当前位置: 仪器信息网 > 行业主题 > >

绿脓假单胞菌

仪器信息网绿脓假单胞菌专题为您提供2024年最新绿脓假单胞菌价格报价、厂家品牌的相关信息, 包括绿脓假单胞菌参数、型号等,不管是国产,还是进口品牌的绿脓假单胞菌您都可以在这里找到。 除此之外,仪器信息网还免费为您整合绿脓假单胞菌相关的耗材配件、试剂标物,还有绿脓假单胞菌相关的最新资讯、资料,以及绿脓假单胞菌相关的解决方案。

绿脓假单胞菌相关的资讯

  • 乐百氏矿泉水铜绿假单胞菌超标
    乐百氏矿泉水铜绿假单胞菌超标   “上海发布”及“上海质监发布”官方微博昨天披露,乐百氏(广东)饮用水有限公司上海分公司生产的“乐百氏”饮用天然矿泉水被检出“铜绿假单胞菌”超标。   检查结果来自市质监局近期针对本市瓶(桶)装饮用水生产企业的专项监督抽查,涉及铅、总砷、亚硝酸盐、游离氯、氰化物、大肠菌群、霉菌等多项指标,乐百氏是被抽检的82批次产品中唯一不合格的品牌,该品牌18.9升的桶装饮用天然矿泉水被查出铜绿假单胞菌超出标准规定限值。记者在乐百氏公司官方主页上看到,该公司桶装水产品主要有4款,并称其中乐百氏饮用天然矿泉水源“来自地下深层天然水源,含多种天然矿物质,部分市场有售。”当记者致电乐百氏客服热线,被告知该款产品已于今年2月停售。截至发稿时,乐百氏方面并没有就停售前已对外售出的产品如何处置作出表态。记者了解到,目前上海市场在售的桶装水,只有纯净水和矿物质水两种,并没有所谓桶装的“天然矿泉水”。   据了解,铜绿假单胞菌又称绿脓杆菌,土壤、水、空气,正常人的皮肤、呼吸道和肠道等都有该菌存在。疾控中心专家表示,该菌是一种条件致病菌,只在某种特定条件下才能致病。由于机体抵抗力降低,被严重烧伤或患代谢性疾病、血液病、恶性肿瘤的患者,以及术后或某些治疗后的患者比较容易感染该菌。不过,如果过多饮用细菌超标的饮用水,可能会导致腹泻等症状。   专家还建议,饮用水产品在出厂前都会经过消毒工艺,消毒工艺通常包括氯气消毒、臭氧消毒、紫外消毒等。消费者在产品开封后如发现有异味,很有可能为企业消毒过量,建议及时退换,及时与经销商联系。
  • 乐百氏饮用水检出铜绿假单胞菌超标
    近日,“上海发布”及“上海质监发布”官方微博披露,乐百氏(广东)饮用水有限公司上海分公司生产的“乐百氏”饮用天然矿泉水被检出“铜绿假单胞菌”超标。   检查结果来自上海市质监局近期针对本市瓶(桶)装饮用水生产企业的专项监督抽查,涉及铅、总砷、亚硝酸盐、游离氯、氰化物、大肠菌群、霉菌等多项指标,乐百氏是被抽检的82批次产品中唯一不合格的品牌,该品牌18.9升的桶装饮用天然矿泉水被查出铜绿假单胞菌超出标准规定限值。   据了解,铜绿假单胞菌又称绿脓杆菌,土壤、水、空气,正常人的皮肤、呼吸道和肠道等都有该菌存在。疾控中心专家表示,过多饮用细菌超标的饮用水,可能会导致腹泻等症状。
  • 绿脓杆菌或引起眼药水致盲,MALDI-TOF助力快速鉴定
    导读据中国经济网近日报道,美国FDA针对印度某药企生产的眼药水发出警告,该眼药水可能导致细菌感染,造成失明甚至死亡。该款眼药水是人工泪液,用于润滑眼球。美国疾控中心已确认共有55名患者感染了一种罕见绿脓杆菌耐药菌株,其中5名患者永久性失明,1名患者因血液感染死亡。绿脓杆菌又称铜绿假单胞菌,是比较常见的一种致病菌,常引发呼吸道、胃肠道、尿道等感染。专家认为,本次感染是由于眼睛可以通过泪管与鼻腔相连,致病菌可以从眼睛进入鼻腔,再进入血液等其他体液或组织,从而导致疾病。使用岛津MALDI-TOF微生物鉴定系统,可以快速鉴定绿脓杆菌,守护明亮双眸。认识绿脓杆菌绿脓杆菌又称铜绿假单胞菌( Pseudomonas aeruginosa) ,是一种革兰阴性条件致病菌,抗药性较强,是一种重要的食源性和水源性致病菌,如蔬菜、水果、瓶装水、桶装水中均较常见。同时也是医院内常见的引发慢性感染和急性感染的致病菌之一,严重者可引发患者肺部功能衰竭以及纤维化囊肿。其引起的感染具有进展快、易耐药、病死率高等特点,所以快速准确的鉴定铜绿假单胞菌显得尤为重要。常见检测方法目前,传统的微生物检测方法有生化反应法和16S rRNA序列分析法。生化反应法主要依靠铜绿假单胞菌的生物学特征,通过分离培养结合生化检测等方法对细菌进行鉴定,需经过增菌、选择性分离培养、鉴定等步骤,不仅操作繁琐、检测时间长、费时费力,且容易延误诊断,难以满足快速诊断及治疗的需要。因此,致病菌的快速鉴定仍是临床微生物检验工作者面临的重要问题。MALDI-TOF质谱法是近年来广泛用于微生物快速鉴定的方法,微生物都有自身独特的蛋白组成, 因而拥有独特的蛋白质图谱。细菌蛋白主要取决于细菌自身的遗传因素, 受培养基、培养时间以及其他培养条件等外部因素的影响较小, 因而具有很好的稳定性和可重复性。常见检测方法比较表岛津解决方案MALDI-TOF微生物鉴定系统优势&bull 数据库使用岛津MALDI-TOF iDPlus Assurance、Confidence、Performance等多款仪器,采集待测微生物的核糖体蛋白质谱图,与数据库中的标准谱图进行匹配检索,可以快速的进行致病菌鉴定。数据库中含有3400种以上微生物的标准图谱,涵盖大部分常见细菌及真菌。同时还支持用户自行追加新的标准谱图,以满足数据库中未收录菌种的鉴定需要。自建库流程图(以绿脓杆菌为例)&bull MALDI-TOF质谱法检测速度快从质谱数据采集到给出鉴定结果最快只需数十秒。日常使用只需要基质、纯水及少量有机试剂,成本低廉。使用MALDI-TOF专用384孔靶板,可以单次高通量检测384个样品,同时靶板可重复使用。鉴定流程图微生物鉴定流程图绿脓杆菌鉴定案例使用MALDI-TOF采集绿脓杆菌质谱图,导入微生物鉴定数据库匹配检索,可以快速检测绿脓杆菌。绿脓杆菌质谱图绿脓杆菌数据库检索结果结语使用岛津MALDI-TOF iDPlus微生物鉴定系统采集菌株的核糖体蛋白质谱图, 与数据库比对后, 可以快速获得绿脓杆菌的鉴定结果,为科研分析或临床筛查提供依据。MALDI-TOF质谱法快捷、准确、成本低,将在致病菌快速鉴定与分析中, 发挥着越来越大的作用。本文内容非商业广告,仅供专业人士参考。
  • 饮用水中铜绿假单胞菌快速检测解决方案
    饮用水中铜绿假单胞菌快速检测解决方案饮用水微生物铜绿假单胞菌检测仪深芬仪器厂家生产的铜绿假单胞菌/绿脓杆菌检测仪能快速测定矿泉水、包装饮用水、等水体中铜绿假单胞菌;微生物致病菌检测仪广泛应用于天然矿泉水行业、饮用水行业、制药行业、饮料行业、研究单位、检验检疫机构、质量监控机构等部门。在致病菌微生物检测领域,测量准确性和测量速度之间的矛盾一直没有解决,针对这一现状深圳市芬析仪器制造有限公司研制了一款集温控技术、生物技术、光谱分析技术于一体的微生物致病菌检测仪,CSY-WSW饮用水中铜绿假单胞菌快速检测仪操作简单,无需增菌,缩短了检测时间,测试时间不超过1小时,是一种新型快速检测微生物致病菌含量的仪器。饮用水中铜绿假单胞菌快速检测仪检测项目:金黄色葡萄球菌、大肠杆菌、志贺氏菌、李斯特菌、副溶血性弧菌、溶藻性弧菌、阪崎肠杆菌、沙门氏菌、蜡样芽孢杆菌、铜绿假单胞菌的定量检测。(支持检测项目定制)对于铜绿假单胞菌,我国最新的饮用水标准 GB19298-2014《包装饮用水》明确规定:水样中铜绿假单胞菌不得检出。另外,按照食品安全相关法律法规的要求:出厂前应对每批次成品进行铜绿假单胞菌检测,如果检出,则为不合格产品,应该立即停止销售和召回。饮用了含有铜绿假单胞菌的饮用水,是否会损害健康呢?主要取决于两个因素:第一,铜绿假单胞菌含量情况,第二,不合格饮用水的饮用量情况。因为人体免疫系统能有效地抵抗该细菌的感染,因此,正常情况下,如果铜绿假单胞菌在水中的含量不高,并且饮用量也不多,一般不会出现什么不良反应。但是,像刚出生不久的婴儿或是受到大面积烧伤的病人这类情况,由于其免疫系统不健全或是出现免疫缺陷时,则极易受到铜绿假单胞菌的感染。受感染的病人通常会出现发热、黄疸、脾大、伤口溃烂,并产生肺炎、泌尿系感染、脑膜炎、败血症等继发性疾病。所以,铜绿假单胞菌对抵抗力较弱的人群存在较大健康风险,容易引起急性肠道炎、脑膜炎、败血症和皮肤炎症等疾病。饮用水中铜绿假单胞菌快速检测仪技术参数:1、显示屏幕:7寸彩色中文液晶触摸显示屏2、操作系统:Android 9.0操作系统,芯片A53 联发科 2G+16G(外置TF内存支持扩展128G)3、样品信息:检测通道可独立设置样品名称、样品来源单位名称、单位地址(三级联动)、责任人、联**式、信用代码等信息4、智能检测:无需增菌,兼容单通道独立检测或多通道同时检测测试时间(前处理+测试)不超过1小时5、用户信息:可设置检测单位名称、单位地址(三级联动)、联**话、责任人、检测人员、审核员等,可多账户设置6、数据分析:对检测结果进行圆饼图、柱状图、折线图进行统计、汇总、分析;7、数据导出:支持USB数据导出,格式可选(TXT、Excel)8、GPS定位:支持卫星定位功能9、系统更新:支持远程更新、新版本自动更新10、通讯接口:外置SIM卡插口(支持2G/3G/4G全网通)、外置存储TF内存插口、RS232、USB A型、USB B型、网口、wifi、蓝牙11、打印功能:内置热敏打印机,可通过USB B型外链打印机,单条或多条数据合并打印,可打印检测结果检测报告可打印检测项目、样品名称、检测结果、结果判断、检测日期 、检测单位、检验人员、被检测单位等信息;USB B型接口可连接A4打印机打印结果。12、数据上传:支持SIM(2G/3G/4G全网通)、网口、wifi进行数据传输及对接各地监管平台13、检测通道:16通道检测14、检测结果:定性定量分析15、检测时间:60分钟16、样品类别:可检测固体、液体、表面17、饮用水中铜绿假单胞菌快速检测仪尺寸:385mm*330mm*170mm深圳市芬析仪器制造有限公司主营业务:农药残留检测仪、ATP荧光检测仪、食品安全检测仪、水质检测仪、土壤肥料养分检测仪、农产品质量安全检测仪、免疫层胶体金/荧光分析仪、兽药残留检测仪、重金属检测仪、水分测定仪/固含量检测仪、检测试剂检测卡检测箱定制等,OEM代工/ODM贴牌等项目合作,详细内容可咨询夏经理。
  • 山西:饮用水中检出铜绿假单胞菌、大肠菌群 黑芝麻糊检出霉菌超标
    p & nbsp & nbsp 12月11日,山西省食药监局公布了10大类170批次食品监督抽检结果,检出不合格样品9批次,涉及饮料8批次、方便食品1批次。 /p p   通报显示,8批次饮料全部为饮用水,来自临猗县峨嵋润泽泉纯净水厂、稷山县黄花源饮用水有限公司、稷山县秦井天然饮品有限公司、晋中津美饮业有限公司、运城市方大银蝶泉饮品有限公司、夏县怡鑫源饮品有限公司、临县观音圣泉饮品有限公司、夏县禹洋水业有限公司8家生产企业。其中有6批次检出铜绿假单胞菌,2批次检出大肠菌群和铜绿假单胞菌。 /p p   铜绿假单胞菌是常见的细菌之一,常存在于潮湿的环境,如土壤、水、空气中,该菌是一种条件致病菌,在机体抵抗力降低等特定条件下可致病。饮用水中铜绿假单胞菌不合格原因可能是:一是原料水体受到感染;二是生产过程中卫生控制不严格,杀菌不彻底,从业人员未经消毒的手直接与饮用水或容器内壁接触;三是包装材料清洗消毒有缺陷。 br/ /p p   大肠菌群是国内外通用的食品污染常用指示菌之一。食品中检出大肠菌群,提示被致病菌(如沙门氏菌、志贺氏菌、致病性大肠杆菌)污染的可能性较大。大肠菌群超标的原因可能是由于产品的加工原料、包材受污染,或生产过程中产品受人员、生产设备、环境的污染,或者有灭菌工艺的产品灭菌不彻底等原因导致。 br/ /p p   另外,大同市华林有限责任公司振华南街超市销售的标称桂林周氏顺发食品有限公司生产的手工纯香黑芝麻糊检出霉菌超标。 br/ /p p   霉菌在自然界很常见,霉菌可使食品腐败变质,破坏食品的色、香、味,降低食品的食用价值。霉菌超标可能是加工用原料受霉菌污染,或者生产过程中卫生条件控制不严,样品储运条件控制不当导致。 br/ /p p   针对抽检中发现的不合格产品,山西省食药监局已按照《中华人民共和国 strong class=" keylink" 食品安全法 /strong 》的规定,责成相关市局及时进行核查处置,采取封存、下架、召回不合格产品等措施防控食品安全风险,督促企业查找原因,消除隐患。消费者如果在市场上发现被通报的不合格食品,可拨打12331投诉举报。 br/ /p p br/ br/ /p
  • 宁夏化学分析测试协会发布《一次性卫生用品中绿脓杆菌检验 实时荧光PCR法》等2项团体标准征求意见稿
    各相关单位:按照宁夏化学分析测试协会团体标准工作程序,标准起草组已完成《一次性卫生用品中绿脓杆菌检验 实时荧光PCR法》和《一次性卫生用品中溶血性链球菌检验 实时荧光PCR法》2项团体标准征求意见稿的编制工作。现按照我协会《团体标准制修订程序》要求,公开征求意见。请有关单位及专家提出宝贵意见,并将征求意见表(附件)于2024年4月14日前反馈给秘书处。联系人:张小飞 电 话:13995098931邮箱:1904691657@qq.com 关于团标征求意见函 -3.14.pdf团标表格7-专家意见表.doc团体标准 一次使用卫生用品中绿脓杆菌 实时荧光PCR法 魏嘉雯(1).pdf团体标准 一次使用卫生用品中溶血性链球菌检验 实时荧光PCR法 姚博伟0125.pdf
  • 北京工商局检测发现“发光猪肉”因含“荧光假单胞菌”
    工商局称与猪肉安全无关,未检出荧光增白物质 专家称加热数秒能杀死细菌   ■ “市场买回猪肉 半夜发出蓝光”追踪   猪肉为何会在黑夜里发出荧荧蓝光?昨天下午,北京市工商局对外揭晓“谜底”:通过抽检发现,这是一种叫荧光假单胞菌的细菌在“作祟”,与猪肉安全无关。   专家介绍称,该细菌并不可怕,对正常人群不具有致病性。   抽检未发现荧光增白物   近期,有几位消费者反映在建欣苑菜市场、八里桥市场等处购买的猪肉,夜晚会发出荧光,担心吃了可能对身体有害。而这些肉都是从正规屠宰场批发,且肉身上有检验检疫章(本报12月12日曾报道)。   近日,北京工商部门组织了抽检,由北京市食品安全监控中心对送检样本进行荧光增白物质和荧光假单胞菌检测,结果显示,送检样本均未检出荧光增白物质,不过都检出了荧光假单胞菌。   猪肉煮熟可杀灭该细菌   “荧光假单胞菌能产生黄绿色荧光色素而使猪肉发光”,中国农业大学微生物系教授王贺祥介绍,这种细菌在肉及肉制品、禽蛋类等蛋白质丰富的食品中,易生长繁殖。   王贺祥说,荧光假单胞菌属于革兰氏阴性嗜冷菌,广泛存在于土壤、水、植物、动物活动环境中,也是存在于人类肠道的正常细菌,对正常人群不具有致病性,不必对其恐慌。   如何杀灭猪肉上的细菌呢?王贺祥介绍,该菌在42℃就会停止生长,超过70℃,只需数秒即可杀死。   市工商局也表示,消费者购买到的“发光猪肉”,可能在屠宰、储存、运输、销售等过程中污染了荧光假单胞菌,只要猪肉本身没有腐败变质,可以通过焯、炒、煮等方式将猪肉熟制后食用,不会对人体健康产生影响。
  • 质谱追“凶” | 夏日清凉,谨防细菌感染!
    炎炎夏日,舒适又健康的运动莫过于游泳,然而游泳之后有人会出现眼部、耳朵或者皮肤的一些不适症状,这些有可能是泳池水中的微生物所导致的感染。目前,国内对外开放的正规游泳池池水都会用氯进行消毒处理,因为氯溶于水中时能分解成次氯酸和次氯酸盐这两种化学成分,这些化学成分会破解微生物的保护层。有些微生物是能够在氯的威力下被杀灭的,如容易引发淋病的淋病奈瑟菌、容易引发梅毒的梅毒螺旋体、容易引发腹泻的志贺氏杆菌、容易引发肺炎的军团杆菌,以及大肠杆菌、艾滋病毒,都是不能在消毒环境中存活的。但是,有些微生物是不能被消毒剂杀灭的,例如绿脓杆菌,又称铜绿假单胞菌(学名:Pseudomonas aeruginosa),它会引发炎症和脓肿。绿脓杆菌,1882年首先由Gersard从伤口脓液中分离到,是一种革兰氏阴性菌、好氧、呈长棒形的细菌,只有单向的运动性。它是一种机会性感染细菌,且对植物亦是机会性感染的,感染后因脓汁和渗出液等病料呈绿色,故得名。绿脓杆菌的分离培养及电镜照片(图片来源:中国科学院微生物研究所)绿脓杆菌感染可发生在人体任何部位和组织,严重时会引起心内膜炎、胃肠炎、脓胸甚至败血症。所以,当游泳后出现炎症和脓肿就医时,临床能否更快、更准确地鉴定是否为绿脓杆菌感染、或是其它微生物感染,就变得更加的重要了。精准医疗源于精准诊断全自动微生物质谱检测系统,是广州禾信康源医疗科技有限公司(以下简称“禾信康源”)在全面掌握核心技术和先进制造工艺下,历时5年,完全自主、正向开发的一款基于基质辅助激光解吸电离法(MALDI)的质谱检测系统,主要应用于微生物菌株鉴定、病毒核酸检测、蛋白多肽分析等方面,具有检测通量大、准确可靠、经济快速、样品耗费量少与操作简单等优势。质谱技术应用于细菌等微生物的快速鉴定分析,是利用标准菌株绘制微生物的蛋白质指纹图谱存储形成数据库。再将待检微生物的质谱数据图与数据库中的标准蛋白指纹图谱数据进行比对,从而实现细菌、真菌、分枝杆菌、厌氧菌等微生物的快速鉴定和分型,相比于表型鉴定、生理生化法、化学发光法等传统的微生物鉴定技术,质谱技术在鉴定速度、结果准确率、技术成本、质量控制、操作便捷等各方面都具有明显优势,是微生物检验技术史上一次里程碑式的革新。Figure 1禾信全自动微生物质谱检测系统实测铜绿假单胞菌硬件系统一体化免清洗离子源,集成独创的微小角度激光入射,有效提高灵敏度;智能化、高抽速真空泵系统,进靶即可采样,无需等待;超高频、长寿命固体激光器,信号采集及寿命均优于传统氮气激光器,使得样品分析速度更快,终身免维护;高稳定性信号采集系统,极大提升了仪器的重复性;模块化设计,内置前级泵,整机结构更加紧凑,维护简单。软件系统拥有自主知识产权的自动化控制采集软件,全过程智能化监控仪器状态,可自由切换多个数据库;提供专业的菌种中文名称,无需另外翻译,国内客户使用更便捷;多台云服务器同时执行鉴定,全面提升鉴定效率,可及时完成软件升级与数据库更新。数据库源于中国疾控中心(CDC)多年研究积累,品质保证,包含3500余种、60000余株菌种谱图,满足多应用领域的检测需求;数据库存于云服务器,可随时更新,客户也可根据自身需求建立自己的专属数据库。小贴士:如何找干净的泳池呢?1、看池水;要看水面有无颗粒漂浮,池底有无沉淀,池水的泡沫能否在15秒内消散。以8道泳池为例,站到泳池侧面穿过水面看第四、五泳道线,如果看不到说明水质不好。2、看证件;看看卫生许可证,员工健康证、卫生知识培训合格证等信息是否公示在游泳池旁,是否公示了当日水质情况,包括水温、PH值、余氯浓度、投放消毒药情况、循环水次数或新注入水量等。3、看池底;看看泳池底部,或泳池旁边的出水口,看是否有水源源不断进出的现象。如果有,则说明其水循环消毒装置在正常运作,可放心戏水游泳。4、看设施;正规的游泳池更衣后必须通过强制性淋浴和含有较高余氯的浸脚消毒池可以进入游泳池。
  • 程控定量封口机-一块定量检测水中大肠杆菌数量的仪器2024实时更新
    型号推荐:程控定量封口机-一块定量检测水中大肠杆菌数量的仪器2024实时更新,在水质监测的迫切需求下,程控定量封口机以其独特的优势,为水样中细菌微生物的快速、准确检测开辟了新的途径。它不仅能够针对绿脓假单胞菌群、肠球菌、总大肠菌群等多种致病菌进行高效检测,还具备野外携带、应急响应及定量检测的能力,成为水质安全的重要保障。 一、高效精准,细菌微生物无所遁形 程控定量封口机集成了先进的检测技术,能够迅速且准确地识别水样中的各类细菌微生物,包括绿脓假单胞菌群、肠球菌、总大肠菌群、粪大肠杆菌及大肠埃希菌等。其高效的检测速度,使得水质监测工作更加及时有效。 二、便携应急,适应多种监测场景 该封口机设计紧凑,轻便易携,非常适合野外作业和应急响应。无论是在偏远的山区水源地,还是突发的水污染事件现场,都能迅速投入使用,为水质安全提供第一时间的检测保障。 三、定量检测,科学评估水质状况 除了快速检测外,程控定量封口机还具备定量检测的功能。它能够精确测量水样中细菌微生物的数量,为水质评估提供科学的数据支持。这一特性使得水质监测结果更加准确可靠,为水质管理决策提供了有力依据。 四、方法优势无需在无菌室内操作。2.手工操作时间小于 1 分钟。3.无需培养基制备和大量玻璃器皿灭菌。4.24小时即可完成定性定量分析,无需验证试验。 程控定量封口机以其高效精准、便携应急及定量检测的特点,在水质监测领域发挥了重要作用。它不仅提升了水质监测的效率和准确性,还满足了野外和应急响应的需求,为水质安全保障提供了坚实的技术支持。随着技术的不断进步和应用领域的拓展,相信该设备将在未来发挥更加广泛和重要的作用。
  • 中国饮料工业协会发布《包装饮用水中铜绿假单胞菌的快速检测方法(征求意见稿)》团体标准
    中国饮料工业协会已批准《包装饮用水中铜绿假单胞菌的快速检测方法》团体标准立项,该项团体标准由中国饮料工业协会团体标准技术工作委员会归口,中国饮料工业协会技术工作委员会组织起草。根据《中国饮料工业协会团体标准管理办法》,起草工作组按照标准制修订工作程序,完成了标准征求意见稿。现公开征求意见,截止2023年8月14日前返回标准意见反馈表。点此下载全部附件
  • 延禧攻略:高贵妃究竟死于哪种细菌感染?
    有没有人在追《延禧攻略》?该古装剧一改往日女主纯良无辜小白兔的人设,一路打怪升级,战斗力爆表。成了这段时间大家热议的头号大剧!在剧中,高贵妃就是嚣张跋扈的代名词,明明只是一个贵妃,却演出了皇太后的气势,屡屡将毒手伸向皇子......比如,泥萌最爱的“五阿哥”~战斗女主终于按捺不住,在某次高贵妃在与皇上观看打铁花表演时,借着“万紫千红”的戏用铁水烫伤了高贵妃的后背,更惨的是铁水被有心之人混进了金汁,使得高贵妃的病情日渐恶化,最后自杀领盒饭走人......看到这里,很多人要问:金汁为何物?为什么这么厉害?金汁名字看似很高大上,实质却是最原始污秽,它是最肮脏的粪便和尿液熬成的金色浓稠汤汁。那么,问题来了,粪便有这么大的杀伤力吗?铁的熔点有1535℃,虽然粪便中含有大量细菌,但高温不是能灭菌吗?按照铁水的高温,往铁水里加入粪水,那些细菌命再硬也早就被杀死了,还有什么能力害人? 对,实际上,金汁的作用很纯粹,就是想恶心你,心理上膈应你。高贵妃真正死因是烫伤创面细菌感染,和有没有混入金汁关系不大。人一但被烧伤,皮肤屏障功能受损,创面渗出的体液及坏死组织会成为细菌的良好培养基,很容易造成感染,在那个没有抗生素的时代,这都是分分钟要命的。也有网友感叹了,高贵妃要是活在现代,就不会被感染了,一定能活到全剧终。那么,一定是这样吗? 像高贵妃被超高温度的铁水大面积烫伤,往往导致全层皮肤的深度烧伤(医学上称为Ⅲ度烧伤),非常严重,救治难度很高。就算高贵妃活在现代,医院各种有创检查和治疗(如气管切开、留置导尿、动静脉置管等)、血液制品的输入、和抗菌素长时间全身应用都是会可引发或导致感染,如果不幸的再感染“超级细菌”,再加上像高贵妃这样“不配合”的病人,高贵妃还是有可能会全身感染而亡! 那么被烫伤的高贵妃最可能感染的病菌有哪些呢? 1.铜绿假单胞菌大面积烧伤创面感染最常见的细菌是铜绿假单胞菌,本菌属于非发酵革兰氏阴性杆菌。菌体细长且长短不一,菌体的一端有单鞭毛,在暗视野显微镜或相差显微镜下观察可见细菌运动活泼。 本菌为专性需氧菌,生长温度范围25~42℃,最适生长温度为25~30℃,该菌有4℃不生长而在42℃可以生长的特点。在普通培养基上可以生存并能产生水溶性的色素,如绿脓素(pyocynin)与带荧光的水溶性荧光素(pyoverdin)等,在血平板上会有透明溶血环。铜绿假单胞菌能产生多种致病物质,主要是内毒素、外毒素、蛋白分解酶和杀白组胞素等。其致病特点是引起继发感染,多发生在机体抵抗力降低时,如大面积烧伤,长期使用免疫抑制剂等。临床上常见的有皮肤和皮下组织感染,中耳炎、脑膜炎、呼吸道感染、尿道感染、败血症等。铜绿假单胞菌具有多重耐药的特性,能天然抵抗多种抗生素,对抗生素耐药有多种耐药机制,如产生的多种β内酰胺酶、产氨基糖苷类钝化酶、细菌细胞外膜蛋白改变使抗菌药进入菌体的量减少、细菌细胞膜上存在多种外排泵以及细菌旋转酶或拓扑异构酶发生改变等,在治疗铜绿假单胞菌的感染过程中,一方面充分考虑其耐药机制,选用耐药率低的药物,避免诱导铜绿假单胞菌产生β内酰胺酶而对抗菌药物广泛耐药。另一方面,由于长期的各种抗生素治疗,分离菌株可能发生耐药性的改变,因此,初次分离的敏感菌株在治疗3~4 d 后应重新培养做药敏试验。 2.金黄色葡萄球菌 金黄色葡萄球菌为革兰染色阳性球菌,直径约1μm,排列成葡萄串状,无芽胞,无鞭毛,不能运动。大多数无荚膜。平板上菌落厚、有光泽、圆形凸起,直径0.5~1.0mm。血平板菌落周围形成透明的溶血环。常引起皮肤组织化脓性感染,金黄色葡萄球菌产生的多种外毒素也可引起败血症及脓毒血症,是医院感染的主要病原菌。随着抗生素的广泛滥用,耐药的金黄色葡萄球菌开始出现并逐年增多,现已遍及全球,其中耐甲氧西林金黄色葡萄球菌(MRSA),也称超级细菌。除甲氧西林外,MRSA对其他所有与甲氧西林结构相似的β-内酰胺类抗生素以及氨基糖苷类、四环素类、氟喹诺酮类等药物均有不同程度耐药,使得抗感染的难度大大增加。 3.大肠埃希菌 大肠埃希菌为革兰氏阴性短杆菌,大小0.5×1~3微米。周生鞭毛,能运动,无芽孢。目前,大肠埃希菌已成为医院感染的重要机会致病菌之一,当机体抵抗力下降时可引起人体各部位内源性感染。比如大面积烧伤的人,大肠杆菌侵入血流,会引起败血症。近年来,随着抗生素应用的日益增多,特别是许多广谱抗生素及新型抗生素的广泛应用,细菌的耐药性日益严重,多重耐药的肠杆科细菌对全球健康的威胁与日俱增。产超广谱β内酰胺酶(ESBL)和碳青霉烯酶是菌株耐药的常见原因。 4.鲍曼不动杆菌 鲍曼不动杆菌为革兰阴性球杆菌,单个或成双排列,有时呈丝状或链状。无芽胞,无鞭毛,革兰染色不易脱色。在血琼脂平板上35C 培养18~24 h ,形成直径2~3 mm 、圆形、灰白色、光滑、边缘整齐的菌落,部分菌落呈黠液状。在麦康凯琼脂等平板上35℃培养18~24 h ,形成粉红色菌落, 48 h后菌落呈深红色,部分菌株呈黠液型菌落。鲍曼不动杆菌是条件致病菌,广泛存在于自然界。该菌对湿热紫外线及化学消毒剂有较强抵抗力,常规消毒只能抑制其生长而不能杀灭,因此,在医院,患者机体抵抗力下降加上各种侵入性操作和长期使用广谱抗生素治疗,一些不动杆菌伺机而动,趁机占领“阵地”且产生了耐药性,逐步成为医院感染的重要病原菌,主要引起呼吸道感染,也可引发败血症、泌尿系感染、继发性脑膜炎等,对危重患者威胁很大。特别是耐碳青霉烯类的鲍曼不动杆菌,发展迅猛,甚至出现“全耐药”的鲍曼不动杆菌,已引起临床和微生物学者的严重关注。 抗生素的出现如奇迹一样帮人类解决了无数的问题,使人类在与众多疾病的战斗中能够占主导地位。但近几年,抗生素的错误及过度使用,病毒和病菌的抗药性越来越强,对人类构成的威胁也越来越大。因此,即便是活在现代,高贵妃依然难逃厄运。
  • 菲特立发布Fitlylab-Water水质微生物快速检测系统新品
    Fitlylab-Water 水质微生物快速检测系统,通过ISO/TR 13843: 2000水质量标准—微生物认证法认证,通过权威认证 ISO 16140:2003“食品和动物饲料的微生物学” 代替法的认证, 符合ISO/IEC 17025:2005标准的内部认证Fitlylab-Water水质微生物快速检测系统由MBS-MR主机,笔记电脑, Fitlylab中文操作软件,VL微生物检测瓶,水质过滤系统组成可以快速定量检测水质中菌落总数,总大肠菌群(大肠菌群),大肠杆菌(大肠埃希氏菌),耐热大肠菌群(粪大肠菌群),铜绿假单胞菌(绿脓杆菌)沙门氏菌,金黄色葡萄球菌,肠球菌(粪链球菌)等,一台机器可以同时检测多个项目多个样品。。傻瓜型,样品无需前处理,直接加样检测,完全,快捷,准确,不需要实验室,不需要专业人员就可以安全操作,仪器自动出报告,报告为PDF格式。针对样品要求小的直接加水样到检测瓶里,水样量大的利用滤膜过滤法,把过滤后的滤膜丢进配套的检测瓶里。Fitlylab-Water水质微生物快速检测系统由罗马第二大学物理研究所,意大利核物理研究院(INFN)和罗马第三大学生物系研究所共同研发。是取代传统微生物检测方法的高科技技术结晶.通过权威认证 ISO 16140:2003“食品和动物饲料的微生物学” 代替法的认证, 符合ISO/IEC 17025:2005标准的内部认证,通过ISO/TR13843: 2000水质量标准—微生物认证法认证可检测项目:菌落总数,总大肠菌群(大肠菌群),大肠杆菌(大肠埃希氏菌),耐热大肠菌群(粪大肠菌群),铜绿假单胞菌(绿脓杆菌)沙门氏菌,金黄色葡萄球菌,肠球菌(粪链球菌)创新点:通过ISO/TR 13843: 2000水质量标准—微生物认证法认证,通过权威认证 ISO 16140:2003“食品和动物饲料的微生物学” 代替法的认证, 符合ISO/IEC 17025:2005标准的内部认证 可以快速定量检测水质中菌落总数,总大肠菌群(大肠菌群),大肠杆菌(大肠埃希氏菌),耐热大肠菌群(粪大肠菌群),铜绿假单胞菌(绿脓杆菌)沙门氏菌,金黄色葡萄球菌,肠球菌(粪链球菌)等,一台机器可以同时检测多个项目多个样品。。傻瓜型,样品无需前处理,直接加样检测,完全,快捷,准确,不需要实验室,不需要专业人员就可以安全操作,仪器自动出报告,报告为PDF格式。 Fitlylab-Water水质微生物快速检测系统
  • 西门子水处理技术部推出面向医疗市场的Nosogard感染控制过滤器
    西门子水处理技术部推出了适用于医疗行业的Nosogard感染控制过滤器,它可以防止病原体在水中传播。这一终端型消毒过滤器采用了独特的设计,将一个1.0微米的预过滤器与一个0.2微米的微孔膜结合起来,可以去除水中携带的病原生物体,其使用期分别为7天、14天或30天。所有过滤器都分别进行完整性检测和性能验证,所有检验合格后,才能使用辐射消毒包装,在安装具有持续消毒效果的可剥离式封盖之后,方安排出厂。   通过水传播的病原体与医院内感染的嗜肺性军团菌、嗜麦芽窄食假单胞菌以及绿脓杆菌等是息息相关的。这些病原体可以通过饮用水和冰、洗手、淋浴以及用自来水冲洗过的医疗设备等途径传染给患者。免疫系统有缺陷的患者,比如婴儿、老人、烧伤患者和移植患者尤其容易受到感染。据估算,在医院内感染水致传染病的患者占患者总数的10%,甚至会导致患者死亡,并且增加数十亿美元的额外医疗成本。   西门子水处理技术部健康科学解决方案产品经理Nick Amstrong说:“西门子的Nosogard过滤器是一种较经济的解决方案,能够保证患者不受水致传染病的感染。该过滤器是隶属于西门子水处理技术部最新推出的水处理产品,旨在提高水质,为全球客户的安全提供可靠的保障。”   此外,水处理技术部还提供使用期为60天的Nosogard感染控制过滤器。该过滤器需要每天进行高压灭菌处理,以确保60天使用期内的消毒效果。   Nosogard过滤器将于3月18-22日在乔治亚州亚特兰大举行的、十年一次的第五届国际卫生保健和传染病会议上推出。如果需更多信息,欢迎莅临第504号西门子展位。   关于水处理解决方案的更多信息,请访问:http://www.siemens.com/water      Nosogard过滤器在医疗领域的贡献为预防通过水传播的病原体   Nosogard是西门子水处理技术部或其子公司在某些国家的商标。   西门子工业业务领域(德国, 爱尔兰根) 是全球领先的环保型生产、运输、楼宇系统和照明技术的供应商。凭借集成的自动化技术和全面的工业解决方案, 西门子可以为其工业和基础设施领域的客户提高生产力,提高效率并增加灵活性。西门子工业由 6 个集团组成: 楼宇科技、驱动技术、工业自动化、工业解决方案、交通和欧司朗。在2009财年(截至9月30日),西门子工业总收入约为350亿欧元,在全球范围内拥有207,000 名员工。http://www.siemens.com/industry   西门子工业解决方案集团 (德国, 爱尔兰根) 拥有西门子奥钢联冶金技术、水处理技术和工业技术业务部,是全球领先的工业和基础设施设备解决方案和服务供应商。其业务包括为生产的全周期提供设计、安装、 运行及服务。环保型解决方案所包含的全面产品组合能够帮助工业企业有效地使用能源、水和设备,减少排放并符合环保相关规定。2009财年(截至9月30日), 西门子工业解决放案的销售收入达68亿欧元,在全球范围内拥有31,000名员工。   欲了解更多信息并下载相关文件,请登录网站:http://www.siemens.com/industry-solutions
  • MBS(Fitlylab)微生物快速检测系统亮相2020乳及乳制品检测与控制技术交流会 
    MBS(Fitlylab)微生物快速检测系统亮相2020乳及乳制品检测与控制技术交流会 MBS(Fitlylab)微生物快速检测系统可快速定量检测乳制品中的菌落总数,大肠菌群,大肠杆菌(大肠埃希氏菌), 耐热大肠菌群(粪大肠菌群),肠杆菌,金黄色葡萄球菌,绿脓杆菌(铜绿假单胞菌),沙门氏菌,李斯特菌,粪肠球菌(链球菌) ,酵母菌;解放您的双手,直接加样,全自动检测,一般环境可用,特别适合农牧行业使用。只检测活菌,适合原料乳和成品乳的检测。通过权威认证 ISO 16140:2003“食品和动物饲料的微生物学” 代替 法的认证, 可以出官方检测报告。使用MBS(Fitlylab)微生物快速检测系统检测牛奶的菌落总数操作1:先把L01菌落总数检测瓶加配套无菌水溶解检测瓶试剂(等待大概20-30分钟检测瓶试剂变色)操作2:用无菌巴士吸管取1ml牛奶加入L01菌落总数检测瓶中,操作3:加样后的检测瓶放进仪器预设好的检测孔位中,点软件中的开始键运行检测,仪器自动培养检测出报告。(检测结果单位CFU/ML,检测时间,检测样品的活菌数越多时间越快,一般原料奶的检测时间在3-5小时)操作4:把检测结束后的检测瓶拿出来后,按压检测瓶盖凸起部分,检测瓶自动灭 菌。
  • 鲍曼不动杆菌的治疗和研究进展!
    鲍曼不动杆菌的治疗和研究进展!鲍曼不动杆菌感染的治疗一直是临床上很大的难题,因为鲍曼不动杆菌极易对各种消毒剂和抗菌药物产生耐药性,对重症患者、ICU病房的患者等威胁很大。MDR-AB(多重耐药鲍曼不动杆菌)、PDR-AB(泛耐药鲍曼不动杆菌)、CRAB(耐碳青霉烯类鲍曼不动杆菌)等的广泛传播更是成了医生和患者的噩梦。 在院内感染中,不动杆菌属的感染占有较高的比例,而在院内提取到的不动杆菌属的菌株,绝大多数为鲍曼不动杆菌。鲍曼不动杆菌为革兰氏阴性菌,故对万古霉素等存在固有耐药,对青霉素G、氨苄西林、阿莫西林、氯霉素、四环素、diyi及第二代头孢菌素也保持着较高的耐药率。通常情况下,对鲍曼不动杆菌有较强作用的药物主要有抗绿脓杆菌的青霉素类、第三和第四代头孢菌素(主要是头孢他啶、头孢吡肟等)、碳青霉烯类、β-内酰胺类抗生素复合制剂(头孢哌酮/舒巴坦、哌拉西林/他唑巴坦等)、氟喹诺酮类、氨基糖苷类、替加环素、多粘菌素、舒巴坦等。但是因为近年来抗菌药物的滥用,鲍曼不动杆菌对以上药物的耐药率也在不断上升,氟喹诺酮类、氨基糖苷类等耐药率甚高,碳青霉烯类的耐药率也有上升。 考虑到鲍曼不动杆菌极易对抗菌药物耐药,故用药时应联合用药。常用的方案有β-内酰胺类+氟喹诺酮类、β-内酰胺类+氨基糖苷类等。我个人shouxuan的方案为头孢哌酮/舒巴坦+磷霉素(时间差攻击疗法),也可选择氨苄西林/舒巴坦+环丙沙星等)。 研究进展 随着医学技术的飞速发展,对疾病特别是危重病的救治水平不断提高,广谱抗生素的广泛使用是其重要手段之一。但是,临床治疗中滥用抗生素现象非常普遍,在抗生素的强大压力下,不可避免地产生大量耐药菌株,这些耐药菌株已成为当代医院感染的棘手问题,从本组资料结果显示,鲍曼不动杆菌对亚安培南、美罗培南的耐药率相对较低,原因是碳青霉烯类药物对青霉素结合蛋白(PBPS)亲和力强。  但仍有少部分鲍曼不动杆菌对其耐药,原因可能是其能产生一种能水解碳青霉烯类药物的β-内酰胺酶ARI-I,这无疑是一个可怕的信号。此外,与头孢哌酮/舒巴坦的化学结构不同或鲍曼不动杆菌的多重耐药性表达形式不同有关。而对喹诺酮类抗生素耐药率达60%以上,这可能是近年来喹诺酮类药物的广泛应用引起抗菌药物介导的耐药性基因突变,编码DNA旋转酶的gyra 或gyrb基因发生突变被认为是细菌产生耐药的主要原因。此外,氨基糖苷类抗生素的耐药率皆较高,这可能是本院普遍应用该类抗生素出现的耐药,给临床治疗带来了巨大的困难,因此,应注意各类抗生素的合理应用。 试验结果表明,临床上不动杆菌感染中,鲍曼不动杆菌占绝大多数(75.0%),其次为醋酸钙不动杆菌、洛菲不动杆菌、琼氏不动杆菌,与有关报道不一致,可能是由于不动杆菌属的命名较混乱,分类原则及鉴定系统不同所致。在4种不动杆菌的鉴定中,41℃培养时生长,苹果酸盐同化试验阳性,可初步鉴定为鲍曼不动杆菌与琼氏不动杆菌,两者的区别在于前者苯乙酸盐同化试验阳性,且氧化木糖,而后者不氧化木糖,且苯乙酸盐同化试验阴性。41℃培养时不生长,癸酸盐同化试验阳性,可初步鉴定为醋酸钙不动杆菌与洛菲不动杆菌,两者区别在于前者枸橼酸盐、苯乙酸盐同化试验均阳性,而后者均阴性。  从72株鲍曼不动杆菌的来源看,其感染部位分布广泛,如呼吸系统、泌尿系统、伤口、腹腔及神经系统等。其中以呼吸系统感染占多数(54.2%)。不动杆菌是近几年医院内感染出现率较高的菌属,其中鲍曼不动杆菌所引起的感染应引起重视。 2001~2005年对12种抗菌药物的药物敏感监测显示,12种药物对鲍曼不动杆菌的耐药率呈总体上升趋势,耐药率zuijin的IMP,其耐药率从2001年的6.5%上升至2005年的31.7%,头孢菌素类(CAZ、CFP、FEP)的耐药率从2001年的20.0%、38.6%、31.5%上升至2005年的66.7%、72.4%、67.7%;PIP、SXT、ATM、CIP、TZP、LEV耐药率也从2001年的19.6%~60.2%增加到2005年的52.2%~72.1%;耐药率下降的有TOB和GEN 2种药物,其耐药率分别从2001年的62.8%和63.6%下降到2005年的48.2%和45.2%,这可能与这类药物临床上现在不常使用有关。从表3可见,ICU 12种药物的耐药率明显高于非ICU,差异存在非常显著性(P0.01),在ICU耐药率较低的是IMP和TZP,耐药率分别为41.7%和53.3%,除此外其余抗生素的耐药率均在70.0%以上,由此可见,ICU鲍曼不动杆菌耐药现象已十分严重,且表现为多重耐药。这与鲍曼不动杆菌产生多种酶有关:对头孢菌素类的耐药,主要是产超广谱β-内酰胺酶;对亚胺培南耐药,主要与产金属β-内酰胺酶有关;喹诺酮类的耐药主要与gyrA和parC基因突变有关。 综上所述,鉴于近年鲍曼不动杆菌的耐药率有进一步上升的趋势,这应当引起临床医师及微生物界的高度重视。为减少该菌医院感染的发生及多重耐药菌株的出现,我们应对医疗器械进行严格彻底的消毒及对鲍曼不动杆菌进行规范的连续监测,弄清其耐药机制并及时监测其耐药情况。同时,临床医师应重视获得性鲍曼不动杆菌感染,与临床微生物实验室密切协作,加强耐药性的监测,有效预防和控制感染。欢迎访问中国微生物菌种查询网,本站隶属于北京百欧博伟生物技术有限公司,单位现提供微生物菌种及其细胞等相关产品查询、咨询、订购、售后服务!与国内外多家研制单位,生物医药,第三方检测机构,科研院所有着良好稳定的长期合作关系!欢迎广大客户来询!
  • 新品发布!MBS.SRL水质微生物快速检测系统全新上市
    仪器创新点:1、可快速定量检测水质菌落总数,总大肠菌群(大肠菌群),大肠杆菌(大肠埃希氏菌),耐热大肠菌群(粪大肠菌群),铜绿假单胞菌(绿脓杆菌)沙门氏菌,金黄色葡萄球菌,肠球菌(粪链球菌)等检测;2、8个检测位,可满足检测不同样品不同微生物的需求.每个检测位都是独立的,可循环使用,可以自动选择控制检验项目温度;3、仪器便携式,可随时随地进行检测,三光波同时检测(蓝,绿,红),灵敏度高达可检测到1目标微生物,即1CFU。4、不需要人值守,自动生成检测报告储存在数据库,也可以根据需要选择创建报告PDF格式另存,方便与各检测平台对接。5、检测瓶是封闭式的检测,所有检测过程对人体无害,无需专业的实验室,可以在一般环境下使用,检测瓶自带灭菌功能。仪器步骤完成:检测步骤可以总结成以下4步:1. 加无菌水溶解试剂,2. 添加样本,3放入机器检测得出报告,4检测后检测瓶杀菌仪器实验:Fitlylab-water 水质微生物快速检测系统测试自来水中的菌落总数自己动手做了自来水的菌落总数和大肠菌群的检测实验。直接取厨房水龙头的自来水自来水菌落总数实验材料:L01菌落总数检测瓶加无菌巴士吸管1、先把检测瓶配套的无菌水加到检测瓶里,塞上瓶塞摇动检测瓶让试剂与无菌水混合溶解(用手摇动或者用漩涡混合器) 2、静止放置30分钟,待检测瓶中液体变成蓝色后,再用无菌巴士吸管加1ML自来水样到检测瓶里,然后瓶塞换上配套的瓶盖,盖紧后轻轻摇动一下让水样与试剂混合。3、把检测瓶放置到已经设置好了主机孔位里。然后点软件上开始按键。主机上对应的孔位就开始运行检测了。4、检测结束,总运行时间9个小时55分钟出结果:328CFU/ML5、检测后检测瓶安全处理:从对应的孔位拿出检测瓶,发现检测瓶已经变黄了(说明有含菌),然后用力把瓶盖上的凸起按下去,然后摇动检测瓶灭菌。十多分钟后检测瓶里就灭菌完成。灭菌后的检测瓶对环境和人员无害可做一般药品废弃处理。Fitlylab-water 水质微生物快速检测系统由罗马第三大学生物系研究所和罗马第二大学物理研究所,意大利核物理研究院(INFN)共同研发,拥有MBS专利检测技术是取代传统微生物检测方法的高科技技术结晶.通过权威认证 ISO 16140:2003“食品和动物饲料的微生物学” 代替法的认证, 符合ISO/IEC 17025:2005标准的内部认证,通过ISO/TR 13843: 2000水质量标准—微生物认证法认证。微生物快速检测系统由MBS-MR主机,笔记电脑, Fitlylab中文操作软件,VL微生物检测瓶组成。适用于不同水源:海洋,湖泊和河流,泉眼/水井,下水道,饮用水,游泳池。 如您对 水质微生物检测仪器感兴趣,可通过 仪器信息网400-860-5168转1544 和我们取得联系!
  • 《食品安全国家标准 包装饮用水》(GB19298-2014)问答
    一、制定情况   根据原卫生部《关于印发2010年食品安全国家标准清理整顿工作方案的通知》(卫办监督发〔2010〕106号),浙江省卫生监督所、中国饮料工业协会、国家饮用水产品质量监督检验中心、舟山市卫生监督所等承担《食品安全国家标准包装饮用水》起草组工作。起草组分析了国内外包装饮用水相关标准及安全指标要求,在 《瓶(桶)装饮用水卫生标准》(GB 19298-2003)及《瓶(桶)装饮用纯净水卫生标准》(GB 17324-2003)的基础上,整合修订形成了《食品安全国家标准包装饮用水》(GB 19298-2014)。该标准由国家卫生计生委于2014年12月24日批准发布,自2015年5月24日起实施,标准中对包装饮用水的标签标识要求(4.1和4.2)自2016年1月1日起实施。   二、关于标准适用范围   本标准适用于直接饮用的包装饮用水,即:密封于符合食品安全标准和相关规定的包装容器中,可供直接饮用的水,不适用于饮用天然矿泉水。天然矿泉水将另行修订《食品安全国家标准饮用天然矿泉水》(GB 8537)。   三、关于原料要求   包装饮用水的原料有两种主要来源:一是公共供水系统,二是非公共供水系统的水源。非公共供水系统的水源又可分为地表水和地下水。   来自于公共供水系统的水源,应符合《生活饮用水卫生标准》(GB 5749)的要求。   来自于非公共供水系统的水源,应分别符合GB 5749中对生活饮用水水源水质卫生的要求,即:采用地表水为水源时应符合《地表水环境质量标准》(GB 3838)的要求,采用地下水为水源时应符合《地下水质量标准》(GB/T 14848)要求。这些非公共供水系统的源水经处理后,其水质应达到GB 5749的要求,再进入生产包装饮用水的后续加工工序。由于非公共供水系统的源水经处理后,pH值一般不会发生变化,食品加工用水可以参照《地表水环境质量标准》(GB 3838)或《地下水质量标准》(GB/T 14848)的pH值执行。   四、关于&ldquo 添加食品添加剂用于调节口味&rdquo 的标识规定   根据《食品安全国家标准 食品添加剂使用标准》(GB2760-2014),当添加使用硫酸镁、硫酸锌、氯化钙、氯化钾等食品添加剂用于调节口味时,需在产品名称的邻近位置标示&ldquo 添加食品添加剂用于调节口味&rdquo 等类似字样。对仅使用加工助剂(如氮气)的,按照《食品安全国家标准 预包装食品标签通则》(GB7718-2011)规定,可不标示加工助剂,也不需标识&ldquo 添加食品添加剂用于调节口味&rdquo 等类似字样。   五、关于包装饮用水的名称   包装饮用水的名称应当真实、科学,不得以水以外的一种或若干种成分来命名包装饮用水。包装饮用水的标签标识应符合《食品安全国家标准预包装食品包装通则》(GB 7718)的规定,应清晰、醒目、持久,使消费者购买时易于辨认和识读。包装饮用水的产品名称不得标注&ldquo 活化水&rdquo 、&ldquo 小分子团水&rdquo 、&ldquo 功能水&rdquo 、&ldquo 能量水&rdquo 以及其他不科学的内容。   六、关于微生物指标   本标准保留了大肠菌群指标,新增了铜绿假单胞菌指标,不再保留菌落总数、霉菌和酵母计数、金黄色葡萄球菌、沙门氏菌及志贺氏菌指标。   菌落总数、霉菌、酵母属于卫生指示菌,一般情况下不会影响公众健康,而过度控制卫生指示菌和杀菌可能导致饮用水中溴酸盐含量升高,构成健康风险。目前,国际食品法典委员会(CAC)、国际食品微生物标准委员会(ICMSF)、国际瓶装水协会(IBWA)、美国、澳大利亚和欧盟等相关标准法规中,未对包装饮用水设立卫生指示菌指标。我委正在组织起草《食品安全国家标准 包装饮用水生产卫生规范》,将通过生产加工过程控制,加强对卫生指示菌的监测和管理。因此,本标准不再保留上述指标。   依据饮用水检测结果和CAC、ICMSF及我国相关标准,本标准保留了大肠菌群指标,增加了条件致病菌&mdash &mdash 铜绿假单胞菌(又称绿脓杆菌)指标。由于国际上没有饮用水中金黄色葡萄球菌、沙门氏菌及志贺氏菌指标,且尚无充分科学依据,本标准不再保留。   七、关于标签标识的实施   本标准对包装饮用水的标签标识要求(4.1和4.2)自2016年1月1日起实施。2016年1月1日以后生产的包装饮用水的标签标识应当符合《食品安全国家标准 包装饮用水》(GB19298-2014)要求,在此以前生产的包装饮用水可以继续销售至保质期为止。   八、关于桶装水的周转桶的标签   自2016年1月1日起,桶装水周转桶的标签应符合本标准的规定。对于将不符合本标准规定的产品名称直接注塑凸印或漆印在桶身上的周转桶,对名称进行更正(如通过桶口套标的方式)后允许使用至2016年12月31日,并在产品保质期内销售。
  • 发布微生物快速检测系统新品
    MBS微生物快速检测系统品牌:意大利MBS.SRL适合您的可移动的微生物实验室整套系统由MBS-MR主机,笔记电脑,MBS(Fitlylab)中文操作软件,VL微生物检测瓶组成检测项目• 活菌总数• 大肠菌群• 大肠杆菌• 粪大肠菌群• 肠杆菌• 金黄色葡萄球菌• 绿脓杆菌/铜绿假单胞菌• 沙门氏菌• 李斯特菌• 粪肠球菌 • 酵母菌应用范围卫生控制:• -食品(HACCP)• -厨房、工具、表面(HACCP)• -水质• -(CDC)控制、进出口检验检疫• -药品及化妆品与我们的生活息息相关,例如:l咖啡馆、餐厅l分析实验室l农产品及相关加工公司l消费者保护团体、工商管理机构等整套系统主要特点:1:食源性致病菌及菌落总数等定量检测;2: MBS砖利技术集培养皿法(特制培养基)、酶法(β-葡萄糖苷酸酶)、免 疫 法(抗原搜寻)、基因法(基因搜寻)等技术的优点于一身;3:检测速度:是传统检验方法速度的2~10倍;4:可检测固态、液态、表面、膏状、浆状样本 ;5:8个检测位都是独立作业,可满足检测不同样品不同微生物的需求.每个检测位都是独立的,可循环使用,可以自动选择控制检验项目温度;6:三光波同时检测(蓝,绿,红);7:灵敏度高达可检测到1目标微生物,即1CFU,特异性高达99.999%;8:样本检测操作简单,大部分样品可以直接加1g或者1m样品无需前处理;9:不需要人值守,自动生成检测报告储存在数据库,也可以根据需要选择创建报告另存;10:检测瓶是封闭式的检测,所有检测过程对人体无害,并可以在一般实验室环境下使用;11:可以按客户的要求设置合格值的定性分析,也可以不做限制的原样 样品的定量分析;12:检测瓶自带杀 菌功能,检测后的检测瓶经杀 菌后可按照实验室常规废弃物处理,安全无害;13:操作软件已升级为Fitlylab中文版,购买的客户可以长久免费更新;14:简单三个操作步骤,傻瓜型,无需专业操作人员 ;15:仪器便携式,可随时随地进行检测、100%定量分析;16:通过权威认证 ISO 16140:2003“食品和动物饲料的微生物学” 代替 法的认证, 符合ISO/IEC 17025:2005标准(检测和校准实验室能力的通用要求)的内部认证。 MBS微生物快速检测系统VL微生物快速检测瓶(MBS砖利技术)MBS-MR主机由罗马第二大学物理研究所和意大利核物理量子实验室(INFN)共同研发,VL检测瓶由罗马第三大学生物系研究所研发。MBS砖利检测技术过权威认证 ISO 16140:2003“食品和动物饲料的微生物学” 代替法的认证国家轻工业食品质量监督检测南京站验证报告MBS砖利检测技术集培养皿法(特制培养基)、酶法(β-葡萄糖苷酸酶)、免 疫法(抗原搜寻)、基因法(基因搜寻)等技术的优点于一身。对于需氧菌,以比色的形式测量通过呼吸氧化还原反应链的电子通量率,从而测量耗氧量的速度,而耗氧量的速度与存在于媒介总的菌数量成正比,对于厌氧性微生物测得内生电子的下降率也与媒介中的的菌数量成正比。(VL检测瓶内的营养物,维持目标菌的生长;选择性 药 剂,抑制非目标菌的生长;而其中的还原剂,做为递氢体,能在细胞色素C后把电子转移到菌呼吸链,而又不被氧分子氧化。如果目标菌存在,那么检测瓶中的氧化还原反应色素会根据媒质的氧化还原状态改变颜色。MBS主机通过三光波探测颜色变化,*后根据综合颜色变化的时间确定菌的含量。)MBS-MR主机8个检测位都是独立作业可满足检测不同样品不同微生物的需求.每个检测位都是独立的,可以循环使用,可以自动选择控制检验项目温度,MBS-MR主机三光波同时检测(蓝,绿,红)与简单的色度计不同的是,仪器可同时使用3种波长进行测量,避免由于菌生长或存在固体样本造成的光散射带来的干扰。MBS-MR根据时间记录红绿蓝通道的光强度微分曲线*大拐点代表颜色变化的临界点,利用临界点对应的时间计算菌的含量VL微生物快速检测瓶• 通过ISO 16140:2003认证• 直接利用VL检测瓶可以快速定性检测致病菌• VL检测瓶搭配MBS-MR机可以快速的定量检测致病菌检测步骤可以总结成以下4步:检测报告(PDF报告)食品分析(取样方法)在进行食品分析时,使用食品加工用具或者消 毒后镊子把食品样本放进瓶子里,达到实时检测污染物的目的。对于液体样品,要按要求使用一次性吸液管。表面分析(取样方法) 1,打开装有中和溶液的小瓶中的棉签2,在一个大约10平方厘米的区域擦拭3,将棉签插入检测瓶4,开始分析水分析(取样方法) 对于水分析,本产品配备了能满足各种分析需求的工具包。对所需的水样进行过滤后(如:100毫升),把过滤器放进大瓶里。不管菌附在过滤器内,还是处于自由悬浮状态,色变所需的时间几乎一样。MBS微生物快速检测系统孵育温度/检测时间快查表创新点:仪器软件及检测瓶重新升级 样品不需要前处理,直接加样,系统升级可以按客户设定合格值提前得出报告。 微生物快速检测系统
  • 这些仪器及方法,教你挑选放心酸菜!
    刚刚结束的3.15晚会将“老坛酸菜”推上了风口浪尖,谁曾想,陪伴了一代人的经典口味,最终以如此令人咋舌的姿态出现在大众视野。 据报道,老坛酸菜并非全部在企业标准化腌制池中腌制。记者跟随企业的货车,暗访到了老坛酸菜的真实生产“车间”。露天的农田,一个个铺着塑料薄膜的土坑,腌制好的酸菜就放在土坑里。工人们有的穿着拖鞋,有的光着脚,踩在酸菜上,就连称量酸菜的磅秤也是直接放到酸菜上,一边干活一边抽烟,抽完的烟头甚至直接扔到酸菜上,更别提一次性口罩、手套了… … 这些“土坑酸菜”存在的食品安全问题,远比你想的还危险! 一、 环境导致的微生物污染传统发酵食品,除了乳酸菌之外,还含有酵母、霉菌等多种菌株。在发酵的过程中,如果环境(无氧、洁净)或温度没有控制好,就会造成某种非乳酸菌的微生物类群占据主导地位,从而导致微生物污染。食品中微生物的检测,可以参考如下方案:方案1、食品和物体表面中微生物检测方案使用仪器:微生物自动分析仪(点击进入相应仪器专场)微生物快速检测系统 检测项目:活菌总数、大肠菌群、大肠杆菌、粪大肠菌群、肠杆菌、金黄色葡萄球菌、绿脓杆菌/铜绿假单胞菌、沙门氏菌、李斯特菌、粪肠球菌、酵母菌方案优势:相比于传统的平板计数法,方便、快捷,不需要样品前处理,直接加样,系统自动出报告,无需专业检测人员。二、 腌制蔬菜产生的亚硝酸盐亚硝酸盐是一种致癌物。腌制过程中,蔬菜本身所含的硝酸盐被生物酶还原为亚硝酸盐;如果用变质腐烂的蔬菜腌制,亚硝酸盐含量会更高。同时,菜叶上附着的一些环境细菌也有类似的生物酶,也可以将硝酸盐转化成亚硝酸盐,所以腌菜里不可避免的会有亚硝酸盐。酱腌菜中亚硝酸盐的检测,可参考如下方案:方案2、水果蔬菜中硝酸盐、亚硝酸盐检测方案使用仪器:离子色谱仪(点击进入相应仪器专场)离子色谱仪 样品谱图:方案优势:参照GB 5009.33-2010,采用离子色谱法可准确测定植物产品中的硝酸盐和亚硝酸盐。三、 食品添加剂严重超标为了防止酸菜腐败,同时保持良好的色泽,这些土坑酸菜会添加超过标准2-10倍的防腐剂(亚硫酸钠、二氧化硫、山梨酸、苯甲酸等),以及日落黄、柠檬黄等人工色素。食品中添加剂检测,可参考如下方案:方案3、食品中二氧化硫(亚硫酸盐)检测方案使用仪器:定氮仪(点击进入相应仪器专场)全自动定氮仪 方案优势:采用凯氏定氮仪进行食品中二氧化硫的测定。总的二氧化硫通过酸性气体蒸馏而被释放,经过氧化氢溶液氧化形成硫酸,然后用标准氢氧化钠溶液进行滴定。方案4、食品中山梨酸检测方案使用仪器:液相色谱仪(点击进入相应仪器专场)高效液相色谱仪 样品谱图:方案优势:参照国标的基础上,也行液相条件优化,可同时实现山梨酸、苯甲酸、糖精钠、安赛蜜、脱氢乙酸5种物质同时分析。四、 农药及重金属污染土坑酸菜的原料,未经清洗、检测等预处理,较容易存在农药及重金属(如铅、镉)等超标情况。食品中农药残留量、重金属的检测,可参考如下方案:方案5、蔬菜中农药残留检测方案使用仪器:气相色谱仪(点击进入相应仪器专场)气相色谱仪 样品谱图:方案优势:采用气相色谱电子捕获器检测器检测,对于负电性强的化合物具有极高的灵敏度,可分别测出痕量的六六六、滴滴涕。方案6、米粉和蔬菜中重金属检测方案使用仪器:电感耦合等离子体质谱仪(点击进入相应仪器专场)电感耦合等离子体质谱仪 方案优势:采用微波消解预处理的方式,可同时测定铅砷镉铬汞铜锌锰等多种金属元素。 小编为大家整理了酸菜腌制过程中可能涉及的4个关键风险点,并附上部分参考仪器及检测方案,帮助企业在生产过程中抓好食品安全管理,检测机构顺利开展实验,让大众吃上真正、放心的“老坛酸菜“。 (注:以上仪器及方案仅为小编部分挑选,不构成任何推荐或购买意见,仅参考,谢谢!) 更多相关解决方案,请关注行业应用栏目 ——酱腌菜检测方案专场
  • 二碳箱的抗菌防护罩-氧化铜涂层
    在生物培养实验室中,最令人头痛的事,莫过于培养箱污染的问题。对于细胞培养的污染来说,生物污染是最常见的,污染源为真菌,细菌,病毒,支原体等。金属离子消毒的作用机理是,真菌细胞能够富集金属离子,吸附在真菌表面的金属离子破坏了细胞膜的功能而进入细胞内部,使某些细胞成分逸出,干扰细胞代谢过程或干扰各种酶的作用,使其失去应有的生物功能,后导致细胞的死亡。许多重金属离子如铁、锰、锌、铅、锡、汞、铜、镉等都具有较强的杀菌能力。氧化铜会使细胞内产生游离氧,从而引起氧化损伤,DNA损伤,细胞器膜破坏,从而抑制微生物生长。氧化铜对多种微生物,如对弧菌、大肠杆菌、枯草杆菌、金黄葡萄球菌、绿脓杆菌、沙门杆菌等的生长都有明显的抑制作用。 铜离子杀菌氧化铜纳米材料的粒径为1-100nm,具有抗菌和抗生物活性特点,喷涂于培养箱内层表面,可制成抗菌层。WIGGENS二氧化碳采用纳米喷涂技术,为客户提供带有纳米氧化铜涂层的培养箱内腔体。可以有效的抗菌,抑菌,减少二氧化培养箱在使用过程中的污染问题,让您的细胞培养更放心。
  • 汽车内检测到10级致病菌
    近日,英国《每日邮报》援引相关机构的研究结果报道:公厕座便器上每平方英寸(合6.45平方厘米)“潜伏”大约80个细菌,而轿车方向盘、变速杆和后座等部位的同样面积上所检测到的细菌数量接近800个,几乎是公厕座便器的10倍。   汽车真有这么脏吗?根据有关机构的研究表明,车内空气环境质量之恶劣,堪比垃圾填埋场,并且科研人员还在汽车内检测到了10级致病菌中的三甲选手。   中国科学院所属中科理化环境分析研究中心通过气象色谱法、称重法、撞击法、擦拭法等四种实验方法,对车辆的TVOC(总挥发性有机化合物)、可吸入颗粒物、菌落总数和菌种等情况涉及汽车空气状况的物质进行了全面的检测与研究,并最终发布了一份“汽车空气质量检测报告”。   据悉,本次汽车空气质量检测,共检测了50个样品,而这些样品汇集了包括:大众、通用、丰田、本田、马自达等在内的数十个主流汽车品牌旗下的主力车型,至于车辆的使用年限则从1年到15年不等,相对应的行驶里程则在1-27万公里之间。可以说,本次检测的样品基本覆盖了我国当下汽车使用的现状,而由此所获得的结果。应该说,也极具真实性与权威性。   根据检测报告显示,除可吸入颗粒物基本符合国家标准(0.15mg/)外,TVOC、菌落总数情况堪忧。特别是菌落总数方面的情况让人触目惊心。根据《国家室内空气质量标准》,TVOC应0.60mg/,但本次检测的结果,汽车内TVOC超标30%(平均数) 在菌落总数方面,国家标准为1000cfu/,而实际结果为2174.75cfu/(平均值),超标近174.75%。如果与更严格的新加坡标准相比,此次测得的车内空气质量更是超标了近449.5%。此外,研究人员还在某部车内测得了22603cfu/的惊人数据,要知道垃圾填埋场的标准也仅为2500cfu/(新加坡标准)。   在中科理化环境分析研究中心进行的汽车空气质量全面检测中,研究人员不仅检测了可吸入颗粒物、TVOC和菌落总数的数据,并且对车内菌种的情况,进行分析。根据报告显示,研究人员从样本车内检测出,包括:金黄葡萄球菌、大肠杆菌、霉菌、绿脓杆菌和肺炎链球菌在内的多种病菌。此外,研究人员综合各类因素后,认为车内应该还会存在溶血性链球菌、白色念珠菌、沙门氏菌、蜡质芽孢杆菌、节杆菌和感冒病毒等在内的数十种病菌。   在诸多菌类中金黄葡萄球菌、肺炎链球菌和溶血性链球菌这三种病菌应该引起我们的重视。根据细菌的致病性,通常可以将致病细菌封为10个等级,而我们刚刚说到的那三种病菌,在其中恰恰位列三甲。   金黄色葡萄球菌是人类的一种重要病原菌,隶属于葡萄球菌属,可引起局部化脓感染,也可引起肺炎、伪膜性肠炎、心包炎等,甚至败血症、脓毒症等全身感染。并且有“嗜肉菌"的别称。根据统计,在美国由金黄色葡萄球菌肠毒素引起的中毒,占整个细菌性食物中毒的33%,加拿大则更多,占到45%,我国每年发生的此类中毒事件也非常多。   肺炎链球菌简称肺炎球菌,它是引发人类大叶性肺炎的元凶。根据《病原微生物生物实验室生物安全管理条例》中的有关规定,人间传播的微生物名录(待颁布)肺炎链球菌属于三类,也就是最危险的一类。   溶血性链球菌又称沙培林对热,可引起皮肤、皮下组织的化脓性炎症、呼吸道感染、流行性咽炎的爆发性流行以及新生儿败血症、细菌性心内膜炎、猩红热和风湿热、肾小球肾炎等病态反应。   相比TVOC和菌落总数的超标,在专家看来,金黄葡萄球菌、肺炎链球菌和溶血性链球菌的大量存在,是对健康的更大危险,作为位居致病细菌三甲的细菌,它们不仅致病性更强,同时被灭杀的难度也更大。可以说,它们的存在就如同一个个隐形的杀手,对人民的健康造成了直接,但又是相当隐蔽的危险。
  • 解读抗药性极强的超级病菌
    超级病菌是一种耐药性细菌。这种超级病菌能在人身上造成浓疮和毒疱,甚至逐渐让人的肌肉坏死。更可怕的是,抗生素药物对它不起作用,病人会因为感染而引起可怕的炎症,高烧、痉挛、昏迷直到最后死亡。这种病菌的可怕之处并不在于它对人的杀伤力,而是它对普通杀菌药物——抗生素的抵抗能力,对这种病菌,人们几乎无药可用。2010年,英国媒体爆出:南亚发现新型超级病菌NDM-1,抗药性极强,可全球蔓延。   超级病菌的历史   1920年,医院感染的主要病原菌是链球菌。   1960年,产生了耐甲氧西林的金黄色葡萄球菌(MRSA),MRSA取代链球菌成为医院感染的主要菌种。耐青霉素的肺炎链球菌同时出现。   1990年,耐万古霉素的肠球菌、耐链霉素的“食肉链球菌”被发现。   2000年,出现绿脓杆菌,对氨苄西林、阿莫西林、西力欣等8种抗生素的耐药性达100% 肺炎克雷伯氏菌,对西力欣、复达欣等16种高档抗生素的耐药性高达52%-100%。   2010年,研究者发现携有一个特殊基因的数种细菌具有超级抗药性,可使细菌获得超级抗药性的基因名为NDM-1。同年10月巴西大规模爆发KPC超级病菌导致多名感染者丧生。   抗生素的发展历史   1877年,Pasteur和Joubert首先认识到微生物产品有可能成为治疗药物,他们发表了实验观察,即普通的微生物能抑制尿中炭疽杆菌的生长。   1928弗莱明爵士发现了能杀死致命的细菌的青霉菌。青霉素治愈了梅毒和淋病,而且在当时没有任何明显的副作用。   1936年,磺胺的临床应用开创了现代抗微生物化疗的新纪元。   1944年在新泽西大学分离出来第二种抗生素链霉素,它有效治愈了另一种可怕的传染病:结核。   1947年出现氯霉素,它主要针对痢疾、炭疽病菌,治疗轻度感染。   1948年四环素出现,这是最早的“广谱”抗生素。在当时看来,它能够在还未确诊的情况下有效地使用。今天四环素基本上只被用于家畜饲养。   1956年礼来公司发明了万古霉素,被称为抗生素的最后武器。因为它对G+细菌细胞壁、细胞膜和RNA有三重杀菌机制,不易诱导细菌对其产生耐药。   1980年代喹诺酮类药物出现。和其他抗菌药不同,它们破坏细菌染色体,不受基因交换耐药性的影响。   1992年,这类药物中的一个变体因为造成肝肾功能紊乱被美国取缔,但在发展中国家仍有使用。   超级病菌产生的原因   基因突变是产生此类细菌的根本原因。但在自然状况下,变异菌在不同微生物的生存斗争中未必处于优势地位,较易被淘汰。   抗生素的滥用则是这类细菌今日如此盛行的导火线!由于人类滥用抗生素,使得原平衡中的优势种被淘汰,而这种“抗抗生素”的细菌则树立成长的成为了优势种,取得了生存斗争的优势地位,从而得以大量繁衍、传播。   综上,基因突变是产生此类细菌的根本原因,抗生素的滥用对微生物进行了定向选择,导致了超级细菌的盛行。所以,一方面,我们在寻找解决途径的同时,必须注意对抗生素等物质的使用。否则,超级细菌的生存状况将迅速从“优势”走向“盛世”。另一方面,我们应该积极探索,继续寻找解决方案,而不能过分悲观,因为优势与盛世的距离从不小于劣势与失败。   超级病菌怎样传播?   (1)经血传播:如输入全血、血浆、血清或其它血制品,通过血源性注射传播   (2)胎源性传播:如孕妇带毒者通过产道对新生儿垂直传播   (3)医源性传播:如医疗器械被乙肝病毒污染后消毒不彻底或处理不当,可引起传播 用1个注射器对几个人预防注射时亦是医源性传播的途径之一 血液透析患者常是乙型肝炎传播的对象   (4)性接触传播:近年国外报道对性滥交、同性恋和异性恋的观察肯定证实   (5)昆虫叮咬传播:在热带、亚热带的蚊虫以及各种吸血昆虫,可能对病毒传播起一定作用   (6)生活密切接触传播:与病毒携带者长期密切接触,唾液、尿液、血液、胆汁及乳汁,均可污染器具、物品,经破损皮肤、粘膜而传播。
  • 2022原位质谱网络研讨会明日开幕附日程
    2022年,原位质谱和原位检测迈入4.0黄金时代!快捷、灵敏地检出并有效监控有毒有害物质的污染迁徙,或准确、高效定位核心营养及病变成分的分布变化,仍然是全球分析检测人的崇高责任和远大目标。缘由新冠爆发,核酸检测已人尽皆知;更多物种的分析检测,仍属局内人员的专业领地,尚非公众常识。即便是与国计民生的方方面面紧密关联的食品安检或临床检验,因所采用的检验设备异常昂贵或技术储备高企,还普遍停留在高能低效和聚集在大学研究院等象牙塔级别的中心实验室来完成。原位电离质谱(Ambient Ionization Mass Spectrometry,简称 AIMS)技术作为质谱学和分析科学领域的重大变革,近十年来始终引领行业大潮,盘踞头条,在临床检验、生命科学和分析测试各个行业快速下沉,突破传统技术瓶颈,逐步形成行业新趋势和新标准,契合时空多组学发展大势和地标特优大数据开发,推动着质谱快检技术的进步和创新,助力实现应检尽检、早查预警和诊疗前移,大大降低社会运营成本和化学危害风险。“探寻风味密码”、“揭示病理变化”… … AIMS 原位质谱既保持了质谱系统后端质量分析器的灵准特点,又增加了原位电离特有的快与广谱的优势,实现样品的应检快检全检,大数据捕获因而更加精准高效。经十多年积淀,原位质谱分析检测方案已演化为一支最有活力和潜力的分析科学生力军。因其特有的原位、无损、实时、快速、低耗和易上手等优点,原本高门槛的质谱技术为各行业快速熟悉、接纳、和喜爱;应用场景也由初期的刑侦司法理化物证分析,演绎至食药分析、材料表征、商贸检疫、农渔环监、物种识别、风味剖析、烟酒茶检、医药临检、卫检疾控、组学研究、生产质控、成像研究、疾病筛查和手术监控等领域。基于此,华质泰科(华质生物)与仪器信息网将于2022年8月24日联合举办“2022原位质谱网络主题研讨会”,聚焦精准食药检测、风味聚类溯源、生命组学成像和现场环境毒检等国际应用热点场景和原位质谱技术前沿。特邀演讲嘉宾多为一线知名科学家,长期浸润于质谱学前沿和分析应用高地,学术造诣与行业实践高度结合,其成果分享将为国内各行各业深挖检测分析新技术和促进环球产业合作提供重要的窗口和契机。诚挚邀请您莅临这一网络盛会,与同僚共享共鸣,推动实时科学与先进分析检测技术的高水平发展!扫码报名 / 会议网址David D.Y. Chen 陈大勇 教授南京师范大学,加拿大英属哥伦比亚大学主持人简介:David D.Y. Chen 陈大勇,教授,博士生导师,南京师范大学,加拿大英属哥伦比亚大学。本科毕业于厦门大学、博士毕业于艾伯特大学。1993年在艾伯塔大学医学微生物学与传染病学系从事博士后研究。1999年任职加拿大 UBC 至今,2013年起聘任南京师范大学教授。专注于研究分离、纯化、质谱新方法和新技术,开发新装备及其在生物医学中的应用。David D. Y. Chen 是国际上分析化学领域的知名学者,在国际分析化学的权威性杂志上发表研究论文100多篇,被引用3900余次,H-index 为36 (Google Scholar Citations)。先后获得了英国皇家化学会的分析方法奖;加拿大化学会的分析科学 W.A.E. McBryde 奖章;不列颠哥伦比亚大学的最高自然科学和工程学奖-CharlesMcDowell 金奖和加拿大化学会分析化学杰出贡献奖(Maxxam Award)。演讲嘉宾蔡宗苇 教授,香港浸会大学Prof. Zongwei CaiHong Kong Baptist UniversityAmbient Ionization Mass Spectrometry Imaging in Research of Environmental Toxicology大气压电离质谱成像在环境毒理研究中应用简介:蔡宗苇教授1982年毕业于厦门大学化学系,获得理学学士学位,1990年获得德国马尔堡大学博士学位。1991-1993年在美国 Nebraska 大学担任博士后,1994-1996年任研究助理教授。1996-2000年,蔡教授在 GSK 工作,领导一个质谱组,从事药物代谢和药代动力学研究。现任香港浸会大学化学系讲座教授,二噁英分析实验室主任,环境与生物分析国家重点实验室主任。蔡宗苇教授从事质谱化学分析的基础理论及其在环境、生物、药物和痕量有机污染物的应用,目前主要研究与环境污染物相关的人体健康和疾病,已在国际学术刊物上发表论文600多篇。他的研究小组配备了一系列先进的质谱仪,用于药物代谢、蛋白质组学和代谢组学等研究。Brian Musselman 博士美国 IonSense 技术顾问主持人Pulsing Ambient Ionization Mass Detection for High Throughput DART-based Analysis脉冲式原位电离质谱用于高通量 DART 分析简介:Brian D.Musselman 博士,美国 IonSense 技术顾问。质谱发明家、质谱工业资深顾问。曾任 JOEL (美国) 质谱产品、应用、市场部高级经理,AB SCIEX 生物质谱市场高级总监,IonSense 总裁兼首席执行官。曾获 Pittcon’ 97 ESI-TOF 质谱发明银奖,IR100’ 94 台式高分辨 GCMate 质谱发明奖。曾任美国质谱学会 ASMS 副总裁,ALA 委员,ABRF 委员和财经主席。Terry Bates美国康奈尔大学 Gavin Sacks 组SPMESH DART-MS: super-rapid, robust, repeatable, and quantitative analysis of volatile odorants挥发性气味剂的超快、皮实耐用、可重复定量的增强型筛网顶空吸附富集结合 DART 原位质谱分析方法摘要:食品和饮料行业经常对气味挥发物进行针对性的分析。例如,在某些葡萄品种中,3-异丁基-2-甲氧基吡嗪(IBMP,青椒味)可作为葡萄品质的标志;而愈创木酚和甲酚等挥发性酚类可作为葡萄生长在野火附近的“烟味”标志。由于这些气味剂在复杂基质中以痕量水平存在(mg/kg 至 ng/kg),常规分析方法提取复杂,步骤耗时缓慢,且通量较低(单个样品需 15 分钟或更长),不适合在收获期间短时内分析大量样品。为解决这个问题,开发了一种新优化的 SPMESH-DART-MS 方法,用于快速分析多个加州商业葡萄园的酿酒葡萄(赤霞珠,300份样品)中的 IBMP。SPMESH 方法能够达到亚 ng/L (亚 ppb)的检测限,每个样品所需的时间 1 分钟,并且与 SPME-GCMS 显示出良好的相关性 (R2=0.84)。目前正在进行的工作是扩大目标挥发物的检测范围(包括酚类和醛类)。简介:Terry Bates,康奈尔大学 Gavin Sacks 博士实验室博士生,并担任系课程开发委员会、教师高管招聘委员会、康奈尔大学本科研究委员会的博士代表、以及众多本科生和硕士级实验室成员的导师。主要研究分析风味化学,致力于开发新的提取方式和高通量分析方法,对痕量挥发性气味进行法分析,包括对葡萄种群的挥发性化合物分析,鉴定新番茄品系中的异味等。在攻读博士学位之前,Terry 在丹佛大学获得了分子生物学学士学位,并在康奈尔大学获得了化学硕士学位。Gavin Sacks 实验室关注研究收获前后的环境因素对农产品感官特性的影响(风味、颜色),特别是葡萄酒和果汁。该实验室在开发利用快速灵敏的原位质谱新技术和应用于风味化合物的表征分析方面处于领先地位。Benjamin Draper 博士/创始科学家美国 Megadalton Analysis of Gene Therapy Vectors by Charge Detection Mass Spectrometry基因治疗载体的电荷检测质谱分析 CDMS by LESA-MS摘要:质谱已成为表征生物大分子的最有力的分析技术。非变性电喷雾电离(Native ESI)是电离生物药的首选方法,但其对分子量特大的分析物的分析存在瓶颈和局限。因质量异质性,大多数常规质谱仪无法分辨超过100万分子量(Da)的生物大分子的电荷状态。我们提出了一种全新的基于 LESA 的电荷检测质谱(CDMS)技术。CDMS 的质量测定能力远超100万分子量(Da)。因可直接测量单个离子的质荷比及电荷数,生物大分子质量的直接测定便成为了可能。很多超出传统质谱能力的检测需求,可以通过 CDMS 来实现。本文专注于基因治疗载体和从十万到超过几百万分子量的大型寡核苷酸的分析应用。简介:Benjamin Draper 于2018年在印第安纳大学 Martin Jarrold 的领导下完成了他的博士研究工作——电荷检测质谱(CDMS)的开发。作为博士研究工作的一部分,他简化了 CDMS 数据采集和分析,以实现100倍的加速,从而可以进行实时数据分析。这彻底改变了 CDMS,为分析包括下一代疫苗在内的各种高分子量样品打开了窗口。Benjamin 还对灵敏度的提高做出了贡献,使得 CDMS 对百万道尔顿分子量的样品能达到飞摩尔级的灵敏度,并因此大大缩短了测量所需的时间。目前 Benjamin 负责 Megadalton Solution 的分析开发,重点关注 AAV 等基因治疗载体。Ronald Emmons 博士美国托莱多大学Solid Phase Microextraction Hyphenated to Direct Analysis in Real Time: Robust Quantitation in Minutes固相微萃取与实时直接分析 DART 相结合:分秒实现皮实稳定的定量摘要:原位质谱(AIMS)尤其是 DART 技术的出现使得各个领域对更快、更皮实耐用的分析需求日增。此前,人们多着眼于它优秀的快筛定性能力,忽视了其同样卓越的定量表现。定量的主要障碍是如何提高样品均一性、减少离子化基质效应和稳定电离环境。前置固相微萃取(SPME)是规避这些问题的理想选择之一;SPME 可预浓缩分析物,可直接与 DART 源串联。利用改进型、大体积的 SPME-Arrow 和热解吸装置(TDU)对农药和药物定量,富集充分,解吸附彻底,不受现场环境干扰。样品自制备到完成 DART-MS 分析共需3.5分钟,大多数化合物的线性动态范围(LDR)为2.5 - 500 μg/L,日间重复性好(<10%)。用于分析饮用水和鱼类组织难以降解具有生物链聚集毒性的全氟和多氟烷基(PFAS)化合物的灵敏度达到了优异的 ppt 级别。简介:Emanuela Gionfriddo 博士,美国托莱多大学助理教授。2013年获得意大利卡拉布里大学分析化学博士学位。2014年,在加拿大滑铁卢大学 Pawliszyn 教授团队担任博士后研究员和负责工业重点分析实验室(InFAReL)气相色谱。Gionfrido 博士发表论文50多篇,1项基于 PTFE 的 SPME 涂层专利,托莱多大学 Nina McClelland 博士水化学和环境分析实验室的创始成员之一,被任命为俄亥俄州总检察长 Yost 环境顾问委员会成员。Ronald V. Emmons,美国托莱多大学化学系 Emanuela Gionfriddo 实验室在读博士,主导多个关于 DART-MS 与 SPME 结合的研究项目,有效地预富集和定量环境污染物。研究领域:环境化学、微萃取技术、生物相容性萃取;探索开发不断出现的新型快速分析技术与质谱仪直接耦合方法及应用,使用绿色提取方法分析复杂的生物和环境样品。Laure Menin 博士/平台负责人瑞士联邦理工学院SICRIT® Exploris™ Orbitrap setup: a Smart tool for a Mass Spectrometry facility to expand its range of covered applications新一代轨道阱质谱鼻 SICRIT-Exploris: 助力质谱中心提能增效移星换斗的智能装备摘要:瑞士联邦理工(洛桑)(EPFL)化学科学与工程研究所(ISIC MSEAP)的质谱分析平台为瑞士的100多个实验室提供分析测试服务,涵盖了从有机小分子到生物大分子及金属的广泛应用。除最常用的电离技术(ESI、APCI、APPI、MALDI、EI/CI 和 ICP)外,冷喷雾电离(CSI)还允许分析敏感的超分子结构。电子轰击 EI 电离常搭配低分辨率 GC-MS,高分辨率质谱通常搭配电喷雾等(ESI-APCI/APPI-FTMS);业界不太投资高分辨质谱搭配电子轰击源(EI-HRMS)。我们平台的 Orbitrap 搭配 SICRIT 在线软电离质谱鼻(Plasmion),可直接引入气味儿样品或 GC 馏分,便捷灵敏,分子离子信号完整,指征简单。使用该 SICRIT-Orbitrap 技术已完成300多个用户的样本分析测试服务,部分成果将予以示例和讨论。简介:Laure Menin 1997年获得生物化学、微生物学和细胞生物学博士学位。曾在法国和瑞士的不同公司担任项目经理,如 Entomed SA、Geneprot 从事大规模蛋白质组学领域,Atheris 实验室从事药物发现和有毒动物毒液的肽组学分析。自2008年以来,Laure Menin 一直在管理瑞士联邦理工学院化学科学与工程研究所(ISIC MSEAP)的质谱设备。该平台配备了10套质谱,拥有自上而下蛋白质组学以及蛋白质复合物分析方面的强大专业知识,为 EPFL 研究小组、外部学者以及行业外部客户提供科学支持。Gilles Frache 博士/首席工程师卢森堡科学技术研究所(LIST)Atmospheric Pressure MALDI coupled to Orbitrap(s), principle and applications大气压基质辅助激光解吸电离源耦合轨道阱的原理及应用摘要:近年人们对质谱成像(MSI)的兴趣日增,其生物医学应用也在逐步开发。然而,基于真空 MALDI 的 MSI(基质辅助激光解吸电离质谱成像)在对生物分子辨别的准确性和空间分布的分辨率方面有待提升。本报告主要分享大气压基质辅助激光解吸电离源(AP-MALDI)耦合高分辨轨道阱(Orbitrap)质谱的质谱成像技术(MSI),及其在生物分子辨别的准确度和空间分布定位的分辨率方面的显著优势。首先,AP-MALDI 源偶联最新一代轨道阱高分辨质谱仪(Orbitrap Exploris 480)与其前代相比,在灵敏度上有提升。其次,应用场景涵盖聚合物、多肽、和生物组织切片的脂质成像分布。采用了全自动基质喷涂仪(SunChrom)进行基质喷涂。使用多重软件工具实现了数据可视化与图像解析。两代轨道阱质谱仪的灵敏度确有代差;靶点空间分辨率都达到了10μm甚至更低。该技术在非靶向标志物的质谱成像应用方面,具有高灵敏度、高图像采集速度、及高空间分辨率的发展潜力。AP-MALDI(MassTech)偶联轨道阱高分辨质谱成像技术可成为传统的 MALDI-MS 的替代方案;该项技术具备独特的几分钟内将搭载液相 LC 的轨道阱谱仪(即LC/MS 模式)快速变为为搭载原位成像源的高清高敏质谱成像(即 MSI 模式)的能力。最新一代轨道阱质谱仪性能的提升也为 MSI 技术的发展和应用打开了更加广阔的前景。简介:Gilles Frache 博士,卢森堡科学技术研究所材料研究与技术表征平台首席工程师。化学及分子物理化学硕士、法国梅兹大学博士,博士后。自2008年起,肩负起卢森堡科学技术学院材料研究与技术表征平台的分子分析和质谱成像团队负责人。专注于利用色谱,质谱分析以及利用质谱成像技术在有机材料及生命科学领域的研究。在欧洲建立了 AP/MALDI 质谱成像演示实验室并且利用多种质谱成像技术包括 AP/MALDI-MS 和 TOF SIMS 方法应用于皮肤质谱成像。Peter Verhaert 教授/创始人比利时 ProteoFormiXAP-MALDI MS Histochemistry for disease biomarker discovery in patient samples archived at tissue banks大气压基质辅助激光解析电离 AP/MALDI 组化方法用于自组织银行存档的患者样本中发现疾病生物标志物摘要:直接运用分子成像技术(MSI)在病人或供体材料上发现高度符合医疗需求的疾病候选生物标志物。以福尔马林固定-石蜡包埋(FFPE)组织切片作为样本,在识别生物标志物的同时,标记其在组织切片上的分布位点。类比免疫组化法,可将该成像方法称之为质谱组化法(MSHC)。借助 MSHC,我们研究了世界各地生物样本库中保存的大量的人体健康和疾病组织,其中包括现代医院病理留存样本以及世界著名研究机构的科研样本。通过绘制所有 FFPE 待检生物分子(肽、神经递质、代谢物)的指纹和分布,我们编制了《人体福尔马林固定 - 石蜡包埋生物分子图谱》。该方法优点除了 FFPE 的样品量足够大,其稳定性足够好以外,MSHC 的另一优点是它完全为非靶向和无需标记的技术,可直接将所有的现存组织病理学知识与新颖生物分子信息相关联。所用设备为高分辨质谱(LTQ Orbitrap Velos)偶联高分辨 AP-MALDI (ng) UHR。组织切片 5μm 厚,平铺在常用显微镜载玻片上,以自动喷涂装置喷涂 MALDI 基质如二羟基苯甲酸。利用生物样本库中的人类 "模型 "组织切片来衡量 MSHC 的性能,结果显示 MSHC 可轻松实现 10~20μm 的横向分辨率,分辨率可低至 ~5μm,对生物分子包括神经肽、生物胺和代谢产物的成像,准确度较高。借用 HistoSnap 软件及高性能质谱成像软件平台 Mozaic(瑞士 SpectroSwiss)对各种尚无生物标志物报道的疾患者的活检和尸检样本进行了高达几个 GB 的数据采集和整合,建立了人类下丘脑核神经分泌肽的单细胞分辨率的 MSHC 空间“组学”技术。热忱欢迎意向合作者加入这一“智人生物分子 FFPE 组织图谱”项目。简介:Peter D.E.M. Verhaert,教授兼 ProteoFormiX BV 创始 CEO & CSO(强生创新中心)。1987年,比利时鲁汶大学生物学博士(比较神经生物学);1988年,加拿大滑铁卢大学生物化学与毒理学博士后;1989-1999年,比利时鲁汶大学比较生理学系研究教授;1998年,比利时 Sabattical Innogenetics NV;2000-2004年,荷兰 Oss Organon NV 高级研究员;2005-2016年,荷兰代尔夫特理工大学生物分析技术与创新肽生物学教授;2017年至今,比利时 Proteformix BV 创始人兼首席执行官。主要从事自上而下蛋白质组学、肽组学和质谱成像(MS 组织化学)及在神经退行性疾病和癌症中的应用,是肽组学和自上而下蛋白质组学的先驱(自2000年起);欧洲药物蛋白质组学实验室联合创始人和前主席(2000-2005年);EUPA Open Proteomics 主编(2013-2016)。Jan-Christoph Wolf 博士/CEO德国 Plasmion Recent advances in SICRIT applications from liquid chromatography to Hydrogen-GC在线软电离质谱鼻 SICRIT 最新进展:从偶联液相 LC 到承接氢气 GC 馏分简介:Jan-Christoph Wolf 博士,曾在瑞士苏黎世联邦理工学院 ETH Zurich(2013-2015年,师从 Renato Zenobi 教授)和德国慕尼黑工业大学分析化学系(2010-2013年)从事博士后研究工作,项目有化学战剂现场检测,柴油机微粒过滤器中硝基多环芳烃的形成,柴油机排气中颗粒数的测定,气溶胶化学,仪器方法发展等。目前是德国 Plasmion 联合创始人兼首席执行官,是质谱电离新方法(即原位质谱)领域的领先专家。Rian L Griffiths 博士/研究员诺丁汉大学药学院Probing Interspecies Microbial Metabolites via LESA-MS通过 LESA-MS 探秘微生物代谢助力感染医学诊疗摘要:在医疗、保健、工业和环境设施中普遍存在的多种微生物的生物膜基本已具有抗菌素耐药性。微生物通过产生群体感应信号分子(QSSM)来协调生物行为。通过液质 LC-MS 分析囊性纤维化患者的血浆,已经确定了肺感染的 QSSMs生物标志物。铜绿假单胞菌(PA)有三个群体感应(QS)系统,其中一个就是基于假单胞菌的喹诺酮信号系统(pqs),而先前已有研究证实它会受到金黄色葡萄球菌(SA)和白色念珠菌(CA)的影响。液滴萃取表面分析质谱(LESA-MS)允许快速直接的表面分析,已在 PA、SA 和分枝杆菌的蛋白质和脂类研究中得到应用,而 QSSMs 以及绿脓菌素等代谢产物以前就在唾液中被检到过。所以,本工作旨在探索 PA、SA 和 CA 生物膜中 QSSMs 扩散和分泌的差异以及它们在不同组合中的差异。采用 LESA-MS 可直接对不同微生物的培养基采样,研究代谢产物扩散和分泌,推断出与感染相关的代谢差异,检出了从 PA 扩散而来的烷基喹诺酮(AQ)QSSMs 与主动分泌的毒力因子(绿脓菌素)。通过子离子扫描 MSMS 鉴定了 AQ 的同分异构体,研究了 SA 或 CA 或两者组合培养的 PA 的混合生物膜的外源代谢物。本文展示了 LESA-MS 新方法;设想若代谢产物可无创自唾液获取,那么,通过代谢物的直接原位分析就能快速鉴定感染性病原体,从而快速确定相应的诊疗方案。此探索在临床医学及感染研究方面将有长远的重要意义。简介:Rian Griffiths 2010年毕业于伯明翰大学化学系,获理学硕士学位;在 Josephine Bunch 教授的指导下继续攻读博士学位,研究通过 MALDI-MS 控制复杂生物样品中脂质复合物形成的途径,2015年获伯明翰大学分析化学博士。2014-2018年,在 Helen Cooper 教授的实验室(伯明翰大学生物科学学院),开发了液体萃取表面分析(LESA)质谱法,用于直接分析变性和折叠的完整蛋白,以及来自生物样品如干血斑和薄组织切片的非共价蛋白复合物。2019年,Rian Griffiths 在诺丁汉大学 Morgan Alexander 教授的实验室担任研究员。2019年10月,成为独立的 Anne McLaren 研究员。Griffiths 博士拥有广泛的表面采样质谱和成像经验,包括基质辅助激光解吸/电离(MALDI)、液体萃取表面分析(LESA)、Flowprobe 和二次离子质谱(SIMS)。她的研究包括小分子代谢物、脂质、完整蛋白质和非共价蛋白质复合物的分析。8月24日/周三 9:00-17:30报名及会议网址:https://www.instrument.com.cn/webinar/meetings/aims2022/
  • 宁夏质量技术协会立项《食品接触用PET瓶盖中大肠菌群检验-滤膜法》等8项团体标准
    各相关单位:根据《宁夏质量技术协会团体标准管理办法》的相关规定,宁夏质量技术协会经专家研究审核,决定对《食品接触用PET瓶盖中大肠菌群检验-滤膜法》《食品接触用PET瓶盖中菌落总数和霉菌检验-滤膜法》《食品接触用PET瓶盖中金黄色葡萄球菌检验》《一次性卫生用品中大肠埃希氏菌O157:H7快速检测方法-实时荧光PCR法》《一次性卫生用品中金黄色葡萄球菌、铜绿假单胞菌、溶血性链球菌检验-多重实时荧光PCR法》《产可得然胶土壤杆菌菌株诱变筛选技术规程》《可得然胶含量快速检测方法-微孔板法》《产可得然胶土壤杆菌菌株冻干保存技术规程》团体标准批准立项,现予以公示。请参与起草单位严格按照《宁夏质量技术协会团体标准管理办法》团体标准制定工作要求,严把质量关,加强组织协调,增强本标准的适用性和有效性,确保标准高质量,按期完成标准编制工作。标准制定过程中如有问题,请联系宁夏质量技术协会秘书处。联系人:杨老师电 话:0951-8762976地 址:宁夏银川市兴庆区玉皇阁南街292号
  • Pall-Aquasafe一次性水过滤器通过美国FDA510(k)审批
    Pall-Aquasafe™ 一次性水过滤器作为二类医疗器械,通过美国FDA510(k)审批。这款消毒级水过滤器可通过截留水中的细菌而用于控制感染。Pall-Aquasafe处理之后的水,适用于清洗、引用、表面伤口清洗、医疗设备清洗以及外科大夫手部清洁。  Pall 医疗总经理Eric Garnier 介绍说:“长久以来,Pall医疗部门一直同医疗领域专家合作,以设计、验证和生产各式各样的用于污染控制的过滤设备。我们的产品在预防感染和成本控制环节是非常重要的。Pall-Aquasafe水过滤器在患者使用时充当一道针对细菌的障碍,以帮助医院及其他医疗机构降低水传播微生物的感染风险。”  作为一种控制措施,Pall-Aquasafe水过滤器在高危病人防护等方面是有效的,还可用于设备构建、验证和故障等阶段,而且在监测到微生物条件超出可接受范围时,也可立即实施控制。  Pall医疗全球市场部Vincent Guercio介绍到:“我们的水管理团队意识到,水源病原体(如嗜肺性军团菌、绿脓杆菌、非结核分枝杆菌、嗜麦芽寡养单胞菌、烟曲霉属真菌及镰刀菌属等)最有可能暴露的途径就是在使用过程中。新款过滤器非常易于安装,无需额外水管装置,而且可在服务项目中更换,这些都使得它们可以作为控制风险的简单、长效预防方式,还可作为微生物污染的应急措施。”  Pall-Aquasafe水过滤器是无菌的,且通过了完整性测试。滤芯内所用的Supor® 滤膜孔径为0.2微米,且经评价、验证,证明可截留水中细菌、真菌、原生生物及颗粒。推荐在医院或其他医疗机构内使用这类产品,这些场合中,患者都有可能暴露于水源病原体之下。
  • 屈臣氏两度菌落超标上“黑榜”
    宣称"至清至纯"的屈臣氏旗下饮用水近日被曝"菌落总数"超标。日前,广州市质监局在网站公布"2013年广州市生产领域食品质量监督抽查第九批公告",其中饮料类不合格产品多达18批次,屈臣氏18.9L/桶的蒸馏水菌落总数超标80倍登上"黑榜".   无独有偶,9月份,屈臣氏一个批次的饮用矿物质水(18.9L/桶,生产日期20130424C)也因菌落总数"上榜".专家表示,菌落总数超标的水或饮料可能引起呕吐、腹泻、头晕、恶心等症状,但从口感上一般比较难分辨。昨日,屈臣氏相关人士向本报表示,公司正在进一步了解和跟进此事,尚没有确切调查结果。   饮料类产品成为此次抽检的"重灾区".其中,由广州真和药业有限公司太平分公司于2013年6月20日生产的"邓老凉茶"冲剂被检出霉菌数量超过标准值10倍有余。此外,在广州市白云硒珍矿泉水厂于2013年7月3日生产的"西珍"牌饮用天然矿泉水(18.9升/桶)中,条件致病菌"铜绿假单胞菌"被检测出。记者查阅相关资料发现,该类致病菌可引发败血症、呼吸道感染以及心内膜炎等临床问题。与此同时,屈臣氏的桶装蒸馏水也上榜,而绿源山泉、高山月、水分子、茶之泉、青水居、农峡山泉、怡翠山泉、凤凰山等饮用水均被检测出菌落超标或酵母超标。   "菌落总数是衡量饮用水质量状况的重要指标,总数含量的高低,表明饮用水受微生物污染的程度大小。"龙腾资本董事总经理周璐在接受《国际金融报》记者采访时表示,根据规定,蒸馏水是按照GB 19298-2003《瓶(桶)装饮用水卫生标准》进行检测的,其中规定菌落总数的限值不能超过20.企业再生产过程中由于桶和桶盖消毒不完全、生产设备清洗不完全,或是车间清洁程度不够等都会导致超标。此次质监部门是从生产环节上抽查的,仍检出菌落总数有问题,屈臣氏需要认真调查是什么原因。不过,据了解,虽然目前水的国标中微生物指标有"菌落总数"一项,但是包括食品法典委员会等机构并无这一要求。
  • 宁夏化学分析测试协会批准发布《一次性使用卫生用品中金黄色葡萄球菌检验 实时荧光PCR法》等4项团体标准
    各有关单位:根据国家《团体标准管理规定》和《宁夏化学分析测试协会团体标准管理办法》,我协会对《一次性使用卫生用品中金黄色葡萄球菌检验 实时荧光PCR法》等4项团体标准进行了评审,已经通过了专家审查,现予以发布,自2024年5月30日起正式实施,特此公告。 序号标准号标准名称发布日期实施日期1T/NAIA0288-2024一次性使用卫生用品中金黄色葡萄球菌检验 实时荧光PCR法2024-05-172024-05-302T/NAIA0289-2024一次性使用卫生用品中绿脓杆菌检验 实时荧光PCR法2024-05-172024-05-303T/NAIA0290-2024一次性使用卫生用品中溶血性链球菌检验 实时荧光PCR法2024-05-172024-05-304T/NAIA0291-2024一次性使用卫生用品中环氧乙烷残留量的测定 气相色谱-质谱法2024-05-172024-05-30 2024协会团体标准公告-5.17.pdf
  • QIAcuity数字PCR系统助力 “细菌耐药性研究及新药开发”
    背景近年来,多重耐药性 (multi-drug resistance, MDR) 的出现已成为多国关注的公共卫生问题,作为细菌变异及过度使用抗菌药物的结果,它的主要机制是外排膜泵基因突变,其次是外膜渗透性的改变和产生超广谱酶。最常见的耐药菌为革兰阳性菌MDR-TB和MDR-MRSA,以及在ICU中常出现的鲍曼不动杆菌和铜绿假单胞菌。统计数据显示,血液感染细菌铜绿假单胞菌与30%至50%的高死亡率有关。正因为如此,迫切需要开发新的抗菌药来对抗感染。数字PCR 技术作为一项高灵敏性、高精确性、绝对定量技术,可有效助力病原微生物耐药性分析及新药研发等应用。QIAGEN的QIAcuity数字PCR系统基于纳米微孔板技术,采用集成式一体化设计理念,支持多通道检测,可实现高通量、高灵敏性检测。接下来小编带您一起解读QIAcuity数字PCR系统在该研究领域的实际应用案例。本案例中,来自英国朴茨茅斯大学、泰国纳瑞宣大学和披博宋甘皇家大学的研究人员基于QIAGEN QIAcuity dPCR平台,建立了多重反转录数字PCR (mRT-dPCR),深入研究了氢奎宁(抗疟疾药物)的天然化合物对临床常见微生物的抗感染机制。方法与结果研究者首先在前期细菌实验中发现氢奎宁可以抑制和杀死几种临床重要细菌,即金黄色葡萄球菌、阴沟肠杆菌、大肠杆菌、肺炎克雷伯菌以及常见的多重耐药病原体铜绿假单胞菌。通过进一步研究,作者发现氢奎宁对铜绿假单胞菌的杀菌浓度是其他菌株的2-4倍,且在4-8h内对铜绿假单胞菌不仅有抑菌杀菌作用,还存在呈剂量依赖性。为了进一步验证氢奎宁对多重耐药病原体铜绿假单胞菌的抗菌和耐药机理,即氢奎宁是否能够在铜绿假单胞菌中诱导其主要的外排泵类型,即耐药节结化细胞分化家族 (RND) 相关基因的异常表达。作者利用QIAcuity dPCR系统,建立了多重数字PCR (mdPCR) 和多重反转录数字PCR (mRT-dPCR) 两套研究路线,成功用于快速检测多种临床相关细菌中是否存在mexB、mexD和mexY这三种关键基因,并对其表达量的变化也进行了进一步的分析。结果表明,在0.5X MIC氢奎宁作用1h后,mexD和mexY的表达量分别提高了20.8±4.31和11.8±5.01倍,而相比之下mexB的表达水平则相对稳定(1.6±0.15倍)。这些数据表明,在P. aeruginosa ATCC27853菌株中,虽然氢奎宁诱导了MexCD-OprJ和MexXY外排膜泵的上调,但MexAB-OprM外排膜泵则并没有上调,意味着铜绿假单胞菌是通过上调MexCD-OprJ和MexXY外排膜泵的水平而诱导了一种保护机制来避免氢奎宁引起的细胞应激,进而产生一定程度的耐药性。结论研究者基于QIAcuity dPCR系统建立的多重反转录数字PCR (mRT-dPCR) 技术路线,阐明了低剂量的氢奎宁可诱导铜绿假单胞菌特异性RND型外排膜泵基因表达水平变化,进而引起了一定程度的耐药性。研究者也表示将进一步研究氢奎宁的抗菌活性和副作用,揭示氢奎宁的分子靶标,从而对氢奎宁在临床中的使用提供更多指导。 参考文献:Hydroquinine Possesses Antibacterial Activity, and at Half the MIC, Induces the Overexpression of RND-Type Efflux Pumps Using Multiplex Digital PCR in Pseudomonas aeruginosa. Nontaporn Rattanachak, Sattaporn Weawsiangsang, Touchkanin Jongjitvimol, Robert A Baldock and Jirapas Jongjitwimol 1,4,5,END
  • 饮用矿泉水新国标溴酸盐和菌落问题引发热议
    尽管还处于网络公示、征求意见阶段,《饮用天然矿泉水》新国标的修订已提前预热。值得注意的是,此前备受争议的溴酸盐问题终于浮出水面,新标准草案中,首次将溴酸盐列入限量指标,初定溴酸盐浓度低于0.01毫克/升,与生活饮用水标准一致。对于首次将溴酸盐问题明确作为一个限量指标写入《饮用天然矿泉水》国标,不管是在业界还是消费者中间,都引发了热议。   一些对此持肯定态度的专家认为,早在1993年,世界卫生组织就在《饮用水水质准则》中,对溴酸盐进行了限定,当时的限值定为0.025毫克/升,2004年修改为0.01毫克/升。我国现行的《生活饮用水卫生标准》规定溴酸盐限值为0.01毫克/升,与世界卫生组织的标准一致。在国际上,部分国家已对溴酸盐限量作了规定,如欧盟规定为0.003毫克/升,美国规定为0.01毫克/升。此次《饮用天然矿泉水》新标准的修订,意在与国际接轨。此前,国际癌症研究机构已将溴酸盐定为2b级的潜在致癌物。绝大多数消费者认为,这一修订体现了对消费者知情权的尊重和保护。   据了解,以前国内的矿泉水企业都用氯来给矿泉水消毒,并不用臭氧,所以基本不存在溴酸盐这个问题。当然,氯本身也有很多问题,带来很多副作用,于是近些年来,业界开始转而使用臭氧来杀菌,目前这种工艺在国内使用得已经非常普遍,于是溴酸盐超标就开始凸现出来。   业内专家分析认为,矿泉水中含有溴酸盐有两个原因:一是水源水本身富含溴化物,一般纯净水不含溴化物,也就不存在溴酸盐的问题,而矿泉水中溴化物的含量是有高低不同的,需要区别看待 二是企业使用较高浓度的臭氧杀菌,两个因素结合起来,才会产生较高浓度的溴酸盐。   在没有新工艺取代之前,臭氧仍是矿泉水行业最有效的消毒剂。要达到标准中新修订的限量指标,企业必须通过改进工艺来降低臭氧浓度。众多被溴酸盐问题牵动神经的企业也看法不一,某大型矿泉水企业负责人认为,新国标带来了新的考验,但企业只要在工艺上适度处理,相信达标不成问题。只是如此一来,增加了企业的检验成本,进而提高了生产成本。但也有企业认为,既然溴酸盐的潜在危险尚没有定论,没必要在限定值上过于苛刻。   让企业感到欣喜的是,新标准草案中,删除了“菌落总数”指标。据了解,矿泉水国标过去一直对菌落总数限定严格,每毫升不得超过50个,这样近乎苛刻的严格限值,导致众矿泉水企业为控制菌落总数而加大臭氧投放量,也增大了致癌物溴酸盐产生的几率。   事实上,并非所有“菌落”中的细菌都是有害的,只有大肠杆菌等致病菌才会危害人体。在WHO(世界卫生组织)等的最新标准中,菌落总数已是非检验指标,但对致病菌的控制却越来越严。此次矿泉水国标的修订虽然取消了菌落总数的要求,但新增了对粪链球菌、绿脓杆菌和产气荚膜杆菌3项致病菌的检测要求。这样一来,卫生、安全的门槛丝毫没有降低,反而体现了检测手段科学进步。同时,也利于我国的矿泉水产品和国际标准接轨,方便其出口国外。对于这项规定,国外的企业普遍持强烈欢迎态度,这将使一些国际品牌更加符合中国市场的要求。以前发生的法国依云矿泉水因为菌落超标被判不合格而引发的争议有望避免。   业内人士比较一致的观点认为,最直接的一点是,菌落总数删除后,臭氧问题的解决降低了难度系数,溴酸盐超标的几率也小了很多。   基层质检系统对于溴酸钾的问题也保持着密切关注。广州市质监局相关人士表示,饮用水的质量卫生问题一直是质监部门关注的对象,对矿泉水企业的检查是日常工作中不可或缺的。目前该局正在开展“清泉行动”,对一批不合格的饮用水企业进行了查处。   这位人士表示,如果新标准实施后,将会按照国家质检总局的要求进行检查,要求所有生产企业加强工艺控制,保证矿泉水溴酸盐含量符合饮用水标准。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制