当前位置: 仪器信息网 > 行业主题 > >

贝诺酯对照品

仪器信息网贝诺酯对照品专题为您提供2024年最新贝诺酯对照品价格报价、厂家品牌的相关信息, 包括贝诺酯对照品参数、型号等,不管是国产,还是进口品牌的贝诺酯对照品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合贝诺酯对照品相关的耗材配件、试剂标物,还有贝诺酯对照品相关的最新资讯、资料,以及贝诺酯对照品相关的解决方案。

贝诺酯对照品相关的资讯

  • 化学药品研发中对照品(标准品)有关技术要求
    药物的质量研究与质量标准的制订是药物研发的主要内容之一,药品标准物质也是质量标准和质量研究中不可分割的一部分,是药品质量标准的物质基础。药品标准物质在新药研究中与产品定性、杂质控制及量值溯源密切相关,标准物质的运用贯穿于质量研究与质量标准的制订工作中。一、概述标准品、对照品系指用于药品鉴别、检查、含量测定的标准物质,即药品标准中使用的具有确定的特性或量值,用于对供试药品赋值、定性、评价测定方法或校准仪器设备的物质,其中标准品系指用于生物检定、抗生素或生化药品中含量或效价测定的标准物质。《药品注册管理办法》规定“中国药品生物制品检定所负责标定和管理国家标准物质”,“申请人在申请新药生产时,应当向中国药品生物制品检定所提供制备该药品标准物质的原材料,并报送有关标准物质的研究资料”。但在新药研究中,普遍存在对照品(标准品)的应用超前于中检所制备和标定的情况,鉴于新药研究的连续性以及标准物质在新药研究中涉及量值溯源、产品定性、杂质控制及其在药品质量控制中的重要性,标准物质的制备和标定与药品的质量研究、稳定性研究乃至药理毒理学研究中剂量的确定等临床前基础研究间存在密切关系,因此,药品对照品(标准品)的研究(制备与标定)也是药品审评的一项重要内容。二、对照品来源1、所用对照品(标准品)中检所已经发放提供,且使用方法相同时,应使用中检所提供的现行批号对照品(标准品),并提供其标签和使用说明书,说明其批号,不应使用其他来源者;如使用方法与说明书使用方法不同(如定性对照品用作定量用、效价测定用标准品用作理化测定法定量、UV法或容量法对照品用作色谱法定量等),应采用适当方法重新标定,并提供标定方法和数据;若色谱法含量测定用对照品用作UV法或容量法,定量用对照品用作定性等,则可直接应用,不必重新标定。2、申报临床研究时,如中检所尚无供应,为不影响注册进度,可先期与中检所接洽制备和标定,申报时提供标定报告、标签(应标明效价或含量、批号、使用效期)和使用说明书;也可与省所合作标定,申报时提供标准品或对照品研究资料,“说明其来源、理化常数、纯度、含量及其测定方法和数据”;标定有困难时,可使用国外药品管理当局或药典委员会发放的对照品(标准品)或国外制药企业的工作对照品(标准品),进行标准制订和其他基础性研究,但应提供其标签(应标明其含量)和使用说明书,能保证其量值溯源性;也可使用国外试剂公司(如sigma公司等)提供的对照品(标准品),但应提供试剂公司该批对照品(标准品)的检测报告(用作含量测定时,应有确定的含量数据),如为高纯度试剂,提供了国外试剂公司检测报告(用作含量测定时,应有确定的含量数据)时,也可使用,并应能保证其量值溯源性,但申请人应及时与中检所接洽对照品(标准品)的标定事宜,临床研究期间完成此工作。3、直接申报生产品种,如中检所尚无供应,可参照2中要求进行,并提供相应研究资料,但申请人在标准试行期间应与中检所接洽并完成的标定事宜。三、对照品(标准品)标定的技术要求1、创新药物应说明对照品(标准品)原料的制备路线、精制方法、质检报告,提供理化常数和纯度的测定数据及分析结果(包括相关图谱),提供标定方法的研究和验证资料(如与原料药质量研究项下相同,可不再提供)、含量测定数据及经统计分析得到的对照品(标准品)含量结果,并说明进行临床前药学研究、药理毒理学研究所用样品的含量是否用该批对照品(标准品)确定或可用该批对照品(标准品)进行量值溯源。纯度测定方法应选用色谱法,并采用两种以上不同分离机理或不同色谱条件并经验证的色谱方法相互验证比较,同时采用二极管阵列检测器或其它适宜方法检测HPLC法的色谱峰纯度,而后根据测定结果经统计分析确定对照品(标准品)原料的纯度。对于组份单一、纯度较高的药物,对照品(标准品)标定方法宜首选可进行等当量换算、精密度高、操作简便快速的容量法。可根据药物分子中所具有的官能团及其化学性质,选用不同的容量分析方法,但应符合如下条件:(1)反应按一个方向进行完全;(2)反应迅速,必要时可通过加热或加入催化剂等方法提高反应速度;(3)共存物不得干扰主药反应,或能用适当方法消除;(4)确定等当点的方法要简单、灵敏;(5)标化滴定液所用基准物质易得,并符合纯度高、组成恒定且与化学式符合、性质稳定(标定时不发生副反应)等要求。标定方法的选择要关注如下事项:(1)供试品的取用量应满足滴定精度的要求(消耗滴定液约20ml);(2)滴定终点的判断要明确,提供滴定曲线。如选用指示剂法,应考虑其变色敏锐,并用电位法校准其终点颜色;(3)为排除因加入其它试剂而混入杂质对测定结果的影响,或便于剩余滴定法的计算,可采用“将滴定的结果用空白试验校正”的办法;(4)要给出滴定度(采用四位有效数字)的推导过程。标定结果要根据3个以上实验室各不少于15组测定结果经统计分析,去除离群值和可疑值后的结果,并报告可信限。如该药物没有可进行等当量换算并符合要求的容量法时,可采用反复纯化的原料,色谱法确定纯度后扣除有关物质、炽灼残渣、水分和挥发溶剂等后的理论含量确定为标准品含量,以此为基准进行对照品(标准品)的换代和量值传递。用于抗生素微生物检定法的第一代基准标准品可参照上述方法标定,如为多组份抗生素,其组份比例应与拟上市产品组份比例一致或接近,或以其中某一组份纯品为基准标准品,但要注意标准品换代时量值传递的恒定。仅用于鉴别定性的化学对照品,注重其结构确证的研究资料,纯度和含量的要求一般可适当降低。杂质对照品,用作限度要求时,应提供其来源(合成路线)、结构确证的研究资料,应具备较高的纯度和含量,并提供纯度和含量的的测定结果,提供质量控制标准。2、其他类别药物用于抗生素微生物检定法的标准品须用上市国的国家标准品或原发厂的工作标准品为基准标准品进行标定。标定时采用的原料药应符合相应要求,并提供原料的制备路线、精制方法、质检报告,提供理化常数和纯度的测定数据及分析结果(包括相关图谱)。标定须用现行版中国药典附录收载的“抗生素微生物检定法”-三剂量法,并提供详细的方法学研究,包括检定菌和培养基的选择、剂量和剂距选择、缓冲液选择(如与质量研究项下相同,可不再提供)。每次标定结果均应照“生物检定统计法-量反应平行线测定法(3.3)”法进行可靠性测验及效价计算。对照品是质量标准的重要组成部分,从日常工作中发现,研发单位在对照品的制备、研究、标定、使用及保存过程中,仍存在部分问题。作为对照品,其研究工作的质量以及质量标准的高低直接影响新药研究的质量,对其提出技术要求是为了保证药品的质量控制与新药研究的结果准确有效,需重视起来。
  • “检测直通车”之食品及水样中诺如病毒的检测
    我要测讯 诺如病毒(Norovirus)是一组杯状病毒属病毒,其原型株诺瓦克病毒(Norwalk-like viruses)于1968年在美国诺瓦克市被分离发现。诺如病毒感染性强,以肠道传播为主,可通过污染的水源、食物、物品、空气等传播,常在社区、学校、餐馆、医院、托儿所、孤老院及军队等处引起集体暴发。感染者发病突然,主要症状为恶心、呕吐、发热、腹痛和腹泻。   世界上很多地区都有暴发的案例,例如2010年广州从化因为水污染引起的诺如病毒感染事件,共有429人发病 2012年9月底,德国首都柏林以及东部三个地区1万多名小学生和托儿所的幼儿发生疑以诺如病毒食物中毒 尤其以2012年12月,日本各地接连发生一系列因诺如病毒而引起的集体食品中毒事件最此人关注,从爱知县名古屋市一直到广岛县广岛市总的中毒人数1809人。   诺如病毒是全球流行性与散发性腹泻的主要病原之一,受污染的食品、水源是诺如病毒传播的重要污染源,例如贝类、水果、蔬菜、饮用水、水源水等。目前,我国在食品与水样中诺如病毒检测方面还没建立有相关的国家标准。根据文献报道,诺如病毒的检测方法主要包括电镜法、免疫法及分子扩增法(主要为PCR方法),其中分子扩增方法被认为是食品中检测诺如病毒的唯一方法(其他两种方法灵敏度差),而PCR则为“金标准”而被广泛作地采用。因此,完整的食品与水样中诺如病毒检测的主要流程共包括病毒的提取、核酸的纯化以及病毒的分子检测。   食品及水样中诺如病毒的检测方法   (protease K digestion & real-time reverse transcription-PCR)   一、实验原理   挑取被检样本或者被检样本中病毒易富集部位(例如贝类的消化腺组织),通过蛋白酶K消化的方法解离病毒,然后通过异硫氰酸胍等试剂纯化病毒RNA,接下来继续将病毒RNA进行反转录,最后将产物cDNA进行PCR检测。   二、仪器和试剂   荧光定量PCR仪、振荡培养箱、涡旋振荡器、离心机,TRIzol试剂、MMLV反转录试剂盒、Taqman realtime-PCR试剂盒超均为商品化试剂,其他试剂为国产分析纯,实验用水为不含核酸酶的超纯水。   三、实验方法   1.食品前处理   选取被检适当量样本(不同种类食品样本量不同)。以贝类样本为例,一般取5~10个左右,用无菌水冲洗干净贝壳表面后撬开贝壳,然后用无菌的手术刀切取其中的消化腺组织共1.5g,并尽量切碎贝类组织。   2.蛋白酶K消化   诺如病毒解离的方法有很多,包括PEG沉淀法、超滤法、超速离心法等等,而蛋白酶K消化的方法由于其自身简单、耗时短、稳定性高等特点,而被欧洲标准化委员会认定为贝类中诺如病毒解离的标准操作方法。   ①向1.5g被检样本中加入2mL PBS,并加入蛋白酶K至浓度0.2mg/mL   ②涡旋振荡混匀后,置于37℃、300r/min的振荡器中孵育1h   ③孵育后样本置于65℃10min,进行蛋白酶K灭活处理   ④灭活后样本于3000r/min下离心5min,取上清进行下一步实验。   3.核酸纯化   RNA纯化用硅胶膜试剂盒与TRIzol试剂是目前主要采用的病毒RNA的纯化方法。目前本实验室采用TRIzol试剂法进行诺如病毒RNA的纯化:   ①取300μL上清液,加入到含1mL预冷的Trizol的EP管中,混匀后室温放置5min,加入0.2mL氯仿,充分混匀或旋窝震荡15s,室温放置5min,12000g离心15min   ②小心取上层水相600μL至含有预冷的600μL异丙醇的EP管中,混匀,室温放置10min,12000g离心10min   ③小心倒掉上清,加入1ml 75%乙醇(用DEPC处理的水进行配制),洗涤沉淀,12000g离心5min 倒掉上清,尽量吸净残留液体,室温放置风干数分钟   ④加入50μL无Rnase的H2O溶解RNA,可选择于70℃水浴5min加速RNA溶解,然后放于-80℃保存或直接用于反转录操作。   4.反转录   本实验目前采用两步法RT-PCR的方法进行诺如病毒的检测,因此首先将纯化的RNA进行反转录操作。采用M-MLV反转录试剂盒进行病毒RNA的反转录:   ①取10μLRNA,2μL Rondom Primer(50uM),5.5μL无Rnase的H2O,混匀后70℃热激5min并立即冰浴   ②加入1μLM-MLV(200U/ul),0.5μLRNA酶抑制剂(40U/μL),5μL5×Buffer,1μL dNTP(10μmol/L),共25μL混匀离心   ③按以下程序进行反转录:30℃预处理10min,37℃反转录60min,最后70℃处理15min以灭活反转录酶等。   5.PCR检测   PCR检测的方法可分为定性检测与定量检测,而realtime PCR被引入到诺如病毒检测后,由于其灵敏度高、检测时间短、污染风险小等优点而被广泛使用。本实验室目前采用Taqman realtime-PCR方法进行诺如病毒的定量检测。   ①采用国际上普遍使用的引物与探针 名称 引物序列 方向 QNIF2d ATGTTCAGRTGGATGAGRTTCTCWGA + COG2R TCGACGCCATCTTCATTCACA - QNIFS FAM- AGCACGTGGGAGGGGATCG -TAMRA QNIF4 CGCTGGATGCGNTTCCAT + NV1LCR CCTTAGACGCCATCATCATTTAC - NV1LCpr TGGACAGGAGAYCGCRATCT   ②首先加入10 μL 2×PCR Mix,然后加入适当浓度的引物及探针,然后加入2 μL模板,最后ddH2O补足20 μL体系。   ③按以下程序进行反应:94℃预变性10 s,然后94℃变性5 s,60℃延伸20 s,共循环45次。 图1 荧光定量PCR仪 图2 荧光定量PCR反应   5.对照设置   为了保证实验的准确性,在过程每一步均设立阳性对照与阴性对照。其中阴性对照均采用超纯水,而阳性对照分别为:PCR过程采用构建的标准质粒,RT过程采用标准质粒体外转录得到的标准RNA。   四、附图:Realtime PCR定量检测的标准曲线 图3 两步法Taqman RT-qPCR标准曲线   其中X轴为检测模板拷贝数的对数值,Y轴为qPCR检测的CT值。一般以CT值处于15~35之间为检测范围,对应的检测模板量约为102~108copies。   附:广东省微生物分析检测中心   广东省微生物分析检测中心是1999年经广东省机构编制委员会批准,在广东省微生物研究所的基础上成立,并于当年通过计量认证(CMA),现隶属广东省科学院,在检测业务上接受广东省质量技术监督局领导。2004年,中心通过中国实验室国家认可委员会(CNAS)认可,是具有独立法人地位的第三方实检测验室。   主要对外业务包括:食品、保健品、饮料及饮用水检测 食品安全性检测与评价 农产品检测 药品、一次性使用医疗用品检测 化妆品、日化产品、卫生用品检测 防霉、抗菌、消毒产品及消毒器械的检测 玩具、电器、空气净化器、室内装饰装修材料检测 公共场所用具及包材检测 微生物菌剂的环境安全性测试和评价 水质检测 空气检测 菌种鉴定 微生物控制及检测培训与技术服务等。   检测中心自成立以来,业务遍及全国,具有很高的知名度和影响力。检测中心的科技人员积极跟踪国内外相关行业的国际标准、国家标准的制定、修订的发展情况,主持和参与了50多项国家标准、行业标准、地方标准的制修订工作。2006年被广东省科技厅批准为 “广东省食品安全检测与评价科技创新平台”食品微生物安全性检测与评价中心,并成为该平台建设的主要承担单位。2010年亚运会在广州举办之时,受邀参与“第十六届亚运会公共卫生保障合作实验室”,成为广州地区共同承担“亚运期间新发传染病、食物中毒等重大突发公共卫生事件实验室检验检测工作”的8家实验室之一。
  • 对照品如何保存,又应该如何使用?
    对照品系指用于鉴别、检查、含量测定的标准物质,包括杂质对照品,不包括色谱用的内标物质。在药品检验工作中我们常会用到一种用来检查药品质量的特殊参照物——药品标准物质(对照品)。它在药品检验中具有十分重要的地位。随着仪器分析的广泛使用,必将越来越多地使用药品标准物质。下面远慕生物就来介绍一下如何对对照品进行保存和使用:  (1)对照品应按说明书规定的条件妥善保存,一般置干燥阴凉处保存,某些对照品如维生素E等需避光低温保存。要注意对照品的使用期限,过期、变质的对照品不宜再使用。开瓶后建议短期内用完,避免开瓶后长期不用,同时,在重复使用过程中应尽量避免对照品的分解、污染或吸潮。  (2)使用中检所对照品时,应严格按说明书执行。一般情况下,供鉴别、检查用的对照品不能用于含量测定。红外鉴别用的对照品使用时应注意与样品在晶型上的差异,必要时可采用相同的方法对样品和对照品重结晶。例如氨苄西林钠具有多种不同的晶型,可用丙酮对样品和对照品重结晶后测定,以确保二者晶型和红外光谱图的一致。  (3)由中国药品生物制品检定所提供的对照品或国际对照品为法定对照品,以法定对照品作对照标化的原料可称为二级对照品或工作对照品。药品生产单位为节约成本,可使用工作对照品进行日常检验,但药品检验所必须使用法定的对照品,出具的检验报告书才具有法律效力。  (4)除另有规定外,对照品使用时应采用适宜的方法测定其水分的含量,按干燥品(或无水物)进行计算后使用,否则会造成含量测定结果偏高。对热稳定的对照品可直接干燥后使用;对热不稳定的对照品可同时另取一份作干燥失重,扣除水分后使用。此外,对照品若含有结晶水或盐基,使用时应注意其换算。  远慕生物提供以下服务:  1.中药提取物的定制研发和生产,中药提取物代加工相关服务。  2.中药高含量提取物的工业化高效分离及分离纯化生产  3.天然产物原料药和中间体的生产,定制(包括合成,半合成)
  • 专家视角丨药物研发过程中的化学对照品探讨
    精准药物分析的工作,离不开稳定的分析系统和可靠的标准物质(标准品/对照品等)。标准物质具有复现、保存和传递量值的基本作用,对实现测量结果的溯源性,保证测量结果在时间与空间上的连续性与可比性,进而确保测量结果的准确可靠、有效与国际互认具有关键作用。 岛津为制药行业客户提供稳定可靠的标准品/对照品制备解决方案:制备液相系统(Prep LC)、质谱引导的制备液相系统(MS-trigger Prep LC),超快速制备纯化液相色谱系统(UFPLC)、制备超临界流体色谱(Prep SFC)。 超快速制备纯化液相色谱系统(UFPLC)可在线完成从分离、浓缩、纯化到回收的制备全过程。 2020年,中国药科大学药物分析系吴春勇博士于新药仿药CMC实操讨论群进行了精彩而全面的主题分享,并发表在“新药仿药CMC实操讨论”公众号,经过“新药仿药CMC实操讨论”的授权,在此分享吴春勇博士的《化学药物研发过程中的对照物探讨》。 概述案例 对于吴春勇博士的《化学药物研发过程中的对照物探讨》,新药仿药CMC实操讨论群也进行了较为热烈的探讨。PPT正文后续延申的讨论内容如下(基本按照时间先后顺序列出)。 沈晓斌博士(前FDA资深审评员,FDA报批咨询顾问):very nice.吴博士论述的非常全面、非常细。我们就说比如说在FDA做review的时候呢,我们个人不会接触那么全面,各种各样的方式,这个标准品的这个去就是抽点它的含量呀,就是拿到他的COA,通常不会把各种方法都是看过一遍的。 就是它这个PPT呢,把所有的东西都给想细细的捋了一遍,个人觉得就是这是一个对知识体系的全面的补充,有些东西,因为你以前没有接触过,你不会考虑那么细,当在FDA的时候你看到的是公司怎么做,然后你来评估他是否合理,是否可以接受,或者跟FDA的现有要求,来评估。 想要就说一点,FDA本身他不去说去该怎么去定量,这个标准品他只是负责审评,就是评审你(的资料),外界可以自己去建议你想要的方式,但是你要有足够多的科学依据,然后他(FDA)来评估是否可以接受,就是完全靠自己来论述清楚。 另外就是说国内看起来,这个我以前对国内这个没有太多的,而且也没有特别去关注,因为我这个工作最早才从FDA报批方面的东西,吴教授这个主题一讲,觉得国内在有些方面其实要求是似乎是比USP、FDA的要求更细更多一些,有一种感觉就是弯道超车已经超了,在有些方面实际上是做的更好。只不过,过去这些年,西方就是设定了这种既定的质量标准,那其他国家,就因为你要照着西方去做仿药嘛,你就必须根据他的规则来走,更多的是这方面的区别。 孙亚洲老师(长沙晶易首席科学家):意见1:研发人员买的非法定对照品,外标法测定杂质含量时,很多人直接采用了COA的赋值,也直接采用相应的测定结果订入了标准,有些不妥。包括批检验,最初的朔源需要是法定对照或者经过标定的对照品。 意见2:在吴博士的ppt中,对于非法定来源的如百灵威,sigma等买到的杂质对照品,拿到后是否需要再行进行研究工作或者分析一下是否存在风险,似乎没有提出来。这个问题建议大家是否深入思考一下。 群主补充:只有经过标化赋值且可溯源(过程,方法,验证)的,风险才是最低的。 群主补充:尽管杂质测定中,如5%的误差是可以接受的(这属于科学性的范畴);但不等同于对照品/标准品可以草率拿来,草率采用他人的赋值,这完全是两个范畴。也许某份杂质对照品中含水量10%,无机成分包括前处理过程带来的硅胶等30%,若草率定量,杂质的真实含量会被低估如40%。 沈晓斌博士:同意以上的观点。 群友1:通过药品杂质的公司购买的对照品,我们就碰到了,欧美的一家知名公司提供的对照品结构出现偏差,我们通过多次比对都无法拿到和代谢产物吻合的结果,多次交涉和讨论之后才发现该公司的产品是另外一个同分异构体。 吴春勇博士(中国药科大学药物分析系副教授):看来概率虽然小,这个问题还是客观存在的。 沈晓斌博士:提供化合物的公司没有责任和义务。使用者必须做该做的来证明给监管机构标准品的使用是合理的。 刘国柱博士(长沙晨辰医药创始人、技术总监):我请教吴博士一个问题,目前国内杂质对照品市场非常混乱,大部分购买的杂质对照品都是经几手倒卖才到厂家手里,对照品塑源存在问题,谱图与赋值真实性也存在问题,请问对此引入的风险有何看法? 群友2:在购买对照品的时候,在COA的同时能否得到该合成方法的信息,这个在技术层面上是有难度的。没有哪个合成公司愿意提供产品合成路线给对方的。 群友3:好多杂质对照品本身不稳定,需要在-20℃保存,有可能在运输过程中就发生了变化,拿到的第一时间应该进行确认,遇到好几次这种情况。 吴春勇博士:在现有的条件下,购买的商业化对照品全部自己赋值,实践上还是存在相当的困难,成本上也没法控制。所以我个人观点:1)尽量选择知名公司;2)自己对风险进行评估,尤其是校正因子与各国药典不同,或者结构上与待测药物的生色团类似,分子量相当,校正因子却有显著不同。 【插话:知名公司依旧有风险或风险大】 是的,分享的那个案例,购买公司是业界相当知名的! 群友4:购买杂质时能同时获得合成信息的可能性非常小,最多提供四大谱(还不带解谱的),那就需要公司内部有比较强大的解谱能力,有碰到过解谱结果和供应商提供的不一致的情况,所以购买“商业化”的杂质对照风险是很大,市场良莠不齐,缺乏有效的管控。 群友5:我们碰到问题的那家公司就是业界知名对照品公司,也有出失误的概率。 刘国柱博士:另请教吴博士及大家一个问题,目前国内许多企业对于杂质对照品的结构确证,很多时候都只做了质谱与NMR氢谱与碳谱,不做二维;而事实上不做二维NMR谱,NMR信号是无法归属的,从而不足以确定杂质结构,有可能确证的结构是错的;请问这个问题大家如何看待? 吴春勇博士:我个人只要做结构确认,一定做二维。 刘国柱博士:那我和您观点一致,强烈呼吁大家做结构确证一定要做二维。 购买的杂质对照品一般只提供质谱与NMR氢谱与碳谱,不做二维与结构解析;在此习惯引导下,国内许多企业自已做杂质结构确证也只做个质谱与NMR氢谱与碳谱,个人观点这是存在风险的做法。 代孔恩(安士研发总监):法规有明确规定必须这么表征,很多标准品量很小,做全应该不容易。【插话:情况多,复杂,没法一刀切】 黄常康博士(南京百泽医药创始人):有些杂质是定向合成的,或者是有文献数据的。我觉得根据实际情况来判断需不需要。不用二维定不了结构的,该做就做,有些简单的杂质,其实氢谱已经足够了,质谱只是多一个证据。 自己做的话,还需要加上做结构确证的杂质的钱,很多时候会差很多。 群友6:对照品的检测分析,既要有普遍性的,也要特殊性的,这个普遍性与特殊性的界点怎么界定,很难有一个文件化的说法。 以上讨论内容来源: 新药仿药CMC实操讨论公众号
  • 现代中药对照品与标品资源库落户中山
    全国规模最大的现代中药及天然产物活性物质对照品与标准品资源库,将落户中山健康科技产业基地。   全国标准样品技术委员会天然产物标样专业工作组常务副组长张天佑在接受记者采访时说,我国个别中药药品近年来相继出现的问题,正是标准缺失所致。从现代中药及天然产物活性物质中提取有效成分制作对照品与标准品,使之成为溯源性的根据、分析检测仪器的校准标准物质和质量控制的标准,可为中药新药研发、生产提供标准,“这是中药走向国际市场,突破国际技术壁垒的途径。”   国家药监局原副局长任德权称,选择在中山建立这个资源库,不仅因为中山国家健康科技产业基地已经具备承载这个项目的成熟条件,而且由于中山毗邻港澳,可联合粤、港、澳的资源共同打造一个国家级的标准平台,为中国争取在国际标准化中的话语权。   “这样,中药出口就拿到了‘国际通行证’。”中山国家健康科技产业基地公司总经理梁兆华形象地比喻。   该项目由中山健康科技产业基地、全国标准样品技术委员会、中山大学药学院和广东新龙和药业有限公司合作,项目运营后,3至5年内可以建成拥有几千种对照品与标准品的资源库。该项目有望在今年“328”招商经贸洽谈会上签约。
  • 药品研发中杂质与杂质对照品研究监控、新理念新技术研讨会召开
    p   由天津市滨海新区科学技术协会和中国蛋白药物质量联盟主办,北京医恒健康科技有限公司和天津市滨海新区蛋白药物质量和产业技术创新研究会承办的“药品研发中杂质与杂质对照品研究监控、新理念新技术研讨会”于12月10日在天津巨川百合酒店胜利召开。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/bc2519d0-e110-45f9-a4b9-a587227c56be.jpg" title=" 培训现场.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 培训现场 /span /strong /p p   本次研讨会来自全国各地的医药企事业单位及科研院所的药品研发人员、注册申报人员、质量控制人员、项目负责人等有关人员参加了本次研讨会。10日上午,研讨会开幕式由中国蛋白药物质量联盟秘书长史晋海博士主持,介绍了出席此次会议开幕式的嘉宾,包括天津市滨海新区科学技术协会学会处侯立群处长,三位演讲专家余立老师、周立春老师,山广志老师。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/3ed2bb10-7c99-43a4-a149-f4b53818d3c8.jpg" title=" 史晋海博士主持.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 史晋海博士主持 /span /strong /p p strong span style=" color: rgb(0, 112, 192) " /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/d08b2e76-4772-4265-a184-7061d03658ea.jpg" title=" 余立老师2 .jpg" / br/ /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 余立老师 /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/b04550f4-a0d4-4b49-96d8-975893232c64.jpg" style=" " title=" 周立春老师.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 周立春老师 /span /strong /p p strong span style=" color: rgb(0, 112, 192) " /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/94d80e5c-6b2f-49ab-8f61-a6f64f658cb3.jpg" title=" 山广志老师.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 山广志老师 /span /strong /p p   无论是创新药研发还是仿制药一致性评价,无论是原料药还是制剂产品,无论是药品临床前开发还是上市后质量监控,杂质的研究无疑都是重头戏。也是药品申报资料中出现问题最多的模块。由于药品中杂质含量的水平比较活性成分而言大多都是百分之几、千分之几、甚至更低数量级的,一种药品中含有几种、十几种、乃至几十种杂质,所以药品杂质的定性定量都远比活性成分难度要大的多。余立老师就杂质研究与控制思路为与会人员进行的讲解。 br/ /p p   杂质定向控制越来越细,质量标准中特定杂质越规定越多,定位,定量,测定响应因子,哪个也少不了杂质对照品。类杂质对照品的制备、纯化、结构确证,特别是赋值方法都有哪些要求,还有杂质对照品分装、保存时的注意事项的相关细节,山广志老师就在这次研讨会中介绍了这方面的常见问题与案例分析。 /p p   微信群中常有问杂质研究与杂质检测方法学验证方面的的问题。但微信交流信息局限大,讨论不方便也不具有系统性,解决一两个问题其他问题还是不明白。周立春老师用她30多年的一线审评与实验室工作经验为与会人员讲解了杂质研究与杂质检测的方法学验证。 /p p   会后问答环节讨论热烈。与会者意犹未尽,期待更多交流机会。 /p p   生物医药产业是天津市八大优势支柱产业之一,更是滨海新区重点发展产业。本次研讨会将创造机会,促进天津市滨海新区与顶级生物制药企业和专业人才的合作,极大地推动相关领域健康快速发展。此次会议搭建了具有国内影响力的生物医药专业交流平台,既利于增强新区医药企业实施创新发展及国际化战略的信心,又扩大新区医药企业在生物医药领域中的影响力,大力促进新区医药产业的健康发展。 /p p   /p
  • 中检院出版《化学药品对照品图谱集-质谱》分册
    《化学药品对照品图谱集》整理了600余种常用化学药品对照品各类谱图数据,从结构到性质对对照品进行了比较全面的描述。化学药品对照品是国家标准物质的重要组成部分,是依法实施药品质量控制的基础。药品标准物质的质量和水平,与医药工业的健康发展和公众安全用药休戚相关。首次结集出版的《化学药品对照品图谱》分为6本——总谱,质谱,红外、拉曼、紫外光谱,核磁共振,热分析,动态水分吸附。 《化学药品对照品图谱集-质谱》分册由中国食品药品检定研究院出版,全部质谱数据采集由岛津企业管理(中国)有限公司采用岛津产品完成,其中十种使用岛津GCMS,其余品种使用岛津LCMSMS。该书实际包含近700个常用化学药品对照品的二级质谱图,裂解规律及相关物性,是目前最全的化学药品对照品质谱图集,对药品生产企业、检验检测机构和高校科研院所人员有很好的参考价值。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • SGLC全面销售岛津分析仪器专用试剂、标准品和对照品
    岛津分析仪器专用试剂、标准品和对照品是由岛津企业管理(中国)有限公司联合四川中测标物科技有限公司共同推出。由中国测试技术研究院确保质量,按照岛津仪器性能特点研发生产。用于评估分析仪器的分析能力和工作状态,确保仪器达到设计需要的分析能力和精密度,保证分析仪器处于稳定可靠、灵敏准确的优良工作状态。 岛津(上海)实验器材有限公司作(简称SGLC)为岛津集团在中国成立的专门经营销售岛津分析仪器纯正部件、色谱消耗品及相关小型仪器的子公司。现全面负责岛津分析仪器专用试剂、标准品和对照品在国内的对外销售业务。 岛津分析仪器专用试剂、标准品和对照品现已涵盖的机种类型有岛津GC、GC-MS、GC-MS/MS,HPLC,LCMS-IT-TOF,LC-MS、LC-MS/MS,UV,AAS,ICP-OES,ICP-MS,TOC等机型。包括仪器重现性测试标准物质、灵敏度测试标准物质、调谐标准物质和验收标准物质等。具体产品选择请参考“岛津分析仪器专用试剂、标准品和对照品”产品目录。(下载产品目录) SGLC一直秉持为仪器分析客户提供更丰富的解决方案,此次引入岛津仪器专用试剂产品,将进一步扩充产品阵容,为分析仪器领域的客户提供更多专业利器。
  • 同田,第一家在国外设立代理商的中国中药对照品企业
    上海同田生物技术有限公司(Shanghai Tauto Biotech Co., Ltd)于2008年底已在西班牙,比利时,韩国,泰国,新加坡,瑞士,南非,捷克,意大利。印度等十一个国家设立代理商,共同致力于同田生物公司对照品业务的国际市场开拓和产品品牌建设,是第一家在国外设立代理商的中国中药对照品企业! 现面对全国诚招各地代理商,我们将提供优惠的代理政策及完善的服务,望共同拓展国内对照品市场,携手共创美好的未来! 招商电话:021-51320588-8026 E-mail:sales2@tautobiotech.com URL: www.tautobiotech.com
  • 396万!甘肃省药品检验研究院2022年实验用试剂、耗材、对照品项目
    项目编号:2022zfcg00371项目名称:甘肃省药品检验研究院2022年实验用试剂、耗材、对照品项目预算金额:396.48(万元)最高限价:396.48(万元)采购需求:具体品目、技术参数和数量详见招标文件第五章 技术规格书合同履行期限:按合同约定执行本项目(是/否)接受联合体投标:否
  • 他曾放弃科研10年,“不懂化学却得了诺贝尔化学奖”
    p style=" line-height: 1.75em " span style=" line-height: 1.75em " & nbsp & nbsp “也许是看多了科幻小说,我一直都希望能做出一些东西,看似异想天开,结果拯救了世界。其他人都觉得是比较不现实的领域,正是我喜欢做的。” /span /p p style=" line-height: 1.75em text-align: center " span style=" line-height: 1.75em " img src=" http://img1.17img.cn/17img/images/201603/insimg/e0416f73-2127-4c66-b9c5-e9e574424464.jpg" title=" 201603170851287801.jpg" width=" 500" height=" 313" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 313px " / /span /p p style=" line-height: 1.75em text-align: center " span style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 埃里克· 白茨格(Eric Betzig) /span /p p style=" line-height: 1.75em " span style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 3月14日,应用物理学家、诺贝尔奖得主埃里克· 白茨格(Eric Betzig)站在北京大学英杰交流中心大讲堂,对台下座无虚席的年轻学子们这样说起鼓励自己走上科研之路的原动力。2014年,因为在超高分辨率荧光显微镜术(Super-resolution Fluorescence Microscopy)方面的贡献,诺奖委员会将当年的诺贝尔化学奖授予白茨格与另外两位研究者Stefan Hell 和William E. Moerner,以表彰他们将光学显微镜由微米(& amp #181m,10-6米,百万分之一米)带入纳米(nm,10-9米,十亿分之一米)级尺度的贡献。 /span br/ /p p style=" line-height: 1.75em "   他在两个多小时的演讲中,用自己多年来的亲身体验和科研成果,描述了自己不走寻常路,追随内心激情的人生历程,并介绍了自己对科学研究的深刻感悟。 /p p style=" line-height: 1.75em "   “化学认识我,我不认识化学”,白茨格说,虽然诺贝尔化学奖委员会给他颁奖,但他实际不懂化学。他承认化学在大一过后都还给老师了。他是这样自我定义的:“我不是物理学家,不是化学家,也不是生物学家。我是工程师,光学工程师,为生物学家开发工具,帮助他们看到活体内的分子”。 /p p style=" line-height: 1.75em "   白茨格身上的诺奖光环吸引了北大莘莘学子前来听他演讲。然而,白茨格却坦言“追求奖励本身对于科研是有害的”。他说,“尽管科研成就是客观的,但是评奖是主观的,只代表某一个评奖委员会的观点,即便诺奖也是如此。如果你把得奖当成工作的动力,那么你的驱动力就是错误的。你就应该去找点别的事情做。” 他的这番表述与国内科研界目前经常听到的所谓“诺奖级工作”和为名誉地位而工作的浮躁风气形成鲜明的对照。 /p p style=" line-height: 1.75em "   他还有些激动地说,“当我和赫斯(编者注:Harald Hess,他一生中最好的朋友和同事)第一次通过显微镜看到单分子时,说,‘哇,我们做到了’。这才是最激动人心的一刻。我的经历告诉我,最好忘掉诺奖,专心于自己感兴趣的工作。” /p p style=" line-height: 1.75em "   strong  从物理学家到机械配件厂工程师 /strong /p p style=" line-height: 1.75em "   今年56岁的白茨格出生于美国密歇根州的安娜堡。他于1983年获得加州理工学院的物理学学士,并在1988年获得了康奈尔大学的工程物理学博士学位。 /p p style=" line-height: 1.75em "   他在念研究生时便立志:要以“电子显微镜”的分辨率(即超高分辨率)观察生物活体成像,这在当时是天方夜谭,但他为此目标矢志不渝,奋斗至今。 /p p style=" line-height: 1.75em "   在获得博士学位后,白茨格就职于贝尔实验室半导体物理研究部门,继续他博士论文所开辟的研究方向,研制第一台超分辨率光学显微镜,叫做近场光学显微镜(Near-field Scanning Optical Microscope)。这种显微镜不仅大大提高了传统光学显微镜的分辨率,而且首次实现在室温条件下观察并对单细胞分子进行成像,定位精度为12nm。一系列Science论文的发表为他奠定了近场光学显微技术(NSOM)领头人的地位。 /p p style=" line-height: 1.75em "   在贝尔实验室,白茨格还与好友,从事低温显微镜技术的科学家哈拉尔德?赫斯(Harald Hess)共同进行着另一项开创性研究,尝试利用光谱照射进行细胞分子成像的研究。 /p p style=" line-height: 1.75em "   尽管两个人是好朋友,但他和赫斯在一起共事的时候也常常彼此“较劲”,甚至是有些疯狂地工作着。在北大的讲台上,白茨格回忆,他每天早上4:30就会到实验室开始工作,如果发现赫斯的车先到停车场,“我会走过去,摸摸他的车看他的引擎盖有多热,这样就知道他比我早多少分钟到实验室。而他也会做同样的事情”。两人一起从早上4:30工作到7:00,然后一起打网球,再一起工作到下午6点,然后晚上在同一家中餐馆吃饭,再继续工作至晚上10点。他说,“一个礼拜七天,天天如此。这样的生活我过了五年。” /p p style=" line-height: 1.75em "   然而,随着科研的进展,白茨格却发现近场光学显微技术存在技术瓶颈,另一方面随着自己论文的发表,这项技术得以普及,更多的科学家加入进来,让这一领域变得不再“曲高和寡”,这也让热衷于从事开创性工作的他感到倦怠。 /p p style=" line-height: 1.75em "   白茨格打了一个比方,做科研就好比养育孩子,孩子一出生的时候,你希望他能当总统,但随着年岁的增长,你对他的期望值越来越低,也许最后就是“只要不进监狱就好”。 /p p style=" line-height: 1.75em "   他回忆说,“对我来说,做科研最幸福的时候,就是你在尝试,失败,再尝试的循环往复的过程,终于有所发现。一旦你发了论文,其他人了解到你的这项技术,人们会吹捧这项技术,把它捧上天,而实际上,作为发明者却看到技术自身的局限性,这让我感到沮丧。感觉过去12年我的工作纯粹是浪费时间和纳税人的金钱”。 /p p style=" line-height: 1.75em "   在意识到不可能将光学显微技术的分辨能力推至纳米极限后,1994年,白茨格意兴阑珊,决定离开学术界,却不知道下一步该怎么走。在当了一段时间的全职父亲之后,他加入了父亲拥有的安娜堡机械公司,参与研发工作。在这里,他开发了一种生产汽车配件所需的自适应液压伺服技术(FAST)设备,但并没有取得商业上的成功。 /p p style=" line-height: 1.75em "   白茨格说,“我耗费四年发明这种设备,又花了三年尝试把它卖出去,结果只卖出两台。”这让他意识到,或许自己不很擅长做一个学术科学家,但可以确定的是他无缘做一个精明的商人。“在花掉我父亲100万美元和自己七年的时间之后,我不得不告诉父亲,这个我做不了。”那是2003年,白茨格不仅没有工作,还有两个年幼的孩子要抚养, “那真是我人生中最惨淡的一段时光”,他说。 /p p style=" line-height: 1.75em "    strong 在大自然中找回初心 /strong /p p style=" line-height: 1.75em "   这时,他做了一个后来令自己万分庆幸的事情,那就是给自己的老朋友赫斯打了个电话。 /p p style=" line-height: 1.75em "   当时,赫斯正好被贝尔实验室裁员了,面临着是进入硅谷的初创公司,还是重回基础科研领域的十字路口。 /p p style=" line-height: 1.75em "   这对当年的好朋友、好搭档似乎在同一个时刻遇到了中年危机。他们多次相约一起爬山远足,在加州优胜美地等国家公园里徜徉,大自然的美景和造物的宏大让两位科学家感叹自己的渺小,也让他们真正地放空,思考着人生意义和价值所在。 /p p style=" line-height: 1.75em "   就是在这个过程中,他们重新发现了自己对“受好奇心驱动的科研工作”的热情。白茨格说:“我想做小众的事情,我想走一条并非大家都会选择的道路”。 /p p style=" line-height: 1.75em "   他也坚信自己的目标是更加清晰地观察细胞里充满生机的生理活动。就是这个初衷驱使他在经历了人生的兜兜转转之后,最终回到了自己热爱的科研领域。然而,他需要一个让自己重启科研之路的灵感。 /p p style=" line-height: 1.75em "   为了拾起荒废近10年的专业,“我甚至相当于重新自学了一遍物理学和光学”,白茨格说。 /p p style=" line-height: 1.75em "   就在他潜心自学充电的过程中,一篇重要的论文引起了他的关注,也重新点燃了他对高分辨率显微镜技术的热情。 /p p style=" line-height: 1.75em "   这篇论文是关于一个改变了细胞生物学研究的神奇分子——绿色荧光蛋白(GFP)。下村修最早从水母中分离出这种可以在紫外光照射之下发出绿光的小巧蛋白,Martin Chalfie证明了GFP作为多种生物学现象的发光遗传标记的价值。钱永健的主要贡献在于让人们理解了GFP发出荧光的机制。同时,他拓展出绿色之外的可用于标记的其他颜色的变种,从而使科学家能够对各种蛋白和细胞添加不同的色彩。这一切,令在同一时间跟踪多个不同的生物学过程成为现实。2008年,下村修、Martin Chalfie和钱永健三人因在GFP领域的发现而获得诺贝尔化学奖。 /p p style=" line-height: 1.75em "   白茨格开玩笑地说,“我可能是这个世界上最后一个知道GFP的人,但我马上意识到,这个发现不仅改变了细胞生物学,也将改变生物显微镜技术,因为它开创了巨大的应用空间。” /p p style=" line-height: 1.75em "   “我为自己的朋友没拿诺奖感到遗憾” /p p style=" line-height: 1.75em "   早在1995年,白茨格就提出了光激活定位显微术(Photoactive Localization Microscopy,PALM)的思路,他的想法是控制荧光分子,每次只让少量几个荧光分子发光,用电荷耦合元件(CCD)记录并拟合每个荧光分子像的中心位置,以时间来换空间,将多次观察得到的位置信息整合起来得到完整的图像。 /p p style=" line-height: 1.75em "   他的这篇论文“Proposed Method for Molecular Optical Imaging”发表在1995年的《光学通讯杂志》 (Optics Letters) 。那个时候他刚离开贝尔实验室,处于失业状态,然而这篇论文却奠定了他日后获得诺奖的理论基础。但是基于当时的技术条件,这个设想只能停留在理论阶段。 /p p style=" line-height: 1.75em "   随着荧光蛋白“开关”效应的提出,以及美国国立卫生院(NIH)生物学家Jennifer Lippincott-Schwartz等在2002年发明了光敏绿色荧光蛋白,白茨格意识到,他终于找到了可以把自己多年的梦想变成现实的“关键一环”。而这时已经是2005年,他离开科学领域已经有10年的光阴。 /p p style=" line-height: 1.75em "   时间在流逝,由于担心其他人更早地付诸行动,他和老朋友赫斯这两位失业的“前科学家”决定继续一起合作,快马加鞭把这项技术变成现实。他们来不及申请科研经费,甚至寻找风投资金,于是各自掏出25000美金,花了两个月的时间,在赫斯家的客厅里,研制出了第一台PALM显微镜,并迅速申请了专利。随后,与光敏绿色荧光蛋白发现者Jennifer Lippincott-Schwartz,George Patterson等NIH科学家合作,利用PALM显微镜清楚地观察到纳米级活体细胞的若干生理现象,这篇以白茨格为第一作者的论文发表在2006年9月的Science杂志。从思路诞生到结果发表,他们只用了六个月时间。这篇论文也成为白茨格获得诺奖的关键工作。 /p p style=" line-height: 1.75em "   在白茨格重返科研之路八年之后,他获得了诺贝尔奖,他用“震惊”形容自己得知诺奖消息时的心情,同时,他对和自己一起发明PALM的赫斯未能同获诺奖感到深深的遗憾。毕竟,PALM显微镜来自于他们共同的灵感,是他们的共同发明。 /p p style=" line-height: 1.75em "   他在演讲中多次对赫斯对自己职业生涯中的帮助表示感谢,他说道,我毕生的工作都要感谢他。 /p p style=" line-height: 1.75em "   中国科学院物理研究所李明在《超分辨显微,至极至美:2014年的诺贝尔化学奖述评》一文中评价说,“白茨格、赫尔和莫纳将已知的技术推至极限,最早探测到凝聚态体系中的单个荧光分子,利用荧光分子的开关效应,加上物理教科书上的受激辐射原理和数据分析中常用的拟合定位方法,绕开了这个似乎不能突破的极限。他们将光学显微技术带入到纳米尺度,引发了常温下活体生物学研究的又一场革命。他们对科学的追求堪称至极至美。” /p p style=" line-height: 1.75em "   回顾科研道路中的关键机遇和转折时,白茨格对年轻科学家和学子提出了这样的建议,“没有什么比你的声誉更重要,职业生涯中总有一些时刻你需要一些前同事和朋友的提携和帮助。你必须要做好你的工作,同时你要诚实地工作,要公平地对待别人,否则真的会有报应。你的声誉是你最重要的资产。” /p p style=" line-height: 1.75em "   得益于这些帮助,他获得了霍华德?休斯医学研究所的珍利亚农场研究园区的邀请,领导该领域的研究。赫斯也随后加入,继续成为他的同事。 /p p style=" line-height: 1.75em "   这一次,白茨格携夫人吉娜一道回国讲学。他们除了在北大的演讲,还将访问上海的中国科学院神经科学研究所和复旦大学。吉娜是安徽蚌埠人,毕业于中国科技大学,在加州伯克利大学获得博士学位后加入白茨格实验室做博士后研究。吉娜是一位物理学家和神经生物学家,现在从事双光子显微镜技术开发和应用,成果卓著,两人堪称比翼双飞。2014年,白茨格获得诺奖的消息传到中国之后,吉娜的母校蚌埠一中,甚至打出了庆祝标语,称白茨格为“我校女婿”,一时受到中国网友的热议。 /p p style=" line-height: 1.75em "   在演讲中,白茨格还特地感谢吉娜作为伴侣兼同事,给予自己的支持和帮助,并感激她对自己提出过的中肯的批评。物理学家出身的吉娜认为丈夫虽有物理学博士学位,但在物理方面也不能算天才。她在私下场合开玩笑说,“他认识物理,物理不认识他。” /p p style=" line-height: 1.75em "   白茨格在演讲中坦言,自己的获奖技术虽然有用,但已不足以让他感到振奋。他于是继承了2011年因脑癌去世的同事Mats Gustafsson于2000年发明的另外一项技术SIM(结构给光显微技术),并不断加以改进,与其他技术结合,现在可用于活体成像,且实用性更好。他还介绍了自己尚未发表的最新技术——双通道自适应光学栅格光片显微镜(Lattice Light Sheet Microscopy with Two Channel Adaptive Optics)的研究进展。 /p p style=" line-height: 1.75em "   在他身后的投影屏幕上,演示着一系列用视频呈现的最新研究成果。有一个画面上可以看到细胞分裂的整个过程,细胞核内的DNA也在荧光蛋白的染色下清晰可见& amp #823& amp #823 /p p style=" line-height: 1.75em "   当年引领他走上科学之路的,用高分辨率显微镜观察活体细胞的梦想终于实现了。这才是比诺奖更让他为之陶醉并欣慰的。 /p p style=" line-height: 1.75em "   在回答现场一位北大同学的提问时,白茨格说出了自己对年轻科学家的忠告,“不要害怕冒险,不要因为追求安全而搭上别人的便车,要勇敢地开拓属于自己的道路。” /p p br/ /p
  • 荧光定量PCR,你做对照了吗?
    前言吾日三省吾身,定量实验做对照了吗?在荧光定量PCR实验中遇到没有曲线、曲线异常等情况,我们总是会在第一时间去看阳性对照和阴性对照的扩增情况来分析原因。由此可见,实验中做对照的重要性不言而喻。在荧光定量PCR实验中,我们通常会按照如下的流程进行实验:样品采集,运输,样品处理,核酸提取,反转录(RNA 病毒),扩增 ,结果读取。为了提高实验结果的精准度,我们通常会通过设置对照的方式对检测的各个环节进行监控。阴性对照荧光定量PCR的灵敏度较高,对实验室的污染也非常敏感,阴性对照可以用来监控和发现污染的发生。常用的阴性对照包括以下几种:无模板对照(No Template Control, NTC)使用水代替荧光定量 PCR反应中的核酸,其它试剂按比例正常加入,用于监控扩增反应体系中的污染。正常情况下,NTC孔不会有扩增;当NTC出现扩增,则预示体系中有污染。在SYBR Green实验中,引物二聚体的形成也可能导致NTC出现扩增。阴性样本对照(Negative Sample Control)阴性样本对照指不含有目的基因或者靶序列的样本,也可以是样本保存液。和含有目的基因的样本一起进行核酸提取等过程。如果出现扩增,则说明实验过程中存在污染,结合NTC结果进行判断。无逆转录酶对照(No Reverse-Transcriptase Control, No RT)当进行RNA定量实验时,如果引物和探针设计在同一个外显子上,扩增有可能来源于未去除干净的DNA,此时可以设置无逆转录酶对照。无逆转录酶对照中不加逆转录酶。由于没有cDNA,DNA聚合酶无法扩增mRNA,则不应发生扩增。如果检测到扩增,则样本中可能含有未去除干净的DNA。阳性对照阳性对照必然是阳性的结果,用于排除假阴性。如果检测出来了这个样本不是阳性,则说明实验有问题,不可靠。阳性样本对照(Positive Sample Control)阳性内对照虽然可以在一定程度上反应核酸提取效率,但是却很难反馈提取流程中对核酸释放的效率。为了能更好的反映提取效率,可以选择已知阳性的样本或者保存在相似基质中已知浓度的病原体,作为单独的样本进行提取和后续的RT-PCR,通过Ct值评断实验流程。内参基因(Endogenous Control)内参基因可以用于反应样本本身的质量,比如拭子是否刮取到样本、RNA在运输和保存过程中是否有严重的降解等问题。内参基因一般选择在取样组织或细胞中均有足量表达的基因,且其表达量不受环境、实验处理条件和取样时间等因素影响,常用内参基因如表1所示。没有某个内参基因是万能的,内参基因需要根据样本类型和实验处理方式进行评估和选择。实验中通过内参基因的Ct值来判断取样和样本降解情况。在相对定量实验中,内参基因亦可用于对取样量进行均一化。▲ 表1: 已报道的部分物种qPCR内参基因扩增对照(Amplification Control)可使用含有扩增片段的质粒、假病毒或者基因组DNA/cDNA作为扩增阳性对照,监控荧光定量PCR的体系是否正常。当扩增对照没有扩增,或者Ct值大于预期,则说明定量PCR体系存在问题。内部阳性对照(Internal Positive Control, IPC)如果想监控每一份样本的整个实验过程,可以在提取之前在每个样本中加入一段外源DNA或RNA(不含目的片段),并在定量PCR时进行单管多重PCR,同时检测目的基因和这段序列。在每个样本中加入特定拷贝数的IPC,进而从该段序列的Ct值判断对应样品孔中的核酸富集和扩增效率。
  • 红外光谱官能团对照表——永恒的经典还是过时的工具?
    红外光谱官能团对照表是用于解释化合物红外光谱的图形工具。这些图表提供了不同官能团特征分子振动所产生的相对应的吸收峰位置。随着尖端技术和先进仪器的不断发展,分析技术的日益提升,红外光谱官能团对照表尽管看似有些落伍,但其实用性却已成功经受了时间的考验。下面,我们将探究为何这种“化石般古老的”光谱解释工具能够长期沿用,为何它们在如今快节奏的世界中仍然存在很高科学价值。红外光谱官能团对照表的永恒魅力过去,人们在使用FTIR光谱仪进行红外光谱测试时,需要参照样品红外光谱官能团对照表来鉴定材料。不仅如此,这些官能团对照表在鉴定官能团方面具有非常可靠的参照价值。由于包含大量信息且内容高度浓缩,这些图表还成为分享信息和进行现场分析的理想工具。为什么呢?因为只需扫一眼谱图的特征峰,即可快速查到所需答案。在大学校园里,这种简单直观的查询方法非常方便。它可以指导学生如何解释官能团,以及如何更方便地获取复杂的数据,并让学生学会识别不同官能团的特征峰,从而为化合物分析奠定坚实的基础。在实验室中,红外光谱官能团对照表仍然发挥着它的价值。在有机化学、制药和材料科学研究中,红外光谱官能团对照表依然是不可或缺的工具。例如,研究人员可利用该工具,快速识别和确认新合成化合物中的官能团。为此,他们只需将FTIR光谱中观察到的峰值与红外光谱对照图上的特征吸收频率进行比较。这种对比验证对于确保准确合成新化合物至关重要,并且有助于排除故障和优化工艺。在识别官能团方面,尤其是在无法使用高级软件或大规模谱库的情况下,使用红外光谱官能团对照表的方法省时又省力。现代化学分析中不太起眼的老工具尽管红外光谱官能团对照表对比分析方法一直存在,但不可否认的是,在当今FTIR技术背景下,它们已成为一种不太起眼的老工具。利用现代FTIR仪器,我们能够毫不费力地在包含大量化合物信息的庞大数据库中进行检索。这些数据库中甚至还包含一些罕见的、特殊的化合物结构。这些软件通过便捷的自动化分析,简化了鉴定过程,此外,光谱比较、峰值标定和定量分析等功能还有助于增强我们对样品的了解。布鲁克OPUS软件(所有布鲁克光谱仪器都安装了该软件)是一款将丰富的常用功能,与用户友好的界面,高级扩展功能无缝衔接的优秀软件。在此基础上,布鲁克公司开创性的开发出业界首款用于红外光谱的触控软件OPUS TOUCH。通过该软件,您能够以前所未有的方式,直观便捷地控制您的红外分析过程。即使是初次使用FTIR光谱仪的用户,也能够便捷、快速并准确的操控仪器。按步骤轻松完成FTIR分析。1:选择光谱测试工作流;2:选择测试方法,预览测试谱图;3:查看谱图分析结果;4:生成PDF报告结论红外光谱官能团对照图表具有快捷、直观、官能团参考对比价值和节省成本的优点。因此在研究机构等领域,它们仍然具有非常高的实用性。相比之下,现代谱库检索工具可提供全面的光谱数据库、自动化分析和更高的准确性。您选择哪种工具呢?归根结底,这取决于化合物鉴定所涉及的具体要求、资源和复杂程度。但无论您选择哪种工具,布鲁克将始终为您提供合适的解决方案。
  • 全自动农药残留检测仪需要做空白对照吗
    全自动农药残留检测仪需要做空白对照吗,全自动农药残留检测仪需要做空白对照。空白对照是指不给予任何处理的对照,这在动物实验以及实验室方法研究中常采用,以评定测量方法的准确度以及观察实验是否处于正常状态等。全自动农药残留检测仪在检测食品中农药残留量时,为确保检测结果的准确性和可靠性,通常需要进行空白对照。具体来说,空白对照在全自动农药残留检测仪中的作用可能包括:评估仪器性能:通过空白对照,可以评估仪器在无任何农药残留的情况下,其测量值是否稳定,是否符合预期,从而判断仪器是否处于正常的工作状态。校正误差:在检测过程中,可能会存在各种误差,如仪器误差、试剂误差、操作误差等。通过空白对照,可以及时发现并校正这些误差,提高检测结果的准确性。设定阈值:空白对照的结果可以作为设定阳性阈值的参考。阳性阈值是指判断食品中农药残留是否超标的临界值。通过空白对照,可以确定在无任何农药残留的情况下,仪器的测量值范围,从而设定合理的阳性阈值。此外,一些全自动农药残留检测仪具有空白对照自动检测功能,可以自动进行空白对照操作,并将结果保存于系统中,方便后续分析和查询。这种设计可以进一步提高检测效率和准确性。综上所述,全自动农药残留检测仪需要做空白对照,以确保检测结果的准确性和可靠性。
  • 两位诺贝尔化学奖得主受聘为大连理工名誉教授
    应大连理工大学校长、中国工程院院士欧进萍邀请,3月3日,两位2010年诺贝尔化学奖获得者——根岸英一教授和铃木章教授专程赴大连理工大学访问讲学,并受聘为该校名誉教授。   3月3日上午,受聘仪式暨报告会在大连理工大学伯川图书馆报告厅举行。   至此,已有4位诺贝尔化学奖获得者来到大连理工大学访问讲学。
  • 诺贝尔化学奖得主成为中科院上海有机所特聘教授
    5月4日,诺贝尔化学奖得主巴里夏普莱斯与中科院上海有机化学研究所签约,并表示“将把科研生涯的最后时光奉献给上海有机化学研究所”。  5月4日,青年节。一位年逾古稀的诺奖得主和一个有着超过66年历史的国立研究机构,因为青春结缘。  当天,诺贝尔化学奖得主巴里夏普莱斯与中科院上海有机化学研究所签约。作为特聘教授,他将在上海有机所建立独立的“点击化学”实验室,并招收研究生、培养博士后。  “我将把科研生涯的最后时光奉献给上海有机化学研究所。”夏普莱斯说。  因氟结缘  与国内其他单位引进诺奖得主不同,这次是夏普莱斯主动向上海有机所抛出橄榄枝。因为这里的氟化学团队成果迭出,“上海氟”的名头在世界上非常响亮。  而夏普莱斯的新研究恰好需要大量氟化学研究的支撑。2001年,他因“手性催化氧化反应”与另外两位科学家分享了诺贝尔化学奖。事实上,在此之前的两三年里,夏普莱斯已经改变了自己的研究兴趣。原因是他发现了另一种他认为更有趣、更重要的反应:在催化剂的作用下,炔烃与叠氮化合物可以非常迅速地发生反应。这被夏普莱斯称为“点击化学”。由于这类反应及其产物在药物发现、生命科学、材料科学等领域有着广阔的应用前景,因此立刻引起科学界的高度重视。  “他最近发现的另外一个点击化学反应,是以氟元素作为基础的研究,需要用到大量的氟化学。”中科院院士、上海有机化学研究所所长丁奎岭告诉记者。  于是,夏普莱斯首先想到了上海有机所——这个被国际同行称为“上海氟”的团队。  过去几年里,这个团队的研究成果3次被美国《化学与化工新闻》周刊作为封面文章或专题报道介绍。2013年,国外著名出版社威利公司出版的《当代有机氟化学》(第二版)专著中,共引用了中国氟化学家的17项成果,均由该团队成员完成。  魅力来自何处  夏普莱斯在写给中科院院士、上海有机所研究员戴立信的邮件中说:“我喜欢有机所的化学风格几十年了̷̷我也足够出名了,发展点击化学应用需要合作,我需要真正‘有机所式’的化学家们管理此类合作̷̷挑战化学家们的能力极限,给化学家更好的工具和更长、更宽的触角进入化学世界。”  那么,上海有机所的这种魅力到底来自何处,竟然吸引到诺奖得主主动“加盟”?  丁奎岭给出了清晰的答案:研究所始终坚持面向学科前沿、面向国家需求的科研理念,充分发挥在原创性基础研究方面的优势,坚持做“独特”和“有用”的科学。  “我们特别强调人才是科技创新第一要素,把人才队伍建设尤其是顶尖创新团队建设作为研究所的重中之重。”丁奎岭说。  为此,“上海氟”团队引进了不少“标杆人才”。  胡金波就是其中一位。2005年,胡金波通过“百人计划”来到上海有机所。他带领团队选择了全球鲜有人涉足的氟烷基碳负离子化学,几年后发现了“负氟效应”,并开辟出了一系列新方向。  研究员张新刚则从廉价易得的含氟原料出发,发展出一系列氟烷基化和氟芳基化新策略、反应与方法,为含氟物质的高效制备作出了重要贡献。  聚焦青年人才  不仅是氟化学实验室,上海有机所在每个重点方向上都通过人才战略,走在了国际前沿。  丁奎岭认为,原始创新离不开优秀人才。“成熟的领军人才,我们固然重视,但上海有机所更需要青年人才。”  近年来,上海有机所引进20多位人才,其中16名是“青年千人”。  “在最初几年给足科研经费,有助于优秀人才脱颖而出。”丁奎岭说。  为此,除了各种人才计划的支持,上海有机所还为引进的青年人才配套近300万元经费。这使得他们在立足之初的三五年里,能拥有600万元左右的经费支持,安心做科研。  于是,一批优秀的青年人才在这样一个充满活力的平台上,在有机化学和相关交叉领域的前沿,不断探索,不断突破,努力打造着全球化学领域的学术高地。
  • 【视频】诺贝尔奖得主夏庞蒂耶:重写生命密码
    p style=" text-indent: 2em " 2020年诺贝尔化学奖7日授予两名女科学家,以表彰她们在基因组编辑方法研究领域作出的贡献。这里的基因组编辑方法,指的正是当下热门的CRISPR/Cas9基因编辑技术。 /p p style=" text-indent: 2em " 这是埃玛纽埃尔· 沙尔庞蒂耶4年前获得欧莱雅联合国教科文组织“杰出女科学家奖”时录制的视频。 /p p style=" text-indent: 2em " ——让你坚持的事业信念是什么? /p p style=" text-indent: 2em " span style=" text-indent: 2em " —— /span span style=" text-indent: 2em " 希望自己开发的技术能造福人类和社会 /span /p script src=" https://p.bokecc.com/player?vid=5577CE3784AF00C89C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=true& width=600& height=490& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script p br/ /p p style=" text-indent: 2em " “基因剪刀”技术为生命科学研究开启了一个新时代,并从很多方面造福人类。诺贝尔化学奖评选委员会7日在新闻公报中说:“这个基因编辑工具拥有巨大能量,会影响到我们每个人。它不仅在基础科学领域引发了变革,还产生了很多创新性成果,并将带来具有独创性的新治疗方法。” /p p 相关阅读: a target=" _blank" href=" https://www.instrument.com.cn/news/20201007/561197.shtml" 诺贝尔化学奖花落2位女科学家,历届获奖女科学家盘点 /a /p
  • 魏志义谈2023诺贝尔物理学奖成果——阿秒光脉冲超快激光
    北京时间10月3日17时50分许,在瑞典首都斯德哥尔摩,瑞典皇家科学院宣布,将2023年诺贝尔物理学奖授予美国俄亥俄州立大学名誉教授皮埃尔阿戈斯蒂尼(Pierre Agostini)、匈牙利-奥地利物理学家费伦茨克劳斯(Ferenc Krausz)和瑞典隆德大学教授安妮呂利耶(Anne L’Huillier),以表彰他们在阿秒光脉冲方面所做出的贡献。2023年每项诺贝尔奖的奖金也由去年的1000万瑞典克朗,增加到1100万瑞典克朗,约合人民币720万元。“阿秒”是时间单位,即10-18秒。按照时间长短划分,从秒开始依次是毫秒(10-3秒)、微秒(10-6秒)、纳秒(10-9秒)、皮秒(10-12秒)、飞秒(10-15秒)、阿秒(10-18秒)。而“阿秒光脉冲”就是指持续时间在阿秒量级的光脉冲。如此短的脉冲持续时间也为其带来了重要的应用。对此,诺贝尔奖给出的获奖理由如下:获奖理由:三位2023年诺贝尔物理学奖获得者因其实验而获得认可,这些实验为人类探索原子和分子内部的电子世界提供了新的工具。Pierre Agostini、Ferenc Krausz和Anne L’Huillier已经证明了一种制造超短光脉冲的方法,可以用来测量电子移动或改变能量的快速过程。当人类感知到快速移动的事件时,它们会相互碰撞,就像一部由静止图像组成的电影被感知为连续的运动一样。如果我们想调查真正短暂的事件,我们需要特殊的技术。在电子的世界里,变化发生在十分之几阿秒——阿秒如此之短,以至于一秒钟内的变化与宇宙诞生以来的秒数一样多。获奖者的实验产生了短到以阿秒为单位测量的光脉冲,从而证明这些脉冲可以用来提供原子和分子内部过程的图像。1987年,Anne L’Huillier发现,当她将红外激光传输通过稀有气体时,会产生许多不同的光泛音。每个泛音是激光中每个周期具有给定周期数的光波。它们是由激光与气体中的原子相互作用引起的;它给一些电子额外的能量,然后以光的形式发射出去。Anne L’Huillier继续探索这一现象,为随后的突破奠定了基础。2001年,Pierre Agostini成功地产生并研究了一系列连续的光脉冲,其中每个脉冲只持续250阿秒。与此同时,Ferenc Krausz正在进行另一种类型的实验,这种实验可以分离出持续650阿秒的单个光脉冲。获奖者的贡献使人们能够对以前无法遵循的快速过程进行调查。诺贝尔物理学委员会主席伊娃奥尔森表示:“我们现在可以打开电子世界的大门。阿秒物理学让我们有机会了解电子控制的机制。下一步将利用它们。”。在许多不同的领域都有潜在的应用。例如,在电子学中,理解和控制电子在材料中的行为很重要。阿秒脉冲也可以用于识别不同的分子,例如在医学诊断中。魏志义:我国激光产业发展迅速,未来可期实际上我国也一直在阿秒激光领域深耕,培养了一批杰出的科研人员。当前国内研究超快激光和阿秒激光的主要代表人物是来自中国科学院物理研究所的魏志义研究员,主要研究领域为超短超强激光物理与技术,包括飞秒激光放大的新原理与新技术、阿秒激光物理与技术、光学频率梳及应用等。魏志义研究员长期致力于超短脉冲激光技术与应用研究,主要成果有:提出了高对比度放大飞秒激光的一种新方法,得到同类研究当时国际最高峰值功率的PW(1015瓦)超强激光输出,创造了新的世界纪录;发明了同步不同飞秒激光的新方案,研制成功综合性能国际领先的同步飞秒激光器;建成国内首个阿秒(10-18秒)激光装置,得到了脉冲宽度小于200阿秒的极紫外激光脉冲;发展了新的光学频率梳技术,研制成功综合性能先进的系列飞秒激光频率梳;利用新的脉冲压缩技术与国外同事一起获得了亚5fs的激光脉冲,打破了保持10年之久的超短激光脉冲世界纪录;研制成功系列二极管激光直接泵浦的新型全固态超短脉冲激光,开发成功多种飞秒激光产品并提供国内外多家用户。仪器信息网在世界光子大会上有幸采访了魏志义研究员。魏志义表示,超快激光(即超短脉冲激光)领域激光领域前沿研究主要关注如何实现越来越窄的激光脉冲宽度,窄的激光脉冲可以用于物质中分子、原子甚至电子的运动过程研究,因为运动过程决定了物质的一些规律和属性。科研人员关注的另一方面是激光功率,更高功率的激光可能用于武器、加工、医疗等领域。功率方面的研究主要包括峰值功率和平均功率,其中峰值功率研究我国处于世界前列。魏志义在采访中表示其对高频功率非常关注和感兴趣。谈到国内在相关领域的前沿研究进展时,魏志义表示,我国在激光领域具有比较好的基础,与国外水平接近,虽然在整体上还有较大差距,但在部分领域有所领先。在超快脉冲激光方面,我国上世纪八九十年代与国际水平差距并不大,如西安光机所、天津大学、中山大学做得都非常不错。当前超快激光脉冲突破到阿秒量级,国内包括物理所在内的一些单位也拥有产生阿秒脉冲激光的能力,可以用来开展研究工作。在激光高频功率方面,上海光机所等单位在峰值功率研究上已达国际领先水平,并将国际水平推向了新的高度。据介绍,物理所十多年前在峰值功率方面取得了很好的研究成果,做到了当时国内最好也是国际上最高的的峰值功率。但在高频功率方面我国还是与国外有较大差距,特别是在产业方面。魏志义建议,接下来不仅要在极端指标方面,还要在可靠稳定性、高频功率方面做出突破,更好的提供给广大用户开展应用工作。魏志义也强调,我国当前在超快激光研究方面有些落后,但也在奋起直追,跟国际最高水平相比有一定差距,在高频物理方面,工业应用方面差距更大。但同时,魏志义表示这些年我国激光产业发展非常迅速,未来可期。
  • 陈志敏:诺贝尔奖和国家奖一样 不得毛遂自荐
    2月14日上午,2011年度国家科学技术奖励大会在人民大会堂召开,党和国家领导人悉数出席。国家科学技术奖励办公室副主任陈志敏做客人民网科技频道,与网友们深谈该项奖励。当被问及该奖项的评选机制与诺贝尔奖有何不同时,陈志敏表示:“诺贝尔奖采用的是提名制,而国家奖是推荐制,但前提都是不得毛遂自荐”。   陈志敏透露,国家奖主要的组织机构分成三个大部分,第一部分是国家科学技术奖奖励委员会,是由国务院批准设立的。按照条例的规定,有20个人左右的学者、专家和相关部门领导组成。   第二部分由奖励委员会聘请相关行业的专家、学者,组成评审委员会,五大奖各自的评审委员会负责奖励评审工作,同时,根据相关项目评审需要,评审委员会可以设立评审组。   第三部分是工作机构,由科技部统管科技奖励评审组织工作,具体工作由国家科学奖励工作办公室负责实施,也作为奖励委员会办公室的日常办事机构。另外还有一个推荐渠道,国家奖励的很多项目是依靠国务院各部门、全国各省市自治区和全国性行业学会的推荐,还有专家个人的推荐。   对于今年国家奖在推荐阶段的不同,陈志敏称:“在择优推荐的原则基础上,本届国家奖特别增加了公示程序。”各部门及单位推荐的项目必须先进行公示,由国务院各部门推荐项目,必须在本系统内公示,同时也要求在完成单位内部进行公示,公示时间约80天。   相对于诺贝尔奖的提名评选机制,国家奖采用的是推荐制。从1999年开始,国家奖就实行了推荐制,不受理个人自荐和申报。而诺贝尔奖采用的是提名制,有提名权的人来做提名,实际上也是一种推荐制,但明确规定不得毛遂自荐。
  • 压电位移台常用术语中英文对照表
    压电位移台常用术语中英文对照表Absolute accuracy : Deviation between the actual position and the desired one. If a stage has to move 100µm but it moves only 99.99µm (measured through an ideal scale), then the inaccuracy is 10nm. The permanent positioning error along an axis is designated as accuracy. Absolute accuracy is aff¬ected by calibration errors, linearity errors, hysteresis, Abbe errors and positioning noise. 绝dui精度:实际位置与所需位置之间的偏差。 如果一个平台必须移动 100µm,但它仅移动 99.99µm(通过理想标尺测量),则误差为 10nm。 沿轴的泳久定位误差称为精度。 绝dui精度受校准误差、线性误差、滞后、阿贝误差和定位噪声的影响。Backlash : Backlash is a positioning error occurring upon change of direction. Backlash can be caused by insufficiently preloaded thrust or inaccurate meshing of drive components, for example gear teeth. Piezoconcept’s flexure motion translation mechanism and piezo actuator designs are inherently backlash free. 齿隙:齿隙是在运动方向改变时发生的定位误差。 齿隙可能是由于预载推力不足或驱动部件(例如齿轮齿)啮合不准确造成的。 Piezoconcept 的弯曲运动平移机构和压电致动器设计本质上是无间隙的。Bandwidth : The frequency range to which the amplitude of the stage' s motion is dropped by 3dB. It reflects how fast the stage can follow the driving signal. 带宽:载物台运动幅度下降的频率范围为3dB。 它反映了平台能够以多快的速度跟随驱动信号。Drift : A position change over time, which includes the e¬ffects of temperature change and other environmental e¬ffects. The drift may be introduced from both the mechanical system and electronics. 漂移:位置随时间的变化,包括温度变化和其他环境影响的影响。 漂移可能来自机械系统和电子设备。Friction : Friction is defined as resistance between contacting surfaces during movement. Friction may be constant or speed dependent. Because they use flexure, the nanopositioners from Piezoconcept are friction free. 摩擦力:摩擦力定义为运动过程中接触表面之间的阻力。 摩擦力可以是恒定的或取决于速度的。 因为使用柔性连接,Piezoconcept 的纳米定位器是无摩擦的。Hysteresis : The positioning error between forward scan and backward scan. A closed-loop control is an ideal solution for this problem and is done by using a network of High Resolution silicon sensor to provide feedback signals. 滞后:前向扫描和后向扫描之间的定位误差。 闭环控制是该问题的理想解决方案,它通过使用高分辨率硅传感器网络提供反馈信号来完成。Linearity error : The error between the actual position and the first-order best fit line (straight line). Our nanopositioning products are calibrated with laser interferometry and the non linearity errors are compensated down to 0.02% of the full travel.线性误差:实际位置与一阶蕞佳拟合线(直线)之间的误差。 我们的纳米定位产品使用激光干涉仪进行校准,非线性误差补偿低至全行程的 0.02%。Orthogonality error : The angular off¬set of two defined motion axes from being orthogonal to each other. It can be interpreted as a part of crosstalk. 正交性误差:两个定义的运动轴相互正交的角度偏移。 它可以解释为串扰的一部分。Position noise : The amplitude of the stage shaking when it is on a static command. It is usually measured and specified with Peak-To-Peak value. It is a combination of the sensor noise, driver electronics noise and command noise, etc. The position noise of our stages is very limited due to the very high Signal-To-Noise ratio of the Silicon HR sensors we use. 位置噪声:在静态命令下载物台晃动的幅度。 它通常用峰峰值来测量和指定。 它是传感器噪声、驱动器电子噪声和命令噪声等的组合。由于我们使用的 Silicon HR 传感器具有非常高的信噪比,我们平台的位置噪声非常有限。Range of motion : The maximum dISPlacement of the nanopositioners. 运动范围(行程):纳米定位器的蕞大位移。Resolution : The minimum step size the stage can move. 分辨率:舞台可以移动的蕞小步长。Resonant frequency : Piezostage are oscillating mechanical systems characterized by a resonant frequency. The resonant frequency that we give is the lowest resonant frequency that can be seen on a nanopositioner. In general, the higher the resonant frequency of a system, the higher the stability and the widerworking bandwidth the system will have. The resonant frequency of a piezostage is determined by the square root of the ratio of sti¬ness and mass. 谐振频率:压电级是以谐振频率为特征的振荡机械系统。 我们给出的共振频率是在纳米定位器上可以看到的蕞低共振频率。 一般来说,系统的谐振频率越高,系统的稳定性和工作带宽就越宽。 压电级的共振频率由刚度和质量之比的平方根决定。Silicon HR sensor : Piezoconcept use temperature compensated High-Resolution silicon sensors network for reaching highest long-term stability. This measuring device is capable of measuring position noise in the picometer range and its response is not dependent of the presence of pollutants, air pressure changes like other high-end sensors can be. Si-HR 传感器:Piezoconcept 使用温度补偿高分辨率硅传感器网络,以达到蕞高的长期稳定性。 该测量装置能够测量皮米范围内的位置噪声,并且其响应不依赖于污染物的存在,应对改变气压带来的影响与其他高端传感器一样。Step response time : The step response time is the time needed by the nanopositioner to do the travel from 10% of the commanded value to 90% of the commanded value. The step response time reflects the dynamic characteristics of the system and is relatively to the installation method and load of the stage.阶跃响应时间:阶跃响应时间是纳米定位器从指令值的 10% 到指令值的 90% 所需的时间。 阶跃响应时间反映了系统的动态特性,并且与位移台的安装方式和负载有关。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、先进激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。相关技术文
  • 精密光谱专家、诺贝尔物理学奖得主约翰霍尔受聘华东师大名誉教授
    10月28日,2005年诺贝尔物理学奖获得者约翰霍尔教授从华东师范大学校长俞立中手中接过了名誉教授的证书。   当天,约翰霍尔以“光学频率梳”为题,与华东师大师生分享了他有关科学需求、理念重塑、创新和机缘的故事,以及诸多富有价值、出人意料的实际应用。   “霍尔教授的名字如雷贯耳,今天能够亲眼目睹这位诺贝尔得主和专业大师的风采,我觉得非常幸运。”物理系2008级博士方易说,“而且更幸运的是,我们还近距离地与他进行了交流,例如我们在实验中遇到的瓶颈等,这种经历实在太让人难忘了。”   武愕副教授是华东师大精密光谱科学与技术国家重点实验室的一名青年教师,她去年在德国进行学术交流时,曾与霍尔教授有过近距离的接触。“他是我们这一领域领头羊式的人物。”武愕说,“这次他能够来到学校并受聘为名誉教授,无论对学校还是对我们实验室所有成员来说,都是一次学习交流的宝贵机会。我们与他交流实验室目前在做的项目,他还给我们提出了许多好的建议和想法,受益匪浅。”   讲座结束后,霍尔教授被同学们团团围住。同学们就如何开展交叉学科研究、如何有效进行学术研究、如何将个人兴趣与研究相结合以及霍尔教授获诺贝尔奖经过等问题,与霍尔教授进行了深入的交流。   约翰霍尔教授在精密光谱、光速测量方面的开创性研究成果以及“光学频率梳”的技术发明实现了简单直接的光学频率测量,并已在科学、气象学和诊断性药物领域得到了广泛应用,获得了2005年诺贝尔物理学奖。
  • 阿克苏诺贝尔投巨资宁波建新厂
    阿克苏诺贝尔日前宣布,计划向中国宁波多元化基地投资4500万欧元,建立一家过氧化二异丙苯(DCP)新厂,以满足本地、区域乃至全球日益增长的市场需求。作为阿克苏诺贝尔宁波多元化基地的第5家生产厂,该厂预计于2014年中期建成。   DCP作为交联剂广泛用于多种聚合物和共聚物,如鞋底、电缆绝缘层、建筑隔层等。宁波新厂建成后,将令阿克苏诺贝尔功能化学品DCP的年产能提升30%,达到25000吨。   宣布此项投资的同时,阿克苏诺贝尔宁波多元化基地的另一家新厂正式启用.该厂也生产有机过氧化物,其主要产品是广泛用于橡胶和热塑材料的Perkadox14和用于高熔指聚丙烯和合成橡胶的Trigonox101。   除以上产品,宁波多元化基地目前生产螯合物、乙烯胺和环氧乙烷产品。截至目前,阿克苏诺贝尔在宁波多元化基地的总投资额已近3.7亿欧元。   2010年,阿克苏诺贝尔在中国的销售额为13亿欧元,其中大部分源于本地市场。2015年,阿克苏诺贝尔力争在中国市场的销售额达到200亿元。
  • 【网络研讨会】挥发性有机物监测与控制-磐诺仪器
    全国政协十二届人大五次会议(两会)举办了近半个月成功闭幕,全国各地的政协委员们带来了各种建议,民生、环保提案依旧火热。此次,人民网就公众关注的18个问题进行了线上调查。小编观察到,就“如何提升污染治理能力”这一环境问题,千名网友参与了调查。和政协委员的提案对照,集中的话题就是大气污染。会议上,环境保护部部长陈吉宁做出报告:2016年大气污染治理专项督查已发现2000多个问题,2017年,针对大气污染治理仍会加大力度。磐诺仪器,作为国产GC民族品牌的技术创新型企业,支持民族环保大业更是责无旁贷。在大气污染物检测方面研发有专用气相色谱仪系统,为各个领域提供解决方案。对象检测目的城市/地方环境监管部门、环保行政主管部门环境空气质量监测点位的规划,设立,建设与维护等管理电力、化工、钢铁、建材、喷涂等大型工矿企业污染源对周围环境空气质量影响的监测机动车排气对交通路口大气成分的监测某些企业用于环境质量评价对于大气污染物检测,磐诺方案较多,按检测方式就可分为:离线、在线。相比于离线监测的分析时间长、分析数据结果较为滞后的特点,在线监测具有效率高、预处理时间短、数据连续等优势,可以有效的减少人为操作失误给数据带来的误差。磐诺PGC-80在线气相色谱系统及PGC-86便携式气相色谱仪,其中FID几乎对所有的VOCs都能够响应,检测灵敏度比热导检测器高100-10000倍,检测限达10-13g/s,对温度不敏感,响应快,目前是气体色谱检测仪中对烃类(如丁烷,己烷)灵敏度最好的一种手段,广泛用于挥发性碳氢化合物和许多含炭化合物的检测。看到这,大家是不是想了解磐诺在大气污染物检测方面更多信息呢?别着急,3月29日09:00~17:00,仪器信息网“环境在线检测技术”专题网络研讨会,磐诺会和大家细细探讨-挥发性有机物(VOCs)的监控技术。扫描下方二维码,即可报名参会哦!说明:用户报名参会后,若通过审核,两日内将会 收到1 封电子邮件通知函,请注意查收,并按提示进入会议室!(为了使您的报名申请顺利通过,请填写完整而正确的信息)
  • 诺奖更青睐谁:近5年诺贝尔自然科学奖小盘点
    p   自10月2日诺贝尔奖各大奖项陆续颁布以来,关于诺奖的方方面面就成了线上线下、各大媒体热议的话题。这里盘点了近5年来诺贝尔自然科学奖的获奖者和获奖成果,看看诺奖究竟更加垂青于谁。 /p p strong   基础or应用? /strong /p p   诺贝尔奖更青睐基础研究还是应用研究? /p p   梳理近5年的诺奖获奖成果,可以看到生理学或医学奖、物理学奖这两大奖项,都是4届颁给了基础研究,1届颁给应用研究。获奖的应用研究分别是“青蒿素和双氢青蒿素的疗法”“蛔虫感染新疗法”(2015年生理学或医学奖)、蓝色LED管(2014年物理学奖)。 /p p   相比之下,以“不务正业”著称的化学奖对应用研究似乎更友好些——5年中有两年颁给了不同类型的显微镜。 /p p   看来,近几年诺奖似乎更偏爱给学科带来深刻改变的基础研究,特别是一系列微观层面的机制研究格外受宠。而“显微镜们”频频获奖,或许是因为它们有力推动了学科向更精深之处发展。 /p p strong   东方or西方? /strong /p p   在极具“诺奖特色”的黑、蓝、黄三色人物画像中,西方面孔仍然占据压倒性比例(约83.7%)。在为数不多的东方人中,除了2015年荣获诺贝尔生理学或医学奖的中国女性屠呦呦,其余几乎都是日本科学家。 /p p   5年间,问鼎诺奖的日本学者多达6位(2014年物理学奖得主中村修二为日裔美籍学者),获奖人数仅次于诺奖“超级大国”美国。 /p p   不过,在人们感叹日本科学家的诺奖佳绩时,2016年生理学或医学奖得主、日本分子细胞生物学家大隅良典却指出,近年日本获奖研究成果主要归功于上一辈科学家,反映出上世纪八九十年代日本的科研水平,日本的科研现状不容乐观。 /p p strong   陈年or新鲜? /strong /p p   引力波探测强势夺得今年的诺贝尔物理学奖,虽是意料之中,却也令人振奋。因为从去年2月LIGO宣布探测到引力波至今,也才仅仅过去了20个月。这样的获奖速度在诺奖中并不常见。 /p p   相比之下,获得今年生理学或医学奖的3位科学家分离出周期基因,已经是33年前的事情了 而获得今年化学奖的冷冻电镜,则经历了上世纪70年代到90年代的漫长跋涉,在2013年实现了重大技术突破。 /p p   纵观近5年诺贝尔奖获奖成果,大多还是数十年“陈酿”。真正能称得上“小鲜肉”的,恐怕只有引力波。值得一提的是,获得2013年物理学奖的成果——希格斯玻色子(上帝粒子)的理论预言,其实早在1964年就由获奖科学家提出了,但是直到2012年,才有实验室发现了希格斯粒子,证实了这个“年近半百”的理论。次年,这个成果就戴上了诺奖的桂冠。 /p
  • 2022年诺贝尔生理或医学奖/化学奖预测,谁将摘走诺奖桂冠?
    一年一度的诺奖季即将开始,这是全球科学界的盛事。尽管鲜有国人获奖,但我们对这个奖项的重视和关注丝毫没有减少。今天我们大胆预测一下今年的诺贝尔生理或医学奖以及化学奖,同时帮助我们科普一下在国际科学这个大舞台上,有哪些科学家做出了重要贡献?我国科研水平与它们差距多大?2020年诺贝尔医学奖授予HCV发现(属临床领域)、2021年诺贝尔医学奖授予感觉受体(属基础领域),今年的诺贝尔医学奖又会花落谁家?基于诺贝尔医学奖领域分配规律(基础:临床为2:1),因此推测今年高概率仍会在基础领域,综合过去30年内基础领域发展情况,这里给出2022年诺贝尔生理或医学奖的三个组合预测。01生物化学组合自2009年诺贝尔医学奖授予端粒酶发现以来,生物化学领域近期还未获得诺贝尔医学奖,应该予以考虑了。目前,组蛋白修饰和基因表达调控的重要性逐渐得到认可,因此在该方向做出重要贡献的三位科学家:1、加州大学洛杉矶分校格伦斯坦(Michael Grunstein)(1988年证明组蛋白与基因表达调控相关)2、洛克菲勒大学艾莉斯(David Allis)(1996年发现组蛋白乙酰转移酶)3、哈佛大学施瑞伯(Stuart Schreiber)(1996年发现组蛋白去乙酰化酶)他们都是诺奖的热门人选。备选:微小RNA发现者:安布罗斯(Victor Ambros)、鲍尔库姆(David Baulcombe)和鲁弗肯(Gary Ruvkun)。02细胞生物学组合细胞生物学是近十年来诺贝尔医学奖重点青睐领域,从iPS到囊泡运输,从细胞自噬到低氧信号,都是诺贝尔医学奖关注的热点,因此今年再次颁发给这个领域的机率也很高。综合细胞生物学各分支发展,内质网未折叠蛋白应答发现是较为重大的科学突破,而做出重大贡献的两位科学家:京都大学森和俊(Kazutoshi Mori)和加州大学旧金山分校瓦尔特(Peter Walter)(1993年同时筛选到未折叠蛋白应答基因),他们今年获奖机率较大。备选:mTOR发现者瑞士巴塞尔大学霍尔(Michael Hall)和磷脂信号通路发现者威尔康奈尔医学院坎特利(Lewis Cantley)。03情怀组合诺贝尔奖不仅仅是科学贡献比拼,有时候还需要考虑到人情世故,因此对于一些较为年迈的科学家可能会有特别照顾。这一组合的三位科学家为法国斯特拉斯堡大学尚邦(Pierre Chambon)、美国索尔克研究所埃文斯(Ronald Evans)和美国洛克菲勒大学罗德(Robert Roeder),以表彰他们在转录因子领域的先驱性贡献。尚邦出生于1931年,今年已91岁高龄,如能获奖,也将打破劳斯(87岁,1966年获奖者)保持的诺贝尔医学奖获奖年龄最大记录,近几年物理奖和化学家先后都有年龄近百科学家获奖并打破纪录(物理奖是96岁,化学奖是97岁),医学奖则多年未有突破,今年有望改观。尚邦属上世纪古典科学家代表,多个领域都做出卓越贡献,如最终错失也可能是诺贝尔奖一点小遗憾。备选:B细胞和T细胞发现者库珀(Max D. Cooper)(89岁高龄)和米勒(Jacques Miller)(91岁高龄)。上面这些预测主要基于2022年诺贝尔医学奖授予基础医学领域,若颁发给临床领域,则赫赛汀发明者、他汀发现者和fMRI发明者等机会很大。这里一并预测下今年的诺贝尔化学奖,去年按规律原本应颁发给生命科学领域,最终却授予有机合成,这也预示着今年生命科学领域获奖机率会进一步增加以符合生命科学越来越被偏爱的趋势,如这个前提成立,今年最有机会的是两个组合PK。04偏基础的分子运动机制研究团队三位科学家美国斯坦福大学斯普迪赫(James Anthony Spudich)、德克萨斯大学希茨(Michael Patrick Sheetz)和加州大学旧金山分校韦尔(Ronald David Vale)。他们在上世纪八十年代的研究深化和拓展对肌肉收缩和分子内物质运输机制的理解和认识,自2015年化学奖颁发给机制研究以来,一直都是授予应用领域,今年有望改变。05偏应用的mRNA疫苗研究团队两位科学家是宾夕法尼亚大学卡里科(Katalin Karikó)和魏斯曼(Drew Weissman)。两位科学家发现的重要性显而易见,去年就被寄予极高厚望,但最终未能获奖,但也有意外收获,那就是今年继续横扫各项科学大奖(通常获得诺贝尔奖后就很难再获其他“小奖”),鉴于mRNA疫苗的热度和新冠肺炎疫情的现状,今年获奖概率仍然较高。不管谁获奖,我想应该都是对全民的一次很好的科普。这次盛事也让我们看到国内科研水平与他们的差距。不难否认的是,诺奖是奖励过去一段时间做出的重大成果,近些年中国的科研水平增长很快,期待不久的将来也会有诺奖级科研成果出来。
  • 重磅!2023年诺贝尔化学奖揭晓!量子点绘制绚丽纳米世界!
    2023年10月4日下午,瑞典皇家科学院决定将2023年诺贝尔化学奖授予美国麻省理工学院教授蒙吉G巴文迪(Moungi G. Bawendi)、美国哥伦比亚大学教授路易斯E布鲁斯(Louis E. Brus)和美国纳米晶体技术公司前首席科学家阿列克谢伊基莫夫(Alexei I. Ekimov),以表彰他们在量子点的发现和发展方面的贡献。三人将分得1100万瑞典克朗,约合人民币725万元。量子点是纳米大小的半导体材料,具有独特的光学和电子性质。由于它们可以发出特定颜色的光,且荧光亮度超过传统荧光体,被广泛应用于显示器、照明和生物成像技术。此外,量子点还可以作为光电材料,将光能转化为电能,被应用于太阳能电池和光电器件等领域。在医学领域,量子点被用作生物成像和药物输送,帮助医生了解和诊断病情,提高药物治疗效果。蒙吉G巴文迪(Moungi G. Bawendi):1961年出生于法国巴黎,法国-突尼斯裔美国化学家,美国艺术与科学院院士,美国国家科学院院士,诺贝尔化学奖获得者,美国麻省理工学院教授,是量子点领域的先驱之一,他在该领域的研究成果为制备高质量的量子点材料奠定了基础,并开发出新颖的制备方法,提高量子点的性能,并拓展了应用领域。路易斯E布鲁斯(Louis E. Brus):1943年出生于美国俄亥俄州,美国艺术与科学院院士,美国国家科学院院士,挪威科学与文学院外籍院士,诺贝尔化学奖获得者,美国哥伦比亚大学化学系教授,他创造了量子点术语,在量子点的表征和理解方面做出巨大贡献。阿列克谢伊基莫夫(Alexei I. Ekimov):1945年出生于苏联列宁格勒,俄罗斯物理学家,诺贝尔化学奖获得者,美国纳米晶体技术公司首席科学家,他发现新型半导体量子点材料,推动量子点技术发展,给各领域的应用创新提供可能性。诺贝尔化学奖近五年得主2022年诺贝尔化学奖授予美国化学家卡罗琳贝尔托西(Carolyn R. Bertozzi)、丹麦化学家摩顿梅尔达尔(Morten Meldal)和美国化学家卡尔巴里夏普莱斯(K. Barry Sharpless),以表彰他们在链接化学和生物正交化学的发展作出了贡献。2021年诺贝尔化学奖授予德国科学家本杰明李斯特 (Benjamin List) 和美国科学家戴维麦克米伦 (David MacMillan),以表彰他们对不对称有机催化的发展所作出的贡献。2020年诺贝尔化学奖授予埃马纽埃尔卡彭蒂耶(Emmanuelle Charpentier)和詹妮弗杜德纳(Jennifer A. Doudna),以表彰她们在“凭借开发基因组编辑方法”方面作出的贡献。2019年诺贝尔化学奖授予约翰古迪纳夫(John B. Goodenough),斯坦利威廷汉(M. Stanley Whittingham)和吉野彰(Akira Yoshino),以表彰他们在锂离子电池领域的贡献。2018年诺贝尔化学奖授予美国科学家弗朗西斯阿诺德(Frances H. Arnold)、美国科学家乔治史密斯(George P. Smith)和英国科学家乔治保罗温特(Gregory P. Winter),以表彰他们在“酶的定向进化”以及“多肽与抗体的噬菌体展示技术”领域的贡献。
  • 中国学者解读2012年诺贝尔化学奖
    10月10日,69岁的美国科学家罗伯特莱夫科维茨和57岁的布莱恩科比尔卡因进一步揭示了G蛋白偶联受体的内在工作机制,分享了2012年诺贝尔化学奖。   而18年前,G蛋白和G蛋白偶联受体(GPCRs)就曾令他们的发现者——两名美国科学家获得了诺贝尔生理学或医学奖。   看清G蛋白激活过程   莱夫科维茨从1968年便开始利用放射性碘来寻找细胞接受信号的物质,这种物质后来被称为“G蛋白偶联受体”。他找到了多种受体,并将其中的“β-肾上腺素受体”从细胞壁抽出。上世纪80年代,年轻的科比尔卡加入了莱夫科维茨团队。   2007年,科比尔卡首次用T4溶菌酶融合法解析了β-肾上腺素受体的结构,该方法后来成为获取G蛋白偶联受体三维结构的常规手段。2011年,他又在这个受体被激活并向细胞发送信号时获得了三维图像。   “在此之前,一直没有人了解G蛋白偶联受体究竟如何激活G蛋白。”清华大学生命科学学院院长施一公评价,“这是一项划时代的工作。”   中科院院士、同济大学校长裴钢指出,G蛋白偶联受体是细胞表面的信号接收器,是细胞生物学、分子药理学等学科里最基础的一类传导分子。同时,很大一部分药物都以该受体为作用靶点,激活机理研究将对未来药物研发有所助益。   早就被看好的研究   获奖者的名字被公布后,《中国科学报》记者拨通北京大学生命科学学院院长饶毅的电话,他称自己曾在今年4月就非常看好G蛋白偶联受体研究。他分析,诺贝尔化学奖委员会不时地肯定化学和生物交叉的工作。鉴于G蛋白偶联受体本身及其结构解析的重要性,他认为,对于该受体的结构生物学研究,几乎肯定会获得诺贝尔奖。   中科院生物物理所研究员王江云曾在与科比尔卡合作过的斯克利普斯研究所工作,他也在第一时间告诉《中国科学报》记者:“几个月来我一直向我的同事表示,G蛋白偶联受体研究非常有可能获得诺奖。”   今年4月,科比尔卡受聘清华大学医学院客座教授。当时,施一公曾给同事们写了一封邮件,在介绍完科比尔卡的工作后,他提到:“我个人认为,他今后5年之内很可能得诺贝尔奖。”   从他们身上学做真正的科学家   裴钢和山东大学医学院教授孙金鹏都曾在莱夫科维茨研究组里做过博士后,整个实验室都亲切地称莱夫科维茨为Bob。   “Bob是一个非常率真的科学家。”裴钢说,“争论时,整个走廊都能听到我们的声音,不过他从来不以老师自居。”孙金鹏则认为:“Bob拿奖是实至名归,他多年的努力进取和一丝不苟的科学态度终究得到了认可。”   施一公与科比尔卡则在两年前结识。“他是一个非常低调、非常认真的人,来清华的时间里,从早到晚都在实验室指导自己的博士后、博士生做实验。”   据裴钢介绍,近年来我国G蛋白偶联受体研究越来越多,但由于起步较晚,仍在努力追赶先进水平。“我们的物质条件已经很好,更需要文化和精神上的建设,应从他们身上学做真正的科学家,孜孜不倦、默默无闻地工作。”   此外,施一公还透露,科比尔卡的妻子田东山是一名出生于马来西亚的华裔,两人“夫妻档”配合默契。“他的妻子称得上是幕后英雄,管理实验室、组织人员等工作都由她承担。”
  • 中国离诺贝尔奖还有多远?白春礼院士:我看好物理领域
    黑西装、金属眼镜……在4月13日举行的中国化学会第28届学术年会开幕式暨中国化学会八十华诞庆祝仪式上,中国科学院院长白春礼院士以《在发现与创造中不断发展化学科学》为题,展开了首场报告。他回顾了化学在人类生活中发挥的巨大作用,并指出研究社会公共安全问题也是化学的使命。中国离诺贝尔奖还有多远?白春礼表示,他看好我国物理研究领域。   化学关注公共安全   白春礼说,多年来,我国化学研究在与生命、材料、环境等学科的交融中,催生了许多新兴交叉的前沿   学科,促进着人们生活、生产方式的发展和转变。“化学在解决新能源危机、探索太空等方面都发挥着重大的作用。化肥,它让我们从饥饿中拯救出来 还有各种化学药物的产生,也让人类的健康更有保障。”   化学的使命是什么?针对地沟油、三聚氰胺等社会热点问题,白春礼说,“化学在食品安全检测、化学事故处理救援、炸药与毒品等方面发挥至关重要的作用。社会公共安全问题呼唤化学。这也是我们化学研究的使命之一。”   “如今,我国化学领域论文的数量在国际刊物中与美国并驾齐驱。”白春礼说,“在质量和影响力方面,我国化学论文还需要提高,原创方面还需要创新。”   诺贝尔奖不能规划   去年,汤森路透集团研究服务引文分析师David曾分析,“诺贝尔化学奖、物理学奖将先于生理学或医学奖来到中国。”对这一观点,白春礼认为,“不能提前规划和预测”。   “自然科学领域的研究成果是不能人为规划的。相信只要科研人员能够专心致力于研究,假以时日就能取得非常大的成功。”   中国离诺贝尔奖还有多远?白春礼请记者重点关注日前大亚湾中微子实验的重大发现。3月8日,中科院高能物理研究所王贻方宣布,中国大亚湾中微子实验室发现了一种新的中微子振荡,并测量到它的振荡频率。这一消息在世界物理界获得广泛的关注。白春礼认为,这是目前中国最有希望获得诺贝尔奖的一个成果。
  • 2017年诺贝尔化学奖,花落谁家?
    p   前不久,科睿唯安发布了2017年的各奖项“引文桂冠奖”。自2002年以来,45位获得“引文桂冠奖”的科学家荣膺诺贝尔奖,因此该奖被认为是“诺奖风向标”。北京时间10月2日起,诺贝尔奖委员会将陆续宣布获得2017年各分类奖项的得主。 /p p   获奖预测是多年来的“传统”节目,各类分析平台、权威机构及个人博客都在为自己“选中”的名单列举获奖理由。 /p p   “引文桂冠奖”、化学权威杂志《化学世界》、著名预测博客等,在25日前后分别对今年的化学奖进行了预测,与碳纳米管、太阳能电池材料和基因编辑技术CRISPR相关的重大成果及其发现者,被认为有望获得第109届诺贝尔化学奖900万瑞典克朗的巨额奖励。北京时间26日,《科学美国人》杂志对此进行了报道。 /p p   strong  “诺奖风向标”指向谁 /strong /p p   科睿唯安(Clarivate Analytics)是各预测机构中的佼佼者。其基于此前汤森路透旗下的知识产权与科技业务板块和出版物索引平台Web of Science,发布了2017年的各奖项“引文桂冠奖”。 /p p   自2002年以来,45位获得“引文桂冠奖”的科学家荣膺诺贝尔奖,因此该奖被认为是“诺奖风向标”。其最近一次成功预测是2016年诺贝尔化学奖得主之一——弗雷泽· 斯托达特。因此,《化学世界》杂志也将今年的奖项得主纳入预测之列。 /p p   今年,科睿唯安化学领域获得“引文桂冠奖”的有三项:第一项授予俄罗斯科学家格奥尔盖· 舒里平(Georgiy Shul& #39 pin)、美国化学家约翰· 伯考(John Bercaw)和罗伯特· 伯格曼(Robert Bergman),他们的获奖理由是对C-H官能团化的发现有重要贡献 第二项授予美国斯坦福大学化学工程师吉恩斯· 诺斯科夫(Jens Norskov),因其在实体面材的多相催化方面的理论和实践研究,带来了合成氨和燃料电池重大进展而上榜 第三项授予日本的宫坂力(Tsutomu Miyasaka)、韩国的朴南圭(Nam-Gyu Park)以及英国的亨利· J· 斯内斯(Henry J.Snaith),他们因为发现并应用钙钛矿材料实现有效能量转换而获奖。 /p p strong   权威杂志和博客看好谁 /strong /p p   《化学世界》杂志还认为,美国化学物理学家费顿· 艾文瑞斯(Phaedon Avouris)、保尔· 麦克尤恩(Paul McEuen)和荷兰物理学家考恩内利斯· 代克尔(Cornelis Dekker)因对碳基电子产品做出重大贡献,虽然获得了“引文桂冠奖”的物理学奖,但因研究涉及碳纳米管、石墨烯和纳米带等在电子学领域的应用,因此,也有可能受到诺贝尔化学奖的青睐。 /p p   美国加利福尼亚大学研究人员、著名博客作者塞缪尔· 劳德认为,诺贝尔化学奖还有可能颁发给围绕新一代基因编辑技术CRISPR开展原创工作的珍妮弗· 杜德娜(Jennifer Doudna)、伊曼纽尔· 夏波尼(Emmanuelle Charpentier)以及华人科学家张峰(Feng Zhang)。这一提议也获得了遗传生物学家克里斯安托· 盖迪尔瑞兹,以及分子生物学家艾利克斯· 沃尔格的赞同,他们在推特上认为这三个人将拔得头筹。 /p p   此外,还有的著名博客将锂离子电池发明家斯坦利· 惠廷翰(Stanley Whittingham)和约翰· 古德伊纳夫(John Goodenough),以及生物无机化学先驱哈里· 格雷(Harry Gray)和史蒂芬· 利帕尔(Stephen Lippard)列为本届化学奖的竞争对手。 /p p   具体花落谁家,我们还要拭目以待。 /p p /p
  • 刚刚!2024年诺贝尔物理学奖揭晓!
    刚刚,2024诺贝尔物理学奖揭晓!2024年诺贝尔物理学奖被授予John J. Hopfield和Geoffrey E. Hinton,表彰他们通过人工神经网络实现机器学习的基础性发现和发明。 约翰霍普菲尔德 John J. HopfieldJohn Hopfield 1954 年在斯沃斯莫尔学院获得学士学位,1958 年在康奈尔大学获得物理学博士学位。他在贝尔实验室理论组工作了两年,随后在加州大学伯克利分校(物理学)、普林斯顿大学(物理学)、加州理工学院(化学和生物学)任教。John Hopfield 1969 年获美国物理学会奥利弗・ 巴克利奖,1973 年当选美国国家科学院院士,2001 年获国际理论物理中心(ICTP)狄拉克奖章。杰弗里辛顿 Geoffrey Hinton杰弗里辛顿(Geoffrey Hinton),1947年12月6日出生于英国温布尔登,2018年图灵奖得主,英国皇家学会院士,加拿大皇家学会院士,美国国家科学院外籍院士,多伦多大学名誉教授。杰弗里辛顿于1970年获得剑桥大学实验心理学学士学位;1976年受聘为苏塞克斯大学认知科学研究项目研究员;1978年获得爱丁堡大学人工智能学博士学位。1978年至1980年担任加州大学圣地亚哥分校认知科学系访问学者;1980年至1982年担任英国剑桥MRC应用心理学部科学管理人员;1982年至1987年历任卡内基梅隆大学计算机科学系助理教授、副教授;1987年受聘为多伦多大学计算机科学系教授;1996年当选为加拿大皇家学会院士;1998年当选为英国皇家学会院士;1998年至2001年担任伦敦大学学院盖茨比计算神经科学部创始主任;2001年至2014年担任多伦多大学计算机科学系教授;2016年至2023年担任谷歌副总裁兼工程研究员;2023年从谷歌辞职。杰弗里辛顿致力于神经网络、机器学习、分类监督学习、机器学习理论、细胞神经网络、信息系统应用、马尔可夫决策过程、神经网络、认知科学等方面的研究。近5年诺贝尔物理学奖得主诺贝尔物理学奖是根据诺贝尔1895年的遗嘱而设立的五个诺贝尔奖之一,该奖旨在奖励那些对人类物理学领域里作出突出贡献的科学家。2023年 诺贝尔物理学奖授予皮埃尔-阿戈斯蒂尼(Pierre Agostini)、费伦茨-克劳斯(Ferenc Krausz)和安妮-勒惠利尔(Anne L’Huillier),以表彰他们“开发了产生阿秒光脉冲的实验方法,用于研究物质中的电子动力学”。2022年 诺贝尔物理学奖被授予科学家阿兰阿斯佩(Alain Aspect),约翰弗朗西斯克劳泽(John F. Clauser)和安东塞林格(Anton Zeilinger),以表彰他们为纠缠光子实验、证明违反贝尔不等式和开创性的量子信息科学所作出的贡献。2021年 美国普林斯顿大学的真锅淑郎(Syukuro Manabe)和德国马克斯普朗克气象研究所的克劳斯哈塞尔曼(Klaus Hasselmann)因“物理模拟地球气候,量化变化和可靠地预测全球变暖”而共同分享一半奖金。另一半奖金由意大利罗马大学乔治帕里西(Giorgio Parisi)获得,理由是“发现从原子到行星尺度的物理系统的无序和波动的相互作用”。2020年 英国物理学家罗杰彭罗斯(Roger Penrose)因为发现黑洞形成是对广义相对论的可靠预测,独享一半奖金;美国国家科学院院士莱恩哈德根策尔(Reinhard Genzel)和美国天文学家安德烈娅盖兹(Andrea Ghez) 因为发现银河系中央存在超大质量的致密物体,共享2020年诺贝尔物理学奖的另一半奖金。2019年 美国普林斯顿大学名誉教授詹姆斯皮波斯(James Peebles)因“在物理宇宙学上的理论发现”独享一半奖金,瑞士日内瓦大学教授米歇尔马约尔(Michel Mayor)和迪迪埃奎罗兹(Didier Queloz)因“发现一颗环绕类太阳恒星的系外行星”共享另一半奖金。诺贝尔奖小知识截至2023年,诺贝尔物理学奖共颁发了117次,没有颁发的六年分别是1916、1931、1934、1940、1941和1942年。最年轻的获奖者是英国物理学家Lawrence Bragg,1915年因“用X射线对晶体结构的分析所作的贡献”与父亲一起获奖,时年25岁。最年长的获奖者是美国物理学家Arthur Ashkin,2018年因“在激光物理学领域所作出的开创性发明”获奖,时年96岁。诺贝尔物理学奖史上的“家庭”诺奖有:Marie Curie和Pierre Curie夫妇获得1903年的诺贝尔物理学奖;William Bragg和Lawrence Bragg父子获得1915年的诺贝尔物理学奖;Niels Bohr获得1922年诺贝尔物理学奖,其子Aage N. Bohr获得1975年诺贝尔物理学奖;Manne Siegbahn获得1924年诺贝尔物理学奖,其子Kai M. Siegbahn获得1981年诺贝尔物理学奖;J. J. Thomson获得1906年诺贝尔物理学奖,其子George Paget Thomson获得1937年诺贝尔物理学奖。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制