当前位置: 仪器信息网 > 行业主题 > >

人肺癌细胞株

仪器信息网人肺癌细胞株专题为您提供2024年最新人肺癌细胞株价格报价、厂家品牌的相关信息, 包括人肺癌细胞株参数、型号等,不管是国产,还是进口品牌的人肺癌细胞株您都可以在这里找到。 除此之外,仪器信息网还免费为您整合人肺癌细胞株相关的耗材配件、试剂标物,还有人肺癌细胞株相关的最新资讯、资料,以及人肺癌细胞株相关的解决方案。

人肺癌细胞株相关的仪器

  • Sf-RVN昆虫细胞株是一种弹状病毒阴性的Sf9细胞株,可以贴壁培养和悬浮培养中扩增。Sf-RVN昆虫细胞株已适应在化学成分限定的培养基中扩增,用于表达重组蛋白、腺相关病毒(AAV)和病毒样颗粒(VLP)。细胞株经过cGMP条件下的外源因子检测并储存。随附完整的可追溯性文档和使用技术指南,其中包含用于实现最佳性能的详细方案。推荐使用已经过优化的EX-CELL CD昆虫细胞培养基,可以让Sf-RVN昆虫细胞株获得出色的扩增和产率。结合起来,这两种产品组成了Sf-RVN平台。Sf-RVN昆虫细胞株仅用于研究目的。在临床或商业生产中使用该细胞株或任何衍生自该细胞株的产品之前,必须获得商业许可。请联系默克当地的销售以获取更多详细信息。Sf-RVN细胞以10×106 cell/mL的密度以1 mL体积装在冻存管中提供给客户。细胞储存在EX-CELL CD昆虫细胞培养基和10% DMSO中。特点和优势:- 杆状病毒阴性:缓解风险并增强生物安全性- 经过cGMP条件下的外源因子测试并储存于EX-CELL CD昆虫细胞培养基- 可用于监管备案的完整可追溯性文档- EX-CELL CD昆虫细胞培养基是一种经过优化的化学成分限定的培养基,可实现细胞株的出色扩增和生产率- 包含详细方案的使用者技术指南,以实现最佳性能也可联系MerckMillipore.com以进行其他cGMP测试和细胞存储服务。
    留言咨询
  • CHOZN CHO K1是一种悬浮培养细胞株,适于在化学成分限定培养基中生长以表达重组蛋白。本细胞株附有完整的可追溯文件,并在动态药品生产管理规范(cGMP)的条件下储存。几种符合cGMP规范生产的化学成分限定的培养基可以用于CHOZN CHO K1细胞株的培养。特点与优点:- 悬浮培养- 无血清生长- 复苏、培养和转染的详细方案- 可提供完整的可追溯性和细胞株文档 了解更多,e.g., 细胞株来源,细胞生产与产量,产品组件等,可参见本页面核心参数 – 样本下载中的资料手册。
    留言咨询
  • CHOZN GS-/-是采用Sigma独有的CompoZr锌指核酸酶(ZFN)技术建立的细胞株。ZFNs是一类工程DNA结合蛋白,它通过结合用户指定的位点并造成双链断裂(DSB),从而实现靶向基因的编辑。其后,细胞可采用内源性DNA修复过程,非同源性末端接合(NHEJ),或同源介导的双链修复来修复目标双链断裂处。这些修复过程可以被引导以产生精确的靶向基因编辑,从而形成特定基因缺陷(敲除),整合或修饰的生物体或细胞株。谷氨酰胺合成酶(GS)是生物制药行业中最常用的筛选标签之一。通过将重组蛋白的编码基因的表达与外源GS基因的表达偶联,生产重组蛋白的细胞株可以被筛选出来。在GS缺陷宿主细胞之中,只有那些成功转染外源GS基因的细胞在缺乏谷氨酰胺条件下培养才能存活。在具有内源性GS基因的宿主细胞中,可以使用MSX(甲硫氨酸砜亚胺)来抑制内源GS活性,使得这些细胞系可以使用GS筛选。然而在生物制药行业中,无MSX工艺更具优势。为了实现无MSX GS筛选,我们需要一种GS敲除的宿主细胞株。利用ZFN技术,SAFC设计了一种新的CHO K1 GS-/-细胞株。这种CHOZN GS-/-细胞株适合在化学成分限定EX-CELL CD CHO Fusion培养基中悬浮培养,并保持了野生型CHO K1的稳健特性。特点与优点:- 首个商业化的GS-/-CHO细胞株- CHOZN GS-/-是使用ZFN技术靶向突变开发的细胞株- 适合在化学限定,无动物源成分的培养基中悬浮培养的细胞系- 细胞源自于ECACC CHO K1- cGMP标准生产,完善的病毒检测,完整的可追溯资料- 全面的实验方案,为您详细说明筛选策略- 技术专家随时为您排除问题了解更多,可参见本页面核心参数 – 样本下载中的资料手册。
    留言咨询
  • 智能细胞株筛选自动化系统 细胞株开发(Cell line Development, CLD)是生物药的工艺开发中不可或缺的关键实验技术,目的是获得能高效稳定表达的细胞株。细胞株筛选自动化系统具备高通量和灵活性的优势,通过对细胞株筛选实验步骤的标准化、自动化,减少各环节的人为因素影响。保证实验的高通量进行及实验结果的一致性。产品特点标准化:构建标准化流程,可重复性强,避免手工操作造成的错误; 信息追踪:独家开发的离线数据对接软件,检测数据与自动系统无缝连接,样本信息自动追踪,并支持 数据检索;多样本:并行具有项目管理功能,多项目可并行;防污染:正压HEPA防护,细胞样本不受污染;应用领域生物制品(如重组蛋白和单克隆抗体)生产药物筛选和基因功能研究技术参数序号 仪器名称数量 1液体工作站22细胞培养箱13PHSAtlas智能机器14耗材堆栈15自动化细胞单克隆成像仪26iMagicOS智慧互联魔法操作系统1
    留言咨询
  • Maestro Z/ZHT--细胞增殖、毒性与活性检测仪应用案例:FTH高表达可促进肝癌细胞增殖 肝细胞癌 (HCC) 是最常见的原发性肝癌类型,目前对于HCC晚期患者来说,有效的治疗方法很少。与其他类型癌症(如乳腺癌、非小细胞肺癌和胰腺癌)相似,HCC 细胞富含铁并且容易发生铁死亡——这是近期发现的一种由于铁过载引发脂质过氧化物的异常积累所致的程序性细胞死亡类型。一些证据表明,铁蛋白重链(下文简称为FTH)是一种由 FTH1 基因编码的亚铁氧化酶,起到了调控铁死亡的作用。但FTH在HCC的铁死亡抗性中的机制尚不清楚。 为了探索FTH是如何影响肝癌细胞生长的,来自浙江省人民医院的杜静团队使用 Axion Maestro Z细胞无损实时检测系统对过表达FTH的癌细胞进行活细胞分析,发现其相比对照组,展现出更快的增殖速度。 A, B分别为HCC-LM3, MHCC97H的对照组及FTH过表达组细胞增殖曲线 实时无标记的阻抗数据表明,无论HCC-LM3(人高转移肝癌细胞)还是MHCC97H(人肝癌细胞),在过表达FTH(图3A, B中OE-FTH组)后增殖速度都会变快。这说明在不同的肝癌细胞谱系中FTH的过表达均会促进细胞的增殖。◆ ◆ ◆ ◆实时无标记真阻抗细胞动态检测仪◆ ◆ ◆ ◆PART I 什么是真阻抗细胞检测 阻抗指贴附细胞对检测电流所起的阻碍作用。Maestro Z的真阻抗技术采用不同频率的交流电来检测细胞的阻抗变化。该技术不但可以检测因细胞数量变化导致的阻抗变化,还能实时检测因细胞形态、通透性变化而导致的细微阻抗变化。PART II Maestro Z的特点一体化设计 该仪器无需额外占用培养箱空间。专门设计的样本仓可以屏蔽外界电磁和机械噪音,避免培养箱开关门等额外操作导致检测结果偏差。真阻抗检测技术 该平台延续了Axion BioSystems公司成熟的高信噪比电生理检测技术,采用不同频率交流电,可用来检测细胞细微阻抗变化。友好易用的软件 操作软件提供实时数据记录,自动数据分析,自动数据报告生成。除此之外,还提供自动扣除本底,Nomalization等高阶数据分析,免除繁琐的手工计算。软件还符合FDA 21 CFR Part 11条款,兼容企业在GXP方面合规要求。数据安全性 自带数据储存,无惧电脑宕机,确保重要数据安全。PART III 应用方向简介 样本类型:悬浮细胞,贴壁细胞,3D培养细胞,类器官等 实时记录细胞增殖、凋亡过程,建立专属功能档案细胞毒性动态研究癌细胞浸润、迁移能力,划痕实验癌症免疫疗法,肿瘤免疫学,细胞治疗病毒学研究跨内皮/上皮细胞电阻(TEER)研究G蛋白偶联受体(GPCR),信号通路研究细胞愈合能力测试想要了解更详细特点,快来联系我们吧! Axion BioSystems ImagineExploreDiscover
    留言咨询
  • CHOZN CHO K1是一种悬浮培养细胞株,适于在化学成分限定培养基中生长以表达重组蛋白。本细胞株附有完整的可追溯文件,并在动态药品生产管理规范(cGMP)的条件下储存。几种符合cGMP规范生产的化学成分限定的培养基可以用于CHOZN CHO K1细胞株的培养。特点与优点:- 悬浮培养- 无血清生长- 复苏、培养和转染的详细方案- 可提供完整的可追溯性和细胞株文档 了解更多,e.g., 细胞株来源,细胞生产与产量,产品组件等,可参见本页面核心参数 – 样本下载中的资料手册。
    留言咨询
  • Maestro Z/ZHT 肿瘤细胞杀伤评估仪/ CAR-T免疫研究-应用案例:监测免疫T细胞介导的细胞死亡 人体免疫系统中的效应T细胞,对肿瘤细胞有着高特异性和与生俱来的细胞毒性,在未来的脑胶质瘤治疗中被人们寄予很高的期望。Maestro Z的阻抗测试有着高灵敏、无标记及无损的特点,能够实时监测肿瘤细胞的增殖和T细胞介导的细胞溶解等过程,在体外评估免疫治疗的效价方面有着突出的优势。 如上左图所示,我们将恶性胶质母细胞瘤细胞株U87MG, 以三种不同的细胞密度及四重复的形式,分成12个样本种到CytoView- Z阻抗板内。使用Maestro Z对其阻抗值变化持续监测24小时后,以10:1的比例将被激活的人T细胞加入到这些样本孔内,后续的确能够观察到阻抗值的降低。这和预期中的T细胞介导的U87细胞裂解效应是一致的。对比之下,那些未经处理的肿瘤细胞样本( 浅蓝色显示),其同时段测得的阻抗值则继续上升。 上中图则显示了在这三种处理条件下(不同的T细胞数量),检测到的的实时细胞裂解比例。在这基础上,我们就能如上右图所示,对每种处理方案的KT50 (裂解50%肿瘤细胞所需时间)值进行计算。可以看到,要达到更快的U87MG细胞杀伤速度,我们就需要更高的T细胞密度。◆ ◆ ◆ ◆实时真阻抗细胞动态检测仪◆ ◆ ◆ ◆PART I 什么是真阻抗细胞检测 阻抗指贴附细胞对检测电流所起的阻碍作用。Maestro Z的真阻抗技术采用不同频率的交流电来检测细胞的阻抗变化。该技术不但可以检测因细胞数量变化导致的阻抗变化,还能实时检测因细胞形态、通透性变化而导致的细微阻抗变化。PART II Maestro Z的特点一体化设计 该仪器无需额外占用培养箱空间。专门设计的样本仓可以屏蔽外界电磁和机械噪音,避免培养箱开关门等额外操作导致检测结果偏差。真阻抗检测技术 该平台延续了Axion BioSystems公司成熟的高信噪比电生理检测技术,采用不同频率交流电,可用来检测细胞细微阻抗变化。友好易用的软件 操作软件提供实时数据记录,自动数据分析,自动数据报告生成。除此之外,还提供自动扣除本底,Nomalization等高阶数据分析,免除繁琐的手工计算。软件还符合FDA 21 CFR Part 11条款,兼容企业在GXP方面合规要求。数据安全性 自带数据储存,无惧电脑宕机,确保重要数据安全。PART III 应用方向简介 样本类型:悬浮细胞,贴壁细胞,3D培养细胞,类器官等 实时记录细胞增殖、凋亡过程,建立专属功能档案细胞毒性动态研究癌细胞浸润、迁移能力,划痕实验癌症免疫疗法,肿瘤免疫学,细胞治疗病毒学研究跨内皮/上皮细胞电阻(TEER)研究G蛋白偶联受体(GPCR),信号通路研究细胞愈合能力测试想要了解更详细特点,快来联系我们吧! Axion BioSystems ImagineExploreDiscover
    留言咨询
  • Castor 高通量智能细胞分析平台,集高灵敏多色荧光成像、高速自动化系统和强大的智能数据分析于一体,凭借全新的光路设计和高分辨制冷相机获得超预期高清图像,多色荧光让染料选择更加灵活丰富;高速自动化系统能极大解放人工操作,节省实验时间;强大的数据分析能力可处理数百种图像参数,提供准确定量的分析结果;模块化软件功能极大拓展了应用范围,让实验分析更轻松。凭借高清成像、精准识别和强大分析的优势,以及对各类 6/12/24/96/384 孔板、细胞培养皿和培养瓶等耗材的兼容性,Castor 可提供完整高效的高通量细胞分析解决方案,包括细胞株开发过程中的细胞单克隆源性验证、克隆生长监测,细胞转染分析,高通量计数与活率分析,无标记汇合度分析;药物筛选过程中的高通量细胞表型分析,以及更加复杂的如 3D 类器官 / 肿瘤球药敏检测、培养质控等多种应用检测。激光测距自动调焦不同品牌的耗材或者 96 孔板的不同孔位所在平面及厚度是有差异的。Castor 通过激光测距快速扫描, 对每个耗材的平面和厚度误差进行精确测量,并在拍摄位置自动修正平面和厚度,确保所有孔位清晰成像。高灵敏制冷相机类器官清晰可见 4X 和 10X 高 NA 值物镜 制冷 CMOS 高分辨率相机 (4128 × 2808)1000 万像素Castor 10x 拍摄 小鼠小肠类器官 DAY5 肠隐窝结构清晰可见Z轴层扫Countstar Castor 能够对基质胶中类器官进行 Z 轴层扫和图像叠加合成,并通过大图拼接方式实现整个胶滴多层 类器官的全部成像和清晰呈现,充分保证分析结果的准确性和完整性。Z轴层扫范围:0-7.8mm(满足绝大多数类器官样品的拍摄需求)多色LED荧光光源及多通滤光片组合● 高功率固态 LED 多色荧光光源,让荧光激发 更加高效,即便弱荧光成像也不在话下。 ● 可变的多通滤片自由组合,让染料选择更加灵活丰富。 强大的耗材兼容性预设多种耗材,自由选择。 并且可以根据客户需求新增其他规格或 类型的耗材内置自动识别扫码器智能快速识别耗材 ID,方便不同耗材的样本管理,避免 样本出错。自动化机械臂可搭载多轴自动化机械臂和堆板机,让高通量自动化检测 分析不再遥不可及!AI智能图片识别与分析AI算法可准确识别和区分复杂的类器官结构,并分别进行分析简洁的操作界面可一键启动,并支持实验程序的复制、编辑,制定用户专属的分析程序 自动生成合规报告符合FDA21 CFR Part11 及GMP相关要求提供完善的数据管理系统、多级用户权限管理、电子签名、审计追踪等功能类器官生长分析(培养质控)与传统 2D 细胞培养模式相比,3D 培养的类器官包含多种细胞类型,能够形成具有功能的“微器官”, 能更好地用于模拟器官组织的发生过程及生理病理状态,因此类器官在药物研发和基础研究中发挥 着越来越重要的作用,对类器官的生长状态的观察并进行分析也越来越重要。肝癌类器官生长检测类器官药敏分析类器官荧光死活分析利用死活染色试剂(如 AOPI)对培养的类器官或肿瘤球进行死活染色,并进行 Z 轴层扫的荧光成像,得到培养类器官或加药处 理后的死活细胞分布与空间定位,更加精确高效的进行药物筛选和分析。类器官杀伤分析患者来源的类器官 (PDO) 是一个非常强大和有效的模型,用于 药物筛选和预测患者对治疗方案的反应。 高通量成像平台通过对细胞在时间 / 空间维度上的分析,帮助 您了解更多的生物学信息和生理信息。不断拓展的类器官分析类别通过与国内多家 985 高校和知名药企合作,目前 Castor 已开展的类器官分析种类包括:小肠类器官、胆管癌类器官、结直肠癌 类器官、乳腺癌类器官、胃癌类器官、肺癌类器官、肝癌类器官和宫颈癌类器官等。此外,随着样本数据的丰富,更多的类器 官种类也在持续拓展和增加中。
    留言咨询
  • 流式分析服务流式细胞术工作原理是在细胞分子水平上通过单克隆抗体对单个细胞或其他生物粒子进行多参数、快速的定量分析。它可以高速分析上万个细胞,并能同时从一个细胞中测得多个参数,具有速度快、精度高、准确性好的优点,是当代先进的细胞定量分析技术之光源、液流通路、信号检测传输和数据的分析系统是流式细胞仪的主要组成。目前临床中运用流式细胞仪进行外周血白细胞、骨髓细胞以及肿瘤细胞等的检测是临床检测的重要组成部分。 应用应用十分广泛,常见的有细胞周期、细胞凋亡、细胞表面因子染色、胞内因子染色、线粒体膜电位染色、ROS检测、细胞分选等。送样要求1.细胞(1)细胞周期检测a.细胞没固定:不含EDTA的胰酶消化细胞,终止后,离心去掉含胰酶的上清,PBS洗涤1-2次,用无血清培养基重悬细胞,常温送样。b.细胞已进行固定:请标明是否固定过夜,固定的细胞需要4°C送样。c.细胞悬液或贴壁细胞:每份样本至少1×106个细胞. (2)细胞凋亡检测a.已染色的样本:请标明染色的荧光标记,标记好的样本请避光,4°Cb.未标记的样本:①不含EDTA的胰酶消化细胞,终止后,离心去掉含胰酶的上清,PBS洗涤1-2次,用无血清培养基重悬细胞,常温或4°C送样②不做任何处理,将培养好的细胞,按原来的培养皿/板或培养瓶直接送样。将原来的培养上清吸出放在一离心管中,标明样本标号,原孔添加新的不含血清培养基,覆盖细胞表面,常温或4C运送。C.细胞悬液或贴壁细胞:每份样本至少1×106个细胞 (3)细胞表面/胞内抗原检测a.样本处理:①不含EDTA的胰酶消化细胞,终止后,离心去掉含胰酶的上清,PBS洗涤1-2次,用无血清培养基重悬细胞,4°C送样。②不做任何处理,将培养好的细胞,按原来的培养皿/板或培养瓶直接送样,4°C运送。b.细胞悬液或贴壁细胞:每份样本至少1×106个细胞。C.客户需提供一抗抗体或由我司代购:请标注抗体的种属,公司和货号等抗体详细信息。(4)细胞阳性?檢测a.必须提供一份不含任何芡光的空白参照,标明样本所携带的芡光标记,特殊标记请标明激发光和发射光的波长。b.细胞悬液或贴壁细胞:每份样本至少1×106个细胞。c.抗体:请标注抗体的种属,公司和货号等抗体详细信息。 2.血液样本a.请标注血液样本是否携带传染性,使用抗凝管储存,常温或4.C运送。b.抗体:请标注抗体的种属,公司和货号等抗体详细信息。 3.组织a.需浸泡在无菌的生理盐水或PBS中,无菌保存于4.C,并标记样本名称以及种属,注意:如果样本为非正常种属的,请标明是否携带传染性。b.抗体:请标注抗体的种属,公司和货号等抗体详细信息。应用检测异倍体的肿瘤细胞,检测药物,基因或蛋白等对细胞周期的影响。 2、 Annexin V/PII双染法 细胞凋亡研究不仅受到基础医学界的重视,也日益受到临床医学领域的青睐。通过检测药物、基因或蛋白对细胞凋亡及凋亡调控基因的影响,在肿瘤防治、老年痴呆、艾滋病、自身免疫病,心肌梗塞等研究上都发挥着积极的作用。3、流式鉴定细胞表面抗体实验原理基本原理就是用荧光标记的单克隆抗体来识别细胞表面的抗原(也就是所谓的表面标记),然后通过流式细胞仪来检验表面抗原的多少和种类(也就是荧光强度,代表了抗体结合的种类和数量)来鉴定细胞是哪类 应用细胞鉴定分类等,检测阳性表达细胞的比例。实验流程1、制备样品的单细胞悬液2、标记流式抗体3、流式上机检测。 4、活性氧(ROS)检测实验原理活性氧检测( Reactive Oxygen Species Assay Kit是一种基于荧光染料 DCFH-DA(2,7- Dichlorodi- hydrofluoresceindiacetate)的荧光强度变化,定量检测细胞内活性氧水平的最常用方法。 DCFH-DA本身没有荧光,可以自由穿过细胞膜。进入细胞内后,可以被细胞内的酯酶水解生成DCFH。而DCFH不会通透细胞膜,因此探针很容易被积聚在细胞內。细胞内的活性氧能够氧化无荧光的DCFH生成有荧光的DCF。绿色荧光强度与活性氧的水平成正比。在大激发波长480nm,大发射波长525nm处,使用荧光显微镜,流式细胞仪或激光共聚焦显微镜等检测荧光信号。 Rosup为活性氧阳性诱导药物,根据其荧光光信号强度,可分析活性氧的真正水平。检测原位裝载探针法:激光共聚焦显徴镜直接观察,或收集细胞后用荧光分光光度计、荧光酶标仪或流式细胞仪检测。收集细胞后装载探针:用荧光分光光度计、荧光酶标仪或流式细胞仪检测,也可以用激光共聚焦显微镜直接观察。 4、线粒体膜电位检测实验原理JC-1是一种碳氰化合物类阳离子芡光染料,可作为检测线粒体跨膜电位指示剂。JC-1在细胞内以聚合体和单体两种不同的物理形式存在,分别处于不同的荧光发射峰。当JC-1浓度低或膜电位水平低时,主要以单体形式存在,激发波长为527nm,呈绿色荧光 当丁C-1浓度升高或线粒体膜电位水平较高时,形成聚合物,发出红色的芡光,激发波长为590nm。当细胞发生凋亡时,线粒体跨膜电位被去极化,JC-1从线粒体内释放,红光强度减弱,以单体的形式存在于胞质内发绿色荧光,根椐这特征就可以检测线粒体膜电位的变化。实验流程1.细胞培养 2.用适当的方法诱导细胞凋亡,同时设立阴性对照组和阳性对照组,收集细胞 3.用PBS洗涤细胞三次,收集不多于1×10的细胞 4.取100pL10× Incubation Buffer/加900L灭菌去离子水稀释成1× Incubation Buffer,混匀并预热至37"C 5.吸取500uL1× Incubation Buffer,加入1uLJC-1,涡旋混匀配成C1工作液6.取500LJC-1工作液将细胞均匀悬浮,37C,5%C02的培养箱中孵育15~20min7.室温离心(200opm,5min)收集细胞,用1× Incubation Buffer洗两次8.吸取500uL10× Incubation Bufferp重新悬浮细胞 9.流式细胞仪检测,分析。 原代细胞分离与鉴定实验原理原代细胞分离:体外将动物某组织,经酶法或机械处理法分离成单细胞,并在合适的培养基中筛选出特定细胞,使得目的细胞得以生存、生长和繁殖,称为原代细胞分离。 服务特点1.细胞纯度高:原代分离得到的目的细胞高纯度可达到95%以上2.细胞活力强:原代分离的细胞一般不能长久传代,提供PO-P3代的细胞,活力达80%以上,无污染 注:部分原代细胞无法传代,如心肌细胞3.多种鉴定方式:可根据需求提供流式细胞检测、免疫细胞化学、 Realtime PCR及蛋白印迹等多种检测方法。细胞活力测定服务 服务简介CCK-8( Cell Counting kit-8)试剂中含有WST-8,可被细胞线粒体中的脱氢酶还原为具有高度水溶性的黄色甲臢产物(Formazan),生成的甲鰧物的数量与活细胞的数量成正比,可采用酶联免疫检測仪在450nm波长处测定其光吸收值,间接反映活细胞数量。 免疫荧光检测服务简介细胞免疫化学与免疫组织化学实验都是依据抗原抗体反应和化学显色的原理,采用标记的特异性抗体对组织或细胞内抗原的分布进行原位检测技术。细胞免疫化学将培养处理后的细胞爬片、固定、破膜、封闭后,加入一抗与抗原蛋白结合,再加入标记有荧光素的二抗与一抗进行反应,后通过荧光显徴镜或者激光共聚焦扫描显微镜进行荧光拍摄来显示细胞中靶蛋白的表达变化和定位 应用检测靶蛋白如内分泌激素、蛋白质、多肽、核酸、神经递质、受体、细胞因子、细胞表面抗原、肿瘤标志物。 细胞迁徙与侵袭服务服务简介细胞迁移是指细胞在接收到内源或外源迁移信号后而产生的移动。细胞迁移是通过胞体形变进行的缓慢的定向移动,涉及细胞觅食、伤口痊愈、胚胎发生、免疫反应、感染和癌症转移等生理现象。因此通过对细胞迁移的研究,对阻止癌症转移、异体植皮等医学应用方面具有一定意义。细胞侵袭实验则是研究肿瘤细胞对基质膜消化后的迁移运动,肿瘤细胞须经血管基底膜穿入深面间质后才能侵袭组织和转移至远处。 肿瘤细胞侵袭迁移能力的改变通常采用 Transwell/室进行检測。 Transwel小室是一种膜滤器,也认为是一种有通透性的支架Permeable Supports)。这层膜帯有徴孔,孔径大小0.1-12.0um,根据不同需要可用不同材料,一般常用的是聚碳酸酯膜。将Transwell/室放入培养板中,小室内称上室,培养板内称下室,上室内盛装上层培养液,下室内盛装下层培养液,上下层培养液以聚碳酸酯膜相隔。我们将细胞种在上室内,由于聚碳酸酯膜有通透性,下层培养液中的成分可用影像到上室内的细胞,从而可以研究下层培养液中的成分对细胞生长、运动等的影响。服务优势1、根据上室和下室的不同处理, transwell r可用于研究共培养、细胞趋化、细胞迁移和侵袭等 2、不同孔径的膜可供选择,满足不同的实验需求 3、统计学分析,定量分析结果更可靠。 应用应用包括细胞迁移、趋化(趋化因子对细胞的定向诱导),侵袭(癌细胞侵袭上指肿瘤细胞向局部侵犯或远处转移,共培养(同一培养体系里,两种细胞非接触性培养)。细胞迁移侵袭上涉及多个步骤、高度完整的过程,在癌症转移、动脉粥样硬化和关节炎等疾病恶化中起重要作用。 细胞克隆形成实验服务简介细胞克隆形成率即细胞接种存活率,表示接种细胞后贴壁的细胞成活并形成克隆的数量。贴壁后的细胞不一定每个都能增殖和形成克隆,而形成克隆的细胞必为贴壁和有增殖活力的细胞。克隆形成率反映细胞群体依赖性和增殖能力两个重要性状。应用如要观察外源基因表达后较短时间内就能检测的细胞功能,可使用瞬时转染/感染。即在转染后24至96小时内收获细胞 如需要长期观察外源基因表达的作用,进行长期药理学研究、基因治疗研究、遗传调控机制研究或需要进行大规模蛋白合成则需要构建稳转株实验流程1.取对数生长期的各组细胞,分别用0.25%胰蛋白酶消化并吹打成单个细胞,并把细胞悬浮在10%胎牛血清的DMEM培养液中备用。 2.将细胞悬液作梯度倍数稀释,每组细胞分別别以每50、100、200个细胞的梯度密度分別接种含10mL37C预温培养液的皿中并轻轻转动,使细胞分散均匀。置37C5%C02及饱和湿度的细胞培养箱中培养2~3周。 3.经常观察,当培养皿中出现肉眼可见的克隆时,终止培养。弃去上清液,用PBS小心浸洗2次。加4%6多聚甲醛固定细胞5mL固定15分钟。然后去固定液,加适量 GIMSA应用染色液染10~30分钟,然后用流水缓慢洗去染色液,空气干燥。 4.将平皿倒置并叠加一张带网格的透明胶片,用肉眼直接计数克隆,或在显徴镜(低倍镜)计数大于10个细胞的克隆数。后计算克隆形成率。克隆形成率=(克隆数/接种细胞数)×100%细胞黏附实验服务简介细胞黏附性是维持组织结构稳定的基本条件,也是细胞运动和发挥功能的调节因素,并且对细胞的增殖、分化有重要影响。通常可分为两类,即细胞与细胞黏附和细胞与基质黏附。机体内许多细胞,如上皮细胞,需要牢固地定在某处发挥功能 另一些细胞,如白细胞,活跃运动,就需要不断调节细胞黏附。细胞黏附性的改变在肿瘤转移过程中也发挥着重要作用。恶性肿瘤具有从原发瘤分离及在体内扩散的能力,提示这些细胞在相互识别及黏附机制方面发生了改变。血管形成实验服务简介在原有的毛细血管和(或)微静脉基础上通过血管内皮细胞的迁移和增殖,从已存在的血管处以芽生或非芽生(套迭)形式形成新的、以毛细血管为主的血管系统过程称之为血管生成,通过体外模拟血管生成的过程对研究血管形成机制、发现促进或抑制血管生成药物十分重要。稳转细胞株筛选服务简介在基因功能的研究中,将目的基因有效导入靶细胞,是功能研究的前提条件之一。根据不同的实验需求可以选择瞬时转染/感染和稳转细胞株构建。 瞬时转染/感染的特点:外源DNA不整合到宿主的染色体中,一个宿主细胞中可以存在多个拷贝数,产生短时间内的高水平的表达(只能持续几天) 外源基因的表达水平不存在整合位点的问题,不会受到周围染色体元件的影响 瞬时转染所需的人力和时间稳转少,但DNA摄入效率和表达水平在不同实验中差异较大,因此表达不长久也不稳定。 稳转细胞株的特点:经合适的药物浓度进行药物筛选后,可得到外源DNA整合到宿主染色体的细胞,这些细胞可以长时间表达外源目的基因,稳定表达细胞株弥补了瞬时感染(或转染)实验中外源基因表达时间短的缺陷,便于长期观察。稳转细胞的筛选需根据不同基因载体中所含有的抗性标志选用相应的药物,常用的抗性筛选有嘌呤霉素( puromycin)、潮霉素(hygromycin)、新霉素( neomycin)、灭稻瘟素( Blasticidin)等。若实验需求构建稳转细胞株,我们建议通过慢病毒感染细胞进行药物筛选的方法,此方法较质粒转染可以更加有效的将外源基因整合入基因组,且整合位点处于转录相对活跃的区域,从而获得更加高效表达外源基因的稳转株细胞。应用如要观察外源基因表达后较短时间内就能检测的细胞功能,可使用瞬时转染/感染。即在转染后24至96小时内收获细胞 如需要长期观察外源基因表达的作用,进行长期药理学研究、基因治疗研究、遗传调控机制硏究或需要进行大规模蛋白合成则需要构建稳转株。
    留言咨询
  • 双光子显微镜-IVIM 400-860-5168转2623
    双光子显微镜系统可长时间多次观察,动物实时成像,包括清醒的动物成像,活体双光子显微镜搭载zui新的COHERENT飞秒激光器,成像波长可达690-1050 nm,穿透深度可达1000 um 活体共聚焦成像模块搭载4色通道(405, 420, 445, 473, 488, 505, 514, 532, 561, 633, 642, 660, 685, 705, 730, 785 nm (可任选4通道)),成像速度高达100 fps @ 512 x 512 像素。1、IVIM双光子显微镜 技术-超快旋转多面镜扫描仪-实现超高速体内成像(512x512像素,zui大100fps)-在整个成像视场(FOV)上实现均匀的激发照明-在FOV的中心区域没有降低的荧光信号和信噪比(SNR)-FOV边缘区域没有过度的光漂白-在整个FOV上均一的高信噪比-改善图像质量而不会浪费过多的光子2、IVIM双光子显微镜技术-集成运动伪影补偿-自动无忧的高精度运动补偿-通过GPU辅助并行计算立即获取运动补偿的成像结果,以加快算法处理速度-超快的活体成像的协同效应-确保从慢速运动的组织(例如肝,肾,脾等腹腔器官)到快速运动的组织(例如心脏,肺等胸腔器官)的时空组织运动范围广泛的zui佳结果该系统应用范围为:小鼠模型中各个器官的体内成像:-肝脏,淋巴结,脾脏,皮肤,视网膜,肺,脑,结肠,胰腺,小肠,前列腺,肾脏,心脏,气管,食道,食道,骨髓,胸腺等。细胞水平的图像处理和分析:-细胞动力学(细胞运动,细胞运输,细胞运动,细胞归巢)-细胞-细胞/细胞微环境/细胞-分子相互作用-细胞死亡/存活,细胞分布,细胞分化多种人类疾病的小鼠模型:-使用荧光癌细胞系(肺癌/乳腺癌/结肠癌/胰腺癌,胶质母细胞瘤,白血病,黑素瘤等)的异种移植和同基因癌症模型-急性/慢性炎症模型(全身注射,器官/组织)损伤,缺血再灌注损伤)-嵌合体模型,用于特定细胞类型的活体内成像(干细胞移植,淋巴细胞的过继性细胞转移等)
    留言咨询
  • 活体双光子显微镜 400-860-5168转2623
    双光子显微镜系统可长时间多次观察,动物实时成像,包括清醒的动物成像,活体双光子显微镜搭载zui新的COHERENT飞秒激光器,成像波长可达690-1050 nm,穿透深度可达1000 um 活体共聚焦成像模块搭载4色通道(405, 420, 445, 473, 488, 505, 514, 532, 561, 633, 642, 660, 685, 705, 730, 785 nm (可任选4通道)),成像速度高达100 fps @ 512 x 512 像素。1、IVIM双光子显微镜 技术-超快旋转多面镜扫描仪-实现超高速体内成像(512x512像素,zui大100fps)-在整个成像视场(FOV)上实现均匀的激发照明-在FOV的中心区域没有降低的荧光信号和信噪比(SNR)-FOV边缘区域没有过度的光漂白-在整个FOV上均一的高信噪比-改善图像质量而不会浪费过多的光子2、IVIM双光子显微镜技术-集成运动伪影补偿-自动无忧的高精度运动补偿-通过GPU辅助并行计算立即获取运动补偿的成像结果,以加快算法处理速度-超快的活体成像的协同效应-确保从慢速运动的组织(例如肝,肾,脾等腹腔器官)到快速运动的组织(例如心脏,肺等胸腔器官)的时空组织运动范围广泛的zui佳结果该系统应用范围为:小鼠模型中各个器官的体内成像:-肝脏,淋巴结,脾脏,皮肤,视网膜,肺,脑,结肠,胰腺,小肠,前列腺,肾脏,心脏,气管,食道,食道,骨髓,胸腺等。细胞水平的图像处理和分析:-细胞动力学(细胞运动,细胞运输,细胞运动,细胞归巢)-细胞-细胞/细胞微环境/细胞-分子相互作用-细胞死亡/存活,细胞分布,细胞分化多种人类疾病的小鼠模型:-使用荧光癌细胞系(肺癌/乳腺癌/结肠癌/胰腺癌,胶质母细胞瘤,白血病,黑素瘤等)的异种移植和同基因癌症模型-急性/慢性炎症模型(全身注射,器官/组织)损伤,缺血再灌注损伤)-嵌合体模型,用于特定细胞类型的活体内成像(干细胞移植,淋巴细胞的过继性细胞转移等)
    留言咨询
  • 该系统可长时间多次观察,动物实时成像,包括清醒的动物成像,活体双光子搭载zui新的COHERENT飞秒激光器,成像波长可达690-1050 nm,穿透深度可达1000 um 活体共聚焦成像模块搭载4色通道(405, 420, 445, 473, 488, 505, 514, 532, 561, 633, 642, 660, 685, 705, 730, 785 nm (可任选4通道)),成像速度高达100 fps @ 512 x 512 像素。1、IVIM 技术-超快旋转多面镜扫描仪-实现超高速体内成像(512x512像素,zui大100fps)-在整个成像视场(FOV)上实现均匀的激发照明-在FOV的中心区域没有降低的荧光信号和信噪比(SNR)-FOV边缘区域没有过度的光漂白-在整个FOV上均一的高信噪比-改善图像质量而不会浪费过多的光子2、IVIM技术-集成运动伪影补偿-自动无忧的高精度运动补偿-通过GPU辅助并行计算立即获取运动补偿的成像结果,以加快算法处理速度-超快的活体成像的协同效应-确保从慢速运动的组织(例如肝,肾,脾等腹腔器官)到快速运动的组织(例如心脏,肺等胸腔器官)的时空组织运动范围广泛的zui佳结果该系统应用范围为:小鼠模型中各个器官的体内成像:-肝脏,淋巴结,脾脏,皮肤,视网膜,肺,脑,结肠,胰腺,小肠,前列腺,肾脏,心脏,气管,食道,食道,骨髓,胸腺等。细胞水平的图像处理和分析:-细胞动力学(细胞运动,细胞运输,细胞运动,细胞归巢)-细胞-细胞/细胞微环境/细胞-分子相互作用-细胞死亡/存活,细胞分布,细胞分化多种人类疾病的小鼠模型:-使用荧光癌细胞系(肺癌/乳腺癌/结肠癌/胰腺癌,胶质母细胞瘤,白血病,黑素瘤等)的异种移植和同基因癌症模型-急性/慢性炎症模型(全身注射,器官/组织)损伤,缺血再灌注损伤)-嵌合体模型,用于特定细胞类型的活体内成像(干细胞移植,淋巴细胞的过继性细胞转移等)
    留言咨询
  • 人鳞状上皮细胞癌抗原2(SCCAg-2)ELISA试剂盒本试剂盒采用双抗体夹心ELISA法,用于体外定量检测Human 血清,血浆或其他生物体液中天然及部分重组SCCAg-2浓度。主要相关肿瘤:宫颈鳞癌。其它相关肿瘤:肺鳞癌、头颈部鳞癌、食管癌以及外阴部鳞状细胞癌等
    留言咨询
  • 细胞分选仪,单细胞打印系统SCP4000AI图像识别算法快速判别优质单细胞,为生物制药企业提供快速、高效、省心的解决方案,显著提升细胞株开发效率。SCP4000是将喷墨打印技术的成熟工艺应用于生物样本打印。仪器基于高清成像及人工智能算法,可精准判别优质单细胞进行铺板,显著提升单细胞效率和克隆形成率。得益于智能微流控芯片的无管路式设计,仪器无需维护,使用方便,无学习门槛。降低了维护成本和操作门程。采用CMOS-MEMS标准工艺制造的喷射打印头,具备高通量、高精度、多材料、高可靠性等优势,可实现精准单细胞打印、皮升微液滴操作等应用,具有良好的生物兼容性,打印细胞存活率超过90%。 模块化的控制系统和软件接口,具备可编程的流程化、自动化作业能力,灵活高效;具备完整的二次开发接口,可方便进行系统优化和平台对接。单细胞打印芯片B150是SCP4000单细胞打印系统的核心组件,是集成了CMOS(Complementary MetalOxideSemiconductor)和MEMS(Micro-Electromechanical System)技术的智能微流控芯片,在一张芯片上实现了信号感知、信号处理和高通量液体探控的集成化。相比于传统的单细胸分离手段具有如下显善优势:一次性可抛式设计免除交叉污染风险;单个芯片编成640个独立可控的喷,避免了单喷嘴类仪器中经常发生的因堵塞造成的实验失败;每个喷嘴额定寿命远超细胞打印所需次数,确保实验流程的稳定性;无管路式芯片对细胞活性几乎无损伤;应用领域单克隆筛选 单细胞蛋白组学 抗体开发 细胞株构建 单细胞基因组学单细胞识别正确率≥98%单细胞识别算法卷积神经网络(CNN),细胞直径、细胞圆度等参数;灵活匹配用户细胞样本提升单细胞识别和筛选效率适配样本类别细胞株(CHO,HEK,各种肿瘤细胞系等),iPSCs,原代细胞样本,细胞核,原生质体等单克隆保证率99.5%单细胞成像能力明场成像,成像系统物镜数值孔径(NA)=0.3单细胞铺板速率≤2分钟/96孔板,≤8分钟/384孔板参考孔设置允许用户设置参考孔(Reference Well),即向某孔加入多个细胞以方便在后续孔板成像中作为对焦的参照喷嘴数量640个喷嘴,每个均可单独控制铺板缓冲液支持含血清培养基、PBS、水、乙醇等喷嘴尺寸30μm液滴尺寸24pL收集装置6/12/24/48/96/384/1536孔板、8联管、载玻片、定制化点阵等主机尺寸宽度:610mm,进深:520mm,高度:720mm温度要求15℃-30℃相对湿度要求20%-80%①际时间可能随真实样本状态有所变化②384和1536孔板及定制点眸打印功能用单独定制05/06 PAE
    留言咨询
  • CERO全自动3D细胞培养仪能够模拟体内环境,给细胞家的感觉,可促进您的干细胞、球体、类器官和组织研究。这在干细胞培养和分化、癌症研究、药物和毒性筛选及组织工程等特定应用中显得尤为重要。 自动化,操作简单细胞产量高细胞存活时间长加速细胞分化和成熟降低培养成本pH监测,培养基更换实时掌控独特鳍翅设计,无叶轮,最小化剪切力细胞存活时间长达一年 应用 人诱导多能干细胞(hiPSC)培养人诱导多能干细胞(hiPSC)诱导分化为心肌细胞人肝癌细胞HepaRG来源的球状体培养体外病毒感染实验
    留言咨询
  • 细胞生长分析系统 CloneSelect Imager在很多生物实验过程中,细胞生长情况的快速检测是非常重要的,如细胞培养条件的优化和单克隆的验证。仪器优势:1,客观定量检测细胞密度/细胞汇合度,2,三步法的简化流程:成像、分析、报告3,通过任意时间点每孔成像,跟踪克隆形成、获得生长速度曲线以及验证单克隆传统的检测方法耗时、主观,而且可能产生干扰细胞生长的风险:1,人工观察 96 孔板中的每孔细胞的生长是非常耗时的,需要大量的人力2,荧光染料对细胞有一定毒性,再通过汇合度进行细胞计数,可能影响最终结果的准确性 专业的高表达稳定细胞株筛选技术路线:连续的结果:CloneSelect Imager细胞生长分析系统更短时间即可获得连续的结果CloneSelect Imager细胞生长分析系统节省时间,生成客观、定量和连续的结果,克服了传统技术的挑战。1,无标记活细胞直接白光成像2,适合成像贴壁细胞或者静置后的悬浮细胞3,生成 96 孔板每孔细胞的准确生长速度曲线 无标记细胞迁移检测,可视化数据:1,决定细胞迁移率、最大迁移率和总的迁移面积2,90 秒扫描一块板3,数据读取容易,数字和图形化的结果 追踪和记录细胞生长:CloneSelect Imager细胞生长分析系统评估细胞汇合度和细胞数目1,自动整板整孔扫描2,生成每孔细胞生长曲线3,查看和追踪每孔细胞生长4,揭示细胞形态信息和理解细胞生长特性 传统技术:主观、耗时不连续结果:不能得到整孔连续的细胞汇合度 CloneSelect Imager 细胞生长分析系统:客观、自动化定量整孔细胞的汇合度 三步法的简化流程:成像,分析,报告成像1,用于贴壁和悬浮细胞的孔板成像优化克隆培养条件:CloneSelect Imager 细胞生长分析系统特别适用于优化克隆生长和建立克隆培养的方法。如:开发新的细胞株和变异株。克隆新的细胞株,用于靶药开发和疾病研究:跟踪细胞株的生长情况,建立细胞完整生长档案分析:1,显示每孔细胞汇合度和细胞数目2,显示每孔细胞生长曲线 报告:1,记录整孔板细胞生长档案,自动生成可靠,图像化的结果2,跟踪和浏览每个细胞株的生长生长曲线计算和显示3,电子跟踪和储存整块板的数据:细胞汇合度,细胞数目,生长曲线 机器人自动化:1,电子数据跟踪确保高通量的过程控制单克隆验证:细胞铺板后,在任何时间点,都可以使用CloneSelect Imager 细胞生长分析系统对每个孔成像,使用“Loci of growth”功能模块可以标记出只有一个克隆的孔。1,每孔接种一个细胞,任意时间点成像2,只关注含有一个克隆的孔,通过追溯克隆不同时间点的图片,进行单克隆验证3,跟踪每孔不同时间点图片证明克隆来源 “在我们的细胞系开发流程中,CloneSelect Imager 细胞生长分析系统已经成为单克隆验证的一套关键系统”Dr. Howard Clarke, Senior Staff Scientist in Process Development, CMC ICOS Biologics Inc., USA克隆形成检测:细胞铺到半固体培养基,和不同的可能影响克隆生长的化合物孵育。通过 CloneSelect Imager 细胞生长分析系统对每孔成像,计算克隆数量,估算克隆面积,追踪克隆的生长。1,任意时间点每孔成像2,分析感兴趣的孔,例如克隆生长受抑制的孔3,输出每孔的克隆数目和克隆面积优化细胞培养条件CloneSelect Imager 细胞生长分析系统已经用于快速建立和优化细胞的培养条件,比如优化培养基成份。“通过优化生长条件,实现无血清培养基克隆在化学合成培养基中培养的最大成功率” Ben Hughes, Senior Bioprocess Engineer,NCRIS Biologics Facility, Australian Institute for Bioengineering & Nanotechnology (AIBN), University of Queensland 检测细胞活性无标记技术替代 MTT 比色法*1,直接观察每孔的初始结果2,3 分钟筛选一块 96 孔板3,无需比色法的检测试剂盒,无需染色 加速细胞系的开发监控和评估 ClonePix 系统筛选和挑取的细胞株的生长情况和表达量。
    留言咨询
  • (一)功能应用体内模型存在许多局限性:较高的实验成本、有限的吞吐量、伦理问题和遗传背景的差异。更重要的是,与人类相比,它们在药物效应和/或疾病表型方面表现出巨大的生理差异,这解释了临床试验经常失败的原因。Kirkstall Ltd.专利技术的Quasi Vivo® 器官芯片微生理系统又称为微流体“芯片上器官”系统,具有相互连接的细胞培养单元,为类器官生长提供更具生理相关性的体内微环境。通过提供一种近生理的体外模型,模拟细胞微环境,具有更完整的结构和功能,解决动物与人类之间的种属差异,且可在体外模拟多种器官特异性疾病状态,反映药物在体内的动态变化规律和人体器官对药物刺激的真实响应,捕捉复杂的生理学反应,并满足高通量的要求。它是一个多室流动系统,为类器官培养提供了一个紧凑、易于使用的解决方案,包括2D、3D、屏障,或多器官。在疾病模型,药物筛选和毒性测试,再生医学和组织工程,发育生物学研究,感染与免疫研究,个性化医学,癌症研究等领域被广泛应用。(二)性能特点Quasi Vivo® 作为一种先进的器官芯片系统,专门设计用于解决学术和工业研究人员在开展体外和体内研究时遇到的主要问题,具有下列性能优势:1.功能延展性强可选择气液界面、液液界面、支架和流动方案的多样化培养方式允许独立、可控的空气、气体或液体层流流向顶端和基底外侧满足多器官/多细胞共培养,细胞间的信号传递等实验要求。加速类器官细胞分化和成熟,提高细胞活力,适合长期培养2.成像友好配备了光学窗口在顶部或底部表面,便于理想的实时高分辨率成像3.易于获取样本直接收集样本和获取组织或液体样本4.模拟生物力学和浓度梯度严格控制多个变量,可以模拟生理特征,如血液循环,组织间液流动态等,为细胞提供生物力学信号;可以实现免疫细胞共培养以及血管化等复杂模型构建;用于研究多种生理过程,如细胞迁移、分化、免疫反应以及癌症的转移等5.便携和易于操作紧凑型模块化腔室结构,具有更高人体生理相关性占地面积小,节省空间,可兼容标准实验室的孵化器(三)产品应用案例及发表文献1) Berger E, Magliaro C, Paczia N, Monzel AS, Antony P, Linster CL, Bolognin S, Ahluwalia A, Schamborn JC. Millifluidic culture improves human midbrain organoid vitality and differentiation. Lab Chip, 2018, 18, 3172-3183.在本研究中,作者建立了一个在Kirkstall Quasi Vivo® 器官芯片微流体条件下稳定的脑类器官培养物,并将其与使用计算流体动力学(CFD)和常规实验方法中的连续轨道振荡方法进行了比较。CFD分析是为了确定在两种实验装置中计算出的氧气量的差异是否可以用来解释在两种条件下培养的类器官中观察到的任何差异。这一比较显示了培养质量的改善,包括一个减少的“死核心”,并被模型证实,并增加了多巴胺能分化。2) Ramachandran S, Schirmer K, Münst B, Heinz S, Ghafoory S, Wö lfl S, Simon-Keller K, Marx A, Ø ie C, Ebert M, Walles H, Braspenning J and Breitkopf-Heinlein K (2015). In Vitro Generation of Functional Liver Organoid-Like Structures Using Adult Human Cells. PLOS ONE, 10(10), e0139345.在本研究中,作者使用upcyte® 人肝细胞在体外生成肝类器官,在Kirkstall Quasi Vivo® 器官芯片中进一步培养10天后,这些肝类器官表现出典型的肝实质功能特征,包括细胞色素P450、CYP3A4、CYP2B6和CYP2C9的活性,以及一些标记基因和其他酶的mRNA表达。 3) Cancer cells grown in 3D under fluid flow exhibit an aggressive phenotype and reduced responsiveness to the anti-cancer treatment doxorubicin, Tayebeh Azimi, Marilena Loizidou & Miriam V. Dwek ,Scientific Reports volume 10, Article number: 12020 (2020)肿瘤微环境(TME)作为癌细胞行为调节剂的重要性已被公认,并导致了3D体外癌症模型的发展。癌症的3D实验室体外模型旨在概括肿瘤微环境的生化和生物物理特征,并旨在以生理相关的方式使研究癌症和新的治疗方式成为可能。本文作者研究了乳腺癌细胞在2D、3D和3D微流体条件下,并对比了不同培养条件下的乳腺癌细胞的凋亡、增殖和缺氧相关基因的细胞活力和表达水平。在该实验过程中,癌细胞被制备成一个密集的3D团块,创造了一个在Kirkstall Quasi Vivo® 器官芯片流体流动条件下的肿瘤类器官,将肿瘤类器官暴露于流体和压力的生理条件下,会导致其生长、形态和对化疗挑战的敏感性的变化。该模型系统为组织密度和流体流动的作用提供了关键证据,并为使用3D模型作为癌症药物测试平台的研究人员提供参考。4)Geddes, L., Themistou, E., Burrows, J. F., Buchanan, F. J., & Carson, L. (2021). Evaluation of the In Vitro Cytotoxicity and Modulation of the Inflammatory Response by the Bioresorbable Polymers Poly(D,L-lactide-coglycolide) and Poly(L-lactide-co-glycolide). Acta Biomaterialia, 134, 261-275.医疗设备必须进行一系列的测试,以确保其在临床使用中是安全的,这些测试由国际标准化组织(ISO)规定。每个医疗设备都需要进行细胞毒性分析,这通常是体外生物相容性测试的第一步。这些测试提供了一种高效的方法来确定一种物质或一种物质对活细胞的细胞毒性,然而,它们的使用有限,因为它们不能用于确定细胞死亡的原因。在生物材料开发的早期阶段测试体外免疫反应目前还没有纳入标准程序。深入了解体外细胞对生物材料的反应将有助于早期检测和预测潜在的不良反应。为了复制体内环境和增加生理相关性,本文作者采用了Kirkstall Quasi Vivo® “芯片上的器官”流动培养系统,用于测试聚合物样品。5)Susanne Reinhold, Christian Herr, Yiwen Yao , Mehdi Pourrostami, Felix Ritzmann. Modeling of lung-liver interaction during infection in a human microfluidic organ-on-a-chip, bioRxiv preprint posted June 5, 2023.肺炎或COVID-19等呼吸道感染在世界范围内造成高死亡率和发病率。器官芯片技术在过去几年中发展起来,以建立基于人类的疾病模型,研究基本的疾病机制,并为加速药物开发提供工具。本研究的目的是建立一个肺-肝微流控系统来研究感染过程中两个器官模块的相互作用。作者利用原代人支气管(HBECs)或肺泡上皮细胞和人肝癌Huh-7细胞,通过Kirkstall Quasi Vivo® 器官芯片建立了双器官(肺/肝)微流控系统,开展共培养/刺激试验。将不可分型流感嗜血杆菌(NTHi)和铜绿假单胞菌(PAO1)应用于肺模块。通过dot-blot分析筛选分泌的介质并进行定量。通过mRNA测序,分析肺上皮细菌刺激对肝细胞转录组的影响。 (四)产品用户概况全球使用Kirkstall Quasi Vivo® 器官芯片微生理系统的学术及研究机构已超过100+个,遍布美国、英国、法国、瑞典、奥地利、意大利、荷兰、瑞士、日本等。目前器官芯片微生理系统已成功用于以下类器官模型的构建: (五)品牌制造商简介Kirkstall Ltd.成立于 2006 年,是 Braveheart Investment Group plc 的子公司,总部位于英国约克。Kirkstall开发了一种创新的微生理系统的器官芯片模型Quasi Vivo® 。作为器官芯片技术的领导者,Kirkstall已经建立了牛津大学生物医学工程研究所等著名的大学实验室的庞大用户群,产品在全球范围内享有盛誉。北京基尔比生物科技有限公司是Kirkstall ltd.授权在中国的唯一和独家总代理商,全面负责Kirkstall公司旗下所有产品在中国的销售,市场推广和技术支持等事宜。
    留言咨询
  • 产品简介自动化切割&磨碎组织块,制备单细胞悬液机械方式不使用酶,无试剂残留独特设计的微孔隙研磨柱结构进行旋转研磨,温和快速分离组织,获得高活力、高产量的单细胞研磨耗时约2-5分钟4通道,每管可处理5-400mg组织,从少量样品到大量研磨都能满足管内研磨管内自带细胞筛,研磨结束后单细胞直接通过滤膜在管底汇集,避免污染风险标准尺寸50ml管,研磨结束可直接放入离心机图形化控制软件内置多种Protocol,适用于鼠/人源 (脾脏、 淋巴结、结肠、心、肾、肝、神经组织……)支持自定义Protocol程序OLS助您构建强大高效的3D细胞/球状体/类器官解决方案:TIGR —— 机械方式温和快速获取单细胞CASY —— 无标记3D细胞计数/活力/分析CERO ——3D细胞动态悬浮自动培养 产品特点机械方式不使用酶独特设计的研磨结构温和快速单细胞高活力、高产量4通道5-400mg组织/每管管内研磨,管内自带滤膜,避免污染标准尺寸50ml管图形化控制软件 应用研究方向典型应用领域:3D细胞培养组织模型 – 球状体,类器官,类肿瘤单细胞计数原代细胞分离癌细胞系发育流式细胞术…… 应用实例内置多种protocol,适用于鼠/人源 (脾脏、 淋巴结、结肠、心、肾、肝、神经组织……) 高活力、高产量数据:参数1、通道数:4通道,均可独立运行2、样本组织量:每管支持5-400mg样本3、仪器转速:10-100rpm4、研磨用时:2-5分钟5、研磨结构:管盖内置研磨柱6、旋转模式:切割、磨碎,两者结合7、管子规格:标准50ml管尺寸,可直接放入离心机8、细胞过滤:研磨管内置细胞筛9、管内细胞筛规格:3种,100μm、70μm、40μm10、仪器控制:图形化控制软件11、研磨程序:内置10余种研磨程序12、自定义研磨程序:支持
    留言咨询
  • 多浓度细胞暴露系统 400-860-5168转2809
    应用领域◆ 烟气吸入与健康研究;◆ 化学品农药对环境与健康影响;◆ 空气颗粒物、微生物对环境与健康影响;◆ 空内气体健康评价;◆ 纳米材料生物安全性评价研究;◆ 工业化学品对健康影响;慢阻肺、肺癌等相关疾病研究。 产品概况◆ 多浓度细胞暴露系统是基于ALI(气液界面培养暴露)技术研发的可吸入物质体外细胞多孔道暴露系统。一次实验可完成3个浓度1个对照组的细胞暴露实验,每个浓度至少有3个细胞暴露平行样。多浓度细胞暴露系统具有保证每个浓度之间样品同源性、实验效率高、样品消耗量小等特点。 性能特点◆ ALI-气液界面暴露;◆ 单孔暴露流量5-20ml;◆ 最多3 个浓度 1 个对照组实验;◆ 气溶胶浓度在线监测;◆ 流量控制精度±1%F.S.;◆ 兼容石英晶振微量天平;◆ 兼容6孔位与12孔位transwell小室;◆ 水浴控温精度±0.3℃;◆ 可选洁净台/安全柜提供洁净暴露环境。 参考标准①OECD TG 403 急性吸入毒性试验 (2009);②OECD TG 436 急性吸入毒性试验 :急性毒性阶层法 (2009);③OECD TG 412 28d亚急性吸入毒性试验 (2018);④OECD TG 413 90d亚慢性吸入毒性试验 (2018);
    留言咨询
  • 单浓度细胞暴露系统 400-860-5168转2809
    应用领域◆ 烟气吸入与健康研究;化学品农药对环境与健康影响;◆ 空气颗粒物、微生物对环境与健康影响;空内气体健康评价;◆ 纳米材料生物安全性评价研究;工业化学品对健康影响;◆ 慢阻肺、肺癌等相关疾病研究;医药产品相关研究。 产品概况◆ 单浓度细胞暴露系统是基于ALI(气液界面培养暴露)技术研发的可吸入物质体外细胞多孔道暴露系统。系统能精准控制样品稀释与暴露流量;各孔道流量分配均匀;同时为实验细胞提供静态或动态营养液供给与恒温实验环境,一次实验可完成多个细胞暴露平行样。 性能特点◆ ALI-气液界面暴露;◆ 单孔暴露流量5-20ml;◆ 气溶胶浓度在线监测;◆ 流量控制精度±1%F.S.;◆ 兼容石英晶振微量天平;◆ 兼容6孔位与12孔位transwell小室;◆ 水浴控温精度±0.3℃;◆ 可选洁净台/安全柜提供洁净暴露环境。 参考标准①OECD TG 403 急性吸入毒性试验 (2009);②OECD TG 436 急性吸入毒性试验 :急性毒性阶层法 (2009);③OECD TG 412 28d亚急性吸入毒性试验 (2018);④OECD TG 413 90d亚慢性吸入毒性试验 (2018);
    留言咨询
  • 灌流式、多参数细胞/组织/类器官代谢分析仪—IMOLA 德国cellasys提供的灌流式、多参数细胞/组织/类器官代谢分析仪-IMOLA,是一种基于生物芯片的微生理参数测量系统,对活细胞/组织/类器官的代谢和形态进行无标记实时监测,搭配自动化灌流系统进行换液或者加药,可以实现几天或几周的连续测量,研究药物对活细胞/组织/类器官的影响以及移除药物后的恢复和再生效应。 我们的细胞/组织/类器官代谢分析仪通过生物芯片技术,可以在体外直接研究活细胞或组织、器官在培养过程种的多个参数的变化,包括细胞外酸化(pH)、细胞呼吸(pO2、pCO2)和形态学(电阻)。整个测量过程无需标记、多通道平行进行、连续检测、实时记录。 细胞/组织/类器官代谢主要是指细胞从环境中摄取营养物质,消化吸收后排放出降解物或杂质。大多数碳水化合物,例如葡萄糖,都是细胞的营养物质。在有氧条件下,葡萄糖被细胞摄取后在胞浆内转变成丙酮酸,然后进入三羧酸循环代谢,最终变成二氧化碳并产生能量;在缺氧条件下,葡萄糖在细胞内代谢为乳酸以提供能量。总体而言,细胞代谢增强时,葡萄糖的消耗增加,酸性的代谢产物也相应增加,反之亦然。此外,外界环境因素对贴壁细胞的作用经常影响到细胞的粘附和融合度,而细胞的粘附状态是与细胞骨架的组织性和膜的完整性相关的,如果受到环境因素干扰,细胞则会改变其粘附方式,可能变圆或完全脱离基底。因此,监测这些参数就能很好的了解细胞/组织/类器官内的生理状态和代谢行为。 德国cellasys的细胞/组织/类器官代谢监测仪IMOLA -IVD非常适合与于监测细胞/组织/类器官代谢过程的各种生理学指标,包括产酸,产氧,贴壁电阻,温度。可以单独控制每一个样品的溶液,分别有6个独立的灌流泵来控制每个通道的灌流系统,保证每个通道的独立性,可以连续长时间监测6种细胞/组织/类器官的代谢情况。 德国cellasys公司生产的灌流式、多参数、实时代谢监测的细胞/组织/类器官分析仪—IMOLA-IVD,是一种基于生物芯片的微生理参数测量系统,对活细胞/组织/类器官的代谢和形态进行无标记实时监测,搭配自动化灌流系统进行换液或者加药,可以实现几周的连续测量,研究药物对活细胞/组织/类器官的影响以及移除药物后的恢复和再生效应。通过生物芯片技术,可以培养大尺寸的组织器官(1cm大小)或者transwell小室培养的组织,以及商业化的组织和器官培养物。实时监测培养过程中活细胞/组织/类器官的多个参数的变化,包括细胞外酸化度(pH)、细胞O2消耗率(pO2、pCO2)、贴壁电阻(impedance)和培养基的温度。6个独立的模块可以单独控制每一个样品的溶液,分别有6个独立的灌流泵来控制每个通道的灌流系统,保证每个通道的独立性,可以连续长时间监测6种细胞、组织、类器官的生理活动和代谢情况。 细胞/组织/类器官分析仪—IMOLA-IVD,采用的是芯片技术,而不是通用的光学检测技术,其检测灵敏度更高,检测时间更长,而且这两个产品都有密闭的灌流系统,可以适时更换溶液,适合长时间检测细胞/组织/类器官的生理行为变化,以及观察外界条件(加药等)处理后的细胞/组织/类器官的再生等效应。 多个传感器芯片并联平行工作 非侵入式、实时无标记监测 细胞外酸化度(pH)、细胞O2消耗率(pO2、pCO2)、贴壁电阻和培养基的温度 独特的灌流系统可实现随时换液,可以实现几周的连续测量 可以培养大尺寸的组织器官(1cm大小)或者transwell小室培养的组织,以及商业化的组织和器官培养物 cellasys的6通道细胞/组织/类器官代谢分析仪相对优点主要在6通道每个孔都有独立灌流和换液的功能,比较适合做长时间的观测和再生医学,以及干细胞、组织、类器官等等。 工作原理 微生理测量法监测活细胞、组织、类器官的代谢活动。除了监测细胞呼吸和细胞外酸化,细胞粘附和形态参数同样提供了很多关于生命活动的有价值的信息。我们的生物芯片集成了微型传感器来评估这些参数,确保了高灵敏度和稳定性,并且该方法是无需标记,并实时连续提供多个参数的数据。使用DALiA客户端3.1应用程序,可以对测量过程进行编程并记录数据。 IMOLA-IVD技术可以分析由自动化灌流系统之中的生物芯片所获取的代谢数据,数据来源于用新鲜的细胞培养基或培养基的成分。 细胞类型: 针对所有类型的培养物提供不同的合适的配件; 对于特殊实验还可以通过对生物芯片的涂层来优化培养效果; 悬浮细胞、贴壁细胞、球体、Transwell细胞培养小室; 大尺寸的组织器官(1cm大小)或者transwell小室培养的组织、以及商业化的组织和器官培养物;应用案例1. 毒理动力学: 监测培养的活细胞的活力是阐明化学物质的毒理动力学效应的关键。汞的毒性作用是通过纤维母细胞胞外酸化率来检测的,毒素被去除后,细胞恢复了。细胞类型:3T3成纤维细胞,贴壁细胞 10%十二烷基硫酸钠溶液(7次稀释)对成纤维细胞的毒性作用可以通过细胞阻抗(Z)来解释。细胞类型:L929成纤维细胞,贴壁细胞。 有了自动灌流系统,在活体类似的情况下,可以映射到体外实验。细胞外酸化率用于评估1%十二烷基硫酸钠溶液对HepG2肝球蛋白的毒性。细胞类型:Hep-G2肝癌球体细胞 表皮(RhE)是在保持临界气液界面的形成的,实时测量跨表皮细胞层电阻(TEER).细胞类型:人类表皮细胞(RhE), transwell细胞小室2. 药物开发 可以研究新药对细胞代谢和细胞形态的影响。测定了抗肿瘤药物牛蒡根素对PANC-1细胞系的影响,记录了实时生物电阻的变化。细胞类型:PANC-1人胰腺癌,贴壁细胞3. 环境监测(细胞/组织/类器官) 以藻类的代谢活性为指标来进行水质监测。本例显示了克氏小球藻在被苯嗪草酮污染后光合活性的降低,去除毒素后光合活性的恢复。细胞类型:chlorella kesslerialgae小球藻,悬浮细胞。 4. 医学研究(细胞/组织/类器官) 为了在治疗前评估药物的有效性,可以测试药物对病人的细胞/组织/类器官的代谢学影响。胰岛,特别是产生胰岛素的beta细胞,可以在不同的营养供应条件下表现出不同的代谢活性。在该实验中,当暴露于相当于生理上低血糖和高血糖水平的葡萄糖浓度时,可检测到beta细胞系的代谢活动呈现出明显区别,反应了不同条件下的胰岛素分泌的不同。(Gln 谷氨酰胺;Glc葡萄糖)细胞类型:INS-1E,beta细胞系,贴壁细胞 Cisplatin(顺铂)是一种有效的抗癌药物,用于治疗多种实体瘤,如卵巢癌和肺癌等,并用于辅助治疗神经胶质瘤。Cisplatin与DNA的嘌呤碱基交联,干扰DNA的修复机制,引起DNA损伤,激活多条信号转导通路,包括ERK、p53、p73和MAPK,其中对激活凋亡影响最大,诱导细胞凋亡。细胞类型:MCF-7人乳腺癌细胞 5. 类器官监测 芯片上的类器官:通过自动气液界面监测皮肤类器官的细胞产酸率和跨膜电阻值Skin-on-a-Chip,Genes, 2018, 9, 114作为人体最大的器官,皮肤代表着人体内部和外部环境之间的结构学屏障,将体内器官与毒素、病原体隔离开来,并保护内部器官免受紫外线辐射。除了屏障功能,人体皮肤还执行人体的几个基本功能,如热调节、感觉和排泄。皮肤是人体抵御外部环境的影响的第一防护罩,新的化学物质的研究,如药物和毒素,分析和评估其对皮肤完整性的影响就是必不可少的。因此,人们开发了3D皮肤类器官模型来再现体内结构,培养出三维重建人表皮模型(reconstructed human epidermis,RhE),用于在制药、化妆品和环境研究中评估皮肤暴露于外源性物质后的毒性反应。通过IMOLA分析仪监测皮肤类器官模型的细胞产酸率(EAR,pH)和 细胞层的跨膜电阻值(impedance,TEER,[Z])。通过连续监测RhE细胞模型超过48小时的TEER和EAR数据表明, IMOLA分析仪可以长时间稳定培养芯片上的皮肤类器官,并监测整个代谢过程。 6. 类器官监测 芯片上的类器官:在Transwell上监测人体小肠类器官的跨膜电阻值Tissue-on-a-Chip, Frontiers in Bioengineering and Biotechnology, August 2020药物毒性的研究之中,重要的一点就是要肠道的吸收。临床前体内评估通常依靠小鼠或大鼠模型。然而动物模型不能完全准确地预测药物对于人体各个方面的效应。从结肠(大肠)癌中提取的Caco-2细胞广泛应用于体外药物吸收和毒性评估的。但是,细胞系和小肠组织的相关性有限,目前只能预测跨细胞(细胞内途径)渗透过程。此外,贴壁单层Caco-2缺乏细胞-细胞和细胞-细胞外基质的相互作用,不能模拟人小肠的多层复杂结构。为了克服这种生理相关性的不足,科学家开发了新的三维重建人体组织模型,在整合的气液界面(ALI)上培养三维小肠类器官—EpiIntestinal-FT。这个基于人体细胞的3D类器官整合了肠上皮细胞、Paneth细胞、M细胞、簇细胞和肠道干细胞以及人肠道成纤维细胞,可以用来表征肠道功能,包括屏障、代谢、炎症和毒性反应。通过三通道IMOLA分析仪,监测EpiIntestinal-FT的细胞层的跨膜电阻值(impedance,TEER,[Z])。整个测量过程是非侵入性的、实时的,并且周期性自动更新培养基。在电阻值测量中,培养小室的顶部分别注入培养基,PBS和2.0% SDS。该系统在三个通道中都有一个自动的ALI,可以一次在三个芯片上进行平行实验。 7. 类器官串联培养的监测 生物芯片上的多器官串联—多类器官代谢分析Label-free monitoring of whole cell vitality, 35th Annual International Conference of the IEEE EMBS, Osaka, Japan, 3 – 7 July, 2013, 1607-1610IMOLA-IVD是一种用于在线分析活细胞组织类器官的系统解决方案。它利用生物芯片BioChip-C直接监测活细胞组织类器官的代谢学参数和活细胞形态变化(生物阻抗)。样本无需标记,可以并行或串联,连续且实时进行数周监测。使用活细胞/组织/类器官作为样本在体外研究药物的毒性,以评估药物对活细胞/组织/类器官的作用和效应。该系统优势包括:多参数(代谢学和形态学测定)、长期连续、无需标记、高灵敏度以及优化的灌流系统(可进行实时连续换液,加药,去药等过程)。该系统的模块化结构设计,可通过灌流系统实现多器的官串联培养监测(图2)。模块1培养的是具有代谢活性的细胞类器官(如HepG2三维细胞球)。这些细胞将前体药物转化为活性药物后,被灌流系统传送到敏感反应的效应细胞类器官(模块2)中,实时监测其效果。为了得到更准确的结果,必须抑制各个传感器单元之间的电流干扰,减少试验的干扰,将外界的影响降到最低。为确保独立测量所有细胞电信号,我们对细胞呼吸进行了长期监测,并在23小时后向储液瓶中加入了SDS。结果显示模块2中的细胞受到影响的时间比模块1中的细胞晚了20分钟(见图3)。这是由于泵速以及模块1与模块2之间的连接导致的延迟。该系统的优势在于两种不同细胞或类器官可以完全独立监测,这是混合共培养无法实现的。若模块1中细胞代谢活性非常低,则可能无法在介质通过时积累足够的活性物质。对于这种特殊情况,可以使用由蠕动泵来控制和调节液体流动的速度和体积。发表的文献:ASSAYING PROLIFERATION CHARACTERISTICS OF CELLS CULTURED UNDER STATIC VERSUS PERIODIC CONDITIONSGilbert, D.F., Friedrich, O., Wiest, J. Methods in Molecular Biology, vol 2644. Humana, New York, NY, 2023. Systems engineering of microphysiometryJoachim Wiest, Organs-on-a-Chip, Volume 4, December 2022. CASE STUDIES EXEMPLIFYING THE TRANSITION TO ANIMAL COMPONENT-FREE CELL CULTUREWeber, T., Wiest, J., Oredsson, S. Alternatives to Laboratory Animals, 2022. PRACTICAL WORKSHOP ON REPLACING FETAL BOVINE SERUM (FBS) IN LIFE SCIENCE RESEARCH: FROM THEORY INTO PRACTICEEggert, S., Wiest, J., Rosolowski, J. and Weber, T. ALTEX – Alternatives to animal experimentation, 2022. SENSITIVITY AND PHOTOPERIODISM RESPONSE OF ALGAE-BASED BIOSENSOR USING RED AND BLUE LED SPECTRUMSUmar, L., Aswandi, F., Linda, TM., Wati, A., Setiadi, RN. AIP Conf. Proc. 2320, 050016, 2021. Tissue-on-a-Chip: Microphysiometry With Human 3D Models on Transwell InsertsChristian Schmidt, Jan Markus, Helena Kandarova and Joachim Wiest. Frontiers in Bioengineering and Biotechnology, August 2020. FOURIER ANALYSIS IN MICROPHYSIOMETRYWiest, J. In Advances in Medicine and Biology 136, Nova Science Publisher, Inc., 2019. Proliferation characteristics of cells cultured under periodic versus static conditionsGilbert, D.F., Mofrad, S.A., Friedrich, O., Wiest, J. Cytotechnology, 4. December 2018. Skin-on-a-Chip: Transepithelial Electrical Resistance and Extracellular Acidification Measurements through an Automated Air-Liquid InterfaceAlexander F.A., Eggert S., Wiest J. Genes, 9(2), 2018. MicrophysiometryBrischwein M., Wiest J. (2018). In: Bioanalytical Reviews. Springer, Berlin, Heidelberg, 6. February 2018. FETAL BOVINE SERUM (FBS): PAST – PRESENT – FUTUREvan der Valk, J. et al. ALTEX – Alternatives to animal experimentation. 35, 1, 99-118, 2018. A novel lab-on-a-chip platform for spheroid metabolism monitoring,Alexander F.A., Eggert S., Wiest J. Cytotechnology, 70/1, 375-386, 2018. 北京佰司特科技有限责任公司类器官串联芯片培养仪-HUMIMIC;细胞/组织/类器官代谢分析仪-IMOLA;光片显微镜-LSM-200;蛋白稳定性分析仪-PSA-16;单分子质量光度计-TwoMP;超高速视频级原子力显微镜-HS-AFM;全自动半导体式细胞计数仪-SOL COUNT;农药残留定量检测仪—BST-100;台式原子力显微镜-ACST-AFM;微纳加工点印仪-NLP2000DPN5000;
    留言咨询
  • (一)功能应用体内模型存在许多局限性:较高的实验成本、有限的吞吐量、伦理问题和遗传背景的差异。更重要的是,与人类相比,它们在药物效应和/或疾病表型方面表现出巨大的生理差异,这解释了临床试验经常失败的原因。Kirkstall Ltd.专利技术的Quasi Vivo® 器官芯片微生理系统又称为微流体“芯片上器官”系统,具有相互连接的细胞培养单元,为类器官生长提供更具生理相关性的体内微环境。通过提供一种近生理的体外模型,模拟细胞微环境,具有更完整的结构和功能,解决动物与人类之间的种属差异,且可在体外模拟多种器官特异性疾病状态,反映药物在体内的动态变化规律和人体器官对药物刺激的真实响应,捕捉复杂的生理学反应,并满足高通量的要求。它是一个多室流动系统,为类器官培养提供了一个紧凑、易于使用的解决方案,包括2D、3D、屏障,或多器官。在疾病模型,药物筛选和毒性测试,再生医学和组织工程,发育生物学研究,感染与免疫研究,个性化医学,癌症研究等领域被广泛应用。(二)性能特点Quasi Vivo® 作为一种先进的器官芯片系统,专门设计用于解决学术和工业研究人员在开展体外和体内研究时遇到的主要问题,具有下列性能优势:1.功能延展性强可选择气液界面、液液界面、支架和流动方案的多样化培养方式允许独立、可控的空气、气体或液体层流流向顶端和基底外侧满足多器官/多细胞共培养,细胞间的信号传递等实验要求。加速类器官细胞分化和成熟,提高细胞活力,适合长期培养2.成像友好配备了光学窗口在顶部或底部表面,便于理想的实时高分辨率成像3.易于获取样本直接收集样本和获取组织或液体样本4.模拟生物力学和浓度梯度严格控制多个变量,可以模拟生理特征,如血液循环,组织间液流动态等,为细胞提供生物力学信号;可以实现免疫细胞共培养以及血管化等复杂模型构建;用于研究多种生理过程,如细胞迁移、分化、免疫反应以及癌症的转移等5.便携和易于操作紧凑型模块化腔室结构,具有更高人体生理相关性占地面积小,节省空间,可兼容标准实验室的孵化器(三)产品应用案例及发表文献1) Berger E, Magliaro C, Paczia N, Monzel AS, Antony P, Linster CL, Bolognin S, Ahluwalia A, Schamborn JC. Millifluidic culture improves human midbrain organoid vitality and differentiation. Lab Chip, 2018, 18, 3172-3183.在本研究中,作者建立了一个在Kirkstall Quasi Vivo® 器官芯片微流体条件下稳定的脑类器官培养物,并将其与使用计算流体动力学(CFD)和常规实验方法中的连续轨道振荡方法进行了比较。CFD分析是为了确定在两种实验装置中计算出的氧气量的差异是否可以用来解释在两种条件下培养的类器官中观察到的任何差异。这一比较显示了培养质量的改善,包括一个减少的“死核心”,并被模型证实,并增加了多巴胺能分化。2) Ramachandran S, Schirmer K, Münst B, Heinz S, Ghafoory S, Wö lfl S, Simon-Keller K, Marx A, Ø ie C, Ebert M, Walles H, Braspenning J and Breitkopf-Heinlein K (2015). In Vitro Generation of Functional Liver Organoid-Like Structures Using Adult Human Cells. PLOS ONE, 10(10), e0139345.在本研究中,作者使用upcyte® 人肝细胞在体外生成肝类器官,在Kirkstall Quasi Vivo® 器官芯片中进一步培养10天后,这些肝类器官表现出典型的肝实质功能特征,包括细胞色素P450、CYP3A4、CYP2B6和CYP2C9的活性,以及一些标记基因和其他酶的mRNA表达。 3) Cancer cells grown in 3D under fluid flow exhibit an aggressive phenotype and reduced responsiveness to the anti-cancer treatment doxorubicin, Tayebeh Azimi, Marilena Loizidou & Miriam V. Dwek ,Scientific Reports volume 10, Article number: 12020 (2020)肿瘤微环境(TME)作为癌细胞行为调节剂的重要性已被公认,并导致了3D体外癌症模型的发展。癌症的3D实验室体外模型旨在概括肿瘤微环境的生化和生物物理特征,并旨在以生理相关的方式使研究癌症和新的治疗方式成为可能。本文作者研究了乳腺癌细胞在2D、3D和3D微流体条件下,并对比了不同培养条件下的乳腺癌细胞的凋亡、增殖和缺氧相关基因的细胞活力和表达水平。在该实验过程中,癌细胞被制备成一个密集的3D团块,创造了一个在Kirkstall Quasi Vivo® 器官芯片流体流动条件下的肿瘤类器官,将肿瘤类器官暴露于流体和压力的生理条件下,会导致其生长、形态和对化疗挑战的敏感性的变化。该模型系统为组织密度和流体流动的作用提供了关键证据,并为使用3D模型作为癌症药物测试平台的研究人员提供参考。4)Geddes, L., Themistou, E., Burrows, J. F., Buchanan, F. J., & Carson, L. (2021). Evaluation of the In Vitro Cytotoxicity and Modulation of the Inflammatory Response by the Bioresorbable Polymers Poly(D,L-lactide-coglycolide) and Poly(L-lactide-co-glycolide). Acta Biomaterialia, 134, 261-275.医疗设备必须进行一系列的测试,以确保其在临床使用中是安全的,这些测试由国际标准化组织(ISO)规定。每个医疗设备都需要进行细胞毒性分析,这通常是体外生物相容性测试的第一步。这些测试提供了一种高效的方法来确定一种物质或一种物质对活细胞的细胞毒性,然而,它们的使用有限,因为它们不能用于确定细胞死亡的原因。在生物材料开发的早期阶段测试体外免疫反应目前还没有纳入标准程序。深入了解体外细胞对生物材料的反应将有助于早期检测和预测潜在的不良反应。为了复制体内环境和增加生理相关性,本文作者采用了Kirkstall Quasi Vivo® “芯片上的器官”流动培养系统,用于测试聚合物样品。5)Susanne Reinhold, Christian Herr, Yiwen Yao , Mehdi Pourrostami, Felix Ritzmann. Modeling of lung-liver interaction during infection in a human microfluidic organ-on-a-chip, bioRxiv preprint posted June 5, 2023.肺炎或COVID-19等呼吸道感染在世界范围内造成高死亡率和发病率。器官芯片技术在过去几年中发展起来,以建立基于人类的疾病模型,研究基本的疾病机制,并为加速药物开发提供工具。本研究的目的是建立一个肺-肝微流控系统来研究感染过程中两个器官模块的相互作用。作者利用原代人支气管(HBECs)或肺泡上皮细胞和人肝癌Huh-7细胞,通过Kirkstall Quasi Vivo® 器官芯片建立了双器官(肺/肝)微流控系统,开展共培养/刺激试验。将不可分型流感嗜血杆菌(NTHi)和铜绿假单胞菌(PAO1)应用于肺模块。通过dot-blot分析筛选分泌的介质并进行定量。通过mRNA测序,分析肺上皮细菌刺激对肝细胞转录组的影响。 (四)产品用户概况全球使用Kirkstall Quasi Vivo® 器官芯片微生理系统的学术及研究机构已超过100+个,遍布美国、英国、法国、瑞典、奥地利、意大利、荷兰、瑞士、日本等。目前器官芯片微生理系统已成功用于以下类器官模型的构建: (五)品牌制造商简介Kirkstall Ltd.成立于 2006 年,是 Braveheart Investment Group plc 的子公司,总部位于英国约克。Kirkstall开发了一种创新的微生理系统的器官芯片模型Quasi Vivo® 。作为器官芯片技术的领导者,Kirkstall已经建立了牛津大学生物医学工程研究所等著名的大学实验室的庞大用户群,产品在全球范围内享有盛誉。北京基尔比生物科技有限公司是Kirkstall ltd.授权在中国的唯一和独家总代理商,全面负责Kirkstall公司旗下所有产品在中国的销售,市场推广和技术支持等事宜。
    留言咨询
  • 高通量单细胞功能检测系统是个可以模拟心肌细胞生理形状以及器官组织刚性的全自动测量单细胞牵引力的高通量平台。高通量单细胞功能检测系统(兴奋收缩偶联,纳米荧光信号)是全自动高通量测量容易量化细胞运动。能够从细胞微观水平到组织宏观水平评估各种各样的运动范围、细胞运动轨迹、单个细胞力、硬度及离子浓度,如一个孔内一个小时测200个以上单细胞的收缩和离子浓度快速变化(如钙瞬变)。高通量细胞张力度、离子通道、同步测量细胞及组织的检测真正意义上实现了单个心肌细胞的功能性检测。关键词:细胞力学,收缩力,兴奋耦联,单细胞,水凝胶,类器官 ,钙瞬变,细胞力快速检测,细胞贴壁,心肌细胞测试,可控硬度培养皿测量对象:癌细胞、斑马鱼、Sperm、菌落、贴壁细胞(如:急性分离地成年小鼠细胞,乳鼠细胞、成年大鼠的心肌细胞、骨骼肌细胞、 神经元干细胞及人源干细胞) 系统架构图优势1、得到acurate的细胞信息数据。高通量单细胞功能检测系统在确定药物或化合物对收缩、松弛或收缩和松弛的精确影响等方面,以提供更精确的分析数据。如模拟心肌细胞生理形状以及器官组织刚性环境进行测量。不光测量细胞的收缩和舒张的速度、缩短长度(位移)、收缩松弛持续时间、收缩的同步性、收缩的传播、收缩方向的方向。检测收缩和松弛,以检测其他系统可能忽略的节拍轮廓的细微差异。例如,如果场电位持续时间被药物或化合物修改。2、节约大量细胞材料。把不同孔做为不同的实验处理。高通量单细胞功能检测系统全自动设计,同一个细胞不同的处理或者不同时间点进行测试。单个细胞就是独立的测试对象。批量检测单个细胞的指标。不同孔可以检测不同条件下单个细胞的指标。信息量巨大,节约大量耗材及时间成本。3.研究软件检测和分析细胞行为从细胞内水平到组织水平。3.1它可以在亚微米水平上检测和量化细胞运动,使研究人员能够以目标大小和时间间隔可视化和分析目标细胞的精细运动3.2通过轨迹分析选择跟踪区域和运动方向。软件可以量化迁移单元的速度或距离。软件中的频率分析可以分析细胞运动的频率。4、同步测量细胞的力学及离子通道等指标。测试对象广泛:从单个细胞、组织到斑马鱼等模型。5、自动识别单元及选取所需测量的区域及细胞。利用机器学习,软件可以自动识别细胞。这是通过在软件中识别目标单元,然后在软件中“注册"它们来实现的。设置完成后,该软件还可以设置为自动查找图像区域中高于6000个对象目标单元。该系统可以同时搜索多个单元,以加快自动识别的速度。6、心脏模型软件功能心脏模型具有许多分析心肌细胞跳动运动的专门功能。图形输出包括收缩、舒张、传播和等时线图,用于可视化检测心脏细胞异常以及细胞和子细胞运动。如:斑马鱼心脏高速荧光成像功能描述1、心肌细胞采用超速成像纳米水凝胶技术,保证药物一定浓度水平下批量测心肌细胞的力学指标和钙瞬变。测细胞收缩的速度和细胞力度、细胞大小、面积、真正产生的功率,收缩时的角度x轴y轴,产生的速度差和力差等,并且可以模拟器官硬度。通过轨迹分析选择跟踪区域和运动方向。软件对迁移单元的速度或距离进行量化。可以分析细胞运动的频率。细胞跟踪检测轨迹并提供定量数据跟踪功能还可以分析面积、周长和圆度等参数,使软件能够跟踪形状变化,例如体外心肌细胞。2、细胞迁移和精子运动轨迹跟踪函数检测细胞轨迹,并可以计算定量数据,例如:作为轨迹(xy图表),距离和速度。这使得系统具有检测和测量功能,例如细胞迁移和精子运动的轨迹。3、动态跟踪可以分析细胞增殖的变化,如菌落形成。4、人iPS细胞衍生神经细胞的细胞活力测定:可以测量神经元的运动。神经元运动的功率谱密度(PSD)可用于准确预测细胞死亡。PSD表示一个单元在频域中的运动强度。神经元培养的PSD比传统的生存能力测量更精确地预测细胞死亡。5、核跟踪特征可用于分析癌细胞迁移6、斑马鱼幼体血液流动的监测:根据血流量随着发育而增加,具有量化血液中细微差异的能力7、高通量单个细胞或多个细胞钙离子成像(钙火花/钙波)。如以钙离子为例,采用多种激光模式及染料:单激发单发射、双激发单发射、单发射双激发。能够从细胞微观水平到组织宏观水平评估各种各样的运动范围、细胞运动轨迹、单个细胞力、硬度及离子浓度,如一个孔内一个小时测200个以上单细胞的收缩和离子浓度快速变化(如钙瞬变)。高通量细胞张力度、离子通道、同步测量细胞及组织的检测真正意义上实现了单个心肌细胞的功能性检测。测量对象:癌细胞、斑马鱼、Sperm、菌落、贴壁细胞(如:急性分离地成年小鼠细胞,乳鼠细胞、成年大鼠的心肌细胞、骨骼肌细胞、 神经元干细胞及人源干细胞)
    留言咨询
  • 细胞趋化 400-860-5168转2623
    荧光细胞趋化动态分析系统TAXIScan-FL 日本ECI株式会社细胞动态可视化系统设备TAXIScan-FL,是全新光学动态成像与活体细胞处理技术的完美结合,本设备采用专利TAXIScan技术,具有独立知识产权,其核心部件为硅基底芯片,其上嵌刻的水平通道可形成化学趋化因子浓度梯度;水平通道的深度精度小于悬浮细胞的直径,可精确到微米级别,其内可观测细胞形态学变化和增值迁移过程;成像部件冷光CCD相机定位于观测平面以下,配有高性能透镜和同轴反照明装置;基于以上的技术使实验只需100个甚至更少的细胞样本;根据实验具体要求自定义设置实验条件参数。主要功能:1、硅基底芯片,其上嵌刻的水平通道可形成化学趋化因子浓度梯度,用于测定浓度梯度依赖细胞的功能,如趋化,脱颗粒。细胞趋化分析不仅包括中性粒细胞、嗜酸性粒细胞、单核细胞、淋巴细胞等外周血白细胞,也包括各种癌细胞和培养细胞,如平滑肌细胞、内皮细胞、神经细胞、干细胞等。 主要技术指标(Main technical indicators): 物镜:10×20×40×100×(Objective lens: 10×20×40×100×) 荧光滤块:B/G/R (Fluorescent filter block: B/G/R) 样品量:≤100个细胞(Sample amount: 100 or less cells) 温度控制:室温+ 3℃~40℃(Holder temperature control: room temperature+ 3℃~40℃) 硅基底芯片:通道深度4μm,5μm ,6μm,8μm(Chip terrace depth:4, 5, 6, or 8μm) 12个独立通道,可同时进行12例试验(12 channels, up to 12 concurrent assays) 自动聚焦系统(Autofocus system) 动态影像实时记录 (Data store as movie image file) 计算机分析系统,包含浓度梯度的精确测量,自动统计细胞数量,细胞形态变化、迁移速度、迁移方向等统计学分析。 细胞动态可视化系统设备具备6大优点: 1. 可重复的建立不同的化学趋化剂浓度梯度; 2. 数字记录的慢拍快放技术,保留实验动态影像; 3. 荧光成像实时拍摄细胞事件; 4. 自动聚焦并跟踪单个活体细胞动态演变过程; 5. 高通量实验载体可同时完成12例试验; 6. 无需暗室环境。 细胞可视化系统设备的应用范围: 1.细胞化学趋化性基础研究 可运动细胞对化学梯度的直接反应被称作化学趋化性。化学趋化性对许多生理过程都非常重要,包括炎症和神经发育。例如炎症反应中的白细胞聚集。这类研究主要在基础研究院,各大医学院所进行。 细胞趋化分析不仅包括中性粒细胞、嗜酸性粒细胞、单核细胞、淋巴细胞等外周血白细胞,也包括各种癌细胞和培养细胞,如平滑肌细胞、内皮细胞、神经细胞、干细胞等。还可分析蛋白质及细胞相互作用、细胞信号转导、细胞骨架、钙流入、活性氧代谢等。可应用于趋化因子及药物筛选、炎症、过敏反应、肿瘤、神经、免疫、心血管、干细胞等方面的研究。 2.过敏性变态反应机理研究 过敏反应也称之为变态反应,是机体对外源化学物产生的一种病理性免疫反应。过敏反应是由化学物质的突然释放导致的,包括血液和组织细胞中的组胺。这类研究主要在各大中药厂,化妆品制造企业的药物研发部门进行。 3. 肿瘤细胞的趋化和侵袭 肿瘤细胞由其原发部位侵入血管或淋巴管或体腔,部分细胞被血流、淋巴流带到另一部位或器官,在该处繁殖生长,形成与原发肿瘤同样类型的肿瘤,这一过程即为侵袭转移。这类研究主要在基础研究院、各大肿瘤医院实验部门进行。 4. 评价化疗药物治疗效果 化学治疗即用化学合成药物治疗疾病的方法。化学药物治疗(简称化疗)是目前治疗肿瘤及某些自身免疫性疾病的主要手段之一。这类研究主要在基础研究院、各大化疗药物生产厂家的药物研发部门进行。
    留言咨询
  • 高通量单细胞功能检测系统是个可以模拟心肌细胞生理形状以及器官组织刚性的全自动测量单细胞牵引力的高通量平台。高通量单细胞功能检测系统(兴奋收缩偶联,纳米荧光信号)是全自动高通量测量容易量化细胞运动。能够从细胞微观水平到组织宏观水平评估各种各样的运动范围、细胞运动轨迹、单个细胞力、硬度及离子浓度,如一个孔内一个小时测200个以上单细胞的收缩和离子浓度快速变化(如钙瞬变)。高通量细胞张力度、离子通道、同步测量细胞及组织的检测真正意义上实现了单个心肌细胞的功能性检测。关键词:细胞力学,收缩力,兴奋耦联,单细胞,水凝胶,类器官 ,钙瞬变,细胞力快速检测,细胞贴壁,心肌细胞测试,可控硬度培养皿测量对象:癌细胞、斑马鱼、Sperm、菌落、贴壁细胞(如:急性分离地成年小鼠细胞,乳鼠细胞、成年大鼠的心肌细胞、骨骼肌细胞、 神经元干细胞及人源干细胞) 系统架构图优势1、得到准的细胞信息数据。高通量单细胞功能检测系统在确定药物或化合物对收缩、松弛或收缩和松弛的精确影响等方面,以提供更精确的分析数据。如模拟心肌细胞生理形状以及器官组织刚性环境进行测量。不光测量细胞的收缩和舒张的速度、缩短长度(位移)、收缩松弛持续时间、收缩的同步性、收缩的传播、收缩方向的方向。检测收缩和松弛,以检测其他系统可能忽略的节拍轮廓的细微差异。例如,如果场电位持续时间被药物或化合物修改。2、节约大量细胞材料。把不同孔做为不同的实验处理。高通量单细胞功能检测系统全自动设计,同一个细胞不同的处理或者不同时间点进行测试。单个细胞就是独立的测试对象。批量检测单个细胞的指标。不同孔可以检测不同条件下单个细胞的指标。信息量巨大,节约大量耗材及时间成本。3.研究软件检测和分析细胞行为从细胞内水平到组织水平。3.1它可以在亚微米水平上检测和量化细胞运动,使研究人员能够以目标大小和时间间隔可视化和分析目标细胞的精细运动3.2通过轨迹分析选择跟踪区域和运动方向。软件可以量化迁移单元的速度或距离。软件中的频率分析可以分析细胞运动的频率。4、同步测量细胞的力学及离子通道等指标。测试对象广泛:从单个细胞、组织到斑马鱼等模型。5、自动识别单元及选取所需测量的区域及细胞。利用机器学习,软件可以自动识别细胞。这是通过在软件中识别目标单元,然后在软件中“注册"它们来实现的。设置完成后,该软件还可以设置为自动查找图像区域中高于6000个对象目标单元。该系统可以同时搜索多个单元,以加快自动识别的速度。6、心脏模型软件功能心脏模型具有许多分析心肌细胞跳动运动的专门功能。图形输出包括收缩、舒张、传播和等时线图,用于可视化检测心脏细胞异常以及细胞和子细胞运动。如:斑马鱼心脏高速荧光成像功能描述1、心肌细胞采用超速成像纳米水凝胶技术,保证药物一定浓度水平下批量测心肌细胞的力学指标和钙瞬变。测细胞收缩的速度和细胞力度、细胞大小、面积、真正产生的功率,收缩时的角度x轴y轴,产生的速度差和力差等,并且可以模拟器官硬度。通过轨迹分析选择跟踪区域和运动方向。软件对迁移单元的速度或距离进行量化。可以分析细胞运动的频率。细胞跟踪检测轨迹并提供定量数据跟踪功能还可以分析面积、周长和圆度等参数,使软件能够跟踪形状变化,例如体外心肌细胞。2、细胞迁移和精子运动轨迹跟踪函数检测细胞轨迹,并可以计算定量数据,例如:作为轨迹(xy图表),距离和速度。这使得系统具有检测和测量功能,例如细胞迁移和精子运动的轨迹。3、动态跟踪可以分析细胞增殖的变化,如菌落形成。4、人iPS细胞衍生神经细胞的细胞活力测定:可以测量神经元的运动。神经元运动的功率谱密度(PSD)可用于准确预测细胞死亡。PSD表示一个单元在频域中的运动强度。神经元培养的PSD比传统的生存能力测量更精确地预测细胞死亡。5、核跟踪特征可用于分析癌细胞迁移6、斑马鱼幼体血液流动的监测:根据血流量随着发育而增加,具有量化血液中细微差异的能力7、高通量单个细胞或多个细胞钙离子成像(钙火花/钙波)。如以钙离子为例,采用多种激光模式及染料:单激发单发射、双激发单发射、单发射双激发。能够从细胞微观水平到组织宏观水平评估各种各样的运动范围、细胞运动轨迹、单个细胞力、硬度及离子浓度,如一个孔内一个小时测200个以上单细胞的收缩和离子浓度快速变化(如钙瞬变)。高通量细胞张力度、离子通道、同步测量细胞及组织的检测真正意义上实现了单个心肌细胞的功能性检测。测量对象:癌细胞、斑马鱼、Sperm、菌落、贴壁细胞(如:急性分离地成年小鼠细胞,乳鼠细胞、成年大鼠的心肌细胞、骨骼肌细胞、 神经元干细胞及人源干细胞)
    留言咨询
  • 简单、准确的单细胞铺板On-chip SPiS全自动单细胞分离装置On-chip SPiS是一款全自动单细胞分离装置,可在短时间内完成精度超过90%的单细胞铺板。近年来,单细胞检测技术十分热门。例如,癌症研究的对象中包含了癌细胞的多种亚克降群,检测单个癌细胞来区分其中的亚型和基因突变细胞非常必要。然而,目前的单细胞分离装置在操作性和技术性上都无法满足研究所需的精度。有限稀释法虽然操作简单、成本低廉,但单细胞分注的精度仅为21%,并需要多次亚克隆确保获得单克隆。On-chip SPiS装置的诞生彻底解决了这一麻烦,并迅速成为单细胞分析检测领域的不可或缺的高效工具。On-chip SPiS 核心优势:自动化高精度单细胞铺板1. 简单自动化操作2. 使用一次性枪头进行分注3. 自动稀释功能+CCD摄像机的画面确认4. 可分注的样本直径最大为200um5. 铺板精度超过90%On-chip SPiS 应用案例:Spheroid (细胞团块)可模拟生物体内环境,利用细胞团块开展抗癌药物的药物评价实验一直十分热门。然而,高精度的评价实验需要尺寸均一的细胞团块。通过On-chip Sort以及On-chip SPiS可回收特定尺寸的细胞团块,然后简便快速地分注单个细胞团块,从而开展高精度的药物评价实验。
    留言咨询
  • 荧光细胞趋化系统TAXIScan-FL 日本ECI株式会社荧光细胞趋化系统TAXIScan-FL,是全新光学动态成像与活体细胞处理技术的完美结合,本设备采用专利TAXIScan技术,具有独立知识产权,其核心部件为硅基底芯片,其上嵌刻的水平通道可形成化学趋化因子浓度梯度;水平通道的深度精度小于悬浮细胞的直径,可精确到微米级别,其内可观测细胞形态学变化和增值迁移过程;成像部件冷光CCD相机定位于观测平面以下,配有高性能透镜和同轴反照明装置;基于以上的突破性技术使实验只需100个甚至更少的细胞样本;根据实验具体要求自定义设置实验条件参数。日本ECI株式会社荧光细胞趋化系统主要功能:1、硅基底芯片,其上嵌刻的水平通道可形成化学趋化因子浓度梯度,用于测定浓度梯度依赖细胞的功能,如趋化,脱颗粒。细胞趋化分析不仅包括中性粒细胞、嗜酸性粒细胞、单核细胞、淋巴细胞等外周血白细胞,也包括各种癌细胞和培养细胞,如平滑肌细胞、内皮细胞、神经细胞、干细胞等。 日本ECI株式会社荧光细胞趋化系统主要技术指标(Main technical indicators):物镜:10×20×40×100×(Objective lens: 10×20×40×100×) 荧光滤块:B/G/R (Fluorescent filter block: B/G/R)样品量:≤100个细胞(Sample amount: 100 or less cells)温度控制:室温+ 3℃~40℃(Holder temperature control: room temperature+ 3℃~40℃) 硅基底芯片:通道深度4μm,5μm ,6μm,8μm(Chip terrace depth:4, 5, 6, or 8μm)12个独立通道,可同时进行12例试验(12 channels, up to 12 concurrent assays)自动聚焦系统(Autofocus system)动态影像实时记录 (Data store as movie image file)计算机分析系统,包含浓度梯度的精确测量,自动统计细胞数量,细胞形态变化、迁移速度、迁移方向等统计学分析。 细胞动态可视化系统设备具备6大优点: 1. 可重复的建立不同的化学趋化剂浓度梯度; 2. 数字记录的慢拍快放技术,保留实验动态影像; 3. 荧光成像实时拍摄细胞事件; 4. 自动聚焦并跟踪单个活体细胞动态演变过程; 5. 高通量实验载体可同时完成12例试验; 6. 无需暗室环境。 细胞可视化系统设备的应用范围: 1.细胞化学趋化性基础研究 可运动细胞对化学梯度的直接反应被称作化学趋化性。化学趋化性对许多生理过程都非常重要,包括炎症和神经发育。例如炎症反应中的白细胞聚集。这类研究主要在基础研究院,各大医学院所进行。 细胞趋化分析不仅包括中性粒细胞、嗜酸性粒细胞、单核细胞、淋巴细胞等外周血白细胞,也包括各种癌细胞和培养细胞,如平滑肌细胞、内皮细胞、神经细胞、干细胞等。还可分析蛋白质及细胞相互作用、细胞信号转导、细胞骨架、钙流入、活性氧代谢等。可应用于趋化因子及药物筛选、炎症、过敏反应、肿瘤、神经、免疫、心血管、干细胞等方面的研究。 2.过敏性变态反应机理研究 过敏反应也称之为变态反应,是机体对外源化学物产生的一种病理性免疫反应。过敏反应是由化学物质的突然释放导致的,包括血液和组织细胞中的组胺。这类研究主要在各大中药厂,化妆品制造企业的药物研发部门进行。 3. 肿瘤细胞的趋化和侵袭 肿瘤细胞由其原发部位侵入血管或淋巴管或体腔,部分细胞被血流、淋巴流带到另一部位或器官,在该处繁殖生长,形成与原发肿瘤同样类型的肿瘤,这一过程即为侵袭转移。这类研究主要在基础研究院、各大肿瘤医院实验部门进行。 4. 评价化疗药物治疗效果 化学治疗即用化学合成药物治疗疾病的方法。化学药物治疗(简称化疗)是目前治疗肿瘤及某些自身免疫性疾病的主要手段之一。这类研究主要在基础研究院、各大化疗药物生产厂家的药物研发部门进行。
    留言咨询
  • Millicell ERS-2 细胞电阻仪主要用在不损伤细胞单层致密结构的情况下测量上皮细胞电压电阻,用来监控细胞单层的健康状况以及致密程度。 一:Millicell ERS-2 细胞电阻仪(目录号MERS00002)的规格参数 膜电压范围: ± 200.0 mV 电压测量: 0.1 mV 电阻范围: 0 ~ 9999 Ω 电阻分辨率: 1 Ω 交流方波电流: ± 10 μA nominal at 12.5 Hz 电源: 内置 6 V NiMH 2,200 mAH电池,外接12 VDC电源供充电 每充电12h电池可用时间: 8–10 hrs 模拟输出: 1–10 V (1 mV/ohm)环境要求: 50–100 °F (10–38 °C) 0–90% non-condensing relative humidity 尺寸:19 × 11 × 6 cm 重量:1.4 kg二: Millicell ERS-2 细胞电阻仪(目录号MERS00002)的仪器构成MillicellERS2测量仪,包括电源线、可充电池。固定电极对(MERSSTX01,电极间距固定,用于测量)1000Ω校验电极(MERSSTX04,用于校验)600级超细砂纸A/C电源和充电器用户手册三:Millicell ERS-2 细胞电阻仪的使用:用途:在不损伤细胞单层致密结构的情况下测量上皮细胞电压电阻,用来监控细胞单层的健康状况以及致密程度。工作原理: 电阻读数不受膜电容和膜电压影响;系统采用交流电,避免了对组织产生不利影响;在电极上不会有金属沉淀;细胞上零净电荷消除了直流电流在细胞膜上的不利影响。常用的药物渗透实验的细胞系:人结肠腺癌细胞系Caco-2、HT-29、Lovo、SW-480,人结肠上皮细胞T84,狗肾上皮细胞系 MDCK,猪肾上皮细胞系LLC/PK1等。实验用品准备:1. 完全充好电的Millicell ERS-2系统2. STX04测试电极3. STX01或者STX03电极(用于检测Millicell 6, 12和24孔板), STX00电极(用于检测Millicell 96孔板),如果要测量电压则要先进行电极平衡4. 未培养细胞的Millicell培养皿(对照)5. 培养了细胞的Millicell培养皿四:Millicell细胞培养板或细胞培养小室 PET膜或PCF膜,膜孔径为0.4μm或1μm 常用的产品包括: 目录号PSHT010R5:PCF膜,膜孔径0.4μm 24孔板 目录号 PSRP004R5:PET膜,膜孔径1.0μm, 96孔膜板 目录号PSHT004R5:PCF膜,膜孔径0.4μm, 96孔膜板 目录号MACAC0RS5:Caco2无菌带盖96孔板
    留言咨询
  • 通量可变的细胞无损实时监测系统Maestro TrayZ “您的箱内实验中心”Maestro TrayZ是一款托盘式可变通量活细胞分析平台。依托标准细胞培养箱,单个终端可同时连续监测1*96-8*96个样本,且整个系统的通量上限仅受制于培养箱体积。这种高度的灵活性使得TrayZ能胜任从产品研究开发到生产质控的各种应用场景,并在管理和使用上赋予了用户极大的想象空间。 PART I Maestro TrayZ 独特优势 连续活细胞监测 - 对培养的细胞群落进行非侵入、无标记的电阻抗检测,从而杜绝染料/报告子对实验结果的干扰。可连续数小时、数天乃至数周开展反应动力学监测。 通量自由 - 按需灵活拓展通量。通过控制终端完成对多个主机的组网连接,满足8*96个样本的高通量需求。 智能化实验管理 - 置入阻抗板之后,多板位主机能自动识别耗材上的条形码,指示软件延续之前的实验记录或让您设定一个新的实验。从根本上杜绝多个项目并行管理中可能发生的差错。 结果查询方便快捷 - AxIS Z软件功能强大且直观。简化了实验设置、执行和分析的全流程。可视化数据一键可得,功能强大且直观。 GxP合规支持 - 围绕监管法规的具体规定,系统能全面响应条形码追踪、环境监测和事件自动记录等合规要求。 移动APP远程监控 - 支持手机app远程实时监测,让您随时随地了解实验进展。 PART II 应用方向样本类型:悬浮细胞,贴壁细胞,3D培养细胞,类器官等 实时记录细胞增殖、凋亡过程,建立专属功能档案细胞毒性动态研究癌细胞浸润、迁移能力,划痕实验癌症免疫疗法,肿瘤免疫学,细胞治疗病毒学研究跨内皮/上皮细胞电阻(TEER)研究G蛋白偶联受体(GPCR),信号通路研究细胞愈合能力测试 Axion BioSystems ImagineExploreDiscover Maestro Z细胞实时无损监测系统信息由Axion BioSystems为您提供,如您想了解更多关于Maestro Z细胞实时无损监测系统报价、型号、参数等信息,欢迎来电或留言咨询。注:对于医疗器械类产品,请先查证核实企业经营资质和医疗器械产品注册证情况
    留言咨询
  • 安捷伦Seahorse XFe96细胞能量代谢分析仪简介:安捷伦Seahorse XFe96分析仪在 96 孔板中检测活细胞的 OCR 和 ECAR。这些数值是线粒体呼吸和糖酵解的关键指标,可在系统水平查看培养细胞和体外样品的细胞代谢功能。特性:1.96 孔板形式可在一次分析中测量多种条件,用于灵活的检测设计、剂量响应研究和筛选;2.在几分钟内报告实时代谢率,而无需样品提取或标记;3.具有自动混合功能的四加药口系统,能实时检测活细胞对底物、抑制剂及其他化合物的反应;4.高灵敏度 — 可分析定制 96 孔板中每孔仅 5000 个细胞;5.精密控温加热托盘,可维持在 16–42 °C(室温以上 12–20 °C),兼容多种样品类型;6.快速测定细胞能量生成对线粒体底物的依赖性;7.一小时内生成一种代谢表型,数据周转快;8.分析细胞球体、胰岛等 3D 样品;9.Wave 软件让您在台式 PC 上轻松创建检测方案、进行数据分析,并可导出到通用电子表格和绘图程序;工作原理1、实时监测微孔板中的活细胞生物能量代谢:线粒体呼吸和糖酵解这两个主要的能量产生途径,分别涉及细胞耗氧量和质子释放率。Seahorse XF 技术使用无标记传感器检测这些分析物中的细胞外变化,以测定细胞呼吸率、糖酵解和ATP产生。将细胞接种于定制96孔XF微孔板的分析孔中,融合率为 50%–90%。悬浮细胞附着在孔底,实现灵敏度最大化。2、形成微室,并以分钟为单位计算细胞外流量的速率仪器将探针板降低至分析孔中。传感器位于孔底上方200μm处,形成约2μL 的瞬时微室。随着氧气和pH 水平的变化,仪器可读取传感器的相应变化。通常进行3分钟测量,然后自动计算速率。测量期结束后,升高探针,使细胞外培养基恢复到基线条件。3.最多注入 4 种化合物,实时测试响应或研究生物学机理探针板还配置有加药口(每孔 4 个),可在分析过程中将调节因子注入细胞孔中。当完成仪器方案配置后,系统会将化合物“A”注入分析孔中,缓慢混合,确保化合物在分析培养基中均匀分布。所有孔以此方式同步处理。系统将自动执行后续测量周期、方案规定的任何额外加药及速率计算。应用:1.探索细胞代谢的强大功能安捷伦 Seahorse XF 平台可实时测量活细胞的两个主要代谢通路(线粒体呼吸和糖酵解),提供细胞生物能量代谢的功能动力学测量。了解生物能量参数如何提供有价值的信息,并作为疾病模型、关键细胞过程和疗法发现的指标。2.免疫代谢包括激活、增殖和记忆细胞发育在内的免疫细胞过程都是由代谢重编程驱动的,代谢重编程可以被调节以增强性能和控制免疫细胞结局。通过功能性实时代谢测量,了解激活、增殖和记忆细胞发育等免疫细胞过程。3.癌症代谢新陈代谢是癌症恶性肿瘤细胞生长的关键驱动因素,为了总体上向糖酵解表型转换,癌细胞增殖通常需要进行上调或“代谢转换”,从而加快能量需求并生成结构单元,最终促进癌细胞生长。通过对活细胞进行实时功能性生物能量代谢分析,揭示癌症代谢特性,更深入地了解癌细胞生物学。
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制