当前位置: 仪器信息网 > 行业主题 > >

叔戊醇无水级

仪器信息网叔戊醇无水级专题为您提供2024年最新叔戊醇无水级价格报价、厂家品牌的相关信息, 包括叔戊醇无水级参数、型号等,不管是国产,还是进口品牌的叔戊醇无水级您都可以在这里找到。 除此之外,仪器信息网还免费为您整合叔戊醇无水级相关的耗材配件、试剂标物,还有叔戊醇无水级相关的最新资讯、资料,以及叔戊醇无水级相关的解决方案。

叔戊醇无水级相关的资讯

  • 日本拟将2-戊醇、丙醛等纳为食品添加剂
    2009年7月22日,日本发布拟修订食品卫生法及食品和食品添加剂标准规范执行条例的通报。   日本健康劳动福利部拟将2-戊醇、丙醛、6-甲基喹啉纳为食品添加剂并制定这些物质的标准规范。
  • 全自动乌氏粘度计-用毛细管法测定PEN(聚萘二甲酸乙二醇酯)树脂稀溶液的黏数
    聚萘二甲酸乙二醇酯的简称。聚萘二甲酸乙二醇酯(PEN)是聚酯家族中重要成员之一,是由2,6-萘二甲酸二甲酯(NDC)或2,6-萘二甲酸(NDA)与乙二醇(EG)缩聚而成,是一种新兴的优良聚合物。其化学结构与PET相似,不同之处在于分子链中PEN由刚性更大的萘环代替了PET中的苯环。萘环结构使PEN比PET具有更高的物理机械性能、气体阻隔性能、化学稳定性及耐热、耐紫外线、耐辐射等性能。近年来,PEN薄膜主要应用于磁带的基带、柔性印刷电路板、电容器膜、F级绝缘膜等方面,而PEN薄膜新的用途仍然在不断开发中。如数据磁带,数据磁盘的种类有DDS(数字、数据、储存),8MM数据磁带,1/4英寸磁带,DDS的需求量较大。根据DDS的记忆容量公别为Ⅰ、Ⅱ、Ⅲ型。Ⅱ、Ⅲ型为聚芳酰胺膜,Ⅰ型为PEN与PET共用型。记忆容量为2G,90MM的PEN薄膜代替。从记忆容量来考虑,Ⅰ型几乎全部被PEN占领。随着手机及小型携带机械的发展,对薄膜电容器的需求也不断增大。目前,虽然这方面市场规模虽小,但将是一个很有发展前途的领域。众所周知,聚酯生产过程中,产品粘度是影响产品质量的一项重要指标,乌氏毛细管法是PEN树脂质量控制中常用的分析方法之一,由乌氏毛细管法测量得出的黏数也是PEN树脂的核心指标之一。按国标规定的中描述的步骤测定聚合物的黏数,测试温度为25℃。实验方法如下:实验所需仪器:卓祥全自动粘度仪、多位溶样器、自动配液器、万分之一电子天平。实验所需试剂:苯酚、四氯乙烷、三氯甲烷、丙酮或无水乙醇。1、溶剂的配置选择:苯酚/1,1.2,2-四氯乙烷溶剂,在25℃下2、溶剂粘度的测定:卓祥全自动粘度仪设置到实验目标温度值并且稳定后,加入苯酚/1,1.2,2-四氯乙烷,软件中启动测试任务待结束。3、粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。4、PEN树脂稀溶液样品的制备:在万分之一天平上称量到0.0001g,通过自动配液器将溶液浓度配制到0.005g/ml,再将样品瓶放置到多位溶样器中,待溶解完毕后取出冷却到室温待用。5、样品粘度的测定:加入样品,启动软件中特定公式测试,待任务结束。6、粘度管的清洗:再次启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。
  • 专家视角丨药物研发过程中的化学对照品探讨
    精准药物分析的工作,离不开稳定的分析系统和可靠的标准物质(标准品/对照品等)。标准物质具有复现、保存和传递量值的基本作用,对实现测量结果的溯源性,保证测量结果在时间与空间上的连续性与可比性,进而确保测量结果的准确可靠、有效与国际互认具有关键作用。 岛津为制药行业客户提供稳定可靠的标准品/对照品制备解决方案:制备液相系统(Prep LC)、质谱引导的制备液相系统(MS-trigger Prep LC),超快速制备纯化液相色谱系统(UFPLC)、制备超临界流体色谱(Prep SFC)。 超快速制备纯化液相色谱系统(UFPLC)可在线完成从分离、浓缩、纯化到回收的制备全过程。 2020年,中国药科大学药物分析系吴春勇博士于新药仿药CMC实操讨论群进行了精彩而全面的主题分享,并发表在“新药仿药CMC实操讨论”公众号,经过“新药仿药CMC实操讨论”的授权,在此分享吴春勇博士的《化学药物研发过程中的对照物探讨》。 概述案例 对于吴春勇博士的《化学药物研发过程中的对照物探讨》,新药仿药CMC实操讨论群也进行了较为热烈的探讨。PPT正文后续延申的讨论内容如下(基本按照时间先后顺序列出)。 沈晓斌博士(前FDA资深审评员,FDA报批咨询顾问):very nice.吴博士论述的非常全面、非常细。我们就说比如说在FDA做review的时候呢,我们个人不会接触那么全面,各种各样的方式,这个标准品的这个去就是抽点它的含量呀,就是拿到他的COA,通常不会把各种方法都是看过一遍的。 就是它这个PPT呢,把所有的东西都给想细细的捋了一遍,个人觉得就是这是一个对知识体系的全面的补充,有些东西,因为你以前没有接触过,你不会考虑那么细,当在FDA的时候你看到的是公司怎么做,然后你来评估他是否合理,是否可以接受,或者跟FDA的现有要求,来评估。 想要就说一点,FDA本身他不去说去该怎么去定量,这个标准品他只是负责审评,就是评审你(的资料),外界可以自己去建议你想要的方式,但是你要有足够多的科学依据,然后他(FDA)来评估是否可以接受,就是完全靠自己来论述清楚。 另外就是说国内看起来,这个我以前对国内这个没有太多的,而且也没有特别去关注,因为我这个工作最早才从FDA报批方面的东西,吴教授这个主题一讲,觉得国内在有些方面其实要求是似乎是比USP、FDA的要求更细更多一些,有一种感觉就是弯道超车已经超了,在有些方面实际上是做的更好。只不过,过去这些年,西方就是设定了这种既定的质量标准,那其他国家,就因为你要照着西方去做仿药嘛,你就必须根据他的规则来走,更多的是这方面的区别。 孙亚洲老师(长沙晶易首席科学家):意见1:研发人员买的非法定对照品,外标法测定杂质含量时,很多人直接采用了COA的赋值,也直接采用相应的测定结果订入了标准,有些不妥。包括批检验,最初的朔源需要是法定对照或者经过标定的对照品。 意见2:在吴博士的ppt中,对于非法定来源的如百灵威,sigma等买到的杂质对照品,拿到后是否需要再行进行研究工作或者分析一下是否存在风险,似乎没有提出来。这个问题建议大家是否深入思考一下。 群主补充:只有经过标化赋值且可溯源(过程,方法,验证)的,风险才是最低的。 群主补充:尽管杂质测定中,如5%的误差是可以接受的(这属于科学性的范畴);但不等同于对照品/标准品可以草率拿来,草率采用他人的赋值,这完全是两个范畴。也许某份杂质对照品中含水量10%,无机成分包括前处理过程带来的硅胶等30%,若草率定量,杂质的真实含量会被低估如40%。 沈晓斌博士:同意以上的观点。 群友1:通过药品杂质的公司购买的对照品,我们就碰到了,欧美的一家知名公司提供的对照品结构出现偏差,我们通过多次比对都无法拿到和代谢产物吻合的结果,多次交涉和讨论之后才发现该公司的产品是另外一个同分异构体。 吴春勇博士(中国药科大学药物分析系副教授):看来概率虽然小,这个问题还是客观存在的。 沈晓斌博士:提供化合物的公司没有责任和义务。使用者必须做该做的来证明给监管机构标准品的使用是合理的。 刘国柱博士(长沙晨辰医药创始人、技术总监):我请教吴博士一个问题,目前国内杂质对照品市场非常混乱,大部分购买的杂质对照品都是经几手倒卖才到厂家手里,对照品塑源存在问题,谱图与赋值真实性也存在问题,请问对此引入的风险有何看法? 群友2:在购买对照品的时候,在COA的同时能否得到该合成方法的信息,这个在技术层面上是有难度的。没有哪个合成公司愿意提供产品合成路线给对方的。 群友3:好多杂质对照品本身不稳定,需要在-20℃保存,有可能在运输过程中就发生了变化,拿到的第一时间应该进行确认,遇到好几次这种情况。 吴春勇博士:在现有的条件下,购买的商业化对照品全部自己赋值,实践上还是存在相当的困难,成本上也没法控制。所以我个人观点:1)尽量选择知名公司;2)自己对风险进行评估,尤其是校正因子与各国药典不同,或者结构上与待测药物的生色团类似,分子量相当,校正因子却有显著不同。 【插话:知名公司依旧有风险或风险大】 是的,分享的那个案例,购买公司是业界相当知名的! 群友4:购买杂质时能同时获得合成信息的可能性非常小,最多提供四大谱(还不带解谱的),那就需要公司内部有比较强大的解谱能力,有碰到过解谱结果和供应商提供的不一致的情况,所以购买“商业化”的杂质对照风险是很大,市场良莠不齐,缺乏有效的管控。 群友5:我们碰到问题的那家公司就是业界知名对照品公司,也有出失误的概率。 刘国柱博士:另请教吴博士及大家一个问题,目前国内许多企业对于杂质对照品的结构确证,很多时候都只做了质谱与NMR氢谱与碳谱,不做二维;而事实上不做二维NMR谱,NMR信号是无法归属的,从而不足以确定杂质结构,有可能确证的结构是错的;请问这个问题大家如何看待? 吴春勇博士:我个人只要做结构确认,一定做二维。 刘国柱博士:那我和您观点一致,强烈呼吁大家做结构确证一定要做二维。 购买的杂质对照品一般只提供质谱与NMR氢谱与碳谱,不做二维与结构解析;在此习惯引导下,国内许多企业自已做杂质结构确证也只做个质谱与NMR氢谱与碳谱,个人观点这是存在风险的做法。 代孔恩(安士研发总监):法规有明确规定必须这么表征,很多标准品量很小,做全应该不容易。【插话:情况多,复杂,没法一刀切】 黄常康博士(南京百泽医药创始人):有些杂质是定向合成的,或者是有文献数据的。我觉得根据实际情况来判断需不需要。不用二维定不了结构的,该做就做,有些简单的杂质,其实氢谱已经足够了,质谱只是多一个证据。 自己做的话,还需要加上做结构确证的杂质的钱,很多时候会差很多。 群友6:对照品的检测分析,既要有普遍性的,也要特殊性的,这个普遍性与特殊性的界点怎么界定,很难有一个文件化的说法。 以上讨论内容来源: 新药仿药CMC实操讨论公众号
  • 与DNA提取有关的那些事
    也许你很难想象一片叶子、一块肌肉、一管血液都经历了什么,最后以核酸的形式呈现。核酸的提取是所有分子生物学研究的基础,核酸提取的质量、浓度的多少对于下游分子生物学实验的成败起着关键的作用,今天我们就说一说关于DNA提取的那些事儿。一. DNA提取原则1、保证DNA分子的完整性2、排除有机溶剂与金属离子的干扰3、排除蛋白质、多糖、多酚、脂类的污染4、获得高纯度的核酸5、方法操作简便,稳定性强二. DNA有哪些染色体DNA、线粒体DNA、叶绿体DNA、质粒DNA、病毒/噬菌体DNA等。三. 样本的收集保存注:详细操作可参见《派森诺样品制备及质量要求》文件,可向当地销售或技术-支持索取。四. DNA提取原理及方法目前提取DNA的方法繁多,如CTAB法、SDS法、各种试剂盒等,但原理大致相同,主要是裂解和纯化两大步骤。首先对样品破壁裂解,采用机械力、化学试剂、酶等方法将DNA释放出来,随后去除蛋白质、糖、酚、金属离子等杂质,再用无水乙醇、异丙醇沉淀或载体吸附DNA,之后洗涤溶解即可得到核酸。虽然原理相似,但不同提取方法使用的试剂有很大差别,下面列举出在提取过程中,常用试剂的作用及原理:1、裂解相关试剂 (1)CTAB(十六烷基三甲基溴化铵):一种阳离子表面活性剂,在高盐溶液中,CTAB可与蛋白质和中性多糖形成复合物而沉淀,但不能沉淀核酸和酸性多糖,另外它还能保护DNA不受内源核酸酶的降解。(2)SDS(十二烷基硫酸钠):一种阴离子去污剂,可使细胞膜崩解,与膜蛋白疏水部分结合并使其与膜分离,使蛋白变性。(3)PVP(聚乙烯吡咯烷酮):是酚类化合物的螯合剂,可与多酚化合物形成复合体,使其不被氧化成醌类。(4)β-巯基乙醇:抗氧化剂,有效地防止酚氧化成醌,避免褐变,使酚容易去除。(5)蛋白酶K:用于生物样品中蛋白质的一般降解,将蛋白质降解成小分子肽或氨基酸,使DNA分子分离出来。2.纯化相关试剂耗材(1)苯酚:使蛋白质变性,同时抑制了DNase的降解作用。(2)氯-仿:克服酚的缺点,加速有机相与液相分层,去除核酸溶液中的迹量酚(酚易溶于氯-仿中)。(3)异戊醇:少许异戊醇可以减少蛋白质变性操作过程中产生的气泡,有助于分相,保持体系的稳定。(4)无水乙醇:沉淀DNA,不易沉淀盐类等物质;异丙醇也可沉淀DNA,体积小时间短,但易沉淀盐类物质。(5)核酸纯化柱:采用硅胶膜作为核酸的特异性吸附材料(高盐低pH值结合核酸),同时去除其他杂质,可以最-大程度地回收样品中的DNA(低盐高pH值洗脱),可以用于各物种的DNA提取。操作简单、用时短、纯度高。(6)DNA提取磁珠:是一种核心为四氧化三铁、表面修饰大量硅羟基的磁性微球,能在高盐、低pH条件下和溶液中的核酸通过疏水作用、氢键作用和静电作用等发生特异性结合,而不与其它杂质(如蛋白)结合,可迅速从生物样品中分离核酸,操作安全简单,非常有利于核酸的自动化和高通量提取。五. 核酸的保存短时间(24h内)可放置4℃保存,长期(24h以上)放置于-20℃进行保存,期间避免反复冻融。对于纯度不高、总量较少、完整度不好的非高质量核酸,还需尽早进行后续实验,以防保存时间过长,DNA质量更受影响,进而影响建库和测序质量。以上为大家列举了在提取过程中经常用到的试剂及原理,给出了核酸保存的建议。要强调的是相同的原理下,不是试剂的去污、裂解效果越好就用的越多,还是要在实际提取过程中,根据提取材料的不同、提取结果的差异,灵活调整实验方案。
  • 真空控制在旋蒸分离纯化中的应用
    在使用旋转蒸发仪过程中,分离纯化过程中,所用的温度和真空度是重要的设置参数。物质的饱和蒸气压是温度和真空度控制的参考标准(见附表)。* 什么是饱和蒸气压? 无论是液体还是固体,时时刻刻都存在蒸发(升华)、凝结过程,而气化后的气体分子会对物质表面形成压力。而蒸气压指的就是液体或固体表面存在着的该物质的蒸气,这些蒸气对液体或固体表面产生的压强。  饱和蒸气压就是指在密闭条件中、一定温度和气压下,物质的蒸发(升华)与凝结处于动态平衡状态时,那个时候该物质的蒸气压。 以常见的水为例(纯水),密闭容器中,抽走空气,水会不断蒸发,随着温度的不同,其蒸气形成的饱和蒸气压也会不同。如果温度稳定在100℃,那蒸气就会不断形成,直至蒸气压到101.32kPa,也就是那个时候水的饱和蒸气压。这个时候如果温度不再升高,101.32kPa的蒸气压下,随后蒸气虽然在继续产生,但同时也会有等量的蒸气重新凝结为水,形成平衡,压力不再升高;如果温度为30℃,那么水蒸汽形成的蒸气压就不会超过4.2455kPa;20℃时,饱和蒸气压就是2.3388kPa。* 真空控制与旋蒸分离纯化 旋转蒸发仪在进行分离纯化的过程中,要考虑到目的产物在高温下会出现变性或分子结构损坏的情况。因此需要到较低的温度下进行分离纯化。在较低的温度下形成分离试剂的饱和蒸气压,需要借助真空泵进行抽真空。通过对真空度的控制,可以在目的产物变性的安全温度以下对混合溶剂进行快速分离提纯。* WIGGENS防腐蚀真空控制器 WIGGENS的DVR480 型防腐蚀真空控制器,专用于旋蒸的真空度控制。最低可控制真空度达到0.1mabr ,支持最多5 段编程控制,可以高效自动地实现多种溶剂的回收。接触气体材料均为PTFE 或高性能陶瓷,可耐受酸、碱、以及各种有机溶剂气体。数字式显示,按键控制,具有USB 数字接口,以及模拟输入输出接口。可以连接泵电源控制,在达到稳定真空度后暂时关停泵电源,节能环保;也可工作在泵的常开状态。* 附表:常用有机溶剂饱和蒸气压(40℃)需要的真空度溶剂分子式40℃(104℉)下的饱和蒸汽压 (mbar)摩尔质量 (g/mol)水H2O7418.0四氯化碳CCl4285153.8三氯甲烷CHCl3477119.4甲酸CH2O211446.0二氯甲烷CH2Cl2~atm.84.9甲醇CH4O35232.0四氯乙烯 (PCE)C2Cl453165.8三氯乙烯C2HCl3191131.4五氯乙烷C2HCl514202.3反式-1,2-二氯乙烯C2H2Cl277796.9顺式-1,2-二氯乙烯C2H2Cl248896.91,1,2,2-四氯乙烷C2H2Cl419167.81,1,1-三氯乙烷C2H3Cl3307133.4乙腈C2H3N22941.1乙酸C2H4O24760.01,2-二氯乙烷C2H4Cl221499.0乙醇C2H6O17846.1丙酮C3H6O56358.1二甲基甲酰胺(DMF)C3H7NO1373.1正丙醇C3H8O7060.1异丙醇C3H8O13660.1四氢呋喃 (THF)C4H8O40272.1丁酮C4H8O26572.1(1,4-)二氧己环C4H8O210288.1乙酸乙酯C4H8O225188.1正丁醇C4H10O2574.1异丁醇C4H10O4274.1叔丁醇C4H10O14074.1乙醚C4H10Oatm.74.1二乙胺C4H11N58173.1吡啶C5H5N6079.1正戊烷C5H12atm.72.2正戊醇C5H12O1188.2甲基叔丁基醚C5H12O59788.2异戊醇C5H12O1488.2氯苯C6H5Cl34112.6苯C6H623678.1环己烷C6H1225084.2乙酸丁酯C6H12O235116.2己烷C6H1437386.2二异丙醚C6H14O372102.2甲苯C7H87792.1正庚烷C7H16124100.2二甲苯C8H1027106.2
  • PCR实验室污水处理和超纯水在抗疫工作中的作用
    PCR实验室污水处理和超纯水在抗疫工作中的作用据全国数据统计,直至5月11日,全国累计确诊84416人,现有确诊355人,累计死亡4643人,累计治愈79418人。目前国内疫情已经得到良好的控制,其中PCR技术作为新型冠状病毒核酸检测方法,被广泛应用于此次疫情病原检测和确认领域,有力推动了对疑似疫情感染患者的甄别工作,在疫情防控中发挥了重要作用。近日,国家卫生健康委员会发布文件,要求各级疾控中心、三级医院和区县级医院加强PCR实验室建设,在短时间内实现区县核酸检验.自测能力。 1.PCR实验室(PCR实验室内部实景图)PCR实验室又叫基因扩增实验室。PCR是聚合酶链式反应(Polymerase Chain Reaction)的简称。是一种分子生物学技术,用于放大特定的DNA片段,可看作生物体外的特殊DNA复制。通过DNA基因追踪系统,能迅速掌握患者体内的病毒含量,其精确度高达纳米级别。PCR技术能够精确检测病毒在患者体内存在的数量、是否复制、是否传染、传染性有多强、帮助医生判断病人是否必要服药、最适合使用哪类抗病毒药物、判断药物疗效如何、给临床治疗提供了可靠的检验依据。 2.PCR实验室详解(PCR实验室3D建模图)PCR实验室原则.上分为四个单独的工作区域:试剂准备区、标本制备区、扩增区和扩增产物分析区。为避免交叉污染,进入各个工作区域必须严格遵循单一方向原则,即只能从试剂准备区→标本制备区扩增区扩增产物分析区,不得逆向流动,并且各区完全独立,如为一个区套一个区的模式,区间不能直通,则必须建有缓冲间,保证两个区域间始终处于隔离状态。(PCR实验室平面图)01试剂准备区扩增试剂的配制,分装和保存,本区气压应保持微正压。主要设备有一级超纯水仪、天平、冰箱、离心机、加样器、振荡器、紫外灯。 02标本制备区实验室样品的混样和测试样品的制备。工作区域为负压或减压,安装排风系统。主要设备有冰箱、生物安全柜、离心机、加样器、振荡器、60°C灭活恒温箱、紫外灯。 03扩增区PCR扩增反应体系的配制和模板的加入,核酸扩增。工作区域为负压或减压,安装排风系统。主要设备有核酸扩增设备、冰箱、洁净工作台、污水处理设备、离心机、加样器、紫外灯。 04扩增产物分析区扩增产物的测定。工作区为负压,安装排风系统。使用仪器有酶标仪、洗板机、加样器等。 3.PRC实验室污水PRC这一类医疗监测实验室污水成分复杂,一般都含有铅、汞、镉、六价铬、铜、锑、二价铁、铝、锰等重金属以及大量的细菌、病毒、虫卵等致病病原体,还有化学药剂和放射性同位素等。实验室污水不经过处理或只是简单处理直接排入地下污水管网,送到大型生活污水处理厂集中处理,酸类污水就会腐蚀铁质下水道,有机溶剂类废水则会腐蚀PVC管道 污水中含有的毒剧毒物质,重金属、难降解物质,也会对城市污水处理厂运行造成冲击(城市污水处理厂不具备医疗污.水处理能力),污水中的污染物质在降解过程中可能造成二次污染。 4.卓越实验室综合废水处理设备ZYSYFS 产品说明卓越实验室综合废水处理系统由废水收集单元、自动调节单元、预处理单元、自动加药单元、混凝气浮搅拌单元、絮凝助凝沉淀单元、沉降分离单元、固液分离单元、污泥干化单元、重金属捕捉单元、过滤吸附单元、新型催化活性微处理单元、电化学催化氧化还原专利技术处理单元、多程高级分解降解处理单元、两级有机生物活性处理单元、新型生物反应处理单元、复合式消毒处理等技术工艺组成,形成一个完整的实验室综合废水处理系统。系统运行采用西门子PLC可编程ZYSYFS控制系统和10英寸LCD液晶触摸屏、人机界面操作系统、远程监控及操作系统,按照PLC控制器设定好的程序和PH自控仪表设定的参数进行全自动运行,多级自动在线监测。针对不同实验室废水的成分和浓度,控制系统自动进行计算然后按比例进行自动投放药品,更加科学化和合理化,确保处理效果,同时节省药品耗量,无须专人值守。 产品处理能力范围1、产品基本参数:①处理量/天:250L/D - 10T/D ; 占地面积约10-20 m2;工作电压: 380V/220V- 50HZ ; 功率:1.25KW(根据设备大小不同增加) ; 设备环境温度:0—60℃;②实验室综合废水成份:无机物类、有机物类、生物类废水等;1)、无机物类:重金属离子、酸碱PH值、卤素离子及其他非金属离子等;a、重金属离子类:汞、镉、总铬、六价铬、铅、锰、银 、镍、锌、铁、钴、锡、镁、锌、铜、铝、砷等金属阳离子以及处于络合状态的重金属离子团(Cr2O7)2-、(CuCN) -、(AuCN)- 、(PtCl6)2-等;b、非金属离子类:氟酸或氟化物、游离氰或氰化合物、络离子化合物、AsO32-、AsO43-、Hg+、Hg2+等;c、酸碱PH值:硝酸、盐酸、磷酸、硫酸、双氧水、氯化钾、氯化钙等;2)、有机物类:有机溶剂、洗涤剂、表面活性剂、苯、甲苯、二甲苯、苯胺、苯酚、多氯联苯、苯并芘、酚类、甲醛、乙醛、丙烯腈、丙烯醛、烷烃、烯烃、氟化氢、石油类、油脂类物质、甲醇、苯胺类、多环芳烃、硝基化合物、亚硝胺、氯苯类、硝基苯类、醚类、混合烃类、炳酮、糖类、卤代烃、蛋白质、有机磷农药等;3)、生物类:病原体等;a、病原体:细菌、病毒、衣原体、支原体、螺旋体、真菌、布鲁氏杆菌,炭疽杆菌等;2、处理标准:符合国家污水综合排放标准【GB8978-1996】中的排放标准; 符合污水排入城镇下水道水质标准【GB/T31962-2015】中的排放标准;型 号处理水量功率电控主机尺寸(长*宽*高)安装面积 应用领域ZYSYFS-250L250L/D0.5KW800 × 600 × 1650mm 2-15㎡ 中学/高中/大学/科研机构等实验室;企业/行政单位质检室/化验室/分析中心/医院检验科等ZYSYFS-500L500L/D0.5KW1160 × 705 × 1690mmZYSYFS-1000L1000L/D0.8KW1160 × 705 × 1690mmZYSYFS-2000L2000L/D1.0KW1160 × 705 × 1690mmZYSYFS-3000L及以上3000L/D及以上1.2KW及以上1160 × 705 × 1690mm +拓展模块尺寸产品型号及规格参数备注:尺寸仅供参考,可根据客户要求定制,也可根据废水污染浓度,调整处理工艺; 5、PCR实验室中的超纯水01超纯水的定义超纯水(UItrapure water)又称UP水,是指电阻率达到18MQ*cm(25°C)的水。这种水中除了水分子外,几乎没有什么杂质,更没有细菌、病毒、含氯二唔英等有机物,也就是几乎去除氧和氢以外所有原子的水。其电导率一般为0.01μS/cm,电阻率(25°C) 100° cm,含盐量一级水二级水三级水PH值范围(25℃)--5.0-7.5电导率(25℃)ms/m≤0.010.100.50us/cm≤0.115电阻率MΩ.cm@25℃1010.2可氧化物[以O计]mg/L-≤0.08≤0.40吸光度(254nm,1cm光程)≤≤0.001≤0.01-可溶性硅(以二氧化硅计)含量(mg/L)≤0.01≤0.02-蒸发残渣(mg/L)-≤1.0≤2.0注1:由于在一级水、二级水的纯度下,难于测定其真实的PH值,因此,对于一级水、二级水的PH值范围不做规定。注2:由于一级水的纯度下,难于测定可氧化物质和蒸发残渣,对其限量不做规定,可用其他条件和制备方法来保证一级水的质量。 6、卓越常规分析型超纯水机ZYCGF(ZYCGF台上式 +无菌水箱)产品说明 ZYCGF常规分析型超纯水机是替代蒸馏水器的理想产品,此产品低能耗、全自动控制无须人照看、能为广大实验室客户提供高品质超纯水,因此得到广大客户的认同。此产品是将自来水纯化为符合国标GB/T6682-2008的实验室三级纯水和一级超纯水,全自动“傻瓜”式设计,使用方便,是即节能又高性价比的实验室纯水系统,且在线监测保证水质的可靠性。技术指标机型型I型II型III型 IV型 台上式(T)ZYCGF-I-10/20TZYCGF-II-10/20TZYCGF-III-10/20TZYCGF-IV-10/20T落地式(L)ZYCGF-I-20/40/60/100LZYCGF-II-20/40/60/100LZYCGF-III-20/40/60/100LZYCGF-IV-20/40/60/100L进水水源总溶解性固形物含量TDS<200ppm,水压1.0-5.0kg/cm2工作水温25℃制水量10/20/40/60/100升/小时出水流速1.5-2.0升/分钟(水箱储水时)RO出水水质(μS/cm)电导率2-10μS/cm电导率2-10μS/cm(在线监测)UP出水水质(MΩ.cm)电阻率18.25 MΩ.cm(在线监测)重金属离子<0.1ppb微颗粒物(0.2um)<1个/ml微生物<1cfu/ml总有机碳 TOC<20ppb 电阻率18.25 MΩ.cm(在线监测)重金属离子<0.1ppb微颗粒物(0.2um)<1个/ml微生物<1cfu/ml总有机碳 TOC<20ppb电阻率18.25MΩ.cm(在线监测)重金属离子<0.1ppb微颗粒物(0.2um)<1个/ml微生物<1cfu/ml总有机碳 TOC <10ppb 电阻率18.25MΩ.cm(在线监测)重金属离子<0.1ppb微颗粒物(0.2um)<1个/ml微生物<1cfu/ml总有机碳 TOC <10ppb 热源(内毒素)≤ 0.01EU/ml 选型配置单显表双显表MF终端微滤+UV紫外灯MF+UV+UF超滤主机尺寸(mm)530*380*570 (台上式)550*420*1150(落地式)水质预处理器16寸预处理系统(台上式)20寸预处理系统(落地式)重量(kg)25~30kg (台上式)40~65kg(落地式)功率(W)30W-50W (台上式)50W-100W (落地式)适用范围1、器皿冲洗、学生实验; 8、原子发射(AES);2、制备化学溶液、生化试剂; 9、高效液相色谱(HPLC);3、缓冲液、清洗机、高压灭菌锅; 10、离子色谱(IC);4、常规理化检测; 11、质谱分析(MC);5、生化分析; 12、等离子发射 (ICP);6、微生物培养基; 13、分析精度不高的高效液相色谱(HPLC) 等7、原子吸收(AA); 仪器分析用。 纯水储水箱A、10T/20T(台上式)标配3.2G压力水箱; B、20L/40L/60L(落地式)标配6G/11G水箱; 注:水箱大小可根据用户情况选配。C、100L(落地式)标配20G水箱;(ZYCGF落地式+无菌水箱)
  • 甘州区疾控中心PCR实验室污水设备和超纯水系统成功交付
    甘州区疾控中心PCR实验室污水设备和超纯水系统成功交付关于PCR实验室 PCR实验室又叫基因扩增实验室。PCR是聚合酶链式反应(Polymerase Chain Reaction)的简称。是一种分子生物学技术,用于放大特定的DNA片段,可看作生物体外的特殊DNA复制。通过DNA基因追踪系统,能迅速掌握患者体内的病毒含量,其精确度高达纳米级别,精确检测乙肝病毒在患者体内存在的数量、是否复制、是否传染、传染性有多强、是否必要服药、肝功能有否异常改变能及时判断病人最适合使用哪类抗病毒药物、判断药物疗效如何、给临床治疗提供了可靠的检验依据。PCR实验室设计图合作单位介绍 甘肃省张掖市甘州区疾控中心是一家经国家卫生部门批准成立的一家集医疗、临床、预防、保健、科研于一体的预防、职业卫生检测、环境检测等项目综合性公立疾病预防控制中心,是从事基本公共卫生服务的公益性事业单位。合作实验室设计布局实验区域装修重点部分,建筑面积为 100m2,吊顶高度 2.6m。主实验区包括 PCR 实验室,辅助功能区包括更衣室、洗消室,废水处理室,淋浴间等。实验室平面布局应能清晰的分出清洁区、半污区和污染区,各区域之间应有隔断隔开,清洁区主要由更衣室、淋浴间、走廊等组成,半污染区主要由洗消室组成,污染区主要由接受标本区、检测实验室组成。分区分为试剂准备区(I 区)、样品制备区(II区)、扩增区(III 区)和扩增产物分析区(IV 区),四区独立并设有专用走廊和独立缓冲间,工作区与缓冲间安装连锁装置。缓冲间内需设洗手池,可更衣。各区域间有传递窗传递物品,传递窗内部需安装紫外灯。各区面积宜按表 1 要求设计:表 1 PCR 实验室各区建议面积分区占地面积备注试剂准备区(I 区)10m2配置生物安全柜、冰箱、高速离心机。实验台等。样品制备区(II 区)10m2配置生物安全柜、冰箱、180℃冰箱、冷冻离心机、实验台等。扩增区(III 区)10m2配置实验台、PCR仪等。扩增产物分析区(IV 区)10m2配置实验台。缓冲间2-3.3m2配置不锈钢洗手池、手消毒、高速烘手器、更衣柜等。走向①人流:按照从试剂准备区→样品制备区→扩增区→扩增产物分析区,不得逆向流动。 ②物流:通过传递窗按照从试剂准备区→样品制备区→扩增区→产物分析区传递,不得逆向传递。 ③气流:从I 区---IV 区逐渐递减。 辅助功能区洗消间设置在产物分析区外,方便废弃物灭活,避免运输医疗垃圾时污染清洁区。医疗废水处理室实验室所有废水都要先集中到五楼卫生间区域,经过废水处理装置处理后再排出。 PCR实验室废水处理设备现场安装图PCR实验室废水处理设备介绍卓越实验室综合废水处理系统由废水收集单元、自动调节单元、预处理单元、自动加药单元、混凝气浮搅拌单元、絮凝助凝沉淀单元、沉降分离单元、固液分离单元、污泥干化单元、重金属捕捉单元、过滤吸附单元、新型催化活性微处理单元、电化学催化氧化还原专利技术处理单元、多程高级分解降解处理单元、两级有机生物活性处理单元、新型生物反应处理单元、复合式消毒处理等技术工艺组成,形成一个完整的实验室综合废水处理系统。PCR实验室中对分析用水的要求PCR实验室试剂的操作。⑴所用的所有溶液都应该没有核酸和(或)核酸酶(DNase和RNase)污染。⑵所有PCR试剂中使用的水都应该是高质量的-新鲜蒸馏的去离子水,用0.22μm过滤的,并且是高压灭菌。⑶在20℃到25℃贮存的试剂建议加点像叠氮钠一类的抗微生物剂,在扩增试剂或样品制备试剂中加入0.025%的叠氮钠不抑制扩增反应。⑷所用试剂都应该以大体积配制,实验一下看试剂是否满意,然后分装成仅够一次使用的量进行贮存。⑸所有试剂和样品准备过程中都要使用一次性灭菌的瓶子和管子。⑹新配制的试剂在用于准备新的标本之前应该加以检验。⑺样品准备和前PCR区所使用的移液管在不使用时都应该小心保存。超纯水机在PCR实验室中的作用超纯水用于:1、在PCR实验中,配置电泳仪缓冲液,保持细胞培养箱湿度,测序仪取样针的清洗以及试剂的配制溶液稀释,都要用到超纯水。2、在PCR实验中,一般用于洗板机移板机移液针的清洗。 纯水用于:在PCR实验室中典型的应用包括玻璃器皿和超净实验台清洗、高压灭菌器、恒温恒湿实验箱和制冰机用水。 超纯水机现场安装图超纯水机介绍 ZYCGF常规分析型超纯水机是替代蒸馏水器的理想产品,此产品低能耗、全自动控制无须人照看、能为广大实验室客户提供高品质超纯水,因此得到广大客户的认同。此产品是将自来水纯化为符合国标GB/T6682-2008的实验室三级纯水和一级超纯水,全自动“傻瓜”式设计,使用方便,是即节能又高性价比的实验室纯水系统,且在线监测保证水质的可靠性。 感谢张掖市甘州区疾控中心对我司的信任,我司一直秉承“以信立业、创新共赢”的经营理念,提供更高质量的产品,服务于社会。
  • 默克密理博与戴安公司签署全球分销协议,免化学试剂型离子色谱再无水质之忧
    2010年9月2日,戴安公司与默克密理博宣布签署了一项全球分销协议,此协议确定戴安公司可以在全球范围内直接销售默克密理博公司ICW-3000水纯化系统及耗材。 暨全球分销协议之后,戴安公司与默克密理博也于2010年9月9日就中国的分销协议达成共识。 ICW-3000水纯化系统是默克密理博为戴安免化学试剂型离子色谱系统专门设计的可提供在线超纯水的水纯化系统,该系统采用方便的“just add water”技术,不需要准备额外的淋洗液。该系统安装简便,并可通过戴安离子色谱系统软件来实现全线控制。另外ICW-3000 水纯化系统再循环的待机模式能在较长时间内保持高纯度的水质。在较低的水和能源消耗的情况下更好地满足毛细管型离子色谱仪的在线用水需求。 水质的好坏在分析检测过程中起着至关重要的作用,只有高品质的水,才能确保免化学试剂离子色谱技术发挥到极致。在离子色谱系统上配备超纯水系统的整体方案,将大大减少因水质问题而引起的各种离子色谱问题,更在一定程度上降低了可疑数据分析的复杂度和困难度,从而提高产品性能。目前戴安与默克密理博两公司就产品ICW-3000分销方式、安装、维修、应用支持及培训,售后等方面达成共识,并商定将尽快完善组合产品的信息,所有用户从现在开始即可直接 从戴安公司购买默克密理博的ICW-3000水纯化系统,戴安公司免化学试剂离子色谱用户从此再无水质之忧。 关于默克密理博 默克密理博是德国Merck KGaA公司旗下的生命科学部门,致力于为全球从事生物技术和生物医药的研发和生产的用户提供创新的技术,高品质的产品、服务和商务关系。 作为全球生命科学工具行业名列前三的研发投资者,默克密理博通过与用户在最新的科学和工程思路的合作,成为了全球用户的策略性合作伙伴,共同推进生命科学的发展。默克密理博的总部设在美国麻省,在全球拥有近10000名员工,在64个国家拥有办事机构。 在美国和加拿大,默克密理博被称为EMD Millipore。 欲了解更多默克密理博信息,请登陆www.millipore.com. ADVANCING LIFE SCIENCE TOGETHERTM Research. Development. Production.
  • 【行业应用】赛默飞发布气相色谱法测定工业用异戊烯中含氧化合物解决方案
    科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布气相色谱法测定工业用异戊烯中含氧化合物的解决方案。高纯度异戊烯是一种重要的精细化工中间体,主要用于生产频哪酮、异戊二烯和叔戊醇,也可作为合成橡胶、树脂的中间体等。采取醚化法生产的异戊烯产品中通常含有甲醇、二甲醚、TAME等含氧化合物杂质,这类杂质对产品质量影响很大,因此在生产过程中要控制它们的含量。本实验采用Trace 1310气相色谱仪,配合AS 1310自动进样器,参考石油化工行业标准送审稿《工业用异戊烯中含氧化合物的测定(气相色谱法)》,测定工业用异戊烯中浓度不低于0.001%(质量分数)的甲醇、甲基叔戊基醚、叔戊醇等含氧化合物,以外标法计算各组分的含量。Thermo Scientific的Trace 1310色谱仪配合Thermo AS 1310液体自动进样器,在测定异戊烯中含氧化合物分析时,方法可靠、操作简单、结果准确。更多产品信息,请查看:气相色谱(trace1310)https://www.thermofisher.com/order/catalog/product/14800302#/legacy=thermoscientific.cn?CID=search-PR 应用方法下载,请查看:https://www.thermofisher.com/content/dam/tfs/Country%20Specific%20Assets/zh-ch/CMD/Chrom/petrochemical/documents/Industrial%20Isopentenyl%20oxygenates%20Measurements%20using%20Gas%20Chromatography.pdf?CID=search-PR ---------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公 司,员工人数约3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应 用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成 立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com请扫码关注:赛默飞世尔科技中国官方微信
  • 《污(废)水处理用碳源药剂》标准首发!规定多项指标
    近日,中国技术经济学会批准发布《污废水处理用碳源药剂》T/CSTE0001—2021团体标准。本文件规定了污(废)水处理用碳源产品的技术要求、试验方法、检验规则、标志、包装、运输和贮存要求。本文件适用于污(废)水处理用的碳源产品,该产品主要用于废水、污水的生物反硝化脱氮过程中有机碳元素的补充、水质可生化性差时提高其可生化性。《污(废)水处理用碳源药剂T/CSTE 0001-2021》前言本文件按照 GB/T 1.1-2020《标准化工作导则 第 1 部分:标准化文件的结构和起草规则》的规定起草。请注意本文件的某些内容可能涉及专利。本文件的发布机构不承担识别专利的责任。本文件由中国技术经济学会归口。本文件为首次发布。1、范围本文件规定了污(废)水处理用碳源产品的技术要求、试验方法、检验规则、标志、包装、运输和贮存要求。本文件适用于污(废)水处理用的碳源产品,该产品主要用于废水、污水的生物反硝化脱氮过程中有机碳元素的补充、水质可生化性差时提高其可生化性。2、规范性引用文件下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。其中,注日期的引用文件, 仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。GB 190-2009 危险货物包装标志GB/T 191-2008 包装储运图示标志GB/T 261 闪点的测定 宾斯基-马丁闭口杯法GB/T 510-2018 石油产品凝点测定法GB/T 601 化学试剂 标准滴定溶液的制备GB/T 602 化学试剂 杂质测定用标准溶液的制备GB/T 603 化学试剂 试验方法中所制剂及制品的制备GB/T 6678 化工产品采样总则GB/T 6679 固体化工产品采样通则GB/T 6682-2008 分析实验室用水规格和试验方法GB 6944-2012 危险货物分类和品名编号GB/T 8170 数值修约规则与极限数值的表示和判定GB 11893 水质 总磷的测定 钼酸铵分光光度法GB 12268 危险货物品名表GB/T 21621 危险品 金属腐蚀性试验方法GB/T 22592 水处理剂 pH值测定方法通则GB/T 22594 水处理剂 密度测定方法通则GB/T 33086 水处理剂 砷和汞含量的测定 原子荧光光谱法GB/T 37883 水处理剂中铬、镉、铅、砷含量的测定 电感耦合等离子体发射光谱(ICP-OES)法HJ 505-2009 水质 五日生化需氧量(BOD5)的测定 稀释与接种法HJ 636-2012 水质 总氮的测定 碱性过硫酸钾-消解紫外分光光度法HJ 828-2017 水质 化学需氧量的测定 重铬酸盐法3、术语和定义下列术语和定义适用于本文件。3.1 碳源carbon source可为污(废)水生化处理系统的微生物生长代谢提供营养物的含碳元素化合物。3.2 有效碳源成分effective carbon source composition具有单一分子式和分子结构的、且易被微生物利用的有机化合物,包括甲醇、乙醇、丙醇、丁醇、乙二醇、丙三醇、丁醇、戊醇等小分子醇类,甲酸、乙酸、丙酸、乳酸、丁酸、乙酸盐、柠檬酸、柠檬酸盐等小分子有机酸和有机酸盐类,葡萄糖、果糖、蔗糖等糖类物质。规定有效碳源成分需符合相应的国家或者行业标准的要求。3.3 单一碳源single-component carbon source只含有一种有效碳源成分的碳源。3.4 复合碳源composite carbon source由两种或两种以上的有效碳源成分组成、有效碳源成分之间须兼容且无化学反应、不存在安全风险的碳源。本文件中所涉及的复合碳源不包含固体产品。4、技术要求4.1 用于生产单一碳源和复合碳源的有效碳源成分应符合已发布的国家标准、行业标准的质量要求和有关规定,其安全要求按照GB 12268-2012执行,详见附录A。4.2 碳源生产工艺宜采用国家鼓励的先进技术工艺,不应使用国家或有关部门发布的淘汰或禁止的技术、工艺或材料,不得超越范围选用限制使用的材料生产。4.3 以不危及自身或他人健康和安全的方式进行产品的生产和复配,碳源产品应稳定,无后续化学反应。4.4 液体单一碳源产品为无色或微黄色透明液体,不得有与产品原料气味不相符的气味。固体产品为无色透明或白色结晶粉末或结晶颗粒,无臭无异味,无肉眼可见杂质,溶于水。复合碳源产品为无色至棕黄色透明液体,不得有与产品配方中碳源有效成分不相符的气味。4.5 污(废)水处理用碳源产品按本文件规定的试验方法检测应符合表1要求。4.6 污(废)水处理用碳源产品的安全性指标应符合表 2 要求。5、试验方法5.1 通则本文件中,除另有规定外,所用试剂,在没有注明其他要求时,均指分析纯试剂;所用水为蒸馏水应符合 GB/T 6682 中三级规格的水或相应纯度的水。试验方法中所用标准滴定溶液、杂质测定用标准溶液、制剂及制品,在没有注明其他要求时,均按 GB/T 601、GB/T 602 和 GB/T 603 之规定制备。所用溶液在未注明用何种溶剂配制时,均指水溶液。5.2 外观和气味检验在自然光下,于白色衬底的表面皿或白瓷板上观察色泽和状态,嗅其味。5.3 有效碳源成分含量的测定单一碳源的有效碳源成分按照成分所归属的行业标准或国家标准所规定的方法进行测定,此处不一一列出。本标准不对复合碳源的有效碳源成分含量进行限定。5.4 化学需氧量(CODCr)的测定5.4.1 方法提要在试样中加入已知量的重铬酸钾溶液,并在强酸介质下以银盐作催化剂,经沸腾回流后,以试亚铁灵为指示剂,用硫酸亚铁铵滴定水样中未被还原的重铬酸钾,由消耗的重铬酸钾的量计算出消耗氧的质量浓度。5.4.2 试样溶液的制备称取10 g试样,精确至0.01 g,加水转移至1 L容量瓶中,用水稀释至刻度,摇匀,此为试液A。移取适量试液A至100 mL容量瓶中,加水稀释至刻度,摇匀,采用逐级稀释法,使待测溶液中CODCr范围在50 mg/L~700 mg/L。若稀释液浑浊,用中速滤纸干过滤。5.4.3 测定取稀释后待测液按HJ 828-2017中9.2规定的方法测定。5.4.4 结果计算试样中化学需氧量(CODCr)以质量浓度ρ1计,单位以毫克每升(mg/L)表示,按式(1)计算:5.5 BOD5/CODCr 的测定5.5.1 试样溶液的制备称取10 g试样,精确至0.01 g,加稀释水(HJ 505-2009中的4.4)转移至1 L容量瓶中,用稀释水定容至刻度,摇匀,此为试液B。移取适量试液B于100 mL容量瓶中,采用逐级稀释法,用接种稀释水(HJ 505-2009中的4.5)稀释至刻度,摇匀,使待测溶液中BOD5范围在2 mg/L~6 mg/L。5.5.2 测定取稀释后的待测溶液按HJ 505-2009中的7.2规定的稀释接种法测定。5.5.3 结果计算5.5.3.1 五日生化需氧量(BOD5)试样中五日生化需氧量(BOD5)以质量浓度ρ2计,单位以毫克每升(mg/L)表示,按式(2)计算:5.5.3.2 BOD5/CODCr试样的 BOD5/CODCr 以 R 计,按式(3)计算:R = ρ2/ρ1..........................(3)式中:ρ2——试样中五日生化需氧量(BOD5)的质量浓度的数值,单位为毫克每升(mg/L);ρ1——试样中化学需氧量(CODCr)的质量浓度的数值,单位为毫克每升(mg/L)。计算结果保留两位有效数字。5.6 pH 的测定5.6.1 方法提要将配有测量电极和参比电极的酸度计浸入同一被测溶液中,测量试验溶液的 pH 值。5.6.2 仪器设备酸度计:精度为 0.02pH 单位,配有玻璃测量电极和饱和甘汞参比电极或复合电极。5.6.3 试验步骤将适量试样倒入烧杯中,将电极浸入溶液,在已定位的酸度计上读出 pH 值。5.7 密度的测定按 GB/T 22594 规定的方法测定。5.8 水不溶物含量的测定5.8.1 方法提要试样用水溶解后,经过滤、洗涤,烘干至恒量,求出水不溶物的含量。5.8.2 仪器设备5.8.2.1 坩埚式过滤器:滤板孔径为 5 μm~15 μm。5.8.2.2 电热干燥箱:温度可保持在 105 ℃±2 ℃。5.8.3 试验步骤称取约 30 g 试样,精确至 0.01 g,置于 400 mL 烧杯中,加 200 mL 水使之溶解。用已于 105 ℃±2 ℃恒量的坩埚式过滤器过滤,用水洗涤 10 次,每次用水 20 mL。将过滤器连同滤渣在 105 ℃±2 ℃下干燥至恒量。5.8.4 结果计算水不溶物含量以质量分数w1计,按式(4)计算:式中:m2——干燥后坩埚式过滤器和滤渣的质量的数值,单位为克(g);m1——坩埚式过滤器的质量的数值,单位为克(g);m——试料的质量的数值,单位为克(g)。计算结果表示到小数点后两位。5.8.5 允许差取平行测定结果的算术平均值为测定结果,两次平行测定结果的绝对差值不大于0.02%。5.9 总磷含量的测定5.9.1 原理在中性条件下用过硫酸钾使试样消解,将所含磷全部氧化为正磷酸盐。在酸性介质中,正磷酸盐与钼酸铵反应,在锑盐存在下生成磷钼杂多酸后,立即被抗坏血酸还原,生成蓝色的络合物。5.9.2 试样溶液的制备称取 10 g 试样,精确至 0.01 g,加水转移至 100 mL 容量瓶中,用水定容至刻度,摇匀,此为试液 C。移取适量试液 A 于 100 mL 容量瓶中,采用逐级稀释法,用水稀释至刻度,摇匀,使待测溶液中总磷含量范围在 0.01 mg/L~0.6 mg/L。5.9.3 测定移取稀释后的待测溶液 25 mL 按 GB/T 11893-1989 中的 6.2.1.1 进行消解,按 6.2.2~6.2.4 规定的方法测定,同时进行空白试验。若消解后的溶液呈黄色,则应减少待测溶液的取样量重新进行消解。5.9.4 结果计算试样中总磷的含量以质量分数�2计,按式(5)计算:5.10 总氮的测定5.10.1 原理在120 ℃~124 ℃下,碱性过硫酸钾溶液使样品中含氮化合物的氮转化为硝酸盐,采用紫外分光光度法于波长220 nm和275 nm处,分别测定吸光度A220和A275,两者差值为校正吸光度A,总氮(以N计) 含量与校正吸光度A成正比。5.10.2 试样溶液的制备称取10 g试样,精确至0.01 g,加水转移至100 mL容量瓶中,用水稀释至刻度,摇匀。此为试液D。移取10 mL试液D至100 mL容量瓶中,加上稀释至刻度,摇匀。必要时,采用逐级稀释法,用水稀释至刻度,摇匀,使待测溶液中总氮含量范围在0.20 mg/L~7.00 mg/L。5.10.3 测定移取10 mL 试样溶液于25 mL 具塞磨口玻璃比色管中,加入10.00 mL 碱性过硫酸钾溶液(HJ 636-2012 中的 6.11),按 HJ 636-2012 中的 9.1 规定的方法测定。在绘制校准曲线时,碱性过硫酸钾溶液的加入量为 10.00 mL。5.10.4 结果计算试样中总氮含量以质量分数w3计,按式(6)计算:5.11 氯化物(Cl)含量的测定5.11.1 方法提要在酸性条件下,溶液中的氯化物与硝酸银溶液反应生成氯化银沉淀,使溶液浑浊。与标准比浊溶液进行目视比浊。5.11.2 试剂和材料5.11.2.1 硝酸溶液:1+3。5.11.2.2 硝酸银溶液:17 g/L。5.11.2.3 氯化物标准贮备溶液( Cl ):0.1 mg/mL。5.11.2.4 氯化物标准溶液:10 ug/mL。移取 10.00 mL 氯化物标准贮备溶液,置于 100 mL 容量瓶中, 用水稀释至刻度,摇匀。此溶液现用现配。5.11.3 试验步骤5.11.3.1 样品溶液的制备:准确称取 10 g 样品,精确至 0.01 g,加水溶解后转移至 50 mL 容量瓶中, 加水稀释至刻度,摇匀。5.11.3.2 标准比浊溶液的制备:用移液管量取氯化物(Cl)标准溶液 5.0 mL 于 25 mL 比色管中,加2 mL 硝酸溶液,再加入 2 mL 硝酸银溶液,用水稀释至刻度,摇匀,于暗处放置 10 min。5.11.3.3 用移液管量取 2 mL 样品溶液于 25 mL 比色管中,与标准比浊溶液同时同样处理。其浊度不得大于标准比浊溶液。5.12 硫酸盐(SO4)含量的测定5.12.1 方法提要将试样用水溶解后,溶液中的硫酸盐与氯化钡反应生成硫酸钡沉淀,使溶液浑浊。与标准比浊溶液进行目视比浊。5.12.2 试剂和材料5.12.2.1 氯化钡溶液:100 g/L。5.12.2.2 盐酸溶液:1+4。5.12.2.3 硫酸盐(SO4)标准贮备溶液:0.1 mg/mL。5.12.2.4 硫酸盐标准溶液:10 ug/mL。移取 10.00 mL 硫酸盐标准贮备溶液,置于 100 mL 容量瓶中, 用水稀释至刻度,摇匀。此溶液现用现配。5.12.3 试验步骤5.12.3.1 样品溶液的制备:准确称取 10 g 样品,精确至 0.01 g,加水溶解后转移至 100 mL 容量瓶中,加水稀释至刻度,摇匀。5.12.3.2 标准比浊溶液的制备:用移液管量取硫酸盐(SO4)标准溶液 5.0 mL 于 25 mL 比色管中,加2 mL 盐酸溶液,再加入 5 mL 氯化钡溶液,用水稀释至刻度,摇匀,放置 5 min。5.12.3.3 用移液管量取 2 mL 样品溶液于 25 mL 比色管中,与标准比浊溶液同时同样处理。其浊度不得大于标准比浊溶液。5.13 重金属的测定5.13.1 汞(Hg)和 砷(As)含量的测定按 GB/T 33086 规定的方法测定。5.13.2 镉(Cd)、铬(Cr)和铅(Pb)含量的测定按 GB/T 37883 规定的方法测定。5.14 闪点的测定按 GB/T 261 规定的方法测定。5.15 金属腐蚀速率的测定按 GB/T 21621 规定的方法测定。5.16 凝点的测定取适量试样(不需要脱水处理)按 GB/T 510-2018 中的 9.1 规定的方法测定。6、检验规则6.1 组批产品按批次检验,以同原料、同配方、同工艺、同班次所生产的产品为一批次。每批次产品应不超过 100 t。6.2 抽样6.2.1 采样单元按 GB/T 6678 规定确定采样单元数。6.2.2 液体抽样对桶装液体产品,采样时应将采样器深入桶内,从上、中、下部位采样,每个部位采样量不少于300 mL,将所采样品混匀,从中取出约 800 mL,分装于两只清洁、干燥的玻璃瓶中,密封。对于贮罐装液体产品,用采样器从罐的上、中、下部位采样,每个部位采样量不少于 500 mL,将所采样品混匀,从中取出约 800 mL,分装于两只清洁、干燥的玻璃瓶中,密封。6.2.3 固体抽样固体产品采样时,用采样器垂直插入至料层深度 3/4 处采样,按 GB/T 6679 的规定进行抽样,用四分法将所采样品缩分至不少于 200 g,分装于两只清洁、干燥的玻璃瓶中,密封。6.2.4 样品保存在密封的样品瓶上粘上标签,注明:生产厂名、产品名称、批号、采样日期和采样者姓名。一瓶供检验用,另一瓶保存三个月备查用。6.3 检验本标准规定的全部指标项目为型式检验项目,在正常生产情况下每 6 个月至少进行一次型式检验, 其中外观、CODCr、pH 值、密度、水不溶物、总磷、总氮、氯化物、硫酸盐指标项目应逐批检验。有下列情况之一时亦应进行型式检验:a) 产品定型时;b) 停产半年以上,又恢复生产时;c) 工艺、原料或生产人员发生较大差异时;d) 质量技术监督部门提出型式检验要求时。6.4 判定规则抽取样品经检验,所检项目全部合格,判该批产品为合格。若检验结果中有 1 项~2 项指标不符合本标准要求时,应重新自两倍量的包装单元中采样复验,若复验结果仍有一项不符合本标准要求时,则判定该批产品为不合格产品。若检验结果中有 3 项及以上指标不合格,判该产品为不合格。7、标志、包装、运输和贮存7.1 标志产品外包装上应有牢固清晰的标志,其内容包括:生产厂名,产品名称、商标、生产日期或批号、净质量、厂址、主要成分(适用于单一液体碳源和固体单一碳源,复合碳源除外)及含量、本标准编号以及 GB/T 191-2008 中规定的“怕晒”、“怕雨”和“向上”标志。每批出厂产品应附有质量检验报告和质量合格证。7.2 包装固体产品采用双层包装袋包装,每袋净质量 25 kg、50 kg 或依顾客要求而定。液体产品采用聚乙烯塑料桶包装,每桶净质量 25 kg、50 kg、250 kg、吨桶或依顾客要求而定。包装容器应整洁、卫生、无破损,应符合 GB/T 15346 的规定。7.3 运输运输设备应清洁卫生,产品在运输过程中严防暴晒、雨淋和受潮,不得与有毒、有害、有腐蚀性及强氧化性的物品混装、混运。7.4 贮存产品的存放地点应保持清洁、通风干燥、阴凉、严防日晒雨淋、严禁火种。不得与有害、有毒、有腐蚀性和含有异味的物品堆放在一起。液体产品保质期应为 6 个月,固体产品保质期应为 12 个月。8、安全要求部分产品按GB 6944《危险货物分类和品名编号》判定其是否属于第8类腐蚀性物质。如属于第8类腐蚀性物质,应按GB 190规定的“腐蚀性物质”要求标识。附录A(规范性) 原料危险性本文件所规定原料所对应的联合国编号、危险类别、包装要求见表A.1。
  • 新品 | 鲲鹏基因发布 ArchiPure全自动核酸提取纯化仪
    高质量的核酸样本在分子生物学上的应用至关重要,核酸的分离与纯化作为常规分子诊断实验的第一步,是获取可靠实验结果的基本保障。鲲鹏基因始终致力于将生命科学研究领域的新技术转化为与临床相关的医学研究产品,开发具有自主知识产权,国际领先的科研与分子诊断产品。继自主研发的Archimed系列荧光定量PCR仪受到市场广泛认可后,鲲鹏基因全新推出了高通量全自动核酸提取纯化仪——ArchiPure系列产品。高效、自动化且稳定的核酸纯化性能,搭配极为丰富的预封装核酸提取试剂产品,为不同应用场景提供灵活多样的自动核酸纯化解决方案,满足包括疾控、海关、医院、医学检验等机构对于安全防控性、通量灵活性及快速自动化的应用需求。磁棒法核酸提取技术1. 快速稳定 操作简单、用时短。整个提取流程只有四步,大多可以在15-40分钟内完成磁珠与核酸的特异性结合使得提取的核酸纯度高、浓度大。 2. 安全无毒 不使用酚、氯仿、异戊醇等有毒试剂,绿色环保,可有效保护实验操作人员。 3. 高效可控 能够实现自动化、大批量操作,有利于重大疾病疫情爆发时进行快速及时的应对。 磁棒法步骤产品特点ArchiPure系列产品具有操作简单、稳定高效的特点,ArchiPure 12 (12个样本/批) 和 ArchiPure 96 (96个样本/批) 两款仪器,能够帮助实验人员从繁复的提取工作中解脱出来。既能满足对于样本通量有显著需求的中大型检测平台满负荷运转,也能助力空间有限且以使用灵活为主要诉求的中小型实验室、移动检测车开展工作。 应用领域针对不同的应用场景,ArchiPure可从病毒、细菌、全血、咽拭子、细胞等样本中自动提取纯化核酸,所提取核酸满足后续分子生物学实验需求,广泛用于科学研究、临床分子诊断、动植物疫病监测等领域。丰富的试剂品种能够满足不同样品类型的提取需求。人性化的预封装设计减少手工操作产生的误差,最快13分钟即可完成12或96个样本的核酸纯化,得到高质量的核酸样本。产品信息仪器核酸提取试剂
  • 食药总局:网络食安问题电商平台将承担连带责任
    国家食品药品监督管理总局今日在北京召开新闻发布会,公布《网络食品安全违法行为查处办法》。据悉,该《办法》包括总则、网络食品安全义务、网络食品安全违法行为查处管理、法律责任、附则等,共五章48条,该办法将于2016年10月1日起实施。草酸二水合物 Oxalic acid dihydrate 6153-56-6双[3-(三乙氧基甲硅烷基)丙基]四硫化物 Bis[3-(triethoxysilyl)propyl] tetrasulfide 40372-72-3D-薄荷醇 D-Menthol 15356-60-2L-薄荷醇 L-Menthol 2216-51-51-十二烷醇 1-Dodecanol 112-53-81-十二烷醇 1-Dodecanol 112-53-81-十二烷醇 1-Dodecanol 112-53-81-辛醇 1-Octanol 111-87-55-甲基呋喃醛 5-Methylfurfural 620-02-0N-环己基甲酰胺 N-Cyclohexylformamide 766-93-84-甲基-2-戊醇 4-Methyl-2-pentanol 108-11-2N,N-二甲基-对苯二胺 N,N-Dimethyl-p-phenylenediamine 99-98-95,6,7,8-四氢-1-萘胺 5,6,7,8-Tetrahydro-1-naphthylamine 2217-41-6肼二盐酸盐 Hydrazine dihydrochloride 5341-61-7硫氰酸钾 Potassium thiocyanate 333-20-0二甲基硫醚 Dimethyl sulfide 75-18-3聚苯醚 Polyphenyl ether 31533-76-3叔丁基甲基醚 气相色谱级 Tert-Butyl methyl ether 1634-04-4七氟丁酸 Heptafluorobutyric acid 375-22-4甲苯二异氰酸酯 Tolylene Diisocyanate(TDI) 26471-62-53,4-二羟基苄胺氢溴酸盐 3,4-Dihydroxybenzylamine hydrobromide 16290-26-9N,N-二(羟基乙基)椰油酰胺 Coconut diethanolamide(CDEA) 68603-42-9/61791-31-9甲苯二异氰酸酯 Tolylene Diisocyanate(TDI) 26471-62-5异冰片基丙烯酸酯 Isobornyl acrylate 5888-33-5N,N' -二苯基硫脲 1,3-Diphenyl-2-thiourea 102-08-9聚合氯化铝 Aluminum chlorohydrate 1327-41-9四丁基氢氧化铵10%溶液 Tetrabutylammonium hydroxide solution 2052-49-5四丁基氢氧化铵25%溶液 Tetrabutylammonium hydroxide solution 2052-49-5L-苯基丙氨酸 L-Phenylalanine 63-91-2无水硫酸铈 Cerium(IV) sulfate 13590-82-4硫酸铈铵四水合物 Ammonium cerium(Ⅳ) sulfate tetrahydrate 18923-36-9脂蛋白脂肪酶 Lipoprotein Lipase 9004/2/8乙二胺≥99.5%标准品 Ethylenediamine 107-15-3壬二酸 Azelaic acid (Nonanedioic acid) 123-99-9N,N-二甲基-1-萘胺 N,N-Dimethyl-1-naphthylamine 86-56-6双(三氟甲烷)磺酰亚胺锂盐 Bis(trifluoromethane)sulfonimide lithium salt 90076-65-6
  • 药物分析进展和应用专栏|植物甾醇分析技术介绍
    植物甾醇是常见的植物活性成分,同时也是人类饮食中的主要脂类成分组成部分。其结构与胆固醇类似,均具有环戊烷多氢菲母核,图1中的β-谷甾醇、菜油甾醇、和豆甾醇为较为常见的植物甾醇。由于植物甾醇与胆固醇具有相似的结构,二者均需溶于胶束后才能被人体吸收,植物甾醇能与膳食来源的胆固醇竞争进入混合胶束从而减少肠道对于胆固醇的吸收,因此有助于控制血液中的总胆固醇、低密度脂蛋白和甘油三酯水平,从而减少心血管疾病的风险(图2)[1]。近年来,随着人们对健康饮食的日益重视,越来越多的科研人员开始关注到含植物甾醇的食品及植物的分析技术的开发与运用,本文将重点介绍基于气相色谱-氢火焰离子化检测器联用技术及液相色谱-大气压化学电离质谱联用技术的植物甾醇分析方法。图1. 常见的三种植物甾醇结构图2. 植物甾醇降低血清胆固醇的示意图[1]1. 植物甾醇的分析技术食物与植物中的甾醇类成分经过前处理并富集后,可采用不同的分析技术与手段开展分析与鉴定。目前最常用于植物甾醇定量分析的技术为气相色谱法(Gas Chromatography,GC)。液相色谱法(Liquid chromatography,LC)、薄层扫描法(Thin Layer Chromatography Scanning,TLCS)等也可以进行植物甾醇组分的分离与定量分析。1.1 气相色谱-氢火焰离子化检测器联用技术(GC-FID)技术原理:氢火焰离子化检测器(Flame Ionization Detector,FID)的工作原理是基于有机化合物能够在火焰中发生自由基反应而被电离从而对待测物进行分析[2]。如图3所示,FID离子室中火焰分为A层预热层;B层点燃火焰;C层温度最高,为热裂解区,有机化合物CnHm在此发生裂解而产生含碳自由基CH:CnHm→CH含碳自由基进入反应层D层,与外面扩散进来的激发态原子或分子氧发生反应,生成CHO+及e-:CH+O→CHO++e-形成的CHO+与火焰中大量水蒸气碰撞发生分子-离子反应,产生H3O+离子:CHO++H2O→H3O++CO化学电离产生的正离子(CHO+,H3O+)和电子(e-)在外加直流电场作用下向两极移动而产生微电流,收集极与基流补偿电路间的电流作为微电流放大器的输入,微电流放大器输出的电流信号(或电压信号)经A/D转换器,将模拟信号转换成数字信号,由计算机记录下来并进行数据处理从而获得色谱峰。图3. 氢火焰离子化检测器(FID)的示意图技术特点:火焰离子化检测器(FID)是气相色谱常用的检测器,它对几乎所有有机物均有响应,特别是对于烃类化合物灵敏度高且其响应与碳原子数成正比。与此同时,它对于气体流速、压力、温度变化的细微差异相对不敏感,不易受到外界环境改变影响。通过该法对植物甾醇进行分析时,需要对样品进行衍生化处理,将游离的植物甾醇转化为适合GC分析的疏水性衍生物,如生成三甲基硅醚(TMS)衍生物。目前广泛使用于植物甾醇分析的衍生化试剂包括有:含N-甲基-N-三甲基硅烷基三氟乙酰胺(N-methyl-N-trimethylsilylfluoroacetamide,MSTFA)无水吡啶溶液、含1%的三甲基氯硅烷(Trimethylchlorosilane,TMCS)的双三甲基硅基三氟乙酰胺(Bis-trimethylsilyltrifluoroacetamide,BSTFA)等。通过GC-FID对植物甾醇进行定量时,常使用的内标包括有白桦脂醇(Betuline)、5α-胆甾烷醇和5α-胆甾烷-3β-醇等。分析仪器:1957年,澳(大利亚)新(西兰)帝国化学工业公司(Imperial Chemical Industries of Australia and New Zealand,ICIANZ)中央研究实验室的McWilliam和Dewar开发了第一台FID。目前FID检测器已经成为应用最广泛的气相色谱检测器之一,其获取、操作成本、维护要求均相对较低。市面上的气相色谱仪基本上均可配置FID检测器,包括安捷伦9000、8890、8860和7890气相色谱系列,赛默飞 TRACE 1300、1100系列,岛津Nexis GC-2030,珀金埃尔默 2400等进口气相色谱系统以及福立 GC9790、GC 9720,常州磐诺GC1949,上海仪电分析GC 128、北分瑞利 GC3500系列等国产气相色谱仪。1.2 液相色谱-大气压化学电离质谱联用技术(LC-APCI-MS)技术原理:大气压化学电离化(Atmospheric Pressure Chemical Ionization,APCI)原理与化学离子化相同,但离子化在大气压下进行。流动相在热及氮气流的作用下雾化成气态,经由带有几千伏高压的放电电极时离子化,产生的试剂气离子与待测化合物分子发生离子-分子反应,形成单电荷离子,正离子通常是(M+H)+,负离子则是(M-H)-。大气压化学离子化能在流速高达2 ml/min下进行,常用于分析分子质量小于1500道尔顿的小分子或弱极性化合物,主要产生的是(M+H)+或(M-H)-离子,很少有碎片离子,是液相色谱-质谱联用的重要接口之一。图4. 大气压化学电离源(APCI)的示意图技术特点:植物甾醇的发色团数量少,因此不适合通过紫外检测器检测;同时植物甾醇质子亲和力较小、酸性较弱、不宜在溶液中形成质子化的离子或去质子化生成阴离子,因此通过电喷雾电离(Electron Spray Ionization,ESI)的电离效率相对较差。由于植物甾醇亲脂性较强,分子量一般小于1000 Da,采用APCI离子源可以提供更高的植物甾醇检测灵敏度,且无需对样品进行衍生化,极大地缩短了分析所需的时间。研究人员还发现植物甾醇分析过程中,采用正离子模式能够提供了比负离子模式更高的灵敏度,且易于生成准分子离子峰[M+H]+、[M+H-H2O]+ [4]。分析仪器:目前国内外均有大量厂商生产搭配有APCI离子源的液相色谱质谱联用系统,已运用于药物研究、食品安全检测、生命科学和分子生物学等多个领域。Agilent 6470、6490系列三重四极杆液质联用系统,Bruker EVOQ LC-TQ液相色谱质谱联用系统,PerkinElmer QSight 400系列三重四极杆质谱仪,SHIMADZU LCMS-2020、LCMS-2050液相色谱质谱联用系统以及国产的江苏天瑞LC-MS 2000液质联用系统,杭州谱育科技EXPEC 5310LC-MS/MS、EXPEC 5250 气相/液相色谱-三重四极杆质谱联用仪、EXPEC5510LC-MS/MS、禾信仪器LC-TQ5100等均配置有APCI离子源。国产的江苏天瑞LC-MS 2000液质联用系统,杭州谱育科技EXPEC 5310系列质谱仪等均配置有APCI离子源。2. 应用实例2.1 基于GC-FID快速分析橄榄油中的植物甾醇在对特级初榨橄榄油样本进行皂化处理后,国际橄榄理事会(International Olive Council,IOC)方法采用乙醚对皂化样本多次液液萃取以提取植物甾醇;研究人员优化后前处理方法采用反相聚合物基质固相萃取柱对皂化样品中的植物甾醇进行提取。同时研究人员基于GC-FID建立了同时快速定量17种脂质(含内标胆甾烷醇)的分析方法,其中包括16种植物甾醇,这17种脂质的GC-FID色谱图如图4所示[5]。通过分析比对不同前处理方法结果,研究人员发现优化后前处理方法简单、省时,并减少了溶剂的使用量,但是与IOC官方方法获得的结果较为一致。通过GC-FID快速定量17种脂质的分析方法也有助于评估高价值且容易掺假的特级初榨橄榄油的真实性。图5. 特级初榨橄榄油样品采用IOC方法(A)及优化前处理方法(B)处理后,分别经由GC-FID分析得到色谱图。(1)胆固醇;(2)菜籽甾醇;(3)24-亚甲基胆固醇;(4)菜油甾醇;(5)菜油烷甾醇;(6)豆甾醇;(7)Δ7-菜油甾醇;(8)赪桐甾醇; (9)β-谷甾醇;(10)谷甾烷醇;(11)Δ5-燕麦甾醇;(12)Δ5,24-豆甾二烯醇;(13)Δ7-豆甾醇;(14)Δ7-燕麦甾醇;(15)高根二醇;(16)熊果醇;(IS)胆甾烷醇。2.2 基于LC-APCI-MS/MS快速分析饲料中的植物甾醇相较于GC-FID或GC-MS,LC-APCI-MS/MS无需进行样品衍生化即可完成植物甾醇的定量分析,极大地缩短了样品前处理时间。研究人员建立了基于LC-APCI-MS/MS的植物甾醇分析方法,并可在8分钟内快速定量6种目标植物甾醇[6],图6为胆固醇与6种植物甾醇混合标准溶液(500 ng/mL)的MRM提取离子流色谱图。该方法提供了一种适用于大豆、向日葵、草料、犊牛成品饲料和上述饲料混合物在内的不同类型饲料中的植物甾醇定量的方法。同时将实验结果与其他相关研究结果进行比较,显示出良好的一致性。该方法简单、快速,可以将其应用于其他饲料和食品中的植物甾醇分析。图6. 不同研究化合物混合标准溶液的MRM提取离子流色谱图。①麦角甾醇;②胆固醇;③岩藻甾醇;④Δ5-燕麦甾醇;⑤菜油甾醇;⑥豆甾醇;⑦β-谷甾醇3.小结与展望植物甾醇是植物中的生物活性化合物,同时因其在降低血液胆固醇水平方面有着重要意义,植物甾醇可作为保健食品中的功效成分用于调节人体机能。在这种情况下,有必要建立适合于保健食品中植物甾醇类化合物的分析方法,以评估保健食品质量。同时随着分析技术的发展和相关研究的不断深入,更多快捷、灵敏的分析技术也将成为植物甾醇分析的有力工具,并为更多不同的植物甾醇类化合物在降低血脂、预防心血管疾病等健康领域的运用提供支持与保障。参考文献:[1] Zhang R, Han Y, McClements D J, et al. Production, characterization, delivery, and cholesterol-lowering mechanism of phytosterols: A review[J]. Journal of Agricultural and Food Chemistry, 2022, 70(8): 2483-2494.[2] 胡坪, 王氢. 仪器分析(第五版)[M]. 北京:高等教育出版社,2019.[3] 国家药典委员会. 中华人民共和国药典(2020版):四部[M]. 北京:中国医药科技出版社,2020.[4] Mo S, Dong L, Hurst W J, et al. Quantitative analysis of phytosterols in edible oils using APCI liquid chromatography–tandem mass spectrometry[J]. Lipids, 2013, 48: 949-956.[5] Gorassini A, Verardo G, Bortolomeazzi R. Polymeric reversed phase and small particle size silica gel solid phase extractions for rapid analysis of sterols and triterpene dialcohols in olive oils by GC-FID[J]. Food chemistry, 2019, 283: 177-182.[6] Simonetti G, Di Filippo P, Pomata D, et al. Characterization of seven sterols in five different types of cattle feedstuffs[J]. Food Chemistry, 2021, 340: 127926.
  • 无水无氧操作体系 | XmartChem®助力化学合成科研创新
    近年来,科研高校实验室在生物医药、新能源和新材料等领域不断取得进展。在这些领域中,很多化学反应对实验过程中的水分和氧含量要求十分严格,比如 Buchwald-Hartwig 偶联反应;也有一些化合物和试剂对空气中的水分和氧气极为敏感。科研工作者为了能够高效的开展研究,必须借助特殊的设备和技术来进行无水无氧操作。如果操作不当,即便反应路径和条件设计得当,也可能无法得到期望的产物。因此,无水无氧技术在科学研究中占据了重要位置,已经得到了广泛应用。目前,无水无氧操作主要有以下三种方法:高真空线操作(Vacuum-line):适用于对无水无氧条件要求不是很高的体系,通过直接用惰性气体置换反应体系中的空气,这种方法简单实用,适用于多种常规反应,是最常见的保护方式。Schlenk 线操作:在需要进行无水无氧的回流、蒸馏和过滤等操作时,使用 Schlenk 线技术较为便捷。手套箱操作(Glove-box):对于需要称量、物料转移、稀释和过滤等更为复杂的操作体系,通常在充满惰性气体的手套箱中进行。手套箱已在科研实验室中被应用在有机合成、OLED 封装、锂电池制作与研究、对水氧敏感的试剂的存储与分装以及生物领域如厌氧菌培养、细胞低氧培养等方面[1] 。XmartChem® 智能合成工作站(手套箱工站)晶泰科技将自动化技术与手套箱有机结合,研发的机器人工作站系列——XmartChem® 智能合成工作站(手套箱工站),自动完成合成实验中投料、反应、产物稀释、过滤全过程,实现无水无氧操作体系下化学合成实验操作流程自动化,专门为化学人员研发的软件系统 ,直观易用。突破高通量合成筛选的瓶颈,降低操作门槛,提高实验的效率和安全性,增加科学研究产出。● 产品特点&bull 无水无氧操作体系:具备高效的气体净化系统,O2 & H2O &bull 高通量全自动:自动化完成合成实验中投料、反应、产物稀释、过滤全过程,突破高通量合成筛选的瓶颈,降低操作门槛,提质增效;&bull 人机协作 :系统高效稳定,7×24 小时不间断安全运行;&bull 信息溯源:支持条码扫码,样品信息可溯源;&bull 可视化软件系统:触屏式操作界面,轻松访问资源、方法、任务及数据等功能信息;资源配置界面与设备内部布局完全一致,操作方式直观,充分降低学习成本,易于使用;&bull 简化工作流程:可直接创建或调用模板实验设计流程方法,轻松设定参数,节约时间;支持批量实验参数导入,简化操作;&bull 用户权限设定:软件系统支持划分用户权限,维护实验方法、数据安全;&bull 完整数据记录:实时自动采集反应条件、实验控制以及数据,确保完整实验流程可追溯;&bull 数字化平台:支持接入 LIMS 系统,并兼容晶泰数字化软件(ELN、数字孪生仿真系统等);&bull 立体仓储物料架:多层自动化控制,适用于多种物料存放;&bull 人工操作位设计:惰性气体手套箱一机多用,用于敏感试剂的人工备料和存储;自动物料架,实验过程中按需补料;&bull 开放集成:支持多种第三方设备如 LC-MS 等集成到工作站,实现产物的快速鉴定;● 工作流程参考文献[1]郑杰,张福平,李玉佳. 无水无氧手套箱在实验室安全运行与管理中的探索与实践[J]. 大学化学,2023,38(10):300-305.
  • 粘度测定仪用毛细管法测定PET(聚对苯二甲酸乙二醇酯)树脂稀溶液的特性黏度
    PET又名聚对苯二甲酸乙二醇酯(polyethylene glycol terephthalate)是由对苯二甲酸二甲酯与乙二醇酯交换或以对苯二甲酸与乙二醇酯化先合成对苯二甲酸双羟乙酯,然后再进行缩聚反应制得,为乳白色或浅黄色、高度结晶的聚合物,表面平滑有光泽,是生活中常见的一种树脂。PET分为纤维级聚酯切片和非纤维级聚酯切片。①纤维级聚酯用于制造涤纶短纤维和涤纶长丝,是供给涤纶纤维企业加工纤维及相关产品的原料。涤纶作为化纤中产量最大的品种。②非纤维级聚酯还有瓶类、薄膜等用途,广泛应用于包装业、电子电器、医疗卫生、建筑、汽车等领域,其中包装是聚酯最大的非纤应用市场,同时也是PET增长最快的领域。众所周知,聚酯生产过程中,产品粘度是影响产品质量的一项重要指标,特别是热灌级聚酯产品生产过程中,由于该品种粘度指标范围窄,一旦受原料、生产过程控制等因素影响,未及时判断出原因进行调整,基础切片粘度无论是下降还是升高,若未及时将该部分切片进行有效隔离,直接进入到后续系统,将对后续固相增粘造成极大影响,致使调整困难,导致产品质量降等。聚酯生产过程中影响聚酯产品质量的因素很多,从纺丝的角度出发,主要有色相、端羧基、二甘醇含量及黏度等,其中以黏度对可纺性的影响最为显著。目前,绝大多数聚合装置都与直接纺长丝或短纤维的装置街接,并且越来越多的纺丝装置采用高速纺和细旦的品种,这就对熔体的质量特别是熔体的特性黏度稳定提出了更高的要求。 乌氏毛细管法是PET(聚对苯二甲酸乙二醇酯)材料质量控制中常用的分析方法之一,由乌氏毛细管法测量得出的特性粘度也是PET(聚对苯二甲酸乙二醇酯)材料的核心指标之一。实验所需仪器:卓祥全自动粘度仪、多位溶样器、自动配液器、万分之一电子天平。实验所需试剂:苯酚、四氯乙烷、三氯甲烷、丙酮或无水乙醇。1、溶剂的配置选择:根据PET材料分类所选溶剂配比不同,纤维级聚酯切片可选择苯酚/1,1.2,2-四氯乙烷(质量比3:2)亦可选苯酚/1,1.2,2-四氯乙烷(质量比1:1),瓶级聚酯切片选择苯酚/1,1.2,2-四氯乙烷(质量比3:2); 2、溶剂粘度的测定:卓祥全自动粘度仪设置到实验目标温度值并且稳定后,加入苯酚/1,1.2,2-四氯乙烷,软件中启动测试任务待结束。3、粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。4、PET树脂稀溶液样品的制备:在万分之一天平上精准称量精确到0.0001g,通过ZPQ-50自动配液器将溶液浓度精准配制到0.005g/ml,再将样品瓶放置到MSB-15多位溶样器中(纤维级90~100℃,瓶级110℃~120℃),待半小时内溶解完毕后取出冷却到室温待用。5、样品粘度的测定:加入样品,启动软件中特定公式测试,待任务结束。6、粘度管的清洗:再次启动卓祥自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。苯酚/1.1.2.2—四氯乙烷(质量比50:50)作溶剂的试验,按公式(1)、(2)、(3)计算相对黏度(ηr)、增比黏度(ηsp)和特性黏度([η]):式中:ηr——相对黏度;t1——溶液流经时间,单位为秒(s);to——溶剂流经时间,单位为秒(s);ηsp——增比黏度;[η]——特性黏度;c——溶液浓度,单位为克每百毫升(g/100mL)苯酚/1.1.2.2一四氯乙烷(质量比60:40)作溶剂的试验,其结果按公式(4)计算:本文章为原创作品,无原作者授权同意,不得随便转载拷贝,侵权必究!
  • SCIEX在线SPE系统对污水中12种毒品及代谢物的定性与定量分析
    城市生活污水中毒品成分监测分析工作是科学、客观评价当地毒情发展态势的有效手段,是禁毒工作决策的重要依据。根据检测结果、污水处理厂当日潜水流量等参数,得到城市日均毒品消耗量、城市人口日毒品吸食总量和平均人口毒品暴露水平,用来追踪毒品滥用随时间的变化情况,城市非法药物和毒品贩制情况、以及城市的非法药品使用滥用情况,实现实时毒情监测。在此背景下,仪器信息网特别建立“质谱在毒品分析领域的技术应用进展”话题,聚焦质谱技术在毒品检测领域的最新应用,以增强业界质谱专家和技术人员、司法公安相关机构工作者之间的信息交流,同时向仪器用户提供毒品分析领域更丰富的质谱产品、技术解决方案。本文邀请到SCIEX公司应用技术专家孙小杰经理谈谈污水验毒相关的技术及解决方案。SCIEX公司 应用技术专家孙小杰经理污水中毒品及其代谢物的浓度测定是污水分析法评估毒品使用量的关键。方法的基本思路是对污水中的毒品及代谢物进行检测,但毒品代谢物进入污水系统后与生活污水进行混合,其中的化合物含量有可被稀释上千倍,浓度在ng/L级别,同时污水中复杂的基质也对仪器的抗污染能力提出较高要求。相比传统的离线固相萃取方式,在线固相萃取(On-line SPE)具有样品利用率高、所需样品少;全体积自动在线萃取、解吸、进样,通量高、可大大节约人力及时间成本;同时前处理交叉污染相对较少等特点。因此在实际污水验毒工作中深受一线检测人员欢迎。基于此,我们开发了SCIEX On-line SPE-MS/MS 系统对污水中12种毒品及代谢物进行定性与定量分析方法。本方法具有以下特点:1、速度快:无需复杂前处理过程,一针进样只需15分钟,同时结合重叠进样(Load Ahead)功能,可极大的减少样品等待时间,提高检测效率。2、抗污染:SCIEX专利的Turbo VTM离子源可耐受长期、大量的污水检测工作,无需频繁的清洗和维护,有效减少工作量,提高定量准确度。3、兼容性好:设备可以在On-line SPE-MS/MS和常规的UPLC-MS/MS之间无缝切换,在做污水验毒项目时不影响其他项目的检测。试验方法1.样品前处理取10mL污水,加入同位素内标制得25ng/L的溶液,10000rpm转速下离心10min,取上清,待上样分析。2. 液相条件液相:SCIEX Exion LC 20ADTM系统大体积进样器:CTC PAL3 进样系统分析柱及流动相条件:Phenomenex Kinetex Biphenyl(2.1*100 mm, 2.6μm),流速0.4mL/min,流动相A:水(0.02%甲酸+2mM甲酸铵);B:乙腈(0.02%甲酸+2mM甲酸铵),梯度见表1。SPE柱及流动相条件:HLB(2.1*30mm, 20μm),流速2mL/min,A:水;B:甲醇,梯度见表2。柱温:40 ℃上样量:2mL梯度洗脱条件:表1 表2 实验结果12种毒品及代谢产物的典型色谱图采用空白污水样本加标,配置浓度在1-500ng/L范围内的系列标准曲线,内标加入浓度为25ng/L,全部12种化合物线性关系良好,见图2。图 2 12种毒品及代谢物的线性关系曲线总结建立了一种CTC On-line SPE系统和SCIEX Triple QuadTM 4500系统联用,分析污水中12种常见毒品及代谢物的分析方法。该方法前处理操作简单,可有效地节约时间和人力成本,提高工作效率;方法的灵敏度高、重复性好、准确度高,经过多批次的实际样品测定,结果稳定可靠。通过多目标物的在线自动富集,可有效提高方法的检测灵敏度,更好的应对污水验毒工作。打击防范毒品违法犯罪是一项复杂、艰巨、长期的系统工程。针对毒情新形势新变化,加强禁毒技术研究,推进禁毒科技创新,才能牢牢掌握同毒品违法犯罪作斗争的主动权,推动禁毒工作不断取得新成效。
  • 哈希:污水检测技术已比较成熟,未来比拼的是企业的从业经验积累
    p    span style=" font-family: 楷体, 楷体_GB2312, SimKai color: rgb(79, 129, 189) " 中国面临严重的水污染问题,污水废水治理也一直是水环境治理最重要的组成部分。近几年在政策支持下,污水处理行业发展态势较好,污水处理能力持续增强。污水废水包括医疗污水、工业废水、生活废水等。从污水处理基础设施建设情况来看,污水处理厂数量和城市排水管道长度都在逐年递增。而随着新冠肺炎疫情的爆发,由于新冠病毒存在通过粪便和污水传播的可能,所以对污水废水处理提出了更高的要求。而对污水废水水质的监测检测则成为污水废水处理的基础和保障。为了帮助相关用户学习、了解污水废水水质监测最新技术及相关仪器在其中发挥的作用等内容,仪器信息网特别策划了“污水废水水质监测”专题并邀请哈希市场行业主管余得昭谈谈他对中国污水废水水质监测现状的看法。 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/ba03c3a1-5b2b-4915-9271-b8f12e80848a.jpg" title=" 哈希 余得昭450psi.jpg" alt=" 哈希 余得昭450psi.jpg" / /p p style=" text-align: center " span style=" font-family: arial, helvetica, sans-serif " strong 哈希市场行业主管 余得昭 /strong /span /p p    strong span style=" color: rgb(192, 0, 0) " 仪器信息网:余经理,您好。据您了解,我国污水废水排放和治理现状呈现怎样的特点?对于我国污水废水监测检测行业发展您认为有哪些需要改进和完善的地方? /span /strong /p p    strong span style=" color: rgb(31, 73, 125) " 余得昭: /span /strong 2018年,全国污水处理厂同比增长了14.6%,增速明显提高。全国城市排水管道增加至68.3万公里,同比增速为8.4%,按照2009-2018年年均7.9%的复合增长率,2019年排水管道长度将突破70万公里。污水处理行业在政府政策的支持下近几年发展态势较好,污水处理能力持续增强。国家统计局数据显示,2018年我国城市污水日处理能力已达1.81亿立方米,同比增长6.5%。 /p p   “规模增长”向“提质增效”的主题转变,是我国污水处理行业的发展重点和政策方向。污水处理法律法规及行业标准逐步完善,这促进了污水处理生产供应能力全面提升和污水处理技术的不断升级:《城镇污水处理厂污染物排放标准》的实施促进了城镇污水处理设施新一轮的提标改造,推动了污水脱氮除磷技术进一步提升。《城镇污水处理提质增效三年行动方案(2019—2021年)》的发布更是推动了污水处理厂技术升级改造以及排水管网的建设。污水处理提质增效工作的核心在管网。我国目前的水环境问题多集中在管网排水系统。排水管网体系建设不健全带来的核心问题是污水处理厂的进水浓度偏低带来的污染物削减效益不佳。如何进一步做好排水管网的水量、水质监测以及预警,是未来的发展趋势之一。 /p p   系统化、一体化进行污水处理的需求日益提升,尤其是针对农村分散型污水的收集与处理。厂网一体化、建设与运维的结合已成为发展的趋势。 /p p   当前我国污水处理行业主要是以BOT(建设-经营-移交:政府和私人机构之间达成协议,由政府向私人机构颁布特许,允许其在一定时期内筹集资金建设某一基础设施并管理和经营该设施及其相应的产品与服务)/TOT(移交-经营-移交:政府或国有企业将项目一定期限的产权或经营权有偿转让给投资人,由其进行运营管理 投资人在约定的期限内通过经营收回全部投资并得到回报,合约期满后,投资人再将项目交还政府部门或原企业)、特许经营模式引入社会性资本,从传统的经营模式转向民营化发展道路,民营化程度还不够。我认为污水处理行业的发展需要社会资本更多的参与,积极深化污水处理行业市场化改革,引入多方面的资本是未来的投资方向之一。PPP、EPC、EPC+O等多种投资、建设、运维模式的组合,也将促使水务资产市场化节奏加快。 /p p    span style=" color: rgb(192, 0, 0) " strong 仪器信息网:目前,污水废水水质监测的技术现状怎么样,相关水质监测的难点在哪?除了常规参数检测,您觉得污水废水水质监测中还有哪些项目值得关注? /strong /span /p p    strong span style=" color: rgb(31, 73, 125) " 余得昭: /span /strong 从污水监测相关的技术角度而言,当前常规水质参数监测技术已较为成熟,无论国外、国内技术均已达到较高的水平。区别在于仪器从业经验的累积,这体现在仪器的长期稳定运行、方案完整性、细节处理以及操作便利性等方面。目前,水质监测的难点在于:①仪器适应能力差,对安装环境要求较高,尤其是湿化学法仪器,在如管网或进厂水泥沙等杂物含量高的区域需要较好的预处理过程才能保证仪器的正常运行。同时由于试剂的保存需要一定温度,所以对于安装点位及环境也有一定的要求 ②湿化学法仪器的维护频率高,定期的管路排修检查、试剂更换、比色皿清洗等维护工作需要投入大量人力物力,某种程度影响了仪器的可靠性 ③而电极法仪表的稳定性和准确性还需要进一步提高。 /p p   除了常规水质参数检测,排放口TOC的在线监测、排放水质的综合毒性以及大肠杆菌也是值得关注的指标。 /p p    strong span style=" color: rgb(192, 0, 0) " 仪器信息网:请介绍贵公司在污水废水水质监测方面有哪些仪器产品或产品组合?相比于同类产品,贵公司产品有哪些优势? /span /strong /p p    strong span style=" color: rgb(31, 73, 125) " 余得昭: /span /strong 哈希的NA8000氨氮在线分析仪拥有双光程双波长比色计专利设计,保证准确度的同时扩展了测量覆盖范围。并且运用了哈希专利的Prognosys技术,提供预防性维护提醒,降低停机风险。仪器使用的新试剂无需冰箱保存,并且配方公开,可以降低用户后期的运维成本。 /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/C317044.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/57872de4-141f-4466-9b7b-cfc38c908bdc.jpg" title=" 哈希Amtax NA8000 360psi.jpg" alt=" 哈希Amtax NA8000 360psi.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C317044.htm" target=" _blank" strong 哈希 NA8000氨氮在线分析仪 /strong /a /p p   Phosphax LR在线磷酸盐分析仪采用了新的钼黄比色法,反应试剂采用分开添加的方式,并且搭载了新的光度计,使其光程为Phosphax sc的两倍。这些可实现低浓度范围内测量的高准确性,并同时降低化学除磷药剂的使用成本。 /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/C391622.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/00bf9e43-ce8d-4fd4-a202-ec74d232917a.jpg" title=" 哈希Phosphax LR在线磷酸盐分析仪300x300.jpg" alt=" 哈希Phosphax LR在线磷酸盐分析仪300x300.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C391622.htm" target=" _blank" strong 哈希Phosphax LR在线磷酸盐分析仪 /strong /a /p p   Solitax污泥浓度计采用双光束红外散射原理测量水体的浊度或悬浮物浓度,可补偿光源和检测器参数变化以及水体色度的影响。探头式测量方式使安装方式灵活多样,也让用户可根据自身情况选择沉入式安装、管道插入式安装或流通式安装方式。并且仪器自带清洗刮刷,能定期自动清洗光学窗口,减少人工维护量。 /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/C256909.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/ea0581ad-aced-4d5b-8db5-438ff657584d.jpg" title=" 哈希Solitax污泥浓度计300x300.jpg" alt=" 哈希Solitax污泥浓度计300x300.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C256909.htm" target=" _blank" strong 哈希 Solitax污泥浓度计 /strong /a /p p   NPW160H在线总磷总氮分析仪采用一体化、小型化设计,简化了管线连接。仪器符合国家要求的120℃、30 min标准加热分解法。可同时对总磷、总氮两项指标进行测量,并且总氮测量的同时具备浊度补偿功能。 /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/C391625.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/bbaeb789-0dd6-4cbf-8f9f-4bb4fe13a701.jpg" title=" 哈希NPW160H总氮总磷分析仪 300x300.jpg" alt=" 哈希NPW160H总氮总磷分析仪 300x300.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C391625.htm" target=" _blank" strong 哈希 NPW160H在线总磷总氮分析仪 /strong /a /p p    span style=" color: rgb(192, 0, 0) " strong 仪器信息网:哈希在污水废水水质监测方面可以提供哪些解决方案? /strong /span /p p    strong span style=" color: rgb(31, 73, 125) " 余得昭: /span /strong 哈希目前可以提供从进厂水到污水排放的全过程水处理监测解决方案:如进厂水COD、SS、氨氮总磷总氮、流量等在线监测方案 初沉池及二沉池监测污泥界面及污泥浓度在线监测 厌氧及缺氧池监测pH、ORP及硝氮等 好氧池pH、溶解氧、污泥浓度及氨氮在线监测 污泥脱水中污泥浓度在线监测、深度处理应用方案以及化验室监测解决方案等。尤其是哈希的污水排放口监测方案,包括符合2019年HJ-35X系列的自动采样、留样系统,COD、氨氮、总氮、总磷、pH、SS、流量计消毒剂余量的在线监测等。 /p
  • 污水也能画画?
    污水也能画画?哈希公司图片来源:人民网近日,位于硅谷中心的帕拉奥图坤利亚当代艺术中心正在展出当代艺术展——“水: 生命之源”。其中,小编觉得最 特 别的是美国著 名生态艺术家约翰萨布劳(John Sabraw)的作品。他的作品中,有的如同浩瀚宇宙中的漂浮星球,有的像晕开重重涟漪的水体,色彩瑰丽绚烂,肌理独特而又充满魅力。而最为特别的是,这些作品所用的颜料,都来自于工业污水。萨布劳生活的美国俄亥俄州有数千座废弃煤矿,这些煤矿往水道中排放的酸性污染物极大的危害了当地的公共安全和环境,于是在技术专家的支持下,他尝试从污染的水体里提炼分离氧化铁,并转化为安全的艺术颜料。现在,这些环保绘画颜料已被 著 名的画材公司(Gamblin)甘布林生产,并且这些颜料的部分销售额将继续用于帮助治理环境污染。图片来源:澎湃新闻约翰萨布劳在废弃煤矿污染的溪流中试验提取氧化铁绘画颜料令我们触动的不仅是画作本身的美丽,更是画家利用艺术的语言献礼环保工作,唤醒公众对于环境问题的重视,同时向致力于改善水质、保护人们用水健康的水质守护者们致敬!所有的岁月静好,都是因为有人在负重前行。每一杯温暖的热水,每一条清澈的河流,每一片纯净的汪洋,都倒映着水质守护者们默默付出的身影,所有努力凝结在每一滴净水之中。清水流过的地方,就是水质守护者来过的地方。哈希作为拥有七十多年历史的世界水质分析仪器专业公司,始终以世界水质守护者为使命,在漫长的征途中,积累了丰富的水质分析仪器制造经验,始终陪伴在水质守护者左右,也目睹见证了这些“无名”守护者的努力与付出。正是因为理解与感同身受,哈希从未停下前进的脚步,从研发、制造到销售、服务等方面不断优化改善提升,让水质分析更快速、更简便、更环保、更全面,以产品与服务做水质守护者们的坚强后盾。工业污水是水质监测最 重 要的类型之一,哈希在线检测仪CODmax III,常用于污染源监测(包括市政污水进口、排口;工业污水排口);工业过程用水监测;地表水监测等领域。而针对工业污水中常见的高浓度的氨氮,哈希也有对应的Amtax NA8000氨氮检测仪,可以在市政污水、饮用水、地表水及工业等领域的氨氮监测中为水质守护者们提供一臂之力。检测仪CODmax IIIAmtax NA8000氨氮检测仪当水质守护者们沐风栉雨的坚守在水质检测第 一线时,我们也在不断改进产品与服务,尽可能的减少水质守护者们的工作量,提高水质检测效率与精度。守护水质安全,你可以永远相信哈希!如果您也希望水质守护者们的努力被更多的看见,欢迎转发本条推送到朋友圈,同时也欢迎各位水质守护者们在留言区分享您与水质监测相关的故事~END哈希——水质分析解决方案提供商,我们致力于为用户提供高精度的水质检测仪器和专家级的服务,以世界水质守护者作为使命,服务于全球各地用户。如您想要进一步了解产品或需要免费解决方案,请通过【阅读原文】与我们联系,通过哈希官微留下您的需求就有机会赢取小米电动牙刷哦!
  • 从污水中揪出暗藏的“毒影”:夏芮污水禁毒小知识
    随着执法部门缉毒禁毒工作的不断推进、以及禁毒宣传教育的普及,du pin 相关违法犯罪活动的生存土壤日渐萎缩,犯罪成本不断升高。而与之相对,du pin 违法犯罪活动的隐蔽性也日益增强,给执法部门进一步评估毒情、整治du pin 、打击犯罪带来一定的困难。鉴于此,毒情评估更加需要先进的技术手段协助。污水毒情监测近年来,污水中du pin监测技术被愈加广泛地运用于毒情评估与禁毒执法工作。该技术指的是对污水处理厂、泵站或人群聚集点、地表水等未经生化处理的污水进行定期检测,通过测定污水中du pin原体及代谢产物和人口标记物的浓度,根据du pin原体或代谢产物的排泄率,结合污水流量,反推监测区域内的du pin滥用量和滥用规模。与传统侦查方式不同,污水毒情监测不仅能更加精准地发现隐藏在暗处的毒情线索,还可以实时监测区域内的毒情变化、预测du pin的滥用趋势,为执法部门科学办案提供依据。技术发展美国环保署(EPA)在上世纪九十年代提出污水分析技术的概念,到2004年,Zuccato教授团队最早将污水分析技术用于污水du pin监测。他们对意大利的5条河流进行取样分析,发现部分采样点位的可卡因浓度高达200ng/L,这是关于污水中du pin监测技术应用实例的首次报道。此后,欧洲、美国、加拿大、澳大利亚等越来越多的du pin实验室和检测机构将污水中du pin监测技术应用于毒情分析。近年来,国内对于污水中du pin监测技术的应用也愈加广泛。2018年,国家du pin实验室首次应用污水监测技术对国内36个大城市的生活污水进行采样分析,为毒情监测工作提供了极大助力。此后,在国家禁毒执法部门的大力推动下,污水du pin检测技术取得长足发展。当前,该技术已成为各级禁毒执法部门评估毒情、推动禁毒执法工作的主要技术手段。2021年,国家禁毒办颁布了《污水中du pin监测技术规范(试行)》,进一步明确了污水中du pin监测的技术要求,推动了污水中du pin监测技术在国内禁毒工作中的应用。(图片来源于网络)污水检测流程1. 定点取样依据《污水中du pin监测技术规范》,监测点服务于独立行政区划,便于检测结果对各地区开展毒情评估。监测点位一般在覆盖主城区的污水处理厂进水口、泵站进水口或排污单位的总排放口,采用24小时混合方法,并于4℃低温冷藏保存。(图片来源于网络)由于污水样品的基质中发生降解等变化,所以低温保存、快速检测便成为污水样品收集与保存环节的重点。夏芮智能根据污水采集的需求,推出了专为污水毒情检测设计的污水在线自动取样器(DT-CR0200)。该设备集自动分瓶、自动采样、恒温冷藏、远程控温、视频监控、远程电控锁、电子标签自动识别、样品溯源、北斗+GPS卫星定位、4G通讯等功能为一体,适用于公安禁毒污水毒情监测取样及污水du pin溯源取样工作的流程管理和设备远程监控。DT-CR02002. 现场快筛多个监测点的设立、不同位点、24小时多次取样后,污水样品数量庞大,若都送往LC-MS2检测,大大提高了禁毒成本。当前禁毒工作中,常见的应用模式是:初筛出阳性的样本→送司法鉴定。夏芮智能自研出时间分辨荧光技术检测卡,搭配我司手持式du pin毒物检测仪(DT-FL0100),可以检测出海洛因、bing du、氯胺酮等du pin及滥用药物50多种。将污水样品进行过滤、浓缩后,即可上机检测,检出限可达到纳克级别。现场快检设备的使用,发挥初筛在污水样品现场筛查的作用,大大提高了禁毒破案的效率,减少未达标样本送检的数量,降低禁毒成本。DT-FL01003. 实验室检测污水样品经玻璃纤维膜过滤,进行固相萃取处理后,利用液相色谱-质谱进行实验室检测。液相色谱-质谱检测技术是对du pin及其代谢物定量分析的主要手段,得到检材中du pin及其代谢物的种类、浓度,以此更准确地提取和分析数据获得所需禁毒情报,实现毒情信息监控。(图片来源于网络)参考文献:[1]刘培培,乔宏伟,陈捷,张婷婷,花镇东,王优美.污水du pin监测技术在禁毒实战中的应用[J].警察技术,2022(05):14-18.[2]王波, 杜然, 王传凯,等. 环境污水du pin检测技术在禁毒情报中的应用[J]. 中国法医学杂志, 2018, 33(6):5.[3]关纯兴, 昂钰.du pin犯罪案件侦查[M]. 北京: 中国人民公安大学出版社, 2015: 10-16.[4]李文君, 阮惠风. 禁毒学[M]. 北京: 中国人民公安大学出版社, 2015: 214-225.[5]侯琳琳, 邓德华, 李素娟, 等. 环境水体中违禁药物的分析方法[J]. 环境化学, 2017, 36(6): 1280-1287.
  • 污水应急处理需过几道坎?
    weixin://private/setresult/SCENE_FETCHQUEUE&eyJmdW5jIjoiZ2V0TmV0d29ya1R5cGUiLCJwYXJhbXMiOnt9LCJfX21zZ190eXBlIjoiY2FsbCIsIl9fY2FsbGJhY2tfaWQiOiIxMDA0In0=污水应急处理需过几道坎?工业水处理  业界把污水的常规处理和应急处理称为“阵地战”和“游击战”。在当前条件下,两者的结合成为防止污水直排、治理河湖黑臭的经济有效方式。“阵地战”解决了全国约80%的污水处理,“游击战”是阵地战的有益补充,解决剩余的20%直排污水。  目前,在“阵地战”上,各地政府已经具备了丰富的经验和模式。而“游击战”怎么打,还处于探索中。记者近日来到位于北京清河的污水应急处理站,实地调查了污水应急处理的技术和效果。  项目建设: 规模和投入不必像污水处理厂那么大,应体现投资小、运营机动灵活的特点  清河是北京北部主要的城市排水河道,全长23.6公里,流域面积达210平方公里,在北京的河湖水系中占有重要地位。2006年,北京市曾经投入超过6.4亿元整治清河,用于形成北京奥运会重要场地之一的奥林匹克公园及周边生态环境水清岸绿的景观。  然而好景不长,清河水质在奥运会后再度恶化,不少河段出现黑臭现象。究其原因是清河两岸排污口众多,工业企业和城中村排污口对河流的污染严重。  对此,北京市再次治理清河水质,重点针对未纳入管网污水进行治理。清华大学环境学院高级工程师钟晓红介绍说,城市发展中会存在临时排污的情况,由于污水收集管网建设不能一蹴而就,临时排污点就需要应急处理措施。应急处理技术设施规模和投入不必像污水处理厂那么大,要体现投资小、机动灵活的特点。  这样的设想在清河北岸河北村项目中得以实现。北京市对清河的新一轮整治中,按照务实有效的思路,通过认真的技术比选,选择了超磁透析技术对河北村集中排污口进行应急处理。  处理站建设在河北村排污口上游、清河路北绿化带北侧的一块荒地上,集装箱式的可移动主体设备占地仅约40平方米,整个水处理站总占地面积也仅520平方米,处理规模却能达到2000立方米/日。  记者在现场看到,污水处理应急设备就建在清河岸边,设备外观是一个矩形厢体,厢体内的装置全部标准化配置。  据处理站工作人员介绍,这套污水应急处理设施从安装到运营只需要两个星期的时间。由于设备自动化程度高,目前处理站有两名工作人员进行日常维护。  据介绍,这样的污水处理站基建设备投资按吨水计仅为500元左右,是同等规模污水处理厂的1/6~1/8,其运行费用在0.1元~0.5元/立方米,略低于城市污水处理厂。也就是说,一级强化应急处理在成本方面具有很大的优势。  技术选择: 一级强化处理是应急处理的优选技术,成本低、效果好,悬浮物和总磷去除率可达90%以上  有些污水之所以要采取应急处理手段,就是因为存在种种客观原因,不便做常规处理,如城中村、城郊接合部、边缘住宅小区的存在,注定在城市化进程中应急处理应该是常态化的。那么,应急处理应该选择什么样的技术呢?  中国工程院院士钱易认为,污水处理采用什么技术手段,应当根据污水处理后的用途来选择,在当前国情之下,不宜一刀切地追求高标准技术。 业界专家普遍认为全面覆盖污水处理,需要3种层次技术的协调配合。三级处理是着眼回用的高级处理,标准高、投入大;二级处理是普遍化的常态处理,当务之急是要使之稳定正常运转,发挥预定的作用;与此同时,还需要污水的一级强化处理作为补充。应急处理采用一级强化技术就是这种补充。  据研究,虽然一级强化工艺出水水质标准没有二级处理高,但是其单位污染物的去除成本却远高于二级处理和三级处理。因此,在当前,解决20%污水直排问题,采取应急的一级强化处理技术措施就是最有效的选择。只有这样,才能更好地抑制黑臭,整体水环境会显著改善。  在清河河北村项目中所采用的超磁透析技术就属于物化法的一级强化处理技术。  记者在河北村污水处理站看到,未处理的污水与处理后的出水形成了鲜明对比,一边浑浊一边清澈,处理后的出水与清澈的清河干流融为一体,再也不是以前在排污口下游形成扇形污染带的样子。  有关技术人员介绍说,虽然为一级强化处理技术,但是悬浮物和总磷去除率可达到90%以上,COD去除率可达40%~60%,非常显著地削减了污染负荷。  据悉,由于停留时间短、处理效果好,2012年,超磁分离技术获得了北京市科技进步奖一等奖。  商业模式:探索建立1~5年的应急合同环境服务模式,以效果为导向的合同环境服务值得推广   污水的应急处理弥补了常规污水处理的不足,是形成污水处理全覆盖的重要补充手段。在当前城市污水常态化、阵地战的二级处理已经取得巨大进展的情况下,正视仍然存在20%左右直排污水的现状,以求真务实、积极作为的思路加强一级强化的应急处理的应用,就显得十分必要。而要扩大污水应急处理的应用,还需要建立合理的商业模式。  “目前,合同环境服务在环保产业中的运用得到了环境保护部的鼓励和支持,作为一种商业模式正得到探索、走向完善。针对水污染应急处理需求,应当以效果为导向,探索建立应急合同环境服务。”钟晓红说,新建污水处理厂的建设—运营—移交模式(BOT)是合同环境服务模式的一种,已经成熟。污水应急处理的商业模式可以多样化,既可以采用甲方购买设备并委托乙方运营的模式,也可以采用甲方购买环保服务的模式,这些都属于以效果为导向的合同环境服务。  据了解,在河北村项目中,甲方并不购买设备、也不承担工程建设费用,而是双方合同约定处理效果,由乙方承担工程建设、生产制造并集成安装设备,直至负责运营,达到约定的处理效果,甲方按照合同约定实行吨水付费。这是典型的政府采购环境保护公共服务的范例,也是应急合同环境服务的典型案例,值得大力推广。www.boqu17.com
  • 无溶剂香气萃取和分析研究进展
    11月22日至23日,由365bet体育在线、上海香料研究所、上海化工研究院有限公司共同主办,中国香料香精化妆品工业协会等单位协办的“2019 中国国际香料香精化妆品科学技术论坛”在上海举办。国内外高校、科研院所、香料香精化妆品行业专家学者、企业家等共200余人出席论坛。前美国化学学会农业和食品化学分会主席,美国化学学会会士 (fellow), 美国化学学会农业和食品化学分会会士(fellow),农业与食品化学杂志顾问委员, 美国俄勒冈州立大学michael qian教授被邀做了“无溶剂香气萃取与分析研究进展”,介绍了一下几个内容:传统香气分析概述传统溶剂提取法与溶剂辅助风味蒸发法顶空和吹扫捕集固相微萃取法 pdms搅拌棒萃取法eg-silicone搅拌棒吸附萃取法分析挥发性酚热脱附薄膜固相微萃取首先钱教授给大家一个确定风味重要化合物的思路。首先提取样品中的化合物(isolation),然后对其进行富集浓缩(concentration),通过一维或二维气相色谱进行分离(separation), 对其中的气味化合物可通过嗅觉检测器(olfacrometry)来进行识别, 然后通过气味强度评估(osme odor intensity assessment) 或是风味稀释分析(flavor dilution analysis)等评估法对重要气味化合物进行锁定。最后通过质谱(ms 或 ms/ms)或质谱红外(ms/ir)或核磁共振(nmr)进行鉴(identification)。 对浓度很低的化合物,可以在色谱分离之后,通过馏分的收集(preparative gc )来进一步对其浓缩, 以达到检测器的检测下限,进行成果的鉴定。 钱教授的学生正在使用odp来识别香味化合物钱教授把多年来的工作研究香气香味的经验与大家分享,比如如何才能提高监测灵敏度和提高分离效率,以下三个点非常重要:样品的制备和浓度通过优化色谱法来提高分离效率了解并利用检测的特异性 还比如几种的传统萃取技术(溶剂萃取,safe,同时蒸馏萃取)的优缺点,- 适合高浓度香气物质的萃取- 可同时萃取极性和非极性化合物- 耗时久- 重复性差- 需要使用同位素进行内标定量和现代化的无溶剂风味萃取的原理,丰富的应用案例以及他们的优缺点。静态顶空- 类似于食品上的气味成分- 有限的伪影生成- 无溶剂峰,可自动化- 低灵敏度- 适用于白酒中主要成分分析:乙醛,乙酸乙酯, 异戊醇, 乙酸异戊醇动态顶空- 无需样品制备- 高效富集- 自动化- 潜在的热伪影- 对低挥发物回收率低- 高酒精度会影响微量成分的分析固相微萃取在风味分析方面的挑战- 灵敏度- 选择性- 竞争吸附- 纤维重现性- 需要加入内标来定量(同位素稀释分析)pdms 搅拌棒吸附萃取- 可提取非极性和半极性的风味物质- 萃取相负荷是spme的100倍- 可用于直接接触或顶空模式- 使用方便,经久耐用, 可重复使用- 对高挥发性化合物回收率低(如乙醛,丙醛,丁醛,乙酸和短链酸)- 不能回收强极性化合物eg-silicone 搅拌棒吸附萃取- 有效提取高挥发性化合物,如乙醛,乙酸乙酯- 有效提取极性化合物,如酚类化合物, 短链酸- 可与pdms搅拌棒互相补充- 背景噪音较大- 稳定性和持久性较pdms搅拌棒差重要的挥发性酚类化合物有:装有微型瓶的热脱附管,和热脱附单元tdu2 此方法成果的萃取了marionberry (marion 黑莓)中的多种风味化合物, 其中包括呋喃酮,以及重要的酚类化合物,还有覆盆子酮等。 覆盆子酮是树莓类中重要的气味化合物,而此化合物只有在使用spe法才被检测到。spe法在这里更接近于液液萃取法的效果。在总结时,钱教授说到:”分析化学的不断发展将使快速的风味分析成为可能,并提供新的痕量风味成分的鉴定。” 并且强调:“有效的分析和鉴定关键风味成分需要将仪器分析与感官评估相结合。” 各种样品前处理的技术都有其优缺点,正确选择和结合最适合样品的技术是关键。哲斯泰为您提供各种无溶剂的萃取技术,给您一个强大的技术平台。我们也希望可以助所有的风味化学家一臂之力, 在样品前处理和嗅觉检测领域,更好的为大家服务! (china)和第三届(chile)国际香料会议的发起者和主席。
  • 上海发布新版《污水综合排放标准》新增多项有机污染物
    p   日前,上海市环境保护局和上海市质量技术监督局联合发布《DB31/199-2018 污水综合排放标准》。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/9af60654-9254-4d87-b33f-9ade95f712b8.jpg" title=" 上海标准.png" alt=" 上海标准.png" / /p p   与2009年上海地标相比,此次标准调整了污染物控制项目 增加了总锑、总铊、总铁、二氯甲烷、硝基酚、硫氰酸盐、多氯联苯、滴滴涕、六六六、壬基酚、六氯代-1,3-环戊二烯、苯胺和多环芳烃、苯系物总量共14项污染物控制项目 取消元素磷污染物控制项目 将现行标准的可溶性钡、五氯酚及五氯酚钠(以五氯酚计)、硝基苯类(以硝基苯计)、总大肠菌群(仅针对涉及生物安全性的废水)等4项指标分别调整为总钡、五氯酚及五氯酚盐(以五氯酚计)、硝基苯类、粪大肠菌群 将现行标准的二甲苯总量调整为1,2-二甲苯、1,3-二甲苯、和1,4-二甲苯3个项目 /p p   与现行国家标准《GB 8978-1996 污水综合排放标准》相比,第一类污染物增加了总钒、总钴和总锡 第二类污染物增加了溶解性总固体、总磷、总氮、硫化物、总铁、总钡、总锑、总铊、总硼、甲醇、二氯甲烷、1,2-二氯乙烷、苯系物总量、异丙苯、苯乙烯、三氯苯、苯胺、硝基酚、壬基酚、多环芳烃、乙腈、肼、水合肼、一甲基肼、偏二甲基肼、吡啶、二硫化碳、丁基黄原酸、丙烯醛、氯化物、二氧化氯、氯乙烯、三乙胺、二乙烯三胺、硫氰酸盐、鱼类急性毒性、多氯联苯、滴滴涕、六六六、六氯代-1,3-环戊二烯。 /p p   其中,值得注意的是,壬基酚和六氯代-1,3-环戊二烯两个污染物还没有相应的监测标准,未来是工作重点。 /p p   壬基酚是一种重要的精细化工原料和中间体,主要用于生产非离子表面活性剂,润滑油添加剂等,但进入环境中后,是一种内分泌干扰物,有“精子杀手”之称。 /p p 标准全文: img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201812/attachment/ebefe05b-3d39-402d-8411-88d586c0d4c0.pdf" title=" 上海市地方排放标准.pdf" style=" font-size: 12px color: rgb(0, 102, 204) " DB31/199-2018 污水综合排放标准.pdf /a /p
  • “左右开弓”——为什么说 HILIC 也是您纯化极性化合物时所需方法?
    当我们面对一些实验的时候,潜意识里总是更倾向于用自己非常熟悉的某种方式或方法并尝试进行稍微调整就可以让它适用于当前面对的所有应用研究。但这就像是说,您拥有一把切菜非常好用的刀并不意味着它是锯木的最佳方法。亲水相互作用色谱(HILIC)今天呢,“小布”同学在这里和您再介绍一种分离方法:亲水相互作用色谱(HILIC)。认识它,熟悉它,装备它!让您面对不同实验可以做到“左右开弓”!OK!让我们看看它可以为您的极性化合物的纯化做些什么!HILIC 是分离高极性化合物的理想选择高极性化合物通常不能用我们熟知的典型色谱柱分离,即正相色谱(NP)或反相色谱(RP)。在正相色谱当中,由于化合物本身相对极性固定相来说过于粘稠,所以会导致洗脱时间过长。而高极性化合物的特点是在水性流动相中具有良好的溶解性,并且与典型的 NP 所用溶剂不兼容。而即使使用 RP 体系,高极性化合物却几乎不与非或弱极性的固定相进行相互作用,最终与溶剂前沿一起被洗脱,达不到分离的目的。每当遇到这种情况的时候,就是 HILIC 的 Showtime!它的分离往往发生在极性固定相且可使用水的反相溶剂条件下。在这种情况下,与无水的流动相相比,含水流动相在极性固定相的表面形成了富水层。梯度洗脱从低极性有机溶剂开始,通过增加极性水的比例来洗脱极性化合物。在正相色谱中固定相具有更高的极性,在反相色谱中流动相通常由水与有机溶剂组成,而水则是色谱常用流动相体系当中使用的最强极性洗脱剂。因此,HILIC 结合了正相色谱的固定相与反相色谱的流动相的特点来专门“对付”高极性化合物。简单总结就是:HILIC 采用反相色谱流动相体系,而按照正相色谱顺序出峰。尽管 HILIC 的混合模式机制至今仍在研究中,但主要的保留机制被认为是化合物在富含有机物的流动相和后来的富含水的流动相之间分配系数的不同。除此之外,还包括其他相互作用,如氢键、静电相互作用和偶极-偶极相互作用都有助于 HILIC 分离:如果您对 HILIC 色谱也感到跃跃欲试的话,我推荐您使用乙腈,因为它与水具有良好的互溶性以及良好的 HILIC 保留和低粘度特点。当然,您也可以根据实验具体情况选择其他有机溶剂。HILIC 中的相对溶剂强度如下:丙酮 就您的色谱固定相而言,任何极性相均可用于 HILIC 分离。例如:固定相示例中性二醇;酰胺带电离子Slica;氨基丙基相两性离子氨基酸、氨基磺酸固定相相组成中性极性官能团,如:酰胺、天冬酰胺、二醇、交联二醇、氰基和环糊精带电离子阴离子或阳离子官能团两性离子永久带正电荷(铵)和带负电荷(磺酸)的官能团适用应用中性亲水化合物和混有中性、阴离子、阳离子的混合物带电离子中性极性化合物氨丙基相的伯氨基带正电荷;因此,它对阴离子酸性化合物表现出较高亲和力。Slica 表面含有 pKa 为 3.5 的酸性表面硅烷醇基团,这意味着 ≥3.5 pKa 的 pH 值时,这些基团将被离子化,从而使 Slica 固定相可以作为阳离子交换剂,与带正电荷的碱基相互作用并对待分析物进行保留。两性离子由于它们的亲水性和弱离子交换特性,这些固定相适用于分离中性、酸性和碱性分析物以及极性和亲水性化合物以及无机离子。保留机制中性亲水相互作用;无静电相互作用带电离子来自阴离子或阳离子官能团的强静电相互作用两性离子弱静电相互作用选择理想 HILIC 固定相的一个好的原则是,通常来讲中性化合物的亲水性低于带电化合物,而高亲水性固定相需要保留它们(例如两性离子和酰胺固定相)。另一方面,由于静电引力,带电化合物在带电色谱柱上的保留太强,因此中性和两性离子相提供更好的结果。其实,不管正相色谱、反相色谱还是 HILIC 色谱等,都有其最适合的应用领域。即便 HILIC 结合了正相色谱与反相色谱的部分特征,也不代表其满足所有应用。就如同我们日常吃饭时,吃面往往用筷子是最简单高效的方式;喝汤则是用勺子最佳。实验亦如此,所以在实验过程中还是要根据实际情况选择最佳纯化方式。好啦,今天“小布”同学关于 HILIC 色谱的分享就到这里啦,相信诸位小伙伴们也对其有了一定的了解。希望在今后的实验当中它能够助您摆脱纯化高极性化合物的麻烦!各位,我们下期再见!低复杂度样品纯化左右滑动色块查看系统适合的应用范围↓对于低复杂度样品,可以轻松或妥善地分离感兴趣的峰与杂质。使用中至大粒径 (15 - 60 μm) 颗粒是标准应用最经济的解决方案高复杂度样品纯化左右滑动色块查看系统适合的应用范围↓高复杂度样品难以分离并显示出部分重叠的峰需要使用小粒径 (5 - 15 μm) 硅胶颗粒以提供出色的分离度 (=纯度),但会产生高背压从低到高样品浓度的进样左右滑动色块查看系统适合的应用范围↓可支持上样量最大 300g可支持 Flash 预填充色谱柱尺寸:最大 5000g可支持耐高压玻璃柱尺寸:直径 46-100mm支持固体上样和液体上样两种方式低样品浓度进样左右滑动色块查看系统适合的应用范围↓可支持上样量最大 1g可支持高压色谱柱直径尺寸:4.6-70mm支持液体进样检测生色团化合物左右滑动色块查看系统适合的应用范围↓生色团化合物吸收紫外波段或可见光波段 (200 - 800 nm) 的光线适用于紫外线检测的化合物通常含有不饱和键、芳族基或含杂原子的官能团。检测非生色团化合物左右滑动色块查看系统适合的应用范围↓非生色团化合物不吸收光,因此不能通过紫外线检测器显现典型化合物为碳水化合物非生色团化合物可通过蒸发光散射 (ELS) 检测装置来检测
  • 快来看啊~氯丙醇及其脂肪酸酯测定的解决方案新出炉了!
    氯丙醇是甘油(丙三醇)中的羟基被氯离子取代后形成的一类物质,共有4种物质,包括3-氯-1,2-丙二醇(3-MCPD)、2-氯-1,3-丙二醇(2-MCPD)、1,3-二氯-2-丙醇(1,3-DCP)和2,3-二氯-1-丙醇(2,3-DCP),具有肾脏毒性、生殖毒性,并可能具有致癌性。氯丙醇在许多食品中都存在,如面包、香肠、焦糖色素、方便面调味料等,但动植物蛋白在盐酸催化水解作用下最容易产生,通常含量也最高。此外,变性淀粉、纸质食品接触材料(袋泡茶的过滤纸、咖啡过滤纸等)、生活饮用水可能由于环氧氯丙烷树脂或者工艺的使用,而带来氯丙醇的污染。2000年初我国酱油出口一度因为氯丙醇问题而受阻,之后污染得到了较好的控制。氯丙醇酯、缩水甘油酯是近10年来国际上备受关注的新型食品污染物,氯丙醇酯是氯丙醇与各类脂肪酸作用后形成的一大类物质的总称,主要分为3-氯-1,2-丙二醇酯(3-MCPD酯)和2-氯-1,3-丙二醇酯(2-MCPD酯),氯丙醇与氯丙醇酯虽然仅一字(酯)之差,但它们的化学性质和形成机理差别很大,氯丙醇容易在脂肪的酸水解中形成,而氯丙醇酯和缩水甘油酯容易在食用油高温精炼或脂肪类食品在煎、炸、烧、烤等烹调过程中产生。Detelogy参考GB 5009.191-2016提供测定食品中氯丙醇及其脂肪酸醋含量的测定推出以下前处理解决方案一、食品中氯丙醇脂肪酸酯含量的测定气相色谱-质谱法1、试样提取植物油、动物油等油脂类试样:称取试样0.1 g,加入氘代氯丙醇脂肪酸酯混合溶液20μL,D5-1,3-DCP和D5-2,3-DCP溶液各20 μL。其他试样:称取试样2 g,加入氘代氯丙醇脂肪酸酯混合标准工作液20 μL。加入4 mL正已烷,充分振摇混匀,超声提取20 min,静置分层后,转移出上层正己烷。再重复提取2次,合并正已烷相(约12 mL),加入D5-1,3-DCP和D5-2,3-DCP溶液各20 μL,置于FV32Plus全自动高通量智能平行浓缩仪中浓缩至约1 mL。注:对于乳粉、咖啡等固体粉末试样,需先加2 mL水溶解后再用正已烷提取。对于香肠等动物性食品试样,可采用经乙睛饱和的正已烷作为提取液。2、酯键断裂反应向试样提取液中加0.5 mL甲基叔丁基醚-乙酸乙酯溶液(8 2)和1 mL甲醇钠-甲醇溶液(0.5 mol/L),盖紧盖子,MultiVortex涡旋振荡30 s。室温反应4 min,加入100 μL冰乙酸终止反应。加入3 mL溴化钠溶液(20%)和3 mL正已烷,MultiVortex涡旋振荡30 s,静置1 min,弃去上层正已烷相,再用3 mL 正已烷萃取一次,弃去上层正已烷相,下层的水相溶液待净化。注:此步骤中如采用氯化钠溶液(20%)萃取,则经后续步骤测定得到的是氯丙醇脂肪酸和缩水甘油醋的总含量。3、样品净化硅藻土小柱固定于QSE-12/24固相萃取装置,将水相溶液倒入硅藻土小柱中,平衡10 min后,用15 mL乙酸乙酯洗脱,收集洗脱液,在洗脱液中加入4 g无水硫酸钠,放置10 min后过滤,FV32Plus全自动高通量智能平行浓缩仪浓缩至0.5 mL切忌浓缩至全干。以2 mL正己烷溶解残渣,并转移具塞透明玻璃管中,待衍生化。4、衍生化向正已烷复溶液中加入40 μL七氟丁酰基咪唑,立即盖上盖子,MultiVortex涡旋混合30 s,于7℃保温20 min。取出放至室温,加入2 mL氯化钠溶液(20%),MultiVortex涡旋1 min,静置后移出正已烷相,加入约0.3 g无水硫酸钠干燥,将溶液转移至进样小瓶中,供气相色谱-质谱测定。二、食品中氯丙醇多组分含量的测定同位素稀释-气相色谱-质谱法1、样品提取液态试样:称取试样4 g于15 mL玻璃离心管中,加入氘代氯丙醇混合溶液20μL,超声混匀5 min,待净化。半固态及固态试样:称取试4 g于15 mL玻璃离心管中,加入氘代氯丙醇混合溶液20 μL,加入4 g氯化钠溶液(20%),超声提取10 min后5 000 r/min离心10 min,移取上清液,再重复提取1次,合并上清液,待净化。2、样品净化硅藻土小柱固定于QSE-12/24固相萃取装置,将上清液全部转移至硅藻土小柱中,平衡10 min。以10 mL正已烷淋洗,弃去流出液,以15 mL乙酸乙酯洗脱氯丙醇,收集洗脱液于玻璃离心管中,使用FV32Plus全自动高通量智能平行浓缩仪浓缩至约0.5 mL切忌浓缩至全干。以2 mL正己烷溶解残渣,并转移具塞透明玻璃管中,待衍生化。3、衍生化同上述食品中氯丙醇脂肪酸酯含量的测定 气相色谱-质谱法三、食品中3-氯-1,2-丙二醇含量的测定同位素稀释-气相色谱-质谱法1、样品提取样品类型液体试样称取试样4 g于50 mL烧杯中加入D5-3-MCPD内标溶液20 μL,加入氯化钠溶液(20%)4 g,超声混5 min待净化提取后无明显残渣的半固态及固态试样加入D5-3-MCPD内标溶液20 μL,加入氯化钠溶液(20%)6 g,超声 10 min提取后有明显残渣的半固态及固态试样称取试样 4 g于15 mL 离心管中加入D5-3-MCPD内标溶液20 μL,加入氯化钠溶液(20%)15 g,超声提取10 min5 000 r/min离心10 min,移取上清液,待净化。2、样品净化取硅藻土5 g,加入提取液,充分混匀,放置 10 min。取5 g硅藻土装入层析柱中(层析柱下端填充少量玻璃棉)。将提取液与硅藻土混合装入层析柱中,上层加1 cm高度的无水硫酸钠。用40 mL正已烷-无水乙醚溶液(9 1)淋洗,弃去流出液。用150 mL无水乙醚洗脱3-MCPD,收集流出液,加入15 g无水硫酸钠,混匀以吸收水分,放置10 min后过滤。滤液于FlexiVap-12/24全自动智能平行浓缩仪35℃下浓缩至近干(约0.5 mL),2 mL正已烷溶解残渣,保存于具塞玻璃管中,待衍生化。3、衍生化同上述食品中氯丙醇脂肪酸酯含量的测定 气相色谱-质谱法Detelogy优选仪器
  • 这台发射宇宙射线的神秘设备,能给西安古城墙做“CT”
    ◎ 采写丨科技日报记者 王迎霞 颉满斌◎ 策划丨赵英淑 滕继濮 林莉君吴春至今记得第一次做CT的情景。被推进舱里的那一刻,她紧张、害怕,担心查出问题,也担心射线对身体造成影响。多年过去,她再次经历了这样的不安,只不过,这次做CT的是古城墙。吴春是陕西省西安城墙管理委员会副主任,在她的积极联系和鼎力支持下,兰州大学核技术创新与产业化团队带着研发的国内首套塑闪宇宙射线缪子成像设备,给西安古城墙做了一次“CT”。“一定不要给城墙造成损伤,但也一定要知道‘五脏六腑’都有啥毛病。”吴春提出要求。这是她作为历史文化遗产守护者的底线。叫缪子的宇宙射线有着600多年历史的西安古城墙,也像人体一样,会随着时间的推移出现“健康”问题。北方夏季雨水较多,西安古城墙被雨水长时间浸泡后,部分墙面出现了快速裂缝和沉陷的现象。尽管城墙管委会一直都在高度关注城墙的各类安全问题,但有些损害在墙体内部,仅凭肉眼无法观测。如何检测古城墙内部情况,进而有针对性地展开修复工程,成为摆在西安城墙管委会面前的重要难题。西安城墙正北门—安远门在现代医学技术的加持下,要想掌握人体的病灶情况,我们可以使用B超、CT、核磁共振等各种影像仪器。想知道一座几十米高的古城墙的健康状况,该怎么办?“以往,我们用得最多的是钻孔法,就是通过在墙体上打孔取材的方式,来判断其内部情况。但这种勘探方式会直接破坏墙体,后期还需要对损坏部分进行修复。”吴春说。另一种是雷达监测法。雷达的频率越小,穿透程度便会越深,但其精度会相应变差,成像可能出现偏差;而如果探测太浅,又不能够满足古建筑、山脉等大型物体的探测深度需要。“钻孔法对城墙有损,而使用雷达法,基本上70%的情况都探不出来。”吴春做梦都想找到能够无损探测的方法。一个偶然的机会,她结识了兰州大学核技术创新与产业化团队。在给城墙南门的一面墙做三维激光扫描的过程中,吴春不由地感慨:“这激光扫描呀,如果能透视到里面就好了。省得我们苦苦找隐患点,又无计可施。”这时,操作扫描的老师说自己认识一位兰州大学教授,他能用一种宇宙射线对物体进行成像,或许可以帮到她。是物探,还是遥感?对方说好像都不是,是一种新方法,具体是什么,他也说不清。这下吴春来了兴致:“刚好58号马面(在城墙外侧依一定距离修建的凸出墩台,平面有长方形和半圆形,因外观狭长如马面,故名)出了一些问题,我联系试试!”他们说的宇宙射线,就是缪子。星际空间有很多高能粒子,其中最主要的是质子。高能的质子通过大气层时会发生核反应、电离等级联反应,从而一生二、二生四,从上往下越来越多,有点像烟花,也像射灯。到达海平面时,里面就富含各种组分,缪子只是其一,还有中子、β射线和γ射线等。它们都被称为“宇宙射线次级射线”。“根据估算,海平面上每平方米面积上每分钟会落下10000个缪子,也就是说,每秒钟就会有一个缪子穿过我们的手掌。”兰州大学核技术创新与产业化团队相关负责人打比方道,“它们就像下雨一样浇着我们,淋着我们,时时刻刻穿透我们的身体。”作为宇宙中的基本粒子之一,缪子的带电量为一个负电荷,质量为电子的207倍,它与物体发生相互作用的方式与电子类似。相比于中子、X射线和γ射线等,宇宙射线缪子具有更强的穿透能力。很多人都好奇这种神奇的物质,究竟是如何为我所用的。原来,科研人员在被测物体周边放置缪子探测器,根据缪子射线在物体中不同方向的穿透情况,搜集肉眼看不见的缪子计数,进而在计算机上进行分析,通过数据分析计算实现被测物体的三维成像。工作人员正在组装探测器“对于城墙这样十几米甚至几十米厚的物体来说,如果里面有个一米大的空洞,我们完全可以通过缪子成像技术检测到。”该团队成员刘军涛从团队2018年着手干这件事开始,他就跟着全程参与了缪子成像系统的研发。藏着秘密的“冰柜”2021年9月,兰州大学核科学与技术学院两位骨干教师,带着由两位工程师以及四五位学生组成的团队,向着古都西安出发。与他们同行的,是一个长1.6米形状酷似冰柜的仪器。“之所以看起来像一台冰柜,是因为我们给原来只能在实验室使用的探测仪器增设了金属外壳,使设备可以防潮、避光,方便移动。”刘军涛说。正在作业中的探测器刘军涛告诉吴春,仪器定型的时间不长,没有成熟商业产品那样漂亮的外观,但探测效果不受影响。吴春的话给他吃了很大一颗定心丸:“不管啥方法,只要是科学的,我们都欢迎!”这台貌不惊人的方疙瘩,隐藏着能给城墙看病的秘密。它包括多对探测器层和采集板,负责收集从宇宙中散落下来的缪子与信息转换;一个用于数据传输监测与存储的主机系统;一台移动电源,可确保仪器在野外运行时有稳定的供电;一个用于调控设备内温度和湿度的空调系统……缪子成像技术研究,目前国内也有少数同行团队在做。兰州大学核技术创新与产业化团队的不同之处在于,他们已经从实验室测试阶段走向了实际应用。2020年11月,该团队成功研发我国首套塑闪宇宙射线缪子成像系统,并顺利完成专家验收。“‘塑闪’是塑料闪烁体的简写。缪子通过塑料闪烁体后会产生光,有闪烁光就代表有缪子通过这个材料。我用光电转换的器件,可以把光信号转为电信号,看到脉冲后,表示已经捕捉到了缪子。”刘军涛说。采集缪子只是第一步。随后,他们不断完善软件模型,模拟成像场景,调整各类参数,最终将其带到西安古城墙下,开始“首秀”。缪子成像技术主要有两种成像原理,即角度散射成像和强度衰减成像。此次西安古城墙探测运用的便是强度衰减成像法。这一成像方法的原理是,缪子在物体内部穿行过程中会损失能量,而当其能量损失殆尽时便会被物体吸收,这将使探测到的缪子强度减小,所以宇宙射线缪子强度减小量取决于物体的厚度及材料密度。因此,在已知物体外部轮廓的情况下,通过探测缪子强度衰减,可以推导得到被探测物体的密度,从而对物体的内部结构与物质组成进行重构。“这就像人们利用X射线扫描身体,通过透视人体骨骼从而成像一样。”刘军涛介绍说,山体、建筑物、历史遗迹等大型物体的内部结构成像,用的也是这一原理。吴春给他们指定的测试段是城墙58号马面处。正如给人体做三维影像检查会采用放射源与探测器旋转多角度成像,想要给城墙做“CT”,也需要从不同角度采集多组数据。团队采取了环绕马面设置6个观测点的方案,放置探测器进行数据采集。正在作业中的探测器没想到,刚把机器安放好,又一波全国范围的新冠疫情席卷而来。那是2021年秋,实验面临的最大问题是,因为防疫政策需要,探测器不能按照计划不停地变换位置。团队只能因陋就简,顺势而为,及时改变了测量计划。终于在2022年春节前夕,他们将仪器带回兰州。让吴春吃惊的是,这个团队成功测试出了城墙中的低密度区域——也就是一个配电室。在测试团队事先并不知道的情况下,他们通过宇宙缪子成像技术清晰地呈现出它的位置、形状、大小。“这一高精度成像再次验证了使用缪子成像技术能够完成被测物体三维成像的可行性。”刘军涛表示。他们和58号马面科研从来无坦途。兰州大学核技术创新与产业化团队虽然首战告捷,但在实际探测过程中,还是遇到了不少困难。宇宙射线缪子成像技术利用的是不需要人工放射源产生的天然射线,具有无接触勘探、不受时空限制、不会对勘探物体造成任何伤害、绿色环保等特点,但它的使用受客观条件影响较大。“不像医院里使用人工射线源,环境比较单纯,我们的仪器往往放置在室外,得经历风吹日晒等自然环境的考验。”兰州大学2020级能源动力专业硕士研究生姚凯强说。在室外使用就会出现各种问题,比如电路短路,或者电压波动较大等,设备接收到的信号也会跳动不稳。整个墙体的勘探过程耗时将近4个月,为了应对各种环境的考验,团队对实验室内原来使用的平板探测器进行了升级与调整。姚凯强和另一名师兄专门留在了西安,隔两天就得去现场调整仪器。另外,后期也需要处理那些不稳定环境下接收到的杂乱数据。与数据收集相比,更大的挑战在于开发反演成像的算法平台。“我们在进行文物探测的过程中总会遇到一个问题,就是测量到的数据比待解的未知量少很多。比如有两个变量一个方程的情况下,方程的解是无穷多的。”对2021级核技术专业硕士研究生刘国睿来说,这就需要她和小伙伴在庞杂的结果中挑选出能够同时满足多个方程的模型,选择最合理的结果。来西安之前,刘国睿、姚凯强等人首先根据描述对城墙进行了可行性分析,几何模型比较简单,仅仅知道城墙的长宽高,里面可能有什么情况。在仿真中,他们需要先把城墙的模型大致建好,再进行正演计算,用正演的结果去反演成像。“相当于我们先算一个可能得到的测量结果,然后用这个测量结果做反演,看能不能给里面的防空洞成出一个三维图像来。”刘国睿说。确定做58号马面后,他们把模型更加细化了。初期建的模型特别简单,就是一个矩形的堆,后来又加上马面,对尺寸进行调整。激光测绘把整个城墙的轮廓描绘清楚之后,他们决定换模型,尽管那时6个探测点都已确定。最后一次模拟时,探测点位早已敲定,团队更新了非常细化的城墙轮廓,决定重新建模再做一次。根据优质成像的分辨率,他们在马面里假设了一个防空洞,看能不能成像。另一个难题是遇到密度异常部分时的演算。刘国睿念大三时就加入该课题组学习,后继续在此攻读研究生,在她看来,整体测算并不困难,但密度异常体与周边部分衔接地带,算起来有难度。“这些地方的密度解出来可能会带有系统偏差。”她说。最终的研究结果就是,这次试验精度可以对城墙内部一个长宽高均为1米的防空洞成像出来。“我们还测到马面北面比较空虚,当时比较质疑这个结果,为此做了好多验证。”刘国睿强调,他们必须排除是不是自己技术方面的原因,比如数据处理不当、测量问题之类。排除过后,得出结论——58号马面北墙附近的夯土密度确实较低。回想起这一幕,这个性格沉静的女孩,终于有了笑意。追寻“中国方案” 兰州大学师生付出的所有努力,吴春都看在眼里。实际上,58号马面的情况,她早有掌握。她就想看看这宇宙射线缪子成像技术,到底行不行。刘国睿在分析马面数据的过程中发现,砖和夯土之间好像有空腔,因为不确定,就反复向吴春求证。“小姑娘问,里面是不是有空腔?为什么会有?是真的有,还是我们收集的数据不够、计算方法不对而导致的偏差?我当时就欣慰地笑了。”但吴春并没有挑明,而是让她继续往下做。后来的成果报告会上,吴春正式向有关部门汇报称,兰州大学核技术创新与产业化团队的缪子成像结果,跟西安城墙管委会掌握的情况基本吻合。从此,她对他们更加信任了。这份信任,源于科研人员对自身的严格要求。在所有人看来,大胆质疑、小心求证是科学精神最重要的品格之一,他们恪守这一理念,初心不改。“为什么是这个,而不是那个?哪一步出了错,都无法导出正确结果。”刘军涛深谙其研究之复杂,意义之深远。刘军涛给学生们讲解缪子探测系统如今,团队已经扩展至30余人,每个人分工明确。导师的悉心培养和团队的互帮互助,让青年科研人员受益匪浅。在读研二的刘国睿,已在物理学经典期刊上发表研究论文,内容便是针对宇宙射线缪子技术在实地应用中出现的问题,并提出探索性的解决方案。每一位成员的心里,都有浩瀚宇宙。中华文明上下五千年,源远流长,在悠悠岁月中厚重沉淀。当前,随着科技已经成为考古发展新动力,他们在完成西安城墙成像工作的过程中,逐渐感受到缪子成像技术未来在科技考古领域的广阔前景。“这项技术以后在大型遗迹考古中一定会发挥作用,我们也想在科技考古领域做成标杆性的亮点。”刘军涛告诉记者,今年,敦煌研究院也与团队接触并计划建立合作关系,他们将在深入探测石窟内部结构的工作中共同努力。与不断发展的成像技术相辅相成的,是持续更新的应用场景。一直以来,缪子成像技术应用的瓶颈主要在于探测系统现场应用场景的适应性、成本控制等。在团队不断优化完善下,这项技术也从考古探测发展到了地质勘查、矿产勘探、集装箱检测等更广阔的空间。前段时间,团队又有了新思路:是否可以使用缪子成像技术探测青藏高原的冰川厚度,明晰岩石边界?对他们来说,制作轻量化、耐低温的缪子成像仪器,正在成为新的探索方向。值得一提的是,从仪器组装所需要的材料等硬件到算法系统软件,兰州大学核技术创新与产业化团队都致力于将其本土化。是啊,要想获得“中国方案”、作出“中国贡献”,必须实现技术国产化,这是每位科研人员肩负的重大使命。刘军涛欣喜地透露,现在团队这项技术的国产化率已经达到了95%左右。今年,一直致力于文物保护高质量发展的吴春,又与兰州大学团队取得了联系,看实验能否深入开展。她寄希望于下一步的合作能够证实这种技术更安全、更准确,同时辅以地质勘查,为墙体的修缮工程提供可靠参考,使得预防性保护更具前瞻性。“经过这样完整的检验之后,我们希望这种技术能够得到广泛应用。可以相信,科技将助力中国考古迎来‘黄金时代’。”吴春说。考古科技化,技术国产化,归根到底都是高水平科技自立自强。这是一条遥远而艰辛的路。每个人都渴望化身滴水,汇入时代的海河,信念灼灼。科技日报•深瞳工作室出品文中图片均由受访者提供微信编辑丨宋慈审核丨朱丽终审丨王郁
  • 污水处理厂环境监察指南,污水厂管理人员赶紧来看看,小心被处罚!
    一、污水处理厂监察要点:1.环境影响评价批复污染防治措施落实情况;2.与环境影响评价审批内容的统一性,包括水量、水质、投资和处理工艺等。3.环境工程设计、施工资料的完整性;4.环境工程设计、施工证书;相应的等级和可承担的环境工程项目范围的投资大小。5.运行记录。6.注意污泥处理情况。7.按照工厂的产品、产量及污水排放规律确定生产工况是否正常 每天污水处理系统的运行时间;8.合理的污水处理工艺流程 (工艺不正确,达标是不可能的)9.正常的污水处理运行工况 (水泵、加药系统、设备、构筑物、仪器、仪表等;)检查污水处理在线监测是否正常 10.了解该污水处理项目的水量、水质的基本情况;核对水量、水质是否在正常范围;11.污水处理检查最好在不通知的情况下进行;(否则有各种作弊手段)二、对具体的处理工艺的监察内容:1、看水质外观、水量是否在正常范围,特别是进水水量小于设计值时,增大了污水的停留时间,提高了水质;2、了解处理工艺全流程及各设备、构筑物的主要设计参数,核对主要的参数;3、一般处理工艺全流程至少为几小时,所以如提前通知,检查时出水为前面几小时的,甚至更长,或加水稀释的;4、检查全流程水泵、加药系统、设备等的运行情况;如对于沉淀池,可检查出流堰口的流量,带泥情况,表面负荷大小等;对于活性污泥处理系统,可检查污泥膨胀情况,污泥解体、污泥反硝化、污泥泡沫等情况;厌氧处理的温度;所加药剂的种类,浓度,投加量等;5、检查污泥处理情况;6、检查正常的运行记录;化验分析记录;三、对污水运营状况的监察内容:1.小时污水处理量 -----现场水量核查(进水水量核查和出水水量核查 )2.废水处理厂运行天数------水质核查(进水水质核查和出水水质核查 )3.进、出水污染物如COD浓度等------运行状况核查(包括活性污泥核查、溶解氧核查、气水比核查、氧化还原电位核查、电耗量核查等 )一、处理水量核查(一)进水水量核查1.查台账资料(1)查设计文件(2)查验收材料2.查流量计(瞬时流量和对累计流量 )3.查超越管溢流4.查其他重复计算的水量5.查中控室相关设备运行记录(1)查水泵运行时间和水泵流量,用运行时间乘以水泵流量计算得出进水水量。(2)查集水井液位、进水提升泵电流和扬程,并将之和进水量曲线对照,判定进水水量记录是否准确。(二)出水水量核查1.查流量计2.查在线监控数据3.查监督性监测报告4.核查对照进、出水水量5.其他方法验证(用用产泥量 、吨污水耗电量等)二、水质核查(一)进水水质核查1.查台账资料2.查进水水质指标3.查进水表观特征4.查设备运行参数5.查污泥浓度(MLSS)(二)出水水质核查1.查在线监测数据一是仪器设备存在问题导致数据不真实二是人为造假导致数据不真实。三是运行、维护不当导致数据不真实。四是在线监测站房不符合在线监测要求导致数据不真实。2.查监督性监测报告3.查出水表观特征三、运行状况核查(根据工艺不同分别进行核查)(一)活性污泥核查1.查污泥浓度活性污泥法或氧化沟法污泥浓度一般在2000mg/L~5000mg/L左右,低于1000mg/L难以保障正常处理效果,出水水质可能超标;高于8000mg/L(原因可能有高浓度工业废水进入,或污泥膨胀等)会导致出水泥水分离效果差,出水SS、COD可能超标。2.查污泥表征3.查污泥沉降性能污泥沉降性能可通过污泥沉降比(SV)或污泥容积指数(SVI)来反映。受多种因素影响,SV值或SVI值会偏离正常值,此时不能单纯用某个运行参数来断定出水是否达标,但现场核查可根据SV值或SVI值的异常情况有针对性地查找问题。4.查剩余污泥(1)污泥量。一般情况下,污水处理厂污泥产量为每处理10000吨废水产生1吨~1.2吨干污泥,每处理1吨COD产生0.2吨~1吨干污泥(一般取0.4吨)。(2)污泥性状。运行正常的污水处理厂脱水污泥呈黄褐色,有泥土气味,不沾手,结成块状;运行不正常的腐败污泥或无机化污泥,颜色发黑,沾手,呈松散状。(3)污泥去向。核查污泥去向可以进一步确认污水处理厂运行情况,并可通过对污泥去向的核查确定污泥是否得到了安全处置。(二)溶解氧(DO)核查1.参照数值一般生化反应池厌氧段溶解氧浓度在0mg/L~0.2mg/L之间,缺氧段溶解氧浓度在0.2mg/L~0.5mg/L之间,好氧段溶解氧浓度在1.5mg/L~3mg/L之间。对于生化反应池好氧段来说,如果溶解氧过量,会出现污泥发黄、无机质成分增多、氨氮硝化过度、总磷吸附量下降等情况,可导致出水段泥水分离快、总磷偏高;同时,由于好氧段溶解氧过量,又可能导致缺氧段和厌氧段溶解氧浓度升高,不利于反硝化脱氮。如果生化反应池好氧段溶解氧过低,会出现污泥颜色发黑、生化不充分、氨氮硝化不足等情况,可导致废水处理效果降低,出水COD和总氮超标。2.核查方法了解溶解氧浓度可查阅现场在线水质监测仪表,也可查阅中控室相关数据。核查时,查阅正常运行时的设备曝气量(或曝气设备运行电流),此时如果生化池溶解氧正常,则把这一曝气量(或曝气设备运行电流)作为标准值,对照历史记录,如果历史记录长时间明显低于上述曝气量(或曝气设备运行电流)标准值,则历史曝气量可能不足。注意的是,进水浓度低、污泥浓度低等都可能要求降低曝气量 曝气头损坏常会导致大量气体逃逸(可能有30%以上的空气未发挥作用),水面呈现“开锅”现象,此时曝气量(或曝气设备运行电流)虽然符合要求,但生化反应池溶解氧浓度会明显低于正常标准,难以保障出水COD等指标稳定达标。(三)气水比核查1.参照数值一般情况下污水处理厂气水比为处理每吨污水需空气3m3~12m32.核查方法进水量稳定时,主要通过核查曝气设备的曝气量确定气水比是否正常。(四)氧化还原电位(ORP)核查1.参照数值氧化还原电位是判断缺氧和厌氧段反硝化情况的一项指标。通常氧化还原电位在厌氧段小于-250mV,在缺氧段小于-100mV。需要注意的是,一般微生物代谢需要的营养物组成碳(C)、氮(N)、磷(P)的比例是C∶N∶P=100∶5∶1,如果进水COD浓度低,则碳源不足,此时ORP将增大,甚至为正值。2.核查方法查阅现场在线监测仪表,也可查阅中控室相关数据。(五)电耗量核查1.影响因素影响电耗量的因素较多,主要有:(1)设计处理规模和实际处理水量。(2)进水水质和水温。(3)曝气方式。(4)污泥脱水方式。(5)出水消毒方式。(6)设备效率。(7)季节性变化和昼夜变化。2.参照数值处理厂电耗量一般为0.2度/吨~0.35度/吨污水,根据处理工艺有较大差别。3.核查方法现场核查,一般方法是根据某一时间段内污水处理量、耗电量计算污水处理厂实际平均电耗量,并与上述经验电耗量比较,判断污水处理厂运行是否正常。
  • 广州菲罗门酒类专用柱FB-Wine分析中国三大名酒
    广州菲罗门酒类专用柱fb-wine分析中国三大名酒白酒常见的香型有酱香型、浓香型、清香型等,酱香型味最重(高级酯、高级醇等总含量也最高),浓香居中,清香更低(香型物质总含量也是最低的)。本文所介绍的三种名酒:*台,五*液和泸**窖就分属酱香型和浓香型,并对它们进行成分以及主体香源物质进行分析。本应用采用的是直接进样法,气相色谱仪7890-fid分析。检测方法:仪器:agilent 7890 w/ fid柱型:fb-wine, 30m x 0.32mm x 0.40um(p/n: 30m-l101-040)炉温:50°c 5min 5 °c/min 200°c 2min载气:氢气 @ 1.3ml/min (恒定流量)进样口:分流40ml/min @ 240 °c检测器: fid @ 260 °c样品:*台,五*液,泸**窖进样量:1ul 图一*台(酱香型)样品测试图谱 (a)峰1-7放大图 (b)峰11-17放大图 图二 五*液(浓香型)样品测试图谱 (a)峰1-6放大图 (b)峰10-19放大图 图三 泸**窖(浓香型)样品测试图谱表1 *台、五*液、泸**窖酒的峰鉴定峰号*台min五*液 min泸**窖 min1乙醛2.640乙醛2.597乙醛2.6472丙醛3.292丙醛3.2453异丙醛3.365异丙醛3.3184甲酸乙酯3.5955乙酸乙酯4.043乙酸乙酯3.988乙酸乙酯4.0486乙缩醛4.267乙缩醛4.1997甲醇4.555甲醇4.4988乙醇5.263乙醇5.118乙醇5.3029丙酸乙酯5.41910异丁酸乙酯5.567异丁酸乙酯5.80811仲丁醇7.060仲丁醇6.99012丁酸乙酯7.359丁酸乙酯7.291丁酸乙酯7.37413异戊酸乙酯8.23514正丙醇7.497正丙醇7.42215异戊酸乙酯8.30216异丁醇9.322异丁醇9.21217仲戊醇9.94118戊酸乙酯10.096戊酸乙酯10.10619正丁醇10.811正丁醇10.70220异戊醇12.599异戊醇12.53121己酸乙酯13.138己酸乙酯13.134己酸乙酯13.16622己酸丙酯15.119己酸丙酯15.06023庚酸乙酯15.98024乳酸乙酯16.590乳酸乙酯16.542乳酸乙酯16.60525正己醇16.65126己酸丁酯18.67927辛酸乙酯19.869辛酸乙酯19.84228乙酸19.992乙酸20.021乙酸20.08629壬酸乙酯21.633壬酸乙酯21.60230丙酸22.10731己酸己酯22.94932正丁酸24.141正丁酸24.084丁酸24.17933未知杂质24.50434异戊酸25.02735正戊酸26.473正戊酸26.55036正己酸28.754正己酸28.685正己酸28.75937十四酸乙酯30.80138辛酸29.843辛酸32.81839油酸乙酯35.60040亚油酸乙酯35.829图一是*台酒的分析图谱,此酒属于酱香型白酒。从放大图可以看出峰1-7和11-17分离状况详情:图(a)乙酸乙酯和乙缩醛分辨率为3.69;丙醛和异丙醛分辨率为1.82。甲醇的拖尾因子是1.18。 图(b)几种主要醇类仲丁醇、正丙醇、异丁醇和正丁醇的峰形很好。从成分上分析,酱香酒的各种芳香物质含量高种类多,但其中乙酸乙酯起很大的作用,*台酒中乙酸乙酯的含量高于五*液和泸**窖。它的香味分为前香和后香。*台酒的酸度是其它酒的3至5倍,主要以乳酸和乙酸为主。由于乳酸在fid上没有响应,但可以从乙酸的峰看出其含量是大于五*液和泸**窖的。 图二和图三是浓香型白酒泸**窖和五*液的图谱。这种香型的白酒窖香浓郁,绵甜爽净。图二的放大图可以看出峰1-6和10-19的分离情况:图(a)乙酸乙酯和乙缩醛分辨率为3.72;丙醛和异丙醛分辨率为2.17。甲醇峰形较好,拖尾因子是0.94。图(b)几种主要醇类仲丁醇、正丙醇、异丁醇和正丁醇的峰形很好。它的主体香源成分是己酸乙酯和丁酸乙酯。有机酸以乙酸和己酸为主,从图谱中可以看出己酸的含量比其它香型酒要高出几倍,其中乙酸含量在此酒中是要略高于己酸的,但由于乙酸在fid上响应较弱,所以峰面积小。图三中泸**酒的成分相对简单,相比于五*液中还有其它低沸点的醇、酯、醛,泸州老窖只有几种主要成分乙酸乙酯、己酸乙酯、乳酸乙酯、乙酸和正己酸, 这是浓香型酒几种典型的香味成分。白酒中的成分是很复杂的,由于有些成分的含量低或者在fid上响应低,所以在以上的方法中没有列出。订货信息:货号:30m-l101-040;描述:fb-wine 30m*0.32mm*0.4um
  • 优普携纯水机参加"三省一市"城镇供水水质应急监测与应急处理技术培训暨研讨会
    四川优普超纯科技有限公司携实验室超纯水机参加"三省一市"城镇供水水质应急监测与应急处理技术培训暨研讨会! 四川优普超纯科技有限公司隶属优普集团。目前拥有一个研发制造中心、三个事业部(纯水/污水/仪器)及遍布全国各省的市场服务分支机构,申请并获批国家专利130余项(其中发明专利9项),公司秉承“专业、创新、卓越、服务”之经营理念,为客户提供纯水/超纯水/污水处理/中水回用/水质分析仪器等专业解决方案。 针对实验用水处理,我们有很成熟的技术,欢迎合位同仁前往参观了解! 地址:成都市家园国际酒店(双流区机场路188号)一楼10号 会议时间:2018年5月23-25日会议现场展会现场优普实验室超纯水机
  • 《“十三五”污水处理及再生建设》意见发布 建监测站327座
    p & nbsp & nbsp & nbsp strong 仪器信息网讯 /strong 近日, a title=" " target=" _self" href=" http://www.instrument.com.cn/news/20161122/206918.shtml" span style=" color: rgb(0, 112, 192) " 中国地质环境监测院发布了总额为1509万元的国家地下水监测工程实验室设备招标公告。 /span /a 由国土资源部和水利部共同承担,投资20亿的国家地下水监测工程工作正式开始。 /p p & nbsp & nbsp & nbsp 那边国家地下水监测工程正如火如荼的展开,这边国家发展改革委办公厅和住房城乡建设部办公厅又吹来污水处理及再生利用设施建设政策东风。11月14日国家发展改革委办公厅和住房城乡建设部办公厅联合发布了《“十三五”全国城镇污水处理及再生利用设施建设规划(征求意见稿)》意见函(以下简称《规划》)。 /p p    strong 强化监管能力建设方面, /strong 《规划》指出“十三五”期间,建设国家级排水与污水处理监测站1 座、省级监测站38 座、市级监测站288 座。所有设市城市具备排水与污水处理监测能力。 /p p   国家和省级监测站应具备全指标监测能力和主要指标的流动检测能力,市级监测站应具备污水管网排查与检测、污水处理厂基本控制项目及部分选择控制项目的分析能力,污水处理厂监测站应具备日常指标检测能力,满足政府监管和企业运行管理的需要。建成后,基本实现全国城镇排水与污水处理设施运行监管数据的动态信息监督管理。 /p p    strong 关于投资估算及资金筹措, /strong 《规划》表示,城镇污水处理设施建设共投资约5829 亿元。其中,各类设施建设投资5784 亿元,监管能力建设投资45 亿元。设施建设投资中,包括新建配套污水管网投资2188 亿元,老旧污水管网改造投资788 亿元,雨污合流管网改造投资588 亿元,新增污水处理设施投资1192 亿元,提标改造污水处理设施投资395 亿元,新增或改造污泥无害化处理处置设施投资316 亿元,新增再生水生产设施投资215 亿元,初期雨水治理设施投资102 亿元。“十三五”期间地级及以上城市黑臭水体治理中控源截污涉及的设施建设投资约1700 亿元,已分项计入规划重点建设任务投资中。 /p p & nbsp & nbsp & nbsp span style=" color: rgb(112, 48, 160) " strong 以下为《规划》全文: /strong /span /p p style=" text-align: center "   strong  国家发展改革委办公厅 住房城乡建设部办公厅关于征求对《“十三五”全国城镇污水处理及再生利用设施建设规划(征求意见稿)》意见的函 /strong /p p   环境保护部办公厅,各省、自治区、直辖市及计划单列市、新疆生产建设兵团、黑龙江农垦总局发展改革委、住房城乡建设厅(建委、市政管委、建设局)、北京、天津、上海市水务局、海南省水务厅: /p p   根据“十三五”规划《纲要》和党中央、国务院关于生态文明建设的总体部署和要求,为统筹推进“十三五”城镇污水处理及再生利用设施建设工作,我们编制完成了《“十三五”全国城镇污水处理及再生利用设施建设规划(征求意见稿)》,现印发你们,请结合本地实际研提意见,并将书面意见于11月25日前反馈国家发展改革委(环资司)、住房城乡建设部(城建司)。 /p p   国家发展改革委环资司 联系人:陈程 /p p   电 话:010-68505571 /p p   传 真:010-68505594 /p p   邮 箱:fgwhzshbc@126.com /p p   住房城乡建设部城建司 联系人:陈玮 /p p   电 话:010-58933160 /p p   传 真:010-58934352 /p p   邮 箱:chengshui@mail.cin.gov.cn /p p   中国国际工程咨询公司 联系人:韩明霞 /p p   电 话:010-68733458 /p p   传 真:010-68733453 /p p   邮 箱:hanmx2000@163.com /p p style=" line-height: 16px "    strong 附 件: /strong /p p style=" line-height: 16px " 1. img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201611/ueattachment/d5fe7e03-a63e-4340-858a-492dca34f46c.pdf" 《“十三五”全国城镇污水处理及再生利用设施建设规划(征求意见稿)》.pdf /a /p p    /p p style=" line-height: 16px " 2. img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201611/ueattachment/a427ce63-7abf-4162-b87e-e788414a7937.pdf" 设施建设规模及投资核算说明.pdf /a /p p style=" text-align: right "   国家发展改革委办公厅 /p p style=" text-align: right "   住房城乡建设部办公厅 /p p style=" text-align: right "   2016年11月14日 /p
  • 【ISCO】手动与自动化 Flash 色谱法: 合成(2S-3S)-环氧香叶醇的纯化
    01 摘要通过使用手性催化剂对烯丙醇香叶醇进行环氧化反应,可以通过夏普莱斯不对称合成法选择性地制备出(2S,3S)-环氧香叶醇。合成后的(2S,3S)-环氧香叶醇通过自动化 Flash 色谱法和手动玻璃柱色谱法进行了纯化。为了确定哪种纯化方法对化学家在专业和教学环境中更有益处,我们对每种纯化方法的成功率、效率、质量和经济性进行了分析和比较。结果发现,使用 Teledyne ISCO CombiFlash® NextGen 300+ 系统的自动化色谱法在成功率、效率和成本效益方面均优于传统的手动玻璃柱色谱法。02 背景 Flash 色谱法通常作为本科生实验室实验的一部分而被广泛使用。在研究生研究中,由于需要对合成化合物进行纯化,它也是常规使用的技术。Flash 色谱法是一种简单、低成本的色谱技术入门方法,它在纯化化合物方面非常有效。 开放柱的优点开放柱的缺点 尽管自动化 Flash 色谱系统的出现,开放柱在大学中仍然非常流行。它们的初始资金成本很低,因此可以同时使用多个。它们还提供了一种直观的感受,展示了 Flash 色谱是如何进行的。 开放柱由易碎的玻璃制成,一旦破损,需要清理尖锐的碎片和松散的硅胶。在实验结束时,需要对玻璃柱进行填充和拆卸,这会使学生们接触到硅胶粉尘、溶剂以及柱子上残留的任何化合物。开放柱只能使用等度或阶梯梯度。柱子运行需要更多时间,并且需要持续监控,管理溶剂和组分。由于缺乏任何检测器,需要大量的 TLC 板来识别感兴趣的组分。 自动化 Flash 柱的优点自动化 Flash 柱的缺点自动化 Flash 柱是自成一体的,因此在实验完成后,不会接触到硅胶或柱子上残留的任何产品或溶剂。这些柱子填充得当,提高了分辨率,减少了共洗脱峰的可能性。尽管这些柱子是用塑料包装的,但由于检测器可以显示哪些组分应该合并,而不是使用薄层色谱(TLC)板来观察化合物何时被洗脱,因此减少了固体废物。自动化系统允许对梯度进行实验(以梯度冲洗进行纯化测试),并且比开放柱更好地展示了梯度改变与分辨率之间的关系。由于无需填充或清洁柱子,而且纯化过程更快,所以在给定时间内可以处理更多样本,开放柱可同时运行的优势因此被抵消了。 自动化系统的主要缺点是 Flash 色谱设备的初始投资较高,因此与开放的玻璃柱相比,可用的色谱系统数量更少。此外,还需要持续投资预装填的柱子,以及与设备相关的任何维护成本。 03 结果与讨论测试编号 手动(管柱)纯化回收率或产率(%)自动(管柱)纯化回收率或产率(%)#429.0452.85#549.7356.14产率和时间分析成功合成了(2S,3S)-环氧香叶醇,并通过手动与自动化 Flash 色谱法进行了纯化。为了评估两种方法的优劣,我们对比了它们的成功率、效率、产物质量和成本。 通过分析产率,我们发现自动化纯化的产率较高,实验显示分别为 52.85% 和 56.14%,而手动纯化产率仅为 29.04% 和 49.73%。自动化纯化使用预装填柱,紧实充填的硅胶提高了分离效率,减少了样品在柱中的停留时间,避免了环氧环的潜在不稳定。 从纯化质量来看,自动化纯化也表现更佳。NMR 谱图显示,自动化纯化的产物杂质和溶剂残留较少。尽管两种方法都去除了大部分杂质,但自动化技术在纯化效果上更为出色。 在时间效率方面,自动化纯化显著优于手动纯化。自动化过程仅需 26 分钟,而手动纯化需 135 分钟,大大节省了时间和劳力,并减少了操作错误的风险。自动化系统还提供用户友好的操作界面,减少了人为错误并提高了重现性。 经济效益分析表明,自动化纯化的总成本低于手动纯化,为教学实验室提供了一种经济有效的解决方案。此外,自动化纯化减少了对环境的负担,使用了更少的一次性材料,更易于处理废物,并且更安全,因为操作人员无需直接接触硅胶。 综上所述,自动化 Flash 色谱法不仅提高了纯化效率和产物质量,而且更加经济和环保,是化学家们在专业及教育环境中的理想选择。 04 经济分析 平均来说,每个手动玻璃柱纯化所需的材料如表 1-3 所示,用量一致。而自动 Flash 色谱纯化的溶剂用量则根据所选参数和柱子大小(在本例中为 12 克和 4 克柱子)而定。以下是每次纯化所用的材料和溶剂详情。需要注意的是,初始需要的可重复使用设备未包含在价格明细和比较中,如手动纯化用的玻璃器皿和自动纯化用的 Teledyne ISCO CombiFlash NextGen 300+,未包含在价格明细和比较中。 以下比较中使用的化学产品供应商是 Sigma Aldrich;因此,列出的所有价格都基于这家供应商。 表 1:一次手动玻璃柱纯化所用材料的价格细目Materials UsedPrice per quantity used (£ ) 70% hexane/30% EtOAc (600 mL)49.59230-400 mesh Silica Gel (100 g)10.90Dust mask2.37Sand (5 g)0.39TLC plates (7 total)11.48Pipette tips (26 total)0.39KMnO4 (100 mL) (TLC plate detection)4.39一次纯化的总材料成本:79.51£ 表 2:使用 4 克柱进行一次自动 Flash 纯化所用材料的价格细目Materials UsedPrice per quantity used (£ ) Hexane (100 mL)9.80EtOAc (100 mL)4.694 g RediSep Gold silica column5.00Hexane chaser (1 mL)0.0981 mL Syringe (2 total)0.22一次纯化的总材料成本:19.81£ 表3:使用12克柱进行一次自动 Flash 纯化所用材料的价格细目Materials UsedPrice per quantity used(£ )Hexane (300 mL)29.40EtOAc (200 mL)9.3812 g RediSep Gold silica column500Hexane chaser (3 mL)0.291 mL Syringe (1 total)0.1110 mL Syringe (1 total)0.52一次纯化的总材料成本:44.70£ 05 实验步骤 将粉末状分子筛(0.28克)和无水二氯甲烷(15毫升)一起加入并混合,同时冷却至 -10°C。然后在前述混合物中加入 L-(+)-二乙基酒石酸酯(0.13毫升)和钛(IV)异丙醇盐(0.15毫升),随后再加入叔丁基氢氧化物的癸烷溶液(5.5 M,约3毫升)。混合物在 -10°C 下搅拌 10 分钟,然后冷却至 -20°C。将香叶醇(1.54克)溶解在无水二氯甲烷(1毫升)中,并确保温度不超过 -15°C 的情况下加入到混合物中。加入后,混合物在 -15 至 -20°C 下搅拌 60 分钟。然后将混合物升温至 0°C,并加入水(3毫升)。当溶液升温至室温时,加入饱和氯化钠的氢氧化钠溶液(30%,0.7毫升)。混合物搅拌 10 分钟。然后用二氯甲烷(2 × 10毫升)萃取水层。合并的有机层用 MgSO4 干燥,并在减压下浓缩以得到粗制的(2S,3S)-环氧香叶醇。 表4:实验 4(使用4克柱)的固定参数项目所用参数 Wavelengths254 nm (red)280 nm (purple)Mobile phasesSolvent A: HexaneSolvent B: Ethyl acetateFlow Rate13 mL/minEquilibration Volume7.0 CVGradient% Solvent B0.00.0100.0100.0100.0MinuteInitial0.510.03.52.8Run Length11.4 min, not includingequilibration timeNotesELSD used表5:实验 5(使用12克柱)的固定参数项目所用参数Wavelengths254 nm (red)280 nm (purple)Mobile phasesSolvent A: HexaneSolvent B: Ethyl acetateFlow Rate30 mL/minEquilibration Volume6.0 CVGradient% Solvent B0.00.0100.0100.0MinuteInitial0.510.03.5Run Length8.3 min, not includingequilibration timeNotesELSD used 06 结论 通过手动和自动 Flash 色谱法纯化了合成的(2S-3S)-环氧香叶醇。研究发现,与手动纯化相比,自动 Flash 纯化在纯化合成的粗产品方面更为成功,因为它能从产品中去除更多的杂质和残留溶剂峰。这一点通过分析获得的 NMR 光谱得以证实。此外,通过分析获得的产量比较了每种纯化技术的效率。结果表明,自动纯化的产量更高。此外,自动柱纯化比手动柱纯化耗时少得多,从而蕞大化了实验室的时间利用。这消除了采用手动玻璃柱纯化所需的劳动力投入,并避免了可能发生的高风险错误。与自动纯化相比,手动纯化成本更高、对环境更不友好,并且对用户的危险更大。因此,可以得出结论,自动纯化仪器(如Teledyne ISCO CombiFlash NextGen 300+)是一项值得投资的设备,因为它效率更高,能更成功地纯化合成产品,并且是一种更经济、对环境更有意识的投资。这一结论适用于专业环境中的化学家,如研究或工业领域,以及本科化学教学设施中的化学家。07 补充信息 实验4 手动纯化使用的粗产品 = 1.000 g获得的纯手动纯化产品 = 0.2933 g产率 = 0.2933/1.000 × 100 = 29.33 %自动纯化使用的粗产品 = 0.4 g获得的纯自动纯化产品 = 0.2114 g产率 = 0.2114/0.4 × 100 = 52.85 % 实验5 手动纯化使用的粗产品 = 1.0441 g获得的纯手动纯化产品 = 0.2855 g产率 = 0.2855/1.0441 × 100 = 49.73 %自动纯化使用的粗产品 = 1.0 g获得的纯自动纯化产品 = 0.5614 g产率 = 0.5614/1.000 × 100 = 56.14 % 自动 Flash 管柱纯化结果:实验4(上图,4克柱)和实验5(下图,12克柱)参考文献1. Purification of Delicate Compounds with RediSep Gold® Diol and Cyano Columns Retrieved 19 Nov 2021
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制