当前位置: 仪器信息网 > 行业主题 > >

异戊酸叶醇酯

仪器信息网异戊酸叶醇酯专题为您提供2024年最新异戊酸叶醇酯价格报价、厂家品牌的相关信息, 包括异戊酸叶醇酯参数、型号等,不管是国产,还是进口品牌的异戊酸叶醇酯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合异戊酸叶醇酯相关的耗材配件、试剂标物,还有异戊酸叶醇酯相关的最新资讯、资料,以及异戊酸叶醇酯相关的解决方案。

异戊酸叶醇酯相关的资讯

  • 脂肪酸气相色谱分析的故事
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。 第一讲:傅若农讲述气相色谱技术发展历史及趋势第二讲:傅若农:从三家公司GC产品更迭看气相技术发展第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状第四讲:傅若农:气相色谱固定液的前世今生第五讲:傅若农:气-固色谱的魅力第六讲:傅若农:PLOT气相色谱柱的诱惑力第七讲:傅若农:酒驾判官——顶空气相色谱的前世今生第八讲:傅若农:一扫而光——吹扫捕集-气相色谱的发展第九讲:傅若农:凌空一瞥洞察一切——神通广大的固相微萃取(SPME)第十讲:傅若农:悬“珠”济世——单液滴微萃取(SDME)的妙用第十一讲:傅若农:扭转乾坤——神奇的反应顶空气相色谱分析第十二讲:擒魔序曲——脂质组学研究中的样品处理第十三讲:离子液体柱——脂质组学中分离脂肪酸的气相色谱柱 上一讲我们主要介绍了在脂质组学中对脂肪酸的分析所用的离子液体毛细管色谱柱,但是用气相色谱分析脂肪酸源远流长,有许多故事,了解一些过去的故事对现在的发展理解有好处,温故才可以知新。  先讲一下脂质组学中常常要研究的血浆分析,其中一个重要的项目是分析其中的脂肪酸,下面一个例子,概要介绍了血浆中脂肪酸的主要成分:  “虽然游离脂肪酸只占血浆中脂肪酸的一小部分,但它代表一类高度代谢活性的脂质,脂肪组织是血浆游离脂肪酸的主要来源,其分布与食物的脂肪酸组成密切相关。在正常情况下从脂肪组织中释放脂肪酸与组织对能量的需要紧密相连。但是当代谢失调时,这种平衡被打乱,导致脂解增加,会释放出多于组织所需要脂肪酸的量。健康人经过一夜禁食后血浆中含有214 nmol/ml游离脂肪酸,油酸(18:1)的含量最高,其次是棕榈酸(16:0)和硬脂酸(18:0),这三种酸占全部游离脂肪酸的78%。亚油酸(18:2)和花生四酸(20:4) 是主要的多不饱和脂肪酸(约占8%)。但是有营养作用的α-亚麻酸(18:3ω-3),二十碳五烯酸(20:5, EPA)和二十二碳六烯酸(22:6, DHA)也占有一定比例,约为全部游离脂肪酸的1%。”1 脂肪酸气相色谱分析的历史故事  气相色谱被认为是分析复杂混合物中脂肪酸的可靠方法,这一方法可追述到上世纪50年代,气相色谱的出现于脂肪酸的分析有密切的关系,1952年气相色谱发明人A. T. James 和 A. J. P. Martin就用最为原始的自制气相色谱仪分析小分子脂肪酸(Biochem J,1952,50:679),他们首次阐明气-液分配气相色谱的原理,设计了自动滴定检测脂肪酸的气相色谱仪。实验过程中使用的色谱柱为玻璃柱,其内径为4mm,长度为5英尺,固定相是把DC 550硅油涂渍在硅藻土Celite 545上。分离小分子脂肪酸的色谱如图1所示。 图1 用自动滴定计气相色谱仪分析小分子脂肪酸的色谱图  分离从乙酸到戊酸的色谱如图2所示:图 2 分离从乙酸到戊酸的色谱  此后分析脂肪酸的一个重大进步是把脂肪酸进行甲酯化,1956年James和Martin使用气体密度检测器,并把脂肪酸进行甲酯化,使用阿皮松类高温润滑脂作固定相,可以分离分子量大的脂肪酸。图3 是分离C5-C13直链和支链脂肪酸甲酯的色谱图。图 3 用高沸点润滑脂分离C5-C13直链和支链脂肪酸甲酯的色谱图色谱柱:在硅藻土载体上涂渍高沸点润滑脂;柱温:197℃;载气:氮气 14.1mL/min 色谱峰: (1) 空气, (2) n-戊酸甲酯,(3) n-己酸甲酯, (4) 4-甲基己酸甲酯,(5) 6-甲基庚酸甲酯, (6) n-辛酸甲酯, (7) 6-甲基辛酸甲酯, (8) n-壬酸甲酯,(9) 8-甲基壬酸酯, (10) n-癸酸酯, (11) 8-甲基癸酸酯, (12) 10-甲基十一酸酯 ,(13) n-十二酸酯, (14) 10-甲基十二酸酯2 脂肪酸气相色谱分析的发展  脂肪酸的气相色谱分析由于它的极性和挥发性不好而带来麻烦,所以首先要把它的极性羰基转化成易于挥发的非极性衍生物。有多种烷基化试剂可以进行羰基的衍生化,使用最多的是进行甲基化,特别是使用氢火焰离子化监测器(FID)气相色谱时,尤为方便普及。但是使用FID也有一些不足之处。绝对的定量要依靠内标物的信号强度,经常使用的内标物是十七酸(而不是使用化学和物理性质与所测定脂肪酸相近的同位素标记脂肪酸混合物作内标)。人类体内不能合成奇数碳链的脂肪酸(包括碳17酸),但是人们可以通过食物摄取它们,它们存在于血液的血浆中,增加内标物十七酸的量,从而扰乱定量分析。  进一步讲,FID不能提供分子质量或其他结构特征信息,以便区分不同的脂肪酸,所以色谱和FID只是解决把所有要研究的脂肪酸分子完全分离开,用质谱解决脂肪酸的结构信息。大家应该知道使用电子轰击电离脂肪酸分子很容易被打成碎片,通过这些碎片可以进行脂肪酸的结构分析,但是灵敏度受到限制。弱电离技术比如负化学电离(NCI)可以改善检测限。使用卤代衍生化试剂可以进一步提高检测灵敏度,这种试剂增加了电子亲和力,可改善NCI-MS的灵敏度。Kawahara 使用五氟基苄(PFB) 作衍生化试剂来衍生化有机羧酸,这样的含氟衍生物电子很容易被俘获。此后这一方法扩展到脂肪酸的衍生化为脂肪酸酯,与脂肪酸甲酯相比,它很容易被NCI-MS检测。所以使用五氟基苄进行衍生化有利于提高检测灵敏度。许多研究者使用PFB做衍生化试剂进行脂质组学中的脂肪酸分析,例如Quehenberger等就是用这一方法分析巨噬细胞中的各种脂肪酸(Prostaglandins, Leukotrienesand Essential Fatty Acids,2008,79:123–129)。下图4 是分析巨噬细胞中的各种脂肪酸的色谱图。图 4 巨噬细胞中的各种脂肪酸的色谱图图中色谱峰的脂肪酸如下:(1)12:0 (2)14:0 (3)15:0 (4)16:1 (5)16:0 (6)17:1 (7)17:0 (8) a18:3 (9) 18:4 (10) g18:3 (11)18:2 (12)18:1 (13)18:0 (14)20:4 (15)20:5 (16)11,14,17–20:3 (17)bishomo-20:3 (18)20:2 (19)5,8,11–20:3 (20)20:0 (21)22:6 (22)22:4 (23)22:5 (24)22:2 (25)22:3 (26)22:1 (27)22:0 (28) 23:0 (29)24:1 (30)24:0 3 国内外进行气相色谱分析脂肪酸的一些例证   为了进一步了解进行气相色谱分析脂肪酸的具体情况,下面表1列出近50例分析各种样品中脂肪酸的色谱柱和分离对象。表2列出国外文献中分析人体组织中脂肪酸的例证。表 1 国内气相色谱分析脂肪酸的色谱柱和分析对象 表 2 国外文献中有关分析人体组织中脂肪酸的衍生化方法和所用色谱柱4 脂肪酸气相色谱分析所用色谱柱  从已发表的文献看分析整体脂肪酸需用非极性的聚硅氧烷毛细管色谱柱,如聚二甲基硅氧烷,分离多不饱和脂肪酸需用极性强的色谱柱,如OV-275,OV-275(这是聚硅氧烷固定相中极性最强的色谱柱)和CP-Sil 88(HP-88)。 据安捷伦公司一份研究报告(5989-3760 EN),他们对最重要的一些脂肪酸(甲酯)(见表3)进行研究,研究总结认为:聚乙二醇柱对不太复杂的样品可以得到很好的分离 而中等极性的氰丙基聚硅氧烷柱(DB 23)对复杂的 FAMEs 样品可以得到很好的分离,对一些顺反异构体也可以得到分离 要使顺反异构体分离的更好,就要使用更高极性的 HP-88 氰丙基色谱柱。表3 重要的一些脂肪酸  三种主要色谱柱分离脂肪酸的特点如下:  使用DB-Wax柱,DB-23 柱和HP-88 柱上分离37种脂肪酸混合物的色谱见图5-图7.图 5 FAMEs在30 m 0.25 mm ID, 0.25 μm DB-Wax 色谱柱上的色谱图 6 FAMEs混合物在 60 m 0.25 mm ID, 0.15 μm DB-23 柱上的色谱图 7 FAMEs 混合物 在 100 m 0.25 mm ID, 0.2 μm HP-88 柱上 的色谱  其中HP-88 柱的极性最强,是含88%氰丙基甲基聚硅氧烷,其结构如下图8:图8 HP-88 的分子结构  HP-88 对一些异构体的分离能力由于DB-23如下图9所示  图 8 HP-88和HP-23分离能力的差别  (此图来自Walter Jennings博士2008年在北京大学作报告时的ppt文稿)  吴惠勤等使用P-88毛细管色谱柱分离了39种脂肪酸得到的质谱基峰离子和特征离子如表4中的数据。表4 39种脂肪酸在HP-88毛细管色谱柱上出峰次序( 吴惠勤等,分析化学,2007,35(7):998-1003)
  • 脂肪酸分析用三氟化硼甲醇溶液
    下载:脂肪酸分析用三氟化硼甲醇溶液.pdf 关键词:三氟化硼甲醇 脂肪酸 甲酯化 上海安谱科学仪器有限公司 地址:上海市斜土路2897弄50号海文商务楼5层 [200030] 电话:86-21-54890099 传真:86-21-54248311 网址:www.anpel.com.cn 联系方式:shanpel@anpel.com.cn 技术支持:techservice@anpel.com.cn
  • 《乌索酸纯度的测定液相法》国标颁布
    近日,由宜春学院承担起草的GB/T24773-2009《乌索酸纯度的测定高效液相色谱法》国家标准已由国家标准委正式批准发布,这是宜春继《乌索酸国家标准样品》项目研制成功后,取得的又一项标准成果。   据悉,乌索酸作为一种化学物质在日用化工、功能食品及医药保健方面具有重要用途。宜春学院以天然植物为原料,成功地攻克了乌索酸提取工艺难关,达到了国内领先水平。为促进此项科研成果的推广应用,将科技成果尽快转化为国家标准,宜春质监部门从2005年就开始帮助宜春学院进行省地方标准、国家标准样品和国家标准的立项申报工作,并最终取得成功。   此项国家标准的正式发布实施是该市大力推进实施全市标准化战略的结果。宜春市质量技术监督部门将进一步加大工作力度,推进更多具有行业技术优势的企事业单位参与更高层次的国家标准化活动,争夺技术标准的话语权。
  • 坛墨标样-甲醇中16种挥发性有机物-TVOC混标(含乙酸正丁酯)/GB50325-2020
    坛墨标样-甲醇中16种挥发性有机物-TVOC混标(含乙酸正丁酯)/GB50325-2020产品编号BWT900637-100-ACAS号规格1mL标准值100μg/mL序号名称CAS号1正己烷110-54-32苯71-43-23三氯乙烯79-01-64甲苯108-88-35辛烯111-66-06乙酸丁酯123-86-47乙苯100-41-48对二甲苯106-42-39间二甲苯108-38-310邻二甲苯95-47-611苯乙烯100-42-512壬烷111-84-213异辛醇104-76-714十一烷1120-21-415十四烷629-59-416十六烷544-76-3
  • 快来看啊~氯丙醇及其脂肪酸酯测定的解决方案新出炉了!
    氯丙醇是甘油(丙三醇)中的羟基被氯离子取代后形成的一类物质,共有4种物质,包括3-氯-1,2-丙二醇(3-MCPD)、2-氯-1,3-丙二醇(2-MCPD)、1,3-二氯-2-丙醇(1,3-DCP)和2,3-二氯-1-丙醇(2,3-DCP),具有肾脏毒性、生殖毒性,并可能具有致癌性。氯丙醇在许多食品中都存在,如面包、香肠、焦糖色素、方便面调味料等,但动植物蛋白在盐酸催化水解作用下最容易产生,通常含量也最高。此外,变性淀粉、纸质食品接触材料(袋泡茶的过滤纸、咖啡过滤纸等)、生活饮用水可能由于环氧氯丙烷树脂或者工艺的使用,而带来氯丙醇的污染。2000年初我国酱油出口一度因为氯丙醇问题而受阻,之后污染得到了较好的控制。氯丙醇酯、缩水甘油酯是近10年来国际上备受关注的新型食品污染物,氯丙醇酯是氯丙醇与各类脂肪酸作用后形成的一大类物质的总称,主要分为3-氯-1,2-丙二醇酯(3-MCPD酯)和2-氯-1,3-丙二醇酯(2-MCPD酯),氯丙醇与氯丙醇酯虽然仅一字(酯)之差,但它们的化学性质和形成机理差别很大,氯丙醇容易在脂肪的酸水解中形成,而氯丙醇酯和缩水甘油酯容易在食用油高温精炼或脂肪类食品在煎、炸、烧、烤等烹调过程中产生。Detelogy参考GB 5009.191-2016提供测定食品中氯丙醇及其脂肪酸醋含量的测定推出以下前处理解决方案一、食品中氯丙醇脂肪酸酯含量的测定气相色谱-质谱法1、试样提取植物油、动物油等油脂类试样:称取试样0.1 g,加入氘代氯丙醇脂肪酸酯混合溶液20μL,D5-1,3-DCP和D5-2,3-DCP溶液各20 μL。其他试样:称取试样2 g,加入氘代氯丙醇脂肪酸酯混合标准工作液20 μL。加入4 mL正已烷,充分振摇混匀,超声提取20 min,静置分层后,转移出上层正己烷。再重复提取2次,合并正已烷相(约12 mL),加入D5-1,3-DCP和D5-2,3-DCP溶液各20 μL,置于FV32Plus全自动高通量智能平行浓缩仪中浓缩至约1 mL。注:对于乳粉、咖啡等固体粉末试样,需先加2 mL水溶解后再用正已烷提取。对于香肠等动物性食品试样,可采用经乙睛饱和的正已烷作为提取液。2、酯键断裂反应向试样提取液中加0.5 mL甲基叔丁基醚-乙酸乙酯溶液(8 2)和1 mL甲醇钠-甲醇溶液(0.5 mol/L),盖紧盖子,MultiVortex涡旋振荡30 s。室温反应4 min,加入100 μL冰乙酸终止反应。加入3 mL溴化钠溶液(20%)和3 mL正已烷,MultiVortex涡旋振荡30 s,静置1 min,弃去上层正已烷相,再用3 mL 正已烷萃取一次,弃去上层正已烷相,下层的水相溶液待净化。注:此步骤中如采用氯化钠溶液(20%)萃取,则经后续步骤测定得到的是氯丙醇脂肪酸和缩水甘油醋的总含量。3、样品净化硅藻土小柱固定于QSE-12/24固相萃取装置,将水相溶液倒入硅藻土小柱中,平衡10 min后,用15 mL乙酸乙酯洗脱,收集洗脱液,在洗脱液中加入4 g无水硫酸钠,放置10 min后过滤,FV32Plus全自动高通量智能平行浓缩仪浓缩至0.5 mL切忌浓缩至全干。以2 mL正己烷溶解残渣,并转移具塞透明玻璃管中,待衍生化。4、衍生化向正已烷复溶液中加入40 μL七氟丁酰基咪唑,立即盖上盖子,MultiVortex涡旋混合30 s,于7℃保温20 min。取出放至室温,加入2 mL氯化钠溶液(20%),MultiVortex涡旋1 min,静置后移出正已烷相,加入约0.3 g无水硫酸钠干燥,将溶液转移至进样小瓶中,供气相色谱-质谱测定。二、食品中氯丙醇多组分含量的测定同位素稀释-气相色谱-质谱法1、样品提取液态试样:称取试样4 g于15 mL玻璃离心管中,加入氘代氯丙醇混合溶液20μL,超声混匀5 min,待净化。半固态及固态试样:称取试4 g于15 mL玻璃离心管中,加入氘代氯丙醇混合溶液20 μL,加入4 g氯化钠溶液(20%),超声提取10 min后5 000 r/min离心10 min,移取上清液,再重复提取1次,合并上清液,待净化。2、样品净化硅藻土小柱固定于QSE-12/24固相萃取装置,将上清液全部转移至硅藻土小柱中,平衡10 min。以10 mL正已烷淋洗,弃去流出液,以15 mL乙酸乙酯洗脱氯丙醇,收集洗脱液于玻璃离心管中,使用FV32Plus全自动高通量智能平行浓缩仪浓缩至约0.5 mL切忌浓缩至全干。以2 mL正己烷溶解残渣,并转移具塞透明玻璃管中,待衍生化。3、衍生化同上述食品中氯丙醇脂肪酸酯含量的测定 气相色谱-质谱法三、食品中3-氯-1,2-丙二醇含量的测定同位素稀释-气相色谱-质谱法1、样品提取样品类型液体试样称取试样4 g于50 mL烧杯中加入D5-3-MCPD内标溶液20 μL,加入氯化钠溶液(20%)4 g,超声混5 min待净化提取后无明显残渣的半固态及固态试样加入D5-3-MCPD内标溶液20 μL,加入氯化钠溶液(20%)6 g,超声 10 min提取后有明显残渣的半固态及固态试样称取试样 4 g于15 mL 离心管中加入D5-3-MCPD内标溶液20 μL,加入氯化钠溶液(20%)15 g,超声提取10 min5 000 r/min离心10 min,移取上清液,待净化。2、样品净化取硅藻土5 g,加入提取液,充分混匀,放置 10 min。取5 g硅藻土装入层析柱中(层析柱下端填充少量玻璃棉)。将提取液与硅藻土混合装入层析柱中,上层加1 cm高度的无水硫酸钠。用40 mL正已烷-无水乙醚溶液(9 1)淋洗,弃去流出液。用150 mL无水乙醚洗脱3-MCPD,收集流出液,加入15 g无水硫酸钠,混匀以吸收水分,放置10 min后过滤。滤液于FlexiVap-12/24全自动智能平行浓缩仪35℃下浓缩至近干(约0.5 mL),2 mL正已烷溶解残渣,保存于具塞玻璃管中,待衍生化。3、衍生化同上述食品中氯丙醇脂肪酸酯含量的测定 气相色谱-质谱法Detelogy优选仪器
  • 安捷伦1260 Infinity液相色谱/6410液质联用,助力面膜检测
    2017年,国家食品药品监督管理总局在全国范围内组织抽检了面膜类化妆品3727批次,抽样检验项目合格样品3704批次,不合格样品23批次。不合格项目为检出含有氯倍他索丙酸酯、倍他米松戊酸酯、氟轻松、倍他米松、地塞米松等糖皮质激素物质。 糖皮质激素 (glucocorticoids) 是一类甾体激素。目前,这类本该严禁使用的药物正被违法滥用于化妆品中,作为细嫩美白肌肤的功效成分,其会破坏人体激素平衡,导致多种疾病发生。本研究针对化妆品中可能使用的 41 种激素品种进行多成分同时测定,满足对这类宽范围、多组分、复杂基质样品高通量检测的需求。 长期使用含有糖皮质激素类的化妆品可能导致面部皮肤产生黑斑、萎缩变薄等问题,还可能出现激素依赖性皮炎等后果,《化妆品安全技术规范》(2015年版)规定其为化妆品中禁用物质。 国标GBT 24800.2的方法指导中采用的是LC-MS/MS和薄层色谱法。 标准中液相色谱/串联质谱测定方法适用于化妆品中糖皮质激素的定量测定,其检出限为0.03μg/g,定量限为0.1μg/g。薄层层析法适用于化妆品中糖皮质激素的定性筛选。点样量为10mg时,其检出限为50μg/g。点样量为20mg时,其检出限为25μg/g。 针对该国标,安捷伦制定了相关应用方案。 化合物基本信息糖皮质激素基本信息 实验部分 样品前处理称取 0.2 g 样品,加入 3 mL 饱和食盐水和 2 mL 乙腈(2 次)涡旋提取目标物。合并二次提取的 4 mL 乙腈,加入 40 mL 水、0.2 mL亚铁氰化钾、0.2 mL 醋酸锌,混匀后 5000 rpm 离心 10 min。上清液倒入 Bond Elut Plexa 聚合物小柱 60 mg/3 mL(上接 50 mL磨口漏斗),按固相萃取净化过程获得液质上机液固相萃取净化操作流程图 色谱和质谱条件 仪器: Agilent 1260 Infinity 液相色谱/6410 三重四极杆液质联用系统色谱柱: Agilent ZORBAX SB-C18,2.1 × 50 mm,1.8 -m,部件号 827700-902进样量:2 -L流动相: A) 含 0.1% 乙酸的水溶液B) 含 0.1% 乙酸的乙腈溶液梯度洗脱:时间/min %B0 323.0 3212.0 7514.0 7514.1 32流速:0.3 mL/min柱温:30 °C分离时间:16 min离子源:ESI干燥气流量:5 L/min干燥气温度:350 °C雾化器压力:38 psi化妆品中 41 种糖皮质激素类药物的色谱图 化妆品中 41 种糖皮质激素类药物的回收率和精密度结论化妆品剂型多样、基质复杂,所涉及的 41 种糖皮质激素的药效从弱效、中效、强效到超强效,分子特征为 17 碳原子环戊烷并多氢菲母核上具有不同基团的修饰,差异较大。从化妆品中完整提取并纯化出数十种待测目标物,并进一步建立多组分色谱分离、质测定仍有很多困难。因此,好的样品前处理方法非常关键。本文中使用的 Bond Elut Plexa 小柱,具有纯化效果好、回收率高、流速快的特点,可以很好的用在大批量样品检测中,可作为化妆品中 41 种糖皮质激素检测的参考方法。
  • 涨幅超50%!TDI、PX、丙烯酸、新戊二醇等原材料价格上涨
    p style=" text-indent: 2em " 近日,国内各大化工原材料价格持续上涨,部分原材料价格创下历史新高。中间体H酸、对位酯价格上调幅度达52%。 /p p style=" text-indent: 2em " H酸、对位酯价格暴涨 /p p style=" text-indent: 2em " 作为活性染料最重要的染料中间体,H酸、对位酯5月10日起正式涨价。H酸从3.3万元/吨涨至5万元/吨,对位酯从2.7万元/吨涨至3.5万元/吨。 /p p style=" text-indent: 2em " TDI价格上涨4.16% /p p style=" text-indent: 2em " TDI价格5月10日上涨4.16% 受厂家涨价的带动,区内TDI市场也积极看涨,但由于市场行情变化频繁,导致部分商家封盘,甚至有商家捂货不出。 /p p style=" text-indent: 2em " 对二甲苯价格上涨 /p p style=" text-indent: 2em " 10日上午亚洲对二甲苯任意6月船货递盘在1030美元/吨CFR中国,报盘在1045美元/吨CFR中国 任意7月船货递盘在1015美元/吨CFR中国,报盘在1030美元/吨CFR中国。受美国推迟伊朗协议引发原油供应担忧利好影响,国际油价上涨至三年半新高,PX成本端支撑强劲。下游PTA期现价因资金涌入且库存压力放缓而窄幅攀升,另亚洲PX市场供应商因盈利空间缩窄而挺价意愿增强。因此综合助力下,PX早盘商谈暴涨。 /p p style=" text-indent: 2em " 正丁醇 /p p style=" text-indent: 2em " 正丁醇工厂检修较为集中,某工厂推迟开车,市场供需缺口持续扩大,下游开工稳定,采购热情高涨,主流工厂积极上调价格,库存低位。万华本周期华北上调200元/吨,华东、华南上调100元/吨。 /p
  • 甲醇中16种挥发性有机物混合-16种TVOC(含乙酸正丁酯)(GB50325-2020)
    81073KACAS号规格2mL库存≥50有效期2021-06-01标准值2000μg/mL1正己烷110-54-32苯71-43-23三氯乙烯79-01-64甲苯108-88-35辛烯111-66-06乙酸丁酯123-86-47乙苯100-41-48对二甲苯106-42-39间二甲苯108-38-310邻二甲苯95-47-611苯乙烯100-42-512壬烷111-84-213异辛醇104-76-714十一烷1120-21-415十四烷629-59-416十六烷544-76-3
  • 明天实施!详解食品中氯丙醇及其脂肪酸酯、缩水甘油酯的测定
    《食品安全国家标准 食品中氯丙醇及其脂肪酸酯、缩水甘油酯的测定》于今年2月发布,将于8月8日正式实施,为市场监管和行业质量提升提供科学依据。何为氯丙醇酯和缩水甘油酯?氯丙醇酯(MCPDE)和缩水甘油酯(GE)是氯丙醇(MCPD)和缩水甘油(Gly)与食品中脂肪酸酯化产物,广泛存在于精炼油脂(油脂精炼可有效去除原油不良气味与颜色)及油脂食品中,绝大部分经加热处理的食物以及油脂含量较高的食物也均能检测到氯丙醇酯,如咖啡、油炸薯条、饼干、食用油、面包、糕点、婴幼儿配方奶粉(“婴配粉”)等。 为何要检测氯丙醇酯和缩水甘油酯?氯丙醇酯以及缩水甘油酯在消化过程中会水解并高效释出游离氯丙醇和缩水甘油。氯丙醇酯水解产物3-MCPD是公认的食品污染物,具有潜在的致癌性、神经毒性、免疫毒性、遗传毒性和生殖毒性;缩水甘油酯降解产物缩水甘油同样具有致癌风险。岛津解决方案仪器方法+耗材匹配,全面应对标准更新!岛津在GB 5009.191标准修订过程中与制标单位福建省疾病预防控制中心深度合作,全程参与了标准的开发与验证工作。第一篇:GCMS法测定氯丙醇步骤:无水解、硅藻土小柱净化萃取(SLE法)、HFBI衍生、GCMS分析适用于:含水解植物蛋白液、酱油、鱼露、蚝油、鸡精、固体汤料、方便面调味包、香肠、婴幼儿配方乳粉中3-MCPD、2-MCPD、1,3-DCP及2,3-DCP含量的测定图1. 第一篇 氯丙醇及内标衍生物总离子流图第二篇第一法:GC-MS/MS法测定氯丙醇脂肪酸酯及缩水甘油酯步骤:碱水解、液液萃取、PBA衍生、GC-MS/MS分析适用于:油脂及其制品、乳粉、油炸食品、膨化食品、焙烤食品、水产制品和肉制品中3-MCPDE、2-MCPDE和GE含量的测定图2. 第二篇第一法 氯丙醇、缩水甘油及内标衍生物总离子流图第二篇第二法:GC-MS/MS法测定氯丙醇脂肪酸酯及缩水甘油酯步骤:酸水解、液液萃取、氨基柱净化(SPE)、PBA衍生、GC-MS/MS分析适用于:油脂及其制品、乳粉、油炸食品、膨化食品、焙烤食品、水产制品和肉制品中3-MCPDE、2-MCPDE和GE含量的测定图3. 第二篇第二法 氯丙醇、缩水甘油及内标衍生物质量色谱图第二篇第三法:GCMS法测定氯丙醇脂肪酸酯及缩水甘油酯步骤:碱水解、液液萃取、PBA衍生、GCMS分析适用于:动植物油脂及其制品图4. 第二篇第三法 氯丙醇及内标衍生物总离子流图岛津方案方案亮点亮点1:仪器建议配置PTV进样,可有效减少高沸点杂质对方法稳定性的影响SPL进样模式下进样150针左右时缩水甘油酯MRM色谱图PTV进样模式下进样150针左右时缩水甘油酯MRM色谱图亮点2:加装保护柱,有效避免色谱柱和离子源的污染保护柱为经过惰性化处理的脱活石英毛细空管,不会引起目标物保留时间的偏移,并能有效避免PBA和其他高沸点污染物流入分析柱和离子源,从而保证色谱柱柱效、方法稳定性和灵敏度,也可以有效确保同一根色谱柱在其它项目的分析上仍能保持良好表现(不接保护柱,采用PBA衍生法分析氯丙醇酯后,农残等其他项目的出峰情况可能出现异常)。不接保护柱进行氯丙醇项目测试前后,氧乐果的峰型对比(氯丙醇酯分析方法——碱水解+PBA衍生,农残分析方法——GB 23200.113)亮点3:标准全对应仪器耗材全覆盖岛津在提供GCMS和GC-MS/MS仪器方案的同时,可提供前处理+色谱柱+标准品+通用耗材的消耗品一站式服务,新标准应对全搞定!项目混用时,建议更换进样口隔垫、衬管,并及时清洗进样针。岛津氯丙醇及缩水甘油酯消耗品应对表.pdf
  • 滨海正红发布CH酸纯化器,高纯酸提纯器新品
    酸纯化器一、 产品简介:南京滨正红---酸纯化器:又称酸纯化系统,高纯酸提纯器,酸试剂提纯器,高纯酸蒸馏纯化器等,可用于实验室酸如HNO3、HCl、HF、碱溶液和有机溶剂的纯化,纯化后的酸和Merck的一样好,可用于痕量和超痕量分析的样品制备,纯化器带有液位计方便观察里面的溶液,一个出酸口,一个排废液口,操作维护方便,是超纯净实验室化学反应的必备产品。 实验后期可配套我单位Teflon特氟龙系列试剂瓶收取高纯酸。为了满足更多客户的需求,我厂研发了更大规格的酸纯化器(2000ml)二、工作原理:酸纯化器是利用热辐射原理,保持液体温度低于沸点温度蒸发,再将其酸蒸气冷凝从而制备高纯水和高纯试剂,广泛应用于样品处理及分析中。目前市场上的超纯酸由于价格较贵,很难满足日常分析需求,因此提纯优化酸的质量,是最为经济可行的途径。是超纯净实验室提取高纯酸的得力助手。典型用户:中国地质大学、中国计量科学研究院、中国科学院地球化学研究所、中国工程物理研究院、中核建中核燃料元件有限公司、长沙核工业230研究所、广西壮族自治区海洋环境监测中心站、中国建材地勘中心陕西总队等。 三、 产品特点:1、可以满足ICP、ICP-MS极低的检测限需要及苛刻的分析应用中提供实验室级超纯酸,所用容器均采用Teflon耐腐蚀无吸附塑料,可处理如HNO3、HCl、HF等实验室的常用酸。2、实验证明将金属杂质含量约10ppb的酸经过一次蒸馏后,金属杂质含量可以降低到0.01ppb左右。若对酸要求更高,可增加提纯次数。四、相关参数:型号CH-I 500mlCH-II 1000mlCH-Ⅲ 2000ml名称酸纯化器酸纯化器酸纯化器产酸率30ml/h50ml/h70ml/h温控方式PID温控数显PID温控数显PID温控数显控温精度±1℃±1℃±1℃材质FEP、PTFE、硅胶(冷却水管)电压220V/50Hz功率(W)350优势1.密闭环境下提纯酸,不受环境污染,确保酸纯度2.纯PFA、FEP、PTFE材质制造,空白值低无腐蚀3.技术先进,结构合理,操作简单,一键式操作,蒸干自我保护4.提纯过程中,极少量酸气逸出5.节约成本,方便实验:较短时间内纯化低成本的酸试剂以达到痕量分析要求实验数据(仅供参考):仪器:CH-I 酸纯化器;试剂:优级纯HF 蒸馏后,经中国地质大学地质过程与矿产资源国家重点实验室ICP-MS检测出HF中杂质的含量:元素测量浓度(ng/g=ppb)元素测量浓度(ng/g=ppb)BeCrEuYbZr0.01U0.01 创新点:顶部驻酸,从源头上避免交叉污染 底部硅胶片加热,PID温控数显,人性化结构设计,可置于通风橱中工作并实现无人看管 所有部件均采用特氟龙塑料、彻底杜绝腐蚀和二次污染的问题 可连续不间断地制备硝酸、盐酸、氢氟酸、碱溶剂及有机溶剂 CH酸纯化器,高纯酸提纯器
  • 广州菲罗门酒类专用柱FB-Wine分析中国三大名酒
    广州菲罗门酒类专用柱fb-wine分析中国三大名酒白酒常见的香型有酱香型、浓香型、清香型等,酱香型味最重(高级酯、高级醇等总含量也最高),浓香居中,清香更低(香型物质总含量也是最低的)。本文所介绍的三种名酒:*台,五*液和泸**窖就分属酱香型和浓香型,并对它们进行成分以及主体香源物质进行分析。本应用采用的是直接进样法,气相色谱仪7890-fid分析。检测方法:仪器:agilent 7890 w/ fid柱型:fb-wine, 30m x 0.32mm x 0.40um(p/n: 30m-l101-040)炉温:50°c 5min 5 °c/min 200°c 2min载气:氢气 @ 1.3ml/min (恒定流量)进样口:分流40ml/min @ 240 °c检测器: fid @ 260 °c样品:*台,五*液,泸**窖进样量:1ul 图一*台(酱香型)样品测试图谱 (a)峰1-7放大图 (b)峰11-17放大图 图二 五*液(浓香型)样品测试图谱 (a)峰1-6放大图 (b)峰10-19放大图 图三 泸**窖(浓香型)样品测试图谱表1 *台、五*液、泸**窖酒的峰鉴定峰号*台min五*液 min泸**窖 min1乙醛2.640乙醛2.597乙醛2.6472丙醛3.292丙醛3.2453异丙醛3.365异丙醛3.3184甲酸乙酯3.5955乙酸乙酯4.043乙酸乙酯3.988乙酸乙酯4.0486乙缩醛4.267乙缩醛4.1997甲醇4.555甲醇4.4988乙醇5.263乙醇5.118乙醇5.3029丙酸乙酯5.41910异丁酸乙酯5.567异丁酸乙酯5.80811仲丁醇7.060仲丁醇6.99012丁酸乙酯7.359丁酸乙酯7.291丁酸乙酯7.37413异戊酸乙酯8.23514正丙醇7.497正丙醇7.42215异戊酸乙酯8.30216异丁醇9.322异丁醇9.21217仲戊醇9.94118戊酸乙酯10.096戊酸乙酯10.10619正丁醇10.811正丁醇10.70220异戊醇12.599异戊醇12.53121己酸乙酯13.138己酸乙酯13.134己酸乙酯13.16622己酸丙酯15.119己酸丙酯15.06023庚酸乙酯15.98024乳酸乙酯16.590乳酸乙酯16.542乳酸乙酯16.60525正己醇16.65126己酸丁酯18.67927辛酸乙酯19.869辛酸乙酯19.84228乙酸19.992乙酸20.021乙酸20.08629壬酸乙酯21.633壬酸乙酯21.60230丙酸22.10731己酸己酯22.94932正丁酸24.141正丁酸24.084丁酸24.17933未知杂质24.50434异戊酸25.02735正戊酸26.473正戊酸26.55036正己酸28.754正己酸28.685正己酸28.75937十四酸乙酯30.80138辛酸29.843辛酸32.81839油酸乙酯35.60040亚油酸乙酯35.829图一是*台酒的分析图谱,此酒属于酱香型白酒。从放大图可以看出峰1-7和11-17分离状况详情:图(a)乙酸乙酯和乙缩醛分辨率为3.69;丙醛和异丙醛分辨率为1.82。甲醇的拖尾因子是1.18。 图(b)几种主要醇类仲丁醇、正丙醇、异丁醇和正丁醇的峰形很好。从成分上分析,酱香酒的各种芳香物质含量高种类多,但其中乙酸乙酯起很大的作用,*台酒中乙酸乙酯的含量高于五*液和泸**窖。它的香味分为前香和后香。*台酒的酸度是其它酒的3至5倍,主要以乳酸和乙酸为主。由于乳酸在fid上没有响应,但可以从乙酸的峰看出其含量是大于五*液和泸**窖的。 图二和图三是浓香型白酒泸**窖和五*液的图谱。这种香型的白酒窖香浓郁,绵甜爽净。图二的放大图可以看出峰1-6和10-19的分离情况:图(a)乙酸乙酯和乙缩醛分辨率为3.72;丙醛和异丙醛分辨率为2.17。甲醇峰形较好,拖尾因子是0.94。图(b)几种主要醇类仲丁醇、正丙醇、异丁醇和正丁醇的峰形很好。它的主体香源成分是己酸乙酯和丁酸乙酯。有机酸以乙酸和己酸为主,从图谱中可以看出己酸的含量比其它香型酒要高出几倍,其中乙酸含量在此酒中是要略高于己酸的,但由于乙酸在fid上响应较弱,所以峰面积小。图三中泸**酒的成分相对简单,相比于五*液中还有其它低沸点的醇、酯、醛,泸州老窖只有几种主要成分乙酸乙酯、己酸乙酯、乳酸乙酯、乙酸和正己酸, 这是浓香型酒几种典型的香味成分。白酒中的成分是很复杂的,由于有些成分的含量低或者在fid上响应低,所以在以上的方法中没有列出。订货信息:货号:30m-l101-040;描述:fb-wine 30m*0.32mm*0.4um
  • J.T.Baker高纯酸中文彩页发放中
    J.T.Baker高纯度酸产品以其多年来的高质量、良好的一致性和创新性而享有盛誉。 从20世纪70年代我们创立ULTREX&trade 产品系列起,就开始了向全世界推出纯度最高的酸。如今,ULTREX II产品系列已经成为最高纯度的代表。连同我们其它的产品,这类产品是酸产品基础生产商应用最广泛的酸组合部分。通过不断开发符合特殊应用领域要求的产品,J.T.Baker一直是分析化学领域的领导者。我们的酸系列产品包括: BAKER ANALYZED&trade ACS试剂级酸符合或超过ACS的技术规范并具有卓越的品质和价值。 BAKER INSTRA-ANALYZED&trade 酸产品可用于元素分析,可在非常低的ppb量程内检测多达35种元素。 ULTREX II&trade 酸可用于低于10ppt(万亿分之一)级的危险元素分析,品种多达65种元素。 对所有试剂化学品而言,纯度和一致性是产品的最关键的要求,但是这两项指标对用于痕量金属分析或常规用途的酸类产品尤其重要。J.T.Baker® 酸产品系列包括无机酸(有三种不同的纯度级别)和有机酸。 J.T.Baker高纯酸选择指南: 应用领域 检测限 应用检测仪器 J.T.Baker® 酸产品 金属定性分析 百万分之一(ppm) 火焰原子吸收仪(AAS) BAKER ANALYZED ACS 常规痕量金属分析,EPA标准 十亿分之一(ppb) 耦合等离子仪(ICP-OES) BAKER INSTRA-ANALYZED 危险元素分析,超 低检测领域 万亿分之一(ppt) 耦合等离子仪(ICP-OES) 石墨炉原子吸收仪(GFAAS) ULTREX II J.T.Baker BAKER ANALYZED&trade ACS高纯酸(金属杂质小于1ppm),传承百年历史,超高性价比 B9761-69 硝酸,69.0-70.0% BAKER ANALYZED ACS酸 2.5 L B9551-69 盐酸,36.5-38.0% BAKER ANALYZED ACS酸 2.5 L B9690-69 硫酸,95.0-98.0% BAKER ANALYZED ACS酸 2.5 L B9517-69 冰醋酸 BAKER ANALYZED ACS酸 2.5 L 更多详细信息可以点击下载《J.T.Baker中文彩页&mdash &mdash 高纯酸》 关于J.T.Baker :   杰帝贝柯化工产品贸易(上海)有限公司(JTBs)于2009年正式成立,是美国Avantor&trade Performance Materials的全资子公司。Avantor&trade Performance Materials拥有的J.T.Baker和Mallinckrodt 两大品牌有130多年的历史,其化学品领域的高品质产品,最优化的应用方案和功能性检测可以满足客户的高端应用需求,并确保高精度和高重现性的结果。 Avantor&trade Performance Materials即之前的MallinckrodtBaker Inc公司。
  • 屹尧新品:酸纯化?可以更实惠一点了!
    做ICP-OES、ICP-MS、AFS、GFAAS/AAS 等实验室痕量、超痕量元素分析的,都知道试剂纯度的重要性。唯有解决了试剂纯度不够带来的高空白值,才能提升分析结果的可靠性。高纯金属、半导体等材料领域,更是对试剂纯度有着严苛要求。可是高纯试剂价格昂贵且不说,还不易运输和存放,更不要说采购程序是多么复杂。那么,何不买一台高品质、高效、高安全性的酸纯化仪? 屹尧隆重推出全新S1 亚沸酸纯化仪,采用亚沸蒸馏模式,自动控制热辐射与蒸发之间的动态平衡。更人性化的智能结构设计,操作简单方便,可置于通风厨中工作并实现无人看管。没有任何石英与金属部件,彻底杜绝腐蚀和二次污染的潜在问题。可连续不间断地制备硝酸、盐酸、氢氟酸和水,能将1 ppb级金属元素原酸转换成10ppt级高纯酸。无耗材、维护简便、超低运行功耗。 好吧,这些不稀奇,卖得够贵的那几款据说也有。那么,24小时内就能蒸馏出1.8L高纯硝酸这个谁能做到?屹尧S1可以。怎么实现的呢?咱们来看点不一样的加热和冷凝,还有什么叫真正的安全。 S1 亚沸酸纯化仪,效率为王:■ 3D聚能环绕加热蒸馏方式:加热更高效、更均匀■ 大角度球形冷凝腔:冷却更迅速,高效产率的源头■ 入底式注酸:从源头避免交叉污染?■ 更直观的软件界面:方法库即调即用,温度曲线实时显示? 六重安全防护,安全至上:■ 自动温控保护系统,高温停止工作,待恢复到既定温度范围内,重新启动■ 过热保护装置防干烧■ 灵敏的压力气阀设计,自动泄压■ 稳固提手,轻松移动,便捷操作■ 直观液位观测■ 特制接收区稳固底座,防倾倒 这台全新S1 亚沸酸纯化仪在正式发布之前,已经在上面提到的那些ICP等仪器的某家国际巨头的应用实验室里被全方位操练了一年,报告结论是意料之中的出彩,对得起屹尧这个品牌。所以,大家就放心用吧,趁着它刚发布所以价格特别实惠,买两台囤着都行,能保值增值哦。用得好,记得上来给我们点个赞。
  • 【应用】使用步琦中压制备色谱C-815高效分离纯化ω-3脂肪酸
    使用 Pure Flash C-815高效分离 ω-3 脂肪酸Pure应用”1简介ω-3 脂肪酸是一类长链多不饱和脂肪酸,由于人体中缺乏 Δ&minus 12 和 Δ&minus 15 脱饱和酶,Ω-3 脂肪酸必须通过饮食获取,并且被认为对人类健康至关重要。EPA 和 DHA 的摄入量的增加已被科学证明在治疗和预防动脉粥样硬化、心肌梗死、炎症、关节炎、糖尿病、婴儿大脑发育和癌症方面有益。许多流行病学、观察性和临床研究强调了 ω-3 脂肪酸在降低血浆甘油三酯水平和预防心血管疾病方面的有效性。全球的心脏病学会建议每天服用 ω-3 脂肪酸(EPA+DHA 或仅 EPA)的剂量为 4 克(总EPA + DHA 超过 3 克),这代表了一种有效的降甘油三酯治疗剂。随着这一关注度的增加,对高纯度 ω-3 脂肪酸的需求激增。然而长期的过度捕鱼导致主要鱼类来源急剧下降,导致 ω-3 脂肪酸的价格迅速上涨。尽管如此,全世界只有少数公司有能力生产药用级 ω-3 脂肪酸。因此开发一种普遍适用且成本效益高的技术,以确保高纯度 ω-3 脂肪酸的安全生产是必要的。在本研究中,使用 RP-MPLC 技术来制备高纯度的 ω-3 脂肪酸乙酯,目标总含量不低于 84% 的 EPA 和 DHA,这是根据药典规定的。基本变量控制分离过程被评估和优化,基于纯度和回收率,包括填料材料、流动相、样品体积、样品浓度、流速和流动相组成。2色谱柱填料对分离效果的影响色谱柱填料是色谱系统的“核心”,其物理化学性质,包括包装结构的均匀性(单相、多孔或非多孔)、几何形状(粒径、床面积和孔径及形状)以及所附接的配体类型,对分离效能有显著影响。为了寻找高通量、低背压、高灵敏度和高分辨率以实现高效分离的色谱柱填料,对多种键合相材料(CN、Diol、C4、C6、C8、C18 和 AQ-C18)在 ω-3 脂肪酸乙酯的纯化中进行了评估(见 图1 和 表1)▲ 图1.使用不同色谱柱填料的 ω-3 脂肪酸乙酯的 RP-MPLC 色谱图表1. AQ-C18 和 C18 对 RP-MPLC 纯化的 EPA 和 DHA 酯的影响。色谱柱填料AQ-C18C18tR2 (min)17.09±0.0831.08±0.14tR3 (min)21.53±0.0737.90±0.1Rs11.43±0.021.27±0.03Rs21.13±0.031.02±0.03注意:tR2 表示 EPA 的保留时间;tR3 表示 DHA 的保留时间;RS1 表示 EPA 与其前杂质(组分A)的分离度;RS2 表示 DHA 与其后杂质(组分D)的分离度。同一组中的不同字母表示显著差异 (p▲ 图2. RP-MPLC 固定相(A) C18 和(B) AQ-C18 的结构差异3流动相对分离效果的影响选择合适的流动相对于提高分离效率起着重要的辅助作用。低粘度、低沸点和低成本的溶剂被优先考虑。在 图3 和 表2 中,乙醇和乙腈在从 ω-3 脂肪酸中分离出杂质时效果不佳,而甲醇则成功了。尽管甲醇的粘度较高,但其较低的沸点使得从产品中除去甲醇,比乙腈和乙醇更容易。因此甲醇被选为首选的流动相。▲ 图3. 不同流动相下 ω-3 脂肪酸乙酯的 RP-MPLC 色谱图表2. 不同流动相对 RP-MPLC 纯化 EPA 和 DHA 乙酯的影响。流动相乙醇乙腈甲醇tR2 (min)6.29 ± 0.0813.95 ± 0.117.08 ± 0.06tR3 (min)7.14 ± 0.0415.81 ± 0.0821.54 ± 0.08Rs1001.42 ± 0.02Rs201.32 ± 0.021.27 ± 0.03流动相中有机溶剂的比例会改变其极性,从而影响样品组分在固定相中的分配系数,并影响分离效率。增加甲醇比例会推迟峰出现时间,使峰形变宽,并减少脂肪酸乙酯 EPA 和 DHA 的保留时间、分辨率以及纯度(见 图4 和 表3)。这是因为增加流动相的极性已被发现能够通过延迟非极性FAEE在柱中的保留时间来提高分离效率。当甲醇比例为 86% 至 90% 时,ω-3 脂肪酸的纯度逐渐下降;同时回收率提高。当甲醇比例达到92%时,EPA 和 DHA 的脂肪酸乙酯纯度降至 83.39%,这不符合国家药典标准。甲醇比例超过 90% 不利于制备高纯度的 ω-3 脂肪酸。因此选择 90% 的甲醇溶液作为流动相。▲ 图4. 不同甲醇浓度的 RP-MPLC 的 ω-3 脂肪酸乙酯色谱图表3. 不同甲醇浓度对 RP-MPLC 纯化 EPA 和 DHA 乙酯的影响甲醇:水86:1488:1290:1092:8EPA-EE/DHA-EE纯度 (%)87.17 ± 0.1586.32 ± 0.1085.27 ± 0.1583.39 ± 0.14EPA-EE/DHA-EE回收率(%)54.51 ± 0.1665.24 ± 0.1274.30 ± 0.1153.28 ± 0.01tR2(min)22.81 ± 0.0518.37 ± 0.0711.87 ± 0.059.67 ± 0.1tR3(min)30.48 ± 0.0824.26 ± 0.0615.07 ± 0.0412.02 ± 0.07Rs11.64 ± 0.041.50 ± 0.021.22 ± 0.041.05 ± 0.03Rs21.41 ± 0.031.26 ± 0.031.02 ± 0.020.84 ± 0.024上样体积对分离效果的影响根据色谱制备的非线性理论,增加样品体积可以提高色谱的处理能力,提高产品回收率,并提高生产效率。如 图5 所示,随着负载体积的增长,保留时间延迟,峰形变宽,分辨率降低,纯化时间增加。这可能是因为更多的杂质在 AQ-C18 填料上吸附,影响了主峰和杂质峰的分离,从而降低了目标物质的纯度。当样品体积为 0.6mL 时,EPA 和 DHA 峰的总乙酯回收率最高(83.57%)。为了在实现更好的分离效果的同时最大化负载体积,选择了 0.6mL 的样品负载量,相当于色谱柱 1.25% 的柱体积。▲ 图5. 不同上样体积 RP-MPLC 的 ω-3 脂肪酸乙酯色谱图表4. 不同上样体积对 RP-MPLC 纯化 EPA 和 DHA 乙酯的影响上样体积mL0.40.50.60.7EPA-EE/DHA-EE纯度 (%)87.57 ± 0.3086.75 ± 0.0886.67 ± 0.2483.15 ± 0.30EPA-EE/DHA-EE回收率 (%)58.44 ± 0.1365.43 ± 0.2183.57 ± 0.2263.59 ± 0.36tR2(min)17.10 ± 0.0417.25 ± 0.0517.40 ± 0.0517.51 ± 0.04tR3(min)21.47 ± 0.0421.80 ± 0.0322.07 ± 0.0722.30 ± 0.06Rs11.43 ± 0.021.32 ± 0.031.27 ± 0.021.06 ± 0.02Rs21.07 ± 0.021.02 ± 0.011.02 ± 0.020.96 ± 0.025样品浓度对分离效果的影响在工业生产中,增加样品的浓度可以增强色谱处理能力,而降低浓度有助于促进分析物向色谱填料材料的分配和吸附过程,从而提高目标物质与杂质的分离度。然而这种改进是以相应的回收率降低为代价。图6 展示了不同浓度的鱼油乙酯与甲醇混合的 RP-MPLC 色谱曲线,并附 表5。随着鱼油乙酯浓度的增加,EPA 和 DHA 乙酯的纯度下降,而回收率、保留时间和分辨率表现出增加。相反,使用纯鱼油注射降低了 EPA 和 DHA 乙酯的分离因子,实现了 1.23 的前杂质分离因子和 1.10 的后杂质分离因子,纯度为 85.75%。EPA 和 DHA 乙酯的回收率随着样品的浓度稳步增加,达到纯鱼油时的峰值 74.62%。为了最大化生产效率,选择了纯鱼油乙酯。▲ 图6. 不同纯度样品 RP-MPLC 的 ω-3 脂肪酸乙酯色谱图表5. 不同浓度对 RP-MPLC 纯化 EPA 和 DHA 乙酯的影响样品浓度g/mL0.250.51PureEPA-EE/DHA-EE纯度 (%)87.19 ± 0.1986.63 ± 0.2886.11 ± 0.1185.75 ± 0.15EPA-EE/DHA-EE回收率 (%)50.47 ± 0.0858.65 ± 0.0762.21 ± 0.0874.62 ± 0.05tR2(min)15.86 ± 0.0317.51 ± 0.0417.61 ± 0.0317.72 ± 0.02tR3(min)18.07 ± 0.0620.69 ± 0.0621.47 ± 0.0421.92 ± 0.03Rs11.38 ± 0.031.35 ± 0.021.29 ± 0.021.23 ± 0.04Rs21.31 ± 0.041.27 ± 0.031.13 ± 0.021.10 ± 0.036
  • 新品推介—— AP200全自动亚沸酸纯化仪
    对于痕量、超痕量元素分析,酸的质量尤为重要——酸的纯度越高,背景值就越低。市售超纯酸由于价格昂贵,且开盖后纯度会急剧下降,很难满足日常分析需求,因此,通过提纯普通酸的质量,是最为经济可行的途径。亚沸酸纯化器利用亚沸蒸馏原理,亚沸状态下温和蒸发低纯度的酸,再将酸蒸气冷凝,从而制备纯度更高的酸,广泛应用于AAS、ICP-OES、ICP-MS、原子荧光等光谱分析。为什么要亚沸? 为了保证纯化效果,必须控制酸液的温度,确保其始终处于亚沸状态下温和蒸发,这是酸纯化器能否成功的最基本要素。 怎么确保亚沸的? 采用专利的RTC真实温度控制技术,温度探头经过特殊处理,具有与特氟龙一样的抗酸能力,直接插进酸液,监控酸液的真实温度,控制器根据温度信号,自动调节加热器功率,确保始终在亚沸状态下产生高纯度的酸蒸汽。优势:1、图形化显示、10寸彩色触摸屏操作。蓝牙无线通讯。多种语言可选(含中文)。所有参数自动保存,下次开机自动调用。温度、液位等传感器可被校正。2、可实时记录温度、液位等曲线,用户可在事后随时查看纯化过程是否正常,以确认纯化后的酸是否可用,杜绝了因纯化质量不好而浪费大量的微波消解仪、ICP-MS的时间与金钱。 AP200使用廉价的低纯度酸来制备高纯酸。与购买商品化的昂贵的高纯酸相比,AP200制备高纯酸所节约的试剂购置费用是惊人的! 根据不同用量,AP200可以在几个月甚至几周内收回它自身的购置成本!
  • 滨海正红发布满足ICP、痕量、超痕量分析用酸高纯酸提纯器新品
    酸提纯器一、 产品简介:酸提纯器:又称酸纯化系统,高纯酸提纯器,酸试剂提纯器,高纯酸蒸馏纯化器等,实验室工作中常常由于酸的纯度较差,造成分析结果的偏差与错误。市售的纯酸往往由于价格较贵,难满足日常分析中对酸的大量需求。因此,提纯优化酸的质量,是为经济可行的途径,我厂的酸纯化器可用于实验室如HNO3、HCl、HF、碱溶液和有机溶剂的纯化,纯化后的酸和Merck的一样好,实验后期可配套我单位Teflon特氟龙系列试剂瓶收取高纯酸。二、工作原理:高纯酸提纯器是利用热辐射原理,保持液体温度低于沸点温度蒸发,再将其酸蒸气冷凝从而制备高纯水和高纯试剂,多应用于样品处理及分析实验中。三、我厂高纯酸蒸馏纯化器优势:1、密闭环境下提纯酸,不受环境污染,确保酸纯度;2、节约成本、方便实验:较短时间内纯化低成本的酸试剂以达到痕量分析要求;3、可以满足ICP、ICP-MS低的检测限需要及苛刻的分析应用中提供实验室超纯酸,所用容器均采用Teflon耐腐蚀无吸附塑料,可处理如HNO3、HCl、HF等实验室的常用酸;4、实验证明将金属杂质含量约10ppb的酸经过一次蒸馏后,金属杂质含量可以降低到0.01ppb左右。若对酸要求更高,可增加提纯次数;5、可拆卸清洗,避免腔体里面长期提纯,造成金属杂质含量沉积越来越多,影响提纯的质量;四、相关参数:型号CH-I 500mlCH-II 1000mlCH-Ⅲ 2000ml名称高纯酸提纯器高纯酸提纯器高纯酸提纯器产酸率30ml/h50ml/h70ml/h温控方式PID温控数显PID温控数显PID温控数显控温精度±1℃±1℃±1℃材质FEP、PTFE、硅胶电压220V/50Hz功率(W)350优势1.密闭环境下提纯酸,不受环境污染,确保酸纯度2.纯FEP、PTFE材质制造,值低无腐蚀3.结构合理,操作简单,一键式操作,蒸干自我保护4.提纯过程中,少量酸气逸出五、使用注意事项:1、所有配件(控制器、电源线、加热片等除外)放入按实验要求一定浓度的酸液中浸泡,去除杂质。2、加酸前必须做好个人防护如:防溅眼镜、防酸手套等(蒸水除外)。实验数据(仅供参考):仪器:CH-I 高纯酸提纯器;试剂:优纯HF蒸馏后,经中国地质大学地质过程与矿产资源重点实验室ICP-MS检测出HF中杂质的含量:元素测量浓度(ng/g=ppb)元素测量浓度(ng/g=ppb)BeCrEuNiErRb0.01南京滨正红仪器有限公司 创新点:加大了提取酸的容量,使用中可拆卸清洗,方便操作,无需人员值守,提取的酸的纯度可达到0.01PP 满足ICP、痕量、超痕量分析用酸高纯酸提纯器
  • 农残、兽残标准品溶液自由组合,开启神速实验模式
    食品安全已经上升到了关系国际民生和国家安全战略的高度,为确保国民“舌尖上的安全”,2014年8月1日,由农业部与国家卫生计生委联合发布的新版《食品中农药最大残留限量》(GB2763-2014) 标准正式实施,不仅要求部分农药的残留量降低,而且增加了新农药的残留标准,被称为“最严的农药残留国家标准”。2015 版药典通则2341中规定了76 种农药的气相色谱串联质谱法和155 种农药的液相色谱串联质谱法及检出限。随着多项农残限量标准出台,对于食品及药品相关产业影响巨大,对各检测机构的硬件设备及检测技术提出了更高的要求,对标准品的需求也更大。在农药残留、兽药残留检测的日常工作中,科研工作者经常需要购买很多的标准品,花费很多的时间配制标准溶液和混标溶液,既费时又费力,而且容易造成浪费。 近期,Sciex连续发布多种农药兽药分析方法。《蔬菜和水果中农残分析的整体解决方案》,对农业部规定的70多种例行监测的农药中适合液质联用检测的51种农药给出了快速高效的定量分析方法。《动物源食品中多兽药残留的181种高通量筛查和定量方法》,使用QTRAP?4500液相色谱质谱联用系统建立了一种多兽残高通量的筛查和定量方法,包含18大类181个常见兽药。该方法在鸡肉、牛肉、猪肉等基质中通过验证,可用于肉中多兽残的筛查和定量分析,整个样品分析过程简单、快速、通用、灵敏。《GB 2763-2014 标准中307种农药的MRM离子对数据库》,针对 GB 2763-2014标准中307种可以液质离子化的农药建立了MRM离子对数据库,包括了 MRM 质谱方法所有参数信息,可直接用于建立农残检测的 LC-MS/MS 分析方法。 作为Sciex密切的合作伙伴,阿尔塔科技在Sciex农药兽药残留分析方法研发过程中积极配合,提供以上检测方法的相关标准品,并在新方法的研究中通力合作,不仅能够提供新版药典中容易质子化的GC/MS-MS方法中的76种农药、LC/MS-MS方法中的155种农药,还可以提供《GB 2763-2014》 标准中其他种类的标准品,根据客户需要研制各种农药兽药的标准溶液和混标溶液,有效搭配,自由组合,从几个品种到几十个、上百个品种,即开即用,省钱省力省时间,助您提高实验效率! 《动物源食品中多兽药残留的181种高通量筛查和定量方法》 包括以下各种标准品、标准溶液及混标溶液的组合方法包1ST9232-Kit 181种兽药混标 1ST2210醋酸甲羟孕酮,1ST2218地塞米松,1ST8020劳拉西泮,1ST5719氟罗沙星,1ST2221甲睾酮,1ST2241醋酸泼尼松龙,1ST8029三唑仑,1ST7801红霉素,1ST2286丙酸睾丸素,1ST2219醋酸地塞米松,1ST8031奥沙西泮,1ST7802A林可霉素盐酸盐,1ST2208醋酸氯地孕酮,1ST2235倍他米松戊酸酯,1ST8021硝西泮,1ST7803A盐酸克林霉素,1ST2292去氢睾酮,1ST2253,醋酸倍他米松,1ST5556羟基甲硝唑,1ST7712罗红霉素,1ST2275群勃龙,1ST8531莫美他松,1ST5554甲硝唑,1ST7809交沙霉素,1ST8505苯丙酸诺龙,1ST2244氟轻松醋酸酯,1ST5525二甲硝咪唑 ,1ST7806泰乐菌素,1ST7191格列本脲,1ST2242阿氯米松双丙酸酯,1ST5568罗硝唑,1ST7009吉他霉素,1ST7192格列美脲,1ST7200替诺昔康,1ST5519氯甲硝咪唑,1ST7805替米考星,1ST7193格列吡嗪,1ST8002氟芬那酸,1ST5513苯硝咪唑,1ST7013头孢氨苄,1ST7195瑞格列奈,1ST8009茚酮苯丙酸,1ST5542异丙硝唑,1ST12001头孢匹啉,1ST7197甲苯磺丁脲,1ST8004双水杨酸酯,1ST5501阿苯达唑,1ST10007头孢克洛,1ST2227泼尼松,1ST7152卡洛芬,1ST5505阿苯哒唑亚砜,1ST12002头孢克肟,1ST2228可的松,1ST7153酮基布洛芬,1ST5536氟苯咪唑,1ST12003头孢拉定,1ST2226氢化可的松,1ST7154托灭酸,1ST5531芬苯达唑,1ST10009头孢匹罗,1ST2229甲基泼尼松龙,1ST7155,美洛昔康,1ST5561奥芬达唑,1ST12004,头孢他美酯,1ST2246氟米龙,1ST7156氟尼辛,1ST5546甲苯咪唑,1ST7014头孢唑啉,1ST2230倍他米松,1ST7159甲芬那酸,1ST2522噻苯哒唑,1ST120053-去乙酰基头孢噻肟,1ST2224曲安西龙,1ST7161双氯芬酸,1ST5579替硝唑,1ST12006头孢孟多锂,1ST2262醋酸泼尼松,1ST7162吡罗昔康,1ST5591奥硝唑,1ST12012头孢米诺钠盐,1ST2238醋酸可的松,1ST7165萘丁美酮,1ST1307A莱克多巴胺盐酸盐,1ST12007头孢哌酮钠,1ST2240醋酸氢化可的松,1ST7166舒林酸,1ST1302沙丁胺醇,1ST12011头孢羟氨苄,1ST2232倍氯米松1ST7167托麦汀,1ST1304A特布他林硫酸盐,1ST7003头孢噻呋,1ST2231氟米松,1ST7168吲哚美辛,1ST1309西马特罗,1ST10011头孢氨噻,1ST2257甲基泼尼松龙醋酸酯,1ST4017磺胺嘧啶,1ST1301A,盐酸克伦特罗,1ST10012头孢他啶,1ST2247醋酸氟米龙,1ST4007磺胺噻唑,1ST1303妥布特罗盐酸盐,1ST12008头孢洛宁,1ST2256醋酸氟氢可的松,1ST4003磺胺吡啶,ST1324A喷布特罗盐酸盐,1ST12009头孢喹肟,1ST2236布地奈德,1ST4002磺胺甲基嘧啶,1ST8033A盐酸普萘洛尔,1ST4102四环素,1ST2249氢化可的松丁酸酯,1ST4014磺胺二甲基嘧啶,1ST1313氯丙那林,1ST4111A盐酸土霉素,1ST2233曲安奈德,1ST4040磺胺间甲氧嘧啶,1ST4107恩诺沙星,1ST4110A盐酸金霉素,1ST2234氟氢缩松,1ST4008磺胺甲噻二唑,1ST5738诺氟沙星,1ST4122X多西环素单盐酸半乙醇半水合物,1ST2254地夫可特,1ST4036磺胺对甲氧嘧啶,1ST5756培氟沙星,1ST7137奥拉多司,1ST2250氢化可的松戊酸酯,1ST4034磺胺氯哒嗪,1ST5703环丙沙星,1ST7104氯羟吡啶,1ST2248哈西奈德,1ST4004磺胺甲氧哒嗪,1ST5740氧氟沙星,1ST10021金刚烷胺,1ST2237氯倍他索丙酸酯,1ST4006磺胺邻二甲氧嘧啶,1ST5757沙拉沙星,1ST7001氯霉素,1ST2263醋酸曲安奈德,1ST4042磺胺间二甲氧嘧啶,1ST5714依诺沙星,1ST7002甲砜霉素,1ST2260倍他松丁酸酯,1ST4005磺胺甲基异噁唑,1ST5759洛美沙星,1ST7005氟苯尼考,1ST2251泼尼卡酯,1ST4010磺胺二甲异噁唑,1ST5735萘啶酸,1ST2215己烯雌酚,1ST2255二氟拉松双醋酸酯,1ST4012苯甲酰磺胺,1ST5745恶喹酸,1ST2217双烯雌酚,1ST2243安西奈德,1ST4028磺胺喹恶啉,1ST5761氟甲喹,1ST7201A玉米赤霉醇,1ST2259莫米他松糠酸酯,1ST4001磺胺醋纤,1ST4100达氟沙星,1ST7201B β-玉米赤霉醇,1ST2261倍氯米松双丙酸酯,1ST4009甲氧苄氨嘧啶,1ST5758双氟沙星,1ST7202α-玉米赤霉烯醇,1ST2239氟替卡松丙酸酯,1ST4013磺胺苯吡唑,1ST5743奥比沙星,1ST7202B β-玉米赤霉烯醇,1ST2252醋酸曲安西龙双,1ST8015咪哒唑仑,1ST5753司帕沙星,1ST7203玉米赤霉酮,1ST2225泼尼松龙,1ST8016阿普唑仑,1ST7204玉米赤霉烯酮,1ST8019氯硝西泮,1ST7102地西泮 《蔬菜水果中农业部例行监测农残的LC-MS/MS分析方法》中包括以下51种纯品、标准溶液及混标溶液的组合方法包1ST27019-10M,51种农药混标,10ppm 1ST21058多菌灵,1ST20348氟啶脲,1ST20140甲基对硫磷,1ST20297啶虫脒,1ST25000阿维菌素,1ST20111杀螟硫磷,1ST20298吡虫啉,1ST20167氧乐果,1ST20065倍硫磷,1ST20001毒死蜱,1ST20345除虫脲,1ST20173水胺硫磷,1ST20350噻虫嗪,1ST20127甲基异柳磷,1ST20434对硫磷,1ST21145烯酰吗啉,1ST20097敌敌畏,1ST21202三唑酮,1ST21189苯醚甲环唑,1ST20093甲胺磷,1ST20094二嗪磷,1ST21226腐霉利,1ST20449灭多威,1ST20349灭幼脲,1ST20305氟虫腈,1ST20144乙酰甲胺磷,1ST20189亚胺硫磷,1ST20438三唑磷,1ST21161嘧霉胺,1ST20168马拉硫磷,1ST20155丙溴磷,1ST20277甲萘威,1ST20406哒螨灵,1ST22249二甲戊灵,1ST20273涕灭威亚砜,1ST20172伏杀硫磷,1ST20271克百威,1ST20375涕灭威,1ST21157嘧菌酯,1ST20170辛硫磷,1ST20098乐果,1ST20288甲氨基阿维菌素苯甲酸盐,1ST21164异菌脲,1ST202593-羟基克百威,1ST20222甲氰菊酯,1ST20182敌百虫,1ST20266涕灭威砜,1ST20210联苯菊酯,1ST21247咪鲜胺,1ST20124甲拌磷,1ST20396虫螨腈 《GB2763-2014 标准中307种农药的MRM离子对数据库》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27048,307种农药混标溶液。 《2015版中国药典通则2341中76种农药的气相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27046,76种农药混标溶液。 《2015版中国药典通则2341中155 种农药的液相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27045,155种农药混标溶液。
  • Front Immunol专题: 肿瘤微环境免疫代谢的特点和机制
    p    strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " 导读: /span /strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " 受Frontiers in Immunology杂志邀请,陆军军医大学第二附属医院(新桥医院)临床医学研究中心李咏生教授与肿瘤科朱波教授一起主编了“Metabolism of Cancer Cells and Immune Cells in the Tumor Microenvironment”专题,于2019年3月21日正式发表。本专题旨在汇集一系列肿瘤免疫代谢的优秀论文,回顾癌细胞和免疫细胞代谢的进展和前景,激发研究人员对未来肿瘤免疫代谢的研究,以及为临床癌症治疗提供线索。 /span /p p   免疫编辑协调肿瘤的发生和发展。尽管最近免疫疗法的进展令人鼓舞,并且无数患者已经从中显著获益,但由于肿瘤微环境(tumor microenvironment,TME)的复杂性和多样性,大部分患者仍然对免疫疗法反应较弱。探索TME驱动的肿瘤发生和发展的潜在机制对于开发癌症治疗的潜在精确方法是亟待解决的科学问题。 /p p   细胞需要能量来维持其存活,并且多种代谢物自身也具有生物活性。代谢调节细胞的表型和生物学功能已被广泛认知。在TME中,肿瘤细胞和免疫细胞重编程其代谢模式以适应缺氧、酸性和低营养的微环境。例如,肿瘤细胞显示增强的有氧糖酵解(Warburg效应)但减少氧化磷酸化(OXPHOS)。巨噬细胞倾向于M2极化,表现出上调的脂肪酸合成和β-氧化。细胞毒性T淋巴细胞显示出下调的糖酵解,但OXPHOS增强。因此,肿瘤微环境中各种细胞的代谢重编程对肿瘤免疫编辑具有重要意义。了解肿瘤细胞和免疫细胞的代谢重编程将为调节肿瘤免疫提供新的方向。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/4c17f871-5c6d-449f-bdda-7274907c4744.jpg" title=" 1.png" alt=" 1.png" width=" 460" height=" 600" border=" 0" vspace=" 0" style=" width: 460px height: 600px " / /p p style=" text-align: center " strong 《肿瘤免疫代谢》专题电子书封面 /strong /p p   在这种背景下,受Frontiers in Immunology杂志邀请,陆军军医大学第二附属医院(新桥医院)临床医学研究中心 strong 李咏生 /strong 教授与肿瘤科 strong 朱波 /strong 教授一起主编了“ strong Metabolism of Cancer Cells and Immune Cells in the Tumor Microenvironment /strong ”专题,于2019年3月21日正式发表(电子书链接: a href=" https://www.frontiersin.org/research-topics/5072/metabolism-of-cancer-cells-and-immune-cells-in-the-tumor-microenvironment" target=" _self" https://www.frontiersin.org/research-topics/5072/metabolism-of-cancer-cells-and-immune-cells-in-the-tumor-microenvironment /a )。本专题旨在汇集一系列肿瘤免疫代谢的优秀论文,回顾癌细胞和免疫细胞代谢的进展和前景,激发研究人员对未来肿瘤免疫代谢的研究,以及为临床癌症治疗提供线索。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/661bc123-fa6c-4ca4-b61b-6a30f3023e23.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: center " strong 电子书内容目录 /strong /p p   缺氧有助于致癌基因的激活和肿瘤抑制因子的丧失,这些抑制因子构成了Warburg效应的主要调节因子和许多其他代谢途径,例如谷氨酰胺酶水解。缺氧诱导因子通过增加血管内皮生长因子促进血管生成并调节TME中的细胞表型。 strong Sormendi和Wielockx总结了目前在癌症发展过程中缺氧重编程TME中癌细胞和免疫细胞代谢的进展及机制。内皮细胞(EC)介导血管新生用于向肿瘤组织输送氧气和营养物质。Zecchin等讨论了EC如何调整其代谢以在TME中形成血管。 /strong /p p   免疫和线粒体彼此紧密相关。线粒体是细胞能量代谢最重要的细胞器。它们调节免疫细胞的活化,分化和存活,以及释放信号,如线粒体DNA(mtDNA)和线粒体ROS(mtROS),以调节免疫细胞的转录。 strong Angajala等讨论了线粒体协调驱动不同免疫反应的潜在机制。 /strong /p p   甲羟戊酸代谢常由糖酵解推动,它是癌症干细胞和免疫细胞的关键代谢途径,可调控免疫监视。 strong Gruenbacher和Thurnher讨论了激活和分化诱导的代谢重编程如何影响免疫和癌细胞中胆固醇生物合成的甲羟戊酸途径。他们得出结论,虽然抑制肿瘤细胞中甲羟戊酸代谢可能会减弱生长和增殖,但先天免疫细胞如巨噬细胞中的甲羟戊酸途径可能有助于肿瘤免疫。 /strong /p p   芳烃受体(AhR)是一种重要的胞浆中配体依赖性转录因子,并且在癌症的起始、进展、侵袭和转移中起关键作用。AhR和免疫系统之间的相关性已被认识并被建议作为免疫抑制效应物。 strong Xue等综述了AhR在肿瘤免疫中的作用及其在TME中的潜在机制。 /strong /p p   T细胞是抗肿瘤免疫的主要成分。他们动态的代谢程序决定了其分化、激活和功能。目前,操纵T细胞代谢途径的重编程是一种治疗方法,特别是用于抗肿瘤免疫。 strong Kouidhi等介绍了一些与T淋巴细胞功能和分化有关的潜在细胞代谢途径。他们还总结了T细胞亚群特定的代谢需求和信号通路的前沿进展。 /strong /p p   总之,构成该专题的八篇文章提供了对TME中癌细胞和免疫细胞代谢的关键机制的见解。该专题将有助于激发研究人员探索代谢免疫学的问题,并有助于在临床癌症治疗中制定有效的策略。 /p p   span style=" font-family: " times=" " new=" "  References /span /p p span style=" font-family: " times=" " new=" "   1. https://www.frontiersin.org/research-topics/5072/metabolism-of-cancer-cells-and-immune-cells-in-the-tumor-microenvironment /span /p p span style=" font-family: " times=" " new=" "   2. Garaude J. Reprogramming of mitochondrial metabolism by innate immunity. Curr Opin Immunol. 2018 Oct 1 56:17-23. /span /p p span style=" font-family: " times=" " new=" "   3. Stienstra R, Netea-Maier RT, Riksen NP, Joosten LAB, Netea MG. Specific and Complex Reprogramming of Cellular Metabolism in Myeloid Cells during Innate Immune Responses. Cell Metab. 2017 Jul 5 26(1):142-156. /span /p p span style=" font-family: " times=" " new=" "   4. Biswas SK. Metabolic Reprogramming of Immune Cells in Cancer Progression. Immunity. 2015 Sep 15 43(3):435-49. /span /p p span style=" font-family: " times=" " new=" "   5. Kelly B, O& #39 Neill LA. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res. 2015 Jul 25(7):771-84. /span /p p span style=" font-family: " times=" " new=" "   6. Li Y, Wan YY, Zhu B. Immune Cell Metabolism in Tumor Microenvironment. Adv Exp Med Biol. 2017 1011:163-196. /span /p p span style=" font-family: " times=" " new=" " ------------------------------- /span /p p style=" text-align: center " strong span style=" font-family: " times=" " new=" " 欢迎关注 3i生仪社 公众号,了解更多生命科学资讯! /span /strong /p p style=" text-align: center " span style=" font-family: " times=" " new=" " img src=" https://img1.17img.cn/17img/images/201903/uepic/1ed19b9c-4c7b-4e26-81bb-7d9c586dfca6.jpg" title=" 3i生仪社二维码.jpg" alt=" 3i生仪社二维码.jpg" / /span /p
  • 上海市食品接触材料协会发布《食品接触材料及制品 丙二醇甲醚乙酸酯迁移量的测定》等七项检测方法团体标准征求意见稿
    各有关单位及专家:由上海市食品接触材料协会归口,上海市质量监督检验技术研究院等相关单位共同起草的《食品接触材料及制品 丙二醇甲醚乙酸酯迁移量的测定》等七项检测方法团体标准已完成征求意见稿(附件1-14)的编制,现面向社会公开征求意见。诚请有关单位及行业专家积极提出宝贵意见和建议,并填写《意见反馈表》(附件15),于2023年8月10日之前将书面意见以邮件或寄送方式反馈至上海市食品接触材料协会。联 系 人: 陈宁宁 黄 蔚联系电话: 021-64372216 邮 箱:safcmxh@163.com邮寄地址:上海市徐汇区永嘉路627号301室上海市食品接触材料协会2023年7月10日附件下载附件1《食品接触材料及制品 丙二醇甲醚乙酸酯迁移量的测定》团体标准征求意见稿.pdf附件2《食品接触材料及制品 丙二醇甲醚乙酸酯迁移量的测定》团体标准编制说明.pdf附件3《食品接触材料 着色剂中芳香族伯胺的测定》团体标准征求意见稿.pdf附件4《食品接触材料 着色剂中芳香族伯胺的测定》团体标准编制说明.pdf附件5《食品接触材料 着色剂中多氯联苯含量的测定》团体标准征求意见稿.pdf附件6《食品接触材料 着色剂中多氯联苯含量的测定》团体标准征编制说明.pdf附件8《食品接触材料 着色剂中盐酸可溶物(锑、砷、钡、镉、铬、铅、汞和硒)的测定》团体标准编制说明.pdf附件9《食品接触材料 着色剂中盐酸可溶物(六价铬)的测定》团体标准征求意见稿.pdf附件7《食品接触材料 着色剂中盐酸可溶物(锑、砷、钡、镉、铬、铅、汞和硒)的测定》团体标准征求意见稿.pdf附件12《食品接触材料及制品 高锰酸钾消耗量的测定 自动滴定仪法》团体标准编制说明.pdf附件10《食品接触材料 着色剂中盐酸可溶物(六价铬)的测定》团体标准编制说明.pdf附件11《食品接触材料及制品 高锰酸钾消耗量的测定 自动滴定仪法》团体标准征求意见稿.pdf附件14《食品接触材料及制品 1,4-二氯苯迁移量的测定》团体标准征编制说明.pdf附件13《食品接触材料及制品 1,4-二氯苯迁移量的测定》团体标准征求意见稿.pdf关于征求《食品接触材料及制品 丙二醇甲醚乙酸酯迁移量的测定》等七项检测方法团体标准意见的通知1.pdf
  • 国家标准《粮油检验 GC/MS法测定3-氯丙醇脂肪酸酯和缩水甘油脂肪酸酯》征求意见
    国家标准计划《粮油检验 GC/MS法测定3-氯丙醇脂肪酸酯和缩水甘油脂肪酸酯》由 TC270(全国粮油标准化技术委员会)归口,TC270SC2(全国粮油标准化技术委员会油料及油脂分会)执行 ,主管部门为国家粮食和物资储备局。主要起草单位 国家粮食和物资储备局科学研究院 、国家粮食和物资储备局标准质量中心 、中粮营养健康研究院 、华南理工大学 、河南工业大学 、南京海关等 。附件:征求意见稿、编制说明
  • 2012年香料行业标准征求意见
    各有关单位:   按照中国轻工业联合会下达的轻工行业标准制修订计划的要求,由多家单位完成了“L-乳酸薄荷酯”等44个行业标准征求意见稿。为充分听取各方意见,现在网上公开征求意见。请各有关单位组织人员进行讨论,并将意见于2012年9月25日前寄到、发邮件或传真至秘书处。同时欢迎各相关单位积极参与标准制修订工作,提供相关数据等。   秘书处联络信息:   地址:上海市南宁路480号   邮编:200232   电话:021-64087272转3010分机   传真:021-54483431   联系人:徐易 曹怡   E-mail: xuyi1960@sina.com caoyisq@163.com   全国香料香精化妆品标准化技术委员会秘书处   2012年7月26日 行业标准制修订项目计划目录 序号 项目名称 备注 1 3-L-孟氧基-1,2-丙二醇(Ws-10) 2 97%柠檬醛 修订QB/T 1789-2006 3 L-乳酸薄荷酯 4 β-苯乙醇 修订QB/T 1782-2006 5 δ-癸内酯 6 δ-十二内酯 7 艾薇醛 8 苯甲酸苄酯 修订QB/T 1780-2006 9 苯甲酸乙酯 修订QB/T 1779-2006 10 苯乙酸苯乙酯 11 丙二醇碳酸薄荷酯 12 丙酸苄酯 修订QB/T 1772-2006 13 丙酸乙酯 修订QB/T 1771-2006 14 薄荷酮甘油缩酮 15 草蒿脑 16 大茴香醛 17 丁酸丁酯 修订QB/T 1774-200618 丁酸二甲苄基原酯 19 丁酸乙酯 修订QB/T 1773-2006 20 丁酸异戊酯 修订QB/T 1775-2006 21 对叔丁基环己醇 22 二氢茉莉酮酸甲酯 23 复盆子酮 修订QB/T 1632-2006 24 己酸乙酯 修订QB/T 1778-2006 25 甲基紫罗兰酮 26 邻叔丁基环己醇 27 女贞醛 28 萨利麝香 29 天然薄荷脑 修订QB/T 1793-2006 30 香茅醇 31 香茅醛 32 香叶醇 33 小茴香(精)油 34 洋茉莉醛 修订QB/T 1788-2006 35 乙二醇碳酸薄荷酯 36 乙基香兰素 修订QB/T 1791-2006 37 乙酸苄酯 修订QB/T 1769-2006 38 乙酸二甲苄基原酯 39 乙酸苏合香酯 40 乙酸香叶酯 41 乙酸异戊酯 修订QB/T 1770-200642 异甲基紫罗兰酮 43 异戊酸乙酯 修订QB/T 1776-2006 44 异戊酸异戊酯 修订QB/T 1777-2006 附件: 修订的18个标准.rar 制定的26个标准.rar
  • 日本制修订食品添加剂醋酸钙和异丙醇的相关标准
    2013年12月4日,日本厚生劳动省医药食品局发布食安发1204第3号:部分修订食品卫生法实施规则(省令)及食品、添加剂等规格标准(告示)。内容包括:   1. 省令:   根据食品卫生法第10条规定,在食品卫生法实施规则附表1中追加醋酸钙。   2. 告示:   (1)根据食品卫生法第11条第1项的规定,设定醋酸钙的成分规格。   (2)根据食品卫生法第11条第1项的规定,修订异丙醇的成分规格和使用标准。   该修订自发布之日起实施。
  • 科学家合成出可替代柴油的生物燃料
    据美国物理学家组织网近日报道,美国科学家们使用合成生物学方法,修改了大肠杆菌和一个酿酒酵母的菌株,制造出了没药烷的前体物没药烯。测试表明,对没药烯进行加氢反应生成的没药烷是一种“绿色”的生物燃料,有潜力替代D2柴油。研究发表在《自然通讯》杂志上。   “这是科学家们首次报告称没药烷可替代D2柴油,也是首次报告称可通过大肠杆菌和酿酒酵母生产出没药烷。”该研究的主要作者、美国能源部下属的联合生物能源研究所(JBEI)代谢工程(通过基因工程方法改变细胞的代谢途径)项目主管李淳太(音译)说。   与日俱增的燃料成本以及对燃烧化石燃料会加剧全球变暖趋势的担忧等,驱使科学家想尽一切办法寻找碳中和的可再生能源。从多年生牧草和其他非食品植物以及农业废物的纤维素生物质中提取出的液态生物燃料一直被认为有潜力替代汽油、柴油和航空煤油。   不过,现有占主流的生物燃料乙醇只能有限地用于汽油发动机中,而无法用于柴油机或航空喷气式发动机内 另外,乙醇也会腐蚀石油管道和油罐,人们急需可与现有发动机、运输和存储设备兼容的高级生物燃料。   联合生物能源研究所是美国能源部于2007年建立的三个生物能源研究中心之一,他们正在加紧研制从国家层面来讲性价比高的生物燃料。其中一个研究对象是拥有15个碳原子(柴油燃料一般有10到24个碳原子)的倍半萜烯。   该研究的合作者、联合生物能源研究所所长杰伊科斯林表示:“倍半萜烯的能源含量特别高,其物理化学性质也与柴油和航空燃油一样,尽管植物是其天然来源,但对细菌进行转基因修改是最方便且性价比最高的大规模制造高级生物燃料的方法。”   在此前的研究中,李淳太团队对大肠杆菌和酿酒酵母的一个新的甲羟戊酸途径(对生物合成至关重要的代谢反应)进行了基因修改,使这两个微生物过度生产出了化学物质尼基二磷酸(FPP),使用酶可将其合成为理想的萜烯。在最新研究中,李淳太和同事使用该甲羟戊酸途径制造出了没药烷(萜烯类化合物家族的一员)的前体物没药烯,并通过加氢反应制造出没药烷。   科学家们对没药烷进行的燃料性能方面的测试表明,其拥有作为生物燃料的潜能。李淳太说:“没药烷和D2柴油的性能几乎一样,但其有分叉的环式化学结构,这使其凝固点和浊点更低,作为生物燃料使用,这是一大优势。我们可设计一个甲羟戊酸途径来产生没药烯,该平台几乎与制造防蚊虫药物青蒿素的平台一样,我们唯一需要做的修改是引入一个烯萜类合成酶并对该途径进行进一步修改以提高大肠杆菌和酿酒酵母产生没药烯的数量。”   李淳太团队想将烯属烃还原酶编入大肠杆菌和酿酒酵母体内,以取代没药烯加氢反应的化学处理步骤,使所有化学反应都在微生物体内进行。他说:“这类用酶促进的加氢反应极具挑战性,也是我们的长期目标。我们也将研究使用生物质中提取出来的糖作为碳源生产没药烯的可行性。”
  • 离子液体柱——脂质组学中分离脂肪酸的气相色谱柱
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。 第一讲:傅若农讲述气相色谱技术发展历史及趋势 第二讲:傅若农:从三家公司GC产品更迭看气相技术发展 第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状 第四讲:傅若农:气相色谱固定液的前世今生 第五讲:傅若农:气-固色谱的魅力 第六讲:傅若农:PLOT气相色谱柱的诱惑力 第七讲:傅若农:酒驾判官&mdash &mdash 顶空气相色谱的前世今生 第八讲:傅若农:一扫而光&mdash &mdash 吹扫捕集-气相色谱的发展 第九讲:傅若农:凌空一瞥洞察一切&mdash &mdash 神通广大的固相微萃取(SPME) 第十讲:傅若农:悬&ldquo 珠&rdquo 济世&mdash &mdash 单液滴微萃取(SDME)的妙用 第十一讲:傅若农:扭转乾坤&mdash &mdash 神奇的反应顶空气相色谱分析 第十二讲:擒魔序曲&mdash &mdash 脂质组学研究中的样品处理 前言   作为代谢组学的重要分支之一,脂质组学(Lipidomics)的研究对象是生物体的所有脂质分子,并以此为依据推测其它与脂质作用的生物分子的变化,进而揭示脂质在各种生命活动中的重要作用机制。脂质组学是总体研究和这些疾病有关的脂质化合物,找到昭示这些疾病的生物标记物。   前一篇讲述了脂质组学研究中的样品处理技术,一般情况下样品处理后可以直接用鸟枪法进行质谱分析,但是如果是一个成分复杂的系统,就要进行分离,可以用气相色谱、液相色谱、薄层色谱或毛细管电泳,本文介绍代谢组学研究中使用离子液体色谱柱分离脂肪酸的气相色谱方法。 1、基本情况   由于脂质分子是不挥发性的化合物,同时有些脂质分子受热易于降解,所以在脂质组学研究中使用气相色谱有些困难,逊色于薄层色谱和液相色谱。如果使用气相色谱进行衍生化是必须的步骤,但是很多情况下衍生化会丧失脂质分子种类特点的结构信息。但是由于气相色谱以其对异构体的高分离能力、高灵敏度、便于进行定量分析的能力,它仍然是脂质组学分析中的有力工具。通常气相色谱用于分析某些类别的脂质,可以获得很高的分离度和灵敏度,所以经过很特殊的萃取、用TLC 或 HPLC与分离、再经衍生化是用气相色谱进行脂质组学研究的基本方法。用气相色谱可以很灵敏地检测许多类别的脂质,如脂肪酸、磷脂、鞘脂类、甘油酯、胆固醇和类固醇。分析高分子量的化合物,必须使用高柱温,甚至需要400 C,近年Sutton等配置了高温气相色谱-飞行时间质谱,这一系统可以进行高分子量化合物(m/z达1850),进行在线质谱分析温度达430℃,这样的系统适合于长链脂质的分析。   近年把离子液体用作气相色谱固定相,用以分离脂质混合物,特别是脂质的异构体。Delmonte等讨论了脂肪酸顺反异构体的分离问题,一些单不饱和脂肪酸的几何和位置异构体可以得到很好的分离。使用这一方法对18:1 FFA的各种异构体可以分离出10个单独的峰,此后使用这一方法分析了人头发、指甲等实际样品,因此建议使用离子液体毛细管色谱柱分析全脂肪酸或脂肪酸甲酯,这种固定相适合于脂质组学,得到更多脂质分子的种类信息。(刘虎威研究组,Anal Chem, 2014, 86, 161&minus 175) 2、室温离子液体作气相色谱固定相   室温离子液体,是指室温或接近室温时呈液态的离子化合物,一般由体积相对较大的有机阳离子(如烷基咪唑盐、烷基吡啶盐、烷基季铵盐、烷基季膦盐)和相对较小的无机或有机阴离子如六氟磷酸根([PF6]-)、四氟硼酸根([BF4]-)、硝酸根(NO3-)、三氟甲基磺酰亚胺([{CF3SO2}2N]-)等构成。离子液体,早期称作熔盐,在一战时期(1914)发现的第一个室温离子液体为乙基季胺硝酸盐。第一个使用熔盐作气相色谱固定相的是Barber(1959年),他利用硬脂酸和二价金属离子的盐(锰、钴、镍、铜和锌盐)作气相色谱固定相,测定了烃类、酮类、醇类和胺类在156℃下的保留行为,具有特点的是用锰的硬脂酸熔盐作固定相可以很好地分离&alpha -甲基吡啶和&beta -甲基吡啶,而使用相阿皮松一类固定相则完全不能分离。1982年 Poole等研究了乙基季胺硝酸盐作气相色谱固定相的保留行为,发现这一固定相可在40-120℃范围内使用,是一种极性强于PEG20M 的具有静电力和氢键力的极性固定相,适于分离醇类和苯的单功能团取代衍生物,而胺类与固定相有强烈的作用,不能从色谱柱洗脱出来。就在这一年 Wilker 等报道了首例基于1-烷基-3-甲基咪唑为阳离子的室温离子液体,研究了它们的合成方法和在电化学中的应用。此后Armstrong等在1999年首先将六氟磷酸 1-丁基-3-甲基咪唑 ([BuMIm][PF6] ) 及相应的氯化物([BuMIm][Cl] )用作气相色谱固定相 ,通过分离烃类、芳香族化合物、醛、酰胺、醚、酮、醇、酚、胺及羧酸类化合物 ,发现离子液体固定相具有双重性质:当分离非极性物质或弱极性物质时表现为非极性或弱极性固定相 当分离含有酸性或碱性官能团的分子时 ,表现为强极性固定相,并测定了[BuMIm][PF6]和[BuMIm][Cl]色谱固定相的麦氏(McRynolds)常数。之后的几年里Armstrong等进行了一系列有关室温离子液体作气相色谱固定相的研究,奠定了室温离子液体固定相在实际中应用的基础。此后人们竞相研究室温离子液体用作气相色谱固定相的问题,最近两年由于Supelco公司承袭了Armstrong研究团队的研究成果,把室温离子液体固定相商品化,出现了几种性能优越的室温离子液体毛细管色谱柱,就促使许多研究者使用商品室温离子液体柱,分离一些复杂的难分离的混合物,因而也大大促进了离子液体气相色谱固定相的广泛使用。(傅若农,化学试剂,2013,35( 6): 481 ~ 490) (1).室温离子液体气相色谱固定相的特点   室温离子液在许多领域得到了广泛的应用,如有机合成溶剂、催化剂用溶剂、基质辅助激光解析/电离质谱的液体基质、萃取溶剂、液相微萃取溶剂、毛细管电泳缓冲溶液添加剂等,此外它们在分析化学领域得样品制备、分离介质中也得到充分的应用,气相色谱固定相是应用最多的一个领域。所以能得到如此广泛的应用是因为它具有许多特殊的性能,联系到气相色谱固定相,它们非常适应毛细管色谱柱的多方面要求: (a) 蒸汽压低   气相色谱固定相在使用温度下具有很低的蒸汽压是必要条件,室温离子液体具有很低的蒸汽压,它们能很好地满足气相色谱固定相的这一要求,例如现在使用较多的1-丁基-3-甲基咪唑二(三氟甲基磺酰)亚胺([C4mim][NTf2])的蒸汽压见下表1,从表中数据看出在在不到180℃下蒸汽压不到1 mm Hg柱,这完全符合气相色谱固定相的要求。 表1 [C4mim][NTf2]在不同温度下的蒸汽压 温度/℃ 蒸汽压/P× 102 (Pa) 184.5 1.22(0.92 mmHg柱) 194.42.29(1.72 mmHg柱) 205.5 5.07 (3.8 mmHg柱) 214.4 8.74 (6.6 mmHg柱) 224.4 15.2 (11.4 mmHg柱) 234.4 27.4 (20.5 mmHg柱) 244.3 46.6 (35.0 mmHg柱) (b) 粘度高   室温离子液体的粘度高,适合于气相色谱固定相的要求,而且在较宽的温度范围内变化不大,因为粘度低会影响色谱柱的分离效率和寿命,因为气相色谱固定相在温度升高时趋向于降低粘度使液膜流动,造成膜厚改变,降低柱效,甚至液膜破裂降低柱寿命,室温离子液体的黏度比一般溶剂高很多,例如二乙基咪唑二(三氟甲基磺酰)亚胺在20℃的粘度为34cP,n-己基-3-甲基咪唑氯化物在25℃的粘度为18000 cP,所以离子液体的粘度一般比传统溶剂高1到3个数量级 。 (c) 湿润性好   要使毛细管色谱柱的柱效提高,就要把固定相涂渍成一层均匀、牢固的薄膜,这样固定相对毛细管壁要有很好的湿润性,室温离子液体正好具备这样的特性,它们的表面张力在 30 到 50 dyne/cm 之间,例如1-丁基-3-甲基咪唑六氟磷酸盐,1-己基-3-甲基咪唑六氟磷酸盐,和1-辛基-3-甲基咪唑六氟磷酸盐分别为44.81, 39.02, 和 35.16 dyne/cm,这样的表面张力正好可以让固定相溶液湿润并铺展在未经处理的石英毛细管内壁上 。 (d)热稳定性好   大家都知道色谱柱的保留性能稳定性和柱寿命都与固定相的热稳定性有关,室温离子液体气相色谱固定相的热稳定性自然是十分重要的关键性能,离子液体的热稳定性随其阴阳离子的不同有很大的差异,离子液体的阴离子具有低亲和性及共轭键时(如三氟磺酸基,三氟甲基磺酰亚胺阴离子)就有很高的热稳定性,反之具有亲和性强的阴离子(如卤素基)其热稳定性就不好,一般像二烷基咪唑类离子液体固定相在220&ndash 250℃之间稳定,具有长烷基链的季鏻基离子液体可以在335&ndash 405℃之间稳定,Anderson等研究了双阴离子咪唑和双吡咯烷鎓基离子液体的热稳定性。极性强的室温离子液体气相色谱固定相(比如商品名为SLB-IL 111)的热稳定性虽然比不上二甲基硅氧烷的好,但是要比强极性固定相(氰丙基聚硅氧烷)的热稳定性要好,可是它的极性要比后者高,因而在分离脂肪酸甲酯的能力要大大优于后者。从图1可以看出商品离子液体柱SLB-IL82的热稳定性大大优于一些常用的极性固定相。 图1 几种离子液体色谱柱和常规固定相色谱柱热稳定性的比较 (e) 极性高   固定相的极性是极为重要的关键指标,目前表示固定相极性的有Mcrynolds常数,和Abrham溶剂化参数,离子液体的极性也仍然使用这两种方法表示,McReynolds常数是于120℃下以10种典型化合物测定所研究固定相的保留指数差(△I) ,用五种典型化合物(苯、正丁醇、2-戊酮、硝基丙烷和吡啶)的保留指数差(△I)之和来表示固定液的极性。Abraham表征固定相的方法是使用多种具有特殊作用力的标样来表征固定相和溶质 n-电子对及&pi -电子对作用能力、与溶质的静电和诱导作用能力、与溶质的氢键碱性作用能力、与溶质的氢键酸性作用能力、与溶质的色散作用能力。表 2 是几种商品离子液体固定相的极性,从表中数据看出,室温离子液体的极性要比极性最强的TCEP(1,2,3-三(2-氰乙氧基)丙烷)还要高,这样在分离脂肪酸甲酯和石油样品分析中就有特殊的用途。 表 2 几种商品离子液体固定相的极性 商品色谱柱 组成 McRynolds 极性(P) 相对极性数(p.N.)* SLB-IL 111 1,5-二(2,3-二甲基咪唑)戊烷二(三氟甲基磺酰基)亚胺 5150 116 SLB-IL 100 1,9-二(3-乙烯基咪唑)壬烷二(三氟甲磺酰基)亚胺4437 100 TCEP 1,2,3-三(2-氰乙氧基)丙烷 4294 94 SLB-IL 82 1,12-二(2,3-二甲基咪唑)十二烷二(三氟甲基磺酰基)亚胺 3638 82 SLB-IL 76 三(三丙基鏻六氨基)三甲氨(三氟甲基磺酰基)亚胺 3379 76 SLB-IL 69 未知 3126 70 SLB-IL 65 未知 2834 64 SLB-IL 61 1,12-二(三丙基鏻)十二烷-(三氟甲基磺酰基)亚胺-三氟甲基磺酸盐 2705 61 SLB-IL 60 1,12-二(三丙基鏻)十二烷二(三氟甲基磺酰基)亚胺(柱表面去活) 2666 60 SLB-IL 59 1,12-二(三丙基鏻)十二烷二(三氟甲基磺酰基)亚胺 2624 59 SupelcoWax 100%聚乙二醇 2324 52 SPB-5MS 5%二苯基/95%二甲基)硅氧烷 251 6 Equity-1 100%聚二甲基硅氧烷 130 3 *相对极性数=(Px x 100)/ PSLB-IL 100= McRynolds 极性乘以100再除以SLB-IL 100的 McRynolds 极性 (McRynolds 极性指标是上世纪60年代中期研究建立的一种气相色谱固定相极性量度指标,近半个世纪一直在使用,W O McReynolds.J Chromatogr Sci,1970,8:685-691) 几种离子液体色谱柱的结构和性能见表3 表3:几种离子液体色谱柱的结构和性能 3、几种商品离子液体色谱柱在脂肪酸甲酯分离中应用举例,见表4 表4 离子液体色谱柱在脂肪酸甲酯分离中应用 1 SLB-IL111 奶油中的脂肪酸 使用200m 长的SLB-IL111色谱柱可以很好地分离奶油中的脂肪酸,包括顺反和位置异构体 1 2 SLB-IL 82 和 SLB-IL 100 水藻中的脂肪酸 这两种商品离子液体柱用于分离水藻中的脂肪酸,具有很好的选择性和低流失,可以得到详细的脂肪酸分布,这是一种分析各种脂肪酸的色谱柱。 一维:聚二甲基硅氧烷 二维:SLB-IL 82 和 SLB-IL 100 2 3 SLB-IL100 鱼的类脂中反式20碳烯酸顺反异构体的分析 用60m长色谱柱可把C20:13和C20:11异构体得到基线分离,分离因子1.02,分离度1,57 3 4 SLB-IL111 分离16碳烯酸顺反异构体和其他不饱和脂肪酸 如果不使用SLB-IL111柱就不可能发现岩芹酸(顺式-6-十八碳烯酸),可以把cis-8 18:1和cis-6 18:1基线分离。证明岩芹酸在人的头发、指甲和皮肤中是内源性脂肪酸。 4 5 SLB-IL111 分离脂肪酸顺反异构体 SLB-IL111 可以很好地分离cis-,trans-18:1和 cis/trans 共轭异构体脂肪酸 5 6 SLB-IL100 牛奶和牛油中的脂肪酸顺反异构体 使用全二维GC,把离子液体柱用作第一维色谱柱 一维:SLB-IL100 二维:SGE BPX50 (50% 苯基聚亚芳基硅氧烷 6 7 SLB-IL 100(快速柱) 生物柴油中的脂肪酸甲酯(C1-C28) SLB-IL100是极性很高的固定相,可以排除样品中的饱和烴的干扰,减少了样品处理难度,免去使用全二维GC。 7 8 SLB-IL100 分离C18:1, C18:2, 和 C18:3顺反异构体 SLB-IL100是极性很高的固定相,可以很好地分离不饱和脂肪酸顺反异构体,优于二丙氰聚硅氧烷色谱柱 8 9 SLB-IL111 SLB-IL100 SLB-IL82 SLB-IL76 SLB-IL61 SLB-IL60 SLB-IL59 评价7种商品离子液体固定相分离37种脂肪酸甲酯的分离性能 IL59, IL60, 和 IL61三种色谱柱性能近似,不能分离C18:1脂肪酸的顺/反异构体,所有的色谱柱度可以基线分离C18:2 顺/反, C18:3 n6/n3, 和 C20:3 n6/n3异构体,IL82柱以5℃/min程序升温,可以把实验的37种脂肪酸甲酯分离开 9 10 SLB-IL59 SLB-IL60 SLB-IL61 SLB-IL76 SLB-IL82 SLB-IL100 SLB-IL111 用7种商品离子液体固定相分离脂肪酸甲酯的及和异构体 除去IL60柱以外所有色谱柱上对饱和脂肪酸的洗脱温度,随它们的极性降低而增加,当固定相极性增加是它们的等价链长急剧增加。还研究了脂肪酸甲酯在这些色谱柱上Abraham 的保留能量线性关系 10 11 SLB-IL111 使用强极性离子液体色谱柱快速分离食用油中的反式脂肪酸 使用强极性薄液膜细内径离子液体毛细管柱(75 m × 0.18 mm i d , 0.18 &mu m)快速分离食用油(例如奶油)中的反式脂肪酸 11 12 SLB-IL111 使用强极性离子液体色谱柱分析食用油中顺反式硬脂酸 在120℃柱温下可以分离所有cis-C18:1位置异构体,把柱温提高到160℃可以分离反-6-C18:1 和 反-7-C18:1异构体 12 表中文献 1 Delmonte P, Fardin-Kia A R, Kramer J K G,et al, Evaluation of highly polar ionic liquid gas chromatographic column for the determination of the fatty acids in milk fat [J].J. Chromatogr.A,2012, 1233:137-146 2 Gua, Q , David F., Lynen F. et al., Evaluation of ionic liquid stationary phases for one dimensional gas chromatography&ndash mass spectrometry and comprehensive two dimensional gas chromatographic analyses of fatty acids in marine biota[J]. J. Chromatogr.A, 2011, 1218:3056-3063 3 Ando Y.Sasaki, GC separation of cis-eicosenoic acid positional isomers on an ionic liquid SLB-IL100 stationary phase[J]. J. Am. Chem. Oil Soc.,2011,88:743-748 4 Destaillats F.,Guitard M. Cruz-Hernandez C, Identification of _6-monounsaturated fatty acids in human hair and nail samples by gas-chromatography&ndash mass-spectrometry using ionic-liquid coated capillary column[J]. J.Chromatogr.A 2011,1218: 9384&ndash 9389 5 Delmonte P, Fardin Kia A-R, Kramerb J.K.G.et al, Separation characteristicsof fatty acid methyl esters using SLB-IL111, a new ionic liquid coated capillary gas chromatographic column[J]. J.Chromatogr.A, 2011,1218: 545&ndash 554 6 Villegas C.Zhao, Y.Curtis J M, Two methods for the separation of monounsaturated octadecenoic acid isomers [J].J. Chromatogr. A, 1217 (2010) 775&ndash 784 7Ragonesea C,Tranchidaa P. Q.,Sciarronea D.et al, Conventional and fast gas chromatography analysis of biodiesel blends using an ionic liquid stationary phase[J]. J. Chromatogr.A, 2009,1216:8992&ndash 8997 8 Ragonese C, Tranchida P Q, Dugo P,et al,Evaluation of use of a dicationic liquid stationary phase in the fast and Cconventional gas chromatographic analysis of health-Hazardous C18 Cis/Trans fatty acids[J]. Anal. Chem., 2009, 81:5561&ndash 5568 9 Dettmer K, Assessment of ionic liquid stationary phases for the GC analysis of fatty acid methyl esters,Anal Bioanal Chem ,2014, 406:4931&ndash 4939 10 Characterisation of capillary ionic liquid columns for gaschromatography&ndash mass spectrometry analysis of fatty acid methylestersAnnie Zeng X, Chin S , Nolvachai Y,et al, Anal Chim Acta , 2013 803:166&ndash 173 11 Inagaki S,Numata M, Fast GC Analysis of Fatty Acid Methyl Esters Using a Highly Polar Ionic Liquid Column and its Application for the Determination of Trans Fatty Acid Contents in Edible Oils,Chromatographia , 2015,78:291&ndash 295 12 Yoshinaga K,Asanuma M,Mizobe H et al,Characterization of cis- and trans-octadecenoic acid positional isomers in edible fat and oil using gas chromatography&ndash flame ionisation detector equipped with highly polar ionic liquid capillary column, Food Chemistry , 2014 160:39&ndash 45 有关离子液体固定相在分离脂肪酸时的一些选择性和分离特点在下一讲叙述。
  • 艾默莱发布美国Amerlab酸蒸逆流清洗/酸纯化一体 AC300 全自动版新品
    洁净的样品前处理容器是获得可靠分析结果的前提。痕量分析所使用的微波消解罐、常压消解罐、玻璃器皿(试管、烧杯、容量瓶等)等的痕量清洗,对于实验室人员来说,始终是一个非常繁琐而又非常重要的挑战。美国Amerlab艾默莱AC300系列酸蒸超净清洗器(酸逆流清洗器),完美地解决了这个问题。世界领*先的全自动酸蒸清洗器让您清洗无忧!2015年,Amerlab公司推出了世界第/一台全自动的酸蒸清洗器AC100,该酸蒸清洗器能够自动进行酸洗、清洗和干燥,解决了用户的真正烦恼,使得酸蒸清洗器真正为实验室所接受。这一创新提供了新的效率和质量控制水平,并受到市场的高度赞扬。AC100设置了酸蒸清洗器的标准。2017年,Amerlab推出AC100的升级型号AC200,它结合了我们的传统优势和许多创新功能,受到了市场的高度评价。2020年,Amerlab在AC200基础上又推出了AC300,不但对酸蒸清洗功能进行了进一步的优化,而且增加了酸纯化选项,可自动纯化清洗后的废酸,完美实现了酸的循环利用。全部流程自动化是我们首先发明的!自动纯化清洗后的废酸!经济、环保!AC300不但完美胜任酸蒸清洗任务,还具有自我酸纯化功能,用户只需在软件中勾选酸纯化选项,甚至不用更换酸瓶,AC300即自动抽取废酸瓶中的废酸进行亚沸蒸馏纯化,纯化后的酸自动收集到纯酸瓶,以备下次使用。随后整个系统会自动被超纯水润洗和热空气干燥,以备下一轮的酸蒸清洗任务。废酸重复使用,节约资金,保护环境!何乐而不为?中空导汽管和顶层清洗架更专业的清洗能力微波消解管清洗架超级微波管清洗架特点:• 清洗架采用双层结构,下层清洗消解管,可选上层托架,清洗塞子等小件物品。• 中空导汽管,四周有多列喷汽孔,保证尽可能好的清洗效果,用于清洗微波消解内管或其他器皿。• 一批可清洗40个55mL消解管。特点:• 清洗架采用双层结构,下层清洗消解管,可选上层托架,清洗塞子等小件物品。• 中空导汽管,四周有多列喷汽孔,保证尽可能好的清洗效果,用于清洗微波消解内管或其他器皿。• 一批可清洗77个15mL消解管.容量瓶清洗架移液管清洗架特点:• 清洗架采用双层结构,下层清洗消解管,可选上层托架,清洗塞子等小件物品。• 中空导汽管,四周有多列喷汽孔,保证尽可能好的清洗效果,用于清洗微波消解内管或其他器皿。• 清洗位数可根据容量瓶大小而定制.特点:• 一批可清洗多个0.2/1/2/5mL移液管.多项专利技术更可信赖的清洗效果• 保持亚沸,确保蒸汽的高纯度准确测量,是控温精确的前提。Amerlab采用RTC真实温度控制技术(专利号201510906287.9),温度探头经过特殊处理,具有与特氟龙一样的抗酸能力,直接插进酸液,监控酸液的真实温度,确保在亚沸状态下产生高纯度的酸蒸汽,杜绝其他技术只监控加热器温度而无法准确控温而导致的爆沸问题(所产生的酸蒸汽纯度低)。• 脏酸不回流,不污染净酸确保洗过的脏酸直接排出系统,而不会回流进酸池造成污染(专利号201521021203.5)。传统技术的脏酸要回流进酸池,然后再次蒸发出来去清洗,不断循环,导致脏酸不断污染净酸,从而酸蒸汽也越来越脏,清洗效果变差,只能达到ppb级别的清洗效果。• 一体成型无死角,确保长期数据一致性采用国际名厂高纯PTFE材料,机加工一体成型,可轻松耐受长期乃至几十年的高温和强酸,不存在拼接造成的开裂问题。腔体内部圆滑无死角,内部不积存脏物,长期数据稳定性好。某些清洗器采用PTFE板拼接而成,不可长期耐高温和强酸,拼接处易开裂,导致严重的高温强酸泄露问题。其长方体结构,内部死角甚多,清洗下来的脏物不易排走,无法保证清洗效果的稳定性。针对高温强酸采取特别的措施自动稀释真空方式抽废液螺纹密封无需通风柜蠕动泵按照用户设定的体积,精密输送浓酸和纯水,并用洁净空气混匀,尽可能的减少了用户接触浓酸的机会避免浓酸对隔膜泵密封性的破坏而导致的泄漏,也避免浓酸对蠕动泵管的破坏而导致频繁更换蠕动泵管清洗腔顶盖与主体之间通过螺纹密封,确保无酸气泄漏自带高效废气回收装置,可实时吸附排出系统的酸气,除酸效率高达99%多项安全措施让您用得安心• “净酸”“净水”液位实时监控,一旦净酸净水液位偏低,软件不允许运行,避免酸洗/水洗不彻底;• “脏酸” “脏水”液位实时监控,一旦脏酸脏水液位偏高,软件不允许运行,避免液位偏高导致的溢流问题。• 在温度探头失灵情况下,PTC自控温加热器可自行控制自身功率,确保不会超温,避免失控烧毁系统甚至实验室;此特点尤其适合无人值守运行。• 软件具有自我纠错功能,避免使用者错误设置过高温度。直观的图形化软件让您了然于胸用户评语“相对于微波空消方式,Amerlab全自动酸蒸清洗器,具有清洗更彻底、更省酸、更节约人力的显著优势。” ——国内某国级食品检测单位“相比其他类似产品,Amerlab酸蒸清洗器设计得更紧凑、更人性化。”——国内某省级质量检测单位“Amerlab酸蒸清洗器大大减轻了我们的工作负担。"实时曲线记录"功能,让我们终于可以监控和评估清洗这一步骤。”——美国某知名第三方检测实验室美国原装进口 创新点:相对于上一代产品AC200,AC300具有以下重要改进: (1) 酸蒸清洗方面:在同时具备蒸汽单循环功能的基础上,实现了清洗架的可更换性,更加灵活,适用性更强; (2) 新增酸纯化功能:可全自动纯化废酸,并润洗和干燥系统。最大程度上减少了废酸的排放。 (3) 酸气回收装置:增加了在线pH监测和报警。 (4) 重新设计了电子部分:增加了wifi无线通讯功能,距离更远,信号更稳。 (5) 重新编写了软件:更加直观和友好。 美国Amerlab酸蒸逆流清洗/酸纯化一体 AC300 全自动版
  • 新品推荐!喜瓶者​全自动酸蒸清洗/纯化一体机——AC300
    全自动酸蒸清洗/纯化一体机——AC300酸蒸超净清洗是一种自动、密闭、酸蒸汽清洗方法。通过内置可控温加热系统,利用酸蒸汽安全高效地对所 有可溶于酸中的任何痕量金属污染物进行超净清洗,并将其留在液体酸中,绝不会接触正在清洗的反应容器。功能特点:蒸汽单循环技术(OWV)——脏酸不回流,不污染净酸确保洗过的脏酸直接排出系统,而不会回流进酸池造成污染。而传统技术的脏酸要回流进酸池,然后再次蒸发出来去清洗,不断循环,导致脏酸不断污染净酸,从而酸蒸汽也越来越脏,无法胜任稍高污染度的清洗。真实温度控制技术(RTC)——确保蒸汽的高纯度准确测量,是控温精确的前提。采用RTC真实温度控制技术,温度探头经过特殊处理,具有与特氟龙一样的抗酸能力,直接插进酸液,监控酸液的真实温度,从而准确控制温度,确保酸蒸汽的纯度,杜绝其他品牌只监控加热器温度而无法准确控温,酸蒸汽纯度低的问题。PTC半导体加热器——最安全的加热器,没有之一!最适合长时间无人值守! 加热器具有自我温度保护功能,在所有温控系统都失灵的极端情况下,其 最高温度也不会超过250℃,避免烧毁仪器甚至火灾。 清洗流程表:AC300让您的酸循环起来!废酸重复使用,节约资金,保护环境AC300不但完美胜任酸蒸清洗任务,还具有自我酸纯化功能,用户只需在软件中勾选酸纯化选项,甚至不用更换酸瓶,AC300即自动抽取废酸瓶中的废酸进行亚沸蒸馏纯化,纯化后的酸自动收集到纯酸瓶,以备下次使用。随后整个系统会自动被超纯水润洗和热空气干燥,以备下一轮的酸蒸清洗任务。废酸纯化流程图:
  • 乌氏法测聚碳酸酯PC的粘数和相对粘度
    聚碳酸酯(polycarbonate),又称PC塑料;是指分子链中含有碳酸酯基的高分子聚合物,根据酯基的结构可分为脂肪族、芳香族、脂肪族-芳香族等多种类型。其中由于脂肪族和脂肪族-芳香族聚碳酸酯的机械性能较低,从而限制了其在工程塑料方面的应用,仅有芳香族聚碳酸酯获得了工业化生产,是世界五大工程塑料之一。聚碳酸酯在形态上表现为一种无定形,无味、无臭、无毒透明的热塑性塑料聚合物,具有优良的机械,热及电综合性能,尤其是耐冲击,韧性好,蠕变小,制品尺寸稳定,可在- 60~120℃下长期使用。目前聚碳酸酯主要应用于汽车工业和电子、电器工业三大领域之中,并且随着汽车和电子等工业的发展,呈现出日益增长的产量需求和愈发严格的质量要求。在聚碳酸酯(PC)纯料和共混物以及有或者未添加其他填料的混合物的黏度测试分析方面,国标GB/T 1632.4-2020中规定了测定聚碳酸酯稀溶液中粘数(也称为比浓黏度)和相对黏度的方法。杭州卓祥科技有限公司研发生产的IV6000系列全自动乌氏粘度仪、MSB系列多位溶样块、ZPQ智能配液器等一整套黏度测量设备作为测试仪器,测试流程如下。1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时最多可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度最高可达180℃。3. 测试过程IV6000系列乌氏粘度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可精确到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV6000系列全自动粘度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表和外推分析等多种功能。5. 粘度管清洗干燥过程:仪器自动排废液、清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。清洗模式可多种选择,同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。IV6000系列乌氏粘度仪可实现自动测试、自动排废液、自动清洗及干燥过程的自动化,告别粘度管是耗材的时代。
  • 瞄准前沿赛道,看美迪西如何让寡核苷酸药物研发“提质增效”
    美迪西是一家专业的生物医药临床前综合研发服务CRO,服务覆盖药物发现、药学研究及临床前研究的全过程,致力于为全球的医药企业和科研机构提供全方位的符合国内及国际申报标准的一站式新药研究服务。 图1.美迪西产业园(上海南汇分部)。 2020年前后,随着国外多款寡核苷酸药物成功获批上市,美迪西敏锐地意识到寡核苷酸药物的发展潜力并开始搭建自己的研发平台。在搭建过程中,美迪西在综合考虑了品牌的市场占有率及自身的使用习惯之后,选择从沃特世购置仪器、耗材及信息学软件,专门用于寡核苷酸药物的研究,目前已建立起成熟的寡核苷酸药物研发体系。分析技术助力寡核苷酸药物研发 “提质增效” 美迪西化学部副主任田宝泉说: 寡核苷酸药物研发中,分析检测是不可或缺的一环。分离和质量控制在研发过程中占据着至关重要的地位。 制备型液相色谱提升纯化效率 美迪西化学分析部助理主任宋德奎负责寡核苷酸药物的纯化、分析方法开发与测试。为了改善寡核苷酸的峰回收率和峰形,宋德奎团队通过沃特世的制备型液相色谱LC Prep AutoPurification系统搭配ACQUITY UPLC OST C18色谱柱完成基于离子对试剂的反相色谱纯化。 图2.美迪西纯化分析实验室。 宋德奎主任介绍说: “ 寡核苷酸药物制备时容易产生N+1、N-1这类较难分离的杂质,因此对高压制备的分离度有很高的要求。常规来说,生物活性筛选对纯度的要求一般在85%-90%以上,而目前我们的回收率可以达到95%以上,远超行业的平均水平,这得益于Waters AutoPurification系统给予我们的性能保障。 ” Waters AutoPurification系统搭配了沃特世2545泵,其背压可以达到6,000psi,出色的耐高压性能完美满足了寡核苷酸制备的要求。宋德奎主任说:”这意味着我们可以用甲醇体系实现更好的分离度。此外,由于2545泵的稳定性很好,保留时间稳定,我们可以利用白天工作时间制备样品并优化纯化方法,夜晚时再进行自动化样品纯化,大大提升了工作效率。” 超高效液相色谱实现快速、高质量的分离 在完成纯化工作后,宋德奎团队会通过超高效液相色谱UPLC测定样品纯度。 “ 之所以选用UPLC,是因为其可以在很短时间内就达到对难分离杂质的分离要求,在提高效率的同时保证了分离质量。 宋德奎 ”由于寡核苷酸药物结构特殊性,易与金属发生非特异性吸附。美迪西选择了Waters ACQUITY Premier UPLC系统,该系统采用MaxPeak高性能表面(HPS)技术,其接触样品的色谱表面惰性化处理非常适合用于改善寡核苷酸的分离和检测。 宋德奎主任说:“使用过程中,我们能明显地感受到它相较于传统UPLC系统的优越性 - 可以更好地减少残留、拖尾现象,帮助我们获得更好的峰形和可重现的结果,节省了很多的时间成本。” 智能化的LC-MS系统搭配信息学平台赋能深度表征 寡核苷酸样品经过分离后,需要通过质谱做进一步鉴定和表征。宋德奎主任介绍说:“我们早前在建小分子药物分析平台的时候,就选择了沃特世的高分辨质谱BioAccord LC-MS高分辨质谱系统用于分子量表征。使用过程中发现,它出色的性能同样可以满足寡核苷酸药物分子量表征的需求。” 图3.宋德奎主任带领的化学分析团队使用高性能的Waters LC-MS系统进行寡核苷酸药物表征分析。 值得一提的是,BioAccord LC-MS系统支持自动执行校准设置和系统健康状态检查。 宋德奎主任表示: “ 这套智能化系统不仅为我们免去了手动校正的时间和工作量,而且很好地保障了数据的一致性,为我们提供了更准确、可靠的结果。 ” 该系统还搭载了waters_connect实验室信息学平台,可以为分析人员提供一整套简单易操作的工作流,包含分子量确认、去卷积等功能。分析人员只需按固定流程操作,就能获得想要的结果,并根据预设模板生成数据报告。 “最开始的时候,只有我们的分析人员在使用这套系统。而现在,我们的合成人员也能熟练地操作它了。它的简单易用让合成人员能够自行完成分析,更快地拿到结果,也使得分析人员能够从样品测试工作中解放出来,更专注解决复杂分析问题。”宋德奎主任说,“目前,这套设备基本每天24小时满负荷运转。” 高灵敏度液质联用技术缩短生物分析方法开发周期 生物分析是药物临床前DMPK研究的关键环节。美迪西药物代谢动力学部DMPK副主任万咪咪负责大分子早期药代动力学评价和代谢物鉴定。 “ 在非临床早期研究中,由于缺乏寡核苷酸药物相关代谢研究,液质联用(LC-MS)是寡核苷酸药物生物定量分析的首选方法,可避免未知代谢物对检测的干扰。另外,对于一些特殊的取材,如肝穿刺活检组织样品,有的时候只能拿到几个mg。面对如此少量的样品,必须要通过高灵敏度的仪器才能得到更可靠的分析结果。 万咪咪 ” 2022年初,美迪西专门采购了沃特世的ACQUITY Premier UPLC液相系统和Xevo TQ-XS三重四极杆质谱仪,用于寡核苷酸药物的生物样本定量分析。 万咪咪主任评价道:“我们团队在使用ACQUITY Premier UPLC系统后的明显感受是残留显著降低,而且它能提供更好的峰形、可重现的定量分析结果,以及灵敏度的显著提升,这些优势给我留下了深刻的印象。” 图4.美迪西药物代谢动力学部。 前沿分析技术加速寡核苷酸药物研发 实验室分析技术贯穿药物开发全生命周期的各个阶段,迎合了实际需求的技术创新,也为寡核苷酸药物研发“加速跑”提供了强劲的推动力。 “ 作为CRO企业,我们以效率和质量赢得客户信任,助力客户快速推进研发管线,加速商业化进程。在先进、可靠的实验室技术的加持下,推动中国自主研发的药物早日实现商业化生产,这是我们美迪西一直以来的目标和使命。 田宝泉 ” 点击此处,查看完整客户案例。
  • 液质联用技术揭示“酸汤子杀人案”中的神秘真凶
    液质联用技术揭示“酸汤子杀人案”中的神秘真凶 关注我们,更多干货和惊喜好礼 事件背景 10月5日,黑龙江省鸡西市鸡东县兴农镇某社区居民王某及其亲属9人在家中聚餐,疑似食物中毒致8人死亡,唯一幸存者也于19日不治身亡。调查得知,其间9人共同食用了自制酸汤子。该酸汤子食材已在冰箱冷冻一年,疑似该食材引发食物中毒。经医院化验检测,食物中黄曲霉素严重超标,初步判定为黄曲霉毒素中毒。 案情分析曝光时间曝光后迅速引起社会的广泛关注并登上新闻热搜。但是小编朋友圈里的很多从事食品安全的资深用户均第一时间转发并发表了自己的一些猜想——事件真相可能不是黄曲霉毒素中毒。我们所熟知的黄曲霉素,作一种天然的、致癌证据非常充分的强致癌物,一般污染玉米、花生、高粱、小麦、大米等,要造成这么高死亡率的急性中毒,可能性非常小。然而在专家们的分析下,新的矛头指向了另外一种高致命性毒素——“椰毒假单胞菌”发酵产生的米酵菌酸毒素。 印证案件发生后,黑龙江省卫生健康委员会12日发布的最新信息,鸡西食物中毒事件经流行病学调查和疾控中心采样检测后,在玉米面以及患者胃液中检出高浓度米酵菌酸,由此印证了这是一场由椰毒假单胞菌污染产生米酵菌酸引起的食物中毒事件。 揭秘真凶其实早在8月1日,广东省市场监督管理局公众号发布文章《广东省市场监督管理局发布消费提醒:慎防米酵菌酸毒素中毒》。进入高温潮湿天气,河粉、肠粉(卷粉)、陈村粉、粿条、等湿米粉容易受椰毒假单胞菌污染而产生米酵菌酸毒素。椰毒假单胞菌在自然界普遍存在,若米面食品未及时冷藏保存或超过保质期,食用引发米酵菌酸毒素中毒的风险增大。 米酵菌酸(Bongkrek acid)米酵菌酸(Bongkrek acid)是一种结构含有三个羧基的长链羧酸。科学家在2019年发现了米酵菌酸能与ADP/ATP转运酶结构中的受质结合处结合,使得粒线体基质内的ATP无法与转运酶结合而无法离开线粒体,进而导致无法给细胞供能。目前该毒素中毒尚无特效解毒药物,致死率为40-100%。以下就是杀手的真面目: Fig.1 米酵菌酸与异构体异米酵菌酸结构式 椰毒假单胞菌培养菌落 但是再隐蔽地“作案”都蒙骗不了质谱分析的“法眼”。赛默飞独家Orbitrap™ 系列超高分辨率液质联用系统具有出色的分辨率、质量精度、灵敏度及稳定性,可以实现一针进样获得样品中所有化合物的高质量精度一级/二级质谱数据,为高通量毒物筛查提供可靠准确的数据;结合一系列专用数据库与数据处理软件,能实现灵活简单的一站式筛查流程。以下分享来自用户的案例:米面类基质样品采用目前较为成熟的QuEChERS快速高效净化法对化合物进行提取净化,可以有效地去除样品中脂质,蛋白质等成分,再氮吹复溶浓缩后即可上机进行LC-HRMS快速筛查分析。赛默飞基于最先进的 Core Enhanced Technology(表面多孔增强核技术)结合固定相键合,以及耐受 100% 水柱填料特性, Thermo Scienti-fic™ Accucore aQ HPLC 色谱柱能够提供高效分析真菌毒素类 、有机酸类化合物的色谱解决方案,显著提升实验室工作效率。 在乙腈-0.1%(v/v)甲酸水溶液的LC-HRMS条件下米酵菌酸分析色谱图(50 μg/L)如下: 使用Full Scan – ddMS2采集模式能同时获取化合物一级、二级信息;亚PPM级质量精度保证定性结果准确性。 方法学考察结果如下表格,方法回收率为90.6-96.8%。方法特异性好,灵敏度高,分析速度快。 Note面对日益复杂的食品安全问题,赛默飞色谱与质谱产品能够提供全面的霉菌毒素解决方案及数据库,涵盖黄曲霉毒素、呕吐毒素、雪腐镰刀菌烯醇、伏马毒素等常见毒物。此外,基于液质联用技术的农兽药残留、司法毒物、非法添加物等检测解决方案也正携手用户,守护人类生命健康。 参考文献:[1]梁明等. QuEChERS EMR-Lipid 结合超高效液相 色谱-四极杆/静电场轨道阱高分辨质谱快速测定河粉中的米酵菌酸. 《2019 年广东省食品学会年会论文集》,2019.58-63. [2] 曾雪芳, 刘嘉飞, 王立亚,等. 超高效液相色谱-串联质谱法测定米粉和河粉中的米酵菌酸[J]. 食品安全质量检测学报, 2019, 10(13): 4074-4079. [3] Nadine Moebius, et al. Identification of the potent toxin bongkrekic acid in a traditional African beverage linked to a fatal outbreak[J]. Forensic Science International,2016. [4] GB 5009.189-2016.食品安全标准 食品中米酵菌酸的测定[S]. “码”上下载 填写表单即刻获取【Orbitrap Exploris 120 质谱仪】 扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+
  • 卫生部公布58个食品添加剂产品标准
    中 华 人民 共 和 国 卫 生 部 公 告   2011年 第8号   根据《中华人民共和国食品安全法》、卫生部等9部门《关于加强食品添加剂监督管理工作的通知》(卫监督发〔2009〕89号)和卫生部2011年第6号公告等规定,卫生部组织中国疾病预防控制中心参照国际标准,指定D-甘露糖醇等58个食品添加剂产品标准。   特此公告。   附件:1.D-甘露糖醇等58个食品添加剂产品标准目录   2.D-甘露糖醇等58个食品添加剂产品标准.rar   二○一一年三月十八日   附件1   D-甘露糖醇等58个食品添加剂产品标准目录 编号 标准名称 1. D-甘露糖醇 2. 羟丙基甲基纤维素(HPMC) 3. 氢化松香甘油酯 4. 乳酸脂肪酸甘油酯 5. 松香季戊四醇酯 6. 乙二胺四乙酸二钠 7. 乙酰化单、双甘油脂肪酸酯 8. 乙氧基喹 9. 硬脂酸钙 10. 硬脂酸镁 11. 硬脂酰乳酸钙 12. 硬脂酰乳酸钠 13. 月桂酸 14. 羟基硬脂精(氧化硬脂精) 15. 偶氮甲酰胺 16. 抗坏血酸棕榈酸酯 17. 硫代二丙酸二月桂酯 18. 微晶纤维素 19. 丙二醇脂肪酸酯 20. 聚甘油脂肪酸酯(聚甘油单硬脂酸酯,聚甘油单油酸酯) 21. 刺云实胶 22. 柠檬酸一钠 23. 巴西棕榈蜡 24. 蜂蜡 25. 乳糖醇 26. 5'胞苷酸二钠 27. d-核糖 28. 3-环己基丙酸烯丙酯 29. 辛酸乙酯 30. 棕榈酸乙酯 31. 甲酸香茅酯 32. 甲酸香叶酯 33. 乙酸香叶酯 34. 乙酸橙花酯 35. 己醛 36. 正癸醛(癸醛) 37. 乙酸丙酯 38. 乙酸2-甲基丁酯 39. 异丁酸乙酯 40. 异戊酸3-己烯酯 41. 2-甲基丁酸3-己烯酯 42. 2-甲基丁酸2-甲基丁酯 43. γ-己内酯 44. γ-庚内酯 45. γ-癸内酯 46. δ-癸内酯 47. γ-十二内酯 48. δ-十二内酯 49. 2,6-二甲基-5-庚烯醛 50. 2-甲基-4-戊烯酸(又名浆果酸) 51. 芳樟醇 52. 乙酸松油酯 53. 二氢香芹醇 54. d-香芹酮 55. l-香芹酮 56. α-紫罗兰酮 57. 罗望子多糖胶 58. 左旋肉碱
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制