当前位置: 仪器信息网 > 行业主题 > >

烯丙基甲硫醚

仪器信息网烯丙基甲硫醚专题为您提供2024年最新烯丙基甲硫醚价格报价、厂家品牌的相关信息, 包括烯丙基甲硫醚参数、型号等,不管是国产,还是进口品牌的烯丙基甲硫醚您都可以在这里找到。 除此之外,仪器信息网还免费为您整合烯丙基甲硫醚相关的耗材配件、试剂标物,还有烯丙基甲硫醚相关的最新资讯、资料,以及烯丙基甲硫醚相关的解决方案。

烯丙基甲硫醚相关的资讯

  • 上海有机所金属铱催化的烯丙基取代反应研究取得新进展
    过渡金属催化惰性碳氢键的直接官能团化反应在近年来受到化学研究工作者的极大关注,并取得了重要进展,但在这类反应中,剧烈的反应条件,当量氧化剂的使用,以及选择性难以控制等依旧是其应用中的主要制约因素。此外,从烯烃出发实现烯烃碳氢键活化的工作也非常少见。 铱催化剂催化烯丙基取代反应 2009年,中国科学院上海有机化学研究所金属有机国家重点实验室的研究人员发现金属铱催化的基于自由胺基协助双键末端碳氢键活化,在[Ir(COD)Cl]2和Feringa配体的催化体系作用下,邻胺基苯乙烯类化合物与烯丙基碳酸酯可以发生直接的烯丙基烯基化反应,立体选择性地得到顺式双键产物(J. Am. Chem. Soc. 2009, 131, 8346-8346),反应条件温和,原料简单易得。这一方法为构建顺式双键提供了新的策略和思路。结果发表以后被Synfacts积极评述(Synfacts, 2009, 9, 0987)。这也是金属铱催化直接烯丙基烯基化反应的首例报道。 铱催化剂催化合成苯并氮杂七元环化合物 最近,研究人员在这一研究发现的基础上,通过巧妙的设计,在[Ir(COD)Cl]2和Feringa配体的催化下,邻胺基苯乙烯类化合物和烯丙基双碳酸甲酯反应,可以实现串联的烯丙基烯基化与分子内不对称烯丙基胺化反应,高收率、高对映选择性地合成苯并氮杂七元环类化合物。所得具有光学活性的苯并氮杂七元环类化合物,可以方便地转化为结构复杂多环化合物,为合成苯并氮杂七元环这一在许多天然产物和药物分子中都广泛存在的一类骨架提供了有效的方法。这一部分工作已发表在Angew. Chem. Int. Ed., 2010, 49, 1496-1499上。结果发表以后被Synfacts积极评述(Synfacts, 2010, 4, 0446)。 这些研究工作获得国家自然科学基金委面上项目和科技部973项目的资助。(摘自有机化学网)
  • 上海有机所在PdH催化的不对称迁移烯丙基取代研究中获进展
    中国科学院上海有机化学研究所天然产物有机合成化学重点实验室研究员何智涛课题组在Nature Communications上,在线发表了题为Palladium-Catalyzed Regio- and Enantioselective Migratory Allylic C(sp3)-H Functionalization的研究论文。该工作利用链行走的策略为惰性烯丙位C-H键的不对称官能团化提供了新思路,揭示出亲核试剂的pKa值对迁移和取代历程的影响,并通过机理研究阐释和验证了反应的基本历程。  相较于传统带有离去基的烯丙基取代反应,不对称烯丙基C-H键的直接官能团化更为直接和步骤经济。目前,该领域的研究仍面临诸多问题。大部分相关催化工作要求烯丙位C-H被相邻的杂原子或sp2碳单元进一步活化,对非活化的烯丙位C-H键的不对称官能团化的研究相对局限。过渡金属催化的链行走策略已被证实可以有效活化远程的惰性C-H键。基于此,科研人员设想利用过渡金属参与的链行走策略来定位烯丙位的C-H金属化,由此产生的稳定烯丙基金属中间体再被分子间的亲核试剂捕获,从而实现非活化的烯丙位C-H键的高效不对称官能团化(图1)。  该反应对于不同的链长度和取代基均有较为突出的结果,兼容复杂迁移体系的同时也能实现了手性控制(图2)。此外,亲核试剂的pKa值与反应的活性密切相关。只有当亲核试剂的pKa值处于13-18间时才有相对较高的反应活性。pKa值高的亲核试剂往往无法促进开始的烯烃迁移的发生,而pKa值低的亲核试剂虽能有效实现金属迁移,但却具有相对较弱的亲核取代能力。  进一步探究反应机理(图3)并结合传统的迁移反应和烯丙基取代过程,研究推测,反应可能首先由二价钯在亲核试剂作用下还原形成零价钯启动,随后在碱的作用下被质子氧化形成二价PdH物种,与末端烯烃配位继而发生快速链行走过程得到烯丙基钯中间体,再接受亲核试剂的进攻,从而得到烯丙位C-H官能团化的产物,同时再生零价钯完成催化循环历程。研究发现,反应初期存在诱导期,为初始零价钯形成过程。该串联过程对于催化剂和亲核试剂均呈现出一级反应,而对二烯底物的动力学符合Micheaelis-Menten模型,即饱和动力学关系,由此推断反应决速步为亲核取代过程。   研究工作得到国家自然科学基金委员会、上海市科学技术委员会、中科院等的资助。
  • 博纳艾杰尔推出丙基酰胺键合硅胶色谱柱
    Venusil HILIC亲水作用色谱柱   亲水作用色谱(Hydrophilic Interaction Chromatography,HILIC)是近年来色谱领域研究的热点,博纳艾杰尔科技推出丙基酰胺键合硅胶为基质的HILIC色谱柱, 对极性化合物,如极性代谢物,碳水化合物或肽具有极佳的分离效果。   丙基酰胺键合硅胶克服了传统正相色谱柱在水相条件下不稳定的缺点,其常使用流动相是和反相色谱相同的水相缓冲液( 40%)及有机溶剂,但是其梯度条件通常是初始为高比例有机相,逐步加大水相含量 极性丙基酰胺键合硅胶的HILIC色谱柱在反相条件下,可以有效的保留极性化合物,是一种崭新的极性化合物HPLC分离解决方式.      图1. Venusil HILIC 比传统正相色谱柱更稳定   样 品:VB1, VB6, VC, VB2   老化条件:甲醇:20 mM NaH2PO4 (pH=7.0) = 40 : 60 1.0mL/min 温度:40℃   分析条件:0.1%TFA:ACN = 90:10 流速: 1.0mL/min 温度:30℃ ,UV280nm      色谱柱: Atlantis C18 4.6×250mm,5μm   流动相:98%的0.005M的磷酸 钠 (pH=7):2% 甲醇   流 速: 1ml/min   柱 温: 25℃   检 测: UV 210nm      色谱柱:Venusil HILIC 4.6×250mm,5μm   流动相: A: 0.1%TFA水溶液,   B: 乙腈,   A:B=75:25   流 速: 1 mL/min   温 度: 25℃   检 测: UV 210 nm   图2. Venusil HILIC与C18分离井冈霉素对比色谱图   图2. 结果显示,反相C18在98%的水相条件下,几乎没有保留的强极性化合物井冈霉素,在25%的乙腈条件下,使用丙基酰胺键合硅胶的Venusil HILIC得到了很好的分离。所以,Venusil HILIC色谱柱是强极性化合物分离的有力工具。   丙基酰胺键合硅胶的HILIC色谱柱用于低聚糖的分析,显示出比氨基柱更好的稳定性,更好的分离效果,尤其在使用ELSD检测器的时候,丙基酰胺键合硅胶比氨基键合硅胶具有更低的背景噪音,图3。      图3. 丙基酰胺键合硅胶HILIC色谱柱与氨基键合硅胶柱分离葡萄糖对比   样品:葡萄糖标准品(购至Sigma)   检测:ELSD   色谱柱:4.6×250mm,5μm   色谱条件:乙腈/水(80:20),1mL/min,30℃   图3显示,丙基酰胺键合硅胶填充的HILIC色谱柱可以将葡萄糖在水溶液中存在的两个端基异构体(即α-D-葡萄糖和β-D-葡萄糖)区分开,而用氨基柱则只能得到一个相对较宽的色谱峰,结果表明了丙基酰胺键合硅胶HILIC柱在分析糖类成分方面的独特优势。   腺苷类强极性抗肿瘤药物地西他滨(Decitabine)在普通的反相C18色谱柱上检测有关物质存在杂质分离度不够或检测不出的问题,使用丙基酰胺键合硅胶的Venusil HILIC色谱柱获得了极佳的分离效果,图4。      图4. 地西他滨有关物质分析色谱图   Venusil HILIC(丙基酰胺键合硅胶),4.6×150mm,5μm,乙腈:水=96∶4,1ml/min,   UV@244nm,室温 Venusil HILIC 丙基酰胺键合硅胶.pdf
  • 大连化物所铜催化不对称炔丙基转化研究取得新进展
    p   近日,中国科学院大连化学物理研究所研究员胡向平领导的研究团队在铜催化不对称炔丙基转化研究中取得新进展,通过运用一种脱硅活化的新策略,成功实现了Cu-催化的炔丙醇酯与β-萘酚及富电子苯酚间的不对称[3+2]环加成反应,相关研究结果以通讯形式发表在最新一期的《德国应用化学》(Angew. Chem. Int. Ed. 2016, 55, 5014-5018)上。 /p p   在炔丙基转化反应中,有效形成亚丙二烯基铜活性中间体是实现反应的关键。针对传统的由端基炔丙基化合物形成亚丙二烯基铜活性中间体能力不足的缺点,该研究利用铜能高效促进Csp-Si键开裂的特点,提出以三甲基硅基保护的炔丙醇酯为底物,通过脱硅活化的策略,实现亚丙二烯基铜活性中间体的不可逆形成。基于这一反应策略,研究组利用自主发展的高位阻手性P,N,N-配体,成功实现了炔丙醇酯与β-萘酚及富电子苯酚间的不对称[3+2]环加成反应。这是该研究组继2014年提出脱羧活化的炔丙基转化策略(Angew. Chem. Int. Ed. 2014, 53, 1410-1414)后,在炔丙基转化反应中实现的又一催化活化策略。这些反应策略的提出与实现有效拓展了催化不对称炔丙基转化反应研究的思路。 /p p   上述研究工作得到国家自然科学基金委的资助。 /p p style=" text-align: center " img style=" width: 500px height: 216px " title=" W020160419304595129181.jpg" border=" 0" hspace=" 0" vspace=" 0" src=" http://img1.17img.cn/17img/images/201604/insimg/dc0e2990-2b81-4183-b6ca-5d3434096321.jpg" width=" 500" height=" 216" / /p p style=" text-align: center "    span style=" font-size: 14px " 大连化物所铜催化不对称炔丙基转化研究取得新进展 /span /p p style=" text-align: center " & nbsp /p
  • 月饼硫残留是公开秘密 国家标准无相关限制
    “今年油、面粉、糖和做馅用的各种原料价格上涨,月饼主要生产企业整体市场零售价随之上涨10%,然而市场上仍有相当一部分小的月饼厂家借机大打价格战,为了缩减制作成本,月饼馅料二氧化硫残留有可能发展成产业内的一场'三聚氰胺危机’。”日前,华南月饼制造业资深人士卢超明(化名)告诉本报记者。记者4日在广州某大超市看到,店内至少销售20款月饼,价格参差不齐,以一盒四个普通装双黄白莲蓉月饼为例,最低不到30元一盒,而最高超过200元一盒。卢超明称,国内月饼市场容量达200亿元,而前十名的大企业只占约10%的市场份额,中小品牌众多以及巨大的市场空间给行业的质量监控提高了难度。   原材料价格上涨月饼普涨   “受农副产品市场价格影响,今年生产月饼的主要原材料成本与去年同比大幅上涨,如莲子价格约为4.8万元/吨,同比上涨165% 五仁类原材料同比上涨40%-60% 糖约为5500元/吨,同比上涨30% 花生油约为1.7万元/吨,同比上涨50% 面粉约为5000元/吨,同比上涨15%。”广州酒家集团利口福食品有限公司总经理吴家威告诉本报记者,广州酒家今年中秋月饼原材料成本平均升幅高达30%。由于主要原材料成本大幅上涨,记者发现去年广式月饼主要品牌月饼系列的价格不超过百元的月饼占到六七成,但是今年预计单价超过或接近百元左右的品种占月饼总销量的70%。“从1994年开始,安琪月饼只提过一次价,今年是第二次。”深圳市场月饼龙头老大深圳安琪食品有限公司董事长梁球胜告诉本报记者,今年安琪双黄白莲蓉月饼每盒零售价从原来的108元提高10元,标价118元,产品平均增幅在10%左右。   从制定国内月饼国家标准,到生产企业强制Q S认证,国内月饼市场近年得到较大程度的规范,然而国内月饼市场容量达200亿元,而前十名大企业只占约10%的市场份额。“国内目前月饼的生产巨头有上海杏花楼、广州酒家、深圳安琪、北京稻香村、北京好利来和东莞华美等大品牌,销售额最大的杏花楼不过3亿元左右,广州酒家约2.5亿元,深圳安琪约2亿元,排名前十位的生产企业的市场销售总额接近20亿元,只占200亿的市场整体容量的10%份额。”华南月饼制造业资深人士卢超明(化名)告诉本报记者。   以劣充好,食品安全隐患上升   依据国家月饼标准,包括以莲子为主要原料加工成馅的月饼,除油、糖外的馅料原料中,莲子含量应不低于60%,然而由于今年莲蓉价格大涨,不少企业以“薯粉”冒充莲蓉。然而化学物在月饼中的残留,造成的质量影响更大。“月饼制作过程中不少企业为图价格优势,使用硫化糖,该类糖含有一定的二氧化硫残留,并容易带入月饼馅料中。除此外,莲蓉的制作过程中,为令莲子漂白,行内普遍用食用碱水,但是有不法商家为加快进程,用一种含有二氧化硫的化学物,这无疑增加了莲子硫残留风险。”卢超明称。当前关于月饼的国家标准中,并没有针对硫残留含量限制的相关条款,而月饼的硫残留已成为行业公开的秘密。   乳业三聚氰胺危机令乳业巨头掀起奶源基地兴建热潮,苏丹红风波令食品行业加强对色素的监管,而月饼行业的安全隐患却鲜为人知。“广式月饼的主要原料有莲子、蛋黄、面粉、糖、油等,其中又属莲子和蛋黄最关键。”安琪董事长梁球胜告诉记者。为把控莲蓉的品质监控,今年安琪在湖北仙桃建立逾万亩湘莲种植基地,并与武汉大学开展无公害莲业科研合作,该项合作被列为“十一五”国家支撑计划重大项目。而在湖北仙桃沙湖,安琪也建立了非饲料养殖的养鸭基地。“苏丹红事件后,使用工业色素'上色’的投机行为少了,但市场上不少表面看上去颜色鲜亮的咸蛋黄,其实养殖过程中鸭农仍然喂饲了可食用的胡萝卜素。相比之下富含天然胡萝卜素的麦黄角草是沙湖的特产,以该草料喂养的鸭子所产咸蛋,出油、起沙和色泽都是最出色的。该莲子和养鸭基地一年可以为安琪提供充足的莲蓉和咸蛋黄,这标志着安琪正突破当前月饼产业收购莲子中间存在原料多重购销环节的模式,从莲子种植、莲业研发、莲蓉制作,到月饼产销,开创月饼全产业链时代。”梁球胜称。
  • 美国对杀虫剂吡丙醚制定残留许可限量最终法规
    近日,美国环保署发布了吡丙醚(Pyriproxyfen)许可限量最终法规,对杀虫剂吡丙醚制定了残留许可限量的最终法规。   法规规定吡丙醚在叶类蔬菜(芸苔类除外)上的残留许可限量为3.0ppm 根茎块茎叶类蔬菜为2.0ppm 芦笋为2.0ppm。   吡丙醚(Pyriproxyfen)许可限量最终法规具体内容详见:   http://www.epa.gov/fedrgstr/EPA-PEST/2009/October/Day-28/p25689.pdf
  • 用户之声|和黄白猫洗洁精的表面活性剂分析神器—CAD检测器
    今天赛默飞就带大家跟随“和黄白猫”,探寻下最常用的日用品之一——洗洁精。洗洁精由多种表面活性剂及助剂复配而成。可能的成分有:“烷基苯磺酸钠(LAS),脂肪醇聚氧乙烯醚硫酸钠(AES)和烯基/羟基磺酸钠(AOS)̷̷”,这些阴离子表面活性剂去油污能力强,在皮肤上残留会有干燥紧绷的感觉;因此,很多厂家会添加比较温和的两性离子表面活性剂进行复配,如椰油酰胺丙基甜菜碱,椰油酰胺丙基氧化胺,非离子表面活性剂脂肪醇聚氧乙烯醚等,以取得更好的清洁效果并降低对人体皮肤的刺激。椰油酰胺丙基甜菜碱结构式 由于成分复杂,开发合适的检测方法对这类产品进行质控分析,是一项高难度挑战。1两性表面活性剂在酸性条件下以阳离子形式存在,会影响其他阴离子表面活性剂的定量,无法用化学滴定法定量;2大部分表面活性剂无紫外吸收,缺乏标准物质,紫外检测器很难检测所有组分;3示差折光检测器重复性差、只能等度洗脱无法完全分离;4质谱检测器只能检测可以离子化的化合物,而且长时间使用离子源和四极杆会难以清洗造成交叉污染;自从接触了赛默飞的电雾式检测器CAD,以上这些难题都迎刃而解。“通过调研我们发现:CAD的重现性和灵敏度远高于示差折光检测器,与ELSD相比也具有较明显优势。2016年我们研发部门配置了CAD和紫外双检测器的Ultimate 3000双三元液相色谱,通过一个二位六通阀连接,实现了一台仪器当两台液相使用的强大功能,方便了我们的工作,降低了购买成本。”——和黄白猫公司上海和黄白猫有限公司是洗涤清洁用品行业的知名企业,在国内同行业中技术领xian、设备先进、质量过硬,享有相当高的市场信誉度;“白猫”品牌,几乎成为国内洗涤清洁用品的代名词。 电雾式检测器(CAD)电雾式检测器(CAD),是一种新型通用型检测器,重现性好,能检测大部分非挥发性和半挥发性的有机物,并提供几乎一致的响应,且不受化合物紫外吸收基团的影响,在定量分析中具有明显的优势。 赛默飞带您来看和黄白猫公司使用CAD检测器对洗洁精中表面活性剂的日常分析色谱条件数据结果分析由于表面活性剂中包含不同碳链的非极性基团,检测中会出现多个连续峰,如AES和LAS的CAD图谱无法完全分离,但由于LAS有紫外吸收,可使用紫外检测器定量;AES无紫外吸收,使用CAD检测器定量。椰油酰胺丙基氧化胺(上)和月桂酰胺丙基甜菜碱(下)标准品CAD图谱脂肪醇聚氧乙烯醚硫酸钠(AES)和烷基苯磺酸钠(LAS)标准品CAD图谱烷基苯磺酸钠(LAS)的CAD图谱和UV(254nm)图谱 对于二者同时存在的情况,可以依据CAD响应一致性的特性,使用CAD检测器以AES为标品,计算二者的总量,再减去用紫外检测器得到LAS含量,即为AES的含量,对比使用其他方法的检测结果,无显著性差异。洗洁精实际样品的CAD和UV图 以上可知,赛默飞表面活性剂专用色谱柱Acclaim Surfactant Plus(可同时提供反相机制和阴、阳离子交换保留机制),配合DAD和CAD检测器串联使用,可以有效、准确的检测各表面活性剂成分的含量。 在对某些进口品牌的洗涤剂配方研究中我们发现,大部分产品都不同程度添加了相应的两性离子表面活性剂,使同时具有良好的乳化性和分散性,其对织物有优异的柔软平滑性和抗静电性。CAD检测器为洗涤剂类产品的配方优化和产品质量控制提供了良好的检测手段。 鸣谢:感谢和黄白猫公司的徐艳丽工程师提供的实验数据!色谱质谱明星产品前处理气相色谱离子色谱液相色谱气质联用液质联用AA/ICP/ICPMS软件 更多仪器配置和方案推荐色谱质谱全流程食品安全固废专项临床检测RoHS检测中药分析化药分析代谢组学
  • 残留溶剂专题②|岛津SH-I-624Sil MS助力高效分析
    第二期 II类B残留溶剂上期回顾第一期I类残留溶剂和II类A残留溶剂的分析在残留溶剂专题①中我们介绍了I类残留溶剂和II类A残留溶剂的分析,我们对比了岛津SH-I-624Sil MS和市面某品牌624,岛津SH-I-624Sil MS对I类残留溶剂苯和1,2-二氯乙烷分离度更优,II类A残留溶剂整体峰形和灵敏度更好,同时溶剂峰DMSO和异丙基苯也展现出了更好的分离度。本期我们从II类B残留溶剂进一步展开介绍。方案设计参考方法:II类B:USP载气:N2色谱柱:适合顶空进样的残留溶剂:G43色谱柱(624) 适合直接进样的残留溶剂:G16色谱柱(PEG)溶剂:DMSO进样方式:顶空检测器:FIDII类B实验结果II类B残留溶剂标准溶液分离数据(岛津SH-I-624Sil MS)对于II类B残留溶剂,SH-I-624Sil MS整体分离效果良好。特别注意!# 吡啶容易出现响应不好的问题这是因为吡啶易与熔融石英表面硅羟基形成分子间氢键,从而导致吸附、拖尾、响应差等问题的出现。与此同时我们也发现甲苯和吡啶同时检测时容易共流出,干扰彼此定量。对于吡啶检测我们建议使用胺类专用柱SH-Volatil Amin(碱改性100%二甲基聚硅氧烷),碱处理色谱柱可有效改善胺类柱上吸附和峰形拖尾问题。(点击查看更多胺类专用柱相关)对甲苯和吡啶检测我们给出针对性测试方案:上:使用岛津SH-I-624Sil MS之前下:使用岛津SH-I-624Sil MS之后测试结果表明:使用岛津SH-I-624Sil MS之前甲苯和吡啶分离度仅为1.4,使用后该柱子后甲苯和吡啶分离度提升到1.9,吡啶响应良好。为提升吡啶响应,提供大家一种优化思路:小内径提升吡啶响应和灵敏度完整实验结果请查看“岛津实验器材”微信公众号或直接访问:https://mp.weixin.qq.com/s/PdHRKm8wcgxZrH-ItHEIEg 产品信息点击立即查看最新药斯卡排行榜
  • 药监局发布《Q3C(R9):杂质:残留溶剂的指导原则》征求意见稿
    为推动人用药品技术要求国际协调理事会(ICH)指导原则在国内的平稳落地实施,国家药品监督管理局药品审评中心拟定了《Q3C(R9)指导原则实施建议》,同时组织翻译了Q3C(R9)指导原则的中文版。现对该实施建议和中文版公开征求意见,征求意见时间自2024年3月22日至2024年4月22日止。药物中的残留溶剂在此定义为在原料药或辅料的生产中以及制剂制备过程中使用或产生的有机挥发性化合物。这些溶剂在现有生产技术条件下不能完全除去。选择适当的溶剂来合成原料药可提高收率或决定药物的性质,如晶型、纯度和溶解度。因此,溶剂有时可能是合成工艺的关键要素。 由于残留溶剂并不能助益治疗,故应尽可能除去所有残留溶剂,以符合制剂质量标准、生产质量管理规范(GMP)或其他质量要求。制剂的残留溶剂量不应高于安全性数据可支持的水平。除非在风险-收益评估中强有力地论证了使用这些溶剂的合理性,否则在生产原料药、辅料或制剂时,应规避一些已知会引起不可接受的毒性的溶剂(1类,表1)。对于一些毒性不那么严重的溶剂(2 类,表 2),应进行限制,以防止患者出现潜在的不良反应。如切合实际,应尽可能使用低毒溶剂(3 类,表 3)。本指导原则的适用范围包括原料药、辅料和制剂中所含的残留溶剂。因此,当已知生产或纯化工艺中会出现这些溶剂时,应进行残留溶剂检查,且仅有必要对原料药、辅料或制剂的生产或纯化中使用或产生的溶剂进行检查。生产商可选择检验制剂,也可根据制剂生产所用的各成分的残留溶剂水平,累积计算出制剂中残留溶剂整体水平。如果算出的结果等于或低于本指导原则建议的水平,则不需考虑对制剂进行该残留溶剂检查。但如果计算结果高于建议水平,则应对制剂进行检验,以确定制剂工艺是否将有关溶剂的量降至可接受水平。如果制剂生产中用到某种溶剂,也应对制剂进行检验。分析方法残留溶剂通常用色谱技术(如气相色谱法)测定。如可行,应采用药典规定的统一的残留溶剂测定方法。生产商也可针对特定申请自行选择经验证的适宜分析方法。当仅有3类溶剂存在时,如果验证得当,可使用非专属性的方法(如,干燥失重)进行控制。验证时应考虑溶剂的挥发性对分析方法的影响。表 1:制剂中的 1 类溶剂(应避免的溶剂)溶剂浓度限度(ppm)关注点苯2致癌物四氯化碳4有毒和危害环境1,2-二氯乙烷5有毒1,1-二氯乙烯8有毒1,1,1-三氯乙烷1500危害环境表 2:制剂中的 2 类溶剂(应限制的溶剂)溶剂PDE(mg/天)浓度限度(ppm)乙腈4.1410氯苯3.6360氯仿0.660异丙基苯0.770环己烷38.83880环戊基甲基醚15.015001,2-二氯乙烯18.71870二氯甲烷6.06001,2-二甲氧基乙烷1.0100N,N-二甲基乙酰胺10.91090N,N-二甲基甲酰胺8.88801,4-二噁烷3.83802-乙氧基乙醇1.6160乙二醇6.2620甲酰胺2.2220己烷2.9290甲醇30.030002-甲氧基乙醇0.550甲基丁基酮0.550甲基环己烷11.81180甲基异丁基酮454500N-甲基吡咯烷酮5.3530硝基甲烷0.550吡啶2.0200环丁砜1.6160叔丁醇353500四氢呋喃7.2720四氢萘1.0100甲苯8.98901,1,2-三氯乙烯0.880二甲苯*21.72170表 3:应受 GMP 或其他质量要求限制的 3 类溶剂(低潜在毒性的溶剂)乙酸庚烷丙酮乙酸异丁酯苯甲醚乙酸异丙酯1-丁醇乙酸甲酯2-丁醇3-甲基-1-丁醇乙酸丁酯甲基乙基酮叔丁基甲基醚2-甲基-1-丙醇二甲基亚砜2-甲基四氢呋喃乙醇戊烷乙酸乙酯1-戊醇乙醚1-丙醇甲酸甲酯2-丙醇甲酸乙酸丙酯三乙胺表 4:无足够毒理学数据的溶剂1.1-二乙氧基丙烷甲基异丙基酮1.1-二甲氧基甲烷石油醚2.2-二甲氧基丙烷三氯乙酸异辛烷三氟乙酸异丙醚附件:Q3C(R9)指导原则实施建议.docxQ3C(R9):杂质:残留溶剂的指导原则(中文版).docxQ3C(R9):杂质:残留溶剂的指导原则(英文版).pdf
  • 卫生部公布14种食品添加剂质量规格标准
    根据《中华人民共和国食品安全法》和卫生部等9部门《关于加强食品添加剂监督管理工作的通知》(卫监督发〔2009〕89号)规定,经审核,现公布磷酸酯双淀粉等14个食品添加剂的质量规格标准。   特此公告。   附件:磷酸酯双淀粉等14个食品添加剂的质量规格标准.doc 一、磷酸酯双淀粉 项目 指标 干燥失重/(g/100g) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 磷酸盐残留量(以P计)/(%) ≤ 马铃薯和小麦淀粉0.5;其他淀粉0.4 注:用三偏磷酸钠或三氯氧磷为酯化剂 二、醋酸酯淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 乙酰基含量/(%) ≤ 2.5 乙酸乙烯酯/ (mg/kg) ≤ (仅限用乙酸乙烯酯作为酯化剂) 0.1 注:用乙酸酐作酯化剂时,其用量不超过8.0%(w/w,占淀粉干基),用乙酸乙烯酯作酯化剂时,其用量不超过7.5%(w/w,占淀粉干基)。 三、辛烯基琥珀酸淀粉钠和辛烯基琥珀酸铝淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg)≤ 20 砷/(mg/kg) (以As计) ≤ 0.5 铅/(mg/kg) ≤ 1.0 辛烯基琥珀酸基团/(%) ≤ 3.0 辛烯基琥珀酸残留量/(%) ≤ 0.3 注:生产辛烯基琥珀酸淀粉钠时,辛烯基琥珀酸酐用量不超过3.0%(占淀粉干基,w/w);生产辛烯基琥珀酸铝淀粉时,辛烯基琥珀酸酐用量不超过2.0%,硫酸铝用量不超过2.0%(均为占淀粉干基,w/w)。 四、氧化羟丙基淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 氯丙醇/(mg/kg) ≤ 1.0 羧基含量/(%) ≤ 1.1 羟丙基含量/(%) ≤ 7.0 注:用次氯酸钠作氧化剂,使用量中的有效氯不超过5.5%(占淀粉干基,w/w),用过氧化氢作氧化剂,使用量中的活性氧不超过0.45%(占淀粉干基,w/w);用环氧丙烷作醚化剂,使用量不超过25%(占淀粉干基,w/w)。 五、羧甲基淀粉钠 项目 指标 干燥失重/(%) ≤ 10 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 氯化物(以cl计)/(%) ≤ 0.43 硫酸盐(以SO4计)/(%) ≤ 0.96 注:一氯乙酸为醚化剂。 六、淀粉磷酸酯钠 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 磷酸盐残留量(以P计)/ (%) ≤ 马铃薯和小麦淀粉0.5;其他淀粉0.4 注:用正磷酸、磷酸钠、磷酸钾或三聚磷酸钠酯化。 七、氧化淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 羧基含量/(%) ≤ 1.1 注:用次氯酸钠作氧化剂,使用量中的有效氯不超过5.5%(占淀粉干基,w/w)。 八、酸处理淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 注:采用盐酸、正磷酸或硫酸处理。 九、乙酰化双淀粉己二酸酯 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 乙酰基含量/(%) ≤ 2.5 己二酸盐/(%) ≤ 0.135 注:用已二酸酐(用量占淀粉干基不超过0.12%,w/w)交联,乙酸酐(用量占淀粉干基不超过8.0%,w/w)酯化。 十、羟丙基淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/( mg/kg ) ≤ 30 重金属(以Pb计)/(mg/kg)≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 氯丙醇/(mg/kg) ≤ 1.0 羟丙基含量/(%) ≤ 7.0 注:用环氧丙烷作醚化剂(用量占淀粉干基不超过25%,w/w)。 十一、磷酸化二淀粉磷酸酯 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 磷酸盐残留量(以P计)/ (%) ≤ 马铃薯和小麦淀粉0.5;其他淀粉0.4 注:采用三聚磷酸钠和三偏磷酸钠作酯化剂。 十二、乙酰化二淀粉磷酸酯 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg)≤ 20 铅/(mg/kg) ≤ 1.0砷/(mg/kg) (以As计) ≤ 0.5 磷酸盐残留量(以P计)/ (%) ≤ 马铃薯和小麦淀粉0.14;其他淀粉0.04 乙酰基含量/(%) ≤ 2.5 乙酸乙烯酯残留量/(mg/kg) ≤ (仅限用乙酸乙烯酯作酯化剂) 0.1 注:用乙酸酐作酯化剂时,其用量不超过8.0%(w/w,占淀粉干基),用乙酸乙烯酯作酯化剂时,其用量不超过7.5%(w/w,占淀粉干基)。 十三、羟丙基二淀粉磷酸酯 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单品淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 磷酸盐残留量(以P计)/(%) ≤ 马铃薯和小麦淀粉0.14;其他淀粉0.04 羟丙基含量/(%) ≤ 7.0 氯丙醇/(mg/kg) ≤ 1.0 注:采用三氯氧磷(用量占淀粉干基不超过0.1%,w/w)或三偏磷酸钠酯化交联,环氧丙烷醚化(用量占淀粉干基不超过10%,w/w)。 十四、聚丙烯酸钠 项 目 指 标 硫酸盐(以SO4计),w/ % ≤ 0.49 重金属(以Pb计)/(mg/kg) ≤ 20.0 砷(以As计)/(mg/kg) ≤ 2.0 残存单体,w/ % ≤ 1.0 低聚合物,w/ % ≤ 5.0 干燥失重,w/ % < 6.0 烧灼残渣,w/ % ≤ 76.0 pH(0.1%水溶液) 8~10 0.2%水溶液粘度 (60rpm.20℃) 250~430 cps 注:生产工艺,丙烯酸+NaOH→中和催化剂→聚合→精制→干燥→粉碎→成品。 分送:各省、自治区、直辖市卫生厅局,新疆生产建设兵团卫生局,部直属各单位。 卫生部办公厅 2010年7月21日印发
  • 自动乌氏黏度仪在羟丙甲基纤维素中的应用
    羟丙基甲基纤维素(hydroxypropyl methyl cellulose),亦有简化作羟丙甲纤维素(缩写作HPMC),是属于非离子型纤维素混合醚中的一个品种。它是一种半合成的、不活跃的、黏弹性的聚合物,常于工业助剂、眼科学用润滑剂,又或在口服药物中充当辅料或赋型剂。在工业领域中,羟丙甲基纤维素的主要用途是为聚氯乙烯生产中做分散剂,系悬浮聚合制备PVC的主要助剂。另外,在其他石油化工、涂料、建材、除漆剂、化妆品等产品生产中,羟丙甲基纤维素也可作增稠剂、稳定剂、保水剂、成膜剂等。在合成树脂领域,添加羟丙甲基纤维素可使获得的产品具有颗粒规整、疏松、视比重适宜,加工性能优良等特点。羟丙甲基纤维素在生产和研发中关键的指标是分子量,根据分子量不同,羟丙甲基纤维素制品可用于不同的用途,低分子量级别(分子量)的羟丙甲基纤维素用于片剂包衣材料,高分子量(分子量100000)的羟丙甲基纤维素可用作片剂骨架的阻滞剂、有延缓药物释放的作用。目前羟丙甲基纤维素分子量常用的测试方式是乌氏毛细管法,乌氏毛细管法实验操作简单,数据重复性好,在大多数高分子材料研发及相关质量控制中都起到关键作用,尤其是ZVISCO自动乌氏黏度仪因其自动化程度高,节省人力的同时进一步提高了实验数据的可靠性。以IV2000系列自动乌氏黏度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度可达180℃。3. 测试过程IV2000系列自动乌氏黏度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可达到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV2000系列自动乌氏黏度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。
  • 自动乌氏黏度仪在羟丙甲基纤维素中的应用
    羟丙基甲基纤维素(hydroxypropyl methyl cellulose),亦有简化作羟丙甲纤维素(缩写作HPMC),是属于非离子型纤维素混合醚中的一个品种。它是一种半合成的、不活跃的、黏弹性的聚合物,常于工业助剂、眼科学用润滑剂,又或在口服药物中充当辅料或赋型剂。在工业领域中,羟丙甲基纤维素的主要用途是为聚氯乙烯生产中做分散剂,系悬浮聚合制备PVC的主要助剂。另外,在其他石油化工、涂料、建材、除漆剂、化妆品等产品生产中,羟丙甲基纤维素也可作增稠剂、稳定剂、保水剂、成膜剂等。在合成树脂领域,添加羟丙甲基纤维素可使获得的产品具有颗粒规整、疏松、视比重适宜,加工性能优良等特点。羟丙甲基纤维素在生产和研发中关键的指标是分子量,根据分子量不同,羟丙甲基纤维素制品可用于不同的用途,低分子量级别(分子量100000)的羟丙甲基纤维素可用作片剂骨架的阻滞剂、有延缓药物释放的作用。目前羟丙甲基纤维素分子量常用的测试方式是乌氏毛细管法,乌氏毛细管法实验操作简单,数据重复性好,在大多数高分子材料研发及相关质量控制中都起到关键作用,尤其是ZVISCO自动乌氏黏度仪因其自动化程度高,节省人力的同时进一步提高了实验数据的可靠性。以IV2000系列自动乌氏黏度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度可达180℃。3. 测试过程IV2000系列自动乌氏黏度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可达到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV2000系列自动乌氏黏度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。
  • 75项食品安全国家标准发布 含多项检测标准
    近日,根据《食品安全法》的规定,《国家卫生计生委2013年第7号公告》发布了75项新食品安全国家标准。   本次公布的《食品添加剂标识通则》(GB 29924-2013)对食品添加剂的标签、说明书和包装等内容进行了规范。参考相关国际标准,结合我国食品添加剂的实际生产、经营和使用情况,本标准规范了食品添加剂标签标识的术语、定义、基本内容和有关要求,进一步细化了对食品添加剂标签标识的管理。认真贯彻执行GB 29924-2013,对于确保食品添加剂的使用者、消费者和管理者获取真实、准确的信息,依法加强食品添加剂的管理具有重要意义。   本次公布的《食品用香料通则》(GB29938-2013)是食品用香料通用的质量规格与安全要求标准。制定本标准参考了世界卫生组织(WHO)和联合国粮农组织(FAO)食品添加剂联合专家委员会(JECFA)的规定,也参考了美国《食品化学法典》(FCC)关于食品用香料的质量规格要求,共对 1600多种食品用香料的质量规格作出了规定,基本解决了食品用香料质量规格标准缺失问题。   第7号公告同时公布了《食品微生物学检验 副溶血性弧菌检验》(GB 4789.7-2013)等8项检验方法食品安全国家标准和《食品添加剂 明胶》(GB 6783&mdash 2013)等65项食品添加剂质量规格方面的食品安全国家标准。 关于发布《食品微生物检验 副溶血性弧菌检验》(GB4789.7-2013)等75项食品安全国家标准等的公告   根据《中华人民共和国食品安全法》和《食品安全国家标准管理办法》规定,经食品安全国家标准审评委员会审查通过,现发布《食品微生物学检验副溶血性弧菌检验》(GB 4789.7-2013)等75项食品安全国家标准和《食品添加剂二丁基羧基甲苯(BHT)》(GB 1900-2010)第1号修改单。其编号和名称如下:   GB 4789.7-2013 食品微生物学检验 副溶血性弧菌检验(代替GB/T 4789.7-2008)   GB 4789.26-2013 食品微生物学检验 商业无菌检验(代替GB/T 4789.26-2003)   GB 4789.28-2013 食品微生物学检验 培养基和试剂的质量要求(代替GB/T 4789.28-2003)   GB 4789.31-2013 食品微生物学检验 沙门氏菌、志贺氏菌和致泻大肠埃希氏菌的肠杆菌科噬菌体诊断检验(代替GB/T 4789.31-2003)   GB 4789.39-2013 食品微生物学检验 粪大肠菌群计数(代替GB/T 4789.39-2008)   GB 5009.205-2013 食品中二噁英及其类似物毒性当量的测定(代替GB/T 5009.205-2007)   GB 5413.20-2013 婴幼儿食品和乳品中胆碱的测定(代替GB 5413.20-1997)   GB 5413.31-2013 婴幼儿食品和乳品中脲酶的测定(代替GB 5413.31-1997)   GB 6783-2013 食品添加剂 明胶(代替GB 6783-1994)   GB 29924-2013 食品添加剂标识通则   GB 29925-2013 食品添加剂 醋酸酯淀粉   GB 29926-2013 食品添加剂 磷酸酯双淀粉   GB 29927-2013 食品添加剂 氧化淀粉   GB 29928-2013 食品添加剂 酸处理淀粉   GB 29929-2013 食品添加剂 乙酰化二淀粉磷酸酯   GB 29930-2013 食品添加剂 羟丙基淀粉   GB 29931-2013 食品添加剂 羟丙基二淀粉磷酸酯   GB 29932-2013 食品添加剂 乙酰化双淀粉己二酸酯   GB 29933-2013 食品添加剂 氧化羟丙基淀粉   GB 29934-2013 食品添加剂 辛烯基琥珀酸铝淀粉   GB 29935-2013 食品添加剂 磷酸化二淀粉磷酸酯   GB29936-2013 食品添加剂 淀粉磷酸酯钠   GB 29937-2013 食品添加剂 羧甲基淀粉钠   GB 29938-2013 食品用香料通则   GB 29939-2013 食品添加剂 琥珀酸二钠   GB 29940-2013 食品添加剂 柠檬酸亚锡二钠   GB 29941-2013 食品添加剂 脱乙酰甲壳素(壳聚糖)   GB 29942-2013 食品添加剂 维生素E(dl-&alpha -生育酚)   GB 29943-2013 食品添加剂 棕榈酸视黄酯(棕榈酸维生素A)   GB 29944-2013 食品添加剂 N-[N-(3,3-二甲基丁基)]-L-&alpha -天门冬氨-L-苯丙氨酸1-甲酯(纽甜)   GB 29945-2013 食品添加剂 槐豆胶(刺槐豆胶)   GB 29946-2013 食品添加剂 纤维素   GB 29947-2013 食品添加剂 萜烯树脂   GB 29948-2013 食品添加剂 聚丙烯酸钠   GB 29949-2013 食品添加剂 阿拉伯胶   GB 29950-2013 食品添加剂 甘油   GB 29951-2013 食品添加剂 柠檬酸脂肪酸甘油酯   GB 29952-2013 食品添加剂 &gamma -辛内酯   GB 29953-2013 食品添加剂 &delta -辛内酯   GB 29954-2013 食品添加剂 &delta -壬内酯   GB 29955-2013 食品添加剂 &delta -十一内酯   GB 29956-2013 食品添加剂 &delta -突厥酮   GB 29957-2013 食品添加剂 二氢-&beta -紫罗兰酮   GB 29958-2013 食品添加剂 l-薄荷醇丙二醇碳酸酯   GB 29959-2013 食品添加剂 d,l-薄荷酮甘油缩酮   GB 29960-2013 食品添加剂 二烯丙基硫醚   GB 29961-2013 食品添加剂 4,5-二氢-3(2H)噻吩酮(四氢噻吩-3-酮)   GB 29962-2013 食品添加剂 2-巯基-3-丁醇   GB 29963-2013 食品添加剂 3-巯基-2-丁酮(3-巯基-丁-2-酮)   GB 29964-2013 食品添加剂 二甲基二硫醚   GB 29965-2013 食品添加剂 二丙基二硫醚   GB 29966-2013 食品添加剂 烯丙基二硫醚   GB 29967-2013 食品添加剂 柠檬酸三乙酯   GB 29968-2013 食品添加剂 肉桂酸苄酯   GB 29969-2013 食品添加剂 肉桂酸肉桂酯   GB 29970-2013 食品添加剂 2,5-二甲基吡嗪   GB 29971-2013 食品添加剂 苯甲醛丙二醇缩醛   GB 29972-2013 食品添加剂 乙醛二乙缩醛   GB 29973-2013 食品添加剂 2-异丙基-4-甲基噻唑   GB 29974-2013 食品添加剂 糠基硫醇(咖啡醛)   GB 29975-2013 食品添加剂 二糠基二硫醚   GB 29976-2013 食品添加剂 1-辛烯-3-醇   GB 29977-2013 食品添加剂 2-乙酰基吡咯   GB 29978-2013 食品添加剂 2-己烯醛(叶醛)   GB 29979-2013 食品添加剂 氧化芳樟醇   GB 29980-2013 食品添加剂 异硫氰酸烯丙酯   GB 29981-2013 食品添加剂 N-乙基-2-异丙基-5-甲基-环己烷甲酰胺   GB 29982-2013 食品添加剂 &delta -己内酯   GB 29983-2013 食品添加剂 &delta -十四内酯   GB 29984-2013 食品添加剂 四氢芳樟醇   GB 29985-2013 食品添加剂 叶醇(顺式-3-己烯-1-醇)   GB 29986-2013 食品添加剂 6-甲基-5-庚烯-2-酮   GB 29987-2013 食品添加剂 丁苯橡胶   GB 29988-2013 食品添加剂 海藻酸钾(褐藻酸钾)   GB 29989-2013 婴幼儿食品和乳品中左旋肉碱的测定   GB 1900-2010 第1号修改单 食品添加剂 二丁基羧基甲苯(BHT)第1号修改单   特此公告。   附件:75项食品安全国家标准及BHT第1号修改单.zip   国家卫生计生委   2013年11月29日
  • 卫计委新批准的4种食品相关添加剂
    一、N,N,N' ,N' -四(2-羟丙基)己二酰胺(一)背景资料。N,N,N' ,N' -四(2-羟丙基)己二酰胺常温下为白色固态,密度为1.24 g/cm3,熔点为110℃。本次批准该物质作为食品接触材料及制品用添加剂新品种用于涂料中。美国食品药品管理局、荷兰卫生福利和运动部均批准该物质用于食品接触用涂料。(二)工艺必要性。在涂料体系中,该物质作为交联剂,其羟基与悬浮剂的羧基基团发生酯化反应,产生交联作用。(三)使用注意事项。利用该物质生产的涂层厚度不超过15微米,仅限于在室温下使用,不得重复使用,不得用于接触婴幼儿配方食品和母乳,不得用于辐照。二、1,8-二-4-甲苯氨基-9,10-蒽二酮(一)背景资料。1,8-二-4-甲苯氨基-9,10-蒽二酮为紫色固体粉末,无气味,不溶于水和醇类,熔点为210℃,性质稳定。我国GB 9685-2008已批准该物质作为着色剂用于聚对苯二甲酸乙二醇酯(PET)和聚氯乙烯(PVC)中,本次批准其使用范围扩大至聚碳酸酯(PC)。法国卫生部将其列于允许用于食品接触材料及制品的着色剂名单中。日本卫生烯烃与苯乙烯塑料协会将其列为生产食品器具、包装容器用添加剂,可作为着色剂应用于PC中。(二)工艺必要性。该物质是一种紫色染料,能使PC呈现出一种特殊的紫色,并赋予其透明的效果,目前已批准的其他着色剂无法达到此效果。(三)使用注意事项。添加了该物质的PC材料及制品使用温度不得高于121℃。三、甲醛和2-甲酚的聚合物(一)背景资料。甲醛和2-甲酚的聚合物常温下为液态,沸点118℃,不溶于水,可溶于醇类、酮类溶剂。本次批准该聚合物作为食品接触材料及制品用树脂新品种用于涂料中。美国食品药品管理局批准该物质用于食品接触用涂料,欧洲委员会将其所有单体列入食品接触用涂料使用物质清单中。(二)工艺必要性。该物质作为涂料的主要成膜物质,是涂料体系的基本组成部分。四、甲醛和苯酚,对叔丁基苯酚的聚合物(一)背景资料。甲醛和苯酚,对叔丁基苯酚的聚合物常温下为液态,沸点118℃,不溶于水,易溶于乙醇、丙酮。本次批准该聚合物作为食品接触材料及制品用树脂新品种用于涂料中。美国食品药品管理局批准该物质用于食品接触用涂料,欧洲委员会将其所有单体列入食品接触用涂料使用物质清单中。(二)工艺必要性。该物质作为涂料的主要成膜物质,是涂料体系的基本组成部分。来源:仪器信息网
  • 卫计委新批准的4种食品相关添加剂
    一、N,N,N' ,N' -四(2-羟丙基)己二酰胺   (一)背景资料。N,N,N' ,N' -四(2-羟丙基)己二酰胺常温下为白色固态,密度为1.24 g/cm3,熔点为110℃。本次批准该物质作为食品接触材料及制品用添加剂新品种用于涂料中。美国食品药品管理局、荷兰卫生福利和运动部均批准该物质用于食品接触用涂料。   (二)工艺必要性。在涂料体系中,该物质作为交联剂,其羟基与悬浮剂的羧基基团发生酯化反应,产生交联作用。   (三)使用注意事项。利用该物质生产的涂层厚度不超过15微米,仅限于在室温下使用,不得重复使用,不得用于接触婴幼儿配方食品和母乳,不得用于辐照。   二、1,8-二-4-甲苯氨基-9,10-蒽二酮   (一)背景资料。1,8-二-4-甲苯氨基-9,10-蒽二酮为紫色固体粉末,无气味,不溶于水和醇类,熔点为210℃,性质稳定。我国GB 9685-2008已批准该物质作为着色剂用于聚对苯二甲酸乙二醇酯(PET)和聚氯乙烯(PVC)中,本次批准其使用范围扩大至聚碳酸酯(PC)。法国卫生部将其列于允许用于食品接触材料及制品的着色剂名单中。日本卫生烯烃与苯乙烯塑料协会将其列为生产食品器具、包装容器用添加剂,可作为着色剂应用于PC中。   (二)工艺必要性。该物质是一种紫色染料,能使PC呈现出一种特殊的紫色,并赋予其透明的效果,目前已批准的其他着色剂无法达到此效果。   (三)使用注意事项。添加了该物质的PC材料及制品使用温度不得高于121℃。   三、甲醛和2-甲酚的聚合物   (一)背景资料。甲醛和2-甲酚的聚合物常温下为液态, 沸点118℃,不溶于水, 可溶于醇类、酮类溶剂。本次批准该聚合物作为食品接触材料及制品用树脂新品种用于涂料中。美国食品药品管理局批准该物质用于食品接触用涂料,欧洲委员会将其所有单体列入食品接触用涂料使用物质清单中。   (二)工艺必要性。该物质作为涂料的主要成膜物质,是涂料体系的基本组成部分。   四、甲醛和苯酚,对叔丁基苯酚的聚合物   (一)背景资料。甲醛和苯酚,对叔丁基苯酚的聚合物常温下为液态, 沸点118℃,不溶于水, 易溶于乙醇、丙酮。本次批准该聚合物作为食品接触材料及制品用树脂新品种用于涂料中。美国食品药品管理局批准该物质用于食品接触用涂料,欧洲委员会将其所有单体列入食品接触用涂料使用物质清单中。   (二)工艺必要性。该物质作为涂料的主要成膜物质,是涂料体系的基本组成部分。
  • Nexis视角 | 支招地摊2.0,让“科技”与“烟火”同步
    要说6月份以来,网络上什么词最火?不是直播带货不是新冠疫情而是“地摊经济”!这个名不见经传的词汇堪称2020年最大的黑马。强势进入公众视野成为了大家热议的话题。 截图来源:哔哩哔哩 6月1日,李克强总理在山东烟台考察时表示:地摊经济、小店经济是就业岗位的重要来源,是人间的烟火,和“高大上”一样,是中国的生机。一时间,地摊经济备受关注,全国多地相继制定出台鼓励新规,为地摊经济发展“松绑”, “地摊经济”扑面而来,成为家喻户晓的热词,大家纷纷摩拳擦掌,跃跃欲试。 “全民摆地摊”迅速成为刷爆朋友圈的素材,网络上甚至出现了很多资料《当代青年摆地摊新手指南》、《摆摊技巧》、《摆摊三大纪律八项注意》… … 国内某车企迅速推出了“摆摊神车”… … 图片来源:百度搜索大数据 地摊经济重新启动,小夜市上,穿梭在熙攘的人群中,听着街边商贩此起彼伏的叫卖声,各式特色美食、家居用品、服装、小饰品等应有尽有。听到最多的大家评价是:"热闹得很!"、" 喜欢这样的烟火味儿!" 、“这才是接地气的夜生活!”… … 。“地摊经济”一头连着经济,一头连着民生,有着其独具魅力的生机与活力。 网络上关于如何来审视当前正处于火热中的“地摊经济”,有不同的讨论角度:有从经济发展的角度来看,许多人通过“练地摊”开启了自主创业的第一步,为后期中国经济如火如荼的发展做了积累和铺垫;有从质量安全的角度来看,商贩们只要一辆小推车就能四处兜售各种食品和日用品,质量良莠不齐,许多人也在担忧背后隐藏的质量和安全问题;当然也有人从生意技巧的角度来剖析地摊生意好坏的主要影响因素,以食品为例,一个摊位的成功与否与所销售的食品品质和风味是直接相关… … 随着国家治理能力现代化水平不断提升,在这一波地摊热潮中,摆摊队伍增加了很多现代的新鲜血液,不少人还带着“新技术”和“新想法”。而在网络上,关于“地摊经济 2.0”的呼声也很高,其区别于传统的地摊和夜市,希望在科技的加持下,改变传统地摊的弊端,用科技为地摊带来新活力,塑造更安全,更规范的地摊经济。 今天我们就来探讨一下,假如新时代的仪器人来出谋划策,能为传统摆摊人带去哪些新思路。希望通过我们的讨论,能为中国传统地摊市场迈向“地摊经济 2.0”提供一点启发。 以地摊和夜市上的食品为例,硫化物是一类对食品感官质量具有重要影响的风味物质,虽然其在食品中的浓度非常低,但是对食品风味的影响不容小视,尤其是一些低分子量的挥发性硫化物。以非常受欢迎的食品“泡菜”为例,其具有非常强烈的特殊味道,但是如果其中含有即使是微量的硫化物,则泡菜的风味也会大受影响。GCMS-QP2020 NX + Nexis SCD-2030 传统上,硫化物对分析方法的灵敏度和分离效果的要求很高,用传统的气相色谱质谱法检测存在很大的挑战。本例中我们创新了分析方法,采用MonoTrap吸附+溶剂洗脱的前处理,利用岛津旗舰级气相色谱质谱联用仪GCMS-QP2020 NX + 硫化学发光检测器Nexis SCD-2030研究了泡菜包装袋释放的气体成分,充分利用了GCMS的定性优势和SCD在硫化物检测方面高选择性和高灵敏度的优势。分析结果如图1和图2所示:图1. GC-SCD的色谱图图2. GCMS TIC总离子流图 根据泡菜储存过程中包装袋所释放的气体,我们采用GCMS和GC-SCD相结合的方法检测到了8种含硫化合物,分别是:烯丙基二甲硫醚、硫代醋酸S-甲酯、二甲基二硫醚、甲基烯丙基二硫醚、二甲基三硫、3-丁烯基异硫氰酸酯、二烯丙基二硫、甲基烯丙基三硫醚。通过分析这8种含硫化合物的动态变化规律,可以为泡菜的生产、包装工艺优化和质量控制提供科学依据。 除了分析泡菜在包装袋的储存过程中所释放的痕量硫化物外,使用过的泡菜容器(坛子)也是一个很重要的气味指示物品。关于泡菜容器(坛子),我们可以首先用水进行充分冲洗,然后利用SPME的前处理方法(图3所示),结合岛津旗舰级气相色谱质谱联用仪GCMS-QP2020 NX + 硫化学发光检测器Nexis SCD-2030研究残留在泡菜坛子中的含硫化合物组成。 图3. 泡菜容器的前处理过程 分析谱图如下(部分):图4. GC-SCD和GCMS的分析谱图 通过GCMS和GC-SCD的结合分析法,我们从泡菜容器(坛子)中共检测到了36种含硫化合物,如下表1所示: 表1. 泡菜容器中检测出的含硫化合物如果仅用GCMS分析,则有部分含硫化合物会被掩盖在其他谱峰中(如图5所示),从而造成被遗漏和忽略的风险,而通过GCMS和GC-SCD的谱图结合分析,可以将含硫化合物很好的识别出来。 图5. GC-SCD谱图和GCMS TIC谱图的对比(红色:硫化物) 因此,使用GCMS和GC-SCD相结合的方法可以更准确的识别泡菜容器(坛子)中残留的挥发性硫化物,避免单独GCMS分析时遗漏和忽略某些组分的情况发生,从而为优化泡菜工艺和储存方法提供科学支撑。更详细的实验数据请参考岛津官网。 根据以上分析思路,我们还可以利用GCMS和GC-SCD相结合的方法分析食品制作过程中的常用食材,比如大葱、大蒜、韭菜、洋葱、萝卜、海藻、牛奶等,其中含有的典型硫化物如表2所示: 表2. 常见食材中的硫化物同时,也可以利用GCMS和GC-SCD相结合的方法分析一些非常受人欢迎的特殊气味食品,比如臭豆腐、豆腐乳、发酵肉制品、螺蛳粉、臭桂鱼、豆汁、卤煮、香椿、榴莲、红肠… … 图片来源:Pexels 摄影师:D??ng Nhan 地摊和夜市作为一种充满温情的城市记忆和接地气的经济形式,让我们更能深刻理解:小地摊,大民生,发展与梦想并存。地摊和夜市不仅是点亮一盏灯,温暖一座城,更是社会的生机和活力所在。 人间烟火味,最抚凡人心。让我们用新科技为传统生活带来新活力,支招地摊2.0,让“科技”与“烟火”同步。 参考资料:1、 Application News No. M288. New Approach to Food Smell Analysis Using Combination of GCMS and GC-SCD (1).2、 Application News No. M289. New Approach to Food Smell Analysis Using Combination of GCMS and GC-SCD (2).3、 地摊经济2.0,从此要被天天喊“出摊”了吗?星球上的科学,2020年6月5日。4、 让“地摊经济”成一种经济风口,红网,2020年6月1日。5、 打造地摊经济2.0版,让“文明风”与“烟火气”同步,新京报,2020年6月5日。
  • Supelco脂肪酸及脂肪酸甲酯分析产品用户回馈活动
    Supelco脂肪酸及脂肪酸甲酯分析产品促销 --为您提供一站式脂肪酸甲酯分析服务 2010年8月1日--2010年10月31日 活动规则: 1.凡在活动期间购买指定促销产品单次订单金额达10,000元,可获赠价值300元North face登山包一个或等值折扣 2.凡在活动期间购买指定促销产品单次订单金额达15,000元,可获赠价值600元伊莱克斯早餐吧一台或等值折扣 3.凡在活动期间购买指定促销产品单次订单金额达25,000元,可获赠价值1500元Ipod touch一台或等值折扣 脂肪酸/脂肪酸甲酯分析专用柱 Sigma-Aldrich/SUPELCO提供全面的脂肪酸分析气相色谱毛细管柱,满足您的各种需求。 SPTM-2560柱(强极性氰丙基硅氧烷类毛细管柱), 可最大程度地分离顺反异构脂肪酸甲酯,完全符合GB5413.27-2010,GB5413.36-2010等国标和USP G5方法,并且是AOAC方法996.06和 AOCS 方法Ce 1h-05指定用柱; SPTM-2380柱(强极性氰丙基硅氧烷类毛细管柱), 用于顺反异构、双键位置异构的脂肪酸甲酯分离,符合USP G48方法; SLB-IL100柱(强极性离子液体固定相毛细管柱), 可最大程度地分离顺反异构脂肪酸甲酯,是SP-2560和SP-2380柱的很好补充。 OmegawaxTM柱(聚乙二醇),用于不同碳链长度和不同饱和度(特别是omega-3和omega-6)的脂肪酸甲酯(FAMEs)的分离,符合USP G16方法,并且是AOAC方法991.39和 AOCS 方法Ce 1b-89指定用柱; Equity® -1柱(非极性聚二甲基硅氧烷),用于不同沸点的脂肪酸甲酯(FAMEs)分离,符合USP G1、G 2和G 9方法; NukolTM 柱(改性聚乙二醇),用于自由脂肪酸( Free Fatty Acids)的分析,符合USP G25和35方法; Discovery银离子交换SPE小柱 Discovery 银离子交换SPE小柱, 利用特有的技术将银离子(Ag+)嵌入SCX(磺酸基阳离子交换)载体上。在正相洗脱条件下,银离子(Ag+)仅对脂肪酸甲酯的双键有吸附作用,具体表现为: · 饱和的脂肪酸甲酯(无双键),不吸附,最快流出; · 顺式的双键,吸附作用比反式的强。反式的先流出,顺式的后流出; · 双键越多,吸附作用越强。双键少的先流出,双键多的后流出。 脂肪酸及脂肪酸甲酯标准品 Sigma-Aldrich/SUPELCO提供全面的脂肪酸及脂肪酸甲酯标准品, 质量保证&mdash SUPELCO品牌值得信赖,每个标准品均有分析证书(Certificate of Analysis) 品种齐全&mdash 从C 1到C 31一应俱全; 形式多样&mdash 纯品、溶液型,单标、混标全有; 特别是SUPELCO专有的37种脂肪酸甲酯混标(47885-U),涵盖了大部分常用脂肪酸甲酯标准品,完全符合国标GB5413.27-2010,深受广大用户喜爱! 衍生化反应瓶及反应加热器 反应瓶,内为锥形,容易移取微量样品,厚壁硼酸盐玻璃,配有Teflon/红橡胶垫,空心盖,可高压灭菌或离心。反应加热器,有两档温控范围可调节:室温~100℃,和75℃~ 150 ℃;有两种加热模块可选,一种是8孔的,适合3mL及5mL反应瓶;一种是12孔的,适合1mL及2mL反应瓶。衍生化试剂及衬管 衍生化试剂 Sigma-Aldich/SUPELCO 提供种类齐全的GC衍生化试剂,如:酯化试剂、硅烷化试剂、酰化试剂等。在脂肪酸的分析中,除了自由脂肪酸可以直接GC测定,其它脂肪酸必须要甲酯化之后才可以GC检测。三氟化硼甲醇溶液,就是最通用的脂肪酸甲酯化的试剂。并且大部分SUPELCO品牌的衍生化试剂,随货附有产品规格说明书,其中包括性质、特点、典型的衍生化步骤、机理、毒性、有害性和稳定性等信息,对于使用非常有帮助。 去活玻璃衬管 杯型玻璃衬管可以增加高分子量化合物在进样口的挥发,提高分辨力,降低进样口岐化。
  • 2012梅特勒托利多热分析用户会暨技术研讨会邀请函
    尊敬的客户:您好! 目前在中国,梅特勒-托利多热分析品牌的影响力正在逐步深入,客户群也在空前壮大,这其中除了依托瑞士品质一贯的精密可靠,主要还是得益于大家对我们热分析应用技术及服务的认可。为了加强与用户和其他客户的沟通,让大家进一步掌握热分析技术,不断拓展现有仪器的应用范围,最大化的发挥现有设备的作用,梅特勒-托利多公司定于2012年7月25-27日在北京前门建国饭店举办热分析用户会暨技术研讨会,届时将有多位国内外热分析领域知名专家与大家展开面对面的交流与讨论,欢迎用户们和一切对热分析技术有兴趣的客户参加! 会议内容将围绕以下主题: - DSC在生物体系中的应用; - 温度调制式差式扫描量热仪及其在聚合物共混当中的应用; - 温敏聚合物聚(N-异丙基)丙烯酰胺的相变机理的TOPEM-DSC研究; - DSC-光学系统(UV-DSC、DSC-显微镜系统、DSC-化学发光系统、DSC-热台); - 热分析曲线的解释; - 热分析仪器的操作技巧; - 热分析仪器的维护; 【会议时间】2012年7月25~27日 (24日报到) 【会议地点】北京前门建国饭店 群英厅 (北京市宣武区永安路175号,010-63016688) 【注意事项】1)24日报到时请携带此通知单,出示您的名片,在签到处免费领取会议资料; 2)如果您有事不能前来,可推荐您的同事代为参加,并出示被邀请人名片和本人名片,我们将协调其参会; 3)会务费1800元/人(含培训费、资料、餐饮等),住宿可统一安排,费用自理; 如有疑问或交流详情,请联系如下: 联 系 人:杨献玲 邮 箱:thermalanalysis@mt.com 联系电话:021-64850435*1733 手 机:13818489304 梅特勒托利多(中国) 热分析仪器部 2012年5月 点击这里注册参加会议 【报告内容】 题目:温度调制式差式扫描量热仪及其在聚合物共混当中的应用 邀请嘉宾:刘振海 著名热分析专家,中科院长春应用化学研究所教授,国际热分析与量热协会教育委员,国际期刊《热分析与量热学杂志》编委。发表论文100余篇,出版专著14部,包括《热分析导论》、《Handbook of Thermal Analysis》等影响广泛的专著。 题目:DSC在生物体系中的应用 邀请嘉宾:尉志武 清华大学理学院教授、博士生导师,中国化学会理事,化学热力学与热分析专业委员会副主任、主任,国际热分析与量热学联合会理事。他在化学热力学等领域取得了突出成绩。主持包括国家基金委、教育部在内的科研项目多项,在国内外专业杂志和国际会议发表学术论文100多篇。 题目:温敏聚合物聚(N-异丙基)丙烯酰胺的相变机理的TOPEM-DSC研究 邀请嘉宾:汪辉亮 北京师范大学化学学院教授、博士生导师,主要从事高分子材料表面功能化改性和智能高分子材料的研究。近年来,出版多部著作和教材,发表论文数十篇,主持和参与多项科研项目。 题目:DSC-光学系统(UV-DSC、DSC-显微镜系统、DSC-化学发光系统、DSC-热台) 邀请嘉宾:Craig Gardon 梅特勒-托利多亚太区技术专家,自1989年加入梅特勒托利多公司以来从事热分析产品工作已有23年,先后在南非、瑞士总部工作并担任不同的角色,包括热分析产品经理、市场经理以及国际销售部经理。目前在马来西亚担任亚太区经理,负责热分析产品在整个亚洲地区的推广工作。 题目:热分析曲线的解释、热分析仪器的操作技巧 演讲者:唐远旺 梅特勒-托利多中国公司热分析技术应用主管,热分析专家,长期从事热分析仪器的应用研究工作,《热分析应用手册丛书》之《热塑性聚合物》、《逸出气体分析》等的译者,中科院研究生教材《热分析简明教程》编者之一,熟悉DMA、DSC、TGA、TMA等热分析仪器在各行业的应用。 题目:热分析仪器的维护 演讲者:唐幸初 梅特勒-托利多中国公司热分析维修服务主管,从事热分析技术服务多年,熟悉各类热分析仪器的性能、故障分析及维护保养现,现全面负责梅特勒托利多中国热分析的售后服务。 会议主持人:陆立明 简介:梅特勒-托利多中国公司热分析部门经理,曾在德国进修三年,从事高分子物理合成研究。加入梅特勒托利多15年来一直从事热分析工作。《热分析应用手册丛书》之《热塑性聚合物》、《热固性树脂》、《弹性体》、《药物和食品》和《热分析应用基础》的译者,中科院研究生教材《热分析简明教程》编者之一。 本活动最终解释权归梅特勒-托利多所有
  • 残留溶剂检测专题系列——第一期岛津SH-I-624Sil MS助力精益生产
    第一期岛津SH-I-624Sil MS助力精益生产文末有好礼相赠哦!残留溶剂怎么测?何为残留溶剂?在原料药或辅料生产及制剂制备过程中使用或产生的挥发性有机物。这些溶剂在实际生产工艺中无法除尽。残留溶剂分类?残留溶剂一般分为I、II、III、IV类:为何需要检测?残留溶剂无实际治疗助益,当在药品中含量高于安全值时会危害人体或环境;残留溶剂在物料中可能影响物料安全性和质量稳定性,是药品关键质量属性。有何法规支持?ICH Q3C(R8):杂质:残留溶剂的指导原则(立足各国药典之上)《美国药典》USP有机挥发性杂质:残留溶剂的限制《中国药典》ChP残留溶剂测定法《欧洲药典》EP残留溶剂通则《日本药典》JP残留溶剂检测方案设计情况?方法选择:参考USP和ChP相结合仪器选择:多使用气相色谱仪+FID检测器柱子选择:多使用6%氰丙基苯基/94%二甲基聚硅氧烷(624)载气选择:多使用N2(经济)溶剂选择:多使用DMSO/DMF(溶解能力强)进样方式:多使用顶空进样(大部分组分沸点低、挥发性强)最终方案:HS-GC-FID+SH-I-624Sil MS、N2做载气、DMSO做溶剂优势对比:I类、II类A、II类B、III类与市售气相柱对比方案分析效果?小编今天给大家带来的是同仪器及方法、相同规格(30m x 0.32mm x 1.8 μm)色谱柱下I、II类A分离效果对比。 01 I 类残留溶剂II 类A残留溶剂#问卷有礼为了更好地满足您的需求,我们诚挚地邀请您填写以下信息,以便我们能够为您提供更好的产品及服务。完成并提交问卷即可获得岛津定制双肩包一个。活动时间:即日起至2024年5月31日扫描下方二维码参与活动!
  • 从0到1,“厦门智造”福流生物纳米流式仪助力疾病筛查
    福流生物工作人员正在进行设备测试。  福流生物分子实验室研发场景。  文/厦门日报记者 林露虹 通讯员 郭文晨  图/厦门日报记者 张奇辉  纳米有多小?如果将1纳米和1米比较,就好像是高尔夫球和地球作比。1纳米相当于4倍原子大小,比单个病毒的尺寸还要小得多。  厦门创新创业园企业福流生物自主研发的纳米流式检测仪,就好比打开了一扇通往纳米世界的窗口。比如,它可以精准识别出癌细胞分泌的“小囊泡”,助力癌症早期筛查和诊断;再比如,在食品安全领域,它可以快速鉴别致病菌,让危害人体健康的微生物无处遁形。  凭借着灵敏度高的硬核实力,福流生物的纳米流式检测仪热销海内外,成为“中国智造”高端科研仪器走向世界的典型代表,梅奥诊所、美国德州大学安德森癌症中心、约翰霍普金斯大学医学院、美国国立卫生研究院、牛津大学等全球最顶尖研究机构和百时美施贵宝、阿斯利康、武田制药等高科技生物制药公司都是它的客户。  回国创业  实现产业化“从0到1”的突破  福流生物的故事要从创始人朱少彬博士说起。在厦门大学化学化工学院取得博士学位后,朱少彬赴海外从事博士后研究。2014年,他回国创业,立志让研究多年的纳米流式检测技术走出实验室。  起初,产业化之路并不平坦。“纳米流式检测技术是一种流动检测的方法,流体的稳定性决定着设备的稳定性。光流体的设计我们就改了20多个方案。”这是一项艰苦且枯燥的工作,朱少彬用母校厦门大学的校训“自强不息,止于至善”来激励自己,一次次修正、升级方案。  针对光机电一体的研发需要,朱少彬勇攀技术高峰,努力学习机械设计、自动化、软件等相关知识。最终,在他的带领下,团队仅用时一年多就研发了5代原型机。朱少彬事后总结说:“不断学习,在学习中提升信心,用信心支撑创业激情,这对一名创业者来说非常重要。”  功夫不负有心人。2016年夏天,福流生物研发的第一代商品化纳米流式检测仪亮相国际流式细胞大会。起初,参会者们并不觉得这个只有微波炉大小的仪器有什么特别之处。直到有专家和研发机构试用过样机后,他们惊讶地发现,仪器居然蕴藏着“大能量”——可以对细菌、病毒、亚细胞器、细胞外囊泡、纳米药物、功能化纳米颗粒等,在单颗粒水平进行高通量、多参数定量分析,较传统流式细胞仪的散射检测灵敏度提升4-5个数量级,粒径表征分辨率媲美透射电子显微镜,这在行业尚属首创。  2017年,随着福流生物的知名度逐渐提高,公司获得来自外泌体领域的国际领头羊企业Codiak Biosciences的第一张订单,至此,福流生物实现了产业化“从0到1”的突破。  解码细胞外囊泡信息  助力疾病筛查  细胞外囊泡检测是福流生物纳米流式检测仪的高频应用。“细胞外囊泡可以理解为细胞‘吐泡泡’,是细胞间物质通讯的重要介质,相比正常细胞,癌细胞可分泌更多的细胞外囊泡,且在‘吐泡泡’的过程中,会把蛋白核酸等物质带出来,进入血液、尿液等,所以我们可以借由血液、尿液等人体组织液的样本,通过使用纳米流式检测仪,快速实现癌症的早期诊断。”朱少彬说,纳米流式检测仪如同一个“解码器”,能解码人体组织液中的细胞外囊泡的信息奥秘,进而协助疾病筛查以及术前、术后的效果跟踪。  面对突如其来的新冠肺炎疫情,全世界都在与时间赛跑,加强疫苗研究、病毒研究,这也为福流生物带来了新机遇。“我们的仪器可以检测病毒的信息,以及疫苗的纯度、药物承载量等。疫情期间,公司加强病毒应用方面的宣传,得到越来越多的生物医药企业的认可,仪器在国内市场的销量也随之走高。”朱少彬说。  随着福流生物在业界知名度的提升,新的挑战也随之而来。“客户数量的增多,意味着需求变得多元化,技术升级的步伐得跟得上客户及行业的需求,同时还得做好精细化的服务,提升品牌价值。”朱少彬说,公司研发团队持续推动产品的迭代升级,丰富产品线,满足科研、临床、生物制药等领域的客户需求,接下来还将顺应智能化趋势,打造支持自动检测的仪器,提升检测效率,实现“样品进、结果出”的目标。
  • 欧盟拟修订大米中丙环唑的最大残留限量
    根据欧盟委员会(EC)No 396/2005法规第6节的规定,意大利收到一份来自先正达植保公司(Syngenta Crop Protection)要求修改大米中的一活性物质丙环唑(propiconazole)最大残留限量(MRL)的申请。为了与意大利范围内大米中丙环唑的最大残留限量相适应,该公司建议将大米中丙环唑的最大残留限量由现行的0.05mg/kg提高至1mg/kg。意大利依据欧盟委员会(EC)No 396/2005法规第8节的规定起草了一份评估报告,并提交至欧盟委员会,之后于2010年12月1日转至欧洲食品安全局。   欧洲食品安全局根据评估报告、评估草案、芬兰提供的附录、联合国粮农组织以及世界卫生组织农药残留会议意见等进行了审核,对丙环唑的毒理学概况进行了评审,做出如下决定: 商品代码 商品 现行MRL(mg/kg) 建议MRL(mg/kg) 建议理由 0500060 大米 0.05* 0.7 该提议的最大残留限量支持数据充分,并不会对消费者构成健康风险。理论每日最大摄入量(TDMs)的风险评估不能展开。
  • 生态环境部《土壤和沉积物中甲基汞和乙基汞测定》 (征求意见稿) 标准解读
    生态环境部办公厅2020年12月31日发布《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》 (环办标征函〔2020〕62号) ,我国国内第一个土壤和沉积物中甲基汞和乙基汞的测定方法标准公开征求意见。 该标准的主要起草单位是由中国环境监测总站和江苏省环境监测中心,验证单位包括:山东省生态环境监测中心、广西壮族自治区生态环境监测中心、四川省生态环境监测总站、湖南省长沙生态环境监测中心、贵阳市环境监测中心站和合肥市环境监测中心站等七家单位。为什么需要对土壤和沉积物中的甲基汞和乙基汞进行测定呢?土壤中的汞主要包括金属汞、无机化合态汞和有机化合态汞。有机化合态汞以有机汞(烷基汞)和有机络合汞普遍存在。其中烷基汞主要包括甲基汞和乙基汞;甲基汞是有机汞中毒性最大的一种形态,甲基汞很容易穿过血脑屏障,对人神经系统进行侵害,尤其对妇女和儿童有很大的影响;土壤中的甲基汞易被植物吸收,通过食物链在生物体内富集,从而暴露给人体;而土壤中的腐殖质与汞结合形成的络合物不易被植物吸收。另外,乙基汞也属于亲脂性化合物,中毒后可引起急性肠胃炎以及造成严重的肾脏损伤等。土壤和沉积物中的甲基汞和乙基汞国内是否有相关限值控制标准? 2018年6月,生态环境部与国家市场监督管理总局联合发布了《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)国家环境质量标准,该标准于2018年8月1日正式实施,标准中明确了不同类型建设用地中甲基汞的筛选值和管制值,其中甲基汞在第一类用地的筛选值为5mg/kg。 目前国内暂无涉及土壤和沉积物中乙基汞的限值控制标准。《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》内容简介原理:土壤或沉积物样品经碱液提取后,提取液中的甲基汞和乙基汞经四丙基硼化钠衍生,生成挥发性的甲基丙基汞和乙基丙基汞,经吹扫捕集、热脱附和气相色谱分离后,再高温裂解为汞蒸气,用冷原子荧光光谱仪检测。根据保留时间定性,外标法定量。 方法检出限和定量下限:当取样量为0.5 g 时,甲基汞和乙基汞的方法检出限均为0.2 μg/kg,测定下限均为0.8 μg/kg 前处理过程:分析过程:标准曲线:8 个40 ml 棕色进样瓶,分别加入实验用水约35 ml,再分别加入0 pg,2.00 pg,5.00 pg,10 pg,50 pg,100 pg,500 pg,1500 pg的甲基汞和乙基汞混合标准溶液,,然后加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液(如果只进行甲基汞的分析,可加入四乙基硼酸钠溶液进行衍生化反应),迅速加入实验用水至瓶满,不留空隙,盖紧盖子静置10 min ~15 min。实际样品:40 ml 进样瓶中加入实验用水约35 ml 至瓶颈处,取试样150 μl 至进样瓶中,依次加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液(如果只进行甲基汞的分析,可加入四乙基硼酸钠溶液进行衍生化反应),最后迅速加入实验用水至瓶满,盖紧盖子静置10 min ~15 min 上机分析:标准内部验证和外部验证均采用美国知名仪器厂家Brooks Rand公司生产的MERX全自动烷基汞分析系统:MERX全自动烷基汞分析系统异位吹扫捕集,样品满瓶式进样,衍生化效率和烷基汞分析结果不受环境空气的影响三通道Tenax 捕集阱交替捕集,效率高液体传感器,水汽进入捕集阱会报警精密流量控制,气流波动小,避免因吹扫气流量过大造成大量水汽进入吸附阱或因流量过小造成的吸附不完全甲基汞检出限可达0.002ng/L;乙基汞检出限可达0.005ng/L宽线性范围:甲基汞0.0125-50ng/L,乙基汞0.025-50ng/L残留低:高浓度样品运行后仪器残留低于2‰重复性好,数据结果可靠国内销售数量超过300家,用户的普遍选择MERX全自动烷基汞分析系统同时还是《水质烷基汞的测定吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 977-2018)的验证仪器。该仪器数据质量稳定可靠,在国内饱受好评。谱图:质量控制:空白试验:每20 个样品或每批次样品(<20 个/批)应至少做一个空白试样,空白试样的测定值应低于方法检出限(甲基汞和乙基汞的方法检出限均为0.2 μg/kg)校准:建议每次分析前均应建立工作曲线,若采用线性回归法,相关系数≥0.995;若采用响应因子法,校准系数RSD≤15%(工作曲线绘制后,每批样品测定时需要测定工作曲线中间浓度点的标准溶液,其相对误差值应该控制在±20%以内。否则,需重新绘制工作曲线)平行样:每20 个或每批次样品(<20 个/批)应至少测定一个平行双样,测定结果的相对偏差应≤30%基体加标:每20 个样品或每批次样品(<20 个/批)应至少测定一个基体加标样品或一个土壤或沉积物的有证标准物质。甲基汞加标回收率控制在75%~130%之间;乙基汞加标回收率控制在70%~120%之间标准物质测定:测定甲基汞有证标准物质的允许相对误差在﹣40%~+10%之间展望:本标准的检出限、精密度等性能指标能满足《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)的相应要求,相信该标准正式出台后,会使涉及土壤和沉积物中甲基汞和乙基汞分析检测的单位有据可依,并为相关分析检测人员提供新的思路和手段。 参考文献:1. 关于征求《土壤和沉积物 甲基汞和乙基汞的测定吹扫捕集/气相色谱-冷原子荧光光谱法》国家环境保护标准意见的通知 (链接:http://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202012/t20201231_815730.html);2. 《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》及编制说明;3. 《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)。
  • 文献速递ㅣ常用静脉麻醉药丙泊酚或致肿瘤侵袭/转移增加
    ● 快讯近日,上海市第十人民医院精神心理科主任、同济大学医学院麻醉与脑功能研究所常务副所长申远教授与美国哈佛大学麻省总院老年麻醉实验室主任谢仲淙教授的合作团队,历经两年的探索研究,证实常用静脉麻醉药丙泊酚(propofol)或使肿瘤侵袭/转移增加。相关论文于2021年7月15日在《先进科学》(Advanced Science,IF:16.08)在线发表。麻醉药物广泛应用于外科手术或相关临床检查,然而长久以来,麻醉药物对患者脑功能和肿瘤复发转移的影响一直存在争议。 对此,上海市第十人民医院精神心理科主任、同济大学医学院麻醉与脑功能研究所常务副所长申远教授与美国哈佛大学麻省总院老年麻醉实验室主任谢仲淙教授的合作团队,通过一系列体内、体外实验,从分子、蛋白、组织等多层面证实,常用静脉麻醉药丙泊酚(propofol)或使肿瘤侵袭/转移增加。 研究人员以结肠癌细胞为主要研究对象,通过对小鼠尾静脉注射结肠癌细胞的同时注射丙泊酚进行建模,模拟临床围术期中丙泊酚与血管内循环肿瘤细胞接触的过程。小鼠实验结果说明,丙泊酚有可能增加结肠癌细胞的侵袭转移潜能,造成肺部远处转移(见图1)。图1|标准剂量(standard-dose)丙泊酚促进结肠癌细胞在小鼠肺部的转移丙泊酚是一种γ-氨基丁酸 ( γ-Aminobutyricacid,GABA ) A受体(GABAaR)激动剂。那么,丙泊酚促进结直肠癌肺转移的作用是否是通过激动GABAaR实现的呢? 研究团队紧接着使用另一种GABAaR特异性激动剂Muscimol体外预处理肿瘤细胞后再注射入体内,同样也在小鼠肺部也发现了肿瘤转移灶的增加,初步锁定了GABAaR在其中的作用。 接下来,研究人员采用同样的体外预处理方法观察了更多肿瘤细胞,包括肺癌、子宫内膜癌细胞等,发现相对于对照组,丙泊酚能使更多的肿瘤细胞黏附到血管内皮细胞,并伴随更大的伸展面积和更多的黏着斑形成。 研究人员据此进一步锁定了研发抗癌药物的重要靶标、同时也是介导细胞黏附的重要原癌基因——Src激酶。研究表明,丙泊酚通过激活肿瘤细胞中的 GABA 受体,减少TRIM21 ,从而增加细胞粘附相关的蛋白Src的表达,增强肿瘤细胞与血管内皮细胞的粘附和伸展,从而促进肿瘤在小鼠肺内转移。抑制 Src 则可以减弱丙泊酚促进肿瘤转移的作用。 综上所述,丙泊酚可能通过调节GABAaR/TRIM21/Src信号通路促进肿瘤细胞在肺部的转移(见图2)。图2|丙泊酚可能通过调节GABAaR/TRIM21/Src信号通路促进肿瘤细胞在肺部的转移这一发现进一步证实了常用静脉麻醉药丙泊酚或致肿瘤侵袭/转移增加,对于麻醉学、肿瘤学和外科学等领域均具有非常重要的临床意义。文献链接:https://doi.org/10.1002/advs.202102079注博鹭腾助力科研实验本研究中活体成像结果由广州博鹭腾AniView100多模式动物活体成像系统拍摄
  • 重磅:生态环境部《土壤和沉积物 甲基汞和乙基汞的测定》 (HJ 1269—2022) 标准发布
    生态环境部办公厅2023年1月29日正式发布《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 1269—2022),该标准为我国国内第一个土壤和沉积物中甲基汞和乙基汞的测定方法标准,标准将于2023年6月16日正式实施。 该标准的主要起草单位是由中国环境监测总站和江苏省环境监测中心,验证单位包括:山东省生态环境监测中心、广西壮族自治区生态环境监测中心、四川省生态环境监测总站、湖南省长沙生态环境监测中心、贵阳市环境监测中心站和合肥市环境监测为什么需要对土壤和沉积物中的甲基汞和乙基汞进行测定呢?土壤中的汞主要包括金属汞、无机化合态汞和有机化合态汞。有机化合态汞以有机汞(烷基汞)和有机络合汞普遍存在。其中烷基汞主要包括甲基汞和乙基汞;甲基汞是有机汞中毒性最大的一种形态,甲基汞很容易穿过血脑屏障,对人神经系统进行侵害,尤其对妇女和儿童有很大的影响;土壤中的甲基汞易被植物吸收,通过食物链在生物体内富集,从而暴露给人体;而土壤中的腐殖质与汞结合形成的络合物不易被植物吸收。另外,乙基汞也属于亲脂性化合物,中毒后可引起急性肠胃炎以及造成严重的肾脏损伤等。土壤和沉积物中的甲基汞和乙基汞国内是否有相关限值控制标准? 2018年6月,生态环境部与国家市场监督管理总局联合发布了《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)国家环境质量标准,该标准于2018年8月1日正式实施,标准中明确了不同类型建设用地中甲基汞的筛选值和管制值,其中甲基汞在第一类用地的筛选值为5mg/kg。目前国内暂无涉及土壤和沉积物中乙基汞的限值控制标准。《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 1269—2022)内容简介原理:土壤或沉积物样品经碱液提取后,提取液中的甲基汞和乙基汞与四丙基硼化钠发生衍生化反应,生成挥发性的甲基丙基汞和乙基丙基汞,经吹扫捕集、热脱附和气相色谱分离后,再高温裂解为汞蒸气,用冷原子荧光光谱法测定。根据保留时间定性,外标法定量。 方法检出限和定量下限:当取样量为0.5 g 时,提取液体积为 30 ml 时,甲基汞和乙基汞的方法检出限均为0.2 μg/kg,测定下限均为0.8 μg/kg 前处理过程:分析过程:标准曲线:8 个40 ml 棕色进样瓶,分别加入实验用水约35 ml,再分别加入0 pg,2.00 pg,5.00 pg,10 pg,50 pg,100 pg,500 pg,1000 pg的甲基汞和乙基汞混合标准溶液,,然后加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液,迅速加入实验用水至瓶满,不留空隙,盖紧盖子静置20 min实际样品:40 ml 进样瓶中加入实验用水约35 ml 至瓶颈处,取试样150 μl 至进样瓶中,依次加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液,最后迅速加入实验用水至瓶满,盖紧盖子静置20 min 上机分析:标准内部验证和外部验证均采用美国知名仪器厂家Brooks Rand公司生产的MERX全自动烷基汞分析系统:异位吹扫捕集,样品满瓶式进样,衍生化效率和烷基汞分析结果不受环境空气的影响三通道Tenax 捕集阱交替捕集,效率高液体传感器,水汽进入捕集阱会报警精密流量控制,气流波动小,避免因吹扫气流量过大造成大量水汽进入吸附阱或因流量过小造成的吸附不完全甲基汞检出限可达0.002ng/L;乙基汞检出限可达0.002ng/L宽线性范围:甲基汞0.0125-50ng/L,乙基汞0.025-50ng/L残留低:高浓度样品运行后仪器残留低于2‰重复性好,数据结果可靠国内销售数量超过350家,用户的普遍选择来源:《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》编制说明第65页MERX全自动烷基汞分析系统同时还是《水质烷基汞的测定吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 977-2018)的验证仪器。该仪器数据质量稳定可靠,在国内饱受好评。 谱图:质量控制:空白试验:每20 个样品或每批次样品(<20 个/批)应至少做一个空白试样,空白试样的测定值应低于方法检出限(甲基汞和乙基汞的方法检出限均为0.2 μg/kg)校准:每次分析样品前均应建立不少于 6 个点的校准曲线,采用线性回归法计算结果,曲线的相关系数≥0.995;采用校准系数法计算结果,校准系数 CFi的相对标准偏差≤15%。每20 个样品测定一个校准曲线中间浓度点的标准溶液,其相对误差值应该控制在±20%以内,否则应重新建立校准曲线平行样:每 20 个或每批次样品(少于 20 个样品)应至少测定 1 个平行双样,平行双样测定结果的相对偏差应在±30%以内基体加标:每 20 个样品或每批次样品(少于 20 个样品)应至少测定 1 个基体加标样品或1 个有证标准物质。甲基汞加标回收率控制在 75%~130%之间;乙基汞加标回收率控制在 65%~120%之间 展望:本标准的检出限、精密度等性能指标能满足《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)的相应要求,该标准会使涉及土壤和沉积物中甲基汞和乙基汞分析检测的单位有据可依,并为相关分析检测人员提供新的手段。 参考文献:1. 土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法 (HJ 1269—2022)(链接:https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/202301/t20230128_1014026.shtml);2. 土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)及编制说明(链接:http://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202012/t20201231_815730.html);3. 土壤环境质量 建设用地土壤污染风险管控标准(试行)(GB36600—2018)。
  • 应用速递:药物安全—缬沙坦制剂中亚硝胺杂质的测定
    背景介绍缬沙坦是血管紧张素II受体阻滞剂(ARB)、联苯四氮唑结构的沙坦类化合物,用于各类轻中度高血压的治疗,尤其适用于ACE抑制剂不耐受的患者。2018年7月,药品监管部门首次在含有缬沙坦的产品中发现亚硝胺杂质——N二甲基亚硝胺(NDMA)。随后在沙坦类其他药物和雷尼替丁中都检测到各类亚硝胺杂质,例如N-二乙基亚硝胺(NDEA)、N-二异丙基亚硝胺(NDIPA)、N-乙基异丙基亚硝胺(NEIPA)和N-亚硝基二丁胺 (NDBA)。因此,对使用缬沙坦原料药的药品进行了全球召回,导致缬沙坦药品暂时短缺。 图1 N-亚硝胺的分子结构 根据世界卫生组织 (WHO) 的国际癌症研究机构 (IARC)的研究,大多数亚硝胺会对动物和人类具有致癌和遗传毒性。沙坦类药物大多含有四唑环,四唑环的形成需要亚硝酸钠;药物的生产设备、生产用试剂和溶剂(例如普通溶剂DMF中的二甲胺)也可能会带来污染,都有可能形成亚硝胺。欧洲药典 (Ph. Eur.) 委员会将 API 中亚硝胺的临时限值设定为低于 1 ppm,且于2020年底降至30 ppb。 低限值设定就需要使用灵敏度高和选择性好的分析方法。本应用参照美国FDA指南的方法进行优化,通过GC/MS/MS在EI源 MRM模式下痕量检测缬沙坦药品中的5种亚硝胺杂质 (NDMA、NDEA、NEIPA、NDIPA 和 NDBA),并根据USP要求进行方法学验证。 实验条件GC-MS/MS 方法检测不同的亚硝胺化合物,使用液体直接进样方式。与FDA方法相比,选择了膜厚更薄(0.5µm而不是1µm)的Supelcowax® 柱,符合USP通则中色谱法的规定。色谱条件以及质谱条件见表1-3。 表1 色谱条件色谱柱SUPELCOWAX® 10, 30 m x 0.25 mm I.D., 0.5µm (24284)检测器MS/MS进样口温度250℃柱温箱程序40℃保持0.5min,20℃/min至200℃, 60℃/min 至250℃保持3min载气及流速氦气,1.0mL/min衬管4 mm单径锥衬管带玻璃棉进样量2 µL进样模式脉冲不分流样品稀释剂二氯甲烷样品制备使用切片工具,取药片的四分之一放入15mL离心管,加入5mL二氯甲烷。将样品涡旋1分钟,并置于离心机中以4000 rpm离心2.5min。取二氯甲烷层上清液2mL,用0.45µm PVDF膜过滤。取续滤液0.5mL到2mL样品小瓶中并加盖。标准溶液二氯甲烷作为溶剂,配制得到浓度分别2.5、5.0、10、20、40、80、100ng/mL的5种亚硝胺(NDMA/NDEA/NEIPA/NDIPA/NDBA)校准溶液。 表2 质谱条件调谐自动调谐离子源及采集模式EI源,MRM碰撞气体氮气 @ 1.5mL/min淬灭气体氦气@ 4.0mL/min 溶剂延迟7 min离子源温度230°C四极杆温度150°C电离电压70 eV驻留时间50 ms 表3 MRM 离子对参数列表峰化合物Transition保留时间1N二甲基亚硝胺MRM274→426.952N二甲基亚硝胺MRM174→446.9522N-二乙基亚硝胺MRM 1102→857.533N-二乙基亚硝胺MRM2102→567.5283N-乙基异丙基亚硝胺MRM1116→997.784N-乙基异丙基亚硝胺MRM271→567.7874N-二异丙基亚硝胺MRM1130→427.971N-二异丙基亚硝胺MRM2130→887.9765N-亚硝基二丁胺MRM1158→999.497N-亚硝基二丁胺MRM284→569.494 五种亚硝胺化合物在10分钟内完全分离,且目标峰与溶剂和基质杂质得到了很好的分离(图 2)。由于使用了0.5µm膜厚的色谱柱,与 FDA 方法相比,分离时间更短。图2:40 ng/mL系统适用性溶液色谱图,峰表见表3.实验得出:N-二乙基亚硝胺(NDEA)和N-二异丙基亚硝胺(NDIPA)的多反应监测MRM Transition最低检测限浓度为2.5ppb,如图3所示。图3 NDEA(上图)和 NDIPA(下图)最低检测限谱图 方法适用性经验证的 FDA-OTR 方法要求 40 ng/mL 标准品六次重复进样的 RSD%≤ 5%。 使用我们的方法,连续6次进样 40 ng/mL 的5种亚硝胺杂质,在两种 MRM 下的 RSD%远小于 5,如表4所示。化合物MRM1 RSD%MRM2 RSD% N二甲基亚硝胺1.81.3N-二乙基亚硝胺1.11.1N-乙基异丙基亚硝胺4.21.5N-二异丙基亚硝胺0.92.2N-亚硝基二丁胺4.33.0表4 40ng/mL 亚硝胺标准品连续六次进样的精密度此外,线性校准曲线的相关系数R2应≥ 0.998。本方法中五种亚硝胺杂质的两个 MRM都超过了这一标准(表 5)。杂质MRM 1MRM 2N二甲基亚硝胺0.99940.9995N-二乙基亚硝胺0.99910.9995N-乙基异丙基亚硝胺0.99950.9995N-二异丙基亚硝胺0.99960.9994N-亚硝基二丁胺0.99830.9981表5 两种MRM定量中两种亚硝胺的相关系数 (R2)缬沙坦制剂中亚硝酸胺的检测在药店购买的缬沙坦药品中加入亚硝胺杂质,浓度为10 ppb(NDBA为40 ppb),5种亚硝胺的回收率在94.5%~105.7%之间。(表6)。杂质10ppb回收率NDMA99 %NDEA103.5 %NEIPA94.5 %NDIPA103.9 %NDBA105.7 %表6缬沙坦药品中5种亚硝胺的加标回收率对于缬沙坦药品中5种亚硝胺的检测,OTR 方法的定量限 (LOQ) 范围是 8 – 40 ppb,本实验方法的 LOQ见表 7。 LOQ 是根据每种化合物校准曲线信噪比 (S/N) 为 10 浓度计算得出的,并且通过缬沙坦片剂的标准添加实验进行了验证。 检出限LOD是信噪比 (S/N) 为 3 的浓度计算得到 。杂质FDA方法 LOQ [ppb]本实验方法LOQ [ppb]NDMA133NDEA85NEIPA83NDIPA85NDBA4032表7 OTR和实验方法LOQ结果结论综上,参考FDA 建议方法,使用 SUPELCOWAX® 色谱柱通过 GC-MS/MS在 MRM 模式下可以轻松实现亚硝胺杂质的测定。所有亚硝胺化合物之间以及与溶剂和基质峰的分离良好,满足所有系统适用性要求。 该方法已成功应用于缬沙坦药物中亚硝胺类杂质的分析。 相关产品描述货号链接SUPELCOWAX® 10 气相毛细管柱30 m × 0.25 mm,0.50 μm24284 https://www.sigmaaldrich.cn/CN/zh/product/supelco/24284 SupraSolv® GC-MS二氯甲烷 1.00668 https://www.sigmaaldrich.cn/CN/zh/product/mm/100668 N二甲基亚硝胺NDMA认证参考物质 5000 µg/mL甲醇溶液CRM40059 https://www.sigmaaldrich.cn/CN/zh/product/supelco/crm40059N-二乙基亚硝胺NDEA 认证参考物质 5000 µg/mL甲醇溶液40334 https://www.sigmaaldrich.cn/CN/zh/product/supelco/40334N-亚硝基二丁胺NDBA 分析标准品442685 https://www.sigmaaldrich.cn/CN/zh/product/supelco/442685 N-乙基异丙基亚硝胺NEIPA EP标准品Y0002262 https://www.sigmaaldrich.cn/CN/zh/product/supelco/y0002262N-二异丙基亚硝胺NDIPA EP 标准品Y0002263 https://www.sigmaaldrich.cn/CN/zh/product/supelco/y0002263
  • 卫生部公布58个食品添加剂产品标准
    中 华 人民 共 和 国 卫 生 部 公 告   2011年 第8号   根据《中华人民共和国食品安全法》、卫生部等9部门《关于加强食品添加剂监督管理工作的通知》(卫监督发〔2009〕89号)和卫生部2011年第6号公告等规定,卫生部组织中国疾病预防控制中心参照国际标准,指定D-甘露糖醇等58个食品添加剂产品标准。   特此公告。   附件:1.D-甘露糖醇等58个食品添加剂产品标准目录   2.D-甘露糖醇等58个食品添加剂产品标准.rar   二○一一年三月十八日   附件1   D-甘露糖醇等58个食品添加剂产品标准目录 编号 标准名称 1. D-甘露糖醇 2. 羟丙基甲基纤维素(HPMC) 3. 氢化松香甘油酯 4. 乳酸脂肪酸甘油酯 5. 松香季戊四醇酯 6. 乙二胺四乙酸二钠 7. 乙酰化单、双甘油脂肪酸酯 8. 乙氧基喹 9. 硬脂酸钙 10. 硬脂酸镁 11. 硬脂酰乳酸钙 12. 硬脂酰乳酸钠 13. 月桂酸 14. 羟基硬脂精(氧化硬脂精) 15. 偶氮甲酰胺 16. 抗坏血酸棕榈酸酯 17. 硫代二丙酸二月桂酯 18. 微晶纤维素 19. 丙二醇脂肪酸酯 20. 聚甘油脂肪酸酯(聚甘油单硬脂酸酯,聚甘油单油酸酯) 21. 刺云实胶 22. 柠檬酸一钠 23. 巴西棕榈蜡 24. 蜂蜡 25. 乳糖醇 26. 5'胞苷酸二钠 27. d-核糖 28. 3-环己基丙酸烯丙酯 29. 辛酸乙酯 30. 棕榈酸乙酯 31. 甲酸香茅酯 32. 甲酸香叶酯 33. 乙酸香叶酯 34. 乙酸橙花酯 35. 己醛 36. 正癸醛(癸醛) 37. 乙酸丙酯 38. 乙酸2-甲基丁酯 39. 异丁酸乙酯 40. 异戊酸3-己烯酯 41. 2-甲基丁酸3-己烯酯 42. 2-甲基丁酸2-甲基丁酯 43. γ-己内酯 44. γ-庚内酯 45. γ-癸内酯 46. δ-癸内酯 47. γ-十二内酯 48. δ-十二内酯 49. 2,6-二甲基-5-庚烯醛 50. 2-甲基-4-戊烯酸(又名浆果酸) 51. 芳樟醇 52. 乙酸松油酯 53. 二氢香芹醇 54. d-香芹酮 55. l-香芹酮 56. α-紫罗兰酮 57. 罗望子多糖胶 58. 左旋肉碱
  • 中仪宇盛生产的30位全自动吹扫捕集装置符合国家HJ605标准
    中仪宇盛PT-7900D型全自动吹扫捕集装置是一款由北京中仪宇盛科技有限公司研制生产的仪器,主要应用于水和土壤中的挥发性有机物VOC分析,也可用于食品中挥发物的分析等。符合国家“HJ605-2011 土壤和沉积物 挥发性有机物的测定 吹扫捕集 / 气相色谱 - 质谱法环境保护标准。气相色谱仪:具毛细管柱分流/不分流进样口,能对载气进行电子压力控制,可程序升温。质谱仪:电子轰击(EI)电离源,具NIST质谱图库、定量分析及谱库检索等功能。吹扫捕集装置:中仪宇盛PT-7900D型全自动吹扫捕集装置。仪器参考条件吹扫捕集参考条件:吹扫流量:40mL/min;吹扫温度:40℃;吹扫时间:11min;阀箱温度:180℃;管线温度:180℃;冷阱脱附温度:280℃;冷阱脱附时间:3min;进样时间:1min;清洗流量:100mL/min。气相色谱与质谱联用仪参考条件:①色谱柱:60m*0.25mm*1.4um(6%氰丙基苯基94%甲基聚硅氧烷固定液);进样口温度:200℃;分流比:30:1;柱流量(恒流模式):1.0mL/min;升温程序:初始温度35℃,保持6min,以10℃/min升至120℃保持2min,再以8℃/min升至220℃保持5min。扫描方式:全扫描;扫描范围:35-270amu;溶剂延迟时间:4.0min;离子源温度230℃;传输线温度:250℃。②色谱柱:30m*0.25mm*1.4um(6%氰丙基苯基94%甲基聚硅氧烷固定液);进样口温度:200℃;分流比:30:1;柱流量(恒流模式):1.0mL/min;升温程序:初始温度35℃,保持3min,以10℃/min升至120℃,保持1min,再以8℃/min升至200℃保持2min。扫描方式:全扫描;扫描范围:35-270amu;溶剂延迟时间:1.5min;离子源温度230℃;传输线温度:250℃。实验数据色谱图一、配安捷伦气质各组分线性相关系数均能达到0.999以上。以下为中仪宇盛PT-7900D型全自动吹扫捕集装置对国家HJ605标准中的64种目标物进行的测试报告:通过以上测试报告不难看出,该设备实验效果优秀,满足“HJ605- 2011土壤和沉积物、挥发性有机物的测定吹扫捕集 / 气相色谱 - 质谱法”对64种挥发性有机物的测定的实验要求,仪器性能表现出色。
  • 色谱图里的秘密:PFPD检测器硫物质分析
    脉冲式火焰光度检测器PFPD5383硫物质分析——杰出的选择性和灵敏度PFPD对于硫物质具有线性的、等摩尔响应,能够选择性地测定从极低的ppb到ppm级的各个独立硫物质的浓度以及各个独立的硫物质峰加和的总硫浓度。单独一台检测器就能够同时得到硫物质和烃类物质的色谱图,这一独特的功能使其远优于其它的硫物质检测技术。PFPD操作原理氢气和空气的混合燃烧气被引入并且从下向上充满检测器的内腔体和上盖(1)。燃烧混合气在上盖位置被点燃(2)。点燃的火焰沿着内部的流路传播,同时消耗氢气和空气的混合气(3)。由气相色谱仪的柱子分离出来的物质在石英燃烧管内燃烧并且发射出元素特定波长的光(4)。当火焰到达检测器的底部时熄灭,激发出来的物质持续发射荧光长达25毫秒。激发出来的物质发射出来的光沿着一根光管传播,选择性发射出来的光穿过一个滤光片到达光电倍增管进行检测(5)。整个脉冲的火焰周期以大约每秒钟3至4次的频率重复。相比于其他的检测器,PFPD提高了长期稳定性并且只需要极少的维护,避免了其他检测器由于烟尘的沉积干扰了硫发射信号的传播。检测和定量气体中的硫污染物对于工业过程的正常运转以及控制产品品质都是格外重要的。GPC-PFPD已经被证明是实现硫物质分析的高效的手段。&bull 液化石油气(LPG)中的硫物质&bull 乙烯和丙烯原料中的羰基硫&bull 天然气中的硫物质&bull 饮料级CO2中的不纯物质&bull 半导体和工业气体的纯度&bull 气体产物和混合过程中的质量控制乙烯和丙烯原料丙烯是乙烯蒸汽裂化的副产品。羰基硫(COS)是丙烯原料中最主要污染物,如果不能够有效地去除,将损坏用于聚合物生产和其它过程中的昂贵的催化剂床。右侧的色谱图显示了在丙烯和乙烯装置分离之前以及洗刷掉硫物质之前,原料气中存在的烃类物质和COS。天然气天然气中含有硫化氢或者甲硫醇,也称作“酸”气。天然气中的硫化氢的浓度范围从几乎检测不到到高达0.30%(3,000 ppm)。CO2中的不纯硫物质尽早地检测和控制H2S和COS的含量是控制食品级CO2品质的一个重要考虑因素,因为这些物质的存在,将在碳酸饮料中产生不希望的气味和口感。石化产品中的硫分析PFPD已经被广泛应用在实验室以及过程气相色谱仪器上,用于分析液态石化产品中的各个独立的硫物质以总硫的浓度。汽油柴油气态和液态的石化产品&bull 丙烯中的羰基硫(ASTM D5303)&bull 天然气中的硫物质(ASTM D5504&D6228)超低硫浓度的汽油(ULSG)&bull 超低硫浓度的柴油(ULSD)&bull 苯中的噻吩(ASTM D4735-02&D7011)&bull 石油醚液体中的硫物质(ASTM D5623)喷气机燃油&bull 萘&bull 原油和合成油燃料油&bull 轻循环油(LCO)
  • 探访山东临沂甲流实验室 揭开甲流的秘密
    甲型H1N1流感,让人闻听色变,唯恐躲避不及。而在山东临沂市疾病预防控制中心的国家流感监测网络实验室里,却有9名工作人员半年多来每天都与甲流病毒零距离接触,为一批批疑似甲流样本进行了核酸检测工作。2009年11月10日,记者走近他们,用镜头记录下了他们在抗击甲流工作中鲜为人知的幕后生活。   上午11时许,刚刚从实验室出来的工作人员刚刚倒杯热水,一声熟悉且凌厉的警笛声传来,只见他们立即各就各位,记者经过特许后更换了一套医用三级防护服,紧接着,莒南县疾病预防控制中心送来的一批样本被送到了16楼。记者紧随两名工作人员跨越了三道门才来到流感实验室内的核酸提取区,工作人员首先用提取区的生物安全柜提取核酸。据了解,提取核酸是整套工作程序的第一关,保护措施极其严密,因为在提取核酸的过程中,存在着工作人员被甲流感病毒感染的可能,核酸是病毒的一种遗传物质,通过PCR(分子生物学技术中常规的检测手段)技术来扩增核酸能检测到疑似甲流样本中是否存在甲流感病毒。   半个多小时后,工作人员把提取的核酸送到体系配制区,仔细将作为模板的核酸加入反应体系,又马不停蹄地送到另外一间实验室,用PCR仪进行反应,大约两个小时后,终于检测出了结果。此时,各实验室的工作人员才露出轻松的笑意,赶紧脱下闷热的隔离服,清理个人卫生。   流感监测网络实验室主任季圣翔告诉记者,对流感病毒检测分常规检测和应急检测,常规检测正常情况下检测一批样本要用6个小时,而市疾控中心用的是应急检测,只需4个小时就可得知结果,且应急检测灵敏度高,检测的结果也更精确。季主任称,这个团队一共9人,半年多来一直轮流值班,昼夜战斗在抗击甲流的第一线,最繁忙时一天能检测6批样本。 详细图片请见:http://unn.people.com.cn/GB/14748/10358209.html
  • 东华大学查刘生课题组在SERS基底研究方面取得系列进展
    自1974年,Fleischmann 等人第一次在吡啶吸附的粗糙银电极上观察到表面增强拉曼效应(SERS)信号。由于SERS可以使拉曼强度增大几个数量级,提供了极高的表面检测灵敏度,为人们刻画了很好的应用前景,在国际上很快就掀起了SERS研究的热潮。我国在80年代初期就有一批科学家开始了SERS的研究工作,近年来越来越多的课题组踏入这个领域,几乎呈指数增长。   在SERS研究领域中,定量分析一直是一个挑战,而定量分析首要的挑战是增强基底的均一性和可靠性。目前国内有很多课题组致力于SERS基底的研究工作,东华大学分析测试中心查刘生教授课题组近年来针对SERS分析方法中存在的结果重复性差、适用分析对象较少等问题,研究了几种新型的SERS基底,取得了一系列进展。   为提高Au纳米棒(AuNR)作为SERS基底的分析测试结果的重复性和灵敏度,查刘生教授课题组制备了直径和长度的相对标准偏差均小于10%、以AuNR为核和Ag为壳层的双金属纳米棒Au@AgNR,如下图:图TEM (a)AuNRs (b)~(h) Au@AgNRs-1~ Au@AgNRs-7   而且,该课题组以Au@AgNR为SERS基底分析水溶液中微量的对巯基苯甲酸(4 -MBA),结果发现SERS信号强度在一定范围内随着Au@AgNR中Ag壳层厚度的增加而增强。图SERS信号强度与Au@AgNR中Ag壳层厚度的关系(a) AuNRs (b)~(h)Au@AgNRs-1~Au@AgNRs-7   水溶液中对巯基苯甲酸的浓度与其SERS信号强度之间有良好的线性关系,线性相关系数超过0.98。相关研究成果发表在Journal of Raman Spectroscopy期刊上(J. Raman Spectrosc. 2014, 45:431&ndash 437.)   此外,该课题组还将粒径在10~15nm范围内的Ag纳米粒子分别负载在温度刺激响应性微凝胶、pH刺激响应性微凝胶和pH/温度双重刺激响应性微凝胶中,用这三种制得的载Ag纳米粒子智能杂化微凝胶作为SERS基底,检测水溶液中微量的对巯基苯甲酸,可通过升高检测温度和/或降低样品溶液的pH值来提高SERS信号强度。相关研究成果发表在RSC Advances和Journal of Materials Chemistry C等期刊上(RSC Advances, 2013, 3:3384~3390 J. Mater. Chem. C, 2014, 2, 7326&ndash 7335.)   合成以Au纳米棒为核的、交联聚(N-异丙基丙烯酰胺)为壳层的具有核壳结构的温度刺激响应性杂化微凝胶,以该智能杂化微凝胶作为SERS基底,通过升高测试温度可检测到水溶液中微量的、难以吸附在贵金属表面的1-萘酚的SERS信号,为环境水样中微量酚类化合物的检测提供了一种新的方法。相关研究成果发表在Colloids and Surfaces A: Physicochem. Eng. Aspects期刊上(Colloids and Surfaces A: Physicochem. Eng. Aspects, 2014, 452:46&ndash 50)。   感兴趣可以联系试用该课题组SERS基底:lszha@dhu.edu.cn。   查刘生个人简介   查刘生,博士,教授,博士生导师   1985年毕业于合肥工业大学化学工程系高分子化工专业,获工学学士学位。   1990年毕业于中国科技大学应用化学系分析化学专业,获理学硕士学位。   2003年毕业于复旦大学高分子科学系高分子化学与物理专业,获理学博士学位。   1995年破格晋升为副研究员。   1998年被遴选为安徽大学&ldquo 高分子化学与物理&rdquo 学位点的硕士研究生导师。   2000年晋升为教授。   2006年被遴选为东华大学&ldquo 材料科学与工程&rdquo 学位点的博士研究生导师。   2011年到美国Clemson 大学生物工程系做访问学者。   曾任安徽大学高分子材料研究所副所长,安徽大学现代实验技术中心主任,安徽省材料学会副理事长,安徽省化学会理事,安徽省计量协会常务理事,安徽省计量协会检测技术工作委员会副主任,东华大学分析测试中心主任和技术负责人。   现任全国染料标准化技术委员会印染助剂分技术委员会顾问委员,上海市计量测试学会理事,国家级实验室资质认定评审员,&ldquo 中国无机分析化学&rdquo 杂志编委。   主要学术业绩   主持过国家科委地方重大科技攻关项目、国家自然科学基金项目和教育部科技研究重点项目等十几项国家级和省部级科研项目,1项成果获省部级科技进步三等奖,在&ldquo Advanced Materials&rdquo , &ldquo Macromolecular Rapid Communications&rdquo ,&ldquo Soft Matter&rdquo 等学术期刊上发表论文110多篇,其中被SCI收录的有40多篇,获准国家发明专利7项。目前主要研究方向:新型SERS基底 智能微/纳米凝胶及其组装形成的智能材料 高分子材料结构分析。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制