求大神解释一下,食品国标4789.15中,霉菌和酵母测定,计数怎么计,标准是小于或等于50cfu/g,测得,霉菌1cfu,酵母7cfu(稀释10倍),是总得计数40cfu/g合格,还是霉菌5cfu/g,酵母35cfu/g不合格。标准50是总和50,还是各25的意思。急急急!
关于对《酵母及酵母制品分类导则》国家标准征求意见稿进行征集意见的通知http://file1.foodmate.net/file/upload/201208/20/13-38-47-31-410687.jpg 附件: http://www.foodmate.net/member/fckeditor/editor/images/ext/zip.gif 征求意见稿等.zip
β-葡聚糖的活性结构是由葡萄糖单位组成的多聚糖,它们大多数通过β-1,3结合,这是葡萄糖链连接的方式。它能够活化巨噬细胞、嗜中性白血球等,因此能提高白细胞素、细胞分裂素和特殊抗体的含量,全面刺激机体的免疫系统。那么,机体就有更多的准备去抵抗微生物引起的疾病。β-葡聚糖能使受伤机体的淋巴细胞产生细胞因子(IL-1)的能力迅速恢复正常,有效调节机体免疫机能。大量实验表明,β-葡聚糖可促进体内IgM抗体的产生,以提高体液的免疫能力。这种葡聚糖活化的细胞会激发宿主非专一性防御机制,故应用在肿瘤、感染病和治疗创伤方面深受瞩目。经特殊步骤萃取且不含内毒素的β-1,3-葡聚糖在美国FDA已认定是一种安全的物质,可添加在一般食品,许多报导显示老鼠口服酵母β-1,3-葡聚糖,可增加强腹膜细胞抗菌之吞噬作用。酵母葡聚糖是存在于酵母细胞壁中的一种具有增强免疫力活性的多糖——β-葡聚糖。β-葡聚糖广泛存在于各种真菌和植物,如香菇、灵芝、燕麦中,是它们发挥保健作用的主要功效物质。而酵母葡聚糖的免疫增强活性更强,并具有改善血脂、抗辐射、改善肠道功能的作用。
吐司生产中配料添加了酵母 那我出厂检验微生物的判定标准还是按GB7099执行吗 这样的话老是检测不合格,是不是要去除酵母的数量再计数?求各位大神指导一下,谢谢!
酵母膏和酵母粉的营养成分差不多,可否认为可以用酵母粉替换酵母膏,你尝试过没,说说体会吧。
[color=#444444]孟加拉红板上长很多菌,但是不确定是不是霉菌酵母,求鉴定方法,谢谢,目前接了营养琼脂,下一步要怎么做?[/color]
我们平常所吃的馒头、面包,都是面经过发酵而制成的,它们蓬松有弹性,口感很好,还带有特殊的香味。而用来发酵的无论是从前的酵头,还是现在的发酵粉,其实都是添加剂酵母菌。现在酵母菌的作用已经不仅仅只停留在发酵作用上了,由于其独特的品性,酵母菌的用途也越来越广,成为一种多功能的食品添加剂。 酵母菌功用之一发酵 发酵是酵母菌最主要的功用。人类很早就开始将酵母菌应用于食品生产中,例如酒精饮料、酱油、食醋、馒头和面包的发酵等等。在面包和馒头的生产中,酵母发酵产生大量二氧化碳.使面团膨胀,形成松软的组织。 在食品工业上常见的酵母菌有啤酒酵母,用于生产啤酒、白酒和酒精,以及制做面包;葡萄酒酵母,也称酿酒酵母,用于酿造葡萄酒和果酒,也用于啤酒和白酒的酿造。其中啤酒酵母是食品工业上应用最为广泛的微生物之一,啤酒酵母菌体内维生素、蛋白质含量很高,其药用价值也很高,还可以用于做饲料,提取核酸、麦角醇、谷胱甘肽、凝血质和三磷酸腺苷等。
空气污染特别是PM2.5是当前人类面临的重要的环境问题之一。北京大学课题组研究人员近期在此问题上取得跨学科进展,首次以荧光标记酵母菌的微流控装置取代现有方法中的半导体传感器,实现了对PM2.5多方面毒性的实时在线监测。据了解,目前对于大气颗粒物的毒性研究,大多采用离线的方式,不能及时知晓其毒性;而细胞染毒或动物暴露实验灵敏度偏低,一些健康效应不易检测到。在颗粒物致病机理方面,目前也存在类似“盲人摸象”的现象,不能够全方面地了解PM2.5的毒性机理。受酵母菌相关研究的启发,由北大环境科学与工程学院研究员要茂盛、物理学院副教授罗春雄领导的研究团队,集成利用空气采样、微流控、荧光蛋白标记的酵母菌以及单酵母菌蛋白荧光自动检测平台,用活体酵母菌替代传统半导体传感器,创建了大气PM2.5毒性实时在线监测系统。要茂盛介绍,课题组先将PM2.5颗粒物采集到液体中,再将样品实时输送至放有酵母菌的微流控芯片里。由于酵母菌会对来自颗粒物的刺激发生反应,通过用不同荧光蛋白标记酵母菌的所有基因,就可实时看到酵母菌的哪些基因对颗粒物的刺激发生了响应,就好像可“实时监测不同地区车辆行驶状况”。据悉,这种酵母菌俗称酿酒酵母,繁殖快,其基因序列于1996年测序完成,是第一个完成基因测序的真核生物,被广泛地应用在人类疾病研究中。研究人员认为,这种方法对于颗粒物对人体健康效应机制的研究提供了开创性的研究思路和方法,可从分子水平理解PM2.5对人体的可能损伤情况。目前,此项研究成果已申请国家发明专利。课题组正在利用该体系对不同国家、地区颗粒物的毒性进行研究,同时也在筛查更多有响应的酵母菌蛋白,并研究其灵敏度、响应的毒性标定,以进一步揭示PM2.5对人体的具体致病毒性机制。
[b][color=#646464][color=#1a1a1a]酵母抽提物,英文Yeast Extract,简称YE。[/color][/color][/b][color=#1a1a1a]酵母抽提物可以说是食物风味诱惑的原动力,让吃货们欲罢不能的味道,很多时候其实是YE在起作用。[/color][color=#1a1a1a][color=#1a1a1a]对于食品工业生产和餐饮门店,是非常熟悉的。家庭厨房中一般不会见到,其实他是隐藏的。[color=#1a1a1a]回家看看家里酱油瓶子的配料表上,不管是老抽、生抽、味极鲜,都能看到他的名字。[/color][/color][/color][color=#1a1a1a]它的神奇之处,在于包含了人体可直接吸收利用的可溶性营养及风味物质的浓缩物,[color=#1a1a1a]如20种氨基酸和多肽、核苷酸、维生素、有机酸和矿物质等等。[color=#1a1a1a]复杂成分带来多种丰富而饱满的味道。[/color][/color][/color][color=#1a1a1a]家用时,假如手抖放多了,除了味道太重,也没别的危害。[color=#1a1a1a]而且素食者也可以用,是难得的同时营养、调味和保健三大功能的食品调味料。[/color][/color][color=#1a1a1a]酵母抽提物的原料是啤酒酵母、葡萄酒酵母和面包酵母为原料。[color=#1a1a1a]主流产品是啤酒酵母,很大一部分产量是啤酒酿造的副产品。[color=#1a1a1a]这个以前是当做废弃物的,后来发现这个宝贝的味道太浓郁,再稍作加工大有可为。[/color][/color][/color]
?酵母的营养需求酒精发酵过程中,可吸收氮是酵母必不可少的营养物质,?即铵盐(NH4?+?)和氨基酸(有机氮)。它们天然存在于葡萄果汁中且含量随时都在变化。往往,天然的氮源并不能满足酵母的发酵需求。
随着对多种重要生物的大规模基因组测序工作的完成,基因工程领域又迎来了一个新的时代---功能基因组时代。它的任务就是对基因组中包含的全部基因的功能加以认识。生物体系的运作与蛋白质之间的互相作用密不可分,例如:DNA合成、基因转录激活、蛋白质翻译、修饰和定位以及信息传导等重要的生物过程均涉及到蛋白质复合体的作用。能够发现和验证在生物体中相互作用的蛋白质与核酸、蛋白质与蛋白质是认识它们生物学功能的第一步。 酵母双杂交技术作为发现和研究在活细胞体内的蛋白质与蛋白质之间的相互作用的技术平台,在近几年来得到了广泛运用。酵母双杂交系统是在真核模式生物酵母中进行的,研究活细胞内蛋白质相互作用,对蛋白质之间微弱的、瞬间的作用也能够通过报告基因的表达产物敏感地检测得到,它是一种具有很高灵敏度的研究蛋白质之间关系的技术。大量的研究文献表明,酵母双杂交技术既可以用来研究哺乳动物基因组编码的蛋白质之间的互作,也可以用来研究高等植物基因组编码的蛋白质之间的互作。因此,它在许多的研究领域中有着广泛的应用。本文就酵母双杂交的技术平台和应用加以介绍。 酵母双杂交系统的建立是基于对真核生物调控转录起始过程的认识。细胞起始基因转录需要有反式转录激活因子的参与。反式转录激活因子,例如酵母转录因子GAL4在结构上是组件式的(modular),往往由两个或两个以上结构上可以分开,功能上相互独立的结构域(domain)构成,其中有DNA结合功能域(DNA binding domain,DNA-BD)和转录激活结构域(activation domain,DNA-AD)。这两个结合域将它们分开时仍分别具有功能,但不能激活转录,只有当被分开的两者通过适当的途径在空间上较为接近时,才能重新呈现完整的GAL4转录因子活性,并可激活上游激活序列(upstream activating sequence, UAS)的下游启动子,使启动子下游基因得到转录。 根据这个特性,将编码DNA-BD的基因与已知蛋白质Bait protein的基因构建在同一个表达载体上,在酵母中表达两者的融合蛋白BD-Bait protein。将编码AD的基因和cDNA文库的基因构建在AD-LIBRARY表达载体上。同时将上述两种载体转化改造后的酵母,这种改造后的酵母细胞的基因组中既不能产生GAL4,又不能合成LEU、TRP、HIS、ADE,因此,酵母在缺乏这些营养的培养基上无法正常生长。当上述两种载体所表达的融合蛋白能够相互作用时,功能重建的反式作用因子能够激活酵母基因组中的报告基因HIS、ADE、LACZ、MEL1,从而通过功能互补和显色反应筛选到阳性菌落。将阳性反应的酵母菌株中的AD-LIBRARY载体提取分离出来,从而对载体中插入的文库基因进行测序和分析工作。在酵母双杂交的基础上,又发展出了 酵母单杂交、酵母三杂交和酵母的反向杂交技术。它们被分别用于核酸和文库蛋白之间的研究、三种不同蛋白之间的互作研究和两种蛋白相互作用的结构和位点。 基于酵母双杂交技术平台的特点,它已经被应用在许多研究工作当中。 1、利用酵母双杂交发现新的蛋白质和蛋白质的新功能 酵母双杂交技术已经成为发现新基因的主要途径。当我们将已知基因作为诱饵,在选定的cDNA文库中筛选与诱饵蛋白相互作用的蛋白,从筛选到的阳性酵母菌株中可以分离得到AD-LIBRARY载体,并从载体中进一步克隆得到随机插入的cDNA片段,并对该片段的编码序列在GENEBANK中进行比较,研究与已知基因在生物学功能上的联系。另外,也可作为研究已知基因的新功能或多个筛选到的已知基因之间功能相关的主要方法。例如:Engelender等人以神经末端蛋白alpha-synuclein 蛋白为诱饵蛋白,利用酵母双杂交CLONTECH MATCHMARKER SYSTEM 3为操作平台,从成人脑cDNA文库中发现了与alpha-synuclein相互作用的新蛋白Synphilin-1,并证明了Synphilin-1与alpha-synuclein 之间的相互作用与帕金森病的发病有密切相关。为了研究两个蛋白之间的相互作用的结合位点,找到影响或抑制两个蛋白相互作用的因素,Michael等人又利用酵母双杂交技术和基因修饰证明了alpha-synuclein的1-65个氨基酸残基和Synphilin-1的349-555个氨基酸残基之间是相互作用的位点。研究它们之间的相互作用位点有利于基因治疗药物的开发。 2、利用酵母双杂交在细胞体内研究抗原和抗体的相互作用 利用酶联免疫(ELISA)、免疫共沉淀(CO-IP)技术都是利用抗原和抗体间的免疫反应,可以研究抗原和抗体之间的相互作用,但是,它们都是基于体外非细胞的环境中研究蛋白质与蛋白质的相互作用。而在细胞体内的抗原和抗体的聚积反应则可以通过酵母双杂交进行检测。例如:来源于矮牵牛的黄烷酮醇还原酶DFR与其抗体scFv的反应中,抗体的单链的三个可变区A4、G4、H3与抗原之间作用有强弱的差异。Geert等利用酵母双杂交技术,将DFR作为诱饵蛋白,编码抗体的三个可变区的基因分别被克隆在AD-LIBRARY载体上,将BD-BAIT载体和每种AD-LIBRARY载体分别转化改造后的酵母菌株中,并检测报告基因在克隆的菌落中的表达活性,从而在活细胞的水平上检测抗原和抗体的免疫反应。 3、利用酵母双杂交筛选药物的作用位点以及药 物对蛋白质之间相互作用的影响 酵母双杂交的报告基因能否表达在于诱饵蛋白与靶蛋白之间的相互作用。对于能够引发疾病反应的蛋白互作可以采取药物干扰的方法,阻止它们的相互作用以达到治疗疾病的目的。例如:Dengue病毒能引起黄热病、肝炎等疾病,研究发现它的病毒RNA复制与依赖于RNA的RNA聚合酶(NS5)与拓扑异构酶NS3,以及细胞核转运受体BETA-importin的相互作用有关。研究人员通过酵母双杂交技术找到了这些蛋白之间相互作用的氨基酸序列。如果能找到相应的基因药物阻断这些蛋白之间的相互作用,就可以阻止RNA病毒的复制,从而达到治疗这种疾病的目的。 4、利用酵母双杂交建立基因组蛋白连锁图(Genome Protein Linkage Map)众多的蛋白质之间在许多重要的生命活动中都是彼此协调和控制的。基因组中的编码蛋白质的基因之间存在着功能上的联系。通过基因组的测序和序列分析发现了很多新的基因和EST序列,HUA等人利用酵母双杂交技术,将所有已知基因和EST序列为诱饵,在表达文库中筛选与诱饵相互作用的蛋白,从而找到基因之间的联系,建立基因组蛋白连锁图。对于认识一些重要的生命活动:如信号传导、代谢途径等有重要意义。
请问谁知道酵母酶解粉是什么?它和酵母粉之间有什么区别吗?
据美国物理学家组织网12月27日报道,美国伊利诺伊大学香槟分校食品科学与人类营养系、加州大学劳伦斯伯克利国家实验室和英国石油公司(BP)的科学家表示,他们对酿酒酵母进行了基因改造,新得到的酵母菌株可以发酵葡萄糖、纤维二糖(葡萄糖的前体物,由两个结合在一起的葡萄糖组成)和木糖,能更好更多地把植物发酵成替代燃料乙醇。相关研究发表在最新一期的美国《国家科学院院刊》上。酵母以糖为生,并在这个过程中能产生很多对人来说是“宝物”的废物——乙醇和二氧化碳,因此生物燃料工业也使用酵母将植物糖转变为生物乙醇。然而,大多数酵母无法将植物中的葡萄糖、纤维二糖和木糖这三种糖全部转化成有用的燃料,比如,酿酒酵母能很好地发酵葡萄糖,但对木糖却有心无力,这使得利用酵母制造生物燃料的成本居高不下。之前,科学家对酵母菌种进行基因改造,让其代谢木糖,但速度很慢,效率过低。研究小组成员之一、伊利诺伊大学食品科学和人类营养学教授金泳恕(音译)表示,经过基因改造的酵母无法发酵木糖的主要问题是,它接触木糖之前会吸收所有葡萄糖,酵母表面的葡萄糖转运蛋白更愿意同葡萄糖依附在一起。在此项新研究中,基因改造后的酿酒酵母可以同时将纤维二糖和木糖转化为乙醇。转化效率和转化得到的乙醇数量都提高了一倍,这主要归结于混合发酵的协同作用。金泳恕表示,新酵母菌种将木糖转化为乙醇的效率至少比目前已知酵母菌高20%,使其成为最好的发酵木糖的细菌。研究团队通过对酿酒酵母做出几个关键的改进而获得了这样的结果。首先,他们给予这种酵母一个纤维二糖转运蛋白,这意味着其能将纤维二糖直接带入细胞中,而只有当纤维二糖进入到细胞内部时,它才会被转化为葡萄糖。这种方法可以战胜酿酒酵母本身对葡萄糖的偏好,从而专注于将木糖吸收进酵母细胞中。接着,研究人员将从一个消耗木糖的酵母中提取的3种蛋白质插入酿酒酵母中,由此提高了新酵母菌种代谢木糖的速度和效率。他们也对一种人造的同功酶进行了基因修改,让木糖代谢的正常中间产物木糖醇积聚的数量最少。最后,该研究团队使用“进化工程”让新菌种利用木糖的能力达到最大。研究人员表示,混合发酵的成本优势也很明显,其乙醇产量也高于工业标准,这种研究很快将被商业化。
酵母菌在中国的研究与开发 从2000年开始,在国家葡萄产业从2000年开始,在国家葡萄产业技术体系、国家自然基金等项目的支持下,刘延琳教授团队二十多来坚持不懈进行本土酵母资源的收集、鉴定、挖掘、优选,建立了保藏2万余份本土葡萄酒酵母的种质资源库,开发了典型特征突出、综合性状优良、功能细分的系列本土酵母菌种30株。经过研究测试,CEC01和CECA这2株中国本土优良葡萄酒酵母菌种具有耐受力强、发酵力强、香气表达力强等特点,率先于2013-2014年进入产业化应用,现已实现对进口葡萄酒酵母30%的国产化替代。经过规模化产业应用,这2个菌种生产的葡萄酒活性干酵母已批量出口至欧洲传统葡萄酒主产国,提升了中国葡萄酒产业的国际竞争力和美誉度。技术体系、国家自然基金等项目的支持下,刘延琳教授团队二十多来坚持不懈进行本土酵母资源的收集、鉴定、挖掘、优选,建立了保藏2万余份本土葡萄酒酵母的种质资源库,开发了典型特征突出、综合性状优良、功能细分的系列本土酵母菌种30株。经过研究测试,CEC01和CECA这2株中国本土优良葡萄酒酵母菌种具有耐受力强、发酵力强、香气表达力强等特点,率先于2013-2014年进入产业化应用,现已实现对进口葡萄酒酵母30%的国产化替代。经过规模化产业应用,这2个菌种生产的葡萄酒活性干酵母已批量出口至欧洲传统葡萄酒主产国,提升了中国葡萄酒产业的国际竞争力和美誉度。
空气污染特别是PM2.5是当前人类面临的重要的环境问题之一。北京大学课题组研究人员近期在此问题上取得跨学科进展,首次以荧光标记的酵母菌取代现有方法中的半导体传感器,实现了对PM2.5多方面毒性的实时在线监测。受酵母菌相关研究的启发,北大环境科学与工程学院研究员要茂盛课题组先将PM2.5颗粒物采集到液体中,再将样品实时输送至放有酵母菌的芯片里。由于酵母菌会对来自颗粒物的刺激发生反应,通过用不同荧光蛋白标记酵母菌的所有基因,就可实时看到酵母菌的哪些基因对颗粒物的刺激发生了响应,就好像可“实时监测不同地区车辆行驶状况”。比较于传统方法半导体传感器监测PM2.5,现在用酵母菌实现PM2.5毒性实时在线监测,哪个合适,这事你怎么看?详情请看:http://www.instrument.com.cn/news/20170322/215289.shtml
啤酒酵母产生异味的原因主要有以下几个方面: [color=initial]一、酵母代谢产物[/color] [list=1][*] 高级醇 [list][*]形成原因:高级醇是酵母在发酵过程中代谢产生的副产物。当酵母在发酵过程中,尤其是在主发酵阶段,会进行糖代谢和氨基酸代谢,其中一些氨基酸会通过转氨作用和脱羧作用生成高级醇。此外,发酵温度过高、酵母接种量过大、发酵时间过长等因素也会增加高级醇的生成量。[*]异味表现:高级醇具有较高的沸点和较低的挥发性,在啤酒中含量过高时会给啤酒带来刺鼻的酒精味和杂醇油味,使啤酒口感粗糙,饮用后容易上头。[/list][*] 酯类 [list][*]形成原因:酯类是酵母在发酵过程中通过脂肪酸代谢和醇类代谢产生的。酵母在发酵过程中会合成脂肪酸,这些脂肪酸可以与醇类反应生成酯类。发酵温度、酵母菌株、麦汁成分等因素都会影响酯类的生成量。[*]异味表现:酯类具有较低的沸点和较高的挥发性,在啤酒中含量过高时会给啤酒带来水果味、花香或溶剂味。虽然适量的酯类可以为啤酒增添香气,但过多的酯类会使啤酒的风味失衡,产生异味。[/list][*] 双乙酰 [list][*]形成原因:双乙酰是酵母在发酵过程中由 α- 乙酰乳酸氧化脱羧生成的。在啤酒发酵的前期,酵母会产生 α- 乙酰乳酸,然后在酵母细胞内或发酵液中被氧化脱羧生成双乙酰。当发酵后期酵母的活性降低时,双乙酰的还原速度会变慢,导致双乙酰在啤酒中的含量升高。[*]异味表现:双乙酰具有强烈的馊饭味,在啤酒中含量过高时会使啤酒产生不愉快的异味,严重影响啤酒的口感和品质。[/list][/list] [color=initial]二、酵母自溶[/color] [list=1][*] 原因 [list][*]当酵母在发酵后期或储存过程中受到不良环境因素的影响时,如温度过高、压力过大、营养缺乏、pH 值变化等,酵母细胞会失去完整性,发生自溶现象。酵母自溶后,细胞内的物质会释放到啤酒中,包括蛋白质、核酸、多糖等。[*]例如,在发酵后期,如果温度控制不当,酵母的代谢活动会加快,导致酵母细胞衰老和自溶。此外,如果啤酒在储存过程中受到震动或温度变化的影响,也会加速酵母的自溶。[/list][*] 异味表现 [list][*]酵母自溶后释放的蛋白质和核酸会在啤酒中分解成氨基酸和核苷酸等物质,这些物质会使啤酒的口感变得粗糙,产生浑浊和异味。同时,自溶的酵母还会释放出一些脂肪酸和醛类物质,进一步加重啤酒的异味。[/list][/list] [color=initial]三、酵母污染[/color] [list=1][*] 原因 [list][*]在啤酒酿造过程中,如果卫生条件不佳、设备消毒不彻底、酵母储存不当等,就会导致酵母受到杂菌的污染。常见的污染酵母的杂菌有乳酸菌、醋酸菌、野生酵母等。[*]例如,在发酵罐或管道中残留的麦汁或啤酒如果没有及时清洗干净,就会滋生杂菌,然后在下次发酵时污染酵母。此外,如果酵母在储存过程中没有密封好,或者与空气接触时间过长,也会容易受到野生酵母的污染。[/list][*] 异味表现 [list][*]被污染的酵母会产生不同于正常酵母的代谢产物,从而给啤酒带来异味。例如,乳酸菌污染会使啤酒产生酸味;醋酸菌污染会使啤酒产生醋酸味;野生酵母污染会使啤酒产生不良的风味和香气,甚至可能导致啤酒变质。[/list][/list] [color=initial]四、麦汁成分[/color] [list=1][*] 不良成分 [list][*]如果麦汁中含有过多的不良成分,如脂肪酸、醛类、酮类等,这些成分会影响酵母的代谢,导致酵母产生异味。此外,麦汁中的重金属离子、农药残留、抗生素等物质也会对酵母的生长和代谢产生不良影响,从而影响啤酒的风味。[*]例如,如果麦汁中的脂肪酸含量过高,酵母在发酵过程中会将这些脂肪酸转化为不良的风味物质,使啤酒产生异味。此外,如果麦汁中含有抗生素,会抑制酵母的生长和代谢,导致发酵不完全,产生异味。[/list][*] 营养不平衡 [list][*]如果麦汁中的营养成分不平衡,如缺乏必要的维生素、矿物质、氨基酸等,也会影响酵母的代谢,导致酵母产生异味。例如,如果麦汁中缺乏锌离子,会影响酵母的生长和代谢,导致酵母产生不良的风味物质。[/list][/list] 综上所述,啤酒酵母产生异味的原因是多方面的,需要在啤酒酿造过程中严格控制各个环节,以确保酵母的正常生长和代谢,从而生产出品质优良的啤酒
我想做一个酵母菌阳性样本,不知道如何活化安琪干酵母,请馈赠详细的活化步骤,操作越简单越好。在网上看到有说直接用温水活化即可,是否可行?
面包制作中添加了酵母,出厂检验还是以7099的微生物标准执行或不执行,酵母属不属于7099中的未熟制的发酵配料,要是按7099执行,出厂检验菌落总数不合格,大概率就是酵母在熟制过程中未杀死了是不是
求孟加拉红培基上酵母菌与细菌菌落的鉴别方法,最好附图说明,谢谢各位了先
实时定量PCR区分酿酒酵母和鉴定野生酵母的最优技术注:全文见附件。有用到的鼓掌不要都做伸手党
大家好,请问哪里有面包酵母的生产许可审查细则,麻烦帮忙给个链接,谢谢!
求问各位有没有用二甲苯胺蓝染色液染色过酵母,有没有镜检图片。我这怀疑是酵母,所以染色了,图如下。[img=,375,500]https://ng1.17img.cn/bbsfiles/images/2019/07/201907031350457583_2773_1795523_3.jpg!w375x500.jpg[/img]
[color=initial]一、菌种选育[/color] [list=1][*] 传统选育方法 [list][*]从自然界中筛选优良菌株:可以从不同的啤酒生产环境、土壤、水果等来源中采集酵母样本,通过分离、纯化和筛选,找到具有优良发酵性能和风味特征的酵母菌株。例如,从传统的啤酒酿造地区采集土壤样本,从中分离出可能适合啤酒发酵的酵母菌株。[*]诱变育种:利用物理(如紫外线、X 射线等)或化学(如亚硝基胍、硫酸二乙酯等)诱变剂对现有酵母菌株进行处理,使其发生基因突变,然后筛选出具有优良性状的突变株。例如,用紫外线照射酵母菌株,使其发生基因突变,然后通过发酵实验筛选出发酵速度快、产酒精能力强的突变株。[/list][*] 现代生物技术选育方法 [list][*]基因工程技术:通过基因克隆、表达和调控等手段,对酵母菌株进行改良。例如,可以将具有优良发酵性能的基因导入到酵母菌株中,使其获得更好的发酵能力和风味特征。或者通过基因编辑技术,对酵母菌株的特定基因进行修饰,以改善其性能。[*]高通量筛选技术:利用自动化设备和先进的检测技术,对大量的酵母菌株进行快速筛选。例如,使用微流控芯片技术,可以同时对数千个酵母菌株进行发酵实验和分析,大大提高了筛选效率。[/list][/list] [color=initial]二、优化发酵工艺[/color] [list=1][*] 控制发酵条件 [list][*]温度控制:根据不同的酵母菌株和啤酒类型,确定最佳的发酵温度。一般来说,低温发酵可以产生更多的风味物质,而高温发酵则可以加快发酵速度。例如,对于淡色啤酒,可以采用较低的发酵温度(8-12℃),以获得清爽的口感和丰富的风味;而对于深色啤酒,可以采用较高的发酵温度(15-20℃),以促进麦芽的焦香和酵母的代谢。[*]压力控制:适当的压力可以促进酵母的发酵活动,提高啤酒的质量。例如,在发酵过程中,可以通过控制发酵罐的压力,使酵母在一定的压力下进行发酵,从而提高发酵效率和啤酒的风味。[*]pH 值控制:保持适宜的 pH 值对于酵母的生长和发酵至关重要。一般来说,啤酒发酵的 pH 值在 4.0-5.5 之间。可以通过调整麦汁的 pH 值、添加缓冲剂等方法,控制发酵过程中的 pH 值。[/list][*] 优化麦汁成分 [list][*]调整麦汁浓度:根据不同的啤酒类型和酵母菌株,确定最佳的麦汁浓度。一般来说,高浓度的麦汁可以产生更多的酒精和风味物质,但也会增加酵母的代谢负担。例如,对于高浓度啤酒,可以采用较高的麦汁浓度(12-16°P),以获得浓郁的口感和香气;而对于低浓度啤酒,可以采用较低的麦汁浓度(8-10°P),以获得清爽的口感。[*]优化麦汁营养成分:确保麦汁中含有足够的碳源、氮源、维生素和矿物质等营养物质,以满足酵母的生长和发酵需求。例如,可以添加适量的麦芽提取物、酵母营养盐等,提高麦汁的营养价值。同时,要避免麦汁中含有过多的不良成分,如脂肪酸、醛类、酮类等,这些成分会影响酵母的代谢,导致酵母产生异味。[/list][*] 合理的酵母接种量和接种时间 [list][*]确定最佳的酵母接种量:酵母接种量过大或过小都会影响发酵效果和啤酒质量。一般来说,酵母接种量在 0.5-1.5×10?个细胞 / 毫升麦汁之间。可以根据酵母菌株的特性、麦汁浓度、发酵温度等因素,确定最佳的酵母接种量。例如,对于发酵速度快的酵母菌株,可以适当减少接种量;而对于发酵速度慢的酵母菌株,则可以适当增加接种量。[*]选择合适的接种时间:在麦汁冷却至适宜的接种温度后,及时接种酵母。过早或过晚接种酵母都会影响发酵效果。一般来说,在麦汁冷却至 8-12℃后,尽快接种酵母,以保证酵母的生长和发酵活动顺利进行。[/list][/list] [color=initial]三、酵母管理[/color] [list=1][*] 酵母的扩培和储存 [list][*]酵母扩培:采用科学的酵母扩培方法,确保酵母的数量和质量。一般来说,酵母扩培需要经过多个阶段,从原始菌种开始,逐步扩大培养,直到达到所需的酵母数量。在扩培过程中,要严格控制温度、pH 值、营养物质等条件,保证酵母的生长和繁殖。[*]酵母储存:正确储存酵母可以延长其使用寿命和保持其质量。酵母储存的条件包括低温、干燥、无氧等。一般来说,酵母可以储存在冰箱或冷库中,温度控制在 0-4℃之间。同时,要避免酵母与空气接触,以免酵母氧化和变质。在储存过程中,要定期检查酵母的质量,如有必要,可以进行活化和再培养。[/list][*] 酵母的回收和再利用 [list][*]酵母回收:在啤酒发酵结束后,及时回收酵母。可以采用离心、过滤等方法,将酵母从啤酒中分离出来。回收的酵母要经过清洗、消毒等处理,去除杂质和残留的啤酒成分。[*]酵母再利用:经过处理后的酵母可以再次用于啤酒发酵。但要注意控制酵母的使用次数,一般来说,酵母的使用次数不宜超过 5-7 次。随着使用次数的增加,酵母的活性和发酵性能会逐渐下降,需要及时更换新的酵母菌株。[/list][*] 酵母的检测和监控 [list][*]定期检测酵母的质量:包括酵母的活性、数量、纯度、发酵性能等指标。可以采用显微镜观察、平板计数、发酵实验等方法,对酵母进行检测。例如,通过显微镜观察酵母细胞的形态和大小,判断酵母的活性和健康状况;通过平板计数法,确定酵母的数量和纯度;通过发酵实验,检测酵母的发酵性能和产酒精能力。[*]监控发酵过程中的酵母状态:在啤酒发酵过程中,要密切关注酵母的生长和代谢情况。可以通过检测发酵液的温度、pH 值、糖度、酒精含量等指标,了解酵母的发酵活动。同时,要注意观察发酵液的外观、气味等变化,如有异常情况,要及时采取措施进行处理。[/list][/list] 通过以上方法,可以有效地提高啤酒酵母的质量,从而生产出品质优良的啤酒
[font=SimSun, STSong, &]可否提供国卫食品标便函[2014]141号,关于啤酒酵母标示的内容,找不到原文。谢谢[/font][font=SimSun, STSong, &]想知道酵母在啤酒的配料里是不是必须标注的[/font]
酵母类型和连续发酵对经典酒类酵母类型和连续发酵对经典酒类参数的影响酒精发酵结束时,所有连续的S的乙醇浓度在9.0到11.5% (v/v)之间,糖浓度低于2.0g.L-1。与不完全酒精发酵的纯培养物相比,接种P的样品完成发酵的时间最长,至少12天。对于其他NS酵母来说,7天就足以完成酒精发酵,而对于S纯培养物来说,则需要5天。与NS纯培养发酵相比,顺序发酵有助于增加乙醇浓度,但也减少了发酵时间。与S纯培养物相比,来自连续发酵的葡萄酒酒精含量的降低证实了NS酵母用于降低乙醇含量的效用。由于所有形式的葡萄汁和发酵条件都是相同的,使用代谢组学在最终葡萄酒成分和亮点中检测到的差异是由酵母的类型、酵母之间的相互作用和添加S的时间引起的。数的影响酒精发酵结束时,所有连续的S的乙醇浓度在9.0到11.5% (v/v)之间,糖浓度低于2.0g.L-1。与不完全酒精发酵的纯培养物相比,接种P的样品完成发酵的时间最长,至少12天。对于其他NS酵母来说,7天就足以完成酒精发酵,而对于S纯培养物来说,则需要5天。与NS纯培养发酵相比,顺序发酵有助于增加乙醇浓度,但也减少了发酵时间。与S纯培养物相比,来自连续发酵的葡萄酒酒精含量的降低证实了NS酵母用于降低乙醇含量的效用。由于所有形式的葡萄汁和发酵条件都是相同的,使用代谢组学在最终葡萄酒成分和亮点中检测到的差异是由酵母的类型、酵母之间的相互作用和添加S的时间引起的。
[b]1. 目的[/b] 对《食品安全国家标准 食品生生物学检验 霉菌和酵母计数》GB4789.15-2016进行细化,指导微生物实验室霉菌和酵母计数检测具体操作。[b]2. 适用范围[/b]本操作规程适用于食品、化妆品及一次性筷子中霉菌和酵母菌的计数。[b]3. 设备及材料[/b]冰箱、霉菌培养箱、拍击式均质、显微镜、电子天平、高压灭菌器及其他灭菌和常规检测用器皿、材料。[b]4. 培养基及试剂[/b] 生理盐水(0.85%氯化钠溶液) 孟加拉红培养基或马铃薯葡萄粮琼脂[b]5. 检验程序 [/b] [table][tr][td=1,1,35] [/td][/tr][tr][td] [/td][td][img=,527,469]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181712248843_5332_3247208_3.png[/img][/td][/tr][/table][b] 6. 操作步骤6.1 1:10样品匀液制 [/b]以生理盐水做样品稀释液。6.1.1食品样品 样品适宜时,取25g/ml样品加入装有225ml稀释液的均质袋中,用拍击式均质器充分混匀;如果样品硬度较大,不宜使用拍击式均质器时,取25g样品加入装有225ml稀释液的椎形瓶中充分振摇,制成1:10样品匀液。6.1.2 化妆品样品 油性液体,取10g/ml样品,先加入5ml灭菌石腊混匀,再加10 ml灭菌吐温80,42℃水浴,加75ml灭菌生理盐水,拍击均质1min,制成1:10样品匀液; 水溶性液体、膏、霜、粉剂等,称10 g样品加90ml灭菌生理盐水,拍击均质1min,制成1:10样品匀液 疏水性膏、霜及眉笔、口红等,称10 g/ml样品加10 ml灭菌液体腊和10 ml灭菌吐温80,再加入70 ml灭菌生理盐水,拍击均质3 min,制成1:10样品匀液。6.1.3 一次性筷子样品 取一次性筷子25g(通常取6双,表面积约为50平方厘米)加入装有225ml稀释液的无菌袋中充分振摇,作为1:10的样品匀液。[b]6.2 样品匀液稀释[/b]用[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff][url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url][/color][/url]取1ml 1:10的样品匀液注入装有9ml稀释液的试管中,另换一个枪头,反复吹吸,制成1:100样品匀液。按此法依次制备10倍递增稀释的系列样品匀液。根据对样品污染状况的估计,选择2-3个适宜稀释度(液体样品可包括原液),在进行10倍递增稀释的同时,每个稀释度分别吸取1ml样品匀液加入2个无菌平皿内。同进分别取1ml样品稀释液加入2个平皿作空白对照。[b]6.3 倾注平皿[/b] 将冷却至46℃的孟加拉红培养基倾注平皿,及时转动平皿使培养基和样品匀液混合均匀。[b]注意:[/b]孟加拉红培养基可置46±1℃的水浴箱中保温,但不应超过4小时。凝固后的培养基只可复溶一次,否则将影响培养基质量。[b]6.4 培养[/b] 待琼脂凝固后,将平皿倒置,于28±1℃霉菌培养,3天后观观察,5天记录结果。[b]6.5 计数[/b] 肉眼观察,选取菌落数在10-150CFU的平板计数。根据检测要求,计数霉菌和酵母的总和或分别计数霉菌数和酵母数。霉菌、酵母和细菌的菌落鉴别可参照以下方法。[align=left]6.5.1肉眼观察菌落特征[/align][align=left]通常情况下肉眼观察,霉菌、酵母、细菌三种菌落在孟加拉红培基上的特征如下:[/align] [table][tr][td=1,1,83] 霉菌菌落[/td][td=1,1,482] 绒毛状、棉絮状、蛛网状。具有菌丝体,菌落较大,扁平,较干燥。颜色多样,白色、黑色、黄色多见,菌落正反面的颜色和边缘与中心的颜色常不一致,菌落周围有晕圈。[/td][/tr][tr][td=1,1,83] 酵母菌菌落[/td][td=1,1,482] 菌落较细菌大且厚,质地均匀,正反面和边缘、中央部位的颜色均一。光滑、湿润、常带黏性,菌落多为乳白色,少数为红色,个别为黑色。培养时间较长时可呈皱缩状,表面较干燥。位于琼脂内的菌落,可呈铁饼形、三角形及多角形。[/td][/tr][tr][td=1,1,83] 细菌菌落[/td][td=1,1,482] 由于受到抑制,通常会很小,红色,常呈橄榄形。[/td][/tr][/table]6.5.2 低倍镜观察菌落边缘形态肉眼观察菌落形态无法区别孟加拉红培养基上酵母和细菌时,可用低倍普通光学显微镜观察平板表面菌落边缘较薄较透光的部分,在边缘能看到细胞的是酵母,看不见的则是细菌。 [table=565][tr][td=1,1,83] 霉菌菌落[/td][td=1,1,482] 边缘可见明显的菌丝体。[/td][/tr][tr][td=1,1,83] 酵母菌菌落[/td][td=1,1,482] 边缘较规整,调节聚焦螺旋可见到细腻如细沙的结构。若无法确认可用接种针从边缘稍稍刮开菌落,即可在镜下见到卵圆形的细胞。[/td][/tr][tr][td=1,1,83] 细菌菌落[/td][td=1,1,482] 菌落紧密,边缘整齐,不易透光,看不到细沙粒样的结构。[/td][/tr][/table]6.5.3 染色法观察挑取菌落用亚甲基蓝或革兰氏染色,酵母菌霉菌在低倍镜下即可见到细胞或菌丝,而细菌不可见,无菌丝的酵母体积较大,在40倍显微镜下清晰可见,细菌则需在油镜下才能清楚观察。[b]7. 结果记录与报告[/b]7.1 结果记录计算两个平板菌落的平均值,再将平均值乘以相应的稀释倍数计算。7.1.1 若所有平板上菌落数均大于150CFU,则对稀释度最高的平板进行计数,其他夹板可记录为多不可计,结果按平均菌落数乘以最高稀释倍数计算。7.1.2 若所有平板上菌落数均小于10CFU,则按稀释度最低的平均菌落数乘以稀释倍数计算。7.1.3 若所有稀释度平板均无菌落生长,则以小于1乘以最低稀释倍数计算;如为原液,则以小于1计数。7.2 报告7.2.1 菌落数在100以内时,按“四舍五入”原则修约,采用两位有效数字报告。7.2.2 菌落数大于或等于100时,可将前3位数字采用“四舍五入”原则修约,取前两位数字,后面用0补齐位数表示结果(例如:结果为1210可表示为1200);也可采用两位有效数字乘以10的指数形式来表示(例如:结果为1210可表示为1.2*10[sup]3[/sup])。7.2.3 称重取样以CFU/g为单位,体积取样以CFU/ml为单位。7.2.4 根据检测要求分别报告霉菌和酵母数,或报告霉菌和酵母总数。[b]8. 参考文件[/b]《食品安全国家标准 食品微生物学检验 霉菌和酵母计数》 GB 4789.15-2016《一次性筷子 第1部分 木筷》 GB19790-2005《化妆品微生物标准检验方法》 GB 7918-1987
目前酵母抽提物应用最多的是食品加工业和生物培养基,在方便面料包、鸡精粉、酱油、肉制品、食用香精等产品中,酵母抽提物已经得到了较好的应用推广;在膨化食品、饼干糕点等产品中的应用也有出现。 我想知道它可以在营养功能食品,如针对特殊人群的低脂,降血糖食品中使用吗?
最近遇到一个问题,我们面包产品(冷加工)做霉菌检测时平板上会培养出很多酵母菌,正常吗,看到贴的朋友,可以交流一下
【中文名称】饲料酵母【英文名称】feed yeast【性状】 黄色粉末。有特殊香味。【用途】 在饲料中作蛋白源,在鸡饲料中添加4%,相当鱼粉的效果。【制备或来源】 将黄粉(或味精废液)用酵母菌培养,制得的菌体与培养基混合,再经脱水,干燥制得。【其他】 含粗蛋白65%以上,并含有18种氨基酸,其中8种是动物必须氨基酸。另外含有磷、钾、钙、镁等微量元素及多种维生素。【生产单位】 浙江义乌糖厂;山东省科学院生物研究所;山东省莱州酵母厂;
酵母之我见:可以是图片(包括各种酵母的图片:电镜扫描的、培养基上的……),酵母的分类介绍、酵母的用途……只要是关于酵母您尽管畅所欲言~~~★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★(P.S:只要您的发言符合本主题内容,就可以轻轻松松得积分)视图片及发言内容,加2-10分,赶快来分享你的知识吧本期活动长期有效!!!