当前位置: 仪器信息网 > 行业主题 > >

硫唑嘌呤杂质

仪器信息网硫唑嘌呤杂质专题为您提供2024年最新硫唑嘌呤杂质价格报价、厂家品牌的相关信息, 包括硫唑嘌呤杂质参数、型号等,不管是国产,还是进口品牌的硫唑嘌呤杂质您都可以在这里找到。 除此之外,仪器信息网还免费为您整合硫唑嘌呤杂质相关的耗材配件、试剂标物,还有硫唑嘌呤杂质相关的最新资讯、资料,以及硫唑嘌呤杂质相关的解决方案。

硫唑嘌呤杂质相关的方案

  • 岛津:岛津:茶碱中杂质分析3-甲基黄嘌呤
    药物杂质研究对于研究者来讲是一个具有挑战性的领域。该实验使用离子阱串联飞行时间分析器对国际计量局(BIPM)分发的CCQM(国际物质量咨询委员会)样品进行了杂质的定性分析,LC-PDA-ESI-IT-TOF的结果显示该样品含有种杂质成分。根据从不同串级质谱采集的精确质量,4种杂质被分别确认为3-甲基黄嘌呤;可可碱;咖啡因和三甲基黄嘌呤,定性结果也被其他参与对比的国际实验室所证实。第5种杂质相对更加复杂并详细研究了其结构和裂解途径。
  • 岛津:茶碱中杂质分析三甲基黄嘌呤
    药物杂质研究对于研究者来讲是一个具有挑战性的领域。该实验使用离子阱串联飞行时间分析器对国际计量局(BIPM)分发的CCQM(国际物质量咨询委员会)样品进行了杂质的定性分析,LC-PDA-ESI-IT-TOF的结果显示该样品含有种杂质成分。根据从不同串级质谱采集的精确质量,4种杂质被分别确认为3-甲基黄嘌呤;可可碱;咖啡因和三甲基黄嘌呤,定性结果也被其他参与对比的国际实验室所证实。第5种杂质相对更加复杂并详细研究了其结构和裂解途径。
  • 左卡尼汀及其杂质分离报告
    左卡尼汀和其2个中间体杂质均为带正电荷化合物,因此我们首先选择使用CAPCELL PAK SCX色谱柱对其进行保留,并使用PDA检测器检测。由左卡尼汀杂质结构式可知,两杂质紫外吸收非常弱,因此我们使用质谱对左卡尼汀及其两杂质进行检测,并使用CAPCELL PAK CR 1:4色谱柱对其进行了保留和分离。使用CAPCELL PAK CR 1:4柱进行LC-MS分析,左卡尼汀、杂质1、杂质2间得到了较好分离结果。 在进行LC-MS分析时,由于带正电荷化合物的静电吸引作用,我们发现左卡尼丁及杂质2均有一定程度的残留。因此建议客户在分析前对进样浓度进行考察,杂质浓度建议设置为定量限浓度,左卡尼汀浓度设置为杂质浓度100倍,以避免残留的发生。
  • 茶碱中杂质分析
    药物杂质研究对于研究者来讲是一个具有挑战性的领域。该实验使用离子阱串联飞行时间分析器对国际计量局(BIPM)分发的CCQM(国际物质量咨询委员会)样品进行了杂质的定性分析,LC-PDA-ESI-IT-TOF的结果显示该样品含有种杂质成分。根据从不同串级质谱采集的精确质量,4种杂质被分别确认为3-甲基黄嘌呤;可可碱;咖啡因和三甲基黄嘌呤,定性结果也被其他参与对比的国际实验室所证实。第5种杂质相对更加复杂并详细研究了其结构和裂解途径。
  • Nexera  UC 系统在原料药杂质二乙酰鸟嘌呤分析中的应用
    超临界流体色谱(Supercritical Fluid Chromatography,SFC)是以超临界流体为主要流动相,添加改性剂或微量添加剂的二元或三元流动相的新型色谱分离技术。超临界 CO2(scCO2)以其安全、价廉、无毒、易制得、化学惰性等因素成为 SFC 常用的主要流动相。超临界流体具有低黏度、高扩散性和高溶解性等特点,使得 SFC 分析具有快速、高效、高分离等优势。中国药典(2015版)》首次收载超临界流体色谱法(四部 0531法)作为药物分析的可选方法。 本实验使用的岛津 Nexera UC SFC-UV系统属于岛津最新的超临界流体色谱仪系列产品,具有系统耐压高、背压阀(BPR)内部体积小、灵敏度高、操作界面通用性好等特点。《岛津 Nexera UC 系统可为相关药物的SFC 分析方法建立提供帮助。本文使用岛津 Nexera UC SFC-UV 系统对药物中间体二乙酰鸟嘌呤中的杂质进行分析,有效避免使用反相色谱分析中该药物不稳定遇水分解的可能,并且 SFC 系统分析速度快、重现性好、灵敏度高、溶剂消耗少并且安全环保,另外使用 scCO2、甲醇、乙醇、乙腈等做流动相时和质谱联用也不存在任何障碍,方便 SFC 方法直接移植成为 SFC-MS 方法,可进一步提升检测灵敏度和扩展应用领域。了解详情,敬请点击http://pmo42817f.pic34.websiteonline.cn/upload/u2c9.pdf
  • 岛津:茶碱中杂质分析可可碱
    药物杂质研究对于研究者来讲是一个具有挑战性的领域。该实验使用离子阱串联飞行时间分析器对国际计量局(BIPM)分发的CCQM(国际物质量咨询委员会)样品进行了杂质的定性分析,LC-PDA-ESI-IT-TOF的结果显示该样品含有种杂质成分。根据从不同串级质谱采集的精确质量,4种杂质被分别确认为3-甲基黄嘌呤;可可碱;咖啡因和三甲基黄嘌呤,定性结果也被其他参与对比的国际实验室所证实。第5种杂质相对更加复杂并详细研究了其结构和裂解途径。
  • 岛津:茶碱中杂质分析咖啡因
    药物杂质研究对于研究者来讲是一个具有挑战性的领域。该实验使用离子阱串联飞行时间分析器对国际计量局(BIPM)分发的CCQM(国际物质量咨询委员会)样品进行了杂质的定性分析,LC-PDA-ESI-IT-TOF的结果显示该样品含有种杂质成分。根据从不同串级质谱采集的精确质量,4种杂质被分别确认为3-甲基黄嘌呤;可可碱;咖啡因和三甲基黄嘌呤,定性结果也被其他参与对比的国际实验室所证实。第5种杂质相对更加复杂并详细研究了其结构和裂解途径。
  • Nexera  UC 系统在原料药杂质乙酰基鸟嘌呤分析中的应用
    超临界流体色谱(Supercritical Fluid Chromatography,SFC)是以超临界流体为主要流动相,添加改性剂或微量添加剂的二元或三元流动相的新型色谱分离技术。超临界 CO2(scCO2)以其安全、价廉、无毒、易制得、化学惰性等因素成为 SFC 常用的主要流动相。超临界流体具有低黏度、高扩散性和高溶解性等特点,使得 SFC 分析具有快速、高效、高分离等优势。中国药典(2015版)》首次收载超临界流体色谱法(四部 0531法)作为药物分析的可选方法。 本实验使用的岛津 Nexera UC SFC-UV系统属于岛津最新的超临界流体色谱仪系列产品,具有系统耐压高、背压阀(BPR)内部体积小、灵敏度高、操作界面通用性好等特点。《岛津 Nexera UC 系统可为相关药物的SFC 分析方法建立提供帮助。本文使用岛津 Nexera UC SFC-UV 系统对药物中间体二乙酰鸟嘌呤中的杂质进行分析,有效避免使用反相色谱分析中该药物不稳定遇水分解的可能,并且 SFC 系统分析速度快、重现性好、灵敏度高、溶剂消耗少并且安全环保,另外使用 scCO2、甲醇、乙醇、乙腈等做流动相时和质谱联用也不存在任何障碍,方便 SFC 方法直接移植成为 SFC-MS 方法,可进一步提升检测灵敏度和扩展应用领域。了解详情,敬请点击http://pmo42817f.pic34.websiteonline.cn/upload/u2c9.pdf
  • 北京超越未来:Nexera  UC 系统在原料药二乙酰鸟嘌呤杂质分析中的应用
    超临界流体色谱(Supercritical Fluid Chromatography,SFC)是以超临界流体为主要流动相,添加改性剂或微量添加剂的二元或三元流动相的新型色谱分离技术。超临界 CO2(scCO2)以其安全、价廉、无毒、易制得、化学惰性等因素成为 SFC 常用的主要流动相。超临界流体具有低黏度、高扩散性和高溶解性等特点,使得 SFC 分析具有快速、高效、高分离等优势。中国药典(2015版)》首次收载超临界流体色谱法(四部 0531法)作为药物分析的可选方法。 本实验使用的岛津 Nexera UC SFC-UV系统属于岛津最新的超临界流体色谱仪系列产品,具有系统耐压高、背压阀(BPR)内部体积小、灵敏度高、操作界面通用性好等特点。《岛津 Nexera UC 系统可为相关药物的SFC 分析方法建立提供帮助。本文使用岛津 Nexera UC SFC-UV 系统对药物中间体二乙酰鸟嘌呤中的杂质进行分析,有效避免使用反相色谱分析中该药物不稳定遇水分解的可能,并且 SFC 系统分析速度快、重现性好、灵敏度高、溶剂消耗少并且安全环保,另外使用 scCO2、甲醇、乙醇、乙腈等做流动相时和质谱联用也不存在任何障碍,方便 SFC 方法直接移植成为 SFC-MS 方法,可进一步提升检测灵敏度和扩展应用领域。了解详情,敬请点击http://pmo42817f.pic34.websiteonline.cn/upload/u2c9.pdf
  • 北京超越未来:Nexera  UC 系统在原料药乙酰基鸟嘌呤杂质分析中的应用
    超临界流体色谱(Supercritical Fluid Chromatography,SFC)是以超临界流体为主要流动相,添加改性剂或微量添加剂的二元或三元流动相的新型色谱分离技术。超临界 CO2(scCO2)以其安全、价廉、无毒、易制得、化学惰性等因素成为 SFC 常用的主要流动相。超临界流体具有低黏度、高扩散性和高溶解性等特点,使得 SFC 分析具有快速、高效、高分离等优势。中国药典(2015版)》首次收载超临界流体色谱法(四部 0531法)作为药物分析的可选方法。 本实验使用的岛津 Nexera UC SFC-UV系统属于岛津最新的超临界流体色谱仪系列产品,具有系统耐压高、背压阀(BPR)内部体积小、灵敏度高、操作界面通用性好等特点。《岛津 Nexera UC 系统可为相关药物的SFC 分析方法建立提供帮助。本文使用岛津 Nexera UC SFC-UV 系统对药物中间体二乙酰鸟嘌呤中的杂质进行分析,有效避免使用反相色谱分析中该药物不稳定遇水分解的可能,并且 SFC 系统分析速度快、重现性好、灵敏度高、溶剂消耗少并且安全环保,另外使用 scCO2、甲醇、乙醇、乙腈等做流动相时和质谱联用也不存在任何障碍,方便 SFC 方法直接移植成为 SFC-MS 方法,可进一步提升检测灵敏度和扩展应用领域。了解详情,敬请点击http://pmo42817f.pic34.websiteonline.cn/upload/u2c9.pdf
  • Nexera UC 系统在原料药杂质分析中的应用
    本实验使用岛津 Nexera UC SFC-UV 系统对原料药二乙酰鸟嘌呤及杂质进行分离,通过考察多种色谱柱和流动相组合,DAICEL DCpak SFC-A 和乙醇为流动相时可获得主药和杂质的最佳分离效果。在此基础上建立杂质 SFC 分析方法,结果显示杂质在 50~500 mg/L线性良好,保留时间和峰面积重复性 RSD 在 0.2%和 1.5%以内。
  • 硫唑嘌呤在3μm的ChromCore AQ C18上的分离(中国药典)
    采用纳谱分析ChromCore AQ C18色谱柱对硫唑嘌呤有效成分进行检测, 各峰具有良好的峰形, 该方法操作简单, 灵敏度高, 重复性好, 符合药典要求, 可用于该药物的检测, 为该药物的质量保证提供检测依据。
  • 液相色谱-四极杆飞行时间质谱联用定性检测头孢替唑钠及其杂质
    利用Q-TOF 9030的高灵敏度、高质量准确性和良好的稳定性并结合ACD/Labs等软件,定性分析头孢替唑钠中未知杂质并推测其结构。
  • 磷酸盐流动相体系下头孢唑肟钠注射用药品中杂质的鉴定
    在使用磷酸盐等不挥发盐做流动相时,能有效解决杂质鉴定的难题。一维和二维同时使用亚2 μm的色谱柱,提高分析效率。借助软件快速对药品中所有杂质进行鉴定及解析。
  • 药物杂质鉴定新流程——QExactiveFocus结合CompoundDiscoverer实现泮托拉唑杂质谱分析
    任何影响药物纯度的物质统称为杂质。人用药物注册技术要求国际协调会(简称 ICH)对杂质的定义为药物中存在的,化学结构与该药物不一致的任何成分。药物中含有杂质会降低疗效,影响药物的稳定性,有的甚至对人体健康有害或产生其他毒副作用。因此,检测有关物质,控制纯度对确保用药安全有效,对保证药物质量非常重要。质谱技术因其快速、高灵敏度和高专属性的分析能力,已经被药物杂质鉴定新流程— Q Exactive Focus 结合 CompoundDiscoverer 实现泮托拉唑杂质谱分析周哲赛默飞世尔科技(中国)有限公司AN_C_LCMSMS_10_201507Y图 1. 基于 Q Exactive Focus 和 Compound Discoverer 的杂质鉴定流程广泛的应用于药物杂质鉴定,Orbitrap TM 静电场轨道阱高分辨质谱具有超高的分辨率和长期稳定的高质量精度,可获得高质量的一级和多级高分辨质谱数据,保证了鉴定结果的可靠性,被越来越多的应用于定性分析中。本文采用Thermo Scientific TM 高效液相色谱-四极杆静电场轨道阱Q Exactive™ Focus 高分辨质谱联用技术对药物泮托拉唑进行了全面的杂质数据采集,利用高性能四极杆对目标化合物进行高专属性选择,HCD 高能碰撞池进行二级碰撞碎裂,Orbitrap静电场轨道阱采集一级和二级高分辨质谱数据。结合 Thermo新一代的智能小分子化合物分析软件 Compound Discoverer™ ,以高度灵活的自定义方式制定了泮托拉唑杂质分析工作流程
  • 基于Orbitrap技术实现泮托拉唑杂质谱分析
    基于Thermo Scientific Q Exactive Focus串联四极杆高分辨质谱仪和新一代的智能小分子化合物鉴定软件Compound Discoverer?的药物杂质鉴定的新流程,实现了对泮托拉唑杂质谱的分析。无论是优质数据的有效获取,还是获取后对已知和未知杂质的分析鉴定,该工作流程都可以完美实现。
  • 利用 Agilent InfinityLab Poroshell 120 HPH-C8 色谱柱分析奥美拉唑中的杂质
    根据中国药典 (ChP) 中规定的奥美拉唑的杂质分析方法,在表面多孔的 2.7 μ m Agilent InfinityLab Poroshell HPH-C8 色谱柱上对奥美拉唑进行杂质分析。InfinityLab Poroshell HPH 化学填料经过精心设计,可在 pH 值高达 11.0 的碱性流动相中保持稳定。InfinityLab Poroshell HPH-C8 和 InfinityLab Poroshell HPH-C18 色谱柱已成为中等 pH 到高 pH 应用中的常用色谱柱。
  • 岛津液相色谱-四极杆飞行时间质谱联用定性检测头孢替唑钠及其杂质
    利用Q-TOF 9030的高灵敏度、高质量准确性和良好的稳定性并结合ACD/Labs等软件,定性分析头孢替唑钠中未知杂质并推测其结构。
  • 安捷伦科技 2D-LC/MS 在线脱盐技术在药物杂质鉴定中的应用——5‘-鸟嘌呤核苷三磷酸三钠盐
    在液相色谱方法的开发中,常会用到一些添加剂以提高色谱行为表现,但是这些添加剂经常无法兼容质谱检测,而在某些分析中,如杂质分析、代谢分析等,经常需要对某些新产生的杂质或代谢产物进行质谱鉴定,同时又不希望改变方法选择性以便通过保留时间对未知物进行定性。但是如果将原有方法中不能兼容质谱条件的添加剂改变的话,很可能造成选择性变化,从而无法定位欲分析的未知化合物的位置。针对此类问题,安捷伦开发了一个基于阀切换的 2D-LC 方法,保证了在各个色谱峰的保留行为不发生变化的情况下(即原始色谱条件不变),通过二维液相的方式将原始条件中的质谱不兼容流动相变为兼容流动相,从而实现用液质联用方法对未知杂质进行定量分析的目的。
  • 上海禾工科学仪器:急性淋巴细胞白血病患儿红血球中6巯基嘌呤及其代谢产物的
    6-巯基嘌呤(6-mercaptopuring, 6-MP)和硝基咪唑硫嘌呤(azathiopurine, Aza)主要作为抗肿瘤药用于治疗急性淋巴细胞白血病(acute lymphoblastic leukemia, ALL),或者作为免疫抑制剂用于治疗炎性肠病、风湿关节炎、系统性红斑狼疮和抑制器官移植病人的急性排斥。Aza 是6-MP 的1-甲基-4-硝基-5 咪唑硫衍生物,在体内降解生产6-MP,Aza 抗肿瘤和免疫抑制的药物活性主要是来自其降解产物6-MP 的代谢产物。
  • 气相色谱法分析高纯氦气中氖气等微量杂质
    本文使用岛津GC-2014气相色谱仪结合甲烷转化炉、FID和PDHID检测器建立了高纯氦气中微量杂质的分析方法。采用两个吹扫六通阀自动进样,超纯氦气做载气表现出良好的重现性和检出限。氖气最低检出限可达0.10μ L/L,其余10种组分最低检出限均可达0.01μ L/L,完全满足GB/T 4844-2011对超纯氦杂质分析的需求。
  • GCMS法测定左卡尼汀药品中遗传毒性杂质S-环氧氯丙烷含量
    本文利用岛津GCMS-QP2020 NX气相色谱质谱联用仪,建立了左卡尼汀中遗传毒性杂质S-环氧氯丙烷的检测方法。该方法以二氯甲烷为提取液,采用液液萃取法进行前处理,在10~1000 ng/mL浓度范围内,S-环氧氯丙烷线性关系良好,相关系数R为0.9998,方法检出限为0.97 ng/mL。取浓度为10 ng/mL标准溶液连续进样7针,峰面积RSD为2.6%。加标实验中,以100 ng/g与200 ng/g加标浓度,加标回收率分别为95.8 %与103.9 %。该方法简便快捷、灵敏度高,能够有效检测左卡尼汀中遗传毒性杂质S-环氧氯丙烷的含量。
  • 使用多种液相色谱系统运行USP富马酸喹硫平杂质分析方法
    3 m的色谱柱,这些方法可在多种LC系统上有效地运行。本研究在三种不同的LC系统上(Alliance HPLC系统、ACQUITY Arc UHPLC系统和ACQUITY UPLC H-Class PLUS系统)成功运行了USP富马酸喹硫平杂质分析方法。这三种液相色谱系统上的结果均符合USP系统适应性要求,并且在分析未知样品中的杂质浓度时得到了非常一致且重现性良好的结果。
  • 使用多种液相色谱系统运行USP富马酸喹硫平杂质分析方法
    在本应用纪要中,我们将在Alliance HPLC、ACQUITY Arc UHPLC和ACQUITY UPLC H-Class PLUS这三种不同类型的液相色谱系统上运行富马酸喹硫平杂质的USP分析方法,并根据USP各论中所列的系统适应性要求评估这些系统能否成功运行该USP分析方法。
  • 药物杂质分析综合应用文集
    本册应用文集收录了近年来岛津在药品杂质分析方面的应用工作:包括有机杂质、无机杂质和溶剂残留检测三部分,共 28 篇文章,涉及杂质鉴定系统、色谱质谱联用系统、ICP-MS等特色技术。
  • NexION 300S ICP-MS测定半导体级硫酸中的杂质
    通常情况下,蚀刻液由硫酸和过氧化氢配制而成。由于是与其他化学物质一起使用的,任何金属杂质的引入都将会对IC器件的可靠性产生不利影响,因此需要使用的硫酸具有高纯度和高质量。由于具有快速测定各种工艺化学品中超痕量浓度待测元素的能力,电感耦合等离子体质谱仪已成为了质量控制不可缺少的分析工具。然而,在传统的等离子体条件下,往往存在氩离子与基质成分结合产生多原子干扰的情况。动态反应池使用四级杆质量过滤器建立动态带通,是消除目标元素干扰物的一种强有力的校正技术。使用非反应气体的碰撞池技术也被证明是一种减少特定多原子干扰的简单可行的方法。本应用报告证明了NexION 300 ICP-MS去除干扰,从而在使用高温等离子体的条件下通过一次分析就能够对H2SO4中全部痕量水平的杂质元素进行测定的能力。
  • ICPOES测定六氟磷酸锂电解液中杂质元素
    本文在赛默飞iCAP PRO电感耦合等离子体发射光谱仪针对HG/T 4067-2015六氟磷酸锂电解液中杂质元素的测定建立了快速测定的检测方法,所有元素浓度范围内线性关系良好(r平方大于0.999),所有元素检测限满足标准要求,样品重复性好,各项指标均能满足国标规定的检测要求。
  • LCMS-9030检测缬沙坦原料药中六种亚硝胺类杂质
    本文利用岛津LCMS-9030四极杆飞行时间液质联用系统建立了缬沙坦原料药中六种亚硝胺类遗传毒性杂质NDMA、NMBA、NDEA、NDIPA、NEIPA和NDBA的分析方法。该方法采用外标法定量,六种亚硝胺类杂质线性相关系数均大于0.999;六种亚硝胺类化合物定量限(LOQ)在0.004~0.045 ppm之间;低中高浓度混合标准工作溶液重复性保留时间RSD%为0.05~0.57%,峰面积RSD%为0.70~8.48%;方法回收率在82.6~107.5%之间。方法准确可靠,可用于实际样品的检测。实验结果表明,该方法能快速准确地测定缬沙坦原料药中六种亚硝胺类遗传毒性杂质。
  • 使用岛津Trap-Free二维HPLC和LC/MS/MS测定药物中的杂质
    本文介绍使用Trap-Free二维HPLC,分析雷贝拉唑钠样品,对不挥发性流动相中检测到的杂质。在不进行预处理的条件下在线转换为挥发性流动相,并使用三重四极杆液质联用仪LCMS-8040进行分析。可以高精度识别杂质峰并推测其结构。
  • Nexera  UC 系统在原料药杂质分析中的应用
    超临界流体色谱(Supercritical Fluid Chromatography,SFC)是以超临界流体为主要流动相,添加改性剂或微量添加剂的二元或三元流动相的新型色谱分离技术。超临界 CO2(scCO2)以其安全、价廉、无毒、易制得、化学惰性等因素成为 SFC 常用的主要流动相。超临界流体具有低黏度、高扩散性和高溶解性等特点,使得 SFC 分析具有快速、高效、高分离等优势。中国药典(2015版)》首次收载超临界流体色谱法(四部 0531法)作为药物分析的可选方法。 本实验使用的岛津 Nexera UC SFC-UV系统属于岛津最新的超临界流体色谱仪系列产品,具有系统耐压高、背压阀(BPR)内部体积小、灵敏度高、操作界面通用性好等特点。《岛津 Nexera UC 系统可为相关药物的SFC 分析方法建立提供帮助。本文使用岛津 Nexera UC SFC-UV 系统对药物中间体二乙酰鸟嘌呤中的杂质进行分析,有效避免使用反相色谱分析中该药物不稳定遇水分解的可能,并且 SFC 系统分析速度快、重现性好、灵敏度高、溶剂消耗少并且安全环保,另外使用 scCO2、甲醇、乙醇、乙腈等做流动相时和质谱联用也不存在任何障碍,方便 SFC 方法直接移植成为 SFC-MS 方法,可进一步提升检测灵敏度和扩展应用领域。了解详情,敬请点击http://pmo42817f.pic34.websiteonline.cn/upload/u2c9.pdf

厂商最新方案

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制