当前位置: 仪器信息网 > 行业主题 > >

羟基雌酮主要

仪器信息网羟基雌酮主要专题为您提供2024年最新羟基雌酮主要价格报价、厂家品牌的相关信息, 包括羟基雌酮主要参数、型号等,不管是国产,还是进口品牌的羟基雌酮主要您都可以在这里找到。 除此之外,仪器信息网还免费为您整合羟基雌酮主要相关的耗材配件、试剂标物,还有羟基雌酮主要相关的最新资讯、资料,以及羟基雌酮主要相关的解决方案。

羟基雌酮主要相关的论坛

  • 雌二醇 雌三醇 雌酮 LC-MS的测定方法

    我用LC-MS 测定雌二醇、雌三醇、雌酮 ,在摸索质谱条件时 ,总找不到碎片离子 ,ESI+和ESI-都试过 参考文献用别人的质谱条件 ,做液质联用时不出峰 ,别人用的是C18的柱子 ,我们用的是C8 是柱子的问题吗 ?还是质谱的问题 ?我应该怎么解决呢

  • 【第三届原创参赛】奶粉中雌酮、雌二醇、醋酸甲地孕酮、醋酸氯地孕酮 SPE-LC/MS/MS检测方法

    [size=2][color=#d40a00]维权声明:本文为sh100800原创作品,本作者与仪器信息网是该作品合法使用者,该作品暂不对外授权转载。其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现的,均属侵权违法行为,我们将追究法律责任。也请哪些垃圾网站不要随便转载,谢谢合作![/color][/size][size=3][font=Times New Roman]1.实验部分:[/font][/size][size=3][font=Times New Roman]1.1材料、试剂[/font][/size][size=3][font=Times New Roman]Cleanert PEP[font=宋体]吡咯烷酮化聚苯乙烯[/font]/[font=宋体]二乙烯基苯固相萃取柱[/font](100mg/6mL, P/N: PE1006[font=宋体],博纳艾杰尔科技[/font])[font=宋体];[/font]Cleanert Silica CM[font=宋体]改性硅胶固相萃取柱[/font] ( 1000mg/6mL , P/N : CM0006[font=宋体],博纳艾杰尔科技[/font]) [/font][/size][size=3][font=Times New Roman][font=宋体]液相色谱柱[/font] (Halo C18 , 2.1[font=宋体]×[/font]100mm, 2.7μm, P/N: 92812-602[font=宋体],博纳艾杰尔科技)[/font][font=宋体][/font][/font][/size][size=3][font=Times New Roman][font=宋体]标准品:雌酮([/font]CAS.No. 53-16-7[font=宋体])、雌二醇([/font]CAS.No. 50-28-2[font=宋体])、醋酸甲地孕酮([/font]CAS.No. 595-33-5[font=宋体])、醋酸氯地孕酮[/font] (CAS.No. 302-22-7 )[font=宋体],购自中国药品生物制品检定所。[/font][/font][/size][size=3][font=Times New Roman]1.2样品前处理方法[/font][/size][size=3][font=Times New Roman]1.2.1 Cleanert PEP样品提取净化法[/font][/size][size=3][font=Times New Roman][font=宋体]提取:取[/font]2g[font=宋体]奶粉,加标,然后加[/font]12mL 80% [font=宋体]乙腈,涡旋混匀两分钟后,离心([/font]90000r/min[font=宋体],[/font] 6min[font=宋体])取[/font]3mL[font=宋体]上清液,加入[/font]9mL[font=宋体]超纯水稀释,涡旋混匀后,待过[/font]Cleanert PEP[font=宋体]柱净化。[/font][/font][/size][font=宋体][size=3][font=Times New Roman]净化步骤:[/font][/size][/font][size=3][font=Times New Roman][size=4]1) [/size][font=宋体]活化:以[/font]5mL[font=宋体]乙腈,[/font]5mL[font=宋体]水活化[/font]Cleanrt PEP[font=宋体];[/font] [size=4][/size][/font][/size][size=3][font=Times New Roman][size=4]2) [/size][font=宋体]上样:把上述稀释后的样品溶液过柱,流速控制以[/font]1mL/min为宜;[/font][/size][size=3][font=Times New Roman][size=4]3) [/size][font=宋体]淋洗:待样品溶液完全通过小柱后,用[/font]5mL 5%[font=宋体]乙腈淋洗小柱,然后真空抽干[/font]3min;[/font][/size][size=3][font=Times New Roman][size=4]4) [/size][font=宋体]洗脱:以[/font]3-5mL乙腈洗脱目标,收集流出液;[/font][/size][size=3][font=Times New Roman][size=4]5) [/size][font=宋体]浓缩:收集液以氮气浓度吹干([/font]40[font=宋体]℃水浴),后以[/font]50% [font=宋体]甲醇水定容至[/font]1mL[font=宋体],混匀后过[/font]0.22μm[font=宋体]微孔滤膜过,进[/font][url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS分析。[/font][/size][size=3][font=Times New Roman]1.2.2 Cleanert Silica样品提取净化法[/font][/size][size=3][font=Times New Roman][font=宋体]提取:取[/font]2g[font=宋体]奶粉,加标,然后加[/font]12mL [font=宋体]乙腈,涡旋混匀两分钟后,离心([/font]9000r/min[font=宋体],[/font] 6min[font=宋体])取[/font]3mL[font=宋体]上清液,待过[/font]Cleanert Silica[font=宋体]柱净化。[/font][/font][/size][font=宋体][size=3][font=Times New Roman]净化步骤:[/font][/size][/font][size=3][font=Times New Roman][size=4]1) [/size][font=宋体]活化:以[/font]5mL[font=宋体]乙腈活化[/font]Cleanrt Silica小柱;[/font][/size][size=3][font=Times New Roman][size=4]2) [/size]上样:把上述提取液过柱,收集流出液;[/font][/size][size=3][font=Times New Roman][size=4]3) [/size][font=宋体]淋洗:以[/font]5mL乙腈洗涤小柱,收集流出液;[/font][/size][size=3][font=Times New Roman][size=4]4) [/size][font=宋体]浓缩:合并以上流出液液,以氮气浓度吹干([/font]40[font=宋体]℃水浴),后以[/font]50% [font=宋体]甲醇水定容至[/font]1mL[font=宋体]混匀后过[/font]0.22μm[font=宋体]微孔滤膜,进[/font][url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS分析。[/font][/size][size=3][font=Times New Roman]1.3 [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS检测条件[/font][/size][size=3][font=Times New Roman]1.3.1 孕激素(醋酸甲地孕酮、醋酸氯地孕酮)测定[/font][/size][size=3][font=Times New Roman][font=宋体]液[/font][font=宋体]相色谱条件:色谱柱[/font] (Halo C18[font=宋体],[/font] 2.1×100mm, 2.7μm)[font=宋体];流动相:[/font]A[font=宋体]:[/font]0.1%[font=宋体]甲酸水,[/font]B: [font=宋体]甲醇,梯度条件(略);流速:[/font]0.3mL/min[font=宋体],柱温:[/font]40[font=宋体]℃[/font],[font=宋体]进样量:[/font]10μL[/font][/size][size=3][font=Times New Roman][font=宋体]参考质谱条件:电离源:电喷雾正离子模式;其他(略)[/font][/font][/size][size=3][font=Times New Roman]1.3.2 雌激素(雌二醇、雌酮)测定[/font][/size][size=3][font=Times New Roman][font=宋体]液相色谱条件:色谱柱([/font]Halo C18 2.1×100mm,2.7μm[font=宋体]);流动相:[/font]A[font=宋体]:水,[/font]B: [font=宋体]乙腈,梯度条件(略);流速:[/font]0.3mL/min[font=宋体],柱温:[/font]40[font=宋体]℃[/font], [font=宋体]进样量:[/font]10μL[/font][/size][size=3][font=Times New Roman][font=宋体]参考质谱条件:电离源:电喷雾负离子模式;其他(略)[/font][/font][/size][size=3][font=Times New Roman]2.结果与讨论:[/font][/size][size=3][font=Times New Roman][font=宋体]结果见图[/font]1[font=宋体]、图[/font]2[font=宋体]。用[/font]Cleanert PEP ([font=宋体]反相[/font])[font=宋体]或[/font]Cleanert Silica CM([font=宋体]正相[/font]) [font=宋体]两种净化手段均可到达满意的回收率和净化效果,添加浓度在[/font]25ppb[font=宋体]时回收率可达到[/font]80% [font=宋体]。[/font][/font][/size][size=3][font=Times New Roman][font=宋体]用[/font]Halo[font=宋体]色谱柱可以实现样品的快速分离,大大提高工作效率。[/font][/font][/size][font=宋体][size=3][font=Times New Roman]雌二醇和雌酮两种激素,质谱相应偏低,质谱条件需要进一步优化。[/font][/size][/font][font=宋体][size=3][font=Times New Roman]本实验结果采用单点定量判定,结果可能有失偏颇,详细数据需做基质添加标准曲线确证,方法的精密度,稳定性等亦需要进一步确证。[/font][/size][/font][align=center][img=479,330]http://www.agela.com.cn/UploadFile/2010813125549674.gif[/img][/align][align=center][size=2][font=宋体]图[/font][/size][size=2][font=Arial]1 [/font][/size][size=2][font=宋体]两种孕激素总离子流图和选择离子流图(标品)[/font][/size][size=2][font=Arial][/font][/size][/align][align=center][img=548,376]http://www.agela.com.cn/UploadFile/2010813125620777.gif[/img][/align][align=center][size=2][font=宋体]图[/font][/size][size=2][font=Arial]2 [/font][/size][size=2][font=宋体]两种雌激素总离子流图和选择离子流图(奶粉样品)[/font][/size][/align][size=2][font=宋体]文章下载:[img]http://www.agela.com.cn/admin/sysimage/file/pdf.gif[/img][url=http://www.agela.com.cn/UploadFile/2010813125928665.pdf]奶粉中雌酮,雌二醇,醋酸甲地孕酮,醋酸氯地孕酮 SPE-[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LCMS[/color][/url]MS检测方法.pdf[/url]此方法为博纳艾杰尔原创,欢迎拨打400-606-8099或电邮 咨询技术或产品[/font][/size]

  • 【转帖】我国首次发现有害生物刺桐姬小蜂 国家环保总局要求各地加强防范

    最近,广东省深圳市首次发现可危害并造成刺桐属植物死亡的有害生物——刺桐姬小蜂。据悉,刺桐姬小蜂是2004年定名的新种害虫,在毛里求斯、美国夏威夷、新加坡、中国台湾省等少数国家和地区均已发现。该害虫专门危害刺桐属植物(如刺桐、杂色刺桐、金脉刺桐、珊瑚刺桐及鸡冠刺桐等),受危害的植株叶片、嫩枝等处出现畸形、肿大、坏死及虫瘿等症状,严重时引起植物大量落叶、植株死亡。该害虫可随植物苗木、植株、栽培介质等进行远距离传播扩散。2003年该害虫在台湾省发生疫情后,造成刺桐属行道树大量死亡。由于其破坏能力较强,疫情一旦爆发,将对自然生态和城市人居环境构成极大危害;同时,刺桐姬小蜂也会对生物多样性、自然保护区及环境敏感区产生不利影响。   为此,国家环保总局要求各地充分认识刺桐姬小蜂对生态环境的危害,积极开展对刺桐姬小蜂的预防工作;同时各地要积极组织对自然保护区及环境敏感区进行动态环境监测,特别是对刺桐属植物的监测,严防刺桐姬小蜂入侵,并制定应急预案;同时配合海关、质检等部门加强对进口物资的审批与审查,尤其是对已发现刺桐姬小蜂的国家和地区进口物资的审批与审查,严防其通过物资进口渠道进入我国;对已发生疫情的区域,及早扑灭疫情,不得将疫区的植物苗木、植株、栽培介质外运,防止疫情扩散蔓延。   同时,国家环保总局强调,由于刺桐姬小蜂是首次发现,要求各地务必高度重视对该害虫的防范工作;同时应加强部门协调,充分调动多方力量,严防疫情发生,确保各地自然生态及城市人居环境的健康稳定

  • 羟基丙酮的气相色谱问题

    [color=#444444]我需要用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]做羟基丙酮的外标线。但是羟基丙酮溶液是放在饱和碳酸钠里面的,而钠会对极性柱造成影响吧。想问该如何解决这个问题。[/color]

  • 【求助】5-羟基-11-桉叶烷烯-1-酮

    我想求一篇文献上一个化合物的核磁数据,麻烦大家能帮帮忙,5-羟基-11-桉叶烷烯-1-酮(5-hydroxy-11-eudesmen-1-one,corymbolone)最好能把MS IR C-NMR H-NMR都给找一下,呵呵

  • 请教有关二羟基丙酮的气相色谱分析

    在做二羟基丙酮的硅烷化分析的时候,出现一个问题:当标准样品的量比较少的时候比如10mg左右的时候,气相上出来的是二羟基丙酮的硅烷化的峰,但是当标品的来那个超过20mg的时候会出来二羟基丙酮硅烷化峰以及二羟基丙酮二聚体硅烷化峰,不知哪位专家做过此物质的分析,可否指点一下。

  • 有关羟基丙酮

    有关羟基丙酮

    大家在分析食用香精时,是否经常看到有羟基丙酮这个物质,这不是直接加入的吧?[img=,638,590]https://ng1.17img.cn/bbsfiles/images/2021/10/202110090914118356_1121_2970225_3.png!w638x590.jpg[/img]

  • 概述8-羟基喹啉的主要用途

    1、广泛用于金属的测定和分离。沉淀和分离金属离子的沉淀剂和萃取剂,能与下列金属离子络合:Cu?+2、Be?+2、Mg?+2、Ca?+2、Sr?+2、Ba?+2、Zn?+2、Cd?+2、Al?+3、Ga?+3、In?+3、Tl?+3、Yt?+3、La +3、Pb?+2、B?+3、Sb?+3、Cr?+3、MoO?+22、Mn?+2、Fe?+3、Co?+2、Ni?+2、Pd?+2、Ce?+3  1.用作医药中间体,是合成克泻痢宁、氯碘喹啉、扑喘息敏的原料,也是染料、农药中间体。该品是卤化喹啉类抗阿米巴药物的中间体,包括喹碘仿、氯碘喹啉、双碘喹啉等。这类药物通过抑制肠内共生菌而发挥抗阿米巴作用,对阿米巴痢疾有效,对肠道外阿米巴原虫无影响。国外报道本类药物能引起亚急性脊髓视神经病,故该药在日本和美国已禁用,双碘喹啉引起此病比氯碘喹啉较少见。8-羟基喹啉也是染料、农药的中间体。其硫酸盐和铜盐是优良的防腐剂、消毒剂和防霉剂。该品是化学分析的络合滴定指示剂。  2.用作沉淀和分离金属离子的络合剂和萃取剂,能与Cu+2、Be+2、Mg+2、Ca+2、Sr+2、Ba+2、Zn?+2、Cd+2、Al+3、Ga+3、In+3、Tl+3、Yt+3、La +3、Pb+2、B+3、Sb?+3、Cr+3、MoO?+22、Mn+2、Fe+3、Co+2、Ni+2、Pd+2、Ce+3、等多种金属离子络合。有机微量分析测定杂环氮的标准,有机合成。也是染料、农药及卤化喹啉类抗阿米巴药物的中间体。其硫酸盐和铜盐是优良的防腐剂。  3.加入环氧树脂胶黏剂中可提高对金属(尤其是不锈钢)的粘接强度和耐热老化性,用量一般为0.5~3份。是卤化喹啉类抗阿米巴药物的中间体,也是农药、染料的中间体。可作为防霉剂、工业防腐剂以及聚酯树脂、酚醛树脂和双氧水的稳定剂,还是化学分析的络合滴定指示剂。  4.本品是卤化喹啉类药物的中间体,也是染料、农药的中间体。其硫酸盐和铜盐是优良的防腐剂、消毒剂和防霉剂。化妆品中最大允许含量(质量分数)为0.3%,防晒产品和3岁以下儿童用品 ( 如爽身粉)禁用,并应在产品标签上注明 “ 3岁以下儿童禁用” 。在处理病菌感染的皮肤和细菌性传染湿疹时,乳液中8-羟基喹啉的质量分数为0.001%~0.02%。它也用作消毒剂、防腐剂和杀菌剂,其防霉菌作用强。8-羟基喹啉硫酸钾用于护肤膏霜和乳液中含量(质量分数)为0.05%~0.5%。

  • 请问4-羟基,2-丁酮的检测方法?

    [color=#444444]请问4-羟基,2-丁酮的检测方法?,可以具体到用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的什么柱子,进样温度吗?[/color]

  • 【讨论】关于对羟基苯乙酮的滴定含量方法

    哪位同志有对羟基苯乙酮的滴定含量检测方法.我这里有一个方法,但总是滴不好,用甲醇钠溶液进行滴定,用二甲基甲酰胺进行溶解,用麝香草酚蓝作指示剂.目前存在的问题就是终点变化不明显.哪位有用到或碰到类似情况,都来说说吧.

  • 【资料题目】NMR技术在苯基—2’,3’,4’—三羟基苯基酮分子内活泼质子动态特性研究中的应用

    看到这篇文章,很感兴趣,没能下载下来,下面是相关信息,欢迎有条件的上传附件,hoho:NMR技术在苯基—2’,3’,4’—三羟基苯基酮分子内活泼质子动态特性研究中的应用欧阳捷 北京师范大学分析测试中心 李敏一 北京师范大学分析测试中心 李维超 北京师范大学分析测试中心 邓志威 北京师范大学分析测试中心 摘 要:本文通过一维(ID)、二维(2D)核磁共振波谱法确定了苯基-2’,3’,4’——三羟基苯基酮分子结构,利用二维交换谱(2D EXSY)研究了该分子内活泼质子在二甲亚砜(DMSO)溶液中的动态特性,建立了活泼质子与溶液中水分子间的化学交换网络,并定量计算了化学交换的速率常数。实验结果表明:酚羟基氧形成分子内氢键使得它与自身的羟基氢的共价键被削弱,该活泼质子酸性增强,更容易发生反应。

  • 用高效液相色谱检测1,3-二羟基丙酮的方法

    您好!我正在做1,3-二氯丙酮水解生成1,3-二羟基丙酮的实验,具体的方法是1,3-二氯丙酮在乙醇保护羰基的条件下加碱冰浴水解完后再加入盐酸中和,我用液相色谱分析过生成物,色谱条件为C18的的柱子,柱温25度,波段200,流动相甲醇(80%)的水溶液,检测后再2.5min有连续的峰出现,我想知道怎样能把这些峰分开,您能指导一下对于这样的物质我该用什么条件来进行分析么?我也单独分析过1,3-而羟基丙酮的纯品,在2.5min时有峰,峰面积占比96.7%。

  • 孕马尿检测雌性激素,样品如何处理

    用液相紫外检测器(或二极管阵列检测器)检测孕马尿中的雌酮、17β雌二醇、马烯雌酮,孕马尿如何进行处理;雌酮、17β雌二醇、马烯雌酮最大吸收波长是多少nm

  • 【原创】【极限体验】应用月旭色谱柱对羟基苯甲醛方法开发

    【原创】【极限体验】应用月旭色谱柱对羟基苯甲醛方法开发

    前几天,领导安排检测一个业务单位送来一个样品让我们帮忙调试方法,样品名称为对羟基苯甲醛,分子式见下图,样品为类白色粉末。http://ng1.17img.cn/bbsfiles/images/2010/05/201005242248_220486_1637960_3.jpg首先查找相关信息:对羟基苯甲醛熔点113-118℃,相对密度1.129(30/4℃)。广泛用于医药、香料、农药、石油化工、电镀等领域.在医药工业中,主要用合成羟氨苄青霉素(阿莫西林)、抗菌增效剂甲甲氧苄胺嘧啶(TMP)、3,4,5-三甲氧基甲醛、对羟基苯酐氨酸、羟氨苄头孢霉素、人造天麻、杜鹃素、艾司洛尔等;在香料工业中用于合成香兰素、乙基香兰素、洋茉莉醛、丁香醛、茴香醛和覆盆子酮等香料;在农药中主要用作除草剂溴苯腈和羟敌草腈的合成;在化工中主要用于合成对羟基苯甲酸、对羟基甲酸苄酯、醋酸对羟基苯酚酯 ;在国外还用于生产杀菌剂、照相乳化剂、镀镍光泽剂、液晶等。

  • 古陶瓷真伪拉曼光谱——羟基鉴定方法

    1928年C.V.拉曼实验发现,当光穿过透明介质被分子散射的光发生频率变化,这一现象称为拉曼散射。光照射到物质上发生弹性散射和非弹性散射。弹性散射的散射光是与激发光波长相同的成分。非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应。 拉曼光谱分析技术是以拉曼效应为基础建立起来的分子结构表征技术,其信号来源与分子的振动和转动。其谱线数目、位移值和谱带强度等直接反映了分子的构成及构象信息。拉曼光谱的应用范围遍及化学、物理学、生物学和医学等各个领域,对于纯定性分析、高度定量分析和测定分子结构都有很大价值。http://www.gogochina.cn/uploadPic/news/2011/8/23/201182310221232704.jpg图:大师手绘加官图陶瓷艺术花瓶 拉曼光谱技术是一种分析技术,由于它能够获得物质的分子信息而被应用于文物的分析中,特别是拉曼光谱作为无损的分析方法,可应用于文物的原位分析。 羟基是由氢和氧两种原子组成的一价离子团(-OH),即氢氧根。字中左边的羊表示氧,右边的表示氢,读音取氢(qing)之qi,取氧(yang)之韵母ang,合起来念——“抢”。 羟基在高温下不稳定,在常温、常压地表环境下是稳定的,其在陶瓷釉面中的含量与陶瓷烧造出窑时间成正比关系。羟基是鉴定古陶瓷真伪的定性、定量物质。 羟基鉴定方法原理及优点 原理(一)我们知道陶瓷在烧造过程中会发生一系列的物理和化学变化。其中比较重要的反应之一是釉料的脱水反应。反应过程如下: 1、100~110℃吸附水开始排出。 2、110~400℃其它矿物杂质所带入的水排出。 3、400~450℃结构水开始排出。 4、800~1000℃时排水结束。 由于中国古陶瓷的烧造温度均在1200℃以上(除陶器外),同样现代仿品的成瓷温度亦均在1280℃左右。因此从理论上可以得知瓷器在烧造结束后,其釉面中不存在结构水、离子水、吸附水等。我们对新烧造的陶瓷做了大量的检测,检测结果与理论推算完全相附。 (二) 新仿品和古代真品有着本质的区别,这是问题的关键。我们如果不能正确地理解仿品与真品之间的本质区别,也就无法找到正确的鉴定方法。 我们知道陶瓷的烧造过程是一个造岩过程或者成矿过程,真品的成岩过程和仿品的成岩过程有着本质的不同: 真品与仿品的烧制过程从理论上讲是相同的,但真品具有在地表条件下长期风化和水解的过程,而仿品却没有。真品在地表环境中长期变化的过程仿品是无法做到的。也就是说从理论上讲,真品的本质是无法仿制的。(地表环境指:馆藏环境,传世环境,墓葬环境,水下环境等现有古陶瓷所处的环境。) (三) 真品在地表环境下的化学反应 真品在地表环境下其釉面将会发生如下水解反应: Si-O-R + HOH → Si-OH + R+OH-Si-O-Si + OH- → Si-OH + Si-O- H+置换R+后形成硅凝胶薄膜 以上的反应生成物中既有氢氧根(羟基)、也有结构水。 上面的反应进行的很慢。 拉曼光谱——羟基古陶瓷真伪检测鉴定法的依据和原理是:现代仿品和古代真品的成岩过程有着本质区别,而时间是造成的这种区别的根本原因,造假者无法跨越时间所产生的鸿沟。时间所造成的古陶瓷的物理、化学变化是造假者无法仿制的。基于此,古陶瓷真伪拉曼光谱——羟基鉴定法的技术研发者把古陶瓷真品在地表环境下其釉面所产生的化学反应中生成的羟基作为古陶瓷鉴定的定性及定量物质。并运用世界上最先进的激光拉曼光谱测试仪( Renishaw Micro-Raman Spectroscopy System)进行相关检测,从而做出准确而科学的鉴定结论。 摘录自瓷器中国

  • 羟基氧化法测试COD

    测试水体中的COD值,氧化方式有重铬酸钾,高锰酸盐,羟基自由基。做成在线的仪器的就分别有CODcr,CODmn,另外紫外光谱扫描的CODuv。而且这几类的厂家及产品很多。使用羟基自由基方式的做成在线仪器的主要是德国LAR,最近发现国内出现了一款使用羟基自由基来测试COD的便携式仪器IGS 20。由广州盈思传感科技有限公司研发生产。其与CODuv相同,都不需要使用试剂,不会造成二次污染,不同的是他还是属于氧化法。 大家觉得羟基自由基氧化法测试COD是否可行,或者说是否能被接受呢?

  • 【分享】牛奶中的雌激素及其安全性

    [size=4] 牛奶是人类重要的食品之一,富含蛋白质、维生素、钙质及其他人类所需的营养素,具有很高的营养价值,倍受人们青睐,各个国家都鼓励人民消费牛奶及乳制品,WHO也把人均乳制品列为衡量一个国家人民生活水平的主要指标之一。目前世界年人均牛奶消费量约为100kg,我国乳品消费也在不断增长,Agriculture and Agri-FoodCanada公布的数据显示,2000年我国液态奶年人均消费量为2kg,到2004年上升至7.7L(约合8kg)。  随着人们对EDCs的逐渐重视,不少学者开始研究食物中雌激素与人类健康的关系,尤其是牛奶。Ganmaa等[1]学者认为现在消费的牛奶中雌激素水平较100年前有明显增加。虽然目前各国政府对牛奶中的雌激素标准没有明确的规定,但现代牛奶中雌激素水平及人类长期饮用牛奶是否会对人体健康产生不利影响,正越来越受到学术界的关注。尤其在我国,奶类消费的群体以儿童和青少年居多,长期饮用高含量雌激素的牛奶是否会对其生长发育等产生不利影响,有待进一步研究。本文就近年来有关牛奶中雌激素及其安全性的研究进行回顾。  [b]1、牛奶中的雌激素[/b]  雌激素是一类化学结构相似、分子中含有18个碳原子的类固醇激素,是与动物繁殖有直接关系的生殖激素。雌激素主要有三种类型:雌酮、雌二醇和雌三醇。雌二醇有两种形式,有生物活性的17β-雌二醇和无生物活性的17α-雌二醇。  雌激素可应用于奶牛生产中,主要与孕激素等一起诱导奶牛发情和泌乳。因此,现代牛奶中的雌激素包括内源性雌激素,即奶牛本身产生的雌激素,和外源性雌激素,即应用于奶牛的雌激素,但目前普遍认为在规范用药的前提下雌激素药物残留量可忽略不计。  人类现在消费的牛奶与100年前不同:首先,现代饲养的奶牛多为经基因改良的高产奶牛如Holstein(荷兰的一种奶牛),品种与100年前不同,不同品种奶牛分泌的牛奶中雌激素含量不同[2];其次,饲养方法不同,100年前人们用牧草饲养奶牛,而现在为增加牛奶产量,通常用含动物蛋白的高蛋白饲料饲养,可能会增加现代牛奶中雌激素含量[3];最重要的是,现代奶牛生产中,奶牛在生产后三个月即可进行人工受精,替代了自然交配,几乎在整个怀孕期间持续泌乳,尤其是妊娠后期,其血清中雌激素水平显著提高,牛奶中的雌激素也随之增加[4]。据估计大约75%的商业化牛奶来源于妊娠奶牛[3]。  商业化牛奶是经均一化作用和巴氏灭菌法作用后的产物,而销售前牛奶的巴氏灭菌过程不能彻底灭活这些激素,有文献报道西方饮食中动物源性雌激素主要来源于牛奶和乳制品,占雌激素消费的60-70%[4]。因此对商业化牛奶中雌激素的评估更有价值。Wolford等[5]运用放射免疫测定法检测商业化牛奶中雌激素的浓度,雌酮、17β-雌二醇和雌三醇分别为(33.7±2.7)pgml-1、(6.4±1.1)pgml-1和(9.0±2.0)pgml-1。另有学者检测两种商业化奶牛(Holstein和Jersey)牛奶中的雌激素浓度时,发现他们显著高于20年前报道的浓度,提示近期乳制品的激素水平随着现代乳品工业的发展快速增加[3]。而我国奶牛的饲养主要以小规模、分散型的农户饲养为主,奶源质量控制难度较大,尤其在激素使用方面,如规范使用兽药和严格执行休药期规定等监控较难,有可能造成牛奶中激素含量增加。2005年9月-2006年3月期间我们曾对无锡市销售的部分本地和外地生产的市售全脂纯牛奶中的雌性激素进行检测,发现市售全脂纯牛奶中含有一定数量的雌性激素,不同品牌全脂纯牛奶中雌性激素水平有差异,同一品牌不同批号中雌性激素水平也有波动[6],牛奶中高雌性激素水平是否会对人类健康有影响值得进一步研究。  牛奶中的雌激素可由血循环中的雌激素通过血-乳屏障进入乳汁,也可部分由乳腺合成,血浆中和牛奶中雌二醇浓度相似,但牛奶中雌酮浓度是血浆中的4倍。硫酸雌酮是牛奶的主要雌激素,有较高的生物活性,一旦进入人体,能够迅速转换为雌酮和雌二醇。雌酮大多与蛋白结合,在检测牛奶中的雌激素时,Ganmaa等[7]发现雌酮占雌激素的69%,结合型雌酮占优势。硫酸雌酮可用于绝经期妇女的激素替代疗法,其血浆半衰期长,能够被肠黏膜完全吸收,且形态无改变。Remesar等[8]计算人类饮食中雌酮吸收率,发现46.6%来源于乳制品。据测量,如每天消费一杯牛奶,将有700ng的硫酸雌酮被摄入,该数量比健康成年男性循环中的雌激素高500-1000倍。  [b]2、牛奶中的雌激素与人类健康[/b]  牛奶中的雌激素为食物源性雌激素,可被人体吸收,是属外源性雌激素的一种。近年来,EDCs样作用一直是研究的热点。EDCs是指可通过食物链或直接接触等途径进入体内,影响体内激素的合成、释放、转运和代谢,从而对生殖系统、神经系统和免疫系统等产生多方面影响的化合物,它可通过模拟内源性激素或拮抗正常的内源性激素,干扰内分泌功能,其主要表现为雌激素样作用。Guillette[9,10]研究发现EDCs可引起鳄鱼生殖腺发育异常、血浆雌激素水平升高,并可引起雄性鳄鱼低精子浓度及血浆睾酮浓度下降等。有美国学者报道,EDCs与近20年来男孩尿道下裂[11]和女孩乳房早发育[12]有一定的关联。我国学者张树成等[13]在分析男性精[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]量的变化时发现,在过去15年间里,男性精子质量下降、数量减少,可能与EDCs有关。Boyle等[14]学者认为,人类精子数量减少及生殖系统肿瘤发病率的升高与动物性食物摄取量有关,而动物性食品中含有相当数量的雌激素,其是否与上述疾病相关需进一步研究。  现代牛奶中的高雌激素水平已经引起学术界的关注。Hill等[15]对北美白人、黑人及南非黑人尿中性激素进行检测,结果显示素食非裔美国人雌激素排泄减少,而西方饮食的南非黑人雌激素代谢增加。Bernstein等[16]报道,亚洲妇女牛奶和乳制品消费量低,其血浆雌激素浓度低于白种人,后者乳制品消费量高,支持牛奶消费与血浆雌激素浓度有相关性。上述研究提示牛奶中雌激素水平可影响人体雌激素的代谢。  一些学者研究发现女性生殖系统肿瘤与牛奶的消费有一定相关性。流行病学资料显示乳腺癌的发生与乳制品等的消费呈正相关,并认为饮食中的脂肪是乳腺癌的主要危险因素之一[17,18]。然而,自50年代起全脂牛奶的消费稳步下降,代之为脱脂牛奶,而乳腺癌的发病率却有所增加[19],此现象使上述理论面临挑战。Ganmaa等[1]学者用逐步回归法分析了40个国家饮食与女性乳腺癌、卵巢癌及子宫内膜癌发病率和死亡率的相关性,其相关系数分别为0.817、0.779和0.814,推测牛奶和乳制品中雌激素与乳腺癌、卵巢癌和子宫内膜癌的发生有关。  文献报道牛奶及乳制品消费增加了男性前列腺癌发生的危险度[3,18,19],但其中的机制尚不清楚。Chan等[20,21]学者研究前列腺癌的发病因素时,发现乳制品中的钙可降低1,25(OH)2D3的浓度,1,25(OH)2D3为前列腺的保护因子,故乳制品和钙是男性前列腺癌发生危险因素之一。但Qin等[3]对大量的文献分析后认为牛奶中的脂肪和钙不能完全解释前列腺癌的发生,提出牛奶及乳制品中的雌激素可能为前列腺癌发生的诱因之一。  牛奶中的雌激素是否会影响儿童的生长发育和生殖系统发育等,目前研究资料甚少。然而,青春期前儿童体内产生雌激素少,对于外源性激素敏感性较高,暴露于外源性性激素对于其是危险的,可能使其生长加速和/或出现乳房发育等[22]。研究发现生活方式的改变和环境因素可能是性早熟的重要病因之一[23-25]。虽然目前没有直接证据证明牛奶中的雌性激素可能引起上述疾病,但倪继红等[26]发现人参蜂皇浆可引起儿童性早熟,而其中就含有相当量的雌激素。Matagne等[27]在体外研究雌二醇对幼年雌鼠下丘脑GnRH脉冲式分泌的影响时,发现注射雌二醇后可出现GnRH脉冲间隙减少,阴道开口及首次发情时间提前,认为雌二醇可影响新生雌鼠大脑中与性激素分泌有关细胞的分化,导致性早熟。Ganmaa等[7]就牛奶对雌雄大鼠亲代子代生殖功能的影响进行研究,发现牛奶对两代生育力、生殖能力及生殖器官发育等方面无明显损害,但在均衡营养的前提下,牛奶对大鼠生长有促进作用,牛奶组子代中有一例出生时即死亡,三例有骨骼异常,而在对照组中未出现类似情况,该结果是否与牛奶中的雌激素有关,需要进一步研究。[/size][size=4][/size]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制