血管类器官在体内极强的生成血管的能力,有望孵化出一种新的细胞治疗方法,用于下肢缺血的治疗。报告主题:安捷伦 细胞分析助力类器官研究报告嘉宾:周鑫 安捷伦细胞分析事业部 产品应用经理安捷伦Seahorse XF Pro细胞能量代谢分析仪品牌:安捷伦型号:安捷伦Seahorse报告中主要围绕以下三点展开:1. 安捷伦类器官成像分析解决方案 ;2. 安捷伦类器官能量代谢分析Seahorse XF技术解决方案 ;3. 类器官分析案例分享。报告主题:复杂类器官构建及其疾病应用报告嘉宾:冷泠 中国医学科学院北京协和医院 教授冷泠研究团队基于空间基质组学技术及其研究成果,创建了多种复杂类器官模型,进行微生物感染致病机理、罕见病发病机制病等多项研究,推动类器官在罕见病治疗和药物筛选中的应用。报告主题:Hamilton自动化在细胞培养和3D类器官培养中的应用报告嘉宾:万米根 哈美顿 (上海)实验器材有限公司 应用工程师Hamilton Microlab STAR V自动化液体处理工作站品牌:哈美顿型号:Hamilton干细胞类的细胞系的培养一直是细胞培养中的难点。不合适的培养操作方式会对细胞克隆产生多种刺激导致细胞异常分化,细胞密度、克隆状态等因素也对干细胞的状态产生影响。Hamilton自动化液体处理系统可以自动化完成细胞接种、传代、维持培养和融合度检测等操作。3D类器官培养是疾病模型、体外药物发现和细胞治疗的重要工具。类器官药物敏感性高通量检测涉及患者类器官在微孔板(通常为96、384甚至1536孔板)中的分装、大规模药物微量施加、药物敏感性判读等多个关键环节。自动化液体处理系统可以通过控制关键因素确保整个过程的标准化,这包括培养液的自动配制、自动温敏基质胶铺板、类器官传代与铺板、自动孵育、自动高内涵染色和自动检测等多个环节。Hamilton专利的MagPip移液通道可实现基质胶和类器官的快速铺板。该系统的高精度和稳定性保证了实验结果的准确性和可靠性,助力生物医学领域的研究和创新。(暂无回放)报告主题:工程化的胰岛类器官在糖尿病治疗中的应用报告嘉宾:王茜 北京大学第三医院 研究员中国正面临着糖尿病带来的巨大医疗和经济负担,随着干细胞分化的蓬勃发展,干细胞来源胰岛类器官有望提供无限的细胞来源并应用于糖尿病患者的临床治疗中,然而其中的科学难题包括免疫排斥、缺血缺氧等仍亟待解决。针对上述关键科学问题,王茜研究员构建了一系列安全性、可大规模生产的可植入免疫隔离装置、仿生支架材料和功能增强型干细胞,用于高效地递送细胞及提高细胞移植后的存活率。报告主题:类器官模型建立和检测的要点梳理报告嘉宾:鲁扬 赛默飞世尔科技 现场应用专家赛默飞Bigfoot全光谱超高速流式细胞分选仪品牌:Invitrogen型号:Bigfoot器官研究近几年有了迅速发展。随着多种自定义类器官模型的涌现,研究者也提出了诸如质量控制,形态观察和功能检测等更多需求。本次报告拟对类器官模型建立和检测过程中的主要步骤做出汇总和梳理,为研究者提供类器官研究的整体解决方案。(暂无回放)报告主题:微流控和脑-类器官技术探索报告嘉宾:马少华 清华大学深圳国际研究生院 副教授脑类器官,由胚胎干细胞或诱导多能干细胞培育而成,能够在体外模拟人脑的发育和功能,以及在体外模拟脑疾病的发生、发展以及治疗干预。此外,脑类器官通过与多器官、组织和细胞的共培养,能够探究神经系统与其他系统如免疫系统之间的互作及其调控机制,为脑科学研究和理解器官间的相互作用和维持生理稳态提供先进的研究工具。(暂无回放)报告主题:一种类器官的电活动检测分析方法报告嘉宾:刘晓燕 上海科技大学 工程师类器官作为目前研究的前沿技术之一,在疾病建模,抗癌药物筛选,药物毒理检测,基因和细胞疗法的领域有广大的应用前景。对于可以检测动作电位的类器官如心肌类器官,类脑器官而言,电生理活性检测是判断类器官是否能够模拟在体器官的标准之一。基于此向大家分享类器官简单培养方法的基础上,为大家介绍一种无创的可以实时监测类器官电生理活性的一种检测方法。此方法通过对类器官放电进行收集和处理,可以输出脑类器官的动作电位发放频率,发放数目,也可输出心肌类器官的FPDc,收缩频率,跳动频率等相关的心电图检测指标。可以更无创准确的反应类器官的电生理活性从而判断类器官的状态。
  • 北京佰司特签约德国cellasys公司的细胞/组织/类器官分析仪—IMOLA-IVD
    北京佰司特签约德国cellasys公司的细胞/组织/类器官分析仪—IMOLA-IVD 公司新闻:北京佰司特贸易有限责任公司成功签约德国cellasys GmbH公司的细胞/组织/类器官分析仪—IMOLA-IVD,获得中国大陆地区,香港,澳门,台湾以及新加坡的长期的独家代理权,全权负责德国cellasys GmbH公司的灌流式、多参数、实时代谢监测细胞/组织/类器官分析仪—IMOLA-IVD的的市场推广,客户拜访,宣传讲座,路演DEMO,销售定价,投标签约,进出口以及安装售后等所有事宜。德国cellasys提供的灌流式、多参数、实时代谢监测的细胞/组织/类器官分析仪—IMOLA-IVD,是一种基于生物芯片的微生理参数测量系统,对活细胞/组织/类器官的代谢和形态进行无标记实时监测,搭配自动化灌流系统进行换液或者加药,可以实现几天或几周的连续测量,研究药物对活细胞/组织/类器官的影响以及移除药物后的恢复和再生效应。通过生物芯片技术,可以在体外直接研究活细胞或组织、器官在培养过程种的多个参数的变化,包括细胞外酸化(pH)、细胞呼吸(pO2、pCO2)和形态学(电阻)。整个测量过程无需标记、多通道平行进行、连续检测、实时记录。 德国cellasys的细胞/组织/类器官分析仪—IMOLA-IVD,采用的是芯片技术,而不是通用的光学检测技术,其检测灵敏度更高,检测时间更长,而且这两个产品都有密闭的灌流系统,可以适时更换溶液,适合长时间检测细胞/组织/类器官的生理行为变化,以及观察外界条件(加药等)处理后的细胞/组织/类器官的再生等效应。 多个传感器芯片并联平行工作 非侵入式、实时无标记监测 pH值、O2消耗率、细胞外酸度、贴壁电阻四参数同时测量 独特的灌流系统可实现随时换液主要参数:1. 可实时监测细胞/组织/器官生理状态变化,可以监视形态的变化,并以定量的形式高时间分辨率的测量,。2. 分析样本:可分析贴附性细胞,悬浮细胞,各类细胞器,组织以及类器官。硅材料的生物芯片表面比塑料更适合大多数细胞的生长。 3. 侦测目标:可以同时实时监测细胞/组织/器官代谢的多个参数,包括细胞酸化度(pH)、细胞氧消耗(pO2)和细胞贴壁电阻值(impedance)4. 分析数据要包含:基础代谢率、电子泄漏、极限呼吸率、线粒体功能、细胞贴壁电阻等有害物的情况。5. 无需标记物的非入侵式荧光测量:不用额外的试剂,不接触细胞,不破坏细胞结构,不需人员监控,全自动检测采集数据,并且分析导出监测细胞/组织/器官代谢获得的生理学参数变化曲线 。6. 通过芯片电极监测,电信号比荧光检测的抗干扰能力更强,监测数据更准确,每个芯片含有多个不同类型的传感器元件,分别测量不同的生理学参数,每个参数均可获得多个位置的数据点。7. 可以保证每1-4分钟换液一次,始终保持培养环境的新鲜,O2的充足,不会累积代谢废物,不会影响细胞/组织/器官的生长,整个实验环境中保证细胞/组织/器官相同的溶液环境。8. 芯片组成:试验重复误差:高质量CMOS芯片技术,监测更准确, 试验重复误差:≤3%。ISFETs(离子敏感场效应晶体管): 测量细胞/组织/器官外环境的pH值变化即产酸率;OS(改进型clark型电极):测量细胞/组织/器官外环吗氧气浓度即呼吸作用;IDES(交叉的电极结构):测量细胞/组织/器官的贴壁电阻即粘附和融合度;9. 检测室温度控制范围25 - 45°。10.代谢测量芯片安装于生物模块之内,每个分析系统含有6个生物模块,可以平行地操控6个芯片。生物模块在一个可调的控温孵箱中(标准温度为37°C)。自动加样器控制6个支架,每个支架带有6个储液器,每个支架的储液池针对一个生物模块。11. 具备灌流换液体系可以实现细胞/组织/器官环境溶液自动更新,并且可以加药和换药,每个样本对应6个注射通道,可以随时更换溶液,并且对酸化速率和呼吸速率,以及细胞/组织/器官贴壁电阻进行测量。12. 具备灌流换液体系可以实现细胞/组织/器官环境溶液自动更新,并且可以加药和换药,每个样本对应6个注射通道,可以随时更换溶液,并且对酸化速率和呼吸速率,以及细胞/组织/器官贴壁电阻进行测量。13. 连续测量时间:最长细胞/组织/器官培养和监测到14天。14. 封闭的灌流体系保证了细胞/组织/器官培养过程的无菌环境。15. 可自定义检测程序,并能实时存储。16. 专业性分析控制软件控制整个实验并且在电脑显示屏上实时在线显示具体的数据,所以实验者可以随时观察实验进程并及时做出记录和分析。17. 实时数据获取与分析,可检测多种指标。并且自动将一个芯片上的多个电极的数据拟合出变化率,IC50曲线和数值,自动标准化每次的灌流换液程序。 北京佰司特贸易有限责任公司(https://www.best-sciences.com):类器官培养仪-HUMIMIC;灌流式细胞代谢分析仪-IMOLA;便携式4通道SPR仪-P4SPR;蓝光/绿光LED凝胶成像;Nanocellect细胞分选仪-WOLF;微纳加工点印仪-NLP2000/DPN5000;
  • 南京铭奥代理Somatos牛奶体细胞分析仪,牛奶体细胞计数仪
    为了满足各大牧场,乳品回收站控制奶牛的体质及时发现病情,检测牛奶品质,提前判断奶牛隐形乳房炎、监控病牛的治疗情况,提高牛奶的品质的市场需要,南京铭奥现代理新产品Somatos牛奶体细胞分析仪,牛奶体细胞计数仪。该牛奶体细胞仪可用于计算牛奶体细胞数,原理是将牛奶样品经表面活性剂处理后。奶样中体细胞的细胞膜和核膜被破坏,细胞核DNA大量释放,,细胞内的DNA释放出来引起牛奶黏度的变化,同时运用超声波检测系统对经过表面活性剂处理后的牛奶进行检测,记录超声参量(声速、衰减、功率谱)与体细胞数的关系,从而得出黏度变化与体细胞数的关系,从而可以通过测定黏度来测定体细胞数。 牛奶体细胞测定仪/牛奶体细胞计数仪Somatos牛奶体细胞分析仪,牛奶体细胞计数仪计数速度快,每个样品测定只需4分钟,检测范围很广,为:90000-1500000,价格合理实惠,非常适合各类牧场及乳品回收站使用。 牛奶体细胞分析仪,牛奶体细胞计数仪
  • 南京铭奥成为进口牛奶体细胞检测仪/牛奶体细胞计数仪中国总代
    为了迎合各大牧场,乳品回收站控制奶牛的体质,及时发现病情,提前判断奶牛隐形乳房炎、监测控制病牛的治疗情况,进而提高牛奶品质的市场需要,南京铭奥现成为新产品牛奶体细胞测定仪/牛奶体细胞计数仪Somatos的中国总代理。该牛奶体细胞仪可用于计算牛奶体细胞数,原理是将牛奶样品经表面活性剂处理后。奶样中体细胞的细胞膜和核膜被破坏,细胞核DNA大量释放,,细胞内的DNA释放出来引起牛奶黏度的变化,同时运用超声波检测系统对经过表面活性剂处理后的牛奶进行检测,记录超声参量(声速、衰减、功率谱)与体细胞数的关系,从而得出黏度变化与体细胞数的关系,从而可以通过测定黏度来测定体细胞数。 牛奶体细胞测定仪/牛奶体细胞计数仪Somatos牛奶体细胞检测仪,牛奶体细胞速测仪计数速度快,牛奶混合物单次分析检测时间不超过4分钟,检测范围很广,为:90000-1500000,相对误差范围小,仅为±3%,要求功率不超过20伏安,价格合理实惠,非常适合各类牧场及乳品回收站使用。
  • 兰伯艾克斯|什么是类器官?该如何培养类器官?
    类器官这项1980年代出现的概念沉寂了三十余载,直到近十年才迎来飞速发展。其应用前景远比我们想象的广阔,从精准医疗、疾病建模、药物筛选到再生医学,都是这个“迷你器官”所能发挥价值的领域。 现阶段,类器官技术用于肿瘤伴随诊断已取得不错成果,在肩负患者精准诊疗重任的道路上有望越走越远。同时,随着动物保护主义呼声不断、实验动物价格水涨船高,类器官及器官芯片替代动物试验势在必行,引发众多跨国制药巨头及投资机构的关注。美国在2022年发布FDA Modernization Act 2.0,取消新药临床前进行动物实验的强制要求,并推荐了以类器官技术为代表的非动物的检测手段。✦ 什么是类器官?✦ 类器官(Organoids)一词最早出现于上世纪80年代的学术论文中,这项技术直到2009年才迎来快速发展。类器官是指利用成体干细胞(ASC)或多能干细胞(PSC)进行体外3D培养,形成类似体内器官结构和功能的“微器官模型”,是对早期2D培养细胞的技术革新。2D细胞培养由于无法实现细胞间交流或细胞与细胞外基质的相互作用,存在应用的局限性。类器官培养突破这一难题,高度模拟原始器官的结构,甚至一定程度还原其过滤、排泄、神经链接、收缩功能等。 2009年是类器官技术元年,荷兰科学家Hans Clevers成功从LGR5+的小肠干细胞中培养出了小肠类器官。随后研究不断深入,多种类器官被成功培养,并广泛覆盖各个实体瘤癌种。Hans Clevers成立的Hubrecht Organoid Technology (HUB)是类器官最早的研发中心,HUB技术授权促进了Epistem、Cellesce、Crown Biosciences、STEMCELL Technologies在内的一批类器官公司的涌现。 类器官技术近十年快速发展 类器官技术经过十余年的发展,目前广泛用于癌症患者的个体化用药指导、基础科研、药物开发等。 类器官培养的应用领域非常广泛。首先,它可以用于精准医疗,即通过培养患者自身的细胞或组织来实现个体化的诊断和治疗。例如,在肿瘤研究中,可以通过类器官培养技术对患者的肿瘤细胞进行体外药物敏感性测试,从而为临床治疗方案的选择提供依据。类器官技术应用场景✦ 类器官的发展前景✦ 2021年起我国出台一系列政策推动类器官产业发展。国家科技部把“基于类器官的恶性肿瘤疾病模型”列为“十四五”国家重点研发计划中首批启动重点专项任务,提出类器官技术在未来将有非常大的应用价值和发展前景。我国高度重视类器官行业发展 当前类器官建模成本较高。培养类器官需要基质胶等支持介质、成体干细胞等组织来源、以及细胞因子等生长耗材。✦ 如何培养类器官?✦ 类器官的培养是指在体外培养一组细胞,使其能够自组织形成类似于原始器官的结构和功能。这种培养方式可以用来研究器官发育、疾病模型以及药物筛选等方面。类器官培养的成功与否,不仅取决于培养技术和条件的优化,还取决于培养箱的质量和性能。 兰伯艾克斯生物的LAB-MI二氧化碳培养箱是类器官培养中的一项重要设备。该培养箱能够提供稳定的培养环境,包括恒定的温度、湿度和二氧化碳浓度等,有利于类器官的生长和发育。与传统的培养箱相比,LAB-MI二氧化碳培养箱具有更高的稳定性和可靠性,可以提高类器官的培养成功率。LAB-MI二氧化碳培养箱 在运用类器官培养知识的基础上,结合LAB-MI二氧化碳培养箱的优势,可以进一步提高类器官的生长和分离培养成功率。通过合理调控培养条件,例如细胞密度、培养基成分和培养时间等,可以促进类器官的生长和分化。同时,LAB-MI二氧化碳培养箱的稳定环境可以提供良好的细胞培养环境,保证细胞的健康和活力,从而增加类器官培养的成功率。 类器官培养技术在精准医疗、疾病建模、药物筛选和再生医学等领域具有广阔的应用前景。兰伯艾克斯生物的LAB-MI二氧化碳培养箱作为培养设备,通过提供稳定的培养环境,可以提高类器官的生长和分离培养成功率。进一步结合类器官培养知识,可以更好地应用该技术,推动类器官培养领域的发展和应用。
  • 镁伽生物类器官试剂盒助力高效培养类器官
    类器官是指利用成体干细胞或多能干细胞进行体外培养而形成的具有一定空间结构的组织类似物,其能够真实模拟人体组织结构及功能并长期稳定传代培养。近年来类器官在精准医疗、再生医学、药物开发等领域展现出独特优势,成为各大期刊谈论的热点话题。2022年2月,美国哈佛大学和麻省理工大学的研究人员曾发表关于“人脑类器官对自闭症的研究”论文[1],研究人员通过使用人脑类器官进行实验,发现了不同风险基因对脑细胞的影响,表明不同的自闭症风险基因影响了不同类型的神经元发育或形成,且风险基因都影响了抑制性的γ-氨基丁酸神经元和深层兴奋性神经元。该实验为自闭症的临床研究和治疗策略提供了新思路,也展现了类器官在科研领域的探索和应用。 风险基因在培养的皮质类器官中的表达[1]镁伽生物类器官整体解决方案镁伽生物布局干细胞治疗和基于类器官的药物筛选领域,可提供肿瘤/组织、iPSC定向分化成类器官的整体化解决方案,覆盖多种正常类器官(心脏、脑、血管、小肠)以及超过10种肿瘤类型。实验数据表明,使用镁伽生物类器官试剂盒培养的类器官能够重现真实器官的部分生理功能,可应用于干细胞与发育、再生医学、疾病研究及精准医疗等多个领域,为疾病建模和药物筛选提供强大的平台支持。 镁伽AI图像识别技术测定心脏类器官电生理信号镁伽生物试剂盒助力高效培养类器官镁伽生物心脏类器官试剂盒镁伽生物心脏类器官试剂盒支持构建人多能干细胞高效分化成心脏类器官,支持在超低吸附的界面上使iPSC形成胚样体,使用简单的方案就可以构建正在发育的心脏的仿生模型,有助于研究心脏发育过程中的分子过程,以及开发和测试针对心脏疾病的新药。培养实验流程本试剂盒可支持培养24个心脏类器官,实验中先将iPSC细胞悬液在低吸附板上培养形成胚样体,然后将胚样体按照试剂盒使用要求定期更换培养基,分化开始的第9-13天内可得到能自主波动的、具有腔室结构的心脏类器官,可有效缩短类器官培养时间,培养成功率高达90%以上。 镁伽生物试剂盒培养的自主搏动的心脏类器官钙离子流变化钙离子流调控心肌收缩和舒张,维持心脏的正常功能。当心脏出现病理性变化时,钙离子流的异常也会导致心肌功能的异常,研究心脏钙离子流的变化对于心脏疾病的诊断和治疗具有重要意义。实验表明,镁伽生物培养的心脏类器官的钙离子流变化结果与正常心脏跳动时钙离子变化相似,可用于研究钙离子对心肌功能的作用机制。 镁伽生物培养的心脏类器官的钙离子流变化免疫3D荧光染色为了评估类器官的细胞特异性,可进行多谱系细胞荧光染色。通过荧光免疫染色,能够发现心脏类器官中腔体发育和心肌细胞特异性标记物TNNT2的表达,再进一步用CD31免疫染色,确认血管类似结构的形成。结果表明,镁伽生物试剂盒培养的心脏类器官具有接近其体内对应物的功能特性。 镁伽生物培养的心脏类器官的免疫3D荧光染色镁伽生物人脑类器官试剂盒镁伽生物人脑类器官试剂盒,通过hPSC诱导分化形成脑类器官,采用无血清细胞培养基系统,可体外构建出具备三维结构、能模拟人类大脑发育过程中的细胞间相互作用的脑类器官。培养实验流程本试剂盒通过四阶段分化方案使人多能干细胞(hPSC)最终分化为脑类器官:① hPSC 分化成胚状体;② 原始神经上皮的诱导形成;③ 脑类器官初步扩增;④ 脑类器官成熟化。经过一段时间的培养成熟后,使用该试剂盒生成的人脑类器官具有脑皮质样区域,如脑室区、室下外区、中间区、皮质板等,这些形成的区域与在体内观察到的分层方向相似。 镁伽生物试剂盒培养的人脑类器官镁伽生物人肠类器官试剂盒人体肠道类器官可作为研究肠道发育和细胞生物学、肠道炎症、肠再生、微生物相互作用、疾病建模、药筛的模型系统。本试剂盒适用于以多能干细胞(包括ES、iPSC等)为来源的肠道类器官的分化,经实验培养的肠类器官可以冷冻保存,也可以定期更换特定培养基进行长期维持培养。培养实验流程肠类器官试剂盒是一种无血清细胞培养基系统,通过三个阶段进行细胞分化,即内胚层、中/后肠和小肠分化为人小肠类器官。通过试剂盒可以将人多能干细胞(hPSC)培养诱导成内胚层、中/后肠球体和可以用来进行长期培养或冻存的小肠类器官。 镁伽生物试剂盒培养的人肠类器官 研读小结人类器官的研究是生物学研究的重要分支之一,其不仅可以模拟器官组织的发生过程及生理病理状态,也可以帮助我们更好的理解生命的各个维度,因而在基础研究以及临床诊疗方面具有广阔的应用前景。扫码领取镁伽类器官产品详细资料参考文献:[1]Paulsen B, Velasco S, Kedaigle AJ, et al. Autism genes converge on asynchronous development of shared neuron classes. Nature. 2022 602(7896):268-273. doi:10.1038/s41586-021-04358-6.
  • 保卫细胞宝宝离不开细胞培养的四大护法
    隔壁的直男师兄今年喜得千金,最近总在实验室诡异地傻笑,问他为何,说是时常想起女儿的可爱模样。 这种感情,没养育过孩子的人恐怕理解不了。但生物汪在实验室养育细胞,也一样寄托感情,生怕细胞被养坏了。一个闪失,就前功尽弃。实验结果不可靠,没有一致性和稳定性,还重复不出来,再浓密的头发也经不住这样的考验。所以,有一个稳定、一致的培养环境,那就很重要了。 培养细胞不可能24小时值守,快快请出四大护法相助! 1. 大护法:二甲基亚砜(DMSO) 成功冻存和复苏细胞是细胞培养研究的常规操作。细胞低温储藏时,防止冰晶形成是维持细胞活力的关键。大护法DMSO作为冷冻保护玻璃化剂,可以让细胞免受冰晶导致的机械损伤。大护法法力无边,能够用于原代、继代培养和重组的异倍体和杂交瘤细胞系、胚胎干细胞 (ESC) 以及造血干细胞的冻存。 下面为大家解密DMSO这个既熟悉又陌生的细胞培养大护法~~l DMSO的摩尔浓度是多少?DMSO的摩尔浓度为14.1 M,依据是密度1.1 g/mL和分子量78.13 g/ml。l DMSO的来源?过去,DMSO是从树皮中分离出来的。现在,它是一种商业合成的溶剂。l 细胞冻存培养基中应使用什么浓度的DMSO?DMSO通常以1-10%的浓度使用,具体取决于细胞系。 l DMSO应该是液体,为什么我收到后却是固体?DMSO的熔点为16-19℃,室温过低就凝固。这并不妨碍使用,可以缓慢加热令其重新液化,不会有任何影响。l 哪种类型的过滤器可用于无菌过滤DMSO?DMSO可以用带0.2 μm PTFE膜的过滤器进行无菌过滤。 每个伺候细胞宝宝的“宝爸宝妈”对棕瓶子白盖子的DMSO应该都不陌生。没错!正是Sigma-Aldrich® 品牌热卖的这款DMSO(货号:D2650):明星产品,质量过硬,口碑积累,适用性广,久经验证。 2. 二护法:血清 血清里的生长因子能促进细胞的繁殖,附着因子可促进细胞的贴壁,此外矿物质、脂类及激素对细胞也大有裨益。常用的血清有胎牛血清和小牛血清,公认澳洲来源的血清品质更优、更安全。 赶快来了解一下保护细胞宝宝的二护法吧~~l 如何解冻血清?血清应在2-8°C过夜解冻以避免降解,或者在室温条件下,定期轻轻摇动使组分重悬。解冻的血清在加入细胞培养基前应该混合均匀。反复冻存会严重影响血清品质,建议将解冻的血清分装成单次使用量,并冻存于-20°C。如果储存于2-8°C的环境中,应该在2-4周内尽快使用。温度超过37°C时血清会降解,功能遭到破坏。l 如果血清收到时存在部分解冻,还能继续使用吗?血清是干冰包装运输,到达时应该是冷冻状态。运输超期,会部分解冻,但依然可以继续使用。l 培养基中加入血清和所有补充物后可以储存多久?如果正确无菌操作,添加血清的培养基可以在2-8°C最长储存6周。不论储存时间长短,一旦培养基变浑浊,应该使用适当的方法丢弃。l 为什么血清会出现浑浊或絮状物质?原因很多,主要有二:1. 反复的冻融会使血清脂蛋白发生变性造成浑浊,所以,一定要分装哦~~2. 血清加工中遗留的纤维蛋白原在解冻时会转化成纤维蛋白,过量的纤维蛋白就呈现为絮状物。不要着急,可以离心移除;不推荐过滤哦,因为容易堵。l 什么是γ辐照的血清?γ辐照的血清通过暴露于放射性60Co产生的25-40 kGy剂量的γ射线来灭活病毒和其他外来微生物(比如支原体)。γ辐照处理不影响血清的理化性质或细胞培养性能。l 为什么有些血清是热灭活的?如何热灭活?哺乳动物血清中天然存在的补体蛋白参与细胞溶解事件、收缩平滑肌、从肥大细胞和血小板中释放组胺和激活淋巴细胞和髓细胞。热灭活破坏了血清中补体的活性,因此免疫学应用,培养胚胎干细胞、昆虫细胞和平滑肌细胞时推荐使用。热灭活方法是在56°C水浴中处理30分钟,并每隔大约10分钟旋转一次瓶子。为了保持精确,可使用一个类似大小的瓶子作为对照,对照瓶内放入同等体积的水,并放置一个温度计,在温度到达56°C时开始计时30分钟。热灭活过程必须小心控制,避免血清中支持细胞和组织繁殖的关键蛋白组分发生降解。l 胎牛血清的颜色和之前使用的批次不同,会影响血清使用效果吗?血清的颜色取决于血红蛋白浓度,颜色差异不影响血清性能。 说了这么多,从哪里请到这尊神呢?当然首选默克啦~~澳洲来源的牛血清,满足培养细胞的不同需要!货号产品描述F8318-500ML胎牛血清,澳大利亚来源,无菌,适合细胞培养,适合杂交瘤细胞,500mLF8687-500ML胎牛血清,澳大利亚来源,γ辐照,无菌,适合细胞培养,适合杂交瘤细胞,500mLB7446-1000ML小牛血清,澳大利亚来源,无菌,适合细胞培养,适合杂交瘤细胞,1000mLB7447-1000ML小牛血清,澳大利亚来源,γ辐照,无菌,适合细胞培养,适合杂交瘤细胞,1000mL 3. 三护法:胰蛋白酶 在细胞培养中,从组织上解离或从贴壁基质上分离细胞的步骤很关键,一般使用胰蛋白酶。胰蛋白酶作用于赖氨酸或精氨酸的C末端,在37°C时具有最佳的效率,因此使用期前要预热。当然,高浓度的胰蛋白酶长期孵育会去除细胞表面蛋白而损伤细胞,甚至杀死细胞。看来,这个护法的脾气可不好哦~~ 根据应用和细胞类型的不同,胰蛋白酶的组分和浓度也不同。比如,粘附分子在钙离子存在时决定细胞-细胞和细胞-基质的相互作用,为了削弱折衷联系,通常使用含EDTA的胰蛋白酶螯合二价阳离子(Ca, Mg)(点击这里,了解更多:T4049)。 胰蛋白酶的主要来源是猪的胰脏,产品是冻干粉或溶液。为了避免动物或微生物物质,现在也有技术可以在玉米中重组表达牛胰蛋白酶,厉害吧?(点击这里,了解更多:T3449)。 胰蛋白酶的使用浓度也很有讲究。对于强贴壁细胞系,常使用0.25%-2.5%的胰蛋白酶。如果实验需要细胞表面蛋白完整,则应降低使用浓度(0.05%胰蛋白酶)。 4. 四护法:抗生素 细菌宝宝的生存环境这么好,肯定有坏蛋觊觎,这就需要请出四护法——抗生素。 常见的生物污染由细菌、真菌和支原体造成,部分由病毒、化学物和细胞交叉污染造成。抗生素可以控制细胞培养中的生物污染。灵活使用抗生素是控制污染的方法,但千万不要偷懒,还是要注意无菌操作哦~~ 青霉素对大多数革兰氏阳性菌和少数革兰氏阴性菌有效,链霉素对革兰氏阴性菌和少数革兰氏阳性菌有效,联合使用青霉素和链霉素(简称双抗),就能有效控制细胞培养中大多数细菌的污染啦~~ 默克旗下有相当靠谱的抗生素。Sigma-Aldrich® 品牌热卖的青链霉素溶液(货号为V900929)不仅性能稳定,超高性价比;而且还是即用型经典配方(10KU青霉素和10mg链霉素/mL),直接以1:100比例添加到培养基中就全搞定! 怎么样?这四大护法,是不是各个身手不凡呀!有了他们,细胞宝宝就可以健康无忧啦~~ 友情提醒,11月起我们会推出四大护法优惠组合套装,敬请留意~也欢迎大家在留言区分享自己培养细胞的心得体会~~我们会精选出五个有趣有料的留言,送上默克超可爱的萌娃家族盲盒一个,共有5位幸运儿,快来留言参与吧! 留言截止时间:2020年10月30日12:00
  • 保卫细胞宝宝离不开细胞培养的四大护法
    隔壁的直男师兄今年喜得千金,最近总在实验室诡异地傻笑,问他为何,说是时常想起女儿的可爱模样。 这种感情,没养育过孩子的人恐怕理解不了。但生物汪在实验室养育细胞,也一样寄托感情,生怕细胞被养坏了。一个闪失,就前功尽弃。实验结果不可靠,没有一致性和稳定性,还重复不出来,再浓密的头发也经不住这样的考验。所以,有一个稳定、一致的培养环境,那就很重要了。 培养细胞不可能24小时值守,快快请出四大护法相助! 1. 大护法:二甲基亚砜(DMSO) 成功冻存和复苏细胞是细胞培养研究的常规操作。细胞低温储藏时,防止冰晶形成是维持细胞活力的关键。大护法DMSO作为冷冻保护玻璃化剂,可以让细胞免受冰晶导致的机械损伤。大护法法力无边,能够用于原代、继代培养和重组的异倍体和杂交瘤细胞系、胚胎干细胞 (ESC) 以及造血干细胞的冻存。 下面为大家解密DMSO这个既熟悉又陌生的细胞培养大护法~~l DMSO的摩尔浓度是多少?DMSO的摩尔浓度为14.1 M,依据是密度1.1 g/mL和分子量78.13 g/ml。l DMSO的来源?过去,DMSO是从树皮中分离出来的。现在,它是一种商业合成的溶剂。l 细胞冻存培养基中应使用什么浓度的DMSO?DMSO通常以1-10%的浓度使用,具体取决于细胞系。 l DMSO应该是液体,为什么我收到后却是固体?DMSO的熔点为16-19℃,室温过低就凝固。这并不妨碍使用,可以缓慢加热令其重新液化,不会有任何影响。l 哪种类型的过滤器可用于无菌过滤DMSO?DMSO可以用带0.2 μm PTFE膜的过滤器进行无菌过滤。 每个伺候细胞宝宝的“宝爸宝妈”对棕瓶子白盖子的DMSO应该都不陌生。没错!正是Sigma-Aldrich® 品牌热卖的这款DMSO(货号:D2650):明星产品,质量过硬,口碑积累,适用性广,久经验证。 2. 二护法:血清 血清里的生长因子能促进细胞的繁殖,附着因子可促进细胞的贴壁,此外矿物质、脂类及激素对细胞也大有裨益。常用的血清有胎牛血清和小牛血清,公认澳洲来源的血清品质更优、更安全。 赶快来了解一下保护细胞宝宝的二护法吧~~l 如何解冻血清?血清应在2-8°C过夜解冻以避免降解,或者在室温条件下,定期轻轻摇动使组分重悬。解冻的血清在加入细胞培养基前应该混合均匀。反复冻存会严重影响血清品质,建议将解冻的血清分装成单次使用量,并冻存于-20°C。如果储存于2-8°C的环境中,应该在2-4周内尽快使用。温度超过37°C时血清会降解,功能遭到破坏。l 如果血清收到时存在部分解冻,还能继续使用吗?血清是干冰包装运输,到达时应该是冷冻状态。运输超期,会部分解冻,但依然可以继续使用。l 培养基中加入血清和所有补充物后可以储存多久?如果正确无菌操作,添加血清的培养基可以在2-8°C最长储存6周。不论储存时间长短,一旦培养基变浑浊,应该使用适当的方法丢弃。l 为什么血清会出现浑浊或絮状物质?原因很多,主要有二:1. 反复的冻融会使血清脂蛋白发生变性造成浑浊,所以,一定要分装哦~~2. 血清加工中遗留的纤维蛋白原在解冻时会转化成纤维蛋白,过量的纤维蛋白就呈现为絮状物。不要着急,可以离心移除;不推荐过滤哦,因为容易堵。l 什么是γ辐照的血清?γ辐照的血清通过暴露于放射性60Co产生的25-40 kGy剂量的γ射线来灭活病毒和其他外来微生物(比如支原体)。γ辐照处理不影响血清的理化性质或细胞培养性能。l 为什么有些血清是热灭活的?如何热灭活?哺乳动物血清中天然存在的补体蛋白参与细胞溶解事件、收缩平滑肌、从肥大细胞和血小板中释放组胺和激活淋巴细胞和髓细胞。热灭活破坏了血清中补体的活性,因此免疫学应用,培养胚胎干细胞、昆虫细胞和平滑肌细胞时推荐使用。热灭活方法是在56°C水浴中处理30分钟,并每隔大约10分钟旋转一次瓶子。为了保持精确,可使用一个类似大小的瓶子作为对照,对照瓶内放入同等体积的水,并放置一个温度计,在温度到达56°C时开始计时30分钟。热灭活过程必须小心控制,避免血清中支持细胞和组织繁殖的关键蛋白组分发生降解。l 胎牛血清的颜色和之前使用的批次不同,会影响血清使用效果吗?血清的颜色取决于血红蛋白浓度,颜色差异不影响血清性能。 说了这么多,从哪里请到这尊神呢?当然可以选择默克啦~~澳洲来源的牛血清,满足培养细胞的不同需要!货号产品描述F8318-500ML胎牛血清,澳大利亚来源,无菌,适合细胞培养,适合杂交瘤细胞,500mLF8687-500ML胎牛血清,澳大利亚来源,γ辐照,无菌,适合细胞培养,适合杂交瘤细胞,500mLB7446-1000ML小牛血清,澳大利亚来源,无菌,适合细胞培养,适合杂交瘤细胞,1000mLB7447-1000ML小牛血清,澳大利亚来源,γ辐照,无菌,适合细胞培养,适合杂交瘤细胞,1000mL 3. 三护法:胰蛋白酶 在细胞培养中,从组织上解离或从贴壁基质上分离细胞的步骤很关键,一般使用胰蛋白酶。胰蛋白酶作用于赖氨酸或精氨酸的C末端,在37°C时具有最佳的效率,因此使用期前要预热。当然,高浓度的胰蛋白酶长期孵育会去除细胞表面蛋白而损伤细胞,甚至杀死细胞。看来,这个护法的脾气可不好哦~~ 根据应用和细胞类型的不同,胰蛋白酶的组分和浓度也不同。比如,粘附分子在钙离子存在时决定细胞-细胞和细胞-基质的相互作用,为了削弱折衷联系,通常使用含EDTA的胰蛋白酶螯合二价阳离子(Ca, Mg)(点击这里,了解更多:T4049)。 胰蛋白酶的主要来源是猪的胰脏,产品是冻干粉或溶液。为了避免动物或微生物物质,现在也有技术可以在玉米中重组表达牛胰蛋白酶,厉害吧?(点击这里,了解更多:T3449)。 胰蛋白酶的使用浓度也很有讲究。对于强贴壁细胞系,常使用0.25%-2.5%的胰蛋白酶。如果实验需要细胞表面蛋白完整,则应降低使用浓度(0.05%胰蛋白酶)。 4. 四护法:抗生素 细菌宝宝的生存环境这么好,肯定有坏蛋觊觎,这就需要请出四护法——抗生素。 常见的生物污染由细菌、真菌和支原体造成,部分由病毒、化学物和细胞交叉污染造成。抗生素可以控制细胞培养中的生物污染。灵活使用抗生素是控制污染的方法,但千万不要偷懒,还是要注意无菌操作哦~~ 青霉素对大多数革兰氏阳性菌和少数革兰氏阴性菌有效,链霉素对革兰氏阴性菌和少数革兰氏阳性菌有效,联合使用青霉素和链霉素(简称双抗),就能有效控制细胞培养中大多数细菌的污染啦~~ 默克旗下有相当靠谱的抗生素。Sigma-Aldrich® 品牌热卖的青链霉素溶液(货号为V900929)不仅性能稳定,超高性价比;而且还是即用型经典配方(10KU青霉素和10mg链霉素/mL),直接以1:100比例添加到培养基中就全搞定! 怎么样?这四大护法,是不是各个身手不凡呀!有了他们,细胞宝宝就可以健康无忧啦~~ 友情提醒,11月起我们会推出四大护法优惠组合套装,敬请留意~也欢迎大家在留言区分享自己培养细胞的心得体会~~我们会精选出五个有趣有料的留言,送上默克超可爱的萌娃家族盲盒一个,共有5位幸运儿,快来留言参与吧! 留言截止时间:2020年10月30日12:00
  • 当细胞遇上拉曼 会碰撞出什么样的火花——访牛津大学副教授黄巍博士
    现在生物界有一个很重要的研究方向,同时也是目前国际上最前沿的研究领域之一:单细胞生物学,美国能源部、美国科学院以及欧洲科学院都很关注这个领域。据介绍,在过去的两年中,每1到2个星期,重要学术刊物如Nature系列或Science都会有关单细胞技术的文章。而且,在剑桥的Sanger研究所单细胞研究中心就有这样一句标语:&ldquo Single cell research is the new frontier of modern cell biology(单细胞研究是细胞生物学的新前沿)&rdquo ,足见单细胞研究的重要性。   细胞是生物体基本的结构和功能单位,此项研究关系着胚胎的发育、癌细胞早期诊断、探索自然环境中占绝大多数的不可培养微生物等各方面的问题。其实在很早就有科学家研究单细胞的检测技术,包括显微镜、流式细胞仪、微流控及各种分离提取技术等,这些技术可以观测到细胞的大小、形态等等,但是这些还不够,其中最关键的问题是基于什么信号来分离和研究细胞,这是科学界需要问的问题,也是仪器界需要关注的问题。   大约十多年前,拉曼走入了单细胞研究领域。为什么会将拉曼用于单细胞的检测?目前国内外的研究状况如何?都取得了哪些成果?非常幸运的是,仪器信息网编辑在HORIBA主办的第三届国际拉曼前沿技术高端论坛(RamanFest 2015)上采访到了将拉曼用于单细胞分析的早期开拓者之一,英国牛津大学的副教授黄巍博士。英国牛津大学副教授 黄巍博士  单细胞如何遇到拉曼?   黄巍在国外生活了十七年了,主要研究环境微生物和合成生物学,过去十几年中一直利用拉曼光谱进行单细胞的研究工作,同时也开发一些拉曼联用技术,可谓是将拉曼引入单细胞分析中的&ldquo 领路人&rdquo ,是什么样的原因促使他将单细胞和拉曼联系在一起呢?   黄巍介绍到,&ldquo 细胞那么多,如何去大海里捞针?有没有一个方法能在这一群细胞里找到有特殊功能或者特殊表型的细胞,将它们分选出来,然后再进行研究,这样效率会更高一些,这也是为什么将拉曼引入单细胞分析的一个重要的原因。&rdquo   &ldquo 单细胞拉曼图谱最大的特点就是无需外援标记,展现给大家的是细胞的内在信号,可以视为细胞的化学指纹或者化学画像。&rdquo 黄巍谈到,所谓的化学画像,是指细胞的表型(phenotype),是基因和环境互相作用的结果。它不同于基因型(genotype),基因型是由基因决定的,只是说具有某种潜质,但是不一定表达出来。也就是说,即使细胞的遗传学完全一样,表型也会出现变化,因为基因表达在某种程度上来说是一个随机的过程。   &ldquo 人和人之间可以通过表型例如长相、身材的不同来识别你我他,但是单个细胞在显微镜下很难从形态上看出有什么不同,而我们可以利用拉曼技术得到单个细胞水平的分子画像,进而进行细胞判别。单细胞拉曼图谱可以看作一个细胞所有分子光谱指纹的总和,而细胞任何代谢的变化都会引起细胞表型的变化,因此从理论上讲癌细胞的拉曼图谱应与正常细胞的拉曼图谱不一样,在某种程度上来讲,拉曼也许会检测到这种变化,这在癌症研究,特别是乳腺癌的研究中已经做了很多的工作。我们是想发展这样的一个概念,把单细胞的拉曼图谱看成是单个细胞的表型。&rdquo 黄巍介绍到。   &ldquo 现在的很多研究都需要预知某个蛋白,然后设计一个抗体,用荧光标记,然后再进行研究。但是很多时候,要预知的本来就是需要解决的问题,比如细胞胚胎发育中哪些分子发生变化了,这个时候就可以用拉曼技术来观察细胞的表型,拉曼起到探索的作用。&rdquo   &ldquo 再者,微生物学领域一直有一个重大的挑战,在环境中,包括人体肠道微生物里90%以上的微生物还无法在实验室分纯培养,而这些微生物和人体的代谢以及一些疾病有很多关系,它们作为身体的一部分,影响着整个身体的代谢。由于不能培养,我们很难知道它们的生理功能,当时研究的驱动力就是想怎样避开培养的问题去研究这些细胞的代谢,最终我们选择了拉曼技术,而且我们知道采用稳定同位素技术可以把细胞和代谢直接联系起来,这也更坚定了我们在这方面研究的决心。&rdquo   &ldquo 还有一点,现在的很多单细胞研究技术对细胞功能是有干扰的,如果标记上抗体之后,细胞的行为就不是原来天然的行为了,而拉曼可以实现无标记的检测。&rdquo   拉曼在单细胞检测领域中的三大挑战   黄巍在拉曼的单细胞分析领域已经耕耘了十多年,他说,现在高通量的分析方法,如DNA测序技术已经很成熟了,但是在表型方面的技术还比较欠缺,我们希望拉曼能作为检测表型的技术,为单细胞的检测技术贡献一部分信息。此外,他们还希望将拉曼信号作为大数据的一部分,融入到整个单细胞大数据体系中去,据悉,这部分工作在牛津大学才刚刚开始。   不过,同时,黄巍也介绍了拉曼在单细胞检测方面面临的三大挑战:   首先,拉曼信号的增强。拉曼信号天然很弱,如果采用SERS增强技术就要用金、银等纳米材料等进行修饰,这还在研究和探索过程中,而且现在对SERS的机理研究还不是很透彻,怎样提高检测灵敏度和分辨率,这是最重要的挑战   第二,拉曼单细胞技术和其他技术的整合。在单细胞分析中,利用拉曼技术将细胞分选出来之后要进行单细胞测序或微流控在线培养,如何将分选技术与下游的测序技术、培养技术结合起来是一个挑战   第三,单细胞拉曼信号的解析。单细胞拉曼信号是多分子叠加在一起的结果,甚至还有一些未知的特殊分子、蛋白等,没有标准,怎样分析、理解这些拉曼信号,如何进行数据的提取和处理也是一个很大的挑战。   FACS与RACS:互补,非替代   我们了解到,黄巍和中科院青岛能源所徐健教授的团队合作开发的&ldquo 活体单细胞拉曼分选仪&rdquo (RACS)在2013年就通过了验收并且有了样机。对于目前的进展情况,黄巍介绍到,之前的样机还处在研究应用阶段,还没有商业化出售,但是作为一个平台已经做了很多样品了。   虽然,世界上第一台活体单细胞拉曼分选仪已经问世,但是研究并没有停止,据黄巍介绍,2013年的样机是针对具有光合作用的细胞,有一定的局限性。最近采用了&ldquo pause release&rdquo 和单细胞弹射技术,就可以针对几乎所有的细胞。&ldquo 具体来说,我们通过控制微流控的流速,停一下,再分选,这样就可以克服拉曼信号天然比较弱的缺点,同时还可以实现自动分选。其中,单细胞拉曼检测和激光弹射分选技术可用于精确分选复杂样品和组织细胞,今年刚刚解决这个问题,预计今年年底之前就可以完成原理的证明等问题,同时也会出一系列的文章。&rdquo   当笔者问起,目前在单细胞研究领域用的最多的要属流式细胞仪(FACS),RACS的出现将会给FACS带来哪些挑战?黄巍介绍到,两者之间并非是要相互替代,而是互补的。   黄巍介绍到,50年代开发的流式细胞仪,直到现在依然在用。流式细胞仪是基于荧光信号的,而每一个荧光信号都需要一个滤光片,最好的也就是可以同时看几十个信号,而拉曼图谱包括1000多个信号,是一个很复杂的指纹信息,相比FACS,RACS的拓展面要大很多。   &ldquo 不过,两者并非是要谁替代谁,总体来说是互补的,&rdquo 黄巍介绍到,&ldquo 虽然表面上看起来FACS比RACS速度快,但是RACS得到是整个细胞表型的图谱,相当于给细胞画像,如果是这样的话就不算慢了。&rdquo   &ldquo 此外,2007年,我们和维也纳大学的Michael Wagner教授也发展了Raman FISH(拉曼-荧光原位杂交)技术,可以把荧光和拉曼的技术结合起来。荧光标记某些特定的细胞,可快速识别,作为粗筛,缩小范围之后再用拉曼获取单细胞表型,进行细分。&rdquo   同时,黄巍也指出,&ldquo FACS发展了40多年后才成熟,RACS要做到成熟,还需要一点时间。&rdquo   拉曼在生命科学&ldquo 初露头角&rdquo 合作是关键   据黄巍介绍,目前拉曼在生命科学中的研究目前主要聚焦两个方面的应用:微生物学和医学方面。其中后者的驱动力更大一些,主要体现在两个方面,一个是通过拉曼光谱技术进行癌症的早期诊断,第二个是更加前沿的拉曼辅助手术(Raman aided surgery)技术,即利用拉曼光谱技术帮助医生快速判断潜在的癌细胞,指导医生的手术,德国在这方面的研究比较多,虽然现在还只是处在实验阶段,但在临床上已经勾画了美好的蓝图。   但是,作为一项非常前沿的技术,现在拉曼在生命科学中的应用研究才刚刚露出水面,还处在早期阶段,不过,国外已经开始认识到它的重要性,很多课题组已经小有成果。   鉴于拉曼的优势,现在学术界普遍看好拉曼在生命科学的应用,很多老师反映,在德国耶拿举办的第24届国际拉曼光谱学大会 (24th ICORS)上,拉曼在生命科学中的研究就已成为一大热点话题。现在,国内的一些课题组也在尝试将拉曼用于生命科学体系的研究中,但是目前还处于初级阶段,有很多问题亟待解决,比如很多做化学的人不了解代谢的机理,亦或做生物的人很难解析拉曼谱图等。   对此,黄巍谈到,我个人认为这是一个分两步走的过程,可以先从一个很简单,很清楚的拉曼信号开始,比如我们采用了一个简单的方法,利用重水中的氘稳定同位素探针来判别单细胞总体代谢活性,这个原理很清楚(最新研究成果:Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells Proc Natl Acad Sci U S A. 2015 Jan 13 112(2):E194-203.)。   此外,对于拉曼谱图解析的问题需要很多人共同来解决,现在很多生物界的人没有拉曼的基础,但是化学家很清楚,也许当一个生物学家碰上一个化学家问题就会迎刃而解了。   因此,多学科的交流、合作是非常重要的,化学、分子生物学、遗传学等各学科在一起交流才会有新的突破。 采访编辑:叶建
  • 微秒拉曼成像有望用于细胞、器官的疾病探测
    作为一个先进的医学诊断工具,振动光谱成像技术可以获取活细胞的图像,有望用于癌症和其他疾病的早期检测。   高速光谱图像可以观察活细胞内代谢过程的快速变化,可以实现大面积组织成像,从而能够扫描整个器官。   “例如,我们将可以通过食道或膀胱的成像进行肿瘤的诊断,”普渡大学生物医学工程学(Weldon School of Biomedical Engineering)化学系教授Ji-Xin Cheng说,“如果一毫秒每像素,需要10分钟获取一个图像,这个速度太慢,不能看到细胞内发生了什么,现在我们可以在两秒钟内完成一个完整的扫描。”   这项技术标志着使用受激拉曼散射来实现微秒振动光谱成像的新方法,该方法在激光的照射下,可以通过测量它们的振动光谱来识别和追踪某些分子,相当于是一种光谱指纹。   研究结果发在3月27日的自然出版集团(Nature Publishing Group journal,NPG)的Light: Science & Application杂志上。   这种成像技术是免标记的,也就意味着它不需要用染料去标记样品,在诊断方面的应用非常吸引人。新系统的另一个优点是它可以结合流式细胞技术,每秒看一百万个细胞。   “比如,你可以观察病人的血液样本中大量的细胞以检测肿瘤,你也可以通过内窥镜直接观察器官,” 普渡大学Discovery Park的Birck纳米技术中心,Label-free成像实验室科学主任Cheng说,“这些功能将会改变拉曼光谱在医学方面的应用。每个细胞有许多细胞器,光谱学可以告诉我们这些细胞器里有什么,而其他技术实现不了。”   本文的工作由Cheng 已经毕业的学生Chien-Sheng Liao、Junjie Li 和 Seung-Young Lee 研究科学家Mikhail Slipchenko 博士后研究助理Ping Wang 普度大学Jonathan Amy Facility的前工程师Robert Oglesbee等完成。   作为对以上观念的论证,研究人员证明了新系统可以观察人类癌细胞是如何代谢维生素A,以及药物是如何分布在皮肤上。   这项技术, 速度比最先进的商业拉曼显微镜快1000倍,在Jonathan Amy Facility以电子器件得以实现,称为32路调谐放大器阵列,或者TAMP 阵列。此项新技术已经申请两项专利。Cheng表示在教大学生人耳如何放大声音的过程中获得这种成像技术想法的灵感。
  • 共话单细胞/类器官技术,第七届细胞分析网络会iCCA2024报名启动
    为加强创新细胞分析技术与方法的交流,把最新的细胞分析技术与方法推介给广大生物医药领域用户,仪器信息网将于2024年07月03日举办第七届细胞分析网络会议(iConference on Cell Analysis,iCCA 2023)。会议依托成熟的网络会议平台,将为广大科研工作者、相关从业者提供一个突破时间地域限制的免费交流、学习平台,让大家足不出户便能聆听到精彩报告。报名链接及日程二维码https://www.instrument.com.cn/webinar/meetings/icca2024/ 会议亮点|PICK你的关键词高效参会会议邀请类器官与器官芯片、微流控、干细胞、单细胞测序、等各领域资深专家,围绕前沿创新的细胞分析技术在科研中的应用与解决方案多角度多维度分享。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制