当前位置: 仪器信息网 > 行业主题 > >

平台高通量测

仪器信息网平台高通量测专题为您提供2024年最新平台高通量测价格报价、厂家品牌的相关信息, 包括平台高通量测参数、型号等,不管是国产,还是进口品牌的平台高通量测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合平台高通量测相关的耗材配件、试剂标物,还有平台高通量测相关的最新资讯、资料,以及平台高通量测相关的解决方案。

平台高通量测相关的仪器

  • iQue 3 高通量流式细胞仪iQue 高通量流式细胞仪,是一个集仪器、软件和试剂于一体的平台,研究人员可以整合细胞免疫表型、细胞健康和分泌蛋白(细胞因子)分析,在微孔板的每个孔中获取和分析高内涵、多重检测结果,用于评估免疫细胞功能。兼具快速、小体积、强大的数据分析和可视化功能,只需要几微升样本即可快速获得具有可行性的多参数数据。 技术优势 速度快:快速读取孔板(处理 96 孔板仅需 5 分钟,或在20 分钟内处理384 孔板)、均相检测法、基于整板的自动分析。小体积:最少只需几微升样本,节省试剂和珍贵的细胞。高内涵:对悬浮细胞、微球和分泌蛋白进行高内涵、多重性分析。易使用:自动化流程,综合性的数据分析/ 可视化工具。洞察力:动态显示结果,更快速地制定明智的决策。 产品技术 iQue3 采用多种光学配置和灵活板形式,可满足研究人员的各种需求。该平台可提供一致的流程,这意味着可节省时间和资源,并有其他可选配置,例如机械臂整合、扩大液流容量和集中数据储存,以进一步提高生产率。1. 简单的试验设置- 优化后的均相试剂盒配有即用型分析模板。- 多种灵活的荧光团选项可供选择,最多 3 个激光激发和13 色发射通道。- 在多用户环境中,无需调节光路,获得可扩展、可靠和可重复的数据 2. 智能硬件集成- 增强型冲洗站,配备报告试剂盒液位的智能软件。- 获得专利的取样技术处理 96 孔仅需 5 分钟,或在20 分钟内处理384 孔。- 自动化板校准,质量控制,检测器清洁和关机。 3. 实时数据采集和分析- 一体化软件解决方案,满足您的所有采集和分析需求。- 快速试验优化―调整一个门后,可实时查看整块板的相应变化。- 向导式创建指标、统计数据、可视化和报告。 4. 动态呈现结果- 利用多个选择标准,可轻松鉴定出感兴趣的孔。- 比较识别并排列您实验中所有板的微孔。- 从实验层次,深入至孔板级,微孔级和细胞级。 产品应用 抗体研发通过对整个抗体研发过程中的抗体结合、功能和滴度进行多重检测,来提高数据通量和质量。- 抗体筛选- 功能分析- 细胞系开发 免疫细胞疗法使用更少的细胞和试剂更快地评估多个细胞参数。- 免疫细胞杀伤- 免疫细胞评估- 细胞因子分析 小分子筛选在整个药物发现过程中对免疫生物学进行高内涵表型筛选。- 原代免疫细胞筛选- 酵母和细菌分析- 利用 siRNA 和 CRISPR识别靶标德国赛多利斯集团为您提供赛多利斯 iQue 3 高通量流式细胞仪的参数、价格、型号、原理等信息,赛多利斯 iQue 3 高通量流式细胞仪产地为美国、品牌为赛多利斯,型号为iQue 3,价格为面议,更多相关信息可来电咨询,公司客服电话7*24小时为您服务
    留言咨询
  • 高通量植物荧光表型检测平台可以定制化的对小型样品进行荧光图像采集,通过定制化的数据分析软件连续720小时以上获取各类小型植物荧光图像参数以及动态参数,可用于拟南芥,烟草等小型植物的表型研究。应用领域:植物病理研究作物抗病研究植物动态生长发育研究成像单位像素:14μm成像单元类型:高分辨率CCD相机照明位置:顶部,侧部照明光源类型:紫外灯(荧光成像光源),日光灯(生长光源)尺寸:2000*2000*2000mm(长宽高)电源:单相 220VAC控制装置:WindowsPC控制机柜软件:在线控制,图像处理,数据分析 可测参数:荧光图像亮斑个数,纹理,面积变化趋势,荧光亮度变化趋势等效率:5s/株检测方式:在线实时采集数据存储:JPG格式实存储数据分析:EXCEL格式自动存储系统稳定性:连续工作720h以上工作环境温度:0-50℃ 高通量植物荧光检测平台、荧光图像采集软件图、数据分析图(a)为原始荧光图像,(b)为分割伪彩图。主营业务包含:水稻数字化考种机;经济型水稻数字化考种机;玉米籽粒数字化考种机;玉米果穗考种机;叶片表型快速分析仪;双目视觉植物表型分析系统;小型植物表型分析系统;高通量植物表型参数自动提取系统;高通量植物荧光表型检测平台;高光谱成像系统;水稻穗长测量系统;高通量植物分蘖测量系统;同时我们也提供作物考种服务,图像分析定制服务,表型仪器定制服务。谷丰光电将立足于高端农业科研仪器、植物表型系统,坚持高科技、高价值、高效益三大目标,打造实力品牌优势、系统优势和价值优势的知名光电企业。
    留言咨询
  • AI-高通量材料平台 400-860-5168转6172
    一、AI-高通量材料平台的基本架构以多维电分析筛选工作站为核心,通过AI驱动≥12种自主研发的高通量材料工作站,实现单日合成与筛选≥2000种目标材料,达到国际领先水平。二、AI-高通量材料平台的具体设备三、代表作Accelerating the Discovery of Efficient High-Entropy Alloy Electrocatalysts: High-Throughput Experimentation and Data-Driven Strategies, Nano Lett. 2024 (https://doi.org/10.1021/acs.nanolett.4c03208).Accelerating the Discovery of Oxygen Reduction Electrocatalysts: High‐Throughput Screening of Element Combinations in Pt‐Based High‐Entropy Alloys, Angew Chem. Int. Ed. 2024, e202407116.
    留言咨询
  • 田间作物高通量表型检测系统集光电技术、自动化控制技术和计算机图形处理技术于一体,实现田间小区作物表型参数全自 动、无损、高通量准确提取,可广泛应用于水稻、玉米、小麦、油菜、棉花等作物;系统整体包含田间龙门自动传动单元、成像单元、控制采集/图形数据处理单元,成像单元可搭载可见光成像传感器(VISI)、红外成像传感器(IRI)、高光谱成像传感器 (HYPSI)、激光雷达成像传感器(LIDARI)等,通过不同的成像传感器可获取田间作物不同的表型性状指标,并且可定制化二级指标参数,系统兼容性强,适用于各种复杂的田间环境,并具有多项核心自主专利技术。专为田间或者温室田间各种不同尺度的作物表型性状提取定制的检测系统;适用于多种田间作物检测;全自动测量;可集成多种成像传感器;通量高、效率快、性价比高;基于“Sensor to Plant”检测模式,保证作物的原位状态不变;具有稳定的成像环境、光照,保证成像不受环境光变化的影响;具备传感器制冷装置;采用激光条码绝对寻址的定位方式,定位精度可达±5mm。龙门自动传送单元匹配性:与大田环境或者温棚环境设备之间的较好匹配性适应性:适应田间环境、作物栽培要求、作物试验要求以及作物生理要求可靠性:在系统设计和软件设计上,充分考虑系统的自恢复能力和冗余设计,确保系统的抗干扰能力、作 业过程实现自动化与管理信息化经济性:从系统使用全寿命周期成本最低出发,减少系统 的使用维护费用兼容性:模块化设计,使用标准的单元模块,保证系统的可 扩展性和二次开发能力 控制/采集单元控制/采集单元由高性能自动化控制系统和植物图形采集工作站 组成,为植物表型成像系统的大脑中枢;可编程序控制器、工业 通讯系统、变频器等均采用国际名牌产品,提供符合Windows 标准的友好的人机界面,方便人员操作;单元中充分考虑环境对 设备的影响,保证意外状态下不影响正常运行:故障单元的停 机、离线对系统没有任何影响,运用自动均载技术,保证运行平 稳;按照设计规范安装各种探测开关和限位装置防止越程、误操 作,并进行信息反馈;采用标准开发协议,支持自有或第三方平 台实时获取植物扫描图像、监控等数据;储存空间无限扩容,以 应对不同阶段对数据库性能和存储空间的需求。成像单元可选配RGB可见光成像单元、红外成像单元、激光雷达成像单元、高光谱成像单元。RGB可见光成像单元:可测参数:总面积、绿叶面积、绿叶面积占比、分形维数、内接矩面积、内接矩宽度、高度、周长面积比、总面积最小内接矩面积比、凸包面 积、可见叶片边缘长度、作物持绿特性、卷叶程度、枯死叶比例、生物量的评估、株高、地上部分鲜重(干)重、植株紧凑度、植株 伸展度、株型分撒度、生物量、干旱程度、稻穗分割、产量预估等。红外成像单元:可测参数:实现田间水稻等模式作物冠层温度采集,植株叶片 病变区域温度分布、叶片蒸腾作用相关性状,用于 胁迫生理学,水力学相关研究。高光谱成像单元:可获取海量的光谱和空间信息,实现作物颜色、形 态及纹理参数;叶绿素、叶黄素等色素含量;氮磷 钾等营养元素含量、水分等的提取。激光雷达成像单元:获取作物三维形态结构,作物株高、茎秆粗细、分支数量、分支夹 角、叶片面积、叶片宽度叶片长度、叶片夹角以及作物果实体积、直 径等形态参数(作物数量统计、生物量估计等)。 选型配置表上海市农业生物基因中心高通量抗旱表型鉴定平台田间龙门系统搭载不同光学检测手段,全生育期多模式并行检测,无损高通量实时获取海量表型信息数据。 主营业务包含:水稻数字化考种机;经济型水稻数字化考种机;玉米籽粒数字化考种机;玉米果穗考种机;叶片表型快速分析仪;双目视觉植物表型分析系统;小型植物表型分析系统;高通量植物表型参数自动提取系统;高通量植物荧光表型检测平台;高光谱成像系统;水稻穗长测量系统;高通量植物分蘖测量系统;同时我们也提供作物考种服务,图像分析定制服务,表型仪器定制服务。谷丰光电将立足于高端农业科研仪器、植物表型系统,坚持高科技、高价值、高效益三大目标,打造实力品牌优势、系统优势和价值优势的知名光电企业。
    留言咨询
  • 智能高通量晶型筛选和结晶优化平台是一款多功能的多通道平行反应系统,用于晶型、盐型和共晶的 快速筛选(统称晶体形式筛选)和多通道的平行反应实验。 本平台有 6 个独立温控的反应通道,可以选择配套 20mL、50mL、100mL 等不同规格的反应容器, 每个通道可以进行独立搅拌,不同规格的反应容器可以互相搭配进行实验,平台可以实现多通道结晶单元 温度的同时检测与独立控制,以满足基于机理模型或数据模型的结晶过程优化控制问题,使结晶过程的温 度调节自动化、系统化,实现实时监控和控制。 在结晶工艺开发中,iCrystalform 还可以利用高通量结晶实验,通过改变溶剂、降温速率、搅拌速率、 加料或加反溶剂速率等优化结晶的工艺条件,快速找到最优的设计空间。本平台可以快速测定化合物的溶 解度。 技术数据
    留言咨询
  • 01作物3D根系多光学高通量检测和分析系统(基于CT )作物3D根系多光学高通量检测和分析系统集光电技术、自动化控制技术和计算机图形处理技术于一体,实现作物盆栽植物地上-根系表型参数全自动、无损、高通量准确提取。系统整体包括栽培单元、输送单元、成像单元、图形工作站,通过专业化定制数据软件分析可得到盆栽植物的2D/3D根系性状、数字生物量、株型、纹理、抗旱相关、生长速率相关等一级和二级指标等参数。 02功能特性可同时测量植株地上地下部分性状参数; 可与传动机构集成,实现高通量测量;对植物进行360°断层扫描;适用于水稻、小麦、大豆及杂粮等作物的性状检测;扫描结束后自动完成地上地下性状计算提取; 03成像暗室单元暗室尺寸:2000mm×3300mm× 2000mm(可定制)最大植物尺寸:幼苗至8m 3D-CT-RGB成像时间:≤5分钟/株04自动传送单元 传送速度:0-2m/s传送线宽度:≥30mm(根据通量定制)定位精度:≤±2mm承重:50-300kg/盆(可定制) 053D-CT-RGB成像单元 可测参数:2D/3D根系性状、数字生物量、株型、纹理、抗旱相关、生长速率相关等一级和二级指标等参数。06典型案例 河南大学抗逆改良中心高通量作物表型平台集成高通量表型检测平台、植物生长平台、根系生长平台、植物春化平台,快速高通淫计算样品相应表型信息,获取大量高价值的表型数据,建立表型数据库。07合作用户河南大学、华中农业大学、山西农业大学、海南大学等。
    留言咨询
  • 温室型高通量植物表型采集分析平台介绍:温室型高通量植物表型采集分析平台是一套针对大中型温室条件下集植物表型图像采集与参数分析功能于一体的高通量平台。平台采用流水线传送形式,将植物传送至成像暗室进行成像和解析,通过植物-传感器-解析的工作模式高效实现了对盆栽植株进行表型采集与解析。该产品可搭载可见光二维、可见光三维、高光谱等多个成像单元,可对突变体进行筛选与鉴定,对植物生长状态进行记录,同时也可以对高温、高盐、病害、虫害等逆境条件下植物的形态、颜色、纹理、长势、组分含量变化进行研究。温室型高通量植物表型采集分析平台适用于遗传育种、分子生物学、植物生理学、植物病理学、生态学、环境科学、植物保护等研究领域。温室型高通量植物表型采集分析平台产品组成:自动化传送单元+多维传感融合图像成像单元+边缘计算与解析单元+数据管理单元温室型高通量植物表型采集分析平台产品特点:1.多场景应用:适用于多种室内场景下的植物高通量的采集与应用;可应用于对温室控制条件下,对实验应用中的植株长势、逆境响应、病害等级分析等多种场景;2.高度集成:系统可集成可见光二维、可见光三维与高光谱成像单元,可全自动、高通量对植物样品进行可见光成像和高光谱成像;3.自动传送系统:系统采用全自动传送装置,配备智能化图像采集模块,系统运行全程自动化,减少人工操作误差;4.数据自动采集:系统支持配套植物样本自动识别码,植株移动到目标位置时自动进行关联,并自动记录对应设备的采集数据;5.样品称重及生物量计算:可选配称重模块,样品传送过程中高精度传感器实现对重量的测定;6.自动化参数解析:系统自动内置作物解析模型算法,根据可见光二维、可见光三维、高光谱等模块直接自动解析多项植株株型、颜色、纹理等参数;全角度多机位图像自动采集,无需手动标定,自动根据植物构建高精度三维模型;7.数据传输与存储管理:系统支持在本地搭建局域网络/公网,实现数据采集端PC端到数据中心服务器的自动化上传、自动化数据存储管理、自动化高效解析。8.数据安全:数据采用安全传输模式,储存空间无限扩容,保障用户需求的同时保障数据安全。温室型高通量植物表型采集分析平台-2维温室型高通量植物表型采集分析平台-3维温室型高通量植物表型采集分析平台-高光谱-玉米叶高光谱图_大豆冠层动图-高光谱图_水稻冠层各成像单元测量参数及应用领域:成像单元测量参数应用领域/场景可见光二维成像单元1、获取轮廓面积(顶视、侧视)、凸包面积(顶视、侧视)、冠层高度、冠幅、卷叶程度、叶顶点数、持绿程度、衰老程度、紧实度、偏心率、体积、生物量等2、高清测量植物颜色与真实纹理1、可分析植物基本形态,可用于突变体筛选/品种差异对比等场景2、可测量持绿程度、衰老程度等颜色信息,可应用于分析逆境胁迫响应、植物健康状态,植物病虫害分析等可见光三维成像单元1、基于可见光图像进行三维建模,生成高精度植物三维模型2、分析植物整体形态,基于三维模型准确获取植物冠层高度、冠幅、冠高比等形态参数3、整体分析植物的颜色分布4、整体分析植物的体积、表面积、生物量变化1、对植物株型进行三维结构分析,可应用于株型对产量影响分析、株型与植物健康状态相关性分析、株型突变体筛选等多个方向的研究2、可对植物生物量进行计算,用于分析植物生长状态变化,建立长势模型,记录植物生长与生物量变化过程,用于分析环境对植物生物量影响高光谱成像单元1、植物各部分光谱反射曲线2、叶绿素等成分反射峰值3、主要光谱指数(NDVI、RVI、GVI等)4、冠层叶绿素含量、冠层氮含量等生物学参数1、可通过高光谱成像单元实现对植物基本植被指数的计算,植被指数可以反应植物生长状态、色素含量、营养状态等情况,适用于其产量、育种、胁迫等多种研究工作2、可以获取植物组织的光谱反射率,生成光谱反射曲线。光谱反射曲线趋势可以反映植株不同部位或者不同植株的生长状态差异程度3、内置模型计算植物冠层叶绿素含量和冠层氮含量,可直接反映植物营养状态和健康状态4、可应用于病害研究。病斑部分和健康部分光谱反射曲线发生改变,通过对变化趋势的研究可以对病害发生部分和严重程度进行分析温室型高通量植物表型采集分析平台技术参数:(1)传送系统①传送速度:13m/min,可根据需求调节②定位精度:≤±2mm③电子识别:RFID,用于对每盆植物进行识别定位(2)可见光成像模块成像传感器高分辨率RGB镜头分辨率5120×5120像元尺寸2.5μm×2.5μm成像平台360度旋转平台成像高度支持多段成像,自定义高度照明光源侧面LED均一光源数据传输万兆以太网二维单株分析时间<5s三维单株重构与解析时间<7min (3)高光谱成像模块:成像波长范围400-1000nm照明光源低频闪高光质卤素灯光源像素大小5.86μm×5.86μm光谱分辨率2.5nm光谱带数(波段数)1200个波段图像分辨率1920×1920入射狭缝宽度25μm动态范围12bit成像高度支持自定义高度数据传输USB3.0/千兆以太网(可选)高光谱单株分析时间<5s
    留言咨询
  • ALiS自动化高通量纳米颗粒(LNP)配方筛选系是一个改变行业游戏规则高通量筛选的平台,系统基于先进的微流控芯片设计,实现6小时 96个实验的全自动化LNP配方筛选,实验参数及筛选过程更可控,大大加速LNP配方筛选的过程,加速核酸药物、mRNA疫苗等药物开发过程。ALiS系统可以帮助客户实现高通量、自动化无人值守的LNP配方筛选,系统可实现自动化上样、自动化收集及自动化清洗,在5个小时左右即可完成96个LNP配方筛选实验,平均1个配方筛选实验仅需2至3分钟,极大提升筛选效率。同时系统采用可以重复使用微流控玻璃芯片样品用量低至100ul,极大节省客户前期配方筛选成本,助力客户实现高效率、低成本LNP配方筛选。系统主要特点:自动化:无人值守、自动化配方筛选高通量:一次处理96个样品节约成本:无管路死体积,样品用量低至100ul玻璃芯片:可重复使用灵活性:可实现多组分LNP配方生成和筛选
    留言咨询
  • PlantScreen野外高通量植物表型分析平台——Field-based High-throughput Phenotyping PlatForm 建立对野外生长植物迅速、准确、高通量非损伤多性状表型分析能力,是21世纪作物遗传育种面临的最 大挑战(Andrade-Sanchez et al.2014, Furbank and Tester 2011, Houle et al. 2010)。野外高通量植物表型分析平台对遗传学、生物技术、作物育种,及作物对气候变化、土壤、耕作管理的响应研究监测等,特别是现代农业、智慧农业都具有无比重要的意义。 PlantScreen野外高通量植物表型分析平台集成了自动化控制系统、叶绿素荧光成像测量分析、植物热成像分析、植物高光谱分析、RGB彩色成像分析及互联网+表型大数据平台等现代先进技术,以最 优化的方式实现野外植物原位高通量表型分析测量、植物胁迫响应与作物抗性成像分析测量筛选、植物生长分析测量、性状识别及植物生理生态分析研究等。作为全球第 一家研制生产植物叶绿素荧光成像系统的厂家,PSI公司在植物表型成像分析领域处于全球的技术前列,大面积叶绿素荧光成像分析等成像分析平台使PlantScreen成为植物表型分析与功能成像分析的最为先进的仪器设备。 功能特点:1) 大型多功能成像平台(Multi-functional sensor platform),集成了叶绿素荧光成像、RGB成像、红外热成像、LiDAR、高光谱成像等各种先进高端传感设备,全面分析:a) 结构性状表型分析(RGB成像及LiDAR)b) 功能表型分析(叶绿素荧光成像)c) 形状与生长评估(RGB成像及LiDAR)d) 光合作用表现(叶绿素荧光成像)e) 生物胁迫与非生物胁迫响应(叶绿素荧光成像、高光谱成像、红外热成像)f) 生理生态表现包括光合生理、气孔动态、生化代谢指标等等(叶绿素荧光成像、高光谱成像、红外热成像)2) 全球领 先的FluorCam叶绿素荧光成像技术,是作物生理生态功能性状的必备分析技术,智能LED光源提供调制测量光可以在白天自动成像测量光适应条件下的叶绿素荧光及光合效率;配备独有的高灵敏度叶绿素荧光成像镜头,成像面积达35cm x 35cm(可客户定制80cm x 80cm),是世界上单幅叶绿素荧光成像面积最 大的技术设备3) 可安装在拖拉机上进行移动式自动成像分析,也可安装在专用自动运行平台上沿样带轨道自动运行的同时进行样带全覆盖自动扫描成像和在线分析4) 表型分析大数据平台,包括系统控制、数据采集、数据处理分析与可视化在线显示、数据库等5) PSI表型研究中心专家团队技术支持,每年在美国和欧洲分别组织举办一次世界植物表型研讨会6) 可选配基于无人机技术(UAV-based)的PhenoUAS无人机高通量表型分析平台,使基于地面的表型分析scalling-up到空中大区域快速表型分析7) 可选配土壤气象监测站,全面分析环境条件与表型性状的关系8) 可选配植物生理生态监测系统,同步监测植物光合作用及果实生长等信息9) 可选配自动称重数字化培养盆,进行精确称重、土壤水分监测、自动浇灌等主要技术指标:1. 一体式多功能自动成像分析平台,集成了智能LED光源及叶绿素荧光成像模块、RGB成像分析模块及其它如红外热成像、LiDAR激光扫描、高光谱等选配成像模块,通过操作系统自动运行、自动分类存储、自动在线分析等2. 叶绿素荧光成像分析(标配): a) 3色智能LED激发光源,620nm脉冲测量光、白色光化学光和最 大饱和光闪、735nm红外光用于测量Fo’等b) 可选配蓝色光源与7位滤波轮用于多光谱多波段荧光测量如GFP成像测量c) 独有高灵敏度CCD叶绿素荧光成像传感器,帧频达50fps,有效捕捉叶绿素荧光瞬变,分辨率720x560像素,A/D 12比特,具备视频模式和快照模式;可选配高分辨率CCD,分辨率1360x1024,帧频20fps,A/D 16比特d) 单幅成像面积35x35cme) 成像测量参数:可进行黑夜暗适应测量及白昼光适应测量,测量参数包括Fo, Fm, Fv, Fo’, Fm’, Fv’, Ft, Fv/Fm, Fv’/Fm’, Phi_PSII, NPQ, qN, qP, Rfd等叶绿素荧光参数,用于分析植物光合效率、适合度、生物与非生物胁迫及作物抗性、恢复力等f) Fv/Fm、Kautsky诱导效应、荧光淬灭分析等完备自动化测量程序(protocols)与测量参数,如Fv/Fm程序测量时间仅需10sg) 叶绿素荧光数据在线分析,包括柱状图、测量参数图、数据表格等,具备自定义图像分割等功能,可进行不同时间尺度(如日、月、整个生长季节等)的多参数动态分析h) 是真正的二维同步成像,所得叶绿素荧光参数是真正的基于像素点的二维分布参数,避免简单化的“激光诱导成像”(优点是轻便、省电)仅仅是一维成像(点或线)、不能同步化二维成像、易受环境因素影响(如风吹草动即产生严重误差)、成像参数只是模拟参数(根据激光扫描快慢得到的快速测量荧光与慢速测量荧光不是真正的最小荧光和最 大荧光,所得参数“光量子产量”只是模拟光量子产量需要用进行校准后参数才能使用)、测量参数单一(只能得到快速测量荧光和慢速测量荧光及由此计算出的模拟光量子产量或称光量子效率)、技术不成熟(找不到参考文献)等问题i) 是世界上用于植物高通量表型分析应用最广、发表论文最多的技术手段3. RGB成像分析(标配):可对植物的形状、颜色绿度等进行成像分析,分辨率5Mpx,并可自动对植物花朵数量、水稻分蘖等进行统计分析,主要分析测量参数包括:1) 叶面积(Leaf Area: Useful for monitoring growth rate) 及其动态变化2) 植物紧实度/紧密度(Solidity/Compactness. Ratio between the area covered by the plant’s convex hull and the area covered by the actual plant)3) 叶片周长(Leaf Perimeter: Particularly useful for the basic leaf shape and width evaluation (combined with leaf area))4) 偏心率(Eccentricity: Plant shape estimation, scalar number, eccentricity of the ellipse with same second moments as the plant (0...circle, 1...line segment))5) 叶圆度(Roundness: Based on evaluating the ratio between leaf area and perimeter. Gives information about leaf roundness)6) 叶宽指数(Medium Leaf Width Index: Leaf area proportional to the plant skeleton (i.e. reduction of the leaf to line segment))7) 叶片细长度SOL (Slenderness of Leaves)8) 植物圆直径(Circle Diameter. Diameter of a circle with the same area as the plant)9) 凸包面积(Convex Hull Area. Useful for compactness evaluation)10) 植物质心(Centroid. Center of the plant mass position (particularly useful for the eccentricity evaluation))11) 扁平指数(Flattening index)12) 相对生长速率(Relative growth rate)13) 绿度指数与分级分析(暗绿、健康绿、浅绿等)14) 颜色分级与分区分析(Color segmentation for plant fitness evaluation)15) 其它性状与颜色分级动态分析4. 3D激光扫描分析(选配):用于植物结构表型分析,通过点云模型自动分析计算植物结构、生物量、叶片数量、叶面积、叶片倾斜角度、植物高度等各种形态结构参数5. 红外热成像分析(选配):焦平面阵列微测热辐射计,分辨率 640×480 像素,波段7.5-13μm,温度范围 -20 – 120℃,分辨率0.05℃@30℃/50mK,成像面积35x35cm,用于成像植物在光辐射情况下的冠层温度分布,并分析植物的气孔导度动态、干旱胁迫及抗干旱能力评估等,良好的散热可以使植物耐受较长时间的高光辐射或低水条件(干旱)6. 高光谱成像分析(选配):波长范围380-1000nm,光谱带数(波段数)675个波段,可成像并分析归一化指数(Normalized Difference Vegetation Index (NDVI))简单比值指数(Simple Ratio Index, Equation: SR = RNIR / RRED)、改进的叶绿素吸收反射指数(Modified Chlorophyll Absorption in Reflectance Index (MCARI1), ?Equation: MCARI1 = 1.2 * [2.5 * (R790- R670) - 1.3 * (R790- R550)])、优化土壤调整植被指数(Optimized Soil-Adjusted Vegetation Index (OSAVI)?, Equation: OSAVI = (1 + 0.16) * (R790- R670) / (R790- R670 + 0.16))、光化学植被反射指数(Photochemical Reflectance Index (PRI), Equation: PRI = (R531- R570) / (R531+ R570))等7. 野外移动平台:平台臂12m跨度,多功能成像平台可在移动平台上左右自动扫描成像分析,可自动扫描宽度达10m的样带,每一次扫描成像面积可达10x0.35m(3.5m2),完成一次扫描时间从不足1分钟到几分钟(根据实验测量程序Protocol而定),移动平台可沿轨道自动运行,运行距离原则上不受限制(受轨道长度限制);移动平台高度2.5m,多功能成像平台高度可调节,以适应不同高度作物成像分析;移动平台4个橡胶轮既可在轨道上通过控制系统自动运行并自动扫描成像,还便于在一般地面上移动、拐弯等,对于75x20m的样方,移动平台可以载荷多功能成像平台一次完成75x10m的样带,然后手动拐弯后再自动完成另一半75x10m的成像分析;配备GPS系统精度达2cm,通过软件自动记录测量数据、位置、时间等,可由柴油发电机提供动力驱动整个平台移动8. 可选配环境测量传感器网络,自动监测记录PAR、环境CO2浓度、空气温湿度、降雨量及土壤水分等。9. 系统控制与数据采集分析系统(表型大数据平台):1) 用户友好的图形界面2) GPS定位功能可进行空间分布信息及时空分布格局分析3) 已内置各种成熟的Protocols,具备用户定义、可编辑自动测量程序(protocols),根据用户设定程序自动完成全部实验。数据结果自动存储并分析,分析的数据结果可自动以动态曲线的形式显示4) MySQL数据库管理系统,可以处理拥有上千万条记录的大型数据库,支持多种存储引擎,相关数据自动存储于数据库中的不同表中5) 可用默认程序进行所有测量,也可通过开发工具创建自定义的工作过程,或者手动操作LED光源开启或关闭、RGB扫面成像、叶绿素荧光成像等6) 实验程序(Protocols)具备起始键、终止键、暂停键7) 系统可通过互联网无线远程控制,允许用户通过互联网远程访问,进行数据处理、下载及更改实验设计,具备用户权限分级功能,防止其他人员误操作影响实验产地:欧洲PSI应用案例: 应用FluorCam叶绿素荧光技术,对野外植物进行原位不同季节长期监测,同时监测植物光合作用(CO2同化)A,结果参见下图。FluorCam叶绿素荧光技术采用激发光脉冲调制技术、高灵敏度CCD传感器(采样频率达每秒50次)技术及智能LED光源,可以大面积(标配每帧成像面积35x35cm)植物/作物成像分析,在野外既可在夜间进行暗适应条件下的叶绿素荧光成像分析,还可在环境光适应条件下进行叶绿素荧光成像分析,比简单的激光诱导叶绿素荧光测量(通过一束点状或线型单色激发光源激发叶绿素荧光并进行测量,优点是省电且可以更轻便)相比有诸多功能优势,不仅测量参数多、可以进行各种叶绿素荧光实验程序成像测量分析,而且一次二维成像(真正的成像分析)避免了点状或线型激发光扫描造成的叶绿素荧光测量不同步、野外风吹草动分辨率严重降低等问题。 附:其它野外表型成像分析系统:1) PhenoUAS无人机高通量大田作物表型分析平台2) FluorCam野外移动式叶绿素荧光与RGB成像分析系统3) FluorCam样带扫描式叶绿素荧光与RGB成像分析系统(可选配红外热成像)
    留言咨询
  • PAVONE高通量细胞力学测试平台结合体外培养以及在线成像功能Pavone使研究人员能够在接近生理条件下分析细胞和其他生物材料的结构和功能特性可同时放置2个96孔板,Pavone允许高通量高含量筛选功能特性,包括细胞刚度、粘弹性、粘附、收缩、机械感应等 核心优势★高通量压痕★简单易用★空间充裕★自动控制★生物友好★新一代平台将微观力学表征与光学成像和培养相结合,实现了快速方便的数据收集预先校准的光纤传感器以及预先编程的实验进程,使得该仪器可以真正节省时间,产生大量有意义的实验结果工作过程应用方向病理学单细胞病理学:研究癌细胞力学与基因表达之间的关系。癌症是一种广泛研究的疾病,然而机制和基因表达的相互作用,以及它们如何影响疾病进展,是一个相对较新的领域,许多问题尚待解决。Pavone可以叠加单细胞力和荧光数据,因此可以耦合力基因表达关系。机械药理学单细胞机械药理学:研究细胞力学在疾病中的作用以及与药物靶化合物的关系。在药理学中,机械生物学分析仅限于特定的应用领域,如心脏病,尽管已证明其他领域(如炎症和纤维化)中机械特性的相关性是相关的。Pavone能够筛选大型样本集的机械特性,从而解开目前尚未发现的药物干预的潜在线索。生理学单细胞生理学:研究活细胞的功能特性。随着基因组筛查的日益普及,单细胞生理学领域在过去几十年取得了很大进展。为了全面理解单个细胞的功能方面,如干细胞分化或心肌细胞功能,力或机械特性可以用作读取参数。此外,它们可以使用Pavone和/或第三方设备的分析后测序与荧光耦合。 技术介绍Pavone的设计充分为机械生物学考虑。直接将力学测量功能与模块化成像和体外培养集成,可同时容纳2块96孔板。压痕测试使用Optics11 Life的基于光纤的MEMS传感器进行,具有高精度、准度和低噪声水平的优势方法成像根据研究需要,可以使用荧光、共焦或其他更专业的成像模式来扩展标准亮场和相位对比成像能力左图显示了Pavone对EGFP染色酵母细胞的荧光和相位对比成像的叠加机械特性为与生物工作流程相结合而量身定制的,提供了自动化的查找接触、压痕和数据分析程序。此外,可采用拖放方式设计半自动事件序列,或以“连续”模式使用仪器,其中触摸屏界面使研究人员能够选择要进行分析的细胞培养默认情况下,Pavone包括温度控制,使用多个加热元件和先进的控制机制,以确保均匀稳定地加热到生理温度。此外,还可以添加CO2和湿度控制模块,以提供类似培养箱的条件
    留言咨询
  • 高通量液芯波导进样平台用于多路Teflone AF液芯波导的无气泡样品操控:以离心转速得到不同的离心力,得以实现微升级样品的导入、排出。因离心力可造成Teflon AF内压力升高,而将管内液体中混入的气泡通过管壁挤出,所以导入的样品中无气泡,可解决因气泡造成的光路中断的关键问题。指标样品导入量:1~1000uL通道数:4
    留言咨询
  • 田间无人车式高通量植物表型采集分析平台介绍:田间无人车式高通量植物表型采集分析平台是针对田间环境下植物表型鉴定需求设计的,以无人车等移动平台为载体的,集植物表型图像采集与参数分析功能于一体的高通量平台。平台采用轮式机器人,包含高清摄像头、北斗定位系统、控制系统等,机器人具备自主避障的能力,实现在农田的自主巡航,同时进行信息采集上传。平台支持配置多光谱、高光谱和RGB成像、激光雷达、热红外技术,能够在大面积农田中快速、高效地采集植物表型数据。田间无人车式高通量植物表型采集分析平台对田间植物的冠层信息、长势信息、营养信息进行研究。适用于遗传育种、植物生理学、植物病理学、生态学、环境科学、植物保护等研究领域。田间无人车式高通量植物表型采集分析平台功能特点:无人车自动规划路线,覆盖大面积农田,快速采集植物表型数据;支持同时搭载多光谱、高光谱、可见光、热红外和三维激光雷达传感器,实现多维度数据采集;内置高性能计算模块,实时处理和分析采集数据;用户友好的操作界面,支持远程操作和监控,用户可随时随地查看和管理数据;适用于作物育种、病害检测、产量预测等多种农业应用场景,助力农业科研和生产管理;可适用于植物穗、芽、果实等器官识别;可适用于植物出苗监测、苗情监测、生育期识别;可适用于植物生长过程可视化动态记录,分析植物长势变化;可适用于植物营养状态分析,助力水肥管理;可适用于植物病虫害监测,助力绿色防控。田间无人车式高通量植物表型采集分析平台技术参数:自主导航:支持GPS/RTK导航,厘米级定位精度;自动避障:多传感器融合,实时检测和避开障碍物;任务调度:支持多任务调度和路线规划;数据同步:实时同步到云端平台,支持多终端访问;成像单元:可见光成像、高光谱成像、多光谱成像、热红外成像、激光雷达。
    留言咨询
  • 田间轨道式高通量植物表型分析平台介绍:田间轨道式高通量植物表型分析平台是针对田间或大型温室条件下植物表型鉴定需求设计的,采用Sensor-to-plant模式,集植物表型图像采集与参数分析功能于一体的高通量平台。平台采用龙门式自动化传送形式,成像传感器移动到栽培区中种植的植物上方进行成像。田间植物高通量表型采集分析平台支持配置多类型传感器,各成像传感器高度集成,提高采集效率;龙门传送定位精确度高,确保采集质量。流水线自动化传送单元与多维传感融合图像成像单元均支持硬件尺寸定制,有效保障平台与建设需求的高度适配。田间轨道式高通量植物表型分析平台结构组成:龙门自动化传送单元+多维传感融合图像成像单元+边缘计算与解析单元+数据管理单元田间轨道式高通量植物表型分析平台功能特点:适用于各种的田间环境和温室环境;基于Sensor-to-Plant检测模式,保证作物的原位状态不变;成像环境稳定,保障图像采集过程不受外部环境变化影响;采用激光条码精准定位;集成可见光、高光谱、激光雷达等多类型成像单元,自动化采集;系统控制、数据采集与解析一体化软件设计,操作简单,流程高效;可应用于植物突变体筛选、遗传育种、植物抗逆生理、植物病理、种质资源鉴定、功能基因组挖掘等领域。田间轨道式高通量植物表型分析平台技术参数:平台环境控制:平台配置制冷系统及室外光环境系统;控制维度:成像单元可三维移动,精准定点寻址测量小区;成像单元:可见光二维成像、激光雷达、高光谱成像、热红外成像等。
    留言咨询
  • 田间无人机式高通量植物表型采集分析平台介绍:田间无人机式高通量植物表型采集分析平台是针对田间群体植物表型鉴定需求设计的,以无人机为载体的,集植物表型图像采集与参数分析功能于一体的高通量平台。平台支持配置多光谱、高光谱和RGB成像技术,能够在大面积农田中快速、高效地采集植物表型数据。对田间植物的冠层信息、长势信息、营养信息进行研究。田间无人机式高通量植物表型采集分析平台功能特点:具备信号干扰保护,故障保护,低电压自动保护,一键自动返航降落功能;可选配RGB成像模块、多光谱成像模块、高光谱成像模块、红外热成像模块等;内置强大的数据处理算法,实时分析植物生长状态、健康状况以及病虫害情况,提供精准的农作物表型信息;用户友好的操作界面,支持远程控制和自动飞行路径规划,简化操作流程,提高工作效率;适用于作物育种、病害检测、产量预测等多种农业应用场景,助力农业科研和生产管理;可适用于植物穗、芽、果实等器官识别;可适用于植物出苗监测、苗情监测、生育期识别;可适用于植物生长过程可视化动态记录,分析植物长势变化;可适用于植物营养状态分析,助力水肥管理;可适用于植物病虫害监测,助力绿色防控。田间无人机式高通量植物表型采集分析平台技术参数:自主飞行:支持预设航线飞行和自主避障功能;多点飞行任务:支持多点自动飞行和数据采集;数据同步:实时同步到云端平台,支持多终端访问;成像单元:可见光成像、高光谱成像、多光谱成像、热红外成像;
    留言咨询
  • 产品简介高通量植物荧光表型检测平台可以定制化的对小型样品进行荧光图像采集,通过定制化的数据分析软件连续720小时以上获取各类小型植物荧光图像参数以及动态参数,可用于拟南芥,烟草等小型植物的表型研究。应用领域 植物病理研究作物抗病研究植物动态生长发育研究主要配置成像单位像素:14μm成像单元类型:高分辨率CCD相机照明位置:顶部,侧部 照明光源类型:紫外灯(荧光成像光源),日光灯(生长光源)尺寸:2000*2000*2000mm(长宽高)电源:单相 220VAC控制装置:WindowsPC控制机柜软件:在线控制,图像处理,数据分析主要性能参数可测参数:荧光图像亮斑个数,纹理,面积变化趋势,荧光亮度变化趋势等效率:5s/株检测方式:在线实时采集数据存储:JPG格式实存储数据分析:EXCEL格式自动存储系统稳定性:连续工作720h以上工作环境温度:0-50℃产品图片 高通量植物荧光检测平台、荧光图像采集软件图、数据分析图(a)为原始荧光图像,(b)为分割伪彩图。 公司简介谷丰光电(GREENPHENO)致力于植物表型,农业科研和机器视觉系统集成领域,具备核心图形处理、光机电控制、以及系统集成技术,掌握一批自主知识产权。主营业务包含:水稻数字化考种机;玉米在体、离体数字化考种机;全自动银染显影仪;双目视觉谷粒检测仪;叶片表型快速分析仪;水稻穗长测量系统;高通量植物分蘖测量系统;高通量植物表型参数自动提取系统等光机电一体化仪器设备定制,应用软件及算法开发。谷丰光电将立足于高端农业科研仪器、植物表型系统,坚持高科技、高价值、高效益三大目标,打造实力品牌优势、系统优势和价值优势的知名光电企业。
    留言咨询
  • FluorCam高通量光合生理表型测量平台基于世界著名FluorCam叶绿素荧光成像技术,有样带扫描式成像平台(Transect FluorCam)和XYZ大型三维自动扫描平台供选配,为温室或大型培养室用植物叶绿素荧光成像与RGB成像分析系统,用于植物样带叶绿素荧光扫描成像、RGB彩色成像分析及红外热成像分析等,可用于植物沿样带梯度胁迫实验研究分析、梯度植物耐受性检测研究、作物遗传育种、基因组学与表型组学研究、不同植物的光合生理特性研究、植物高通量Phenotyping、生物多样性检测分析及污染生态学和生态毒理学研究检测等。 功能特点:1.具备世界上单幅成像面积最大的PAM(调制)叶绿素荧光成像系统,成像面积达35×35cm,最大可达80x80cm。可选配其它小型成像单元2.可进行叶绿素荧光成像分析和RGB彩色成像分析,还可选配红外热成像分析等3.可选配高光谱成像分析单元4.可选配小型蒸渗仪用于栽培作物控制实验测量5.样带扫描成像位置精确定位、定时、程序控制,一次可对12个约30cm直径的植物培养盆或SoilTron多功能小型蒸渗仪依次扫描成像分析6.具备7位绿波轮和相应滤波器组合,可进行GFP或其它选配的稳态荧光成像检测,从而用于转基因表达检测分析7.整套系统装配在具备4个轮子的支架上,成像高度可调、可定制,非损伤原位对植物进行叶绿素荧光成像、GFP荧光成像和RGB成像分析等研究 8.在线数据分析9.根据客户需求,可定制高速以太网远程控制功能10.在没有交流电的情况下,可选配直流供电单元供电技术指标:1.具移动轮方便移到,可进行叶绿素荧光成像分析、RGB植物彩色成像分析、GFP(绿色荧光蛋白)成像,还可选配红外热成像等,单幅成像面积可达35×35cm2.成像平台440cm长,由两部分组成(每部分2.2m长)以便于运输和组装等,镜头及光源等高度60cm–110cm可调,可客户定制其它高度范围,从而适于不同生长类型不同高度植物的原位非损伤成像分析测量3.扫描样带区域(样带长度)400cm,可精确定位、定时、程序可调,定位精度可达0.1mm,成像平台运行速度可达150mm/s4.1分钟之内即可对直径约30cm的12盆植物扫描成像完毕5.叶绿素荧光成像:(1)高灵敏度CCD传感器镜头(如选配同时测量GFP稳态荧光,采样频率达50fps,有效像素720x560,A/D 12比特(4096灰阶),具备视频模式和快照模式(2)可选配高分辨率叶绿素荧光与GFP荧光镜头,2/3”CCD,10.2x8.3mm阵列,最高可达1392x1040像素(15fps),像素大小6.45微米;可2x2、3x3、4x4像素叠加以提高灵敏度和时间分辨率(3)620nm橙色LED脉冲调制测量光源(4)橙色与蓝色或橙色与冷白色LED双色光化学光(5)735nm LED红外光源用于测量Fo’等(6)参数包括Fo,Fo’,Fs,Fm,Fm’,Fp,FtDn,FtLn,Fv,NPQ_Dn,NPQ_Ln,Qp_Dn,Qp_Ln,qN,QY,QY_Ln,Rfd等50多个叶绿素荧光参数,用于分析植物光合效率、适合度、生物与非生物胁迫及作物抗性、恢复力等(7)叶绿素荧光数据在线分析,包括柱状图、测量参数图、数据表格等,具备自定义图像分割等功能6.RGB成像测量分析:高灵敏度成像传感器1/2.5”,分辨率2560×1920像素,像素大小2.2μm,自动或手动曝光和白平衡等,测量参数包括:叶面积、植物紧实度/紧密度、叶片周长、偏心率、叶圆度、叶宽指数、植物圆直径、凸包面积、植物质心、相对生长速率等,可进行颜色分割分析、植物适合度评价、实验生长期叶面积动态变化比较分析、绿度指数、颜色分级分析(健康绿色、亮绿色、暗绿色、其他颜色)等表型参数 7.红外热成像单元(选配):包括认证校准的红外热成像传感器镜头、热成像适配LED光源,分辨率640×480像素,温度范围20-120°C,灵敏度NETD0.05°C@30°C/50mK,成像面积35×35cm,用于气孔动态、干旱胁迫及病害胁迫研究分析等8.系统自动控制与数据采集分析系统:(1)组成:控制调度服务器、应用服务器、数据库服务器、可编程序逻辑控制器及专用表型大数据分析软件等(2)自动控制与分析功能:具备用户定义、可编辑自动测量程序(protocols),根据用户设定程序自动完成全部实验。数据结果自动存储并分析,分析的数据结果可自动以动态曲线的形式显示。(3)用户可通过互联网远程访问,进行数据处理、下载及更改实验设计(4)具备用户权限分级功能,防止其他人员误操作影响实验(5)专家远程故障诊断,软件终身免费升级 9.FS-WI步入式大型植物生长室(选配)(1)光源:冷白LED(6500K)+远红LED(735nm),其他光源如RGB三色光源板可定制,可0-100%调控,专用光源制冷气流通道,可编程模拟昼夜周期变化、日升日落等自然界中光环境变化以及其他各种任意变化(2)最大均质光强:1000µ mol(photons)/m² .s,可定制更高光强 (3)控温范围:10℃-40℃(控制效果与光强和环境温度有关,室温最高为30℃),可定制更大控温范围,可编程模拟昼夜周期变化、日升日落等自然界中温度变化以及其他各种任意变化(4)控湿范围:40-80%±7%(控制效果与光强有关),可编程模拟昼夜周期变化、日升日落等自然界中湿度变化以及其他各种任意变化
    留言咨询
  • 高通量自动化核酸提取平台Gene Express产品介绍一款高通量,高精度,高效率一站式核酸提取平台 全自动化:一站式自动化操作,简单高效,实验结果精确可靠,使科研人员脱离繁杂实验操作超高通量:60分钟内完成4块96孔板的核酸纯化节约成本:提供配套磁珠法核酸提取试剂,有效降低提纯成本平台开放:采用磁珠法提取核酸;兼容不同品牌磁珠的提取程序操作便捷:仅需2个96孔板就能完成96个样本的提取污染控制:配超声清洗功能,移液吸头无需频繁更换安全可靠:环保无毒,操作安全高通量自动化核酸提取平台Gene Express应用领域高质量核酸后续可用于荧光定量PCR,测序,基因分型等领域 高通量自动化核酸提取平台Gene Express产品说明 一套高通量、高精度、高效率的全自动核酸提取平台。该系统集精准微量液体处理、磁珠提取及全程防污染等功能于一体,实现了原始样本结合、清洗、洗脱的核酸提取全流程,一站式自动操作。可在60分钟内完成4块96孔板样本的核酸提取。为现代化分子实验室提供高精度、简便化、自动化和标准化的高通量核酸提取方案。高通量的操作,降低科研工作者工作量,同时减少人为误差。高质量的核酸,可用于进一步的科学研究如定量PCR、基因分型、测序等功能描述:1.该高通量自动化核酸提取平台可以在60分钟内完成4块96孔板的核酸提取 2.采用磁珠法提取核酸 3.提供配套磁珠法核酸提取试剂,每个样本纯化成本不高于1.2元人民币4.可以同时处理4*96个样本 5.移液吸头可清洗,无需频繁更换 6.仅需2个96孔板就能完成96个样的提取 7.全自动加试剂和磁珠,无需提前分液 8.环保无毒,操作安全
    留言咨询
  • Multi Channel System 在高通量微电极阵列(MultiWell-MEA System)电生理平台的基础上为实验用户添加了更加理想的工具---MEA Xpress Robot 全自动化合物加样机器手系统。因此,MEA Xpress将我们强大的电生理放大器与自动化合物加样管理平台相结合,从而简化您的实验工作流程,节省向多孔板添加复杂化合物的时间,减少错误发生。 MEA-Xpress全自动加样高通量微电极阵列电生理系统配置高达50kHz的快速采样率和24位的高分辨率数模转换器,是市场上拥有较高精确度的信号采集系统之一,该系统能够记录来自所有类型细胞的电活动,无论是具有较大振幅的低频信号(如来自原代心肌细胞的信号),还是具有较小振幅的高频信号(如来自iPSC多能干细胞或eSC胚胎干细胞分化的神经元的信号)。高通量微电极(MultiWell-MEA)内置的电刺激器具有广泛的电压输出范围,可进行细胞局部电穿孔,以用于类动作电位的信号检测。产品特点及优势:• 高通量微电极阵列电生理系统整合全自动加液上样技术可实现在电极孔板中快速添加测试化合 物,提高实验效率,避免人工误差• 数据采集器信号分辨率24位,采样率高达50 kHz,可获得最精确的电生理信号数据• 内置电刺激器、可加配光刺激模块,用于细胞或组织的蛋白激活、起搏和触发• 可直接使用玻璃和环氧树脂材质的24孔、96孔MEA(孔板阵列电极),耗材成本低• 软件可进行神经方向和心脏方向的信号采集和分析,是用于高通量药物筛选的理想工具。MEA Xpress Robot详细技术参数: 运行环境温度:20℃-24℃运行环境相对湿度:40 - 60 %尺寸 (W x D x H) :63 cm x 57 cm x 66 cm 重量:40 kg加样体积: 1 - 1000 μl (单通道移液器) 1 -300 μl (8 通道排枪移液器)加样移液器通道:2 (1通道或8通道排枪可自由组合)可用储液槽:7 个运行速度: 96孔板最快20s完成(具体时间取决于移液器选择和实验方法)系统误差/随机误差(使用默认设置的移液器)单通道(20 – 300 μl): 5 % / 2.5 %8通道 (20 – 300 μl): 10 % / 4 %实验方法:预设或自定义保修期:1年
    留言咨询
  • AlgaTech高通量藻类表型成像分析平台,采用PTS(Plant-To-Sensor)自动传送技术,集成了高光谱成像、叶绿素荧光成像等国际先进光谱成像技术,样品通过传送平台自动传送至相应成像工作站,实现高通量、无损伤高光谱成像、叶绿素荧光成像、多光谱荧光成像分析。是目前国内功能完备、技术一流的藻类表型成像分析系统,可为藻类表型分析、生理生态研究、种质资源检测研究、遗传育种、抗性筛选、光生物学研究等领域提供全方位、一站式、高通量解决方案。主要技术特点:1.一站式藻类表型成像分析平台,集VISIR-NIR高光谱成像、叶绿素荧光成像、多光谱荧光成像技术,可选配Thermo-RGB成像分析2.PTS(Plant-to-Sensor)技术平台,双轨式同步升降控制、SpectraScan© 高精度移动扫描平台,样品可放置在精准位移平台上自动运送至成像单元进行成像分析3.可选配UV、冷白、红、蓝、绿、青色等不同激发光源,以适应不同藻类不同激发光多光谱荧光成像分析4.可对海带等大型藻类、微藻(放置于培养皿或多孔板等)、附着于珊瑚等介质上面的藻类及土壤藻类等进行表型性状成像检测分析5.模块式结构设计,具备强大的系统扩展功能,可远程控制、自动运行数据采集存储6.触摸屏控制,嵌入式操作系统,全中文地面站软件,可无线操控平台运行7.内置温湿度、光照度、时钟(时钟可一键同步电脑时间,或根据GPS信息自动校准)8.支持组合命令(Protocols),可实现自动运行protocols9.主机系统带脚轮,方便移动,适应于实验室和温室等工作环境 主要技术指标:1.高光谱成像站:标配为400-1000nm可见光近红外和900-1700nm短波红外高光谱成像分析,可选配1000-2500nmSWIR高光谱成像传感器1)波段数:224通道2)光谱分辨率:FWHM 5.5nm(400-1000nm)、8nm(900-1700nm)3)空间分辨率:1024x(400-1000nm)、640x(900-1700nm),可选配其它分辨率高光谱成像4)信噪比600:1(400-1000nm)、1000:1(900-1700nm)5)测量参数:可成像测量分析生理生化指标、光利用效率、健康指数、叶绿素及类胡萝卜素等不同色素含量、胁迫等参数。2.叶绿素荧光成像站:1)专业高灵敏度叶绿素荧光成像CCD,帧频50fps,分辨率720x×560像素,像素大小8.6×8.3μm2)光化学光最大1000μmol.m-2. s-1可调,饱和脉冲3900μmol.m-2. s-13)可自动运行Fv/Fm、Kautsky诱导效应、荧光淬灭分析、光响应曲线等protocols4)50多个叶绿素荧光自动测量分析参数,包括:Fv/Fm、Fv’/Fm’、Y(II)、NPQ、qN、qP、Rfd、ETR等,自动形成叶绿素荧光参数图5)自动同步显示叶绿素荧光参数及参数图、叶绿素荧光动态曲线、叶绿素荧光参数频率直方图3.多光谱荧光成像站:紫外光激发多光谱荧光成像,反映多酚与黄酮类等次级代谢产物动态变化、叶绿素动态变化、植物衰老、植物病虫害胁迫及非生物胁迫等1)高分辨率CCD镜头,1392x1040像素,有效像素大小为6.45μm,可像素叠加(binning)以提高灵敏度(2x2,3x3,4x4)2)7位滤波轮及滤波器,用于成像测量多光谱荧光F440、F520、F690、F740及其它生物荧光现象 4.自动测量分析功能(无人值守):可预设1个或2个试验程序,系统可自动测量储存,比如白天自动定时运行Kautsky诱导效应程序,夜间自动定时运行荧光淬灭分析程序 5.可选配GFP/YFP稳态荧光成像,或选配LUC荧光素酶成像 6.可选配紫外、红光、绿光、青光、蓝光、远红等不同波段光源 7.叶绿素荧光成像与多光谱荧光成像具Live(实况测试)、Protocol(实验程序选择)、Pre-processing(成像预处理)、Result(成像分析结果)等菜单,Protocol实验程序可自由编辑,也可利用Protocol菜单中的向导程序模版客户自由创建新的实验程序8.红外热成像(选配):1)分辨率:640×512像素,可选配其它高分辨率红外热成像传感器2)测量温度范围:-25℃-150℃3)灵敏度:0.03℃(30mK)@30℃4)光谱范围:7.5-13.5μm5)传感器:非制冷红外焦平面感应器,已多点校准(具校准证书)6)1-14倍数码变焦7)软件具备调色板(自然、彩虹、灰度、梯度等14种颜色组合)、差值技术、温度范围设置(以改变颜色分布或突出选择范围等)、等温线模式、ROI选区分析、温度扫描(显示所选线的温度分布曲线等)、剖面温度、时间图等;可显示图片信息;具备报告模式等; 9.RGB成像:高灵敏度,1-40倍放大,可进行micro和macro成像分析,可选配更高分辨率成像单元 易科泰生态技术公司提供藻类及海洋植物表型分析全面技术方案:1.藻类培养与在线监测技术2.Specim高光谱成像分析技术3.FluorCam叶绿素荧光成像分析技术4.FluorCam多光谱荧光成像分析技术5.FKM显微叶绿素荧光成像与光谱分析6.AlgaTech一站式高通量藻类表型成像分析平台7.藻类叶绿素荧光-热释光测量技术方案8.藻类光合作用、叶绿素荧光、高光谱测量便携箱9.Ecodrone无人机遥感技术,用于海水养殖遥感分析10.Ecolab实验室技术合作及技术服务方案
    留言咨询
  • 欧洲知名植物表型分析技术公司PSI与荷兰植物生态表型中心(NPEC)合作,隆重推出PlantScreen全自动高通量琼脂培养植物表型成像分析平台。PlantScreen全自动高通量琼脂培养植物表型成像分析平台是一套新型高通量、自动化的植物表型成像系统。植物样品种植于专门设计的方形琼脂培养皿中。该平台是一个开创性的解决方案,重新定义了植物表型的研究方法。全自动高通量琼脂培养植物表型成像分析平台为全自动机器人操作,包括倾倒琼脂、播种、层积催芽、接种、成像分析全自动运行。可容纳2160个特制培养皿的全自动全流程(倾倒琼脂、播种、培养、成像分析)高通量表型分析。该平台由具备GMO(转基因生物)控制区的环控室(可选配)、操作台、培养柜(包括层积催芽柜)、机器人及成像工作站等组成,可进行根系形态成像分析、GFP等荧光蛋白成像分析、叶绿素荧光成像分析、多光谱成像分析、高光谱成像(透射光)分析及香豆素荧光高光谱成像分析等。 系统组成:1. 植物(琼脂)培养柜2. 层积催芽柜3. 培养皿操作台4. 用户缓冲区5. 液体操作台6. 叶绿素荧光与多光谱荧光成像工作站7. VNIR高光谱成像工作站8. 机器人主要模块功能:§ 培养皿操作台:准备培养介质、自动浇注培养皿、机器人自动播种 § 层积催芽柜:精确控温5℃、暗培养、容量2×360培养皿§ 植物(琼脂)培养柜:多通道LED培养光源(白光/红光/远红光)、最大光强400µ mol/m² .s、可调控红光/远红光比例模拟光调控条件§ 表型成像工作站:根系形态、叶绿素荧光(光合表型)、荧光蛋白、多光谱荧光(次生代谢)、高光谱等表型成像分析§ 液体操作台:自动化液体操作、生物安全柜、机器人自动细菌接种 § 机器人:高精度SCARA机器人,完成培养皿在各功能模块间的全部自动化转运作业 技术指标:§ 植物(琼脂)培养柜布局:共3个培养柜,4培养架/柜,9培养盒/架,20培养皿/盒§ 系统通量:2160专用培养皿§ 样品托盘类型:专用培养皿,129×129×16.5mm§ 培养光源:每层培养架上均配备光源,每个培养架和LED通道均可独立调控§ 光质:配备冷白光、红光和远红光,红光/远红光比例调控范围:0.5-0.82§ 光强:距离光源30cm处最大光强400µ mol/m² .s § 层积催芽柜:精确控温5℃、暗培养、容量2×360培养皿§ 培养皿操作台容量:1500培养皿§ 无菌处理:HEPA高效空气过滤,UV-C紫外杀菌§ 成像站:2台叶绿素荧光与多光谱荧光成像站、形态成像站、VNIR高光谱成像站 § 成像传感器:&Yuml 传感器类型:CMOS &Yuml 分辨率:4112×3006,12.36MP;binning模式2056×1503,3.09MP&Yuml 位深度:12bit&Yuml 传感器尺寸:1.1”&Yuml 快门:全域快门&Yuml 自由运行模式最大fps:2&Yuml 像素尺寸:3.45µ m;binning模式6.9µ m&Yuml 通讯接口:GigE千兆以太网§ 叶绿素荧光测量光源:620nm红橙光、5700K冷白光、735nm远红光§ 多光谱荧光与荧光蛋白测量光源:365nm紫外光,445nm品蓝光,470nm蓝光,505nm青光,530nm绿光,590nm琥珀色光§ 形态测量光源:5700K冷白光§ 叶绿素荧光成像参数:Fo, Fo’, Fs, Fm, Fm’, Fp, FtDn, FtLn, Fv, Fv'/ Fm', Fv/ Fm, Fv', Ft, NPQ_Dn, NPQ_Ln, Qp_Dn, Qp_Ln, qN, qL, QY, QY_Ln, Rfd, ETR等50多个叶绿素荧光参数§ 荧光蛋白成像:GFP、YFP、RFP、BFP等§ 滤波器:F469、F483、F513、F565、F586、F593、F520、F635、glass等(选配)§ VNIR高光谱成像&Yuml 光谱范围:350-900nm&Yuml 谱带尺寸:520nm&Yuml 入射狭缝宽度:50μm&Yuml 像素色散:0.28nm/pixel&Yuml 波长分辨率:2nm FWHM&Yuml 光谱分辨率:480 pixels&Yuml 空间分辨率:500 pixels&Yuml 帧频:45fps&Yuml 传感器类型:CMOS &Yuml 图像分辨率:1920×1000&Yuml 位深度:12bit&Yuml 像素尺寸:5.86µ m&Yuml 动态范围:67dB&Yuml 光源:反射模式:白光;荧光模式:紫外光&Yuml 控制与数据接口:GigE千兆以太网安装实例:荷兰植物生态表型中心NPEC已与PSI公司合作建设了多套PlantScreen植物表型成像系统,应用于拟南芥、烟草、番茄、藜麦等植物的表型研究。PlantScreen全自动高通量琼脂培养植物表型成像分析平台是他们的最新合作成果,于2023年刚刚建设完成。产地:欧洲
    留言咨询
  • 温室盆栽高通量植物表型成像系统集光电技术、自动化控制技术和计算机图形处理技术于一体,实现水稻、玉米、小麦、油 菜、棉花、烟草、柑橘等盆栽植物表型参数全自动、无损、高通量准确提取。系统整体包括栽培单元、输送单元、成像单元、 图形工作站,根据用户选配情况可在线获取植物RGB可见光图像(VISI)、远红外图像(FIRI)、近红外图像(NIRI)、荧光图像 (FLUI)、高光谱图像(HYPSI)、3D激光图像(3D-LSI)、CT断层图像(CT-I)、多光谱图像(MSI),通过数据软件分析可 得到盆栽植物的株高、株宽、叶片面积、叶片角度等株型参数、鲜重干重等生物量参数、分蘖参数,此外还可根据用户需要定 制化感兴趣的二级性状参数。成像暗室单元 暗室尺寸: 2000mm×3300mm×2000mm (可定制)最大植物尺寸:幼苗至 8m 自动传送单元传送速度:0-2m/s传送线宽度:500mm定位精度:≤±2mm承重:50-300kg/ 盆(可定制) 控制/采集单元控制/采集单元由高性能自动化控制系统和植物图形采集工作站组成,为植物表型成像系统的大脑中枢;可编程序控制器、工 业通讯系统、变频器等均采用国际名牌产品,提供符合Windows标准的友好的人机界面,方便人员操作;单元中充分考虑环 境对设备的影响,保证意外状态下不影响正常运行:故障单元的停机、离线对系统没有任何影响,运用自动均载技术,保证运 行平稳;按照设计规范安装各种探测开关和限位装置防止越程、误操作,并进行信息反馈;采用标准开发协议,支持自有或第 三方平台实时获取植物扫描图像、监控等数据;储存空间无限扩容,以应对不同阶段对数据库性能和存储空间的需求。 成像传感器单元RGB可见光成像单元:可测参数:持绿性,卷叶程度,枯死叶比例,生物量,高度等 远红外成像单元:可测参数:作物冠层温度分布、叶片蒸腾作用、作物干旱胁迫等相关性状高光谱成像单元:可测参数:无损动态提取海量光谱特征性状,获取不同波段下高光谱图像参数的光谱指数、并基于模型计算植株叶片营养元素含量(N、P、K)、叶绿素含量、水分含量等相关性状。CT成像单元:可测参数:主要用于测量温室盆栽的禾本科植物的分蘖数、分蘖角度、分蘖大小、分蘖形状等分蘖参数、作物植株的茎秆壁粗、壁厚、维管束等茎秆相关参数以及植株内部形态结构、成分含量变化等。 多光谱成像单元:三维多光谱冠层扫描仪适用于室外自然光照条件下 农作物冠层的三维多光谱表型数据快速采集,可在 室外自然光条件下采集多光谱数据时,同步测量农 作物冠层的三维点云数据。 选型配置表河南大学抗逆改良中心高通量作物表型平台集成高通量表型检测平台、植物生长平台、根系生长平台、植物春化平台,快速高通量计算样品相应表型信息,获取大量高价值 的表型数据,建立表型数据库。
    留言咨询
  • Big Kahuna自动化高通量筛选平台 美国Unchained Labs 非链 美国Unchained Labs(非链)公司是化学自动化方案的提供者与领航者,拥有20多年的自动化制造经验和涵盖高通量和微尺度技术的知识储备,美国Unchained Labs在全球超过300个的用户群体。 Big Kahuna系统——开启处方前研究的高效筛选Big Kahuna系统为您提供自动化、高通量、端对端的解决方案,对候选药物进行彻底的理化性质分析。您可对这些系统进行全面配置和构建,以便处理棘手工作。通过提前研究更多结构和条件,您能够更早发现值得配制的制剂,并快速知晓原料药的药物形式。 溶解度筛选 结晶和多晶型物筛选 粉末分配 反应筛选和优化 超强助力工作流程Big Kahuna将帮助您用更少的材料同时运行数百个实验,实现对处方前研究空间的深入探索。您选择完变量并规划好工作流程后,可在一个系统上完成所有工作。能更清晰地纵览全局,发现线索和更有利的变量与条件。 获得理想晶体只需设定好结晶形状数量, Big Kahuna 8×12阵列结晶组件就可大大节省您对原料药进行特性分析所需的时间。在工作台上加热或冷却样本。通用基质方便您利用双折射、 X射线衍射(XRD)和拉曼(Raman)光谱等方法分析样本,且不破坏单晶。 始终可溶温控移液和过滤帮助您将原料药(API)加入溶液中。使用带隔膜穿刺顶端的加热分配元件添加或移除试剂时,请避免其沉淀。加热过滤块配有96个隔离样本孔,彻底避免孔间交叉感染,确保您获得准确条件。 黏液或固体对黏性和固体材料进行准确移液、分配和称重的过程,也是您对配置药物准确评价的过程。对于黏性最强的物料, Big Kahuna使用正排量式移液方法——即使容量低也无妨。固体分配器通过自适应学习算法来精确分配和称量粉末。它们还能记住设置,方便您每次快速进行重复配料。 突破瓶颈LEA不是改变瓶颈的位置,而是彻底地突破瓶颈。其实验设计直观,在后方全面集成分析工具,方便您从正面查看有用信息。 LEA还将您的条件、步骤和分析数据相结合,因此生成的最终报告不仅包含数字,还有帮助您做出真正决策所需的所有信息。
    留言咨询
  • Plantarray是一款基于称重的高通量、多传感器生理表型平台以及植物逆境生物学研究通用平台。该系统可持续、实时测量位于不同环境条件下、阵列中每个植株的土壤-植物-空气(SPAC)中的即时水流动。直接测量根系和茎叶系统水平衡和生物量增加,计算植物生理参数以及植物对动态环境的反馈。系统以有效、易用、无损的方式针对植物对不同处理的反应、预测植物生长和生产力进行定量比较,广泛应用于生物胁迫和非生物胁迫以及植物栽培加速育种研究等,胁迫研究涵盖干旱胁迫、盐胁迫、重金属胁迫、热、冷胁迫、光胁迫以及灌溉/养分、CO2指示、植物健康等领域的研究。主要优势加速农业研究、缩短新产品推向市场时间定量、确定、可信结果全植株、根系、枝叶系统、环境测量多种产品和环境检测验证提升科研水平聚焦田间实验持续、实时生物反馈模块设计、分步预算无需基础设施投资Plantarray 高频测量植物对动态环境条件的反应主要特征性状精度Plantarray植物生物量增益高水准, 直接蒸腾高水准, 直接水利用效率高水准, 直接营养利用效率高水准, 直接根活力高水准, 直接气孔冠层导度高水准, 直接土壤水含量、温度、EC高水准, 直接盐水准(EC)高水准, 直接耐旱和恢复指数高水准, 直接鉴别干旱胁迫点高水准, 直接气象指数,VPD高水准, 直接环境传感器 (PAR, PH, 风速等)高水准, 直接主要诊断能力诊断能力Plantarray定量测量高水准高精度取样高水准实时测量 (相同条件)高水准多重个性化处理高水准随机结构高水准实时分析高水准应用套件应用套件Plantarray干旱胁迫高水准盐度和重金属胁迫高水准灌溉 / 养分高水准CO2 指示高水准热、冷胁迫高水准光高水准植物健康早期检测主要特点直接精确测量主要生理-产量相关性状不同模式控制灌溉-时间、重量、土壤湿度、日常蒸腾等自动、实时测量阵列中单个植株高时空分辨率24/7 持续测量枝叶系统、根系以及环境基于反馈的独特灌溉控制云实时数据分析全植株、无损测量适合多数植物、土壤类型和生长阶段Plantarray系统可靠、耐用,是数十年利用称重蒸渗计(重力称量)系统的研究成果,用于监测在不同变化环境条件下不同植物的反馈。Plant-Ditech长期专业经验融入在系统每个部分之中。每个花盆置于高精度称重天平上,称重天平与控制单元相连,可持续24小时/7天测量花盆重量,并可进一步计算器生理性状。包含2个控制阀用于最大灌溉、施肥灵活性可进行自动化、个性化、植物特异反馈灌溉每个控制单元设计可容纳4个额外传感器、尽管内部互连,当单元损坏不影响其他单元使用降低噪音以及使用长电缆的需求特别设计排水容器坚固-无移动部件整个花盆容量范围 (2 - 60L)4个排水位防止水漏在蒸渗计表面不影响植物和实验前提下实现水和根测量Plantarray系统技术参数 测量单元配有3个数字通道、1个模拟通道、1个称重式蒸渗仪通道,所有的传感器可以同时连续工作;高精度称重模块,最大测重量达50kg(测量范围依具体配置而定),测量精确度±0.02%称重量;植物生长容器满足多种植物的生长需求,容积2-60L,采用防漏水、溅水设计;可根据植物生长时间或生长容器重量选择灌溉模式,灌溉系统采用精准的滴灌控制,能够精确的控制浇水、施肥或施用生物激素的量;多种土壤类、气象类高精度传感器备选,用于测量土壤含水量、温度、电导率,空气温湿度、PAR、气压、NDVI等参数;直接测量参数:重量、空气湿度、空气温度、气压、辐射(PAR)、土壤水分、土壤电导率、土壤温度、日蒸腾计算参数:植物生物量增益、日蒸腾、水分利用效率、气孔导度、抗胁迫因子、水分相对含量、 根穿透力、根系水通量、VPD。Plantarray系统的技术优势Plantarray平台相比于现有系统,具有操作简单,成本低的特点。该系统将冗长的手动调试过程从数月甚至数年缩减为数周,节约了大量宝贵的时间。通过试错方式,利用低成本的自动化系统,Plantarray减少了大规模现场密集测试的工作。/ 生理学特征的监测和数据高通量分析,如生长速率、蒸腾速率、水分利用率、气孔导度等特征;连续控制不同的土壤和水分环境(如干旱、盐分或化学物质);理想的实验平台:全自动、均一检测、适用于不同类型植物、精确测量、非破坏性、实现随机分组实验设计3-4周的实验相当于4-6个月的人工工作;操作简单,维护费用几可忽略;灵活的设计能够满足任何温室中不同方面的科学研究需求。实时统计分析-为了数据的可靠快速分析,提供多阶乘ANOVA或配对T检验;实验目的-在实验运行中为了确保处理的效果可以获取最优化的实验参数;快速定量选择-提供植物对于不同环境需求生理反应的评级和评分的简况;复杂实验通过简要图像呈现生理参数与环境条件的空间和时间关系,显示趋势、异常和比率。 Plantarray系统应用领域 非生物逆境胁迫研究,比如:干旱、淹水、营养、有毒物质等胁迫研究;生物逆境胁迫研究:如病虫害等在农作物、蔬菜、树木、药用植物等方面的育种研究;根系的土壤穿透力、水通量研究;生物激素与养分研究;生理生态学研究等。应用案例非生物胁迫反应应用非生物胁迫是指环境影响如干旱(缺水), 盐度,浇水过量), 极端温度(冷、霜和热)以及有毒物质,这些非生物胁迫可负面影响作物以及其它植物生长、发育、产量以及种子品质。现代作物产量高,但易受到非生物胁迫影响。因基因环境互作的复杂性,提升作物胁迫反应面临巨大挑战, 特别是气候变化期间。要满足全球日益增长的食品需求,研究人员在努力培育适应恶化条件的作物优化品系。Plantarray高通量植物生理研究平台提供了简单易用的软硬件工具,可自动控制实验阵列每个花盆的灌溉处理(品质和数量),分析每个植株对控制处理的反应。通过测定检测施加环境胁迫条件的植物的特定胁迫阈值,系统显著降低了研究植物应对缺水环境的研究时间和精力,并与田间结果高度相关联。干旱处理:浇水良好处理控制 热分布图和图表(生长速率)根系生理表型性能应用根在水吸收中的作用非常重要,但是,因根位于地下,要想持续对其进行监控非常具有挑战性,特别是采用无损监测方法。使用嵌入土壤的传感器,可测量土壤湿度、温度以及电导率,同时测量其它环境信号和生理参数,Plantarray可对多个功能性状进行定量评估,例如流入根的水分-土壤传感器可持续、精确测量水流入每株植株的速率。干旱临界点植物土壤水流入以及流出的即时平衡(蒸腾)提供了不同研究植物和处理条件下的冠层相对水含量(RWC)和其变异。植物RWC认为是植物胁迫状态的比较参照点。SPAC-Analytics分析软件Plant-DiTech公司的SPAC (土壤-植物-空气连续体) 分析是基于云服务的软件,可进行实时数据、分析以及生产力预测。SPAC-Analytics分析软件可帮助农业研究者处理多传感器和来源的输入数据 ,提供多种种植和生产力性状相关的数据统计和图标信息,包括环境参数(包括胁迫)。输出是详细的性能分析,是基于植物群体和处理反馈的高级数据统计工具。来自大阵列的植物样品的生长循环任一时期的数据可自动、持续追溯 。该软件可帮助你在实验时和实验后实时运行多个分析,可使用海量实时数据进行人工处理。SPAC-分析主要优势实时数据统计分析-多因素ANOVA或配对T-检验-结果可靠、快速 达到目标- 实验中优化实验参数,确保关键的处理效果快速定量选择-生成基于性能的概述,用于对植物针对不同环境的生理反馈进行分级和评分负责实验以简洁图标展示-测量生理变量和环境条件之间的时空关系,展示趋势、异常以及比率SPAC-analytics分析软件如何工作 系统对相关性以数字、图表的形式进行处理并展示,下列测量和施加条件之间的测量值、趋势、异常和比率的关系1、测量参数的平滑时间(重量、土壤水含量、空气水需求等)。2、一段时间上述所提到参数的变化率。3、不同时间间隔的植物生物量增益(天、周、和季度)。4、日常蒸腾的模式。5、不同时间间隔的(天、周、季度)水利用效率 (WUE) 。6、土壤水含量 (质量平衡计算或特定传感器直接测r)。7、一天中不同小时气孔导度变化。8、从土壤到根系的水流(安装土壤传感器)。9、一天每小时的植物相对含水量的变化 SPAC-analytics主要优势 Plant-DiTech公司的SPAC-Analytics软件是基于网络软件系统,可让用户浏览并分析每个传感器输入的在线数据。任意网络浏览器都可以管理图形结果,基于用户数据采集,整个实验期间都可浏览。在用户的统计软件上,选择部分可与背景数据一起导出用于下一步工作用。一群样品中的单个植株以及数百个植株的阵列的分辨率有所差异。用户可控制整个群体以及单个样本,例如:1、选择植物/一行(剔除特殊植物)2、参数选择3、日期范围选择4、4、平滑/非平滑图型展示 Plant-DiTech公司的SPAC-Analytics 软件可提供快速、可靠的在线科学分析。
    留言咨询
  • Plantarray是一款基于称重的高通量、多传感器生理表型平台以及植物逆境生物学研究通用平台。该系统可持续、实时测量位于不同环境条件下、阵列中每个植株的土壤-植物-空气(SPAC)中的即时水流动。直接测量根系和茎叶系统水平衡和生物量增加,计算植物生理参数以及植物对动态环境的反馈。系统以有效、易用、无损的方式针对植物对不同处理的反应、预测植物生长和生产力进行定量比较,广泛应用于生物胁迫和非生物胁迫以及植物栽培加速育种研究等,胁迫研究涵盖干旱胁迫、盐胁迫、重金属胁迫、热、冷胁迫、光胁迫以及灌溉/养分、CO2指示、植物健康等领域的研究。主要优势加速农业研究、缩短新产品推向市场时间定量、确定、可信结果全植株、根系、枝叶系统、环境测量多种产品和环境检测验证提升科研水平聚焦田间实验持续、实时生物反馈模块设计、分步预算无需基础设施投资Plantarray 高频测量植物对动态环境条件的反应主要特征性状精度Plantarray植物生物量增益高水准, 直接蒸腾高水准, 直接水利用效率高水准, 直接营养利用效率高水准, 直接根活力高水准, 直接气孔冠层导度高水准, 直接土壤水含量、温度、EC高水准, 直接盐水准(EC)高水准, 直接耐旱和恢复指数高水准, 直接鉴别干旱胁迫点高水准, 直接气象指数,VPD高水准, 直接环境传感器 (PAR, PH, 风速等)高水准, 直接主要诊断能力诊断能力Plantarray定量测量高水准高精度取样高水准实时测量 (相同条件)高水准多重个性化处理高水准随机结构高水准实时分析高水准应用套件应用套件Plantarray干旱胁迫高水准盐度和重金属胁迫高水准灌溉 / 养分高水准CO2 指示高水准热、冷胁迫高水准光高水准植物健康早期检测主要特点直接精确测量主要生理-产量相关性状不同模式控制灌溉-时间、重量、土壤湿度、日常蒸腾等自动、实时测量阵列中单个植株高时空分辨率24/7 持续测量枝叶系统、根系以及环境基于反馈的独特灌溉控制云实时数据分析全植株、无损测量适合多数植物、土壤类型和生长阶段Plantarray系统可靠、耐用,是数十年利用称重蒸渗计(重力称量)系统的研究成果,用于监测在不同变化环境条件下不同植物的反馈。Plant-Ditech长期专业经验融入在系统每个部分之中。每个花盆置于高精度称重天平上,称重天平与控制单元相连,可持续24小时/7天测量花盆重量,并可进一步计算器生理性状。包含2个控制阀用于最大灌溉、施肥灵活性可进行自动化、个性化、植物特异反馈灌溉每个控制单元设计可容纳4个额外传感器、尽管内部互连,当单元损坏不影响其他单元使用降低噪音以及使用长电缆的需求特别设计排水容器坚固-无移动部件整个花盆容量范围 (2 - 60L)4个排水位防止水漏在蒸渗计表面不影响植物和实验前提下实现水和根测量Plantarray系统技术参数 测量单元配有3个数字通道、1个模拟通道、1个称重式蒸渗仪通道,所有的传感器可以同时连续工作;高精度称重模块,最大测重量达50kg(测量范围依具体配置而定),测量精确度±0.02%称重量;植物生长容器满足多种植物的生长需求,容积2-60L,采用防漏水、溅水设计;可根据植物生长时间或生长容器重量选择灌溉模式,灌溉系统采用精准的滴灌控制,能够精确的控制浇水、施肥或施用生物激素的量;多种土壤类、气象类高精度传感器备选,用于测量土壤含水量、温度、电导率,空气温湿度、PAR、气压、NDVI等参数;直接测量参数:重量、空气湿度、空气温度、气压、辐射(PAR)、土壤水分、土壤电导率、土壤温度、日蒸腾计算参数:植物生物量增益、日蒸腾、水分利用效率、气孔导度、抗胁迫因子、水分相对含量、 根穿透力、根系水通量、VPD。Plantarray系统的技术优势Plantarray平台相比于现有系统,具有操作简单,成本低的特点。该系统将冗长的手动调试过程从数月甚至数年缩减为数周,节约了大量宝贵的时间。通过试错方式,利用低成本的自动化系统,Plantarray减少了大规模现场密集测试的工作。/ 生理学特征的监测和数据高通量分析,如生长速率、蒸腾速率、水分利用率、气孔导度等特征;连续控制不同的土壤和水分环境(如干旱、盐分或化学物质);理想的实验平台:全自动、均一检测、适用于不同类型植物、精确测量、非破坏性、实现随机分组实验设计3-4周的实验相当于4-6个月的人工工作;操作简单,维护费用几可忽略;灵活的设计能够满足任何温室中不同方面的科学研究需求。实时统计分析-为了数据的可靠快速分析,提供多阶乘ANOVA或配对T检验;实验目的-在实验运行中为了确保处理的效果可以获取最优化的实验参数;快速定量选择-提供植物对于不同环境需求生理反应的评级和评分的简况;复杂实验通过简要图像呈现生理参数与环境条件的空间和时间关系,显示趋势、异常和比率。 Plantarray系统应用领域 非生物逆境胁迫研究,比如:干旱、淹水、营养、有毒物质等胁迫研究;生物逆境胁迫研究:如病虫害等在农作物、蔬菜、树木、药用植物等方面的育种研究;根系的土壤穿透力、水通量研究;生物激素与养分研究;生理生态学研究等。应用案例非生物胁迫反应应用非生物胁迫是指环境影响如干旱(缺水), 盐度,浇水过量), 极端温度(冷、霜和热)以及有毒物质,这些非生物胁迫可负面影响作物以及其它植物生长、发育、产量以及种子品质。现代作物产量高,但易受到非生物胁迫影响。因基因环境互作的复杂性,提升作物胁迫反应面临巨大挑战, 特别是气候变化期间。要满足全球日益增长的食品需求,研究人员在努力培育适应恶化条件的作物优化品系。Plantarray高通量植物生理研究平台提供了简单易用的软硬件工具,可自动控制实验阵列每个花盆的灌溉处理(品质和数量),分析每个植株对控制处理的反应。通过测定检测施加环境胁迫条件的植物的特定胁迫阈值,系统显著降低了研究植物应对缺水环境的研究时间和精力,并与田间结果高度相关联。干旱处理:浇水良好处理控制 热分布图和图表(生长速率)根系生理表型性能应用根在水吸收中的作用非常重要,但是,因根位于地下,要想持续对其进行监控非常具有挑战性,特别是采用无损监测方法。使用嵌入土壤的传感器,可测量土壤湿度、温度以及电导率,同时测量其它环境信号和生理参数,Plantarray可对多个功能性状进行定量评估,例如流入根的水分-土壤传感器可持续、精确测量水流入每株植株的速率。干旱临界点植物土壤水流入以及流出的即时平衡(蒸腾)提供了不同研究植物和处理条件下的冠层相对水含量(RWC)和其变异。植物RWC认为是植物胁迫状态的比较参照点。SPAC-Analytics分析软件Plant-DiTech公司的SPAC (土壤-植物-空气连续体) 分析是基于云服务的软件,可进行实时数据、分析以及生产力预测。SPAC-Analytics分析软件可帮助农业研究者处理多传感器和来源的输入数据 ,提供多种种植和生产力性状相关的数据统计和图标信息,包括环境参数(包括胁迫)。输出是详细的性能分析,是基于植物群体和处理反馈的高级数据统计工具。来自大阵列的植物样品的生长循环任一时期的数据可自动、持续追溯 。该软件可帮助你在实验时和实验后实时运行多个分析,可使用海量实时数据进行人工处理。SPAC-分析主要优势实时数据统计分析-多因素ANOVA或配对T-检验-结果可靠、快速 达到目标- 实验中优化实验参数,确保关键的处理效果快速定量选择-生成基于性能的概述,用于对植物针对不同环境的生理反馈进行分级和评分负责实验以简洁图标展示-测量生理变量和环境条件之间的时空关系,展示趋势、异常以及比率SPAC-analytics分析软件如何工作 系统对相关性以数字、图表的形式进行处理并展示,下列测量和施加条件之间的测量值、趋势、异常和比率的关系1、测量参数的平滑时间(重量、土壤水含量、空气水需求等)。2、一段时间上述所提到参数的变化率。3、不同时间间隔的植物生物量增益(天、周、和季度)。4、日常蒸腾的模式。5、不同时间间隔的(天、周、季度)水利用效率 (WUE) 。6、土壤水含量 (质量平衡计算或特定传感器直接测r)。7、一天中不同小时气孔导度变化。8、从土壤到根系的水流(安装土壤传感器)。9、一天每小时的植物相对含水量的变化 SPAC-analytics主要优势 Plant-DiTech公司的SPAC-Analytics软件是基于网络软件系统,可让用户浏览并分析每个传感器输入的在线数据。任意网络浏览器都可以管理图形结果,基于用户数据采集,整个实验期间都可浏览。在用户的统计软件上,选择部分可与背景数据一起导出用于下一步工作用。一群样品中的单个植株以及数百个植株的阵列的分辨率有所差异。用户可控制整个群体以及单个样本,例如:1、选择植物/一行(剔除特殊植物)2、参数选择3、日期范围选择4、4、平滑/非平滑图型展示 Plant-DiTech公司的SPAC-Analytics 软件可提供快速、可靠的在线科学分析。
    留言咨询
  • Plantarray是一款基于称重的高通量、多传感器生理表型平台以及植物逆境生物学研究通用平台。该系统可持续、实时测量位于不同环境条件下、阵列中每个植株的土壤-植物-空气(SPAC)中的即时水流动。直接测量根系和茎叶系统水平衡和生物量增加,计算植物生理参数以及植物对动态环境的反馈。系统以有效、易用、无损的方式针对植物对不同处理的反应、预测植物生长和生产力进行定量比较,广泛应用于生物胁迫和非生物胁迫以及植物栽培加速育种研究等,胁迫研究涵盖干旱胁迫、盐胁迫、重金属胁迫、热、冷胁迫、光胁迫以及灌溉/养分、CO2指示、植物健康等领域的研究。主要优势加速农业研究、缩短新产品推向市场时间定量、确定、可信结果全植株、根系、枝叶系统、环境测量多种产品和环境检测验证提升科研水平聚焦田间实验持续、实时生物反馈模块设计、分步预算无需基础设施投资Plantarray 高频测量植物对动态环境条件的反应主要特征性状精度Plantarray植物生物量增益高水准, 直接蒸腾高水准, 直接水利用效率高水准, 直接营养利用效率高水准, 直接根活力高水准, 直接气孔冠层导度高水准, 直接土壤水含量、温度、EC高水准, 直接盐水准(EC)高水准, 直接耐旱和恢复指数高水准, 直接鉴别干旱胁迫点高水准, 直接气象指数,VPD高水准, 直接环境传感器 (PAR, PH, 风速等)高水准, 直接主要诊断能力诊断能力Plantarray定量测量高水准高精度取样高水准实时测量 (相同条件)高水准多重个性化处理高水准随机结构高水准实时分析高水准应用套件应用套件Plantarray干旱胁迫高水准盐度和重金属胁迫高水准灌溉 / 养分高水准CO2 指示高水准热、冷胁迫高水准光高水准植物健康早期检测主要特点直接精确测量主要生理-产量相关性状不同模式控制灌溉-时间、重量、土壤湿度、日常蒸腾等自动、实时测量阵列中单个植株高时空分辨率24/7 持续测量枝叶系统、根系以及环境基于反馈的独特灌溉控制云实时数据分析全植株、无损测量适合多数植物、土壤类型和生长阶段Plantarray系统可靠、耐用,是数十年利用称重蒸渗计(重力称量)系统的研究成果,用于监测在不同变化环境条件下不同植物的反馈。Plant-Ditech长期专业经验融入在系统每个部分之中。每个花盆置于高精度称重天平上,称重天平与控制单元相连,可持续24小时/7天测量花盆重量,并可进一步计算器生理性状。包含2个控制阀用于最大灌溉、施肥灵活性可进行自动化、个性化、植物特异反馈灌溉每个控制单元设计可容纳4个额外传感器、尽管内部互连,当单元损坏不影响其他单元使用降低噪音以及使用长电缆的需求特别设计排水容器坚固-无移动部件整个花盆容量范围 (2 - 60L)4个排水位防止水漏在蒸渗计表面不影响植物和实验前提下实现水和根测量Plantarray系统技术参数 测量单元配有3个数字通道、1个模拟通道、1个称重式蒸渗仪通道,所有的传感器可以同时连续工作;高精度称重模块,最大测重量达50kg(测量范围依具体配置而定),测量精确度±0.02%称重量;植物生长容器满足多种植物的生长需求,容积2-60L,采用防漏水、溅水设计;可根据植物生长时间或生长容器重量选择灌溉模式,灌溉系统采用精准的滴灌控制,能够精确的控制浇水、施肥或施用生物激素的量;多种土壤类、气象类高精度传感器备选,用于测量土壤含水量、温度、电导率,空气温湿度、PAR、气压、NDVI等参数;直接测量参数:重量、空气湿度、空气温度、气压、辐射(PAR)、土壤水分、土壤电导率、土壤温度、日蒸腾计算参数:植物生物量增益、日蒸腾、水分利用效率、气孔导度、抗胁迫因子、水分相对含量、 根穿透力、根系水通量、VPD。Plantarray系统的技术优势Plantarray平台相比于现有系统,具有操作简单,成本低的特点。该系统将冗长的手动调试过程从数月甚至数年缩减为数周,节约了大量宝贵的时间。通过试错方式,利用低成本的自动化系统,Plantarray减少了大规模现场密集测试的工作。/ 生理学特征的监测和数据高通量分析,如生长速率、蒸腾速率、水分利用率、气孔导度等特征;连续控制不同的土壤和水分环境(如干旱、盐分或化学物质);理想的实验平台:全自动、均一检测、适用于不同类型植物、精确测量、非破坏性、实现随机分组实验设计3-4周的实验相当于4-6个月的人工工作;操作简单,维护费用几可忽略;灵活的设计能够满足任何温室中不同方面的科学研究需求。实时统计分析-为了数据的可靠快速分析,提供多阶乘ANOVA或配对T检验;实验目的-在实验运行中为了确保处理的效果可以获取最优化的实验参数;快速定量选择-提供植物对于不同环境需求生理反应的评级和评分的简况;复杂实验通过简要图像呈现生理参数与环境条件的空间和时间关系,显示趋势、异常和比率。 Plantarray系统应用领域 非生物逆境胁迫研究,比如:干旱、淹水、营养、有毒物质等胁迫研究;生物逆境胁迫研究:如病虫害等在农作物、蔬菜、树木、药用植物等方面的育种研究;根系的土壤穿透力、水通量研究;生物激素与养分研究;生理生态学研究等。应用案例非生物胁迫反应应用非生物胁迫是指环境影响如干旱(缺水), 盐度,浇水过量), 极端温度(冷、霜和热)以及有毒物质,这些非生物胁迫可负面影响作物以及其它植物生长、发育、产量以及种子品质。现代作物产量高,但易受到非生物胁迫影响。因基因环境互作的复杂性,提升作物胁迫反应面临巨大挑战, 特别是气候变化期间。要满足全球日益增长的食品需求,研究人员在努力培育适应恶化条件的作物优化品系。Plantarray高通量植物生理研究平台提供了简单易用的软硬件工具,可自动控制实验阵列每个花盆的灌溉处理(品质和数量),分析每个植株对控制处理的反应。通过测定检测施加环境胁迫条件的植物的特定胁迫阈值,系统显著降低了研究植物应对缺水环境的研究时间和精力,并与田间结果高度相关联。干旱处理:浇水良好处理控制 热分布图和图表(生长速率)根系生理表型性能应用根在水吸收中的作用非常重要,但是,因根位于地下,要想持续对其进行监控非常具有挑战性,特别是采用无损监测方法。使用嵌入土壤的传感器,可测量土壤湿度、温度以及电导率,同时测量其它环境信号和生理参数,Plantarray可对多个功能性状进行定量评估,例如流入根的水分-土壤传感器可持续、精确测量水流入每株植株的速率。干旱临界点植物土壤水流入以及流出的即时平衡(蒸腾)提供了不同研究植物和处理条件下的冠层相对水含量(RWC)和其变异。植物RWC认为是植物胁迫状态的比较参照点。SPAC-Analytics分析软件Plant-DiTech公司的SPAC (土壤-植物-空气连续体) 分析是基于云服务的软件,可进行实时数据、分析以及生产力预测。SPAC-Analytics分析软件可帮助农业研究者处理多传感器和来源的输入数据 ,提供多种种植和生产力性状相关的数据统计和图标信息,包括环境参数(包括胁迫)。输出是详细的性能分析,是基于植物群体和处理反馈的高级数据统计工具。来自大阵列的植物样品的生长循环任一时期的数据可自动、持续追溯 。该软件可帮助你在实验时和实验后实时运行多个分析,可使用海量实时数据进行人工处理。SPAC-分析主要优势实时数据统计分析-多因素ANOVA或配对T-检验-结果可靠、快速 达到目标- 实验中优化实验参数,确保关键的处理效果快速定量选择-生成基于性能的概述,用于对植物针对不同环境的生理反馈进行分级和评分负责实验以简洁图标展示-测量生理变量和环境条件之间的时空关系,展示趋势、异常以及比率SPAC-analytics分析软件如何工作 系统对相关性以数字、图表的形式进行处理并展示,下列测量和施加条件之间的测量值、趋势、异常和比率的关系1、测量参数的平滑时间(重量、土壤水含量、空气水需求等)。2、一段时间上述所提到参数的变化率。3、不同时间间隔的植物生物量增益(天、周、和季度)。4、日常蒸腾的模式。5、不同时间间隔的(天、周、季度)水利用效率 (WUE) 。6、土壤水含量 (质量平衡计算或特定传感器直接测r)。7、一天中不同小时气孔导度变化。8、从土壤到根系的水流(安装土壤传感器)。9、一天每小时的植物相对含水量的变化 SPAC-analytics主要优势 Plant-DiTech公司的SPAC-Analytics软件是基于网络软件系统,可让用户浏览并分析每个传感器输入的在线数据。任意网络浏览器都可以管理图形结果,基于用户数据采集,整个实验期间都可浏览。在用户的统计软件上,选择部分可与背景数据一起导出用于下一步工作用。一群样品中的单个植株以及数百个植株的阵列的分辨率有所差异。用户可控制整个群体以及单个样本,例如:1、选择植物/一行(剔除特殊植物)2、参数选择3、日期范围选择4、4、平滑/非平滑图型展示 Plant-DiTech公司的SPAC-Analytics 软件可提供快速、可靠的在线科学分析。
    留言咨询
  • HT-NIC: HIGH-THROUGHPUT NANOWELL-BASED IMAGE-VERIFIED CLONING Solution 高通量的图像验证的细胞克隆开发方案 随着细胞生物学及现代生物制药技术的不断创新发展,对细胞株筛选、细胞系开发也逐渐到达新的高度。特别是细胞系的快速开发:从快速筛选分析再到下游的大规模生产,都需要一整套高技术自动化方案以创造最适合的研发条件。如何可以保证细胞活性、提供完整的单克隆性证据、并节约人工和材料成本,已成为细胞系开发的首要解决问题,HT-NIC平台无疑是这个领域的佼佼者。 HT-NIC平台由CellCelector 细胞捕获系统匹配Nanowell板的特殊应用开发而成。把需要筛选的CHO细胞铺于Nanowell板后,HT-NIC平台可连续检测细胞的生长状态,提供完整的可溯源的图像验证,单克隆性证据满足的FDA认证的需求。HT-NIC 平台可以节约耗材和空间,优化接种密度,提高细胞生长速度。相对于传统的有限稀释法,使用HT-NIC方法只是需要一轮的筛选,极大提高了生产筛选效率 更快的细胞系开发CLD 时间 (5~ 9周) 完整的图像验证的单克隆性证据 高图像质量保证准确稳定的单细胞检测
    留言咨询
  • 动态库存,如有需要,欢迎咨询 二手-安捷伦高通量质谱分析平台-Agilent RapidFire
    留言咨询
  • Plantarray是一款基于称重的高通量、多传感器生理表型平台以及植物逆境生物学研究通用平台。该系统可持续、实时测量位于不同环境条件下、阵列中每个植株的土壤-植物-空气(SPAC)中的即时水流动。直接测量根系和茎叶系统水平衡和生物量增加,计算植物生理参数以及植物对动态环境的反馈。系统以有效、易用、无损的方式针对植物对不同处理的反应、预测植物生长和生产力进行定量比较,广泛应用于生物胁迫和非生物胁迫以及植物栽培加速育种研究等,胁迫研究涵盖干旱胁迫、盐胁迫、重金属胁迫、热、冷胁迫、光胁迫以及灌溉/养分、CO2指示、植物健康等领域的研究。主要优势加速农业研究、缩短新产品推向市场时间定量、确定、可信结果全植株、根系、枝叶系统、环境测量多种产品和环境检测验证提升科研水平聚焦田间实验持续、实时生物反馈模块设计、分步预算无需基础设施投资Plantarray 高频测量植物对动态环境条件的反应主要特征性状精度Plantarray植物生物量增益高水准, 直接蒸腾高水准, 直接水利用效率高水准, 直接营养利用效率高水准, 直接根活力高水准, 直接气孔冠层导度高水准, 直接土壤水含量、温度、EC高水准, 直接盐水准(EC)高水准, 直接耐旱和恢复指数高水准, 直接鉴别干旱胁迫点高水准, 直接气象指数,VPD高水准, 直接环境传感器 (PAR, PH, 风速等)高水准, 直接主要诊断能力诊断能力Plantarray定量测量高水准高精度取样高水准实时测量 (相同条件)高水准多重个性化处理高水准随机结构高水准实时分析高水准应用套件应用套件Plantarray干旱胁迫高水准盐度和重金属胁迫高水准灌溉 / 养分高水准CO2 指示高水准热、冷胁迫高水准光高水准植物健康早期检测主要特点直接精确测量主要生理-产量相关性状不同模式控制灌溉-时间、重量、土壤湿度、日常蒸腾等自动、实时测量阵列中单个植株高时空分辨率24/7 持续测量枝叶系统、根系以及环境基于反馈的独特灌溉控制云实时数据分析全植株、无损测量适合多数植物、土壤类型和生长阶段Plantarray系统可靠、耐用,是数十年利用称重蒸渗计(重力称量)系统的研究成果,用于监测在不同变化环境条件下不同植物的反馈。Plant-Ditech长期专业经验融入在系统每个部分之中。每个花盆置于高精度称重天平上,称重天平与控制单元相连,可持续24小时/7天测量花盆重量,并可进一步计算器生理性状。包含2个控制阀用于最大灌溉、施肥灵活性可进行自动化、个性化、植物特异反馈灌溉每个控制单元设计可容纳4个额外传感器、尽管内部互连,当单元损坏不影响其他单元使用降低噪音以及使用长电缆的需求特别设计排水容器坚固-无移动部件整个花盆容量范围 (2 - 60L)4个排水位防止水漏在蒸渗计表面不影响植物和实验前提下实现水和根测量Plantarray系统技术参数 测量单元配有3个数字通道、1个模拟通道、1个称重式蒸渗仪通道,所有的传感器可以同时连续工作;高精度称重模块,最大测重量达50kg(测量范围依具体配置而定),测量精确度±0.02%称重量;植物生长容器满足多种植物的生长需求,容积2-60L,采用防漏水、溅水设计;可根据植物生长时间或生长容器重量选择灌溉模式,灌溉系统采用精准的滴灌控制,能够精确的控制浇水、施肥或施用生物激素的量;多种土壤类、气象类高精度传感器备选,用于测量土壤含水量、温度、电导率,空气温湿度、PAR、气压、NDVI等参数;直接测量参数:重量、空气湿度、空气温度、气压、辐射(PAR)、土壤水分、土壤电导率、土壤温度、日蒸腾计算参数:植物生物量增益、日蒸腾、水分利用效率、气孔导度、抗胁迫因子、水分相对含量、 根穿透力、根系水通量、VPD。Plantarray系统的技术优势Plantarray平台相比于现有系统,具有操作简单,成本低的特点。该系统将冗长的手动调试过程从数月甚至数年缩减为数周,节约了大量宝贵的时间。通过试错方式,利用低成本的自动化系统,Plantarray减少了大规模现场密集测试的工作。/ 生理学特征的监测和数据高通量分析,如生长速率、蒸腾速率、水分利用率、气孔导度等特征;连续控制不同的土壤和水分环境(如干旱、盐分或化学物质);理想的实验平台:全自动、均一检测、适用于不同类型植物、精确测量、非破坏性、实现随机分组实验设计3-4周的实验相当于4-6个月的人工工作;操作简单,维护费用几可忽略;灵活的设计能够满足任何温室中不同方面的科学研究需求。实时统计分析-为了数据的可靠快速分析,提供多阶乘ANOVA或配对T检验;实验目的-在实验运行中为了确保处理的效果可以获取最优化的实验参数;快速定量选择-提供植物对于不同环境需求生理反应的评级和评分的简况;复杂实验通过简要图像呈现生理参数与环境条件的空间和时间关系,显示趋势、异常和比率。 Plantarray系统应用领域 非生物逆境胁迫研究,比如:干旱、淹水、营养、有毒物质等胁迫研究;生物逆境胁迫研究:如病虫害等在农作物、蔬菜、树木、药用植物等方面的育种研究;根系的土壤穿透力、水通量研究;生物激素与养分研究;生理生态学研究等。应用案例非生物胁迫反应应用非生物胁迫是指环境影响如干旱(缺水), 盐度,浇水过量), 极端温度(冷、霜和热)以及有毒物质,这些非生物胁迫可负面影响作物以及其它植物生长、发育、产量以及种子品质。现代作物产量高,但易受到非生物胁迫影响。因基因环境互作的复杂性,提升作物胁迫反应面临巨大挑战, 特别是气候变化期间。要满足全球日益增长的食品需求,研究人员在努力培育适应恶化条件的作物优化品系。Plantarray高通量植物生理研究平台提供了简单易用的软硬件工具,可自动控制实验阵列每个花盆的灌溉处理(品质和数量),分析每个植株对控制处理的反应。通过测定检测施加环境胁迫条件的植物的特定胁迫阈值,系统显著降低了研究植物应对缺水环境的研究时间和精力,并与田间结果高度相关联。干旱处理:浇水良好处理控制 热分布图和图表(生长速率)根系生理表型性能应用根在水吸收中的作用非常重要,但是,因根位于地下,要想持续对其进行监控非常具有挑战性,特别是采用无损监测方法。使用嵌入土壤的传感器,可测量土壤湿度、温度以及电导率,同时测量其它环境信号和生理参数,Plantarray可对多个功能性状进行定量评估,例如流入根的水分-土壤传感器可持续、精确测量水流入每株植株的速率。干旱临界点植物土壤水流入以及流出的即时平衡(蒸腾)提供了不同研究植物和处理条件下的冠层相对水含量(RWC)和其变异。植物RWC认为是植物胁迫状态的比较参照点。SPAC-Analytics分析软件Plant-DiTech公司的SPAC (土壤-植物-空气连续体) 分析是基于云服务的软件,可进行实时数据、分析以及生产力预测。SPAC-Analytics分析软件可帮助农业研究者处理多传感器和来源的输入数据 ,提供多种种植和生产力性状相关的数据统计和图标信息,包括环境参数(包括胁迫)。输出是详细的性能分析,是基于植物群体和处理反馈的高级数据统计工具。来自大阵列的植物样品的生长循环任一时期的数据可自动、持续追溯 。该软件可帮助你在实验时和实验后实时运行多个分析,可使用海量实时数据进行人工处理。SPAC-分析主要优势实时数据统计分析-多因素ANOVA或配对T-检验-结果可靠、快速 达到目标- 实验中优化实验参数,确保关键的处理效果快速定量选择-生成基于性能的概述,用于对植物针对不同环境的生理反馈进行分级和评分负责实验以简洁图标展示-测量生理变量和环境条件之间的时空关系,展示趋势、异常以及比率SPAC-analytics分析软件如何工作 系统对相关性以数字、图表的形式进行处理并展示,下列测量和施加条件之间的测量值、趋势、异常和比率的关系1、测量参数的平滑时间(重量、土壤水含量、空气水需求等)。2、一段时间上述所提到参数的变化率。3、不同时间间隔的植物生物量增益(天、周、和季度)。4、日常蒸腾的模式。5、不同时间间隔的(天、周、季度)水利用效率 (WUE) 。6、土壤水含量 (质量平衡计算或特定传感器直接测r)。7、一天中不同小时气孔导度变化。8、从土壤到根系的水流(安装土壤传感器)。9、一天每小时的植物相对含水量的变化 SPAC-analytics主要优势 Plant-DiTech公司的SPAC-Analytics软件是基于网络软件系统,可让用户浏览并分析每个传感器输入的在线数据。任意网络浏览器都可以管理图形结果,基于用户数据采集,整个实验期间都可浏览。在用户的统计软件上,选择部分可与背景数据一起导出用于下一步工作用。一群样品中的单个植株以及数百个植株的阵列的分辨率有所差异。用户可控制整个群体以及单个样本,例如:1、选择植物/一行(剔除特殊植物)2、参数选择3、日期范围选择4、4、平滑/非平滑图型展示 Plant-DiTech公司的SPAC-Analytics 软件可提供快速、可靠的在线科学分析。
    留言咨询
  • 产品简介:32工位高通量XRF检测仪(XRF-S32)是一款高通量XRF检测仪,可一次检测32个样品,缩短整个测试实验周期。该系统主要由手持式XRF检测仪、二轴运动平台、32工位样品台以及远程笔记本控制系统四部分组成,具有高的灵敏度,可以在极低浓度下(ppm级)快速简单的测量出样品中所含的各元素(Ne到Pu)。可广泛应用于高通量方法进行合金材料成分分析筛选、高熵合金、新型磁性材料以及固态陶瓷电解质材料等的分析研究中。 32工位高通量XRF检测仪简易视频 产品型号32工位高通量XRF检测仪主要特点1、该系统由手持式XRF检测仪、二轴运动平台以及32工位样品台以及远程笔记本控制系统四部分组成2、XRF检测仪可通过USB数据线与电脑连接,确保实验人员可以在安全的距离上操作3、一次最多可放置32个样品,实现高通量的材料成分检测4、设置有X射线指示灯,观察窗口采用铅玻璃材质,确保X射线的安全使用 XRF检测仪1、手持式XRF检测仪,结构小巧,操作简便2、具有安全联锁结构,避免X射线的意外泄露3、USB数据线与电脑连接在安全距离处进行检测,保证操作人员的安全软件控制笔记本电脑中包含预先安装好的X射线源控制软件,探测器控制软件以及光谱分析软件用于仪器各部分的控制和数据分析强大的XRF控制系统以及光谱分析软件可以进行测量的定制和优化,特别适用于研究复杂样品和未知样品光谱分析软件可用于样品的定性和定量分析 样品一般为块体或薄膜 可对空气中的衰减和吸收进行完整的校正 可对55种元素进行实时分析 可选择自动模式进行连续或重复性的分析二轴运动平台触摸屏显示控制,操作方便检测时间(转换工位停留时间)、X-Y轴移动速度、结束工位等参数可调,实现自动换样 搭配32工位样品台可进行高通量材料成分检测 32工位样品台 样品可放置于32工位样品台上样品台与二轴运动平台搭配使用,实现高通量材料成分检测(如下图) 技术参数电源:220V AC ,50/60Hz,单相产品规格尺寸:1000×800×1000mm;重量:120kg注意事项前门观察窗口采用铅玻璃材质,可衰减X射线强度,检测时需关闭前门,起到防护作用建议XRF检测时远离箱体900px进行操作质量认证CE认证符合WEEE指令、EMC指令、RoHs(中国)、FCC(美国)以及ICES-001(加拿大)等各项认证
    留言咨询
  • New Dianthus 高通量亲和力筛选平台—— 突破性的光谱位移技术,助您解决亲和力筛选的终极挑战重要靶点和候选药物的亲和力筛选非常具有挑战性。当您的亲和力筛选项目涉及到PROTAC二元和三元复合物,片段化合物库及固有无序蛋白时,需要进行样品固定的SPR技术和样品消耗量大的ITC技术的检测 难度会大大增加。 而这些恰好是Dianthus擅长的应用领域。1. 在高难度亲和力筛选项目中获得成功(1)以值得信赖的结果推动筛选项目进展在面对高难度筛选时,大多数生物物理方法仅能提供低质量数据,有些甚至不能使用。Dianthus产出的高信噪比数据可以消除 hits 筛选 (尤其是亲和力检测) 中的—切不确定性。让您对数据与决策都充满信心。(2)从真实样本中获得有效的数据结果,无需在方法开发中耗费过多时间许多生物物理方法需要高纯度样品才能产生好的数据,从而导致项目延误,给筛选团队带来很大压力。Dianthus 可以从真实样本中获得高质量数据,让您免受聚集体、杂质或沉淀等问题的困扰。(3)依靠高灵敏度的生物物理方法发现更 多有价值的 Hits为了避免错失有价值的 hits,研究人员需 要同时使用多种方法进行正交验证,但这也使整个流程变得耗时费力。Dianthus 可以检测非常细檄的光谱位移,可检测到更多的结合分子并降低假阴性率。2. 解决 SPR 和 IT 等技术遇到的常见问题同其他科学家一样,您在攻关筛选项目的过程中一定也会被相同的问题所困扰。Dianthus让您轻松专注于自己的研究项目,无需再担心这些问题。(1)亲和力检测范围广:Dianthus可以检测极宽范围的亲和力 — 从皮摩尔级 (pM) 到毫摩尔级 (mM) — 因此您可以研究非常强和非常弱的结合反应。(2)溶液中检测,无需固定:在面对高难度靶点时,Dianthus为您提供理想的分析环境,可在最接近自然条件的溶液中进行检测。您完全不必担心靶点分子的结合位点受到干扰,或无法控制平衡体系。(3)样品消耗量很低:相比其他方法,Dianthus的样品量极少,可为您节省宝贵的蛋白样品及化合物。(4)自动化运行亲和力筛选项目:通过微孔板形式与多种自动化解决方案相兼容。即使无人值守,您的筛选实验也可以不间断运转。3. Dianthus是您自始至终值得信赖的筛选平台(1)Hits发现:更快地发现 hits,是提高药物研发效率的最关键步骤。无论是基于片段筛选或是小分子单点筛选,Dianthus 都能帮助您快速发现 hits,并进行确认。(2)先导化合物 (Leads) 确认:Dianthus 可以生成简单、易于解释的亲和力排序表和注释,帮助您决速确定合适的候选分子,并马上开始先导化合物 (leads) 的优化,您无需在强、弱活性分子的排序上花费过多时间。(3)Leads优化:—旦确认完成,下—步就需要提高化合物的特异性、选择性以及效价。使用 Dianthus 可以确认那些化合物的亲和力有无变化。这—数据与您的 ADME, 毒理以及 PK/PD结果—起,可以帮助您开发最有潜力的候选药物分子。4. 当药物研发过程涉及到这些具有挑战性的分子时,请别过早放弃在涉及到以下几类分子时,Dianthus 可以助您消除 hits 发现和 leads 优化中的障碍。(1)PROTACs 等小分子蛋白降解剂:如果采用基于分子量变化的结合检测方法,您在检测像 warheads 这样的小分子时会在方法开发上耗费大量精力。同时,由于需要对二元复合物进行固定,三元复合物的研究在基于芯片固定的检测方法中会变得非常杂。Dianthus 在溶液中检测且不依赖于分子量变化 —— 这正是您在筛选PROTAC筛选所需要的。(2)片段化合物库:由于化合物片段分子量极低,基于分子量变化的筛选方法很难从小分子片段库中发现 hits。此外,您还面临着兼顾弱亲和力 (hits发现阶段) 和强亲和力 (leads优化阶段) 检测的挑战。Dianthus不依赖于分子量变化且宽范围的检测可以解决这两大问题。(3)固有无序蛋白 IDPs:Dianthus 在溶液中检测,因此没有破坏 IDPs 构象平衡的风险--而这恰恰是需要固定的检测方法的通病。而且由于 Dianthus 仅需低浓度的靶标分子,IDPs的聚集不会干扰结合分子的筛选。5. 两种生物物理检测方法确保您成功完成筛选面对不同类型分子间的高难度相互作用,您往往需要采用不同的方式进行检测。因此,一台具备两种不同检测模式的仪器能够帮助您检测所有类型的分子互作。(1)Dianthus是首个采用光谱位移技术进行亲和力筛选的平台尽管光谱位移的概念并不新奇,但 Dianthus 是首个将这项技术应用于亲和力定量检测的仪器平台。实验流程非常简单:我们对靶标分子进行荧光标记,然后将其与一系列梯度稀释的配体分子等量混合。以 590nm 激发光对混合物进行荧光激发后,配体与靶标分子的结合可通过发射光谱的蓝移或红移得到检测。Dianthus在等温条件下精确检测 650 nm 和 670 nm 双波长的发射光,因而能够准确测到极细微的光谱位移。接下来,以配体浓度为横坐标,双波长荧光强度的比值为纵坐标作图,拟合得到平衡解离常数Kd值。(2)使用TRIC这项历时10年验证的成熟技术对光谱位移进行补充TRIC 技术是通过对靶标分子进行荧光标记,并使其与配体分子混合来定量检测分子间相互作用。随后,通过激光,在溶液中制造一个精确而短暂的温度变化,可放大由配体与靶标分子结合引起的荧光强度变化。以配体浓度为横坐标,荧光值为纵坐标作图,从而获得平衡解离常数Kd值。
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制