当前位置: 仪器信息网 > 行业主题 > >

鼠李糖小短杆菌

仪器信息网鼠李糖小短杆菌专题为您提供2024年最新鼠李糖小短杆菌价格报价、厂家品牌的相关信息, 包括鼠李糖小短杆菌参数、型号等,不管是国产,还是进口品牌的鼠李糖小短杆菌您都可以在这里找到。 除此之外,仪器信息网还免费为您整合鼠李糖小短杆菌相关的耗材配件、试剂标物,还有鼠李糖小短杆菌相关的最新资讯、资料,以及鼠李糖小短杆菌相关的解决方案。

鼠李糖小短杆菌相关的论坛

  • 革兰氏阳性芽孢杆菌和球菌

    革兰氏阳性芽孢杆菌和球菌,该类群中与食品关系密切的菌属如下。1.芽孢杆菌属(Bacillus)该属可形成芽孢,对不良环境条件有很强的抵抗力。需氧或兼性厌氧,绝大多数菌种产生过氧化氢酶。该菌广泛分布于土壤、植物、腐殖质及食品上。其中包括人和动物的病原性细菌炭疽芽孢杆菌(B.anthracis)、食物中毒性细菌蜡样芽孢杆菌(B.cereus)、昆虫的病原菌苏云金芽孢杆菌(B.thuringiensis)、可用于食品工业生产的枯草芽孢杆菌(B.subtilis)。此外,也包括一些可引起食品腐败变质和食物中毒的菌种。(1)蜡样芽孢杆菌(B.ccrcl2S):该菌广泛分布于土壤、水、调味料、乳及咸肉中,污染牛乳后可产生卵磷脂酶,破坏脂肪球膜,使得脂肪不能很好地乳化,还可以产生类似凝乳酶的酶,使乳在酸度不高时即可发生凝固。蜡样芽孢杆菌的生长温度为10~48℃,pH值为4·9~9·3,发芽温度范围为1~59℃。该菌污染食品后,可以引起食品腐败变质,并且产生下痢性毒素、肠毒素、溶血素、呕吐毒素及肠管坏死毒素等,引起人食物中毒。(2)枯草芽孢杆菌(B.subtilis):该菌菌落呈圆形或不规则形状,表面粗糙或有皱纹,呈奶油色或褐色,菌落形态与培养基成分有关。枯草芽孢杆菌污染面粉后,可以使发酵面团产生液化黏丝状现象,使烤制的面包**头出现斑点或斑纹,并且伴有异味。在肉类表面可产生黏液并有异味。在肉类罐头及其他肉制品上经常可以分离到该菌,但在密封的罐头中较少引起变质。在牛乳中生长,可以使牛乳变稠,有时在不变酸时使牛乳凝固,即产生所谓的甜凝乳现象。(3)巨大芽孢杆菌(B.megaterium):该菌可以在含氨的环境中生长,不需要生长因子,无卵磷脂酶活性。在厌氧条件下,于葡萄糖肉汤中不生长,多数菌株可在培养基中产生黄、粉红、褐或黑色色素。适宜生长温度为28~37℃。该菌可以从鲜乳、消毒乳、于酪、肉类等食品中分离到,可使浓缩乳凝固并产生干酪味和气体,使肉类罐头变质胀罐。(4)嗜热脂肪芽孢杆菌(B.stearothermophilus):该菌菌落为圆形或不规则圆形小菌落,表面光滑或粗糙,能在49~65℃范围内生长,对热的抵抗力很强。该菌在pH值5.0以下的培养基上不生长。该菌主要可引起罐藏食品和淀粉类食品的腐败。(5)凝结芽孢杆菌(B.coagulans):该菌菌落为不透明的小菌落,生长温度范围为18~60℃,可在酸性条件下生长。在有氧条件下于葡萄糖肉汤中生长,产生醋酸、乳酸和CO2。在厌氧条件下主要产生乳酸,不产气。该菌能在pH值3.5~**5的食品中生长,引起食品变质,罐头食品变质后外观不膨胀。在炼乳罐头中,通常使乳形成坚实凝结,偶尔呈碎片状凝结,并有乳清析出。此种变质亦常发生于含有蔗糖的乳制品中。2.梭菌属(Clostridium)该属的绝大多数种为厌氧菌,只有少数种可在大气条件下生长,但在大气中不形成芽孢。该属菌形成的芽孢多呈球形,位于菌体中央,使菌体呈梭状。对不良环境条件具有极强的抵抗力。该属菌对营养的需要因菌种不同而异。可耐受2.5%~6.5%NaCl浓度的渗透压,对亚硝酸钠和氯敏感。梭菌广泛分布于土壤、下水污泥、海水沉淀物、腐败植物、食品、人和其他哺乳动物的肠道内。该属中的一些菌种如丁酸梭菌(C.butyricum)可分解碳水化合物产生各种有机酸(乙酸、丙酸、丁酸)和醇类(乙醇、异丙醇、丁醇),在食品加工上可用于生产某些酸、醇和酮类。一些菌种如腐化梭菌(C.putrefaciENs)分解蛋白质和氨基酸,产生H2S、硫醇、甲基吲哚(粪臭素)等具有恶臭味的腐败产物,在乳中生长时可使乳中酪蛋白完全胨化,在熟肉上生长使肉变黑,在罐头中生长时,因产气使罐头发生膨胀。肉毒梭菌(c.botulinum)在食品中增殖时可产生肉毒毒素,当人们食入含有该毒素的食品时,可发生毒素型食物中毒,早期症状为全身无力、头痛、头晕,继而出现眼睑下垂、视力模糊、瞳孔散大、吞咽困难等症状直至死亡。此外某些梭菌如破伤风梭菌(C.terni)是人和动物的破伤风病病原菌。

  • 【原创】总大肠杆菌数

    有总大肠杆菌数这个说法吗?今天领导我说和总大肠菌群数是一样的,因为我们平时只做总大肠菌群数,粪大肠菌群数和细菌总数,从来没做过什么总大肠杆菌数,后来我上面查了下只发现大肠杆菌是粪大肠菌群中的一类,可是这总大肠杆菌又是啥呢?而且我查阅一些文献发现,里面总大肠杆菌和总大肠菌群这两个概念混用,测试总大肠杆菌用的方法也是用的测试总大肠菌群的方法

  • 革兰氏阳性芽孢杆菌和球菌

    革兰氏阳性芽孢杆菌和球菌,该类群中与食品关系密切的菌属如下。1.芽孢杆菌属(Bacillus)该属可形成芽孢,对不良环境条件有很强的抵抗力。需氧或兼性厌氧,绝大多数菌种产生过氧化氢酶。该菌广泛分布于土壤、植物、腐殖质及食品上。其中包括人和动物的病原性细菌炭疽芽孢杆菌(B.anthracis)、食物中毒性细菌蜡样芽孢杆菌(B.cereus)、昆虫的病原菌苏云金芽孢杆菌(B.thuringiensis)、可用于食品工业生产的枯草芽杆菌(B.subtilis)。此外,也包括一些可引起食品腐败变质和食物中毒的菌种。(1)蜡样芽孢杆菌(B.ccrcl2S):该菌广泛分布于土壤、水、调味料、乳及咸肉中,污染牛乳后可产生卵磷脂酶,破坏脂肪球膜,使得脂肪不能很好地乳化,还可以产生类似凝乳酶的酶,使乳在酸度不高时即可发生凝固。蜡样芽孢杆菌的生长温度为10~48℃,pH值为4·9~9·3,发芽温度范围为1~59℃。该菌污染食品后,可以引起食品腐败变质,并且产生下痢性毒素、肠毒素、溶血素、呕吐毒素及肠管坏死毒素等,引起人食物中毒。(2)枯草芽孢杆菌(B.subtilis):该菌菌落呈圆形或不规则形状,表面粗糙或有皱纹,呈奶油色或褐色,菌落形态与培养基成分有关。枯草芽孢杆菌**面粉后,可以使发酵面团产生液化黏丝状现象,使烤制的面包或馒头出现斑点或斑纹,并且伴有异味。在肉类表面可产生黏液并有异味。在肉类罐头及其他肉制品上经常可以分离到该菌,但在密封的罐头中较少引起变质。在牛乳中生长,可以使牛乳变稠,有时在不变酸时使牛乳凝固,即产生所谓的甜凝乳现象。(3)巨大芽孢杆菌(B.megaterium):该菌可以在含氨的环境中生长,不需要生长因子,无卵磷脂酶活性。在厌氧条件下,于葡萄糖肉汤中不生长,多数菌株可在培养基中产生黄、粉红、褐或黑色色素。适宜生长温度为28~37℃。该菌可以从鲜乳、消毒乳、于酪、肉类等食品中分离到,可使浓缩乳凝固并产生干酪味和气体,使肉类罐头变质胀罐。(4)嗜热脂肪芽孢杆菌(B.stearothermophilus):该菌菌落为圆形或不规则圆形小菌落,表面光滑或粗糙,能在49~65℃范围内生长,对热的抵抗力很强。该菌在pH值5.0以下的培养基上不生长。该菌主要可引起罐藏食品和淀粉类食品的腐败。(5)凝结芽孢杆菌(B.coagulans):该菌菌落为不透明的小菌落,生长温度范围为18~60℃,可在酸性条件下生长。在有氧条件下于葡萄糖肉汤中生长,产生醋酸、乳酸和CO2**厌氧条件下主要产生乳酸,不产气。该菌能在pH值3.5~4.5的食品中生长,引起食品变质,罐头食品变质后外观不膨胀。在炼乳罐头中,通常使乳形成坚实凝结,偶尔呈碎片状凝结,并有乳清析出。此种变质亦常发生于含有蔗糖的乳制品中。2.梭菌属(Clostridium)该属的绝大多数种为厌氧菌,只有少数种可在大气条件下生长,但在大气中不形成芽孢。该属菌形成的芽孢多呈球形,位于菌体中央,使菌体呈梭状。对不良环境条件具有极强的抵抗力。该属菌对营养的需要因菌种不同而异。可耐受2.5%~6.5%NaCl浓度的渗透压,对亚硝酸钠和氯敏感。梭菌广泛分布于土壤、下水污泥、海水沉淀物、腐败植物、食品、人和其他哺乳动物的肠道内。该属中的一些菌种如丁酸梭菌(C.butyricum)可分解碳水化合物产生各种有机酸(乙酸、丙酸、丁酸)和醇类(乙醇、异丙醇、丁醇),在食品加工上可用于生产某些酸、醇和酮类。一些菌种如腐化梭菌(C.putrefaciENs)分解蛋白质和氨基酸,产生H2S、硫醇、甲基吲哚(粪臭素)等具有恶臭味的腐败产物,在乳中生长时可使乳中酪蛋白完全胨化,在熟肉上生长使肉变黑,在罐头中生长时,因产气使罐头发生膨胀。肉毒梭菌(c.botulinum)在食品中增殖时可产生肉毒毒素,当人们食入含有该毒素的食品时,可发生毒素型食物中毒,早期症状为全身无力、头痛、头晕,继而出现眼睑下垂、视力模糊、瞳孔散大、吞咽困难等症状直至死亡。此外某些梭菌如破伤风梭菌(C.terni)是人和动物的破伤风病病原菌。**

  • 双岐杆菌是如何在喷雾干燥中存活的

    [b][font=微软雅黑]双歧杆菌[/font][/b][font=微软雅黑]在食品工业中,喷雾干燥是一种生产率高、操作费用低的工艺,是普遍采用的制备干燥、稳定、体积小的食品或食品添加剂的方法之一。此外,还可用用保护和浓缩微生物。[/font][font=微软雅黑]许多人还报道了用喷雾干燥制备发酵用于生产发酵乳制品或作为提高奶酪风味的附加物。然而,微生物对喷雾干燥的温度及脱水很敏感。因此,如果喷雾干燥应用于发酵剂制备注意微生物的存活率。[/font][b][font=微软雅黑]双歧杆菌[/font][/b] [font=微软雅黑]Bifidobacterium是1899年由法国学者Tissier从母乳营养儿的粪便中分离出的一种厌氧的革兰氏阳性杆菌,末端常常分叉,故名双歧杆菌。双歧杆菌分布在胃肠的数量随年龄阶段的增长而减少,分布多的是母乳营养儿。已经发现,双歧杆菌有32个亚型,含有双歧杆菌的生物制剂多达70种。婴儿双歧杆菌占总肠道菌的百分之六十,60岁以上老人双歧杆菌只占百分之七点九。[/font][b][font=微软雅黑]双歧杆菌[/font][/b][font=微软雅黑]形态很不一致的杆菌,0.5~1.3 μm×1.5~8μm,常呈弯、棒状和分支状。单生、成对、V字排列,有时成链,细胞平行成栅栏状,或玫瑰花结状。偶尔呈膨大的球杆状 。[/font][align=center][img]https://img69.chem17.com/9/20190409/636904143730081616114.png[/img][/align][b][font=微软雅黑]双岐杆菌[/font][font=微软雅黑]药理作用:[/font][/b][font=微软雅黑]治疗便秘[/font][font=微软雅黑]、[/font][font=微软雅黑]肿瘤防治[/font][font=微软雅黑]、[/font][font=微软雅黑]保护肝脏[/font][font=微软雅黑]、[/font][font=微软雅黑]防治心血管疾病、改善乳糖消化[/font][font=微软雅黑]等[/font][b][font=微软雅黑]双岐杆菌[/font][color=#000000][font=微软雅黑]营养食品作用[/font][/color][color=#000000][font=微软雅黑]:[/font][/color][/b][font=微软雅黑]促吸收[/font][font=微软雅黑]、[/font][font=微软雅黑]抗衰老[/font][font=微软雅黑]、[/font][font=微软雅黑]防治疾病[/font][font=微软雅黑]。[/font][font=微软雅黑]如此重要的[/font][b][font=微软雅黑]双岐杆菌[/font][/b][font=微软雅黑]是如何在喷雾干燥中存活的呢?[/font][font=微软雅黑]双岐杆菌在喷雾干燥的存活情况和载体有很大的关系;有研究表明,双歧杆菌分别与含有明胶、树胶和可溶性淀粉的载体一起喷雾干燥,结果发现喷雾干燥后双歧杆菌的存活因其载体种类不同而不同。[/font][font=微软雅黑]很大程度上取决于所用的载体。比较不同的载体浓度对存活的影响。发现双歧杆菌在与明胶、树胶或可溶性淀粉喷雾干燥后存活率高。经喷雾干燥后双歧杆菌表现大存活,温度升高则失活升高,然后温度升高引起的失活程度因所用载体不同而不同。已有研究表明,采用可溶性淀粉程度大,采用脱脂乳则小。[/font]

  • 大肠杆菌污染蔬菜,什么结果?

    《应用与环境微生物学》杂志刊登一项美国研究显示,养殖场中的大肠杆菌可借助空气传播,并污染周边农作物。 该研究由美国农业部肉用动物研究中心Elaine D. Berry及其同事花费两年时间完成。 研究显示,养牛场周边的蔬菜会受到养牛场大肠杆菌的污染,且距离越远污染程度越低。 研究发现,距离养牛场60米的地方平均会有3.5%的绿叶蔬菜被大肠杆菌污染,在距离180米的地方也有1.8%的蔬菜被大肠杆菌污染。说起大肠杆菌,想起来小时候生活的农村,最肥美的蔬菜都是用大粪水浇灌长出来的。这些蔬菜,难道不会被大肠杆菌污染吗?被大肠杆菌污染的蔬菜,会发生什么样的结果呢?

  • 土壤农杆菌

    在自然界存在一种叫做土壤杆菌的细菌,它能感染植物的受伤组织,特别是根茎交接处的受伤组织,引起冠瘿瘤。冠瘿病损害为数众多的双子叶植物,特别是葡萄、核果类树木和观赏植物。冠瘿细胞是植物肿瘤细胞,在许多方面与动物肿瘤细胞类似。它们只有无限生长的能力,把一小块冠瘿组织放入不含植物激素的培养基中培养,能长成大的细胞团块(愈伤组织),而正常植物细胞在不加植物激素的培养基中则不能生长。冠瘤拥胞能制造一类叫做冠瘿碱(opine)的氨基酸衍生物(如章鱼碱和蓝曙红),供根癌土壤杆菌作为养料使用,在正常植物细胞中从未发现过这类物质。 根癌土壤杆菌能把植物细胞转化为肿瘤细胞,是由于它含有一种肿瘤诱导质粒,简称Ti质粒。当细菌感染植物时,Ti质粒中大约占这个质粒l/10的DNA片段(称为转移DNA或T—DNA)进入植物细胞,并整合到植物的染色体上,随染色体一起复制。随后T—DNA携带的细菌基因(致瘤基因和合成冠瘿碱的基因)使在植物细胞中表达,使植物细胞转化成肿瘤细胞,并合成冠瘿碱。由于根癌土壤杆菌能把细菌基因引入植物细胞,并在那里表达出蛋白质来,所以人们称它为天然的“遗传工程师”。这给人们以启示。能否用重组DNA技术把与高产、优质、抗病、抗旱和抗盐碱等优良件状有关的基因循人到T—DNA中,然后再通过根癌土壤杆菌的感染把这些基因引入植物细胞呢?最近几年的研究进展表明,这是完全可能的。 Ti质粒是独立复制的环状DNA分子。由大约1.5—2xl05碱基对组成,相当于细菌染色体的3—5%。它有两个主要类型:一类叫章鱼碱质粒,含有这种质粒的细菌能以章鱼碱为氮源和碳源生长;另一类叫蓝署红质粒,含有这种质粒的细菌能利用蓝曙红。每一种根癌土壤杆菌只含有一种Ti质粒,或者是章鱼碱质粒,或者是蓝曙红质粒。这两种质拉的DNA同源性很低,一般为12—16%,说明它们可能具有不同的进化史。T—DNA是Ti质粒中最重要的组成部分.它所携带的基因主要有两个功能:一是决定肿瘤的形成和肿瘤的形态;二是控制冠瘿碱的合成。如果T—DNA中的致瘤基因发生突变,可能出现三种表型:一是产生比正常肿瘤个大的肿瘤;二是使肿瘤长出许多根;三是使肿瘤长出许多芽。在T—DNA区域以外也有一些基因已被定位,其中毒性基因的功能是决定根癌土壤杆菌对植物的感染以及T—DNA的进入和整合;章鱼碱代谢基因和蓝曙红代谢基因分别编码代谢这两种冠瘿碱的酶;质粒转移基因控制细菌的接合作用;不相容性基因控制Ti质粒与其它质粒的不相容性。 Ti质粒之所以能成为把外源基因引入植物的良好载体有两方面的原因。第一,携带质粒的根癌土壤杆菌的寄主范围很广,实际上它能转化所有的双子叶植物。第二,整合到植物染色休上的T—DNA能随种子遗传,而且T—DNA有自己的启动基因,可以启动与其连接的外源基因的转录。此外,也有人研究以植物病毒DNA为载体转移目的基因,或者直接把DNA注射到植物的花粉管和子房中。Ti质粒直接用作基因载体有两个困难:一是它的分子量太大,内切酶位点很多,不容易进行体外重组DNA操作;二是被T—DNA转化的植物细胞成为肿瘤细胞,不能再生成植株。克服第一个困难的办法是先把T—DNA克隆到大肠杆菌的小质粒上,把目的基因插入到小质粒的T—DNA中,然后再设法转移到天然的Ti质粒中。克服第二个困难的办法是在T—DNA的特殊位点中插入目的基因和供筛选用的抗药基因,一方面使致瘤基因发生插入突变,从而使转化细胞能再生成植株,另一方面使目的基因正好位于T—DNA的启动基因的下游,以便启动目的基因的转录。有人经过研究发现了这样一种作用模型:大多数双子叶植物受伤后会产生一种叫丁香酮(acetosyringone)的物质,这时土壤农杆菌感染后,丁香酮在Ti质粒上Vir A的产物A的协同作用下促进了Vir G产物G的活化(即磷酸化),然后产物G相继激活Vir B、V ir c、Vir D、Vir E等操纵子,特别是Vir D和Vir E。前者产生两种蛋白,D1为缺刻酶(nickase),它能特异性地在T—DNA两端产生缺刻;D2则是一种蛋白复合物,它粘在已断开的T—DNA的两端,具“导航”的功能,有人认为它是Rec A,起重组的作用。后者产生单链结分蛋白(SSB),有保护缺刻产生后的T—DNA的功能。T—DNA在诸多蛋白的导航、保护下重组进核基因组。这种转比方法优点是方便,不需分离原生质,且插入的基因拷贝数目少,比较稳定。但它的缺点是土壤农杆菌主要只适于侵染双子叶植物,单子叶植物能被侵染的较少,这就在一定程度上影响了这种方法的推广。有人发现单子叶植物受伤后很少产生丁香酮,这是否是侵染的关键呢?目的许多实验室都在作这方面的探索,以期望能克服这种方法的局限性。http://hiphotos.baidu.com/wfvcshengwu/abpic/item/629fdb39539824d63b87ce6e.jpg

  • 【金秋计划】“芽孢杆菌”鉴别小技巧

    [size=12px][b][b]一、形态学特征[/b][/b] 形态学鉴别菌种是最直接的方法,也是最简单的方法。[b][color=#000000][b][color=#000000][b]1.菌落特征[/b][/color][/b][/color][/b]不同的菌种在不同培养基上菌落形态不同,这是鉴别所有菌种的特征之一。不同的芽孢杆菌,菌落的大小、颜色、凸起、边缘形状等也不同。因此,根据菌落形态可以区分不同的芽孢菌种。有的边缘整齐,有的边缘呈锯齿状,特征非常明显。拿到菌种,记住菌落形态或拍照记录很重要。[b][color=#000000][b]2.芽孢位置[/b][/color][/b]芽孢杆菌,属于革兰氏染色阳性菌,最大的特点就是能够产生芽孢,不同的芽孢杆菌芽孢出现的位置不同,这是鉴别芽孢杆菌的重要特征之一。有的芽孢在菌体的中部、有的在菌体一侧或顶端。可以按照芽孢的位置区分是否属于自己的菌种。观察芽孢可以采用简单染色法也可以采用芽孢染色法。 [b][b]二、生化生化特征[/b][/b] 相比形态学特征,生化特性比较繁琐,但是鉴别芽孢杆菌的重要方法。通过分析芽孢杆菌分泌的代谢产物,比如说酶活、条带的位置、抑菌圈、有机酸等,鉴别是否是目标产物,进而鉴别是否是自己的菌种。 [b][b]三、分子生物学手段[/b][/b] 如果形态学方法和生理生化方法不能鉴别,只能采用分子生物学手段。每个菌种的遗传物质都不同,常采用16S rDNA测序,跟已知序列进行比对后,可以准确地定位芽孢杆菌的种属,这是鉴别菌种最重要的方法。 [/size]

  • 大肠杆菌乳糖发酵实验

    请问,乳糖发酵大肠杆菌,培养基颜色变黄导管产气,但是培养基是混浊的,请问这样的结果对吗,求大神指点,拜托拜托[img]https://ng1.17img.cn/bbsfiles/images/2019/01/201901180941516446_2797_3545162_3.png[/img]

  • 【原创大赛】双歧杆菌 之扫描电镜照片

    【原创大赛】双歧杆菌 之扫描电镜照片

    拍摄时间: 上个月样品名称:双歧杆菌 双歧杆菌 Bifidobacterium是1899年由法国学者Tissier从母乳营养儿的粪便中分离出的一种厌氧的革兰氏阳性杆菌,末端常常分叉,故名双歧杆菌。双歧杆菌是人体中非常重要的有益菌(见附录)。大豆低聚糖是双歧杆菌的营养物质,还可抑止有害菌的生长,又被称为双歧杆菌增殖因子(双歧因子)。大豆低聚糖还有一个很好的性质,即它不易被胃吸收分解,大部分可进入肠道做为双歧杆菌的营养,因此糖尿病人也可食用。大豆低聚糖市场有卖。酸奶中含双歧杆菌,但绝大部分会被胃酸杀死。市场上还有双歧杆菌药品,也存在同样的问题。据说有些双歧杆菌药品采用特别技术,加上一层保护,使双歧杆菌可通过胃进入肠道。双歧杆菌具有能清除自由基及过氧化脂质的能力,因而能够延缓细胞的衰老,起到延年益寿的作用。除此,双歧杆菌能非特异性地提高机体的免疫力,提高抗感染的能力,也有利于健康和长寿由于细菌的细胞比较小,光镜下很多结构应该是看不太清楚的,鞭毛、芽孢、荚膜正常都看不见适当染色后芽孢和荚膜能看见,鞭毛不行。因为普通光镜的话四十倍之后就是一百倍的油镜了,看动物细胞一般用四十倍的,但是细菌大概是动物细胞的十分之一吧,想看清楚就得用电子显微镜了。、、人眼能分辨的最小长度大约是0.1毫米而细菌的一般直径约0.5微米,长度约0.5~5微米。(1微米=1000纳米) 当然有例外,有一种纳米比亚嗜硫珠菌直径达0.32~1.00毫米(1毫米=1000微米);已知最小的细菌“纳米细菌”直径约50纳米。 0.5微米*200=0.1毫米。也就是说,你将细菌的直径放大200倍大概可以看清了,可是这并不是常见的光学显微镜一、细菌培养:双歧杆菌(实验室自己分离出来一株)将菌种接种在优化以后的GAM液体培养基中,置厌氧工作站(BUG BOXnerobic Workstation)培养。见菌液均勺混浊,涂片。http://ng1.17img.cn/bbsfiles/images/2011/12/201112012058_334696_2019107_3.jpgRuskinn厌氧工作站操作指南及使用注意事项(Bug Box)一、 常规操作1、检查仪器是否正常(温度、气体压力、水槽水位等)。2、若需照明可按下控制面板Chamber Light照明开关或踩下SPOT脚踏。3、温度调节:按FN键→按▲▼调节到所需温度→按FN键直到仪表显示为实际温度和设定温度。4、袖套使用:(1)进入工作腔:涂滑粉→检查气路旋钮(选择单手或双手操作)→将手伸入袖套→踩下VAC脚踏抽气至双手有轻微紧绷感→踩下GAS脚踏充气至适量→逆时针旋转密封盖旋钮至松动→抓住密封盖横杆旋转至水平位置→往里轻推打开密封盖→缓缓伸手将密封盖置于两侧支架上。(2)关闭密封盖:缓缓伸手取下密封盖→将横杆水平方向对准袖套操作口轻轻外拉,旋转至垂直位置,松开横杆→顺时针旋转密封盖旋钮(不可过紧)→确认工作腔已密封,取出双手。5、转移闸使用:(1)放入样品:确认内门已关闭→往里推按钮,打开外门→放入样品架及样品→关闭外门→按下面板Interlock Purge键或踩下LOCK脚踏,Interlock Active指示灯亮,(仪器自动进行转移闸清洁),10秒钟后指示灯熄灭→通过袖套操作口打开内门,放入样品。(2)取出样品:确认外门己关闭→确认转移闸己进行自动清洁(否则按下面板Interlock Purge键或踩下LOCK脚踏清洁转移闸)→打开内门,放入样品→关闭内门,打开外门,取出样品(重复取出样品时,切记每次操作均需进行转移闸清洁)。6、单皿转移系统操作:将密封口螺丝拧松→放下密封板→将平板迅速塞入系统。7、常规操作注意事项:(1)工作腔内操作动作必须轻缓。(2)每天均需确认水槽处于满水位。[siz

  • 【分享】“大肠杆菌”正流行,生吃蔬菜有风险

    5月15日,德国下萨克森州一位83岁老妇发生严重的肠出血症状,被紧急送往医院。7日后,她在医院死去。谁也没有预料到,一场严重的疫情就此拉开序幕。短短几天时间,德国上下1000多名患者出现不同程度的肠出血、腹水和肾功能衰竭症状。截止5月31日,已经有14人死在病魔手中,他们被确诊为某种大肠杆菌感染。德国汉堡医学实验室通过细菌培养实验,在排除了土豆和莴苣之后,宣布西班牙进口黄瓜为罪魁祸首。不过很快,他们又发现这种黄瓜上虽然携带有大肠杆菌,但并不是引起德国本次疫情的那一种,还了西班牙黄瓜的清白。(西班牙政府昨天表示,正在考虑起诉德国汉堡市政府,后者的这次轻率举动使西班牙蔬菜出口遭到重创。)所以罪魁祸首到底是谁,仍然成谜。作为远在地球另外一边的中国人,面对细菌凶猛、黄瓜逆转的跌宕情节,我们不禁要问:大肠杆菌怎么突然变得来势汹汹?有什么严重的状况发生?我们要怎么办?

  • 双歧杆菌高密度培养的补料培养基及补料方法

    双歧杆菌高密度培养的补料培养基及补料方法

    [align=center]双歧杆菌高密度培养的补料培养基及补料方法[/align][align=center]季学猛[/align][align=center](南开大学 医学院, 天津 300071)[/align]摘 要:双歧杆菌在维护宿主健康方面具有重要作用,因此对其高密度培养条件的探索具有重要意义。目前,双歧杆菌的高密度培养主要受到培养基组分和培养条件的优化的影响。这里报道了一种用于双歧杆菌高密度培养的补料培养基及补料方法。该方法使用补料与碱泵耦合的方法进行补料,通过控制发酵培养基的pH值来调节补料培养基的补入量。此外,本研究还进行了补料培养基的优化实验,通过调整氢氧化钠和葡萄糖浓度的比例,比较了不同补料培养基的发酵性能。实验结果表明该补料培养基及补料方法适用于两歧双歧杆菌、青春双歧杆菌、动物双歧杆菌、长双歧杆菌等多种双歧杆菌,而且能够达到较高的活菌密度。本研究提出的补料培养基及补料方法可为双歧杆菌的高密度培养提供有效的解决方案。关键词:双歧杆菌;高密度培养;补料培养基;补料方法;碱泵耦合中图分类号:G482[color=gray] [/color]文献标识码:A[align=center]A supplementary culture medium and supplementation method for high-density cultivation of Bifidobacterium[/align]JI Xuemeng(School of Medicine, Nankai University, Tianjin 300071, China)Abstract: Bifidobacterium plays a significant role in maintaining host health, making the exploration of high-density cultivation conditions crucial. Currently, the high-density cultivation of Bifidobacterium is mainly influenced by the optimization of culture medium components and cultivation conditions. Here, we report a supplementary culture medium and supplementation method for high-density cultivation of Bifidobacterium. The method utilizes coupling of supplementation with an alkaline pump to control the supplementation rate of the culture medium by adjusting its pH value. Furthermore, optimization experiments of the supplementation culture medium were conducted by varying the ratio of sodium hydroxide to glucose concentrations, comparing the fermentation performance of different supplementation culture media. Experimental results demonstrate that this supplementation culture medium and supplementation method are applicable to various Bifidobacterium strains such as Bifidobacterium bifidum, Bifidobacterium adolescentis, Bifidobacterium animalis, and Bifidobacterium longum, achieving high viable cell densities. The proposed supplementation culture medium and supplementation method in this study offer an effective solution for high-density cultivation of Bifidobacterium.Key words: Bifidobacterium high-density cultivation supplementary culture medium supplementation method alkaline pump coupling双歧杆菌广泛分布于动物和人类的肠道中,已经发现双歧杆菌在维护宿主健康方面起着极其重要的作用,双歧杆菌作为益生菌的功能特性已经引起了越来越多的关注[sup][back=yellow][1-3][/back][/sup]。双歧杆菌的益生菌制剂有潜力通过选择和加强有益菌群来调节肠道微生物群的组成和微生物平衡,从而更有利于人体健康。双歧杆菌制剂已被报道能改善肥胖相关特征、缓解便秘和增强免疫力[sup][back=yellow][4-6][/back][/sup]。双歧杆菌已经成为国内外正在快速发展的微生态制剂中的主要菌种之一。努力探索双歧杆菌的高密度生长条件,对于提高该菌的生产效率和应用推广具有重要意义。双歧杆菌的高密度培养条件的摸索主要涉及培养基组分和培养条件的优化。目前,MRS培养基是最常用的双歧杆菌等乳酸菌培养基,被广泛地用于双歧杆菌的发酵中[sup][back=yellow][7][/back][/sup]。双歧杆菌的最适生长 pH 值在 6.0-7.0 之间[sup][back=yellow][8][/back][/sup],然而,由于双歧杆菌发酵过程中会产生有机酸等代谢副产物,导致培养过程中培养基的 pH 值不断地降低,限制细菌的生长[sup][back=yellow][9-11][/back][/sup]。为解除酸等代谢副产物对双歧杆菌生长的限制,一些创新型的发酵培养方法已经被提出,比如细胞周期培养、透析培养、细胞固定培养和嵌入法[sup][back=yellow][12-15][/back][/sup]。然而,这些方法在工业应用中受到了各种因素的限制。目前,分批的发酵罐内恒定pH培养方法仍然是主流,在发酵中通过添加碱性溶液来控制培养基的pH值,以减轻酸性生长抑制。在解除酸性生长抑制后,双歧杆菌的生长还受到渗透压和底物不足的限制[sup][back=yellow][16][/back][/sup]。许多营养物在高浓度下导致的高渗透压对细胞有抑制作用,而为了达到高细胞密度,又必须供给大量的营养物质。因此,为了双歧杆菌培养中有效地利用底物,必须优化培养过程以解决底物浓度和渗透压之间的矛盾。将浓缩营养物以与其消耗速率成比例地加入反应器中是一种有效的解决底物浓度和渗透压之间的矛盾的方法,为此产生了多种形式的补料喂养模型:间歇喂养,恒定喂养和指数喂养[sup][back=yellow][17-19][/back][/sup]。在间歇补料喂养中,通过周期性检查并补充生长基质中的葡萄糖含量达到稳定葡萄糖浓度的目的,然而,这种补料模型决定了必然需要大量人力。而且在对数生长阶段,细菌细胞快速消耗葡萄糖,因此在任何两个测量间隔期间可能发生底物缺乏,可能会导致补料不及时,进而影响细菌的生长。在恒定补料喂养中,饲料介质以恒定的流速持续添加到发酵培养基中。这种方法优点是减少了人力需求。但是,益生菌对葡萄糖的消耗速率不是恒定的,这就导致了低喂养速率可能导致细菌生长的底物不足,而高喂养速率会引起过量底物积累,也会抑制细菌生长。对于指数喂养模型,在益生菌前期生长阶段,指数喂养能够很好的耦合细菌对数生长。然而,在细菌对数生长后期,细菌生长速率趋缓,而流加速率继续指数增加会导致底物浓度迅速增加,进而对细菌菌株的生长能力造成不良影响。因此,指数喂养模型也不是合理的方法。综上所述,在益生菌菌株生长期间,这些方法均不能准确控制生长介质中的葡萄糖含量。目前,针对双歧杆菌等厌氧菌发酵过程中产酸,而且产酸与消耗的碳源成正比的特性[sup][back=yellow][20][/back][/sup],通过将补料与碱泵偶联,可实现了补碱的同时补加碳源。然而,补料与碱泵偶联对于发酵罐技术要求高,该技术仍没有在实验室和工厂中得到广泛推广。1? 补料系统的设计为克服现有技术中的缺陷,这里提出了一种用于双歧杆菌高密度培养的补料培养基及补料方法,技术方案如下:一种用于双歧杆菌高密度培养的补料培养基,该补料培养基包括质量比为1:10的氢氧化钠与葡萄糖。其中氢氧化钠浓度小于等于50 g/L,葡萄糖浓度小于等于500g/L。可减少补料培养基中氢氧化钠、葡萄糖和溶氧氧化还原反应产生的副产物浓度。为了减少补料培养基中氢氧化钠、葡萄糖和溶氧的氧化还原反应,配制补料培养基的水应尽可能减少溶氧。可通过高温灭菌、煮沸、通氮气或通二氧化碳的方法减少溶氧。氢氧化钠和葡萄糖溶液应分别进行灭菌后进行混合。使用所述的补料培养基的补料方法,需将补料培养基通过碱泵与发酵培养基连接,根据所述的发酵培养基的pH值控制所述的补料培养基的补入量即成。碱泵的流速为5-10mL/min;碱泵的每次开启时间小于等于30s;发酵培养基的pH值的检测周期为20s。补料培养基补入后发酵培养基的pH值与补入前发酵培养基的pH值之差小于等于0.1。用于双歧杆菌高密度培养的发酵的方法包括如下步骤:(1)将双歧杆菌种子液接种至发酵培养基中进行发酵;(2)将补料培养基通过碱泵与发酵培养基连接,根据所述的发酵培养基的pH值控制所述的补料培养基的补入量;(3)在发酵过程中,间隔1小时对发酵培养基取样,检测580nm-620nm下的吸光度值,并检测葡萄糖浓度与活菌数目,当吸光度值大于0.5且相邻2次取样的吸光度值相等或降低即为发酵结束。2? 补料培养基的优化制备如下5种补料培养基,其中氢氧化钠浓度(g/L)和葡萄糖浓度(g/L)比值分别为1:2、1:5、1:10、1:20、1:40,以比较发酵性能。发酵培养基组成如下:1000mL蒸馏水、14.3g大豆蛋白胨、16.7g酵母粉,10g葡萄糖,0.5g可溶性淀粉,1g氯化钠,1g磷酸氢二钾,1g磷酸二氢钾,0.01g FeSO4?7H2O,0.005g MnSO4,0.2gMgSO4,0.5g L-半胱氨酸,使用50g/L的氢氧化钠溶液调节pH至6.8;其中L-半胱氨酸配制为50g/L浓度,膜过滤除菌,在发酵培养基灭菌结束后再按照1/100(v/v)加入L-半胱氨酸。发酵罐通气孔中接入氮气,使得溶氧降至1mg/L以下;设置发酵参数:发酵温度设为37.0℃范围内,搅拌转速200r/min,培养基温度达到37.0℃后,在火焰圈的无菌环境下按照5%(v/v)的接种量加入种子液,同时,加入3滴消泡剂;开启发酵罐搅拌器,设置种子液加入后的培养基的当前pH值6.6为发酵设定pH值。补料设置参数:将补料培养基中碱泵利用软管连接,设置碱泵最大流速为10mL/min,设置碱液根据pH自动控制加入,设置碱泵启动参数为pH值小于6.55,设置每隔10秒测定一次pH值,设置每次碱泵开启时间15秒;发酵中,每隔3小时测OD,每隔5小时取样监测培养液葡萄糖浓度,检测到15小时。如[back=yellow]图1[/back]所示,发现在发酵前5小时,各补料培养基都可以维持葡萄糖浓度处于适宜双歧杆菌快速生长的浓度(灰色范围),而从发酵10小时开始,氢氧化钠浓度(g/L)和葡萄糖浓度(g/L)比值为1:2的补料出现了葡萄糖浓度的下降,说明该碱碳比例在发酵后期不足以满足双歧杆菌开始生长对碳源的需求。同样的,从发酵10小时开始,氢氧化钠浓度(g/L)和葡萄糖浓度(g/L)比值为1:40的补料出现了葡萄糖浓度的过高,说明该碱碳比例在发酵后期不足可能产生高渗透压,不适合双歧杆菌的生长。而氢氧化钠浓度(g/L)和葡萄糖浓度(g/L)比值1:5至1:20补料可以维持发酵过程中葡萄糖浓度的稳定。综合下来,我们发现了补料培养基中氢氧化钠浓度(C碱,g/L)和葡萄糖浓度(C料,g/L)的合适比值为1:5至1:20。[align=center][back=yellow]图1[/back] 不同配比的补料培养对发酵体系葡萄糖浓度的影响的柱状图[/align]3? 补料系统的应用实践3.1? 两歧双歧杆菌高密度培养如[back=yellow]图2[/back]所示,使用本方法,发酵体系中pH值始终保持在6.6±0.1,葡萄糖浓度始终维持在9-13g/L,发酵结束时,发酵液总体积达到4.9L,吸光度达到OD620 12.8,活菌密度最高达到 8.5±0.2 ×10[sup]9[/sup] cfu/mL。[back=yellow]图2[/back] 两歧双歧杆菌的高密度培养的曲线图3.2? 长双歧杆菌高密度培养如[back=yellow]图3[/back]所示,使用本方法,发酵体系中pH值始终保持在6.9±0.1,葡萄糖浓度始终维持在8.5-13g/L,发酵结束时,发酵液总体积达到4.4L,吸光度达到OD[sub]620[/sub] 9.2,活菌密度最高达到 6.4±0.2 ×10[sup]9[/sup] cfu/mL。[back=yellow]图3[/back] 长双歧杆菌的高密度培养的曲线图3.3? 青春双歧杆菌高密度培养如[back=yellow]图4[/back]所示,使用本方法,发酵体系中pH值始终保持在6.7±0.1,葡萄糖浓度始终维持在7-11g/L,发酵结束时,发酵液总体积达到4.6L,吸光度达到OD[sub]620[/sub] 15.3,活菌密度最高达到 1.2±0.1 ×10[sup]10[/sup] cfu/mL。[back=yellow]图4[/back] 青春双歧杆菌的高密度培养的曲线图3.4? 动物双歧杆菌的高密度培养如[back=yellow]图5[/back]所示,使用本方法,发酵体系中pH值始终保持在6.5±0.1,葡萄糖浓度始终维持在7-12g/L,发酵结束时,发酵液总体积达到4.2L,吸光度达到OD[sub]620[/sub] 20.5,活菌密度最高达到 1.7±0.1 ×10[sup]10[/sup] cfu/mL。[back=yellow]图5[/back] 动物双歧杆菌的高密度培养的曲线图4? 结语该研究提供了一种用于双歧杆菌高密度培养的补料培养基及补料方法,补料方法包括如下步骤:将补料培养基通过碱泵与发酵培养基连接,根据发酵培养基的pH值控制补料培养基的补入量即成。通过优化补料培养基及补料方法,无需发酵罐补料偶联技术便实现了根据pH值变化,利用碱泵自动补充碳源和碱液,实现了保持pH值和碳源浓度的稳定;该补料方法对发酵罐的设备技术要求低,操作简单,降低了发酵成本。参考文献(References):[1]杨硕,唐宗馨,段勃帆,陈禹含,郭欢新,孟祥晨.双歧杆菌及其制剂对炎症性肠病作用机制研究进展[J].食品科学,2023,44(05):275-281.[2]马岩,王中江,杨靖瑜,李哲,彭霞,单秀峰,李柏良,马微微.动物双歧杆菌乳亚种XLTG11对克林霉素诱导的抗生素相关性腹泻的改善作用[J].食品科学,2023,44(03):170-178.[3]李虔全,罗京,周江,刘亭,陈于彪,彭霞,杨建,胡闵山.孟鲁司特钠联合双歧杆菌四联活菌治疗儿童过敏性紫癜有效性Meta分析[J].海峡药学,2023,35(01):127-133.[4]石英,拉巴普尺,张丹瑛,翁书强,刘心怡,汪皓琪.双歧杆菌对高脂饮食诱导的C57BL/6小鼠非酒精性脂肪肝的影响[J].中国临床医学,2022,29(03):473-480.[5]陆敏,袁琳,胡娜,钟霄毓,姜逸,林敏,陆雄.双歧杆菌三联活菌对肥胖小鼠慢性低度炎症的影响[J].卫生研究,2022,51(05):797-802.DOI:10.19813/j.cnki.weishengyanjiu.2022.05.020.[6]李亦汉,王琳琳,赵建新,张灏,王刚,陈卫.两歧双歧杆菌CCFM1167通过提升肠道中乙酸水平以抑制炎症从而缓解便秘[J].食品与发酵工业,2023,49(06):35-41.DOI:10.13995/j.cnki.11-1802/ts.031238.[7]Umar Farooq. 小米膳食纤维作为主要碳源对益生菌生长和发酵过程中短链脂肪酸产量的影响研究[D].江南大学,2013.[8]杨玲,张栋,齐世华,马新颖,周帅康,艾连中,王世杰.两歧双歧杆菌TMC3115冻干菌粉生产工艺优化[J].乳业科学与技术,2021,44(05):12-17.DOI:10.15922/j.cnki.jdst.2021.05.003.[9]熊三玉. 两歧双歧杆菌驯化及培养条件优化的研究[D].中国海洋大学,2007.[10]冯诗诗. 长双歧杆菌F16的益生特性及其在酸浆豆腐制备中的应用[D].河南工业大学,2022.DOI:10.27791/d.cnki.ghegy.2022.000088.[11]武婷,郭帅,杨阳等. 动物双歧杆菌乳亚种Probio-M8在发酵山羊乳中的应用[C]//中国食品科学技术学会.第十七届益生菌与健康国际研讨会摘要集.[出版者不详],2022:149-150.DOI:10.26914/c.cnkihy.2022.018592.[12]赵春燕,张颖,王丹,刘臻.乳酸菌细胞固定化发酵的研究进展[J].中国酿造,2009(05):11-14.[13]李秀凉,雷虹,张龙丰,周东坡,平文祥.从L-乳酸菌酸菜发酵液中初步分离肽类抑菌物质[J].食品工业科技,2008(07):91-93.DOI:10.13386/j.issn1002-0306.2008.07.022.[14]邓鹏超. 乳酸菌的高密度培养及酸奶冻干发酵剂的研究[D].华中农业大学,2008.[15]于修鑑. 乳酸菌高密度培养及浓缩型发酵剂研究[D].南京工业大学,2004.[16]黄晓英. 传统发酵食品中具有抑菌特性乳酸菌的筛选、抑菌机理及其在泡菜发酵中的应用[D].西南民族大学,2022.DOI:10.27417/d.cnki.gxnmc.2022.000050.[17]彭海芬. 阿维拉霉素高产菌株的选育及其发酵条件优化[D].河南工业大学,2022.DOI:10.27791/d.cnki.ghegy.2022.000511.[18]吴斌.罗非鱼无乳链球菌SIP-pET32a基因工程菌高密度发酵工艺及SIP蛋白提取方及SIP蛋白提取方法研究[J].中国水产,2022(11):73-78.[19]熊华仪,陈曦,刘月锋,陈雄,李沛,王志.补料策略优化促进乳球菌HB03发酵合成Nisin[J/OL].食品科学:1-11[2023-05-18].http://kns.cnki.net/kcms/detail/11.2206.ts.20230428.1620.026.html[20]孙东霞,周子安,冯志合,胡修玉,祁光霞,董黎明.pH值调控柠檬酸污泥厌氧发酵产酸及碳源潜力研究[J].中国环境科学,2022,42(11):5198-5207.DOI:10.19674/j.cnki.issn1000-6923.20220620.001.收稿日期:2023-10-19 修改日期:第一作者简历:季学猛,硕士,实验师,研究方向为生物化工、机器学习;生物信息学。E-mail:jixuemeng@nankai.edu.cn。

  • 肉毒梭状杆菌和肉毒素

    鉴于目前恒天然奶粉出肉毒杆菌一事,一起学习一下肉毒杆菌和肉毒素。肉毒杆菌的全名叫肉毒梭状杆菌(也叫肉毒梭菌Clostridium botulinum),是一种革兰氏阳性厌氧杆菌,其生长繁殖及产毒的最适温度为18~30℃。肉毒杆菌广泛分布于土壤、淤泥及动物粪便中,其中土壤是重要污染源,它可借助食品、农作物、水果、海产品、昆虫、禽类等传播到各处。肉毒杆菌家族一共兄弟7个,本身其实没有毒性,但其中有4个能在厌氧环境下(比如肠道、密闭发酵食品)产生肉毒毒素。食品在加工、贮藏过程中被肉毒杆菌污染,食前对带有毒素的食品又未加热或未充分加热,就易引起中毒。在我国的新疆、青海等少数民族地区几乎每年都会出现自制发酵肉制品导致的肉毒中毒、甚至死亡。肉毒毒素(botulinum toxin,AX)是肉毒杆菌产生的含有高分子蛋白的神经毒素,是目前已知在天然毒素和合成毒剂中毒性最强烈的生物毒素,它主要抑制神经末梢释放乙酰胆碱,引起肌肉松弛麻痹,特别是呼吸肌麻痹是致死的主要原因。肉毒毒素真正被大众了解,是因为一些明星注射肉毒来除皱。虽然这个毒素的毒性比较大,一点点就能毒死人,但它本身对热不稳定,煮开几分钟就破坏掉了,真正难解决的是它的芽孢。肉毒杆菌在感觉不舒服的时候就像作茧一样用一些蛋白和糖类物质把自己包起来,然后就能“刀枪不入”,一般的加工手段都杀不死它。等它重新进入合适的环境,比如人的肠道,它又能苏醒过来继续干坏事。成人由于肠道里面的菌群早已站稳了脚跟,少量的肉毒杆菌是斗不过这些“地头蛇”的,因此对成人的危险性相对较小。但婴儿尤其是1岁以下的小宝宝,正常菌群还处于建设阶段,这个时候肉毒杆菌来捣乱的话,有可能对宝宝造成较大影响。  我国乃至全世界都没有乳粉中肉毒杆菌的限量标准,因为肉毒杆菌在乳品中并不是常见的污染物,而标准的管理是要考虑成本的,正因如此,各国都不把它写入标准。但这并不意味着根本不管,比如这次恒天然是在企业的质量控制中发现的问题。用标准管理有限的问题,用过程的控制实现更全面的安全保障,这才是科学的食品安全管理理念。对于负责任的大企业,其质控项目数量和质控要求都是远远高于国家标准要求的。

  • 【资源】大肠杆菌发酵经验总结

    大肠杆菌发酵经验总结首先,补料速率与比生长速率直接影响着乙酸的生成速率和积累量(主要是补料速率与比生长速率影响发酵液中的残糖量,进而影响),所以适当的控制补料速率和比生长速率,对于控制乙酸的量有很好的效果。 其次,必须要保证充足的溶氧,并严格控制pH值,而且补酸碱的速率尽量缓和,不能太快;温度对于蛋白的表达也有很重要的影响,较低的发酵温度下所生产出的蛋白大多是有活性的,而较高的发酵温度下产生的蛋白大多一包涵体形式存在。第三,选取合理的诱导时间非常重要,一般的诱导时间选在指数生长后期,而且诱导时的比生长速率最好能控制在0.2之内,选在此时诱导,1.将菌体的快速生长期与蛋白合成期分开,使这两个阶段互不影响,有利于蛋白的高表达;2.已经得到了大量的菌体,而且菌体的生物量基本接近稳定,不论是从动力学角度,还是能耗,物料成本方面,都比较合理。第四,补料过程中的碳氮比也很重要。若氮源过高,会使菌体生长过于旺盛,pH偏高,不利于代谢产物的积累,氮源不足,则菌体繁殖量少从而影响产量;碳源过多,则容易刑场较低的pH,抑制菌体生长,碳源不足,则容易引起菌体的衰老和自溶。另外,碳氮比不当还会引起菌体按比例的吸收营养物质,从而直接影响菌体的生长和产物的合成。 根据自己的经验,一般情况下,对于一个稳定的发酵工艺下,如果总是在固定的发酵时间段出现溶菌现象,而且能排除噬菌体和染菌的可能性后,那就可能是因为碳氮比不合理造成的。可以适当调整碳氮比。 大家讨论得较多的是关于代谢副产物乙酸对大肠杆菌发酵的影响,针对我们论坛所发的帖,我先总结以下几点,并作出相应解决措施。一、代谢副产物-乙酸乙酸是大肠杆菌发酵过程中的代谢副产物,在多大的浓度下产生抑制作用各种说法不一,一般认为在好气性条件下,5~10g/L 的乙酸浓度就能对滞后期、最大比生长速率、菌体浓度以及最后蛋白收率等都产生可观测到的抑制作用。当乙酸浓度大于10或20g/L 时,细胞将会停止生长,当培养液中乙酸浓度大于12g/L 后外源蛋白的表达完全被抑制。预防乙酸产生的措施: 1、通过控制比生长速率来减少乙酸的产生:比生长速率越高,乙酸产生越多,当比生长速率超过某个值时,乙酸开始产生。可以通过降低温度,调节酸碱度,控制补料等方法来降低比生长速率。 2、透析培养: 在大肠杆菌的培养过程中可以用透析技术除去发酵液中的有害物质,降低乙酸含量从而实现重组菌的高密度发酵和产物的表达。3、 控制葡萄糖的浓度:葡萄糖是大肠杆菌发酵过程中重要的碳源之一,用其作碳源是要将其控制在一个较低的水平上,以减少乙酸的产生。 常用的控制方法主要有: 恒pH法:大肠杆菌会代谢葡萄等产生乙酸,使pH 值下降。因此可通过pH值的高低作为控制葡萄糖的指标,该法的缺点是pH 的变化不完全是由葡萄糖代谢的结果,容易造成补料体系出错。 恒溶氧法:菌体代谢时会消耗氧,使溶氧下降,当葡萄糖浓度低到一定程度时菌体代谢下降,消耗氧能力下降,溶氧上升。因此,根据溶氧曲线补加葡萄糖,保持溶氧恒定,可以控制葡萄糖在一定的水平。 二、温度大肠杆菌发酵最适温度是37 C,当温度最适菌体生长时,比增长速率将会增大。随温度上升细菌代谢加快,其产生代谢副产物也会增加。这些副产物会对菌体的生长产生一定的抑制作用。菌体生长过快也会影响质粒的稳定性。降低培养温度,菌体对营养物质的摄取和生长速率都会下降。同时也减少了有毒代谢副产物的产生和代谢热的产生。有时降低温度更有利于目的蛋白的正确折叠及表达。在重组大肠杆菌的发酵中不同发酵阶段其最适温度也不 同,为了能获得大量的目的蛋白,首先要保证菌体的量,因此在前期可优先考虑菌体的生长,到诱导阶段应将目的产物的表达放在首位。三、培养方式 微生物的培养方式主要有分批、连续和补料分批3种。大肠杆菌发酵大多采用补料分批培养,这是在现代发酵工艺得到优化的一种方式,能有效的优化微生物培养过程中的化学环境。使微生物处于最佳的生长环境。这种方式一方面可以避免某些营养成分初始浓度过高出现底物抑制现象,另一方面能够防止限制性营养成分被耗尽而影响细胞的生长和产物的形成。补料分批培养已广泛应用于各种各样的初级、次级生物产品和蛋白等的发酵生产中。

  • 大肠杆菌O157:H7

    一、概述及分类肠杆菌科是由多个菌属组成,生物学性状相似,均为革兰氏阴性杆菌,这些细菌常寄居在人和动物的消化道,并随粪便排出体外,广泛分布在水和土壤中,大多数肠道杆菌属于正常菌群。当机体免疫力降低或侵入肠道外组织时,成为条件致病菌而引起疾病。部分肠道杆菌是致病菌。例如:产毒大肠埃希氏菌、伤寒沙门氏菌、各种志贺氏菌可使人患肠道传染病。肠杆菌科细菌种类繁多,主要根据细菌的形态,生化反应,抗原性质以及核酸相关性进行分类。肠杆菌科的细菌分为20个属。1、 什么是大肠菌群?大肠菌群名称并非细菌分类命名,而是卫生细菌领域的用语,它不代表某一个或某一属细菌,而指的是具有某些特性的一组与粪便污染有关的细菌,这些细菌在生化反应及血清学方面并非完全一致。大肠菌群:需氧及兼性厌氧,在37℃能分解乳糖,产酸,产气的革兰氏染色阴性无芽胞杆菌。一般认为该菌群细菌可包括:大肠埃希氏菌、柠檬酸杆菌、产气克雷白氏菌和阴沟肠杆菌等。目前已被国内外广泛应用于评价食品卫生质量的重要指标之一。2、 什么是大肠杆菌?埃希氏菌属的代表菌种是大肠埃希氏菌。大肠埃希氏菌俗称大肠杆菌,它是人类和动物肠道正常菌群的成员,随粪便排到自然界,并污染食品,本菌是组成水、食品中大肠菌群成员之一,其数目多少代表粪便污染和程度。能引起肠道感染的大肠埃希氏菌有下列五个病原群(1)肠产毒性大肠埃希氏菌(ETEC)产生ST、LT、引起婴儿、旅游者腹泻。(2)肠致病性大肠埃希氏菌(EPEC)寄居十二指肠、回肠、空肠。引起婴儿腹泻。(3)肠侵袭性大肠埃希氏菌(EIEC)有侵袭力,痢疾样症状。(4)肠出血性大肠埃希氏菌(EHEC)引起出血性结肠炎,主要菌型O157。(5)肠粘附性大肠埃希氏菌(EAEC)损害肠细胞外毒素,引起小儿顽固性腹泻。3、 什么是大肠杆菌O157:H7? EHEC O157:H7属于肠杆菌科埃希氏菌属。它是肠出血性大肠杆菌(EHEC)的主要血清型。

  • 【我们不一YOUNG】关于蜡样芽孢杆菌知多少

    [b][size=12px][font=微软雅黑]关于蜡样芽孢杆菌[/font][font=微软雅黑][/font][/size][/b][size=12px][font=微软雅黑]1、蜡样芽胞杆菌[i][/i]为革兰氏阳性大杆菌,大小为1-1.3×3-5μm,兼性需氧,[/font][b][font=微软雅黑]形成芽胞[/font][/b][font=微软雅黑],芽胞不突出菌体,菌体两端较平整,多数呈链状排列,与炭疽杆菌相似。引起食物中毒的菌株多为周鞭毛,有动力。[/font][font=微软雅黑][/font][/size][size=12px][font=微软雅黑]2、[/font][font=微软雅黑]培养特性  [/font][b][font=微软雅黑]蜡样芽胞杆菌生长温度为25-37℃,最佳温度30-32℃。在肉汤中生长混浊有菌膜或壁环,振摇易乳化[/font][/b][font=微软雅黑]。在普通琼脂上生成的菌落较大,直径3-10mm,灰白色、不透明,表面粗糙似毛玻璃状或融蜡状,边缘常呈扩展状。[/font][font=微软雅黑][/font][/size][size=12px][font=微软雅黑]3、[/font][font=微软雅黑]耐热性  蜡杆芽胞杆菌耐热,[/font][b][font=微软雅黑]其37℃16小时的肉汤培养物的D80℃值(在80℃时使细菌数减少90%所需的时间)约为10-15分钟;使肉汤中细菌(2.4×107/mL)转为阴性需100℃20分钟。其游离芽胞能耐受100℃30分钟,而干热灭菌[i][/i]需120℃60分钟才能杀死[/font][/b][font=微软雅黑]。[/font][font=微软雅黑][/font][/size][font=微软雅黑][size=12px]4、在欧洲大都由甜点、肉饼、色拉和奶、肉类食品引起;在我国主要与受污染的米饭或淀粉类制品有关。 蜡样芽胞杆菌食物中毒通常以夏秋季(6-10月)最高。引起中毒的食品常于食前由于保存温度不当,放置时间较长或食品经加热而残存的芽胞以生长繁殖的条件,因而导致中毒。[font=微软雅黑](转载自[/font][font=system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'PingFang SC', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif]食品微生物工程师[/font][font=微软雅黑])[/font][/size][/font]

  • 关于肉毒杆菌相关小知识

    4.6的低酸性罐头食品(含铁罐,玻璃罐) 或香肠、火腿 。人感染肉毒杆菌后会出现视觉模糊、呼吸困难、肌肉乏力等症状,如病情严重可能导致死亡。

  • 【转帖】“大头婴”事件中被忽略的杀手:阪崎肠杆菌

    2007年7月下旬,国家质量监督检验检疫 总局公布了今年4月入境的不合格食品、化妆品信息,其中全球最大的乳品原料供应商新西兰恒天然多个批次的全脂奶粉被检验出含有致病菌阪崎肠杆菌。这些有问题的全脂奶粉,总数达277.9吨,分别是今年1月和3月进口的。 恒天然公司表示,尊重中国政府的相关考虑和规定,已对被检验出阪崎肠杆菌的产品按规定做了处理。 阪崎肠杆菌是寄生于人和动物肠道的“条件性肠道致病菌”。也许,阪崎肠杆菌目前只引起了专业人员的高度重视,并未吸引普通公众的目光,原因在于它不仅对公众是陌生的,且现在造成的危害似乎并不算重。回顾近年来国内的食品安全问题,阪崎肠杆菌也确实被忽略了。 2004年安徽阜阳出现著名的“大头婴儿”事件。据该市县级以上医疗机构核查统计,从2003年5月以来,因食用劣质奶粉出现营养不良综合征共171例,死亡13例,病死率7.6%。婴儿发病和死亡的主因是由于劣质奶粉导致的营养不良,但是现在回过头来看,有一个可能的致病因素在当时被忽略了——这些劣质奶粉中含有阪崎肠杆菌。 阜阳劣质奶粉事件发生后,中国疾控中心营养与食品安全研究所的刘秀梅等人运用来自美国和加拿大的方法,建立了婴儿配方奶粉中阪崎肠杆菌的分离鉴定技术。从87份阜阳劣质奶粉样品中,他们检测到11份阪崎肠杆菌阳性样品,污染阳性率为12.6%。 这是国内首次从婴儿配方奶粉中分离到阪崎肠杆菌菌株。固然,劣质奶粉导致婴幼儿死亡是因其中蛋白质含量极低,不能满足婴儿的生长需要。比如,按照3-6个月婴儿的生长需要,蛋白质每日摄取量为3g / kg,而劣质奶粉每日只能提供0.07g / kg的蛋白质。所以,长期食用这种几乎没有营养的伪劣奶粉的婴儿,会产生四肢短小,身体瘦弱,头部尤显偏大的症状。 阪崎肠杆菌的污染是否会对当地婴幼儿造成雪上加霜的伤害呢?事过境迁,要得出确切的结论已经很难。不过事后查出阜阳劣质奶粉含有阪崎肠杆菌,对今天的食品安全不啻是敲响了一次警钟。 对婴幼儿最具杀伤力 早在2004年,广州检验检疫局就率先提出,在进口婴幼儿配方奶粉和奶制品中,对阪崎肠杆菌进行监测,并首次从进口奶粉中检查出阪崎肠杆菌。2007年以来,广州、中山、汕头检验检疫部门在进口奶粉中已多次检出阪崎肠杆菌。因此国内的专业人员多次呼吁,要重视阪崎肠杆菌对食品污染和对人健康的危害。

  • 大肠杆菌指示菌的方法学定义

    总大肠菌群(Total Coliforms) 大肠菌群系指一群在37℃培养24h能发酵乳糖、产酸产气、需氧和兼性厌氧的革兰氏阴性无芽孢杆菌。该菌群主要来源于人畜粪便,具有指标菌的一般特征故以此作为粪便污染指标评价饮水的卫生质量。耐热大肠菌群(Thermotolerant Coliforms) ,原名:粪大肠菌群(Fecal Coliforms ) 用提高培养温度的方法将自然环境中的大肠菌群与粪便中的大肠菌群区分开,在44.5℃仍能生长的大肠菌群,称为粪大肠菌群。是水体受人畜粪便污染的比较直接指标。大肠埃希氏菌(大肠杆菌,E.Coli.) 大肠埃希氏菌是指能产生β-半乳糖苷酶(β-D-galactosidase)分解ONPG(Ortho-nitrophenyl-β-D-galactopyranoside)使培养液呈黄色,能产生β-葡萄糖醛酸酶(β-glucuronidase)分解MUG(4-methyl-umbelliferyl-β-D-glucuronide)使培养液在波长366nm紫外光下产生荧光的细菌。大肠埃希氏菌是粪大肠菌群的组成部分,是水体受人畜粪便污染的最直接指标,水中含有大肠埃希氏菌提示有粪便污染。

  • 培养基结核杆菌的固体培养基

    培养结核杆菌的培养基,从性状上分主要有固体培养基、液体培养基、半流体培养基、固液双相培养基等类型,这些培养基各有特点。  1.1 固体培养基 最常用的是罗氏(Lownstein-Jenson,L-J)培养基,也是最具代表性的一种,其他的还有小川辰次(Tatsujiogawa)鸡蛋培养基和Middle brook 7H10、7H11等琼脂培养基等。在固体培养基中,由于可以直接观察菌落的形态并可做鉴别用,因此常用于临床标本的分离培养、鉴别、保存菌种及对抗结核药物的敏感性测定等方面,缺点是结核菌生长缓慢。  1.2 液体培养基 常用的有苏通(Sauton)培养基、Middle brook 7H9等液体培养基。结核杆菌在液体培养基中能够更广泛的接触营养成分,因此在液体中生长相对较快,主要在液体表面生长,搅动时下沉至管底,可获得大量的结核杆菌。主要缺点是:在对临床标本的收集、采样、运输方面有不利的一面;不能根据肉眼观察菌落形态;培养基污染机会多,影响结核杆菌的生长,污染时不易与结核杆菌鉴别,需涂片染色镜检判断结核杆菌是否生长。  1.3 半流体培养基 改良苏通半流体琼脂培养基是一种人工综合培养基,基质透明,呈半流体状态,生长的结核杆菌形成白色颗粒状菌落悬浮于培养基中段,便于观察。  1.4 固液双向培养基 Septi-Check AFB双相培养基是国外应用较早的一种培养基,采用BD专利式封闭式固液双相一体化培养基设计。液相为Middle brook 7H9分枝杆菌专用增菌培养基,可迅速繁殖分枝杆菌,固相为3种固体培养基平面:Middle brook 7H11和改良的L-J培养基用于及时将增菌肉汤内分枝杆菌进行分离纯化以获得单个菌落,巧克力琼脂用于早期发现污染菌,避免时间浪费。由于有液相作为基础,因此结核杆菌生长较快,也是一种非常有效的培养基。国内有用平菇制备的平菇双相培养基是利用平菇浸出液为基础,加小牛血清、琼脂等成分而配制的一种培养基,根据琼脂的量不同制成液相、固相培养基。在国内应用较少,主要特点是成本低,制备简单,适合于基层使用,有一定的研究价值。

  • 【原创大赛】大肠杆菌标准菌株的复苏及传代

    【原创大赛】大肠杆菌标准菌株的复苏及传代

    今年,我单位准备增项做水中耐热大肠菌群、大肠埃希氏菌,作为学化学出身的,做微生物检测真是一头包http://simg.instrument.com.cn/bbs/images/default/em09512.gif,我看了标准,主要问题有2个,第一是在耐热大肠菌群标准中伊红美篮琼脂培养基中典型菌落是什么样子,第二是如何进行准确度的验证,我查了资料,当然也在论坛上发了不少求助帖子,不少同志建议我使用标准菌株,我咨询了路桥公司,采购了大肠杆菌的标准菌株,这标准菌株怎么用呢,我给路桥打了无数电话,终于心里有点谱了,硬着头皮做吧,现在,我把试验经过发上来,欢迎拍砖呀……首先,我学了标准菌株复苏操作说明http://ng1.17img.cn/bbsfiles/images/2013/11/201311150957_477348_1681389_3.jpg,按规定大肠杆菌复苏的培养基是营养琼脂培养基,也有的同志用营养肉汤培养基,为了保证成功,我两种培养基均准备了,营养琼脂培养基是市售平板http://ng1.17img.cn/bbsfiles/images/2013/11/201311151000_477350_1681389_3.jpg,营养肉汤培养基是买的培养基粉,自己加水、灭菌的http://ng1.17img.cn/bbsfiles/images/2013/11/201311151002_477351_1681389_3.jpg,准备好培养基,我在无菌室打开标准菌株http://ng1.17img.cn/bbsfiles/images/2013/11/201311151003_477352_1681389_3.jpg去掉外包装标准菌株是这样的,http://ng1.17img.cn/bbsfiles/images/2013/11/201311151004_477353_1681389_3.jpg,有点儿像一支笔,撕开标准菌株上的不干胶标签仔细观察,可以看到在一端有干粉状物质,拿起标准菌株(有干粉状一端朝下,拧上段部分,可以将标准菌株拧开,下段是干粉部分,上端末端是一个棉签,仔细观察上半部分可见有部分液体,将标准菌株按原状拧好,捏其上半部分,至上端液体流下,与干粉部分完全混合,搅动棉签,是菌粉完全溶解。用蘸着菌液的棉签在营养琼脂培养基上涂抹1/4区域,用接种环从涂抹区域向培养基其他区域划线。在营养琼脂培养基接种完成后,将菌液接种至营养肉汤培养基,将接种好的培养基及空白培养基置于37摄氏度培养箱中培养24小时。第二天,营养琼脂培养基上长出了菌落http://ng1.17img.cn/bbsfiles/images/2013/11/201311151007_477354_1681389_3.jpg,营养肉汤培养基变浑浊了http://ng1.17img.cn/bbsfiles/images/2013/11/201311151008_477355_1681389_3.jpg,第一代标准菌种基本算复苏传代成功了,大肠杆菌确实比较好活!于是,我又将营养琼脂平板上的菌落接种在新的平板上进行标准菌株的复壮,过程不再赘述,第三天,平板上长出了第二代菌株。为了验证典型菌落在伊红美篮琼脂培养基上的状态,我配制了伊红美蓝营养琼脂培养基,并且将第2代标准菌株接种在培养基上于44.5摄氏度培养了24小时,结果如下http://ng1.17img.cn/bbsfiles/images/2013/11/201311151015_477356_1681389_3.jpg,做到这里,标准菌株的复苏传代及大肠杆菌在伊红美篮琼脂上的状态我已经有一点数了。

  • 大肠杆菌检测仪如何检测食品大肠杆菌

    大肠杆菌检测仪如何检测食品大肠杆菌

    [size=16px]  大肠杆菌(Escherichia coli,简称E. coli)是一种常见的细菌,其中某些菌株可能会引发食品中的食源性疾病。为了检测食品中的大肠杆菌,通常需要使用专门设计的检测方法和仪器。以下是一般的大肠杆菌检测过程:  样本收集: 首先,需要从待测食品样本中取样。这可能涉及到食品的取样器具和技巧,以确保样本的代表性和卫生。  样品准备: 样品通常需要经过样品制备步骤,以浓缩或净化潜在的大肠杆菌。这可能包括液体培养、离心、过滤或其他处理方法。  培养: 可以将样品接种到培养基中,通过培养大肠杆菌以增殖它们的数量。这通常需要一定的时间,通常在恒温条件下进行。  检测方法选择: 有几种方法可以检测大肠杆菌,包括分子生物学技术、生物化学方法和免疫学方法。以下是一些常见的方法:  [url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]检测: 聚合酶链反应([url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url])可以检测DNA中的大肠杆菌基因。这是一种高度敏感和特异性的方法。  生化检测: 这包括检测大肠杆菌的特定代谢产物,如大肠杆菌在培养基中产生的气体或底物转化产物。  免疫学检测: 这些方法使用特定的抗体来检测大肠杆菌的抗原。酶联免疫吸附试验(ELISA)是一种常见的免疫学检测方法。  结果解释: 根据所选的检测方法,可以得出阳性或阴性结果,或者是数量性的结果,反映大肠杆菌在样品中的存在或数量。  结果确认: 有时需要进行进一步的确认测试,以确保结果的准确性。这可能包括对阳性样品进行亚型鉴定,以确定是否存在致病性大肠杆菌株。  数据记录和报告: 检测结果应该被记录并报告给相关部门或机构,以便采取必要的食品安全措施。  云唐大肠杆菌检测仪通常是专门设计用于执行其中一种或多种检测方法的设备,具体取决于实验室或食品工厂的需求。选择适当的检测方法和仪器取决于样品类型、检测的目的以及可用的资源。食品安全是非常重要的,因此确保正确执行大肠杆菌检测是保障公众健康的一项重要措施。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/09/202309200919189229_1894_6098850_3.jpg!w690x690.jpg[/img][/size]

  • 【求助】大肠杆菌的鉴别问题

    做大肠杆菌(确定是大肠杆菌)的生化鉴别,其他项目都出结果了,就是乳糖发酵的那项总是阴性,阳性对照也很好,各位高手能不能帮忙分析下是什么原因呢?[em53] [em53] [em53] ,已经做了三次了,还是一样的结果[em53] [em53]

  • 【转帖】阪崎肠杆菌是何方神仙?

    阪崎肠杆菌是人和动物肠道内寄生的一种革兰阴性无芽孢杆菌。作为肠杆菌科的一种,一直被称为黄色阴沟肠杆菌,直到1980年才更名为阪崎肠杆菌。该菌是肠道正常菌丛中的一种,在一定条件下可引起人和动物致病,所以称为“条件致病菌”。   阪崎肠杆菌自然来源非常广泛,在水、土壤、植物根茎、动物肠道甚至加工食品都可存在,其中婴儿配方奶粉是婴儿感染阪崎肠杆菌的主要渠道。阪崎肠杆菌的繁殖、宿主和感染途径一直是研究人员正在进行的课题。2002年,有研究人员从奶酪、碎牛肉、腊肠和蔬菜中分离到阪崎肠杆菌,但目前仍不能确定该菌的自然宿主到底是什么。   2003年又有研究人员从厩螫蝇中肠中分离到阪崎肠杆菌?熏因而认为厩螫蝇幼虫肠道是阪崎肠杆菌的环境宿主之一。而厩螫蝇在世界范围内广泛分布?熏以牛、马、狗、猪和人的血液为食?熏在牛、猪或马的养殖场所可见该蝇?熏在牛棚更常见?熏因而可能污染牛奶。流行病学研究发现厩螫蝇的地理分布和阪崎肠杆菌感染直接相关。   同时,美国一家疫情控制公司的技术报告中记载舍蝇中存在阪崎肠杆菌,但没有确切记录该菌究竟是在舍蝇体内还是体外。研究人员推测,昆虫很可能是阪崎肠杆菌的环境宿主。   阪崎肠杆菌感染并非是不治之症,用抗生素就可以有效控制。虽然阪崎肠杆菌的毒力因子和致病性现在还不太清楚,但已发现有些阪崎肠杆菌可能产生一种毒力因子——类肠毒素样化合物。而且,组织培养也发现一些菌株可产生细胞毒效应。   与肠杆菌属其他细菌相比?熏阪崎肠杆菌对常用的抗菌药更敏感。但是由于阪崎肠杆菌耐药性不断增强?熏近来一些专业人员建议采用碳青霉烯类或新一代头孢霉素和其他药物联合治疗阪崎肠杆菌。不过在临床上,需要根据临床诊断和细菌的药敏试验来找到合理的药物配伍治疗方案。

  • 【分享】大肠杆菌感染 专家称或会人传人

    毒黄瓜源头至今还是一个谜,排除了西班牙的黄瓜这一头号传染源,真正引起恐慌的感染源在哪里呢?过去两天来,汉堡肠出血性大肠杆菌感染人数继续攀升,因而此前关于感染高峰可能已过的判断不再有效。被形容为本次感染“震中”的汉堡当天确诊或疑似病例总数已增至569人,其中110人为重症患者。德国卫生部门官员5月31日说,实验室检测结果显示,从西班牙进口的黄瓜确实含有肠出血性大肠杆菌(EHEC)菌株,但与在德国流行的菌株不同,因此污染源仍没有得到确认。此外,在西班牙黄瓜“洗冤”之后,德国明斯特大学研究指出,人和其他一些动物都有可能是这类病菌的传染源。该校还指出,导致这次疫情的特殊病菌在过去10年间毒性增加了两至三倍。而我国卫生部6月1日也发布通知,要求做好我国可能出现的输入性肠出血性大肠杆菌感染防治。德国北部汉堡市卫生官员科尔内利娅·普鲁弗-施特克斯在5月31日的新闻发布会上说,初步检测没有在样品黄瓜中找到当前流行的肠出血性大肠杆菌菌株。随后,对其中两根西班牙黄瓜的检测结果显示,它们确实携带肠出血性大肠杆菌,但菌株与当前流行的菌株不同。感染高峰仍未过“就像先前一样,污染源仍没有得到确认,”普鲁弗-施特克斯说。一些分析师说,这项检测结果对疫情而言可谓“雪上加霜”,意味着可能流行着两种不同的肠出血性大肠杆菌,并且都有致病危险。普吕弗-施托克斯还说,过去两天来,汉堡肠出血性大肠杆菌感染人数继续攀升,因而此前关于感染高峰可能已过的判断不再有效。被形容为本次感染“震中”的汉堡当天确诊或疑似病例总数已增至569人,其中110人为重症患者。不过,汉堡卫生部门负责人强调,德方为维护公众健康而第一时间公布对西班牙黄瓜的化验结果并没有错,“保护生命应该比经济利益更重要。”

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制