氢能产业要发展,质量检测标准应先行!——访氢能与燃料电池分析方法标准制定工作组组长潘义研究员
为推进气候变化治理和能源转型,促进能源行业供给改革,保障国民经济和民生的可持续和高质量发展,我国以负责任的大国担当态度提出了“3060双碳”目标。氢能因其来源广、燃烧热值高、能量密度大、可储存、可再生的特点,成为我国节能减排和能源变革过程中最理想的能源互联媒介。近几年,国家各部委和地方政府密集出台了一系列促进氢能产业发展的顶层设计方案,以中石化、中石油、国家能源集团、国家电投等为代表的相关央企纷纷布局氢能产业链。质子交换膜燃料电池(PEMFC)汽车作为氢能利用的重要场景,我国早在2006年就将其列入了国家中长期科学和技术发展规划纲要。氢气作为燃料电池汽车的能量载体,其质量的优劣将直接影响PEMFC的运行和寿命正常与否。国内外相关科研机构围绕氢气中杂质组分对燃料电池的损伤机理开展了大量的探索与验证工作,各种微痕量杂质对燃料电池会产生不同的影响:水含量过高会使气体的扩散效率下降,阻止气体到燃料电池的催化层进行反应,影响燃料电池的效率、稳定性和耐久性;二氧化碳、甲烷、氮、氩、氦等杂质组分会降低氢气的分压,导致燃料电池局部氢气供应不足,可能造成电池反极并发生碳蚀现象;一氧化碳会占据 PEM 催化剂的活性位而阻碍氢气在催化剂上的吸附,降低氢气电离出质子的速率,严重时会导致催化剂完全失活;不同种类的硫化物如硫化氢、硫氧碳、二氧化硫、硫醇、硫醚等都会对PEMFC 阴极催化剂产生不可逆的毒化作用;甲酸和甲醛具有类似的毒化作用,两者均会在电池膜电极催化剂表面产生吸附,从而降低反应表面积;氨会降低电池电极电化学反应界面,对 PEMFC 性能产生不可逆的损坏;卤离子在电池阴极上与氧气的竞争吸附会影响燃料电池的工作效率,降低电池性能;颗粒物杂质会占据膜电极的活性位影响电池性能效率,并会影响氢气储存和反应系统的安全[1]。氢燃料质量相关标准的进化史目前ISO以及各个国家针对PEMFC所用燃料氢气中对电池性能以及关键零部件会会造成损害的杂质组分/种类和限值都作了明确的规定,并制定了相应的标准,如ISO 14687:2019、ISO 21087:2019、ISO 19880-8:2020、BS EN 17124:2018、SAE J 2719:2015和GB/T 37244-2018等。我国PEMFC汽车用燃料氢气的现行产品标准为GB/T 37244-2018,最初是以团体标准T/CECA-G 0015-2017的形式于2017年12月发布实施,后在2018年12月以国家标准的形式发布,2019年7月开始实施,该标准中对杂质组分种类和限值要求完全参照国际标准ISO 14687-2:2012和SAE J2719:2015。ISO 14687系列标准经历20多年的制定完善过程,最初以氢燃料质量标准ISO 14687:1999版本发布,后经2004年美国能源部召开的研讨会讨论将氢燃料的关注重点由纯度(Purity)转变为质量(Quality),并与2012年形成ISO 14687-2:2012,该标准系统规定了14类杂质组分的组成和限值要求。目前国际上现行有效的产品质量标准 ISO 14687:2019 由ISO/TC 197 Hydrogen technologies(国际标准化组织氢能技术委员会)于2019年发布,相较于国内现行版本 GB/T 37244-2018 有以下异同处(具体指标见表1)。BS EN 17124:2018规定的内容与ISO 14687:2019完全一致。在对氢气纯度、非氢气总量、水、氧、氦、二氧化碳、一氧化碳、氨、甲酸、总卤化物、最大颗粒物浓度等这11个指标的要求上,ISO 14687:2019与GB/T 37244-2018保持了一致。两者的主要区别在于,ISO 14687:2019放宽了对甲烷、氮、氩和甲醛等4个杂质含量限值的要求,其中对甲烷的含量限值作了单独规定,为100 μmol/mol;氮和氩由原来的合计不超过100 μmol/mol,更改为各自不超过300 μmol/mol;总烃含量的计量方式由“按照甲烷计”更改为“按照C1计且不包含甲烷”;甲醛的含量限量值由原来的0.01 μmol/mol提高为0.2 μmol/mol;总硫含量的计量方式也由“按照硫化氢计”更改为“按照S1计”。此外,ISO 14687:2019还针对一氧化碳、甲醛、甲酸的总含量提出不可超过0.2 μmol/mol的要求。需要注意的是,ISO 14687:2019标准内“总硫”参数所推荐的检测方法ASTM D7652已经于2020年作废了,目前ISO/TC 197正在组织开展ISO 14687:2019下一个版本的修订工作。表1. 国内外现行标准对燃料电池用氢杂质组分的限量值要求项目名称GB/T 37244-2018ISO 14687:2019氢气纯度(摩尔分数)99.97%99.97%非氢气总量300 μmol/mol300 μmol/mol单种/类杂质的最大浓度水(H2O)5 μmol/mol5 μmol/mol总烃2 μmol/mol(按甲烷计)2 μmol/mol(按Cl计、不含甲烷)甲烷(CH4)/100 μmol/mol氧(O2)5 μmol/mol5 μmol/mol氦(He)300 μmol/mol300 μmol/mol氮(N2)100 μmol/mol(两者总量)300 μmol/mol氩(Ar)300 μmol/mol二氧化碳(CO2)2 μmol/mol2 μmol/mol一氧化碳(CO)0.2 μmol/mol0.2 μmol/mol总硫0.004 μmol/mol(按H2S计)0.004 μmol/mol(按S1计)甲醛(HCHO)0.01 μmol/mol0.2 μmol/mol甲酸(HCOOH)0.2 μmol/mol0.2 μmol/mol氨(NH3)0.1 μmol/mol0.1 μmol/mol总卤化物(按卤离子计)0.05 μmol/mol0.05 μmol/mol颗粒物1 mg/kg1 mg/kg我国现行质子交换膜燃料电池汽车用氢气GB/T 37244-2018中提出了需要关注的氢燃料质量有影响的系列杂质组分限量值要求,并针对每种杂质组分分别引用了不同的分析方法标准。考虑到氢气背景条件下的适用性,从经济适用性等角度考虑,笔者认为部分方法标准还存在可以优化和提升的空间。氢能工作组全力开展检测方法标准化体系建设工作产业要发展,标准需先行。质子交换膜燃料电池用氢气作为产业“前端生产的产品”和“后端应用的原料”,建立准确可靠、具有溯源性的质量检测分析方法标准体系至关重要。在制定标准的过程中,要注重标准的质量:既不能造成标准实施过程中技术门槛和成本过高,现场适用性差,变为“僵尸标准”;亦要注意尽量采用先进的技术和方法,有利于技术的更新迭代,促进产业进步发展;既要响应国家提倡的分析仪器装备国产化要求,尽量实现技术自主可控;同时还要兼顾氢能产业对在线和离线测试需求的特点。为了健全我国氢燃料质量分析方法标准体系,2019年3月7日,经全国气体标准化技术委员会批准,依托中国测试技术研究院化学研究所为秘书处,成立全国气体标准化技术委员会气体分析分技术委员会氢能与燃料电池分析方法标准制定工作组(SAC/TC206/SC1/WG1,以下简称“氢能工作组”),氢能工作组负责国内氢能与燃料电池领域气体分析标准化的归口工作。工作组成立之后,在全国气体标准化技术委员会的指导下,秘书处承担单位组织科研人员,并联合工作组各成员单位,针对GB/T 37244和ISO 14687标准中规定的质子交换膜燃料电池汽车用氢气质量检测所涉及到的所有气态组分杂质和颗粒物组分杂质的取样和检测开展联合科研攻关和标准化工作,主要包括各类组分分析方法标准,气体分析术语标准,气体标准样品/物质制备方法,气体采样、取样方法标准等方面。如何确保痕量甚至是超痕量水平的测量需求,准确的取样、高水平的分析方法以及量值稳定、准确、可靠的气体标准物质是非常重要的三个环节。基于以上原则,结合全国气体标准化技术委员会在气体分析方法标准领域的经验积累和氢能工作组的技术优势,我们从2019年开始组织开展了大量针对性的标准化研究工作,目前已经联合国内外的优势分析仪器厂家共同开发了多个整体解决方案。针对不同指标灵活搭配检测仪器针对8个无机和烃类杂质组分需要3台不同仪器检测的问题,中国测试技术研究院的研究人员以岛津GC-2030气相色谱为应用测试平台,采用多阀多柱,热导检测器、火焰离子化检测器和甲烷转化炉组合的气相色谱分析方法,实现一次进样完成8个参数的准确定性定量分析,分析谱图见图1,实验表明THC、CO、CH4、CO2、Ar、O2、He、N2的线性相关系数R20.995,检出限分别为0.020 μmol/mol、0.033 μmol/mol、0.039 μmol/mol、0.14 μmol/mol、0.25 μmol/mol、0.32 μmol/mol、9.5 μmol/mol、1.7 μmol/mol。图1. 氢气中甲烷、二氧化碳、一氧化碳、氧、氦、氮、氩等7个组分的连续7次进样典型谱图针对标准中限值最为严格和分析难度最大的总硫含量(4 nmol/mol),中国测试技术研究院的研究人员开发了基于不同来源的氢气中9种典型硫化合物的低温富集与GC-SCD相结合的在线分析解决方案。此方案主要包括高准确度微痕量氢气中多组分硫化物混合气体标准物质、集成了在线动态稀释功能的半导体低温富集系统和硫化学发光气相色谱仪。结果表明此系统的校准曲线的相关系数高于0.999,仪器检出限不高于0.050 nmol/mol,方法检出限最低可达到0.01 nmol/mol,精密度和准确度令人满意(RSD5%,SD15%)。开发的系统成功地应用于实际样品分析[2]。在该方案中,将毛细管色谱柱更换为非保留色谱柱即可用于氢气样品中总硫的分析。图2. 低温富集-GC-SCD在线分析系统数据示意图(出峰顺序为:H2S、COS、CH3SH、C2H5SH、CH3SCH3、CS2、CH3SC2H5、C4H4S和C2H5SC2H5)(左图浓度为0.1、0.2、0.5、1、4、8、10、15、20、30和40 nmol/mol;右图为0.1、0.2,0.5和1 nmol/mol)图3. 燃料电池汽车用氢中痕量硫化物解决方案系统组成图标准的最大价值在于服务社会进步、经济发展和产业创新,其最大使命在于指导、规范和约束使用者得到合理、科学和准确的结论。分析方法在实验室离线使用以及现场在线应用中,要充分考虑方法的适用性、合理性、安全性和经济性,氢能工作组在充分调研和前期实验研究的基础上,紧跟国际上最新的燃料电池用氢气质量标准ISO14687:2019中规定的杂质组分组成和限值要求,分别整理了一些分析方法解决方案供检测实验室和现场参考使用,具体见表2。表2. 针对ISO 14687要求的气体杂质组分分析方法解决方案杂质参数名称限量值要求分析方法解决方案总烃(按Cl计、不含甲烷)2 μmol/mol“三阀四柱+GC-(TCD+FID+MTN)”,在线/离线(注:可采用电化学氧气分析仪在线监控O2组分)甲烷(CH4)100 μmol/mol一氧化碳(CO)0.2 μmol/mol二氧化碳(CO2)2 μmol/mol氧(O2)5 μmol/mol氦(He)300 μmol/mol氮(N2)300 μmol/mol氩(Ar)300 μmol/mol总硫(按S1计)0.004 μmol/mol“低温富集+GC-SCD”,在线/离线甲酸(HCOOH)0.2 μmol/mol“FTIR”或“低温富集+GC-MS”,在线/离线甲醛(HCHO)0.2 μmol/mol“FTIR”或“低温富集+GC-MS”或“CRDS”,在线/离线氨(NH3)0.1 μmol/mol“FTIR”或“CRDS”或“在线吸收-离子色谱法”,在线/离线总卤化合物(按卤离子计)0.05 μmol/mol无机卤化物:“在线吸收-离子色谱法”,在线/离线;有机卤化物:“预浓缩+GC-MS”或“预浓缩+GC-ECD”,在线/离线水分5 μmol/mol露点法、电容法、石英晶体震荡;在线/离线颗粒物1 mg/kg在线滤膜取样+称重法目前,氢能工作组正在组织开展的与燃料氢气质量检测相关的国家标准制修订项目有:“气体分析 质子交换膜燃料电池用氢气质量分析方法 指南(制定)”、“气体分析 微型热导气相色谱法(制定)”、“GB/T 28726-2012 气体分析 氦离子化气相色谱法(修订)”、“气体中微量水分的测定”系列标准修订,“气体中微量氧的测定”系列标准修订等;正在开展的团体标准制定项目:《气体分析 氢气中硫化物含量的测定 低温富集-硫化学发光气相色谱法》、《气体分析 氢气中氨含量的测定 光腔衰荡光谱法》、《气体分析 氢气中氩、氧、氦、甲烷、非甲烷总烃、一氧化碳、二氧化碳含量的测定 气相色谱法》。同时,氢能工作组已组织团队完成了“氢气中甲烷、一氧化碳、二氧化碳、甲醛、甲酸、氨和氯化氢的测定 傅里叶变换红外光谱法”、“氢气中卤化物的测定 在线吸收-离子色谱法”、“甲醛的测定 低温富集-气相色谱/质谱法”、“气体中微量水分的测定 电容法”、“高压气态氢气的取样方法”等系列方法标准的前期验证试验工作,下一步将在全国气体标准化技术委员会的组织下积极申报国家标准,完善涉及燃料氢气质量检测相关的取样和分析方法标准体系,满足我国氢能产业高质量发展对气体分析标准化的需求。参考文献[1] 潘义,邓凡锋,王维康,杨嘉伟,张婷,林俊杰,龙舟,姚伟民,方正.车用燃料氢气中杂质组分分析方法标准化现状与探讨——以质子交换膜燃料电池汽车为例[J].天然气工业,2021,41(04):115-123.[2] Yi P, Feng F D, Zheng F, et al. Integration of cryogenic trap to gas chromatography-sulfur chemiluminescent detection for online analysis of hydrogen gas for volatile sulfur compounds[J]. Chinese Chemical Letters, 2021(DOI:10.1016/j.cclet.2021.05.067)(作者:中国测试技术研究院化学研究所 潘义,邓凡锋)