当前位置: 仪器信息网 > 行业主题 > >

四草酸钾二水

仪器信息网四草酸钾二水专题为您提供2024年最新四草酸钾二水价格报价、厂家品牌的相关信息, 包括四草酸钾二水参数、型号等,不管是国产,还是进口品牌的四草酸钾二水您都可以在这里找到。 除此之外,仪器信息网还免费为您整合四草酸钾二水相关的耗材配件、试剂标物,还有四草酸钾二水相关的最新资讯、资料,以及四草酸钾二水相关的解决方案。

四草酸钾二水相关的资讯

  • 北京中心召开甘草酸注射剂重点监测研究启动会
    北京市药品不良反应监测中心于近日组织召开了甘草酸注射剂重点监测研究启动会。   本次重点监测研究工作将了解甘草酸注射剂在使用过程中存在的低血钾等风险的发生率及其特点,并了解其相关危险因素,为临床合理用药提供依据。本项研究是北京市食品药品监督管理局委托中心组织北京市药物警戒站开展的四项研究之一,该研究由中日友好医院担任组长单位,参与单位包括北京大学首钢医院、北京大学人民医院、中国中医科学院广安门医院、中国中医科学院西苑医院、北京积水潭医院、北京中医药大学东直门医院、北京丰台医院、北京市普仁医院、北京市大兴区人民医院、首都医科大学宣武医院共10家医疗机构。   启动会上组长单位对课题研究背景、研究方案进行了介绍,并对调查表填写进行了培训,以便各单位统一标准、统一步骤开展研究。 文章转载自:国家药品不良反应监测中心
  • 全国饲料工业标准化技术委员会发布《天然植物饲料原料中甘草酸的测定 高效液相色谱法》农业行业标准(公开征求意见稿)
    各有关单位及专家:按照《全国饲料工业标准化技术委员会标准终审管理办法(试行)》的有关要求,《天然植物饲料原料中甘草酸的测定 高效液相色谱法》农业行业标准已完成公开征求意见稿,现公开征求意见,相关材料随文附后。请于2023年8月10日前将《公开征求意见反馈表》电子版反馈至全国饲料工业标准化技术委员会秘书处。联系人:赵思泽联系电话:010-59194645电子邮箱:qgslbwh@126.com全国饲料工业标准化技术委员会2023年7月10日相关附件下载:天然植物饲料原料中甘草酸的测定 高效液相色谱法-标准文本-公开征求意见稿0704.doc
  • 全国特殊食品标准化技术委员会发布国家标准《保健食品中甘草酸的测定》征求意见稿
    国家标准计划《保健食品中甘草酸的测定》由 TC466(全国特殊食品标准化技术委员会)归口 ,主管部门为国家市场监督管理总局(特殊食品司)。主要起草单位 中轻技术创新中心有限公司 、中国食品发酵工业研究院有限公司 、北京市疾病预防控制中心 、中轻检验认证有限公司 。附件:国家标准《保健食品中甘草酸的测定》征求意见稿.pdf国家标准《保健食品中甘草酸的测定》编制说明.pdf
  • 台湾地区修订食品添加剂柠檬酸钠的规格标准
    2013年9月12日,台湾地区“卫生福利部”发布部授食字第1021301699号令,修正“食品添加物使用范围及限量暨规格标准”第三条之附表二,修订了调味剂柠檬酸钠的规格标准。   修正对照表如下: 修正规定 现行规定 § 11009 柠檬酸钠 Sodium Citrate 别名:Trisodium citrate; INS No.331(iii) 化学名称 :trisodium salt of 2-hydroxy-1,2,3- propanetricarboxylic acid, trisodium salt of ß -hydroxy-tricarballylic acid 分子式: Anhydrous: C6H5Na3O7 Hydrated:C6H5Na3O7‧ nH2O (n=2或5) 分子量:258.07(无水) 1. 含量 :本品含C6H5O7Na3 不得低于99%(180 ℃干燥2小时后定量)。 2. 外观 :无色结晶或白色结晶性粉末,无臭。 3. 性状 :1.可溶于水,不溶于乙醇。 2.本品应呈柠檬酸盐及钠盐之反应。 4. 干燥减重 :无水柠檬酸钠:1%以下(180 ℃至恒重)。 二水柠檬酸钠:13%以下(180 ℃至恒重)。 五水柠檬酸钠:30.3%以下(180 ℃至恒重)。 5. 碱度 :本样品1:20之溶液以石蕊测试为碱性。并于10 ml之此溶液中加入0.2 ml之0.1N硫酸及1滴酚酞后不呈粉红色。 6. 草酸盐 :10 ml之样品溶液(1:10)加入5滴稀释醋酸试液及2 ml氯化钙试液,于1小时内未产生混浊。 7. 铅 :2 mg/kg以下。 8. 分类 :食品添加物第(十一)类。 9. 用途 :调味剂。 § 11009 柠檬酸钠 Sodium Citrate 分子式:C6H5O7Na3‧ 2H2O 分子量:294.11 1. 含量 :本品含C6H5O7Na3 99~101 %(180 ℃干燥2小时后定量)。 2. 外观 :无色结晶或白色结晶性粉末,无臭,具清凉碱味。 3. 溶状 :本品1 g溶于水20 mL,其溶液应无色且浊度在「殆澄明」以下。 4. 液性 :本品水溶液(1→20)之pH值应为7.6~8.6。 5. 氯化物 :0.014 %以下(以Cl计)。 6. 硫酸盐 :0.024 %以下(以SO4计)。 7. 砷 :3 ppm以下(以As2O3计)。 8. 重金属 :10 ppm以下(以Pb计)。 9. 易碳化物 :本品0.5 g加硫酸5 mL,于约90 ℃加热1小时溶解后,其液色不得较比合液K为浓。 10. 干燥减重 :10~13 %(180 ℃,2小时)。 11. 分类 :食品添加物第(十一)类。 12. 用途 :调味剂。
  • 欧盟通过禁用富马酸二甲酯草案
    1月29日,欧盟成员国通过了“保证含有富马酸二甲酯的消费品不会投放欧洲市场”的决议草案。目前,该决议仍处于欧洲议会审查阶段,预计将在5月1日前正式生效。   草案明确规定,如果消费品或其部件中富马酸二甲酯的含量超过了0.1毫克/千克,或者产品本身已声明了其富马酸二甲酯的含量,就将被认定为“含有富马酸二甲酯”的产品,其将禁止进入欧盟市场流通和销售。   富马酸二甲酯(简称DMF)通常被用作防腐防霉剂产品,常用于皮革、鞋类、纺织品等的生产、储存、运输中。但从去年10月起,欧盟方面就陆续通报了多起因消费者接触含有富马酸二甲酯的鞋、皮沙发等而产生皮肤过敏、急性湿疹及灼伤的案例,使其受到了广泛关注。欧盟也在此后进行了研究和分析,并最终出台了上述草案及限量标准。   在欧盟草案通过之前,法国、比利时已采取了具体措施,禁止进口和销售含富马酸二甲酯的鞋和座椅。西班牙也出台规定,禁止任何接触到皮肤的产品含有富马酸二甲酯。而且,自去年年底开始,已有多批中国产品因富马酸二甲酯含量超标被法国等国扣留。   富马酸二甲酯在国内产品中的应用十分广泛,相当多的鞋类、皮革家具及家纺等产品都会在包装中放入含该成分的防潮袋,用于防潮防霉。而在我省,温州、海宁等地的皮革类产品是传统的外贸出口产品,仅温州一地,其2008年鞋类产品出口就达到了2.76亿美元。纺织品更是浙江的出口优势产品,每年约有400亿的出口量。上述出口产品占了欧盟市场相当大的份额。更让人担心的是,据资料显示,由于富马酸二甲酯具有毒性低、抑菌能力强、抑菌种类多、不受环境影响等特点,还被广泛用于食品、粮食、饲料、化妆品、烟草等防腐防霉及保鲜,因此,欧盟此次对所有含有富马酸二甲酯的消费品颁布禁令,势必将给我省相关行业带来很大的不利影响。   面对该禁令的巨大挑战,检验检疫部门提醒相关出口企业应及时进行调整,换用更为环保和健康的防潮防霉产品,以符合草案的要求,并积极与国外客户进行沟通,减少草案对产品出口的影响。近期,检验检疫部门也将对辖区内的相关企业加强检验和监管,避免不合格产品运至欧盟后,造成更大的经济和声誉上的损失。
  • 材料科研∣ XPS助力锂离子电池研究,中科院化学所郭玉国团队连发Angew、AEM两篇顶刊!
    随着锂离子电池(LIBs)需求的迅速增长,废旧LIBs的数量随着规模的增加而增加,使用后的锂离子电池有价值的金属元素回收成为重要课题,但由于其中化合物的复杂性,导致回收多种具有相似物理化学特性的过渡金属具有很大的挑战。 3月19日和3月20日,中科院化学所郭玉国教授团队分别在Angew和AEM接连发表两篇文章,分别就三元正极材料和磷酸铁锂(LFP)材料的回收和再利用进行了充分的讨论和研究。第一次在LIBs回收过程中使用低共熔溶剂(DES)来实现镍、钴、锰的选择性分离,并验证了具体的回收机理。同时提出了一种绿色回收方法,通过具有功能化预锂化隔膜(FPS)的原位电化学过程直接再生老化的LFP电极。 中科院化学所郭玉国教授和孟庆海助理研究员等人基于过渡金属化合物在低共熔溶剂(DESs)中的不同行为,通过使用精心设计的基于配位环境调节的串联浸出和分离体系,从不同成分的废旧LiNixCoyMn1-x-yO2(NCM)正极中选择性和高效的回收了镍、钴、锰。 基于文章的方法中不同的固液比(HBD组分每质量的溶质质量、RS/L=mspent cathode:mHBD)和不同的温度,在RS/L=20的120℃的优化条件下,NCM811中的镍、钴和锰回收产物的纯度分别为99.1%、95.5%和94.5%。同时,对整个过程中的浸出动力学和工作过程机理进行了深入的分析,通过巧妙地引入DMSO和水作为稀释剂,揭示了配位化学的复杂过程。此外,进一步证实了不同的过渡金属与设计良好的配体的结合是实现优异选择性的关键,微调金属离子的协调环境在电池回收行业的可持续发展中具有广阔的前景。相关论文以“Selective Extraction of Transition Metals from Spent LiNixCoyMn1-x-yO2 Cathode via Regulation of Coordination Environment”为题发表在Angew. Chem. Int. Ed.。 图1 基于用氯化胆碱(ChCl):草酸二水合物(OxA)DES回收镍 中科院化学所万立骏院士,郭玉国教授和孟庆海助理研究员等人,首先通过综合分析验证了老化LFP(D-LFP)电极电化学再生的可行性。在此基础上,提出了一种基于新的功能化预锂化隔膜(FPS)的原位再生策略,以实现D-LFP电极在新电池中的直接再利用。成功制备了分解电位降低的Li2C2O4/CMK-3复合材料,并将该复合材料作为制备FPS的牺牲剂。使用FPS取代了商业化隔膜,废旧的LFP电极用新鲜的石墨负极重新组装成一个新的电池,经过一个循环的活化后,实现再生电池在循环292次后的容量保留率高达90.7%,而未使用FPS的全电池仅为18.7%,表现出相当大的容量恢复和良好的长循环稳定性, 其具体的机理为:Li2C2O4在FPS上的不可逆电化学分解提供了额外的Li+来弥补初始循环中缺乏锂的LFP。从这个意义上说,废旧LFP电极可以通过原位电化学缓解过程直接再生。与目前的废旧LIBs回收方法,特别是低成本的LFP正极回收方法相比,本文基于FPS的策略将废旧LFP电极的再生与新电池的组装相结合,节省了将活性材料分离和再制造正极电极的步骤。这种新颖、简单、成本效益高的策略为直接再生废旧的LFP电池开辟了一条新的途径,并拓宽了整个LIBs回收的视野。相关论文以“In Situ Electrochemical Regeneration of Degraded LiFePO4 Electrode with Functionalized Prelithiation Separator”为题发表在Adv. Energy Mater.。图2 D-LFP电极的形貌、组成和结构图3 再生电池性能测试 刻研究采用了岛津的XPS进行相关元素的化学态分析。 AXIS SUPRA+岛津全自动、多技术成像型X射线光电子能谱仪 ★ 高自动化技术★ 高能量分辨、高灵敏度、高空间分辨★ 智能化软件系统★ 丰富的附件和联用技术 本文内容非商业广告,仅供专业人士参考。
  • 食药总局:网络食安问题电商平台将承担连带责任
    国家食品药品监督管理总局今日在北京召开新闻发布会,公布《网络食品安全违法行为查处办法》。据悉,该《办法》包括总则、网络食品安全义务、网络食品安全违法行为查处管理、法律责任、附则等,共五章48条,该办法将于2016年10月1日起实施。草酸二水合物 Oxalic acid dihydrate 6153-56-6双[3-(三乙氧基甲硅烷基)丙基]四硫化物 Bis[3-(triethoxysilyl)propyl] tetrasulfide 40372-72-3D-薄荷醇 D-Menthol 15356-60-2L-薄荷醇 L-Menthol 2216-51-51-十二烷醇 1-Dodecanol 112-53-81-十二烷醇 1-Dodecanol 112-53-81-十二烷醇 1-Dodecanol 112-53-81-辛醇 1-Octanol 111-87-55-甲基呋喃醛 5-Methylfurfural 620-02-0N-环己基甲酰胺 N-Cyclohexylformamide 766-93-84-甲基-2-戊醇 4-Methyl-2-pentanol 108-11-2N,N-二甲基-对苯二胺 N,N-Dimethyl-p-phenylenediamine 99-98-95,6,7,8-四氢-1-萘胺 5,6,7,8-Tetrahydro-1-naphthylamine 2217-41-6肼二盐酸盐 Hydrazine dihydrochloride 5341-61-7硫氰酸钾 Potassium thiocyanate 333-20-0二甲基硫醚 Dimethyl sulfide 75-18-3聚苯醚 Polyphenyl ether 31533-76-3叔丁基甲基醚 气相色谱级 Tert-Butyl methyl ether 1634-04-4七氟丁酸 Heptafluorobutyric acid 375-22-4甲苯二异氰酸酯 Tolylene Diisocyanate(TDI) 26471-62-53,4-二羟基苄胺氢溴酸盐 3,4-Dihydroxybenzylamine hydrobromide 16290-26-9N,N-二(羟基乙基)椰油酰胺 Coconut diethanolamide(CDEA) 68603-42-9/61791-31-9甲苯二异氰酸酯 Tolylene Diisocyanate(TDI) 26471-62-5异冰片基丙烯酸酯 Isobornyl acrylate 5888-33-5N,N' -二苯基硫脲 1,3-Diphenyl-2-thiourea 102-08-9聚合氯化铝 Aluminum chlorohydrate 1327-41-9四丁基氢氧化铵10%溶液 Tetrabutylammonium hydroxide solution 2052-49-5四丁基氢氧化铵25%溶液 Tetrabutylammonium hydroxide solution 2052-49-5L-苯基丙氨酸 L-Phenylalanine 63-91-2无水硫酸铈 Cerium(IV) sulfate 13590-82-4硫酸铈铵四水合物 Ammonium cerium(Ⅳ) sulfate tetrahydrate 18923-36-9脂蛋白脂肪酶 Lipoprotein Lipase 9004/2/8乙二胺≥99.5%标准品 Ethylenediamine 107-15-3壬二酸 Azelaic acid (Nonanedioic acid) 123-99-9N,N-二甲基-1-萘胺 N,N-Dimethyl-1-naphthylamine 86-56-6双(三氟甲烷)磺酰亚胺锂盐 Bis(trifluoromethane)sulfonimide lithium salt 90076-65-6
  • 欧盟公布富马酸二甲酯限令草案
    据chemicalwatch网站消息,近日欧盟修订了REACH法规附录XVII,将富马酸二甲酯限令纳入其中,本次修订草案公布于欧盟相关文件中(comitology register)。   据了解,此项草案有望于11月份在REACH委员会会议上获得通过,它体现了欧洲化学品管理局风险评估委员会与社会经济委员会的观点。
  • 赫施曼助力矿泉水检测
    近日,大连市沙河口区市监局抽检某天然弱碱矿泉(矿泉水),结果界限指标锶和偏硅酸项目不合格。依据是GB 8538-2016《食品安全国家标准 饮用天然矿泉水检验方法》,而此标准也要在今年年底进行更新(GB 8538-2022),主要增加和修改了多个微生物相关内容。偏硅酸的检测方法为硅钼黄光谱法,此方法所用仪器为分光光度计,类似仪器和方法也应用于饮用天然矿泉水的多个重金属(铁、锰、铜、银、钒、钴、砷)、硼酸、氟化物、碘化物、硫化物、硝酸根、硫酸根、挥发酚、阴离子表活等众多项目中。硅钼黄光谱法的原理是在酸性溶液中,可溶性硅酸与钼酸铵反应,生成可溶性的黄色硅钼杂多酸,在一定浓度范围内,其吸光度与可溶性硅酸含量成正比。有以下两个重要步骤:一、试样测定:取50.0ml水样于50ml比色管中,加1.0ml盐酸溶液,2.0ml钼酸铵溶液,充分摇匀,放置15min。加入2.0ml草酸溶液,充分摇匀。放置2min后,在波长420nm~430nm处,用2cm比色皿,试剂空白作参比,测量吸光度(15min内完成)。试样测定中涉及多种试剂的定体积加液(盐酸、钼酸铵、草酸等),赫施曼的瓶口分液器非常适合此类毫升级别的快速、准确、安全地加液,规格丰富,体积最小为0.2ml,最大为60ml。二、绘制校准曲线:吸取偏硅酸标准工作溶液0ml、0.50ml、1.00ml、2.00ml、4.00ml、6.00ml、8.00ml和10.00ml于一系列50ml比色管中,用水稀释至50ml。以下操作同试样测定。以比色管中偏硅酸质量(ug)为横坐标、吸光度为纵坐标,绘制校准曲线。绘制校准曲线中需要配置不同浓度的溶液,需要添加不同体积的母液和稀释液。赫施曼的opus电子稀释配液系统,不仅可以通过触摸屏设定单次加液体积,也可以在一个分液程序中设定多达10个独立的分液体积,按下分液键就可以进行一组分液,且分液参数(程序)还可保存和调用。此外,标准的附录B(饮用天然矿泉水的采集和保存)中,规定了采样后保护剂的添加,涉及硝酸、氢氧化钠、硫酸、乙酸锌等。赫施曼的水质固定剂箱,可装配多种保护剂,解决传统添加方式里玻璃量具不易携带、易碎、漏液、效率较低等问题,使取样的保护剂添加更加准确、便捷。
  • 欧盟根据REACH指令起草法规限制富马酸二甲酯
    欧盟委员会近日公布一项法规草案,限制在消费品中使用富马酸二甲酯(DMF)。法规将在草案公布于欧盟《官方公报》的二十天后生效。该限制法规也将被收录进REACH法规附件十七条中。   富马酸二甲酯一直作为防腐剂在欧盟制造业中使用,直至98/8/EC指令颁布。但是该指令并未限制经DMF处理后的商品进口至欧盟。因此,欧盟采取紧急措施,决定采纳2009/251/EC指令以确保含有DMF的商品不会进入或在欧盟范围内生产。   作为临时措施,2009/251/EC指令被扩展为2010/153/EU指令和2011/135/EU指令,在2012年3月15日之前有效。此次,若DMF被添加至REACH法规附件十七中,临时限制将成为永久性限制措施。
  • 北京药监局:甘草片甘草含量不足
    今日,北京市食药监局通报江西草珊瑚药业有限公司生产的江绿甘草片,甘草酸的实测值只有标准值的4%。   甘草是日常人们用户缓解嗓子不舒服的常用药品,具有补脾益气,清热解毒,祛痰止咳,缓急止痛,调和诸药,含量不足,药效也大打折扣。日常老百姓对药品的含量了解主要以药品标签为参考,并无直接测定的工具及途径,相关政府部门加大对药品生产企业及经营企业的抽检力度可在一定程度上保证人们的用药安全和药效。   按照现行《中国药典》,甘草主要采用液相色谱法测定其中的甘草苷(C21H22O9)和甘草酸(C42H62O16),以干燥品计算,甘草苷(C21H22O9)不得少于0.50%,甘草酸(C42H62O16)不得少于2.0%。   附:《中国药典》关于甘草的测定方法   色谱条件与系统适用性试验: 以十八烷基硅烷键合硅胶为填充剂,以乙腈为流动相A,以0.05%磷酸溶液为流动相B,按下表中的规定进行梯度洗脱 检测波长为237nm。理论板数按甘草苷峰计算应不低于5000。   对照品溶液的制备: 取甘草苷对照品、甘草酸铵对照品适量,精密称定,加70%乙醇分别制成每1ml含甘草苷20&mu g、甘草酸铵0.2mg的溶液,即得(甘草酸重量=甘草酸铵重量/1.0207)。   供试品溶液的制备: 取本品粉末(过三号筛)约0.2g,精密称定,置具塞锥形瓶中,精密加入70%乙醇100ml,密塞,称定重量,超声处理(功率250W,频率40kHz)30分钟,放冷,再称定重量,用70%乙醇补足减失的重量,摇匀,滤过,取续滤液,即得。   测定法: 分别精密吸取对照品溶液与供试品溶液各10&mu l,注入液相色谱仪,测定,即得。   本品按干燥品计算,含甘草苷(C21H22O9)不得少于0.50%,甘草酸(C42H62O16)不得少于2.0%。
  • 四川泸州15吨硫酸泄漏 饮水河流险遭污染
    21日凌晨5时01分,一辆从四川泸州出发前往重庆潼南县、牌照为川Z15809的运输槽车,在行至重庆大足县中敖镇加油站时,满载15吨硫酸的运输槽车突然发生泄漏,大量浓硫酸直喷而出,流下公路的排水沟,直逼大足县城居民饮水主河流。   重庆大足县消防大队接警后,迅速调集3台消防车、24名官兵赶赴现场。5时11分,消防官兵到场后勘察发现,硫酸运输槽车的车尾阀门螺丝松落,大量硫酸正猛烈向外喷射,外泄的硫酸混顺着公路往下流淌。   经询问得知,运输槽车里共装有15吨硫酸,浓度为98%,属浓硫酸。硫酸槽车上喷射的硫酸压力很大,根本无法进行堵漏。现场抢险人员在向当地政府应急办汇报的同时启动化危品事故应急救援预案,请求调集石灰到场对流淌硫酸进行中和处理,并立即协助现场交巡警,将现场堵塞的车辆及时清理。   不断喷出的硫酸很快淌下高速路的排水沟,消防官兵经侦查发现,大足县城居民饮水主河流距事发地不到100米,一旦遭遇污染,后果不堪设想。消防官兵迅速利用水枪对泄漏硫酸进行稀释,并向大足县相关领导汇报请求支援。   5时34分,重庆大足县相关领导率领县安监、环保等部门人员赶到现场,首先命令救援人员挖沟筑坝,对泄漏的硫酸混合物进行封堵,防止进入河流,同时命令就近的中敖派出所立即调运10吨石灰到现场,对硫酸进行稀释处理。   同时,当地交巡警也立即将此路段双向封锁,确保石灰运输车可逆向行驶,快速将石灰运抵现场 安监、环保、卫生、水利等部门则负责对硫酸流经的下水道进行监测。   随着石灰运来,消防官兵连续奋战3小时,一边对硫酸槽车喷射的硫酸一边将石灰扛到公路旁的下水沟里,堵住硫酸淌下河流,利用酸碱中和反应原理,对硫酸水进行处理。   8时21分,硫酸槽车泄漏口压力变小,处置硫酸专业技术人员到场,将硫酸槽车泄漏口进行了堵漏,剩余的浓硫酸被安全转移。8时50分,经过多部门近4个多小时的联合处置,事故现场全部清理完毕。
  • REACH限制名单草案再添7种物质
    日前,欧洲化学品管理署(ECHA)继2008年将15种物质被列入首批REACH高关注名单(SVHC)后,公布了首批需ECHA授权才能使用的物质名单草案。根据该草案,7种物质首先被列入了清单(附件XIV)。   被列入清单的7种物质分别为:5-叔丁基-2,4,6-三硝基间二甲苯(二甲苯麝香)、短链氯化石蜡(SCCPs,C10~C13)、六溴环十二烷(HBCDD)和所有有关联的主要非对应异构体、邻苯二甲酸双(2-乙基己)酯(DEHP)、邻苯二甲酸丁苄酯(BBP)、邻苯二甲酸二丁酯(DBP)以及4,4'-二氨基二苯甲烷(MDA)。   根据REACH法规,企业如果要使用进入授权名单的物质,就必须申请许可。申请者必须论证物质使用风险可以充分控制,或是社会经济利益超过使用风险,且没有替代物和相应的替代技术。   ECHA表示,他们是根据产品的固有特性、用途和批准用量来评估是否将这些化学品列入REACH限制清单的。各利益相关方必须于2009年4月14日对磋商做出回应,ECHA将于2009年6月1日之前确定优先列表。ECHA还建议,授权申请应当在以上物质进入REACH附件XIV后24~30个月期间提交。这些物质进入名单之后,42~48个月后将不再继续使用。   ECHA还建议,76/769/EEC指令中特殊条件下允许使用的豁免类物质,也应加入评估当中。ECHA表示,将参考协商期间所收到的评论及成员国委员会的意见,可能会对草案进行修改,并将该提议提交到欧盟委员会审议。对于是否对蒽、氯化钴、五氧化二砷、三氧化二砷、重铬酸钠二水合物、氧化双三丁基锡、酸式砷酸铅、三乙基砷酸酯等8种物质进入SVHC名单的物质进行授权,ECHA表示将在晚些时候再做考虑。   ECHA建议下游企业应尽快排查是否正在使用被列入SVHC的原料,定期审核供应商(必要时向原料供应商提供安全数据表),并在规定期限内逐步替代SVHC原料。
  • 解决方案 | 自来水中总硬度-乙二胺四乙酸二钠滴定法的测定
    水中总硬度原系指沉淀肥皂的程度,使肥皂沉淀的原因主要由于水中的钙、镁离子,此外,铁、铝、锰、锶及锌也有同样的作用。长期饮用高硬度水的人会增加肾结石的发病率,硬度越高,发病率越高。《GB/T 5750.4-2006 生活饮用水标准检验方法 感官性状和物理指标》中规定了饮用水及其水源水的测定方法,睿科根据其方法提供自动化样品整体解决方案,代替人工进行水质总硬度的测定,保证检测的快速高效。仪器、耗材与试剂仪器睿科Auto Titra 08全自动滴定仪分析天平:感量为1mg鼓风干燥箱耗材试剂瓶:50X160mm、60X160mm试剂氯化铵氨水(ρ20=0.88g/mL)硫酸镁(MgSO47H2O)乙二胺四乙酸二钠(Na2EDTA2H2O)铬黑T硫化钠(Na2S9H2O)盐酸羟胺(NH2OHHCl)锌粒、盐酸分析步骤样品测定1吸取50mL自来水样(硬度过高的样品,可取适量水样,用纯水稀释至50mL,硬度过低的样品,可取100mL)置于试剂瓶中。2立即将样品全部放置于睿科Auto Titra 08全自动滴定仪的样品槽中,仪器自动加入1mL缓冲溶液和5滴指示剂,用Na2EDTA标准溶液滴定至溶液从紫红色变成纯蓝色即为终点,仪器自动判定。睿科Auto Titra 08全自动滴定仪空白试验按以上相同步骤以50.0mL试剂水代替水样进行空白试验,记录下空白滴定时消耗Na2EDTA标准溶液的体积V0。实验结果结果计算将标定浓度、空白值输入到软件界面中,仪器内置计算公式,根据每个样品滴定体积自动计算结果。计算参数界面质控样测试
  • 广州地化所等揭示液相二次有机气溶胶的来源和形成机制
    二次有机气溶胶(SOA),是大气细颗粒物(PM2.5)的重要组分,对空气质量,全球气候变化和人体健康有着重要的影响。近年来,越来越多的研究证明有机前体物在云雾滴和含水气溶胶中的液相化学转化是二次有机气溶胶生成的重要途径。由于植物排放前体物(如植物挥发、生物质燃烧)比化石燃料源(如燃煤、机动车排放)前体物的极性更强、更亲水,过去的研究多聚焦于植物排放前体物转化生成液相二次有机气溶胶(aqSOA)的过程,缺乏对液相二次有机气溶胶中人为化石燃料源贡献的精准量化。   中国科学院广州地球化学研究所和瑞典斯德哥尔摩大学、日本中部大学合作,通过测定液相二次有机气溶胶单体分子的碳十四(14C)同位素,给出了化石源碳对中国大气中液相二次有机气溶胶生成巨大贡献的关键科学证据。相关研究成果于近日以Large contribution of fossil-derived components to aqueous secondary organic aerosols in China为题在线发表在Nature communications上。   14C同位素的半衰期约为5730年,经过漫长地质演化,煤、石油、天然气等化石燃料中的14C已完全衰变,而生物质的14C丰度,却和当前大气基本保持一致。因此,14C可以准确量化液相二次有机气溶胶分子中生物碳源和化石碳源的相对占比。研究团队在位于珠三角西南部的鹤山大气环境监测超级站采集了一整年的大气细颗粒物(图1),以大气颗粒物中草酸为主的一系列小分子有机酸作为液相二次有机气溶胶的示踪物。14C分析显示,当鹤山站的气团起源于内陆时,液相二次有机气溶胶标志性化合物的化石来源碳占比达到了55%到70%(图2)。相反,当气团起源于南海沿岸时,液相二次有机气溶胶分子中的生物来源碳占比可达近70%,这与内陆气团形成了鲜明对比(图2)。在我国几个重点城市群,研究人员同样观测到化石来源碳在冬季对液相二次有机气溶胶形成的巨大贡献。   过去基于整体气溶胶组分的14C分析结果,大多认为有机气溶胶主要由生物质来源碳贡献。该研究表明,在中国典型城市,液相二次有机气溶胶分子可大量来源于化石燃料。这一认识对更好地模拟二次有机气溶胶生成、评价其气候和环境效应,以及更精准地控制空气污染,具有重要意义。   相关研究工作获得国家自然科学基金重点项目、“一带一路”科学组织联合研究专项项目等的支持。图1 研究区位置及采样活动中的后向气流轨迹、气溶胶光学厚度(AOD550)和气溶胶基础表征参数。图2 沿海背景和大陆气团中草酸的二维双碳同位素(δ13C、Δ14C/Fm)特征。
  • 钴酸锂的“前世今生”
    钴是具有钢灰色和金属光泽的硬质金属,钴(Co)原子序数为27,位于元素周期表第八族,原子量为58.93,它的主要物理、化学参数与铁、镍接近,属铁族元素。钴是一种高熔点和稳定性良好的磁性硬金属。它是制造耐热合金、硬质合金、防腐合金、磁性合金和各种钴盐的重要原料,广泛用于航空、航天、电器、机械制造、化学和陶瓷工业。因此,它是一种重要的战略物资。 钴产业链主要由上游钴矿石的开采、选矿,中游冶炼加工以及下游终端应用组成。下游消费方面,虽然钴应用领域广泛,高温合金、硬质合金和磁性材料等领域都有钴的身影,但有约60% 的钴用在电池领域。 上游钴矿:单独钴矿床一般分为砷化钴矿床、硫化钴矿床和钴土矿矿床三类。钴除单独矿床外,大量分散在夕卡岩型铁矿、钒钛磁铁矿、热液多金属矿、各种类型铜矿、沉积钴锰矿、硫化铜镍矿、硅酸镍矿等矿床中,其品位虽低,但规模往往较大,是提取钴的主要来源。我国钴资源主要分布在甘肃、山东、云南、青海、河北及山西。 中游冶炼:钴中游冶炼的一大特点是中游冶炼产品众多,存在多条加工链条,如“钴精矿-硫酸钴 -四氧化三钴”、“ 钴精矿-氯化钴-四氧化三钴”、“钴精矿-氯化钴-碳酸钴-四氧化三钴”、“钴精矿-氯化钴-碳酸钴-钴粉”和“钴精矿-氯化钴-草酸钴-钴粉”等。这些钴产品中,硫酸钴和氯化钴是最为重要的中间品。其中,硫酸钴亦可直接应用于生产 3C 使用的钴酸锂电池。四氧化三钴则是最为重要的偏下游产品主要用于锂电池正极材料和磁性材料,用于新能源汽车的锂动力电池 。钴产品工艺流程图 电池级氧化钴主要用于锂离子电池正极材料钴酸锂的生产,其性能对钴酸锂材料性能,继而对电池的充放容量、使用寿命等有重要影响。用于电池的氧化钴除了严格的化学成分要求外,对物理指标,特别是粒度组成与分布和松装密度,有特别的要求。以碳酸盐沉淀制备前驱体,氧化煅烧后制备氧化钴的合成工艺为例: 试验结果表明,不同钴量与碳酸盐配比、晶型改变剂的选择、温度、反应时间、钴溶液浓度等都会对碳酸钴的粒度、形貌产生影响。除此之外,现有研究认为,钴盐前驱体颗粒形貌决定着钴粉颗粒形貌,后者对前者有很大的依赖性和继承性。图一:碳酸钴低倍(左)和高倍(右)表面形貌 扫描电镜作为材料表征利器,可以很好的用来观察碳酸钴颗粒粒度和表面特征;如图一所示,采用赛默飞Apreo2场发射扫描电镜拍摄。 Apreo 2具有业内最强的低电压超高分辨性能,分辨率可达到0.8nm(1kV),可以呈现材料最表面的真实形貌衬度,同时兼具高质量成像和多功能分析性能于一体,是科研和生产质控必不可少的理想分析平台。利用Apreo 2仓室内ETD探头,统计碳酸钴粒径,并获得其颗粒形态呈球形;同时在低电压800V条件下,利用镜筒内高分辨形貌探测器T2观察到碳酸钴表面呈不规则的台阶状。 再经过高温煅烧、干燥,即可获得电池级氧化钴原料。同样利用Apreo 2进行观察,发现氧化钴粒径大小近似于碳酸钴,如图二-a;进一步放大,其呈不规则分布,且表面光滑,如图二-b;Apreo 2镜筒内可同时放置3个探测器,再分别利用镜筒内成分探测器T1和形貌探测器T2观察样品表面,如图二-c和图二-d,获得氧化钴成分分布和一次颗粒表面特征。图二:不同探测下氧化钴形貌特征图 氧化钴作为重要的原材料,主要用来合成电池正极材料钴酸锂。钴酸锂(LiCoO2)是开发最早,应用最广的正极材料,其具备生产工艺难度低、工作电压高、释放电流稳定、循环寿命长的优点,但在高电压下LiCoO2晶格内部应力增大,引起结构坍塌和剧烈的界面副反应会导致电池性能不可逆恶化,因此需要对钴酸锂材料进行改性以提高其电化学性能。 表面包覆改性是通过表层包覆一层其他材料,从而能够抑制材料表层产生缺陷,提高材料结构的稳定性,改善在高电压下钴酸锂材料由于相变产生缺陷影响材料结构和电池性能的改性方法,其中大部分种类氧化物、各种导电石墨材料、无机酸盐中的磷酸盐和钛酸盐等都是被大量研究的包覆材料。 对于钴酸锂正极表面包覆物的观察,是分析改性后材料性能优劣的重要方法。利用Apreo 2在低电压下优异的表现能力,结合高灵敏度T1探测器,清晰观察到颗粒表面的包覆物分布状态,如下图三;而T2探测器主要用于观察颗粒表面形貌细节。图三:钴酸锂成分分布(左)和形貌特征图(右) 电池材料是钴的最主要消费材料之一,中国电池行业金属钴的消费量占中国金属钴总消费的60%左右。在电池材料生产中,用钴量大的主要是锂离子电池材料正极材料钴酸锂和三元材料,其他使用分别用在储氢合金、球镍等。虽然钴酸锂在电池行业正极材料中有被替代的风险,但是新能源汽车带动锂电池的需求增长和三元材料的使用,使钴在锂离子电池行业的需求量将会继续上升。参考文献1.钴产业链介绍--兴业经济研究咨询股份有限公司,20172.刘诚.电池级氧化钴的研制[J].有色金属,20023.董贵有 韩厚坤 王朝安 张志平 曲鹏.碳酸钴原料粒度对钴粉形貌影响的研究[J].硬质合金,20214.刘巧云 祁秀秀 郝卫强.锂电池用正极材料钴酸锂改性研究进展[J].电源技术,20225.徐爱东、杨晓菲. 全球钴市场现状[J].中国钴业分会报,20106.全球钴市场开启“扫货”模式[J].现代矿业,20187.钴产业链全景图-粉体网,2021
  • 2015年版《中国药典》草案发布 或由三部变为四部
    2014年3月28日,国家药典委员会官网发布关于《中国药典》2015年版通则(草案)公开征求意见的通知。通知中称,目前国家药典委组织相关专业委员会已完成了通则(附录)编制及编码的研究工作,并于2014年1月通过国家药典委员会官网的药典论坛向全体药典委员征求意见。   《中国药典》2015年版总(草案)则征求意见稿显示,2010年版《中国药典》中药、化学药、生物制品三部分别收载的附录凡例、制剂通则、分析方法指导原则、药用辅料等三合一,独立成卷作为第四部。   2015版《中国药典》通则目录及增修订征求意见稿增订了多种仪器和方法,如电感耦合等离子体质谱法,(拟)新增了拉曼光谱法、超临界流体色谱法、临界点色谱法、农药残留量测定法、黄曲霉毒素测定法,(拟)新增了抑菌效力检查法、组胺类物质检查法、中药材DNA条形码分子鉴定法、元素形态及其价态测定法等。   通知原文如下: 关于对《中国药典》2015年版通则(草案)公开征求意见的通知   各有关单位:   根据《中国药典》2015年版编制大纲有关要求,我委组织相关专业委员会开展了药典一、二、三部附录整合、增修订及单独成卷工作。经过各相关专业委员会的努力和各有关单位的大力配合,目前已完成了通则(附录)编制及编码的研究工作,并于2014年1月通过我委网站的药典论坛向全体药典委员征求意见。根据反馈意见和建议,目前已形成了&ldquo 《中国药典》2015年版总则(草案)&rdquo 的整体框架和内容。现将有关事项通知并说明如下:   一、为进一步完善新版药典总则内容,我委将对药典总则(草案)整体框架和药典通则内容(征求意见稿)分批在网站公开征求意见,现将第一批征求意见稿予以公示,即日起公示期为三个月。   二、独立一卷的名称为&ldquo 《中国药典》2015年版总则&rdquo ,包括现有药典一部、二部、三部的附录内容和药用辅料品种正文(详见附件1)。   三、通则编码拟采用&ldquo XXYY&rdquo 两层四位罗马数字来表示,其中XX代表现有附录编码的大罗马字母(Ⅰ、Ⅱ、Ⅲ&hellip &hellip ),YY代表现有附录编码的英文字母(A、B、C&hellip &hellip )。新旧附录/通则编码对照表详见附件2。   四、根据文字整合和试验研究,已完成的增修订通则草案详见附件3。请相关单位认真研核,若有异议,可填写反馈意见表(见附件4.),并附相关说明及/或实验数据,以来文来函或电子邮件的方式反馈我委。未完成的增修订内容将在第二批进行公示。   五、为保证《中国药典》2015年版的顺利实施,我委对药典通则内容在网上公示的同时,也将其进行汇编成册,并于2014年4月份举办新版药典通则增修订内容的宣讲班,以便广大药品标准工作者更好地了解《中国药典》2015年版总则的编制情况,请予以关注。   六、联系人及联系方式:   许华玉(电话:010&ndash 67079521)   靳桂民(电话:010&ndash 67079527)   洪小栩(电话:010&ndash 67079593)   传 真:010&ndash 67152769   E-mail: ywzhc@chp.org.cn   附件:   1. 《中国药典》2015年版总则(草案)   2. 新旧附录/通则编码对照表   3. 《中国药典》2015年版通则目录及增修订内容   0100 制剂通则   0101 片剂   0102 注射剂   0103 胶囊剂   0104 颗粒剂   0105 眼用制剂   0106 鼻用制剂   0107 栓剂   0108 软膏剂   0109 乳膏剂   0110 糊剂   0111 吸入制剂   0112 喷雾剂   0113 气雾剂   0114 凝胶剂   0115 散剂   0116 滴丸剂   0117 糖丸   0118 糖浆剂   0119 搽剂   0120 涂剂   0121 涂膜剂   0122 酊剂   0123 贴剂   0124 贴膏剂   0125 口服溶液剂口服混悬剂口服乳剂   0126 植入剂   0127 膜剂   0128 耳用制剂   0129 洗剂   0130 冲洗剂   0131 灌肠剂   0181 丸剂   0182 合剂   0183 锭剂   0184 煎膏剂(膏滋)   0185 胶剂   0186 酒剂   0187 流浸膏剂与浸膏剂   0188 膏药   0189 露剂   0190 茶剂   0200 其他通则   0211 药材和饮片取样法(未修订)   0212 药材和饮片检定通则(第二增补本)   0213 炮制通则(未修订)   0251 药用辅料通则   0261 制药用水   0271 药包材通则(待定)   0272 玻璃容器(待定)   0291 国家药品标准物质通则(第二增补本)   0300   0301 一般鉴别试验(第二增补本)   0400 光谱法   0401 紫外-可见分光光度法   0402 红外分光光度法   0405 荧光分光光度法   0406 原子吸收分光光度法   0407 火焰光度法   0411 电感耦合等离子体原子发射光谱法   0412 电感耦合等离子体质谱法(增订)   0421 拉曼光谱法(新增)   0431 质谱法   0441 核磁共振波谱法   0451 X射线衍射法   0500 色谱法(未修订)   0501 纸色谱法   0502 薄层色谱法   0511 柱色谱法(未修订)   0512 高效液相色谱法   0513 离子色谱法   0514 分子排阻色谱法   0521 气相色谱法   0531 超临界流体色谱法(拟新增)   0532 临界点色谱法(拟新增)   0541 电泳法   0542 毛细管电泳法   0600 物理常数测定法   0601 相对密度测定法(未修订)   0611 馏程测定法   0612 熔点测定法   0613 凝点测定法   0621 旋光度测定法   0622 折光率测定法(未修订)   0631 pH值测定法   0632 渗透压摩尔浓度测定法   0633 黏度测定法   0661 热分析法(第二增补本)   0681 制药用水电导率测定法(未修订)   0682 制药用水中总有机碳测定法(未修订)   0700 其他测定法Other Assays   0701 电位滴定法与永停滴定法(未修订)   0702 非水溶液滴定法   0703 氧瓶燃烧法(未修订)   0704 氮测定法   0711 乙醇量测定法   0712 甲氧基、乙氧基与羟丙氧基测定法(未修订)   0713 脂肪与脂肪油测定法(未修订)   0721 维生素A测定法(未修订)   0722 维生素D测定法(未修订)   0731 蛋白质含量测定法   0800 限量检查法   0801 氯化物检查法(未修订)   0802 硫酸盐检查法(未修订)   0803 硫化物检查法(未修订)   0804 硒检查法(未修订)   0805 氟检查法(未修订)   0806 氰化物检查法   0807 铁盐检查法(未修订)   0808 铵盐检查法(第二增补本)   0821 重金属检查法(第一增补本)   0822 砷盐检查法(未修订)   0831 干燥失重测定法   0832 水分测定法   0841 炽灼残渣检查法(第二增补本)   0842 易炭化物检查法(未修订)   0861 残留溶剂测定法(未修订)   0871 甲醇量检查法   0872 合成多肽中的醋酸测定法(未修订)   0873 2-乙基己酸测定法(未修订)   0900 物理特性检查法   0901 溶液颜色检查法   0902 澄清度检查法   0903 不溶性微粒检查法   0904 可见异物检查法   0921 崩解时限检查法   0922 融变时限检查法(未修订)   0923 片剂脆碎度检查法(未修订)   0931 溶出度测定法(合并释放度测定法)   0941 含量均匀度检查法   0942 最低装量检查法   0951 吸入制剂微细粒子的空气动力学评价方法(原雾滴粒分布测定法)   0952 贴膏剂黏附力测定法   0981 结晶性检查法(未修订)   0982 粒度和粒度分布测定法(第一增补本)   0983 锥入度测定法   1000 分子生物学技术   1001 核酸分子鉴定法(待定)   1100 生物检查法   1101 无菌检查法   1105 非无菌产品微生物限度检查:微生物计数法   1106 非无菌产品微生物限度检查:控制菌检查法   1107 非无菌药品微生物限度标准   1121 抑菌效力检查法(第三增补本、新增)   1141 异常毒性检查法   1142 热原检查法   1143 细菌内毒素检查法   1144 升压物质检查法  1145 降压物质检查法(未修订)   1146 组胺类物质检查法(新增)   1147 过敏反应检查法(未修订)   1148 溶血与凝聚检查法   1200 生物活性测定法   1201 抗生素微生物检定法(未修订)   1202 青霉素酶及其活力测定法(未修订)   1205 升压素生物测定法   1206 细胞色素C活力测定法(未修订)   1207 玻璃酸酶测定法(未修订)   1208 肝素生物测定法(第三增补本)   1209 绒促性素生物测定法   1210 缩宫素生物测定法   1211 胰岛素生物测定法(未修订)   1212 精蛋白锌胰岛素注射液延缓作用检查法(未修订)   1213 硫酸鱼精蛋白生物测定法(未修订)   1214 洋地黄生物测定法(未修订)   1215 葡萄糖酸锑钠毒力检查法(未修订)   1216 卵泡刺激素生物测定法   1217 黄体生成素生物测定法   1218 降钙素生物测定法   1219 生长激素生物测定法(未修订)   1401 放射性药品检定法(未修订)   1421 灭菌法(未修订)   1431 生物检定统计法(未修订)   2000 中药相关检查方法   2001 显微鉴别法(第二增补本)   2002 中药材DNA条形码分子鉴定法(新增)   2101 膨胀度测定法(第二增补本)   2102 膏药软化点测定法(未修订)   2201 浸出物测定法(未修订)   2202 鞣质含量测定法(第二增补本)   2203 桉油精含量测定法(未修订)   2204 挥发油测定法(未修订)   2301 药材和饮片杂质检查法   2302 灰分测定法(未修订)   2303 酸败度测定法(未修订)   2321 铅、镉、砷、汞、铜测定法(未修订)   2322 元素形态及其价态测定法(拟新增)   2331 二氧化硫残留量测定法   2341 农药残留量测定法(第二增补本+增订)   2351 黄曲霉毒素测定法(第二增补本+增订)   2400 中药注射剂有关物质检查法(拟修订)   2401 中药注射剂蛋白质检查法(待定)   2402 中药注射剂鞣质检查法(待定)   2403 中药注射剂树脂检查法(待定)   2404 中药注射剂草酸盐检查法(待定)   2405 中药注射剂钾离子检查法(待定)   2406 中药注射剂高分子聚合物检查法(待定)   3000 生物制品相关检查方法(待定)   3100 含量测定法   3101 固体总量测定法   3102 唾液酸测定法   3103 磷测定法   3104 硫酸铵测定法   3105 亚硫酸氢钠测定法   3106 氢氧化铝(或磷酸铝)测定法   3107 氯化钠测定法   3108 枸橼酸离子测定法   3109 辛酸钠测定法   3110 乙酰色氨酸测定法   3111 苯酚测定法   3112 间甲酚测定法   3113 硫柳汞测定法   3114 对羟基苯甲酸甲酯、对羟基苯甲酸丙酯含量测定法   3115 O-乙酰基测定法   3116 己二酰肼含量测定法   3117 高分子结合物含量测定法   3118 人血液制品中糖及糖醇测定法   3119 人血白蛋白多聚体测定法   3120 人免疫球蛋白类制品IgG单体加二聚体测定法   3121 人免疫球蛋白类制品甘氨酸含量测定法   3122 重组人粒细胞刺激因子蛋白质含量测定法   3123 组胺人免疫球蛋白中游离磷酸组胺测定法   3124 IgG含量测定法   3200 化学残留物测定法   3201 乙醇残留量测定法   3202 聚乙二醇残留量测定法   3203 聚山梨酯80残留量测定法   3204 戊二醛残留量测定法   3205 磷酸三丁酯残留量测定法   3206 碳二亚胺(EDAC)残留量测定法   3207 游离甲醛测定法   3208 人血白蛋白铝残留量测定法   3300  微生物检查法   3301 支原体检查法   3302 病毒外源因子检查法   3303 鼠源性病毒检查法   3400  生物测定法   3401 免疫印迹法   3402 免疫斑点法   3403 免疫双扩散法   3404 免疫电泳法   3405 肽图检查法   3406 质粒丢失率检查法   3407 SV40核酸序列检查法   3408 外源性DNA残留量测定法   3409 抗生素残留量检查法(培养法)   3410 激肽释放酶原激活剂测定法   3411 抗补体活性测定法   3412 牛血清白蛋白残留量测定法   3413 大肠杆菌菌体蛋白质残留量测定法   3414 假单胞菌菌体蛋白质残留量测定法   3415 酵母工程菌菌体蛋白质残留量测定法   3416 类A血型物质测定法   3417 鼠IgG残留量测定法   3418 无细胞百日咳疫苗鉴别试验(酶联免疫法)   3419 抗毒素、抗血清制品鉴别试验(酶联免疫法)   3420 A群脑膜炎球菌多糖分子大小测定法   3421 伤寒Vi多糖分子大小测定法   3422 b型流感嗜血杆菌结合疫苗多糖含量测定法   3423 人凝血酶活性检查法   3424 活化的凝血因子活性检查法   3425 肝素含量测定法   3426 抗A、抗B血凝素测定法   3427 人红细胞抗体测定法   3428 人血小板抗体测定法   3429 猴体神经毒力试验   3500  生物活性/效价测定法   3501 重组乙型肝炎疫苗(酵母)体外相对效力检查法   3502 甲型肝炎灭活疫苗体外相对效力检查法   3503 人用狂犬病疫苗效价测定法   3504 吸附破伤风疫苗效价测定法   3505 吸附白喉疫苗效价测定法   3506 类毒素絮状单位测定法   3507 白喉抗毒素效价测定法   3508 破伤风抗毒素效价测定法   3509 气性坏疽抗毒素效价测定法   3510 肉毒抗毒素效价测定法   3511 抗蛇毒血清效价测定法   3512 狂犬病免疫球蛋白效价测定法   3513 人免疫球蛋白中白喉抗体效价测定法   3514 人免疫球蛋白Fc段生物学活性测定法   3515 抗人T细胞免疫球蛋白效价测定法(E玫瑰花环形成抑制试验)   3516 抗人T细胞免疫球蛋白效价测定法(淋巴细胞毒试验)   3517 人凝血因子Ⅱ效价测定法   3518 人凝血因子Ⅶ效价测定法   3519 人凝血因子Ⅸ效价测定法   3520 人凝血因子Ⅹ效价测定法   3521 人凝血因子Ⅷ效价测定法   3522 重组人促红素体内生物学活性测定法   3523 干扰素生物学活性测定法   3524 重组人白介素-2生物学活性测定法   3525 重组人粒细胞刺激因子生物学活性测定法   3526 重组人粒细胞巨噬细胞刺激因子生物学活性测定法   3527 重组牛碱性成纤维细胞生长因子生物学活性测定法   3528 重组人表皮生长因子生物学活性测定法   3529 重组链激酶生物学活性测定法   3600  特定生物原材料/动物   3601 无特定病原体鸡胚质量检测要求   3602 实验动物微生物学检测要求   3603 实验动物寄生虫学检测要求   3604 新生牛血清检测要求   3611 细菌生化反应培养基   8000 试剂和标准物质(待定)   8001 试药   8002 试液   8003 试纸   8004 缓冲液   8005 指示剂与指示液   8006 滴定液   8061 标准物质   9000 指导原则   9001 原料药与药物制剂稳定性试验指导原则(待定)   9011 药物制剂人体生物利用度和生物等效性试验指导原则(待定)   9012 生物样品定量分析方法指导原则(待定)   9013 缓释、控释和迟释制剂指导原则(未修订)   9014 微粒制剂指导原则(待定)   9015 注射剂制备指导原则(拟新增,待定)   9101 药品质量标准分析方法验证指导原则   9102 药品杂质分析指导原则   9103 药物引湿性试验指导原则(未修订)   9104 近红外分光光度法指导原则(未修订)   9105 多晶型药品的质量控制技术与方法指导原则(新增)   9106 基于基因芯片技术的药物安全性和有效性评价技术指导原则(新增)   9201 药品微生物检验替代方法验证指导原则(未修订)   9202 微生物限度检查法应用指导原则   9203 药品微生物实验室质量管理指导原则(第三增补本)   9204 微生物鉴定指导原则(新增)   9205药品洁净实验室微生物监测和控制指导原则(新增)   9206 无菌检查用隔离系统验证指导原则(新增)   9301 注射剂安全性检查法应用指导原则   9302 有害残留物限量制定指导原则(新增)   9401 中药生物活性测定指导原则   9501 正电子类放射性药品质量控制指导原则(未修订)   9502 锝[99mTc]放射性药品质量控制指导原则(未修订)   9701 药用辅料性能指标研究指导原则(第三增补本、拟新增)   9901 国家药品标准物质制备指导原则(第二增补本)   附表 原子量表(未修订)   附表 国际单位转换表(待定)   4. 《征求意见稿》反馈意见表 国家药典委员会 2014年3月28日
  • 国家标准化管理委员会关于开展2023年《食品添加剂 三聚甘油单硬脂酸酯》等强制性国家标准复审工作的通知
    国家发展改革委、教育部、工业和信息化部、公安部、民政部、自然资源部、生态环境部、住房城乡建设部、农业农村部、国家卫生健康委、应急管理部、国家林草局、国家疾控局、国家矿山安监局、国家药监局办公厅(办公室、综合司):为规范强制性国家标准管理,有序推进强制性国家标准复审工作,推动标准复审常态化和制度化,依据《标准化法》和《强制性国家标准管理办法》(以下简称《管理办法》)有关要求,开展2023年强制性国家标准复审工作,有关事项通知如下:一、复审标准范围截至2023年底,实施满5年或距上次复审满5年的强制性国家标准,纳入本次复审范围,已提出修订项目或已列入修订计划的除外,拟开展复审的标准清单见附件1。未列入附件1中的标准也可根据需要纳入复审范围。二、标准复审内容根据《标准化法》及《管理办法》相关规定,从标准的适用性、规范性、时效性和协调性等方面进行复审,复审内容主要包括以下方面:(一)标准的适用性。标准涉及的产品、过程或服务是否已被淘汰,已被淘汰的,应给出“废止”的结论。标准的适用范围是否详细具体,能够覆盖新产品、新工艺、新技术或新服务,适用范围不够具体或不能覆盖新情况的,应给出“修订”的结论。标准规定的内容是否符合强制性标准的制定范围,属于超范围制定的,应给出“修订”(修订转化为推荐性国家标准)或“废止”的结论。(二)标准的规范性。标准技术内容是否可验证、可操作,若技术内容存在不可验证、不可操作的情况,或者标准中未规定证实方法,应给出“修订”的结论。标准是否为全文强制,若标准为条文强制,应给出“修订”的结论。(三)标准的时效性。与产业发展实际水平和健康、安全、环保最新需求相比,标准技术指标及要求是否需要提升,若因标准的指标缺失或要求过低可能导致安全事故或存在较大安全风险,应给出“修订”的结论。与国际国外最新技术法规或标准相比,是否与国际标准或法规主要技术指标一致,若不一致,原则上应给出“修订”的结论。标准的规范性引用文件是否现行有效,若引用的标准已废止或注日期引用的标准已更新,应给出“修订”的结论。(四)标准的协调性。如出现标准与现行相关法律法规、部门规章、其他强制性国家标准或国家产业政策不协调、不一致的情况,应给出“修订”的结论。三、标准复审工作安排标准复审工作分三个阶段开展:(一)第一阶段:工作组复审阶段。组织起草部门可成立复审工作组或委托有关全国专业标准化技术委员会成立复审工作组,开展强制性国家标准复审工作。复审工作组针对附件1中的具体标准,依据标准复审内容,通过问卷调查、标准实施情况统计分析、企业调研、专家论证等方式,开展标准复审,形成每一项标准的《强制性国家标准复审工作报告》(附件2)。(二)第二阶段:专家论证阶段。组织起草部门组织召开专家论证会,对复审工作组形成的《强制性国家标准复审工作报告》进行论证,给出最终的复审结论。(三)第三阶段:材料报送阶段。组织起草部门于2023年11月30日前,将《强制性国家标准复审结论汇总表》(附件3)和各项标准的《强制性国家标准复审工作报告》报送国家标准委。同时,在强制性国家标准制修订子系统中填报各标准的复审信息和报告。四、复审结论的处理国家标准委对组织起草部门报送的复审结论审核后,按照复审结论类别进行分类处理,具体如下:1. 复审结论为“废止”的标准,将通过全国标准信息公共服务平台向社会公开征求意见,并以书面形式征求该强制性国家标准的实施监督管理部门意见。无重大分歧意见或者经协调一致的,我委将以公告形式废止该强制性国家标准。2. 复审结论为“修订”的标准,组织起草部门应在报送复审结论时同步提出修订项目。国家标准委将按照强制性国家标准的立项程序进行办理。3. 复审结论为“继续有效”的标准,将通过全国标准信息公共服务平台向社会告知标准的复审时间。联系人:市场监管总局标准技术司 付允 陈如意联系方式:010-82262614,010-82262616邮箱:chenruyi@samr.gov.cn国家标准技术审评中心 叶子青联系方式:010-65007855邮箱:yezq@ncse.ac.cn附件:1. 2023年复审标准清单2. 强制性国家标准复审工作报告3. 强制性国家标准复审结论汇总表国家标准化管理委员会2023年8月3日(此件公开发布)附件下载国标委发〔2023〕40号-2023年强标复审通知-附件.doc相关标准如下:序号标准编号标准名称主管部门1GB 13510-1992食品添加剂 三聚甘油单硬脂酸酯国家卫生健康委2GB 14891.1-1997辐照熟畜禽肉类卫生标准国家卫生健康委3GB 14891.3-1997辐照干果果脯类卫生标准国家卫生健康委4GB 14891.4-1997辐照香辛料类卫生标准国家卫生健康委5GB 14891.5-1997辐照新鲜水果、蔬菜类卫生标准国家卫生健康委6GB 14891.7-1997辐照冷冻包装畜禽肉类卫生标准国家卫生健康委7GB 14891.8-1997辐照豆类、谷类及其制品卫生标准国家卫生健康委8GB 1986-2007食品添加剂 单、双硬脂酸甘油酯国家卫生健康委9GB 1253-2007工作基准试剂 氯化钠工业和信息化部10GB 1254-2007工作基准试剂 草酸钠工业和信息化部11GB 1257-2007工作基准试剂 邻苯二甲酸氢钾工业和信息化部12GB 12593-2007工作基准试剂 乙二胺四乙酸二钠工业和信息化部13GB 13735-2017聚乙烯吹塑农用地面覆盖薄膜工业和信息化部14GB 15346-2012化学试剂 包装及标志工业和信息化部15GB 19105-2003过氧乙酸包装要求工业和信息化部16GB 19107-2003次氯酸钠溶液包装要求工业和信息化部17GB 19109-2003次氯酸钙包装要求工业和信息化部18GB 21178-2007自反应物质和有机过氧化物分类程序工业和信息化部19GB 28670-2012制药机械(设备)实施药品生产质量管理规范的通则工业和信息化部20GB 21175-2007危险货物分类定级基本程序国家标准委21GB 28932-2012中小学校传染病预防控制工作管理规范国家疾控局22GB 15213-2016医用电子加速器 性能和试验方法国家药监局23GB 2024-2016针灸针国家药监局24GB 9706.14-1997医用电气设备 第二部分:X射线设备附属设备安全专用要求国家药监局25GB 9706.21-2003医用电气设备 第2部分:用于放射治疗与患者接触且具有电气连接辐射探测器的剂量计的安全专用要求国家药监局26GB 11767-2003茶树种苗农业农村部27GB 13078-2017饲料卫生标准农业农村部28GB 18133-2012马铃薯种薯农业农村部29GB 19169-2003黑木耳菌种农业农村部30GB 19170-2003香菇菌种农业农村部31GB 19171-2003双孢蘑菇菌种农业农村部32GB 19172-2003平菇菌种农业农村部33GB 20802-2017饲料添加剂 蛋氨酸铜络(螯)合物农业农村部34GB 21034-2017饲料添加剂 蛋氨酸羟基类似物钙盐农业农村部35GB 21694-2017饲料添加剂 蛋氨酸锌络(螯)合物农业农村部36GB 22489-2017饲料添加剂 蛋氨酸锰络(螯)合物农业农村部37GB 22548-2017饲料添加剂 磷酸二氢钙农业农村部38GB 22549-2017饲料添加剂 磷酸氢钙农业农村部39GB 23386-2017饲料添加剂 维生素A棕榈酸酯(粉)农业农村部40GB 29382-2012硝磺草酮原药农业农村部41GB 29384-2012乙酰甲胺磷原药农业农村部42GB 34456-2017饲料添加剂 磷酸二氢钠农业农村部43GB 34457-2017饲料添加剂 磷酸三钙农业农村部44GB 34458-2017饲料添加剂 磷酸氢二钾农业农村部45GB 34459-2017饲料添加剂 硫酸铜农业农村部46GB 34460-2017饲料添加剂 L-抗坏血酸钠农业农村部47GB 34461-2017饲料添加剂 L-肉碱农业农村部48GB 34462-2017饲料添加剂 氯化胆碱农业农村部49GB 34463-2017饲料添加剂 L-抗坏血酸钙农业农村部50GB 34464-2017饲料添加剂 二甲基嘧啶醇亚硫酸甲萘醌农业农村部51GB 34465-2017饲料添加剂 硫酸亚铁农业农村部52GB 34466-2017饲料添加剂 L-赖氨酸盐酸盐农业农村部53GB 34467-2017饲料添加剂 柠檬酸钙农业农村部54GB 34468-2017饲料添加剂 硫酸锰农业农村部55GB 34469-2017饲料添加剂 β-胡萝卜素(化学合成)农业农村部56GB 34470-2017饲料添加剂 磷酸二氢钾农业农村部57GB 6141-2008豆科草种子质量分级农业农村部58GB 7293-2017饲料添加剂 DL-α-生育酚乙酸酯(粉)农业农村部59GB 7294-2017饲料添加剂 亚硫酸氢钠甲萘醌(维生素K3)农业农村部60GB 7298-2017饲料添加剂 维生素B6(盐酸吡哆醇)农业农村部61GB 7300-2017饲料添加剂 烟酸农业农村部62GB 7301-2017饲料添加剂 烟酰胺农业农村部63GB 9454-2017饲料添加剂 DL-α-生育酚乙酸酯农业农村部64GB 9840-2017饲料添加剂 维生素D3(微粒)农业农村部65GB 9847-2003苹果苗木农业农村部66GB 13458-2013合成氨工业水污染物排放标准生态环境部67GB 19430-2013柠檬酸工业水污染物排放标准生态环境部68GB 21523-2008杂环类农药工业水污染物排放标准生态环境部69GB 21903-2008发酵类制药工业水污染物排放标准生态环境部70GB 21904-2008化学合成类制药工业水污染物排放标准生态环境部71GB 21905-2008提取类制药工业水污染物排放标准生态环境部72GB 21906-2008中药类制药工业水污染物排放标准生态环境部73GB 21907-2008生物工程类制药工业水污染物排放标准生态环境部74GB 21908-2008混装制剂类制药工业水污染物排放标准生态环境部75GB 21909-2008制糖工业水污染物排放标准生态环境部76GB 3544-2008制浆造纸工业水污染物排放标准生态环境部
  • 关于水,你不知道的事儿(二)——奥豪斯pH 计的应用
    在正文开始之前,先给大家讲一则故事:伊格洛克中学的一名学生获得了某科学大会的一等奖,在他得奖的论文中,他呼吁人们签署一项请愿书,要求对「一氧化二氢」的化学物质进行严格控制,或者予以完全废除,理由如下:1. 该物质可能引发人过多出汗和呕吐;2. 该物质又名「氢氧基酸」,是酸雨的主要成分;3. 该物质处在气体状态时,会引起严重灼伤;4. 发生事故时,人体如吸入该物质可能有致命危险;5. 该物质是腐蚀的成因;6. 该物质会使汽车制动装置效率减低;7. 在不可救治的癌症病人肿瘤中已发现该物质;8. 对此物质上瘾的人,离开它168小时便会死亡;9. 过多的摄取该物质可能导致各种不适;10. 人体皮肤与其固体形式长时间接触后,会导致严重的组织损伤;11. 该物质对泥土流失有促进作用;12. 该物质对温室效应有推动作用; 在场的五十个人中,被其问及是否支持禁用这种化学物质:43人说支持,6人说尚不确定。 只有1人回答道:「这种物质是水!」 读至此,不知你是会心一笑,早已看透这个小小的把戏,还是惊呼「原来如此!」。但毋庸置疑,我们中的大多数对「水」这样环绕在我们身边的重要物质的属性及其作用所知甚少。 水和其他自然界的千万种物质一样,有着丰富多样的属性,因而呈现出千变万化的姿态及效用。水的属性的变化,对以水为主要原料的食品及饮料行业,以及生产环节大量用水的纺织、制药、化妆品、水产养殖等行业会产生不小的改变,不仅如此,专注水处理及水监控的环保行业也因此有不小的调整,进而显性或隐形的改变我们的生活。 奥豪斯水质分析产品家族就专注于探索水的属性世界为一切生产使用水、检测处理水的公司机构提供专业的实验室检测仪器或便携式检测仪器通过检测其pH 值、电导率、溶氧量等指标为企业研发、生产、监控提供可靠有效的检测结果在这个领域中,奥豪斯已耕耘数十年,也收获了非常多的精彩案例。 择其三例, 与诸位分享。 - 1 -你知道如何保证槟榔口感吗?最佳助攻:Starter 系列台式pH计湘潭之地,槟榔堪比烟草与咖啡。与海南的新鲜槟榔吃法不同,湘潭的槟榔必须用调制的卤水熬煮、入味,降低其槟榔碱含量、去除蒌叶、减少石灰,加入桂油、红糖等香甜配料的槟榔,才符合湘潭系槟榔的气质。 ▼
  • 全国特殊食品标准化技术委员会关于筹建《保健食品中辅酶Q10的测定》等十四项国家标准起草工作组的通知
    下载相关附件14 项保健食品分析方法标准修订项目清单序号计划号项目名称120230857-T-424保健食品中褪黑素的测定220230858-T-424保健食品中吡啶甲酸铬含量的测定320230859-T-424保健食品中盐酸硫胺素、盐酸吡哆醇、烟酸、烟酰胺和咖啡因的测定420230860-T-424保健食品中辅酶 Q10 的测定520230861-T-424保健食品中甘草酸的测定620230862-T-424保健食品中番茄红素的测定720230863-T-424保健食品中绿原酸的测定820230864-T-424保健食品中泛酸钙的测定920230865-T-424保健食品中淫羊藿苷的测定1020230866-T-424保健食品中肌醇的测定1120230867-T-424保健食品中免疫球蛋白 IgG 的测定1220230868-T-424保健食品中脱氢表雄甾酮(DHEA)的测定1320230869-T-424保健食品中大豆异黄酮的测定方法 高效液相色谱法1420230870-T-424保健食品中葛根素的测定
  • 有机化学品:影响难免冲击不大——汇改与出口退税取消对化工市场的影响
    数据显示,有机化学品进出口贸易目前尚未受到出口退税取消和汇率改革的影响。中国石化联合会信息与市场部主任赵志平在接受记者采访时表示,未来影响不可避免,但冲击不会太强烈,且影响的初步显现至少要到第四季度。   据中国石化联合会统计,1~6月份,有机化学品进出口总额296亿美元,同比增长40%,逆差54亿美元,同比增长51%。其中,进口175.5亿美元,同比增加41.8%,进口总量达1493.3万吨,同比下降9.6% 出口创汇120亿美元,同比增加37.7%,出口数量达431万吨,同比增加36.7%。   在大宗产品出口方面,苯类产品出口量有所增加,这主要是由于国内千万吨级炼油项目增加,副产品相应增加,因此出口必然见长 原来进口量较大的甲苯、二甲苯开始有所下降,草酸、赖氨酸等氨基酸类产品出口逐渐增加,估计以后进口量会有所减少,表明我国有机化学品的进出口结构正悄然发生变化,精细化学品出口增加,正朝着精细化、技术附加值高的方向发展。   从统计数据来看,我国有机化学品进出口形势整体不错,目前并没有受到人民币汇率变动和出口退税取消的影响。一方面,汇率改革刚刚执行,影响尚未显现 另一方面,在取消出口退税的400多种产品中,化工相关产品多达200多种,但农药、橡胶、含氟化学品等占了近80%,有机化学品所占比例很小,因此所受直接影响很小,即使有影响,估计也要等到第四季度才能显现。   赵志平表示,从长远来看,出口退税取消和汇率改革肯定会对有机化学品的进出口带来冲击,但其影响并不是致命的。他解释说,取消出口退税所带来的直接影响不大,但间接影响却也不可忽略。譬如,我国农药进出口贸易是顺差,原药出口退税的取消,势必会影响到有机中间体的用量,这必将会间接左右有机化学品的进出口形势。从汇率变化方面来说,汇率改革是从2005年开始的,企业已经有了一些应对之道。美元汇率变化比较频繁,企业已基本适应。而我国对欧盟的进出口业务比较复杂,总体上进口多、出口少,但产品互补性比较强,所以欧元汇率剧烈变化带来的影响不是致命的。相比而言,今后真正能影响有机化学品出口的是REACH法规。此外,油价的影响也将大于汇率变化。我国用油量很大,下游领域很多,且油价波动还会影响到天然气等其他资源性产品的价格。   另有业内人士认为,尽管在有机化学品进口结算上,美元走低在一定程度上使进口价格有所下降,但是目前由于人民币对美元升值空间很小,这对于国内有机化学品价格影响不大。相反,美元走低会间接推高油价,增加炼油成本,必然会带动有机化学品价格走高。   浙江华峰有关人士告诉记者,相比出口退税取消和汇率变化,国内装置运行情况更值得关注。今年3~4月份,国内中海壳牌70万吨苯乙烯装置停车检修,苯乙烯进口量随之大增,而随着国内产能的释放,苯乙烯进口量又逐步减少,价格也开始走低。而且,苯乙烯下游树脂产品出口将受到汇率调整和出口退税取消影响,这对苯乙烯进出口的影响将在2~4个月内显现。此外,当前美国、日本、欧盟等发达经济体复苏进程比较缓慢,国际油价波动依然剧烈,这些因素也都将影响我国出口产品的需求。   我国汇率改革从2005年开始,汇改在因金融危机有所停滞之后又重新启动,这让企业在做进出口贸易时,不会考虑汇率变化的问题。面对出口退税取消和汇率改革带来的冲击,赵志平建议,企业要做好长期应对的思想准备,把汇率机制视为价格机制,增强汇率变动风险意识,才能在谈判之初预留汇率变化空间,缩短结汇时间、加快结汇速度、提高预付款的比例、分期签订同一个合同等都可以减少汇率变化带来的损失。另外,还可以采用期货保值、远期外汇交易锁定汇率等金融手段规避汇率变动风险。
  • 1023万!北京食品检验所试剂及耗材采购大单曝光 多项拒绝进口
    5月29日,北京市食品安全监控和风险评估中心(北京市食品检验所)公布2019年第一批食品安全抽检监测试剂耗材采购项目,共包含9包817类化学试剂、实验和仪器耗材、生物培养基等品类的采购需求,这其中包含色谱柱34类(13类拒接进口)、前处理柱26类(16类拒绝进口)、163类实验和仪器耗材(48类拒绝进口)。本次招标文件发售的时间为即日起至2019年6月5日16:30(双休日及法定节假日除外),投标截至时间和开标时间为2019年6月19日09:00。详情汇总如下:项目名称:2019年第一批食品安全抽检监测试剂耗材采购项目化学试剂和助剂采购项目项目编号:SJHC-JY-201901-JH001-XM001采购单位联系方式:采购单位:北京市食品安全监控和风险评估中心(北京市食品检验所)地址:北京市海淀区丰德东路17号联系方式:孙婷,010-82479315代理机构联系方式:代理机构:中经国际招标集团有限公司代理机构联系人:王晓庆,010-68372937代理机构地址:中经国际招标集团有限公司,北京市东城区滨河路1号,航天信息大楼10层招标十五部需求详情:第一包化学试剂序号名称数量单位是否可以采购进口产品1弗罗里硅土3瓶是2氢氧化钡(八水)1瓶是3蔗糖酶(麦芽糖酶)(酵母)5瓶是4QuEChERS盐包1盒是5QuEChERS分散试剂盒4盒是6邻苯二甲醛(OPA)5瓶是7脂肪酶4盒是8分析纯甲醇100箱否9分析纯乙腈80箱否10甲醇10箱是11乙腈10箱是12分析纯乙酸乙酯40箱否13分析纯正丁醇2箱否14石油醚120箱否15分析纯无水乙醇10箱否16分析纯正己烷40箱否17分析纯丙酮2箱否18分析纯二氯甲烷5箱否19无水乙醚70箱否20色谱级甲醇100箱是21色谱级乙腈80箱是22色谱级无水乙醇2箱是23色谱级环己烷5箱是24色谱级正己烷10箱是25色谱级丙酮2箱是26色谱级甲苯2箱是27色谱级异丙醇1箱是28色谱级乙酸乙酯4箱是29色谱级二氯甲烷4箱是30α-淀粉酶10瓶否31乙酸锌5瓶否32亚铁氰化钾60瓶否33抗坏血酸VC20瓶否34氯化钠40瓶否35无水碳酸钠10瓶否36无水硫酸钠25箱否37硫酸锌5瓶否38碘化钾30瓶否39丁酮3瓶否40溴化钠2瓶否41溴化钾1瓶否42双氧水1瓶否43硫酸5瓶否44七氟丁酰基咪唑10瓶否4514%三氟化硼-甲醇溶液1瓶否46磷酸5瓶否47冰乙酸20瓶否48甲酸10瓶否49盐酸10瓶否50硝酸2瓶否51色谱纯乙酸铵5瓶否52柠檬酸5瓶否53β-葡糖醛苷酶20瓶否54甲酸铵5瓶否55氢氧化钾6箱否56盐酸二苯胺1瓶否57氯乙酰10瓶否58三甲基氯硅烷2瓶否59六甲基二硅胺烷1瓶否604-二甲基氨基吡啶1瓶否611-蒽腈1瓶否62二巯基乙醇10瓶是63四氢呋喃2箱是64乙酰辅酶A60瓶是65胆碱氧化酶20瓶是66过氧化物酶20瓶是67α淀粉酶10瓶是68葡萄糖苷酶10瓶是69乙醇酸1瓶是70碘1瓶否71苯酚3瓶否72硝酸银10瓶否73磺胺1瓶否74对氨基苯磺酸2瓶否75N-(1-萘基)乙二胺二盐酸盐3瓶否76异丙醇12箱否77三氯甲烷20箱否78冰醋酸20箱否79二甲苯2箱否80二水合乙酸锌3箱否81海砂1箱否82四硼酸钠50袋否83混合磷酸盐50袋否84邻苯二甲酸氢钾50袋否85磷酸氢二钠5瓶否86磷酸二氢钾5瓶否8795%乙醇10箱否88无水乙醇10箱否89硫代硫酸钠5瓶否90酒石酸10瓶否91环己烷1箱否92丙酮1箱否93甲酸1箱否94高氯酸1箱否95甲醛1箱否96盐酸10箱否97三水合乙酸铅3瓶否98α-萘酚苯基甲醇1瓶是99氢氧化钾1箱否100铬酸钾1箱否101乙酸丁酯2瓶否102浓硫酸10箱否103氢氧化钠15箱否104乙酸镁2瓶否105H酸一钠盐2瓶否第二包实验用气体序号名称数量单位是否可以采购进口产品1高纯氩气1200瓶否2高纯氮气200瓶否3高纯氧气30瓶否4高纯氦气130瓶否5高纯氦气212瓶否6高纯乙炔4瓶否7高纯氢气5瓶否8氩甲烷2瓶否9液氮5000升否10二氧化碳2瓶否11合成空气5瓶否第三包标准物质序号名称数量单位是否可以采购进口产品1安赛蜜5支否24-氨基间甲酚1支否3灭瘟素1支否4角黄素(斑蝥黄)2支否5甜蜜素5支否6乙基麦芽酚1支否7PABA乙基己酯1支否8格列波脲1支否96-羟基吲哚1支否10微囊藻毒素LR1支否11苯乙双胍1支否12水苏糖1支否13维生素A酸1支否14三氯甲烷(氯仿)1支否15三甲胺盐酸盐1支否16佐匹克隆1支否17脱羟基洛伐他丁1支否18洛伐他汀羟酸钠盐1支否19盐酸二氧丙嗪1支否202-氨基苯酚(邻氨基苯酚)1支是213-氨基苯酚(间氨基苯酚)1支是22L-阿拉伯糖1支是23盐酸金霉素1支是24甜蜜素1支是252.4-滴2支是262-硝基-1.4-苯二胺1支是273.4-二氨基甲苯1支是282.5-二氨基甲苯硫酸盐1支是292.4-二溴苯酚1支是30二氯乙酸(二氯醋酸)1支是311.1-二氯乙烷1支是32N.N-二乙基对苯二胺硫酸盐1支是33直接红281支是34盐酸强力霉素1支是35敌磺钠(敌克松)1支是36氟苯虫酰胺1支是37正庚烷1支是38氢醌1支是39隐性孔雀石绿1支是40孔雀石绿草酸盐1支是41D(+)甘露糖1支是421-萘酚1支是431.4-苯二胺(对苯二胺)1支是44邻苯二甲酸二烯丙酯1支是45间苯二酚1支是46盐酸四环素1支是47D(+)海藻糖1支是48三氯乙酸2支是49D(+)-木糖1支是502.6-二氨基吡啶1支是51N,N-二乙基甲苯-2,5-二胺1支是52缩水甘油(环氧丙醇)1支是53邻苯二胺1支是541.3-苯二胺(间苯二胺)1支是55PCB1981支是56盐酸芬氟拉明1支是57氟虫腈(非泼罗尼、锐劲特)1支是58氟甲腈1支是59氟虫腈硫化物(氟虫腈硫醚)1支是60氟虫腈砜1支是61奶粉9种元素基质标准物质2支是62左旋肉碱-D31支是63美金刚-d6盐酸盐1支是64芦丁2瓶否65甲磺酸酚妥拉明1瓶否66达那唑1瓶否67盐酸妥拉唑林1瓶否68盐酸特拉唑嗪1瓶否69富马酸福莫特罗1瓶否70美雄诺龙1瓶否71替勃龙1瓶否72十一酸甘油三酯1瓶否73棕榈酸缩水甘油酯1瓶是74酒石酸氢胆碱1瓶是754-氨基丁酸1瓶是76利血平1瓶否77盐酸可乐定1瓶否78香草醛/香兰素1瓶否79盐酸吡哆醇/维生素B61瓶否80阿替洛尔1瓶否81维生素D21瓶否82盐酸哌唑嗪1瓶否83尼莫地平1瓶否84格列喹酮2瓶否85格列吡嗪1瓶否86氢氯噻嗪1瓶否87盐酸吗啉胍1瓶否88盐酸文拉法辛1瓶否89尼索地平1瓶否90尼群地平1瓶否91洛伐他汀1瓶否92辛伐他汀1瓶否93那格列奈1瓶否94咪喹莫特1瓶否95盐酸吡格列酮2瓶否96盐酸二甲双胍2瓶否97格列美脲2瓶否98非洛地平1瓶否99瑞格列奈2瓶否100醋氯芬酸1瓶否101伏格列波糖1瓶否102盐酸苯乙双胍2瓶否103盐酸金刚乙胺1瓶否104大黄素1瓶否105大黄酚1瓶否106番泻苷A1瓶否107番泻苷B1瓶否108乙基香兰素1瓶否109阿昔洛韦1瓶否110呋虫胺1瓶是111甲苯磺丁脲1瓶是112(± )-α-生育酚1瓶是113青藤碱1瓶否114盐酸丁双胍2瓶否115美金刚1瓶否116维生素A(视黄醇)1瓶是117格列齐特1瓶否118阿昔洛韦-D41瓶是119藜芦醛/甲基香兰素1瓶是120氨氯地平1瓶否121醋磺己脲1瓶是1224-(氨甲基)环己甲酸1瓶是123盐酸苯氟雷司1瓶是124氯磺丙脲1瓶是125氯美扎酮1瓶是126格列苯脲2瓶是127对羟基苯甲酸乙酯1瓶是128褪黑素1瓶是129奥司他韦1瓶是130卡托普利1瓶是131维生素D3(胆骨化醇)1瓶是1321,3-二油酸-2-棕榈酸甘油三酯1瓶是133格列齐特1瓶是134格列吡嗪1瓶是135食用合成色素苋菜红标液3瓶否136食用合成色素亮蓝标液3瓶否137劳拉西泮1瓶是138美伐他汀1瓶是139妥拉磺脲1瓶是140硝苯地平1瓶是141硝西泮1瓶是142奥沙西泮1瓶是143盐酸吡哆醛1瓶是144吡哆胺二盐酸盐1瓶是145邻苯二甲酸二异壬酯1瓶是146罗格列酮1瓶是14716组分邻苯二甲酸酯混标1瓶是148磺胺间二甲氧基嘧啶-D61瓶是149磺胺邻二甲氧基嘧啶-D31瓶是150三唑仑溶液1瓶是151雷纳克铵盐一水合物1瓶是152灭瘟素S盐酸盐1瓶否1532,4-二氨基苯氧乙醇硫酸盐1瓶否154己二酸二乙酯1瓶是1552-羟基-4-甲氧基二苯甲酮2瓶是156D-(-)-核糖1瓶是157十四烷基二甲基苄基氯化铵水合物1瓶是158盐酸去甲乌头碱1瓶是159十六烷基苄基二甲基氯化铵水合物1瓶是160十二烷基二甲基苄基氯化铵二水合物1瓶是161阿托品1瓶是1625-胞苷酸1瓶是163二乙氨基羟苯甲酰基苯甲酸己酯1瓶是1642,3,5-混杀威1瓶是165盐酸妥布特罗1瓶是166维生素E醋酸酯1瓶是167二苯酮-32瓶是168乳铁蛋白1瓶是1692,3-二溴丙酰胺1瓶是170乙酸甲酯6瓶是171巯基乙酸1瓶是172盐酸奈比洛尔1瓶是173异麦芽酮糖水合物1瓶是174拉贝洛尔盐酸盐1瓶是175异维A酸1瓶是176九种ICP-MS混标2瓶是177亚油酸甘油三酯1瓶是178铬同位素标液1瓶是179五氯酚1瓶是180氯酸钠1支是181高氯酸钠1支是182氯酸盐-18O31支是183高氯酸盐-18O41支是1844-壬基酚1支是185双酚A1支是186双酚A-d41支是1873,5,3-壬基酚-13C61支是188对硫磷3支否189甲胺磷3支否190硫线磷3支否191特丁硫磷2支否192溴氰菊酯2支否193甲拌磷3支否194福美双2支否195灭线磷2支否196甲基毒死蜱2支否197马拉硫磷3支否198乙烯利2支否199苯醚甲环唑2支否200敌敌畏2支否201百菌清1支否202丙溴磷2支否203甲拌磷砜2支否204乙拌磷2支否205氧化乐果2支否206久效磷2支否207毒死蜱3支否208杀扑磷2支否209硫环磷2支否210倍硫磷2支否211甲基嘧啶磷2支否2123-氯-1,2-丙二醇3-MCPD1支是2132-氯-1,3-丙二醇2-MCPD1支是214D5-3-氯-1,2-丙二醇1支是215D5-2-氯-1,3-丙二醇1支是2162-氯-1,3-丙二醇二硬脂酸酯1支是217D5-2-氯-1,3-丙二醇二硬脂酸酯1支是2181,3-二氯-2-丙醇1,3-DCP1支是2192,3-二氯-1-丙醇2,3-DCP1支是220D5-1,3-二氯-2-丙醇1支是221D5-2,3-二氯-1-丙醇1支是222视黄醇2支是223α-生育酚2支是224β-生育酚2支是225δ-生育酚2支是226γ-生育酚2支是227维生素D22支是228维生素D32支是229维生素K13支是230β-胡萝卜素1支是231免疫球蛋白IgG1支是232盐酸吡哆醇1支是233盐酸吡哆醛1支是234双盐酸吡哆胺1支是235柠檬黄3支否236新红1支是237苋菜红3支否238胭脂红3支否239日落黄3支否240亮蓝3支否241赤藓红1支是242酸性红1支是243诱惑红1支是244靛蓝1支是245甲醛2支否246曲酸1支是247噻二唑1支是248苄青霉素1支是249苯咪青霉素1支是250甲氧苯青霉素1支是251苯氧乙基青霉素1支是252醋酸氟氢可的松1支是25316种多环芳烃混标1支是254三氯杀螨醇1支否255七氯1支否256艾氏剂1支否257狄氏剂1支否258草甘膦2支是259草甘膦同位素2支是260甜蜜素20支否2613-氨基-2-恶唑酮1支是2625-吗啉甲基-3-氨基-2-恶唑烷基酮1支是2631-氨基-乙内酰脲1支是264氨基脲1支是2653-氨基-2-恶唑酮的内标物(D4-AOZ)3支是2665-吗啉甲基-3-氨基-2-恶唑烷基酮的内标物(D5-AMOZ)3支是2671-氨基-乙内酰脲的内标物(13C-AHD)2支是268氨基脲的内标物(13C15N-SEM)2支是269丙烯酰胺1支是270丙烯酰胺内标(13C3丙烯酰胺)1支是271脱氢乙酸2支是272纽甜1支是2734-甲基咪唑1支是274涕灭威3支否275涕灭威砜3支否276涕灭威亚砜3支否277克百威8支否278三羟基克百威8支否279速灭威2支否280灭多威7支否281甲萘威3支否282异丙威2支否283仲丁威2支否284残杀威2支否285多菌灵7支否286吡虫啉7支否287啶虫脒7支否288烯酰吗啉7支否289氯唑磷3支否290邻苯二甲酸二异壬酯DINP1支是29116种邻苯二甲酸酯混标1支是292叶黄素2支是293阿维菌素2支否294氟甲腈1支否295内吸磷1支否296辛硫磷1支否297甲氨基阿维菌素苯甲酸盐1支否298哒螨灵1支否299噻虫啉1支否300霜霉威2支否301吡唑醚菌酯2支否302噁唑菌酮1支否303乙霉威1支否304嘧菌酯1支否305啶酰菌胺1支否306氟吡甲禾灵1支否307氟吡氯禾灵1支是308茚虫威1支否309氯吡脲1支否310戊唑醇1支否311多效唑1支否312天然辣椒素1支是313合成辣椒素1支是314二氢辣椒素1支是315α-硫丹1支否316β-硫丹1支否317硫丹硫酸盐1支否318顺-氯丹1支否319反-氯丹1支否320氧氯丹1支否3211,3-二油酸-2-棕榈酸甘油三酯1支是322BHA1支是323BHT1支是324TBHQ1支是325PG1支是326牛磺酸1支是327碘化钾1支是328三唑醇1支否329戊菌唑1支否330苯霜灵1支否331苯酰菌胺2支否332杀虫双1支否333甲霜灵1支否334嘧霉胺1支否335喹硫磷1支否336啶氧菌酯1支否337噻螨酮1支否338乙酰甲胺磷1支否339甲拌磷亚砜1支否340氟胺氰菊酯1支否341三氯乙酸1支否342氯氟氰菊酯(三氟氯氰菊酯)1支否343氯氰菊酯1支否344氟氰戊菊酯1支否345联苯菊酯1支否346邻苯基苯酚1支是347甲基异柳磷1支否348乐果1支否349甲基硫环磷1支否350甲氰菊酯1支否351腺嘌呤核苷酸(AMP)1支是352尿嘧啶核苷酸(UMP)1支是353次黄嘌呤核苷酸(IMP)1支是354三氯甲烷2支否355四氯化碳2支否356六号溶剂3支否357抗蚜威1支否358谷硫磷1支否359敌百虫1支否360三唑酮1支否361甲基立枯磷1支否362丁草胺1支否363氟酰胺1支否3648种有机氯混标1支否36537种脂肪酸甲酯3支是366月桂酸甘油三酯1支是367肉豆蔻酸甘油三酯1支是368a-亚麻酸甘油三酯1支是369花生四烯酸甘油三酯1支是370二十碳五烯酸甘油三酯1支是371二十二碳六烯酸甘油三酯1支是372反-9-十八碳一烯酸甲酯1支是373反,反-9,12-十八碳二烯酸甲酯1支是374氯霉素-D51支是375氟苯尼考胺1支是376左旋咪唑1支是377沙丁胺醇-D31支是378克伦特罗-D91支是379莱克多巴胺-D31支是380特布他林1支是381恩诺沙星-D51支是382诺氟沙星-D51支是383环丙沙星-D81支是384氯丙嗪-D61支是385氯丙嗪1支是386地塞米松-D41支是387地西泮1支是3883-甲基喹噁啉-2-羧酸1支是389氟甲喹1支是390喹噁啉-2-羧酸-D41支是391恩诺沙星1支是392环丙沙星1支是393土霉素2支是394丁硫克百威1支否395磺胺1支是396磺胺二甲异嘧啶钠1支是397磺胺对甲氧嘧啶1支是398磺胺甲基异恶唑内标-13C61支是399磷酸三苯酯2瓶是400磷脂酰胆碱1瓶否401磷脂酰乙醇胺1瓶是402磷脂酰肌醇1瓶是403鞘磷脂1瓶是第四包色谱柱序号名称数量单位是否可以采购进口产品1阴离子色谱柱SH-AC-3(含保护柱SH-G-1)2套否2阴离子色谱柱SH-AC-4(含保护柱SH-G-1)2套否3阴离子色谱柱SH-AC-5(含保护柱SH-G-1)2套否4阴离子色谱柱SH-AC-9(含保护柱SH-G-1)2套否5阴离子色谱柱SH-AC-11(含保护柱SH-G-1)2套否6阴离子色谱柱SH-AC-14(含保护柱SH-G-1)2套否7阴离子色谱柱SH-AC-15(含保护柱SH-G-1)2套否8阴离子色谱柱SH-AC-16(含保护柱SH-G-1)2套否9阴离子色谱柱SH-AC-17(含保护柱SH-G-1)2套否10阴离子色谱柱SH-AC-18(含保护柱SH-G-1)2套否11阳离子色谱柱SH-CC-1(含保护柱SH-G-1)2套否12阳离子色谱柱SH-CC-3(含保护柱SH-G-1)2套否13阳离子色谱柱SH-CC-4(含保护柱SH-G-1)2套否14液相色谱色谱柱1支是15SB-C18色谱柱1支是16CORTECSC18色谱柱2支是17CORTECSC18色谱柱2支是18BEHAmide色谱柱1支是19CORTECSUPLCC182支是20CORTECSUPLCC18+2支是21CORTECSC18+2支是22XbridgeBEHC181支是23XbridgeC181支是24XbridgeC181支是25XbridgeC181支是26CORTECSC18色谱柱2支是27色谱柱(染发剂用)4支是28BEHC18色谱柱1根是29BEH-C18色谱柱2支是30BEH-C18色谱柱2支是31SunfireC18色谱柱2支是32CAPCELLPAKCR色谱柱2支是33CAPCELLPAKCR色谱柱2支是34HILIC柱ObeliscR2支是第五包前处理柱序号名称数量单位是否可以采购进口产品1C18前处理柱5盒否2RP前处理柱5盒否3H前处理柱5盒否4Na前处理柱5盒否5HCO3前处理柱5盒否6Ba前处理柱5盒否7Ag前处理柱5盒否8BondElut-Accucat10盒是9ChemElut硅藻土柱5包是10AccellPlusQMA固相萃取柱2盒是11PRIMEHLB固相萃取柱10盒是12CORTECSUPLCC18保护住2盒是13固相萃取柱150盒是14固相萃取柱75盒是15混合填料净化柱3盒是16黄曲霉毒素总量免疫亲和柱(B1、B2、G1、G2)10盒否17玉米赤霉烯酮免疫亲和柱12盒否18黄曲霉毒素M1免疫亲和柱75盒否19双酚A亲和柱,2盒否204合1瘦肉精亲和柱(克伦特罗、沙丁胺醇、特布他林、莱克多巴胺)2盒否2116合1磺胺亲和柱2盒否22维生素B12亲和柱2盒否23喹乙醇亲和柱2盒否24固相萃取柱20盒是25GEHealthcare,HiTrapTMHeparinHP柱50盒是26锌粉还原柱5支否第六包实验和仪器耗材序号名称数量单位是否可以采购进口产品1坩埚钳(圆钢镀铬)300mm12英寸5把否2苦味酸试纸2盒否3白头塑料洗瓶20个否4高压消解罐20套否5阴离子抑制器2个否6阳离子抑制器2个否7密封塞40个否8融样杯40个否9泵模块1个是10六通阀1个是11进样针1个是12定量环1个是13石英舟10套是14双铂网雾化器3个是15水基同心雾化器3个是16同心雾化器适配器3个是17高盐旋流雾室(水平/双观测)3个是18水基中心管3个是19高效去湿管2个是20催化管2个是21金汞齐管2个是22防污外壳1个是23自动进样器进样针2根是24汞齐化器2个是25催化管2个是26石墨炉清洁棉棒5包是27自动进样器进样针2根是28THGA石墨管5盒是29Cr元素灯1个是30Cd元素灯1个是31进样泵管5包是32内标泵管5包是33调谐优化液1瓶是34ICP中心管1根是35超级截取锥1个是36超锥固定螺钉2个是37pp样品瓶100包是38PP样品盖100包是39高盐雾化器2个是40镍采样锥2个是41镍截取锥2个是42雾化室废液套管,FPM1套是43PTFE接头,用于雾化器*气体管线1套是44带接头的样品管线,PTFE1套是45端盖气体管线的接头1套是46用于提取透镜的螺钉工具包1套是47用于omega透镜的螺钉工具包1套是48FPMO形圈,用于端盖1套是49螺钉和垫片工具包,用于反应池1套是50Omega透镜的螺钉和垫片工具包1套是51螺纹口锥形灭菌离心管(架装)5箱是52高透明聚丙烯锥形离心管5箱是53高透明聚丙烯锥形离心管10箱是54一次性使用医用丁腈检查手套80盒否55一次性使用医用丁腈检查手套60盒否56绿色芦荟乳胶手套50盒否57绿色芦荟乳胶手套50盒否58一次性使用医用橡胶检查手套50盒否59一次性使用医用橡胶检查手套50盒否60一次性使用医用橡胶检查手套50盒否61预纯化柱3根是62紫外灯4个是63纯水柱2根是64空气过滤器2个是65预处理柱2根是66ICP超纯化柱3根是67终端过滤器3个是68终端过滤器4个是69紫外灯2个是70进样瓶瓶盖2包是71在线过滤器卡套和替换筛板2套是72柱塞杆4套是73柱塞杆密封垫2套是74高性能单向阀阀芯2套是75I-CLASS二元溶剂管理器性能维护包2套是76I-ClassSM-FTN性能维护备件包2套是77柱塞杆2套是78柱塞杆密封垫3套是79智能型主动是阀阀芯2套是80ACQUITY进样阀芯2套是81ACQUITY针密封圈1套是82AcquityH-ClassSM-FTN性能维护备件包2套是83在线过滤器滤芯5袋是84低压电源2套是85真空泵油2套是86在线过滤器滤芯2套是87高性能脱气包1套是88电路板,在线脱气机控制1套是89在线脱气机真空泵1套是90自动进样器密封垫组件3套是91取样针组件1套是92泵头基座1套是93柱塞清洗密封垫基座1套是94过滤头(柱后衍生)10个是95Millipore超滤离心管5盒是96NORELL核磁管10盒是97QuEChERS整合管10盒否98活性炭口罩10包否99GL14牙螺纹20个否100分液漏斗20个否101螺纹拧盖离心管10包否102氘代甲醇5瓶是103氘代丙酮110瓶是104氘代丙酮25盒是105坩埚式耐酸玻璃滤器10盒是106口罩150盒是107口罩2100盒是108手套150盒是109手套250盒是110手套350盒是111强力高效擦拭布-白色10箱是112pH三复合电极10支否113瓶口分配器5个是114充电支架3个是115枪头110包是116枪头210包是117枪头310包是118密封垫6个是119培养瓶1包是120单口烧瓶15个否121鸡心瓶200个否122移液器16盒否123注射器1盒否124具塞三角瓶180个否125具塞比色管1300支否126具塞比色管2302支否127三角瓶聚碳酸酯16个是128蜂蜜色值专用比色皿50支否129具塞比色管3100支否130玻璃漏斗50支否131磨口锥形瓶50个是132玻璃层析柱10个否133分液漏斗10个否134改良链接层析柱10个否135鸡心瓶10个否136标口筒锥滴液漏斗5个否137圆底烧瓶10个否138分液漏斗1个否139具塞三角瓶2100个否140具塞三角瓶3100个否141鸡心瓶100个否142塑料漏斗100个否143塑料滴管5箱否144圆底摁盖离心管10包否145尖底螺纹拧盖离心管10包否146定性滤纸5箱否147称量纸14包否148塑料洗瓶20个是149容量瓶茶色150个否150容量瓶茶色250个否151刻度吸量管124根是152刻度吸量管224根是153刻度吸量管324根是154刻度吸量管424根是155刻度吸量管524根是156大肚移液管124根是157大肚移液管224根是158大肚移液管324根是159大肚移液管424根是160大肚移液管524根是161玻璃量筒10个是162滴定管6根是163磨口锥形瓶50个是第七包分型血清和生物试剂盒序号名称数量单位是否可以采购进口产品1YersiniaenterocoliticaantiserumO:31瓶是2YersiniaenterocoliticaantiserumO:51瓶是3YersiniaenterocoliticaantiserumO:81瓶是4YersiniaenterocoliticaantiserumO:91瓶是5肠炎弧菌检测用诊断血清(K型套装)1套是6肠炎弧菌检测用诊断血清O群套装1套是7弯曲菌诊断血清1套是8诺如病毒核酸(GⅠ/GⅡ)检测试剂盒(RT-PCR探针法)10盒否9维生素B12检测试剂盒110盒否10生物素检测试剂盒15盒否11叶酸检测试剂盒15盒否12泛酸检测试剂盒15盒否13黄曲霉毒素M1酶联免疫法试剂盒40盒是14黄曲霉毒素B1酶联免疫法试剂盒20盒是15黄曲霉毒素B1酶联免疫法试剂盒20盒是16黄曲霉毒素B1酶联免疫法灵敏检测试剂盒10盒是17泛酸检测试剂盒210盒是18叶酸检测试剂盒210盒是19维生素B12检测试剂盒210盒是20生物素检测试剂盒210盒是21B6检测试剂盒2盒是22烟酸检测试剂盒2盒是23肌醇检测试剂盒2盒是24金黄色葡萄球菌肠毒素总量5盒是25金黄色葡萄球菌肠毒素分型2盒是26无内毒素质粒小提中量试剂盒(DP118)5盒否27universalDNA纯化回收试剂盒5盒否28RNA纯化试剂盒5盒否29体外转录试剂盒3盒是30PCR产物纯化试剂盒3盒是31磁珠法DNA/RNA提取试剂盒2盒是32病毒DNA/RNA提取试剂盒2盒否33磁珠法病毒DNA/RNA提取试剂盒50盒否34酵母基因组DNA提取试剂盒5盒否第八包生物培养基序号名称数量单位是否可以采购进口产品1一次性培养皿400箱否2Baird-Parker琼脂平板3500盒否3缓冲蛋白胨水(BPW)300袋否4叶酸测定培养基150瓶否5生物素测定培养基100瓶否6维生素B12测定培养基100瓶否7泛酸测定培养基100瓶否8月桂基硫酸盐蛋白胨肉汤(LST)-单料150盒否9李氏菌增菌肉汤-LB2100盒否10亚硒酸盐胱氨酸增菌液(SC)100盒否11四硫磺酸盐煌绿增菌液(TTB)100盒否12生物素测试肉汤100瓶是13B12测试肉汤100瓶是14泛酸测试肉汤100瓶是15缓冲蛋白胨水培养基20桶是16平板计数琼脂100瓶是17牛心浸粉5瓶否第九包生物试剂耗材序号名称数量单位是否可以采购进口产品1萘啶酮酸(C2)20盒否2丫啶黄素(C2)20盒否3木糖b30盒否4鼠李糖30盒否5耐高温高压分注管10包是63M压力灭菌指示胶带30卷是7灭菌取样袋20箱是8一次性采样拭子10箱是9一次性防护服10箱否10滤膜30盒是11革兰氏染色质控玻片2盒是12革兰氏染色液2盒是13厌氧产气袋30盒是14厌氧指示剂2盒是15接种环50箱是16TRNzolUniversal总RNA提取试剂4瓶否17Pgm-simple-TFast克隆试剂盒-VT3084盒否18T-fast感受态细胞(CB109)15盒否19柠檬酸钠(无水)5瓶是20丙酮酸钠10瓶是21多粘菌素B4盒是22亚硫酸钠2瓶是23亚碲酸钾4瓶否24氯化锂4瓶是25几丁质(甲壳素)50瓶是26壳聚糖5瓶是27无水海藻糖1瓶否28氯化铵1瓶是29乙酸钠6瓶是30硫酸铵6瓶是31牛胆粉1瓶否32柠檬酸铁1瓶否33胆酸钠10瓶是34硫代硫酸钠(无水)10瓶是35PCR八联排管20箱是36PCR八联排盖荧光定量专用20箱是37PCR薄壁管10箱是38光学96孔板30盒是39PrimeScriptOneStepRT-PCRKit5盒是40碱性磷酸酶CIAP2盒是41XbaI限制性内切酶2盒是42吸头15箱是43吸头25箱是44吸头短白5箱是45离心管15箱是46带滤芯吸头150盒是47带滤芯吸头250盒是48带滤芯吸头350盒是49吸头33箱是50吸头43箱是51离心管220包是52深孔板(圆底)10箱是53吸头510盒是54吸头65盒是55研磨钢珠20瓶否56电动分样器吸头5盒是57自封袋10包否58灭菌自封袋10包否59离心管320盒否60离心管410盒是61离心管55盒是6296孔快速反应板,半裙边,带条码40盒是63荧光定量PCR96孔板50盒是64耗材研磨钢珠10瓶否65PBS10瓶否66透明平顶无裙边96孔PCR板5箱是67平盖八联管(含盖)5箱是68管MicroAmpFast8-TubeStrip5盒是69盖MicroAmpOptical8-CapStrip5盒是70VetMAXXenoDNA内部阳性对照2支是71CHARGESWITCHPROPCR2盒是72微孔板迷你离心机配件1件否73CONDITIONINGREAGENT3盒是74溶壁酶5支否具体招标需求详见招标文件
  • 赫施曼助力铌铁中钛含量的测定
    铌铁是冶金行业冶炼钢的重要原材料,铌作为合金元素加入钢中能显著改善钢的焊接性能。铌与钛,钒、锆等元素相似,能对钢的性能产生良好的影响。钛作为铌铁中有益元素,准确测定其含量对炼钢质量具有重要意义。根据GB/T 3654.8-2023,铌铁中钛含量的测定方法是:变色酸光度法和二安替比林甲烷光度法。其中变色酸光度法原理为:试料用氢氟酸和硝酸分解,冒硫酸烟,在草酸溶液中,变色酸与钛形成红色络合物,于波长475nm处测量其吸光度。方法如下: 1.将试料(见表1)置于100mL聚四氟乙烯烧杯或100mL铂皿中,用赫施曼HF型瓶口分配器加入5mL氢氟酸(ρ=1.15g/mL),滴加5mL硝酸(ρ=1.42g/mL),低温加热至试料完全溶解,用瓶口分配器加入15mL硫酸溶液(1+1),继续加热至冒硫酸烟并保持约4min。2.取下稍冷,将试液移入预先盛有50mL草酸溶液(50g/L)的250mL烧杯中,再以100mL草酸溶液(50g/L)分次洗涤聚四氟乙烯烧杯或铂皿,洗液合并于烧杯中,溶液加热保持不沸至澄清。3.取下稍冷,用Miragen电动移液器加入2mL过氧化氢(30%),加热微沸30s取下,冷却至室温。将试液全部移入200mL容量瓶中,以40mL草酸溶液(50g/L)分次洗涤烧杯,洗液合并于容量瓶中,用水稀释至刻度,混匀。4.按表1移取试液和随同试料空白各两份,分别置于50mL容量瓶中,以下分别按5和6进行。5.显色溶液:用瓶口分液器向一份试液和随同试料的空白溶液中补加草酸溶液(50g/L)至30mL,用Miragen电动移液器加lmL亚硫酸钠溶液(200g/L)混匀,放置2min,加入6mL变色酸溶液(50g/L),用水稀释至刻度,混匀。6.参比溶液:向另一份试液和随同试料的空白溶液中补加草酸溶液(50g/L)至30mL,用Miragen电动移液器1mL亚硫酸钠溶液(200g/L),以水稀释至刻度,混匀。7.将部分显色溶液移入适当的比色皿中,以各自的参比溶液为参比,于分光光度计波长475nm处测量其吸光度。用显色溶液的吸光度减去随同试料空白试验的吸光度后,从校准曲线上查出相应的钛量。移取液体的一般是量筒和移液管,存在三个缺点:一是敞口操作,对强腐蚀、有毒有害、挥发性的液体,存在安全隐患;二是操作上环节多,需目视确认凹液面,实现精度难以保证;三是效率较低,无法满足日益增加的液体移取的工作需求。赫施曼瓶口分配器可代替量筒、刻度移液管,便捷、安全地进行0.2-60mL的液体移取。其中ceramus痕量分析瓶口分配器,采用极耐腐蚀的材质,以及可以阻断试剂挥发进主机的专利密封阀设计,使其适用于除氢氟酸以外的几乎所有溶剂的液体分配工作,包括浓硝酸、浓盐酸、硫酸和王水等强腐蚀性或挥发性的特殊试剂。赫施曼还有氢氟酸专用瓶口,用于氢氟酸的便捷分液。实验室移取几微升到几毫升的液体,一般采用移液器。Miragen电动移液器,接头和内腔为不锈钢,相对于常见的橡胶和塑料,更适合有机试剂。电枪的数值靠设定或选定,电机控制活塞运动,吸液和排液也更加稳定,还有步骤少、调数快、模式多等诸多优势。
  • 世界首创万吨级“煤制乙二醇”成套技术通过鉴定
    世界首创万吨级“煤制乙二醇”工业化示范获得成功   5月7日,中国科学院“世界首创万吨级煤制乙二醇工业化示范”新闻发布会在北京人民大会堂隆重举行。全国人大常委会副委员长、中国科学院院长路甬祥出席会议。科学技术部、工业和信息化部、国土资源部、自然科学基金委、中国石油化工协会等相关部门领导,福建省人民政府领导、江苏省人民政府领导、内蒙古自治区领导以及技术成果鉴定专家组组长何鸣元院士等共同出席了发布会。会上获悉:中国科学院福建物质结构研究所依托20多年的技术积累与江苏丹化集团、上海金煤化工新技术有限公司联手合作,成功开发了“万吨级CO气相催化合成草酸酯和草酸酯催化加氢合成乙二醇”(简称“煤制乙二醇”)成套技术。该成套技术已通过中国科学院组织的成果鉴定。   “世界首创万吨级煤制乙二醇工业化示范”新闻发布会举行      全国人大常委会副委员长、中国科学院院长路甬祥讲话   鉴定委员会专家一致认为,此项成果标志着我国领先于世界实现了全套“煤制乙二醇”技术路线和工业化应用,是一项拥有完全自主知识产权的世界首创技术。该技术的推广应用将有效缓解我国乙二醇产品供需矛盾,对国家的能源和化工产业产生重要积极影响,具有重要的科学意义、突出的技术创新性和显著的社会经济效益。   乙二醇是重要的化工原料和战略物资,用于制造聚酯(可进一步生产涤纶、饮料瓶、薄膜)、炸药、乙二醛,并可作防冻剂、增塑剂、水力流体和溶剂等。“煤制乙二醇”即以煤代替石油乙烯生产乙二醇。专家指出,此类技术路线符合我国缺油、少气、煤炭资源相对丰富的资源特点。中国科学院福建物质结构研究所通过长期基础研究、应用研究和产业化获得的该项成果,拥有多项技术专利和自主知识产权 该成套技术符合循环经济 “减量化、再利用、资源化”三原则,其显著特点还在于全部采用工业级的CO、NO、H2、O2和醇类为原料,对形成规模化产业极为有利。鉴定委员会专家在现场考察后认为,万吨级工业试验装置运行稳定,具备了进一步建设大规模工业化生产装置的条件。据专家测算,用石油乙烯路线每生产一吨乙二醇约耗2.5吨石油。目前全世界用石油乙烯生产的2000多万吨乙二醇,若都以煤为原料进行生产,那么,节省下来的石油相当于新开发一个年产5000万吨石油的大庆油田。   煤制乙二醇技术是国家“八五”、“九五”重点科技攻关项目。中科院福建物构所自1982年起经过多年前期研究,获得了一系列具有完全自主知识产权的小试技术和模试技术 江苏丹化集团技术团队拥有化工新技术产业化的长期积淀,曾在国内首创“碳化法制碳酸氢铵”、“羰基化合成醋酐”和“变压吸附分离CO”等多项化工新工艺。2005年起,由上海盛宇企业投资有限公司投资约1.8亿元,与中科院福建物构所、丹化集团、上海金煤化工新技术有限公司等强强联手启动了“CO气相催化合成草酸酯和草酸酯催化加氢合成乙二醇”的产业化试验,经过3年多的艰苦努力,在国家发改委、科技部、中科院、福建省、上海市和江苏省政府的大力支持下,相继在丹化集团建成年产300吨中试和1万吨工业化试验两套装置,在多项关键技术领域取得突破,2007年12月万吨装置顺利开车打通全流程,经过一年多的实际运行检验,并经专家组鉴定,证明全球首套“万吨级煤制乙二醇”技术已完全取得成功。   经中国科学院和国家财政部批准,中科院福建物构所和上海金煤化工新技术有限公司已将全部煤制乙二醇技术入股通辽金煤化工有限公司,该企业正在内蒙古通辽市建设全球首套年产20万吨煤制乙二醇示范装置,该项目是我国煤化工五大重点示范工程之一,预计今年年底前即可建成投产,未来五年内将建成120万吨生产规模,有望成为国内最大的乙二醇生产企业,实现部分替代进口。   关于该项目的合作模式,全国人大常委会副委员长、中国科学院院长路甬祥认为:在学习实践科学发展观、建设创新型国家进程中,中国科学院实施创新工程,构建了知识创新、技术创新和工程产业化的“金三角”并发挥三者互动的科技创新体系,在推动科技创新、科技成果转移转化与产业化、创建高新技术企业等方面谋划了独具特色的创新机制。在应对国际金融危机的新形势下,它将为企业通过科技成果转移转化,提升自主创新能力提供一些宝贵的经验,为实现我国国民经济的平稳快速发展,探索出一条合作共赢的创新之路。
  • 【飞诺美色谱】罕见遗传性疾病的救星——寡核苷酸药物
    新冠疫情促使mRNA技术快速发展的同时也使人们开始高度关注核酸药物这一领域。核酸药物包括反义核酸(ASO)、小干扰RNA(siRNA)、微小RNA(miRNA)、小激活RNA(saRNA)、信使RNA(mRNA)、适配体(aptamer)、核酶(ribozyme)、抗体核酸偶联药物(ARC)等,是基因治疗的一种形式。除mRNA药物外,其他几种核酸药物,基本上都是由100个以内的核糖核苷酸或脱氧核糖核苷酸单链或双链组成,所以也称为寡核苷酸药物。与mRNA药物编码产生目的蛋白不同的是,寡核苷酸药物主要是通过碱基互补配对原则与DNA、mRNA或者pre-mRNA配对,通过基因沉默、非编码RNA抑制、基因激活等一系列机制来调节基因表达。已上市寡核苷酸药物化学结构(Nature reviews drug discovery)寡核苷酸药物对比于小分子药物及蛋白药物,具有多方面的优势,首先可根据目标靶点设计碱基序列,靶点明确、特异性强;其次寡核苷酸药物从转录后水平进行治疗,可选择的靶点丰富,特别是能覆盖蛋白质不可成药的靶点以及开发由基因缺陷导致的遗传性疾病的相关靶点;另外寡核苷酸药物由于序列短,可采用化学合成方法,完成目标序列的装配,并结合生物学测试筛选有效序列,能够避免盲目开发,节省研发时间。但是寡核苷酸药物在研发中也面临着诸多挑战。寡核苷酸在细胞外稳定性低,易被核酸酶降解,加上分子量及负电荷的因素,难以进入细胞,因此在研发过程中,使其保持稳定的结构以及能够有效递送的传递载体是主要考虑的两个因素。寡核苷酸核酸分子的改造主要包括磷酸骨架,碱基以及糖环的修饰,在改造中需要考虑多个因素,包括稳定性、药代动力学、碱基配对的亲和力等,最重要的是能够保留被功能酶及功能蛋白所识别的功能。因此,在前期研发过程中,需要对寡核苷酸进行精确的结构表征及定量。丹纳赫生命科学旗下SCIEX 的高分辨质谱ZenoTOF&trade 7600系统具有一系列对寡核苷酸进行分析的方案,可进行寡核苷酸的分子量分析并进行杂质检测,可对寡核苷酸进行碱基序列鉴定。由于Zeno TOF 7600具有EAD和CID两种互补的碰撞模式,不但能产生丰富的离子碎片信息,还会保留完整的核酸低丰度修饰信息。寡核苷酸分子量及碱基序列的检测高分辨质谱ZenoTOF&trade 7600系统另外,高分辨质谱ZenoTOF&trade 7600系统还能实现对寡核苷酸的定量分析,线性范围可达 5 ng/mL – 10000 ng/mL,可以完成寡核苷酸药物在研发阶段的药代及多种代谢产物同时鉴定及定量分析。在研发阶段,对于采用同一种仪器进行鉴定及定量,可避免定量方法转移时造成的方法优化时间浪费,可帮助用户加快研发进度。艾杰尔-飞诺美寡核苷酸定量分析前处理试剂盒高分辨质谱对寡核苷酸进行定量分析在寡核苷酸药物种类中,反义寡核苷酸由于是单链,分子量小,递送较其他寡核苷酸容易,且反义寡核苷酸功能多样,可上调或下调基因表达,成为研发罕见遗传性疾病药物中最关注的种类。为了帮助研究人员开发这类针对罕见遗传性疾病患者的ASO疗法,FDA还发布了指导这类ASO疗法非临床检测的指南。在已上市的寡核苷酸药物中,大部分都是用于治疗罕见遗传性疾病的反义寡核苷酸药物,特别是杜氏型肌营养不良,已经上市了针对不同基因位点的四款产品。药品名治疗疾病药物种类上市时间Fomivirsen巨细胞病毒视网膜炎反义寡核苷酸1998.8(已退市)Pegaptanib年龄相关性黄斑变性核酸适配子2004.12Mipomersen纯合性家族性高胆固醇血症(hoFH)反义寡核苷酸2013.1(已退市)Defibrotide肝静脉闭塞反义寡核苷酸2016.3Eteplirsen杜氏型肌营养不良(DMD基因外显子51)反义寡核苷酸2016.9Nusinersen脊髓性肌萎缩症 (SMN2基因外显子7)反义寡核苷酸2016.12Patisiran遗传性甲状旁腺素淀粉样变性小干扰RNA2018.8Inotersen遗传性甲状旁腺素淀粉样变性反义寡核苷酸2018.10Waylivra家族性乳糜微粒血症综合征反义寡核苷酸2019.5Givosiran急性肝卟啉症小干扰RNA2019.11Golodirsen杜氏型肌营养不良(DMD基因外显子53)反义寡核苷酸2019.12Viltolarsen杜氏型肌营养不良(DMD基因外显子53)反义寡核苷酸2020Lumasiran原发性高草酸尿症I型小干扰RNA2020Inclisiran成人高胆固醇血症及混合性血脂异常小干扰RNA2020Casimersen杜氏型肌营养不良(DMD基因外显子45)反义寡核苷酸2021.2.25已上市的寡核苷酸药物(根据网上资料整理)由此可见,对罕见病的诊断也非常重要,很多罕见遗传病是由几十甚至上百种突变引起的,而且不同区域的患者可能存在不同的基因变异位点,NGS是现在进行高通量基因检测的重要手段。丹纳赫生命科学旗下Integrated DNA Technologies(IDT)公司(中文名称:埃德特)是全球领先的NGS试剂供应商,其外显子捕获产品Exome Research Panel V2特别适合进行遗传性疾病的全外显子组测序,助力遗传性疾病的诊断。V2由 415,115 条单独合成且经过质控检验的 xGen Lockdown 探针组成。探针组跨越人基因组的 34 Mb 目标区域(19,433 个基因),并且覆盖 39 Mb 的探针空间(即由探针覆盖的基因组区域)。探针是使用全新的“捕获感知”(capture-aware) 算法进行设计的,并进行了专有的脱靶分析,确保实现完整的设计覆盖度。探针组中的所有探针均严格按照 ISO 13485 标准进行生产。每条探针均经过质谱法和双定量测量检验,确保探针的质量及在探针库中具有适当的代表性。IDT Exome Research Panel试剂盒
  • 2025年版《中国药典》2341公示稿|第三法 药材及饮片中二硫代氨基甲酸盐类农药残留量测定法解决方
    25药典专栏7月26日,国家药典委员会发布了“2341 农药残留量测定法公示稿”和“0212 药材和饮片检定通则公示稿”,一经发布,引起了行业内的广泛关注。方法主要修订了以下内容:删除原第一、二、三法;原第五法药材及饮片(植物类)中禁用农药多残留测定法,重列为第一法,并由原有的33种禁用农残扩增为47种农残;新增第二法相关药材及饮片品种中农药多残留测定法;新增第三法药材及饮片中二硫代氨基甲酸盐类农药残留量测定法。根据0212药材和饮片检定通则药典标准草案公示稿的限量值要求和第三法药材及饮片中二硫代氨基甲酸盐类农药残留量测定法的方法要求,岛津(上海)实验器材有限公司第一时间进行方案应对,具体应用详见下文。1. 实验部分1.1 分析条件GC条件 仪器配置:岛津GCMS-TQ系列气相色谱-质谱联用仪; 毛细管柱:SH-I-624Sil MS(30 m×0.25 mm,1.4 μm;P/N:R221-75962-30) 程序升温:初始温度40 ℃保持3.5 min, 以30℃/min升温到250℃,保持2 min。 载气:He载气控制方式:恒流模式,1.5 mL/min进样口温度:180 ℃ 进样时间:1 min进样量:1.0 μL进样方式:分流进样,分流比5:1质谱条件 电离模式:电子轰击电离(EI) 离子源温度:200 ℃ 接口温度:250 ℃ 检测器电压:调谐电压+0.5 kV溶剂延迟:1 min数据采集模式:MRM各化合物MRM参数如下: 1.2 样品前处理取本品,碎粉,过三号筛。精密称取1 g,置10 mL顶空瓶中,精密加入异辛烷3 mL,加盐酸-氯化亚锡溶液(取二水合氯化亚锡7.5 g,加盐酸215 mL使溶解,加水至500 mL,摇匀)5 mL,摇匀,立即密封。置80℃水浴中1小时,时时振摇。取出,冷却,摇匀,离心(5000转/min)3分钟,取上层有机相作为供试品溶液。 2. 实验结果2.1 标准品溶液的MRM色谱图2.2 实际样品的测定报告下载扫码获取PDF版应用报告
  • 话说实验室之趣味化学
    在日常的写作中时常出现一些写错或需要修改的地方,但是如果直接用笔或是涂改液直接涂改往往会使文章显得很零乱……那我们如何才能使这些涂改的痕迹不留在原稿上呢?用“消字灵”将原来的字迹消除绝对是最理想的方法!现在,让我们一起来看看如何制作“消字灵”吧!首先,我们要准备好草酸、蒸馏水、高锰酸钾、浓盐酸、漂白粉。  先配草酸溶液,用角匙取少量草酸晶体、放入烧杯或锥形瓶中、加蒸馏水使之溶解。然后将此溶液倒入一只滴瓶中,标签注明甲液。    再配制氯水或漂白粉溶液。  ①氯水的配制方法:将一角匙高锰酸钾晶体加入烧瓶中,然后再向烧瓶中加入浓盐酸,将烧瓶塞和导管连接好,固定在铁架台的石棉网上,用酒精灯加热。导管导入装有蒸馏水的锥形瓶中,片刻后将锥瓶中新制成的氯水装入乙滴瓶中。②漂白粉溶液的配制:如果没有条件准备一套制氯水的装置,就可以用漂白粉溶液代替氯水。配制漂白粉溶液的方法比较简单。用角匙将漂白粉加入到烧杯中,然后加蒸馏水溶解。漂白粉的溶解度较小,因此配制的溶液有些浑浊。将此液倒入乙滴瓶中即可。  这样,消字灵就制成了。去字迹时,先用甲液滴在字迹上,然后再将乙液滴上一滴,字迹会立即消失。注意晾干后再将修改的字迹写上去即可。 更多详情欢迎来电咨询:400 820 0117 同时欢迎点击我司网站 www.renhe.net 查询更多产品优惠信息 扫描以下二维码或是添加微信号“renhesci”,加入人和科仪的微信平台,即刻成为人和大家庭中的一员。 现在加入更有好礼相送! 上海人和科学仪器有限公司 上海市漕河泾新兴技术开发区虹漕路39号华鑫科技园区B座四楼(200233) 电话:021-6485 0099 传真:021-6485 7990 公司网址: www.renhe.net E-mail:info@renhesci.com 【上海人和科学仪器有限公司数十年来一直致力于提升中国实验室水平,从提供全球一流品质的实验室仪器、设备,到为客户度身定制系统的实验室整体解决方案,通过专业、细致和全面的技术支持服务实现“为客户创造更多价值”的承诺。主要代理品牌:DRAGONLAB、BROOKFIELD、BRUINS、GRABNER、EXAKT、ATAGO、ART、ILMVAC、IKA、MIELE、MEMMERT、KOEHLER、YAMATO、海洋光学、全谱科技等。】
  • 赫施曼助力生活饮用水中高锰酸盐指数的测定
    生活饮用水水质的优劣与人类健康密切相关,随着社会经济发展、人民生活水平的提高,人们对生活饮用水的水质要求不断提高,饮用水水质标准也相应地不断发展和完善。2023年10月1日即将实施的GB/T 5750.7-2023,测定生活饮用水中高锰酸盐指数的第一法为:酸性高锰酸钾滴定法。其原理为:高锰酸钾在酸性溶液中将还原性物质氧化,过量的高锰酸钾用草酸还原。根据高锰酸钾消耗量表示高锰酸盐指数。其方法如下:所需试剂:1.硫酸溶液(1+1):将1体积硫酸(ρ20=1.84g/mL)在水浴冷却下缓缓加到3体积纯水中,煮沸,将高锰酸钾溶液经过赫施曼光能滴定器滴加至溶液保持微红色。2.草酸钠标准储备液:称取6.701g草酸钠,溶于少量纯水中,并于1000mL容量瓶中用纯水定容,置暗处保存。或使用有证标准物质。3.高锰酸钾标准储备溶液: 称取3.3g高锰酸钾,溶于少量纯水中,并稀释至1000mL。煮沸15min,静置2周。然后用玻璃砂芯漏斗过滤至棕色瓶中,至暗处保存并按下述方法标定浓度。a.用赫施曼瓶口分液器移取25mL草酸标准储备液于250mL锥形瓶中,加入75mL新煮沸放冷的纯水及2.5mL硫酸。b.用光能滴定器迅速加入约24mL高锰酸钾标准储备液,待褪色后加热至65℃,再继续滴定呈微红色并保持30s不褪。当滴定终了时,温度不低于55℃。记录高猛酸钾标准储备溶液用量。4.高锰酸钾标准使用溶液:将高锰酸钾标准储备液准确稀释10倍。5.草酸钠标准使用溶液:将草酸钠标准储备液准确稀释10倍。试验步骤:1.锥形瓶的预处理:用瓶口分液器向250mL锥形瓶内加入1mL硫酸溶液(1+3)及少量高锰酸钾标准使用溶液。煮沸数分钟,取下锥形瓶用草酸钠标准使用溶液经过opus电子滴定器滴定至微红色,将溶液弃去。2.吸取100mL充分混匀的水样(若水样中有机物含量较高,可取适量水样以纯水稀释至100mL),置于上述处理过的锥形瓶中。用瓶口分液器加入5mL硫酸溶液(1+3)。用光能滴定器滴加10.00mL高锰酸钾标准使用溶液。3.将锥形瓶放入沸腾的水浴中,放置30min。如加热过程中红色明显减退,将水样稀释重做。4.取下锥形瓶,用瓶口分液器趁热加入10.00mL草酸钠标准使用溶液,充分振摇,使红色褪尽。5.于白色背景上,用光能滴定器滴加高锰酸钾标准使用溶液,至溶液呈微红色即为终点。记录用量V1。6.向滴定至终点的水样中,趁热(70-80℃)用瓶口分液器加入10mL草酸标准使用溶液。立即用高锰酸钾标准使用溶液滴定至微红色,记录用量V2。以上实验多次涉及液体移取和滴定,移取液体的一般是量筒和移液管,存在三个缺点:一是敞口操作,对强腐蚀、有毒有害、挥发性的液体,存在安全隐患;二是操作上环节多,需目视确认凹液面,实现精度难以保证;三是效率较低,无法满足日益增加的液体移取的工作需求。瓶口分配器是目前较为普遍的量筒和移液管的替代升级,将目视凹液面定容改为调整数值/刻度来确定体积,能够大大提升液体移取的效率和安全性,实现精度也更有保证。滴定法一般使用的是玻璃滴定管,对试验人员的技术水平、实操经验和耐心的要求较高,还有灌液慢、控速难,读数乱(不同人次、位置的凹液面读数可能出现偏差)三大痛点。赫施曼的光能滴定器可抽提加液、手转硅胶轮控制滴定速度和体积;而opus电子滴定器可通过触屏来进行灌液、预滴定(设定单次添加的体积)、快速滴定和半滴滴定等功能。两种滴定器均为屏幕直接读数,可提高工作效率、降低目视误差,无需大量实操经验,降低了培训成本和人员个体差异,所得数据也更加准确、稳定。
  • 2013年3月1日起实施的食品及相关标准汇总
    2013年3月1日起实施的食品及相关标准汇总,根据国家标准委、工信化部公告筛选整理完成,供参考。 序号 标准号 标准名称 代替标准号 实施日期 1 GB/T 28803-2012 消费品安全风险管理导则   2013-3-1 2 HG/T 4320-2012 无机化工产品 气相色谱分析方法通用规则   2013-3-1 3 HG/T 3519-2012 工业循环冷却水中苯骈三氮唑测定 HG/T 3519-2003 2013-3-1 4 HG/T 3530-2012 工业循环冷却水污垢和腐蚀产物试样的采取和制备 HG/T 3530-2003 2013-3-1 5 HG/T 3539-2012 工业循环冷却水中铁含量的测定 邻菲啰啉分光光度法 HG/T 3539-2003 2013-3-1 6 HG/T 4322-2012 工业循环冷却水污垢和腐蚀产物中硅酸盐的测定   2013-3-1 7 HG/T 4323-2012 循环冷却水中军团菌的检测与计数   2013-3-1 8 HG/T 4325-2012 再生水中钙、镁含量的测定 原子吸收光谱法   2013-3-1 9 HG/T 4326-2012 再生水中镍、铜、锌、镉、铅含量的测定 原子吸收光谱法   2013-3-1 10 HG/T 4327-2012 再生水中总铁含量的测   2013-3-1 11 HG/T 4328-2012 水处理剂 氨基三亚甲基膦酸钠盐   2013-3-1 12 HG/T 4329-2012 水处理剂 乙二胺四亚甲基膦酸五钠   2013-3-1 13 HG/T 4330-2012 水处理剂 二亚乙基三胺五亚甲基膦酸钠盐   2013-3-1 14 HG/T 4331-2012 水处理剂混凝性能的评价方法   2013-3-1 15 HG/T 4367-2012 化学试剂 苯酚   2013-3-1 16 HG/T 3449-2012 化学试剂 甲基红 HG/T 3449-1999 2013-3-1 17 HG/T 3461-2012 化学试剂 一水合α-乳糖(α-乳糖) HG/T 3461-1999 2013-3-1 18 HG/T 3453-2012 化学试剂 一水合草酸铵(草酸铵) HG/T 3453-1999 2013-3-1 19 HG/T 3466-2012 化学试剂 磷酸二氢铵 HG/T 3466-1999 2013-3-1 20 HG/T 3465-2012化学试剂 磷酸氢二铵 HG/T 3465-1999 2013-3-1 21 QB/T 2571-2012 饮料混合机 QB/T 2571-2002 2013-3-1 22 QB/T 4356-2012 黄酒中游离氨基酸的测定 高效液相色谱法   2013-3-1 23 QB/T 4357-2012 营养强化剂 5′-胞苷酸   2013-3-1 24 QB/T 4358-2012 营养强化剂 5′-腺苷酸   2013-3-1
  • 岛津大气中PM2.5物质成分分析仪器(2)
    近来,雾霾天气频袭中国,在相关大气污染报道中,不断出现PM2.5一词。这是指在悬浮粒子状物质中粒径小于2.5&mu m的微小粒子,容易深入肺部,可对健康造成严重影响。 日本已于2009年9月设定了微小粒子状物质(PM2.5)的环境标准,在2010年3月31日修订的「基于大气污染防止法第22条规定的与大气污染状况持续监控相关的事务处理标准」中,规定按照国家指针实施PM2.5的成分分析。2011年7月29日,日本环境省分布了新的「PM2.5成分分析指针」。 继昨日介绍之后,在此继续介绍使用岛津分析装置分析PM2.5成分的应用实例。 ICP-MS分析无机元素成分例 介绍使用ICP-MS定量城市大气粉尘标准物质(NIST SRM1648)的实例。前处理采用微波分解装置分解样品,制成硝酸溶液后进行测定。下表表示大气粉尘标准物质的定量结果。结果与保证值非常一致。 ICPM-8500的特长 实现高灵敏度、多元素的同时分析 具有ppt水平的高灵敏度,并且实现多元素的同时分析。 采用等离子微炬管,降低了氩气消耗量 采用微炬管,使氩气消耗量减半,并且,可以高灵敏度同时分析从微量到高浓度的样品。 台式装置,维护简便 通过使用自动进样器AS-9和自动稀释装置ADU-1(选配件),可以实现自动分析。 X射线荧光装置(EDX)分析无机元素成分例 EDX-720的特长 简便操作,全自动测定 实现设定工作的自动化,初学者也可完成高精度的测定。 无需前处理,直接测定滤纸 如果使用能量色散型X射线荧光分析装置,则可以无化学前处理地对捕集在滤纸上的PM2.5物质进行元素分析。 可以高灵敏度地分析宽范围的元素 TOC仪(燃烧催化氧化/NDIR检测方式)分析水溶性有机物例 作为WSOC(水溶性有机碳)的主成分二羧酸的代表例,以下表示草酸分析的结果。在配制样品的纯水中含有大约0.02mg/L的TOC杂质,因此,各草酸水溶液的TOC值偏高,但都能够以3%以下的变动系数CV值进行定量。 分析条件 装置:TOC-LCPH 催化剂:高灵敏度催化剂 进样量:500&mu L 测定项目:TOC(经过酸化通气处理的TOC) 工作曲线:0-3mgC/L邻苯二甲酸氢钾水溶液 样品:特级试剂草酸2mgC/L、1mgC/L、0.2mgC/L水溶液 草酸水溶液的TOC测定结果 样品名 TOC值(mgC/L) n=3的CV值 2mgC/L草酸水溶液 2.013 0.95% 1mgC/L草酸水溶液 1.017 1.11% 0.2mgC/L草酸水溶液 0.223 2.06% TOC-L的特长 宽测量范围4&mu g/L~30000mg/L,适用于从超纯净水到高污染水(TOC-LCSH/CPH)的一切物质。 采用680℃燃烧催化氧化方式,高效率地测定所有有机成分。具备检测限为4µ g/L的高灵敏度检测能力,对应广泛领域的样品。 省空间省能源设计 与本公司以往装置相比,电力消耗降低36%,装置幅宽缩短约20%。 丰富的型号与选配件 ・ 备有方便处理测定数据的PC型号和简单操作的单机型号 ・ 安装选配件可以测定从固体样品到气体样品 ・ 安装TN单元可以测定总氮 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制