当前位置: 仪器信息网 > 行业主题 > >

二羰基庚酸乙酯

仪器信息网二羰基庚酸乙酯专题为您提供2024年最新二羰基庚酸乙酯价格报价、厂家品牌的相关信息, 包括二羰基庚酸乙酯参数、型号等,不管是国产,还是进口品牌的二羰基庚酸乙酯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合二羰基庚酸乙酯相关的耗材配件、试剂标物,还有二羰基庚酸乙酯相关的最新资讯、资料,以及二羰基庚酸乙酯相关的解决方案。

二羰基庚酸乙酯相关的论坛

  • 【分享】卫生部关于征求《食品添加剂 庚酸烯丙酯》等71项食品安全国家标准(征求意见稿)意见的函

    卫办监督函〔2011〕561号各有关单位: 根据《食品安全法》及其实施条例的规定,我部组织制定了《食品添加剂 庚酸烯丙酯》等71项食品安全国家标准(征求意见稿)。现征求你部门意见并向社会公开征求意见(征求意见稿可从卫生部网站http://www.moh.gov.cn下载),请于2011年8月16日前以传真或电子邮件形式反馈我部。 传 真:010-67711813 电子信箱:gb2760@gmail.com. 二○一一年六月十四日 附件:《食品添加剂 庚酸烯丙酯》等71项食品安全国家标准(征求意见稿) 序号 标准名称 1 食品添加剂 庚酸烯丙酯 2 食品添加剂 苯甲醛 3 食品添加剂 月桂酸乙酯 4 食品添加剂 肉豆蔻酸乙酯 5 食品添加剂 乙酸香茅酯 6 食品添加剂 丁酸香叶酯 7 食品添加剂 乙酸丁酯 8 食品添加剂 乙酸己酯 9 食品添加剂 乙酸辛酯 10 食品添加剂 乙酸癸酯 11 食品添加剂 顺式-3-己烯-1-醇乙酸酯(又名乙酸叶醇酯) 12 食品添加剂 乙酸异丁酯 13 食品添加剂 丁酸戊酯 14 食品添加剂 丁酸己酯 15 食品添加剂 顺式-3-己烯醇丁酸酯(又名丁酸叶醇酯)[/siz

  • 【有奖征集】《食品添加剂 庚酸烯丙酯》等71项食品安全国家标准大收集~~

    【有奖征集】《食品添加剂 庚酸烯丙酯》等71项食品安全国家标准大收集~~

    根据《食品安全法》规定,卫生部组织制(修)订了《食品添加剂 庚酸烯丙酯》等71项食品安全国家标准。但是,可乐使劲地搜,愣是没有搜到这71项标准http://simg.instrument.com.cn/bbs/images/brow/em09501.gif哪位童鞋有,有标准的赶紧上传啊,上传有大奖噢!http://ng1.17img.cn/bbsfiles/images/2011/06/201106221433_300960_0_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/06/201106221434_300961_0_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/06/201106221434_300963_0_3.jpg【奖励】:上传相关附件者每人视情况加2-20分! 针对标准提出意见者视情况另加2-20分!新闻链接:http://www.instrument.com.cn/news/20110621/063465.shtml

  • 锂离子电池电解液碳酸二甲酯的用途简介

    1、代替光气作羰基化剂  光气虽然反应活性较高,但是它的剧毒和高腐蚀性副产物使其面临巨大的环保压力,因此将会逐渐被淘汰;而DMC具有类似的亲核反应中心,当DMC的羰基受到亲核攻击时,酰基-氧键断裂,形成羰基化合物,副产物为甲醇,因此DMC可以代替光气成为一种安全的反应试剂合成碳酸衍生物,如氨基甲酸酯类农药、聚碳酸酯、异氰酸酯等,其中聚碳酸酯将是DMC需求量最大的领域,据预测2005年80%以上的DMC将用于生产聚碳酸酯。  2、代替硫酸二甲酯作甲基化剂  由于与光气类似的原因,硫酸二甲酯也面临被淘汰的压力,而DMC的甲基碳受到亲核攻击时,其烷基-氧键断裂,同样生成甲基化产品,而且使用DMC比硫酸二甲酯反应收率更高、工艺更简单。主要用途包括合成有机中间体、医药产品、农药产品等。  3、低毒溶剂  DMC具有优良的溶解性能,其熔、沸点范围窄,表面张力大,粘度低,介质介电常数小,同时具有较高的蒸发温度和较快的蒸发速度,因此可以作为低毒溶剂用于涂料工业和医药行业。可以看出,DMC不仅毒性小,还具有闪点高、蒸汽压低和空气中爆炸下限高等特点,因此是集清洁性和安全性于一身的绿色溶剂。

  • 【原创大赛】西黄丸中11-羰基-β-乙酰乳香酸的鉴别及含量测定

    【原创大赛】西黄丸中11-羰基-β-乙酰乳香酸的鉴别及含量测定

    摘 要 目的:建立西黄丸中11-羰基-β-乙酰乳香酸的定性定量检验方法。方法:采用薄层色谱法和高效液相色谱法建立西黄丸中乳香类成分11-羰基-β-乙酰乳香酸的方法。结果:运用建立的薄层色谱法检测12个生产厂家提供的17批西黄丸,均含有11-羰基-β-乙酰乳香酸,但含量差别大,运用高效液相色谱法对其进行含量测定,其中11-羰基-β-乙酰乳香酸含量最低为0.27%,最高为1.05%。结论:建立薄层色谱法和高效液相色谱法可用于西黄丸中11-羰基-β-乙酰乳香酸的定性定量检验,可作为西黄丸现行法定检验标准中乳香显微鉴别的有益补充。西黄丸为一种纯中药制剂,属于临床急重症用药品种,由牛黄、麝香、乳香、没药四种中药材组成,具有抗菌消炎、抗病毒、抗结核、镇静止痛、止血消肿、抗癌以及增强机体抗病能力的作用,是经典抗癌药物。在临床中用于各种癌症的治疗及辅助治疗,能改善中晚期癌症患者的临床症状,提高患者生活质量。其中,乳香主要成分中以11-羰基-β-乙酰乳香酸含量最高。本文采用薄层色谱法和高效液相色谱法对西黄丸中11-羰基-β-乙酰乳香酸进行鉴别和含量测定,现报道如下。1仪器与试药CAMATS-4全自动点样仪;CAMAGREPRO-TAR3薄层扫描仪带照相系统;戴安Ulitimate 3000高效液相色谱仪(PDA检测器);XS-204电子天平(梅特勒-托利多仪器(上海)有限公司)。11-羰基-

  • 【资料】绿色化学试剂——碳酸二甲酯!

    [color=#DC143C]摘要:简述了绿色化学试剂碳酸二甲酯的特性、应用和合成方法。 [/color]  关键词:碳酸二甲酯;绿色试剂   文章编号:1005-6629(2006)12-0032-02中图分类号:O623.624文献标识码:E      在目前的化学工业生产中,仍然使用一些剧毒的原料,如光气、硫酸二甲酯等,为了人类的可持续发展,在化工生产过程中,迫切需要采用无毒或低毒的化学原料来代替有毒的原料,使用绿色试剂,淘汰有毒原料,是化学工业发展的必然趋势。   碳酸二甲酯(dimethyl carbonate,简称DMC),就是一种新的绿色基础化学试剂。1992年在欧洲作为非毒性物质注册登记,被称为二十一世纪绿色有机化学原料。近几年来,随着碳酸二甲酯生产工艺的突破,应用领域日益广泛。作为一种清洁有机化学试剂,碳酸二甲酯一方面可替代光气、硫酸二甲酯、氯甲烷及氯甲酸甲酯等剧毒或致癌物进行羰基化、甲基化、甲酯化及酯交换等反应生成多种重要化工产品;另一方面,以碳酸二甲酯为原料可以开发、制备多种高附加值的精细专用化学品,在医药、农药、合成材料、染料、润滑油添加剂、食品增香剂、电子化学品等领域具有广泛应用;第三,由于氧含量高、相溶性好,可用作低毒溶剂和燃油添加剂。因此,碳酸二甲酯具有重要的应用价值和广阔的市场前景。      1碳酸二甲酯的特性      碳酸二甲酯结构式(CH3O)2CO,分子量为90.08,   相对密度1.070,折射率1.3697,熔点4℃,沸点90.1℃。在常温下是一种无色透明、略有刺激性气味的液体,具有无毒、无腐蚀性、氧含量高、相溶性好等特点,其分子结构独特,结构中含有羰基、甲基、甲氧基等多种官能团,因而具有多种反应活性,在许多化学反应场合可替代光气、硫酸二甲酯(DMS)等化学品,作为重要的羰基化和甲基化试剂。由于碳酸二甲酯的化学性质非常活泼,可与醇、酚、胺、肼、酯等发生化学反应,故可衍生出一系列重要化工产品。其化学反应的副产物主要为甲醇和CO2,与光气、硫酸二甲酯等的反应副产物盐酸、硫酸盐或氯化物相比,危害相对较小。      2碳酸二甲酯的制备方法      目前合成碳酸二甲酯主要有光气法、酯交换法和甲醇氧化羰基合成法等,其中具有工业意义的工艺路线为后两种: 一是酯交换法,又称为石化路线。二是甲醇液相氧化羰基合成法,又称为煤化路线。

  • 请各位前辈看一下我做的液相色谱的图 挥发性脂肪酸(VFA)的标准样 混标

    请各位前辈看一下我做的液相色谱的图 挥发性脂肪酸(VFA)的标准样 混标

    流动相用的是0.015mol/L 磷酸二氢钾 用磷酸调pH=2.5 和甲醇以 97:3 混合标准样用的是混标 十种酸 甲酸 乙酸 丙酸 异丁酸 丁酸 异戊酸 戊酸 异己酸 己酸 庚酸配的标准样浓度以乙酸记是100mg/L 现在出的图有六个峰 请问怎么确定哪种峰是对应的哪种物质?为什么有的酸没有峰?还有是不是有一种各种酸的出峰表可以对比的?[img=,690,365]https://ng1.17img.cn/bbsfiles/images/2019/09/201909291638034804_4574_1773263_3.jpg!w690x365.jpg[/img]

  • 【求购】哪位帮我配置一下气相色谱仪,满足如下测定条件,越便宜越好,国产的能达到要求吗?

    用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定辛酸钠含量色谱条件与系统适用性试验: 用酸改性聚乙二醇(20M)毛细管柱。注温160℃,火焰离子化检测器,检测器温度230℃,气化室温度230℃,载气(氮气)流速为每分钟35ml。辛酸峰与庚酸峰的分离度应大于1.5,辛酸峰的拖尾因子应为0.95~1.20。辛酸对照品溶液连续进样5次,所得辛酸峰与庚酸峰面积之比的相对标准偏差(RSD)应不大于5%。

  • 【讨论】油脂羰基值的测定

    有没有版友用2,4-二硝基苯肼比色法做过油脂中的羰基值,测定结果精密度如何?需要注意哪些环节,我在测定过程中发现稳定性不好,不知什么原因

  • 羰基化合成碳酸二苯酯高效液相分析

    羰基化合成碳酸二苯酯高效液相分析

    [color=#444444]waters的高效液相,以前产物用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析,杂质峰很难分开,我做液相,我查阅文献后用文献上的方法也未能将副产物完全分开,通过自己摸索,条件改为乙腈:水=0.5:0.45。分离结果见图。图中最大的锋为苯酚,最后一个为目标产物碳酸二苯酯。前面锋分的不算好,也是过加大水相比例,结果分析时间变长,目标产物锋21min变宽,也做过苯酚苯酯单独进样,发现目标产物苯酯本身对紫外光敏感度远不如苯酚。还有个问题就是为了使目标产物得到较大的锋,待分析产物一般取1g溶于50ml甲醇,前段时间来了个售后的工程师,说我最大吸光度过高让我尽量控制在1左右,建议我调低待测产物的浓度,但这样一来,目标产物的锋就更难观测到了。求大神支个招,还有我想采用流动相梯度,前面采用较高的水相,后面采用较高的有机相,提高分离效果和减小目标产物锋宽度,不知道是否可行?[/color][color=#444444][img=,675,364]https://ng1.17img.cn/bbsfiles/images/2019/08/201908281651519825_5548_1701336_3.jpg!w675x364.jpg[/img][img=,690,364]https://ng1.17img.cn/bbsfiles/images/2019/08/201908281651536704_655_1701336_3.jpg!w690x364.jpg[/img][/color]

  • 羰基氧和羟基氧与钠离子和氢离子的结合能力

    [color=#444444]ESI 质谱条件下,M+H的二级产生含羰基的加氢峰,m/z 220,M+Na的二级碎片产生含羟基的加钠峰m/z 244,二者相差24。羰基氧和羟基氧与钠离子和氢离子的结合能力是怎样?[/color][color=#444444]难道钠离子更容易稳定含羟基离子?氢离子更容易稳定含羰基的离子?该怎么解释呢?[/color]

  • 液质联用分析体液中未衍生化氨基酸的方法

    [color=#444444]看了很多文献的报道,使用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用[/color][/url]分析体液中未衍生化的氨基酸时,他们都使用离子对试剂全氟酸(例如全氟庚酸、全氟丁酸等),但是我现在希望不使用任何离子对试剂的帮助,通过反相液相色谱柱进行分离氨基酸,并通过质谱进行定性定量分析。我想问的问题就是我的方案的可行性有多大,有意义吗?(因为如果我的想法可行的话,国外为什么很多报道还是使用离子对试剂呢?)[/color][color=#444444]希望大家帮我多提宝贵意见,谢谢。[/color]

  • 【原创】关于药典附录中酸败度测定法下羰基值的测定有关问题的讨论

    药典附录中关于酸败度测定法,共有三个值需要测定:1、酸值;2、羰基值;3、过氧化值。此三个值均是在油脂的提取后,进行测定。这里主要讨论第二个羰基值的测定。关于羰基值的测定,需要用到有毒溶剂苯。为方便,以下为药典原文:羰基值的测定 羰基值系指每1kg供试品中所含羰基化合物的毫摩尔数。除另有规定外,取供试品0.025~0.5g,精密称定,置25ml量瓶中,加苯使溶解,稀释至刻度,摇匀。精密量取5ml,置25ml具塞试管中,精密加4.3%三氯醋酸的苯溶液3ml及0.05%二硝基苯肼的苯溶液5ml,混匀,置60度水浴中加热30分钟,冷却后沿管壁慢慢精密加入4%氢氧化钾的乙醇溶液10ml,密塞,剧烈振摇1分钟,放置10分钟,以相应试剂为空白,照紫外-可见分光光度法在453nm的波长处测定吸光度,照公式计算。因为05年版与10年版的计算公式相差太大,此处不录。我的问题是:假如苯中含有杂质,这杂质为小分子的含羰基化合物,这就影响到了测定。如果这些含羰基化合物是微量的,则可能不会影响测定。但我们在实验中,发现,即使不加供试品,相应试剂的颜色已经成了一种黑色了,致使光无法透过比色皿,而呈现以下的现象:在相当大的(大于5)吸光度范围内,光谱呈剧烈、快速频率的波动。我猜是因为光透不过比色皿而引起的。我想问:按照紫外-可见分光光度法下对溶剂的要求,此处测定波长为453nm,位于可见光区,以空气为空白,测定苯的吸光度,完全合格。但是,如果杂质的羰基化合物,这同样是测不出来的,也就是即使有杂质的羰基化合物,以453nm为检验溶剂是否合格,当然也就合格了。因为羰基化合物本身就没有颜色。所以,我觉得,此处应有其它规定,以检验苯是否真的合格。

  • 迪马产品应用有奖问答07.11(已完结)——浓香型白酒分析

    迪马产品应用有奖问答07.11(已完结)——浓香型白酒分析

    10,抽取5个版友);中奖名单:langyabeilei(注册ID:langyabeilei)zengzhengce163(注册ID:zengzhengce163)WUYUWUQIU(注册ID:wulin321)dahua1981(注册ID:dahua1981)999youran(注册ID:999youran)http://ng1.17img.cn/bbsfiles/images/2016/07/201607111533_600018_1610895_3.pnghttp://ng1.17img.cn/bbsfiles/images/2016/07/201607111533_600019_1610895_3.png积分奖励:所有回答正确的版友奖励10个积分(幸运奖获得者除外)。【注意事项】同样的答案,每人只能发一次PS:该贴浏览权限为“回贴仅作者和自己可见”,回复的版友仅能看到版主的题目及自己的回答内容,无法看到其他版友的回复内容。下午3点之后解除,即可看到正确答案、获奖情况及所有版友的回复内容。=======================================================================浓香型白酒分析方法:GC基质:标准溶液应用编号:101196化合物:乙醛; 丙醛; 异丁醛; 丙酮; 甲酸乙酯; 乙酸乙酯+ 乙缩醛; 甲醇; 2- 丁酮; 2- 甲基丁醛; 3- 甲基丁醛; 乙醇; 丙酸乙酯; 异丁酸乙酯; 二乙氧基异丁烷; 2- 戊酮; 仲丁醇; 丁酸乙酯; 正丙醇;. 异戊酸乙酯;二乙氧基-2- 甲基丁烷; 二乙氧基-3- 甲基丁烷; 异丁醇; 乙酸异戊酯; 仲戊醇; 戊酸乙酯; 正丁醇; 异戊醇; 己酸乙酯; 正戊醇; 3- 羟基丁酮; 己酸丙酯; 2- 庚醇;庚酸乙酯; 乳酸乙酯; 正己醇; 己酸丁酯; 辛酸乙酯; 乙酸;糠醛; 苯甲醛; 壬酸乙酯; 丙酸; 2.3- 丁二醇;( 左旋); 辛醇; 异丁酸; 2.3- 丁二醇;( 内消旋); 己酸己酯; 癸酸乙酯; 正丁酸; 异戊酸;正戊酸;正己酸; 苯丙酸乙酯; β- 苯乙; 庚酸; 十四酸乙酯; 辛酸; 棕榈酸乙酯; 油酸乙酯; 亚油酸乙酯固定相:DM-WAX色谱柱/前处理小柱:DM-WAX 30m x 0.25mm x 0.25um色谱条件:柱温:37 ℃ ( 2 min ) - 70 ℃, 3 ℃/min ;70 ℃ ( 1min) - 130 ℃, 6 ℃/min ;130 ℃- 220 ℃, 10 ℃/min ;220 ℃ ( 10 min ) 载气:高纯氮, 1mL/min 进样:260 ℃, 分流比30:1 检测:FID, 260 ℃文章出处:CFO00011关键字:白酒,食品,GC,DM-Wax, 乙醛; 丙醛; 异丁醛; 丙酮; 甲酸乙酯; 乙酸乙酯+ 乙缩醛; 甲醇; 2- 丁酮; 2- 甲基丁醛; 3- 甲基丁醛; 乙醇; 丙酸乙酯; 异丁酸乙酯; 二乙氧基异丁烷; 2- 戊酮; 仲丁醇; 丁酸乙酯; 正丙醇;. 异戊酸乙酯;二乙氧基-2- 甲基丁烷; 二乙氧基-3- 甲基丁烷; 异丁醇; 乙酸异戊酯; 仲戊醇; 戊酸乙酯; 正丁醇; 异戊醇; 己酸乙酯; 正戊醇; 3- 羟基丁酮; 己酸丙酯; 2- 庚醇;庚酸乙酯; 乳酸乙酯; 正己醇; 己酸丁酯; 辛酸乙谱图:http://www.dikma.com.cn/Public/Uploads/images/DM-Wax-1%20copy.png图例:1. 乙醛;2. 丙醛;3. 异丁醛;4. 丙酮;5. 甲酸乙酯;9. 乙酸乙酯+ 乙缩醛;10. 甲醇;11. 2- 丁酮;12. 2- 甲基丁醛;13. 3- 甲基丁醛;14. 乙醇;15. 丙酸乙酯;16. 异丁酸乙酯;17. 二乙氧基异丁烷;18. 2- 戊酮;19. 仲丁醇;20. 丁酸乙酯;21. 正丙醇;25. 异戊酸乙酯;26. 二乙氧基-2- 甲基丁烷;27. 二乙氧基-3- 甲基丁烷;29. 异丁醇;30. 乙酸异戊酯;31. 仲戊醇;32. 戊酸乙酯;33. 正丁醇;36. 异戊醇;38. 己酸乙酯;40. 正戊醇;41. 3- 羟基丁酮;43. 己酸丙酯;44. 2- 庚醇;45. 庚酸乙酯;46. 乳酸乙酯;47. 正己醇;48. 己酸丁酯;49. 辛酸乙酯;51. 乙酸;52. 糠醛;55. 苯甲醛;56. 壬酸乙酯;57. 丙酸;58. 2.3- 丁二醇;( 左旋);59. 辛醇;60. 异丁酸;61. 2.3- 丁二醇;( 内消旋);62. 己酸己酯;63. 癸酸乙酯;64. 正丁酸;65. 异戊酸;66. 正戊酸;68. 正己酸;69. 苯丙酸乙酯;70. β- 苯乙;71. 庚酸;74. 十四酸乙酯;76. 辛酸;79. 棕榈酸乙酯;85. 油酸乙酯;86. 亚油酸乙酯

  • 27.8 四物汤传统饮片汤剂与配方颗粒汤剂中阿魏酸、芍药苷含量比较

    27.8 四物汤传统饮片汤剂与配方颗粒汤剂中阿魏酸、芍药苷含量比较

    【作者】李媛 鲁定国 雷艳青 雷鹏 刘韶 李新中 【摘要】:目的:比较四物汤传统饮片汤剂与配方颗粒汤剂中阿魏酸、芍药苷的含量。方法:采用高效液相色谱法。色谱柱:Diamonsil C18(4.6 mm×250 mm,5μm);柱温:35℃;流速1 ml/min;测定阿魏酸流动相为甲醇-水-0.05%磷酸(40∶50∶10),检测波长为327 nm;测定芍药苷流动相为乙腈-水-0.05%磷酸(16∶74∶10),检测波长为230 nm。结果:自制配方颗粒汤剂中阿魏酸含量为8.91 mg/剂,芍药苷为83.57 mg/剂;传统饮片汤剂中阿魏酸含量为8.90 mg/剂,芍药苷为78.51 mg/剂;不同厂家配方颗粒汤剂中阿魏酸含量为3.36~7.67 mg/剂,芍药苷为48.13~67.52 mg/剂。结论:四物汤配方颗粒汤剂与传统饮片汤剂的色谱图基本一致,自制配方颗粒汤剂与传统饮片汤剂中阿魏酸和芍药苷含量基本相当,但不同厂家配方颗粒汤剂中存在显著性差异。【作者单位】: 中南大学湘雅医院 中南大学湘雅医院 中南大学药学院 中南大学湘雅医院 中南大学湘雅医院 中南大学湘雅医院 【关键词】: 高效液相色谱法 四物汤 传统饮片汤剂 配方颗粒汤剂 阿魏酸 芍药苷 http://ng1.17img.cn/bbsfiles/images/2012/07/201207310812_380724_2352694_3.jpg

  • 【分享】甲基环戊二烯三羰基锰(MMT)气相色谱法检测方法

    甲基环戊二烯三羰基锰(MMT)气相色谱法检测方法本标准规定了甲基环戊二烯三羰基锰的分类、要求、试验方法、检验规则、标志、包装、运输、贮 存和安全。本标准适用于用作汽油抗爆剂的甲基环戊二烯三羰基锰。 分子式:C9H7MnO3 相对分子质量:218.09(根据2007年国际相对原子质量) 甲基环戊二烯三羰基锰含量的测定:在选定的工作条件下,样品经气化通过毛细管色谱柱,使其中各组分得到分离,用氢火焰离子化检 测器检测,用面积归一化法或内标法计算甲基环戊二烯三羰基锰的含量。 试剂:二乙二醇二甲醚。 无水乙醇。氢气:体积分数不低于 99.99%。 空气:经活性炭和分子筛净化。氦气:体积分数不低于 99.999%。仪器设备 :GC5890气相色谱仪,配氢火焰离子化检测器(FID),灵敏度和稳定性符合 GB/T9722 中的有关规定, 可进行毛细管色谱分析。N2000色谱工作站。色谱仪器型号GC5890型色谱仪 配有FID检测器毛细管色谱柱HP-5 30*0.32*0.25专用毛细管柱色谱工作站N2000 (电脑1台自备)气体装置氮氢空发生器 HGT300E1台或高纯氮、氢气、空气钢瓶各一瓶分析天平:感量 0.0001g。 5.8.3.4 进样器:5μL [font=

  • 37.9 酸枣仁汤传统饮片汤剂与配方颗粒汤剂中甘草酸含量的测定

    37.9 酸枣仁汤传统饮片汤剂与配方颗粒汤剂中甘草酸含量的测定

    【作者中文名】张献冲; 李新中; 唐翎; 许利敏;【作者英文名】ZHANG Xian-chong1; 2; LI Xin-zhong*; 1; TANG Ling1; XU Li-min1; 2 (1.Pharmacy of Xiangya Hospital; Central South University; Changsha 410008; 2.School of Pharmaceutical Sciences; Changsha 410013);【作者单位】中南大学湘雅医院药剂科; 中南大学湘雅医院药剂科 长沙; 中南大学药学院;【摘要】目的比较酸枣仁汤传统汤剂和配方颗粒汤剂中甘草酸的含量。方法采用RP-HPLC法,色谱柱:Dia-monsil C18柱(250 mm×4.6 mm,5μm);流动相:甲醇-0.2 mol.L-1醋酸铵-冰醋酸(66∶33∶1);流速:1.0mL.min-1;检测波长:250 nm;柱温:30℃。结果甘草酸铵在432~4 320 ng线性关系良好(r=0.999 9),平均回收率为100.8%(RSD=1.1%,n=5)。同一批饮片制备的两种汤剂中甘草酸含量无明显差异,不同厂家生产的配方颗粒汤剂中甘草酸含量差别较大。结论中药配方颗粒的制备应优化工艺条件,国家应尽快制定统一的质量标准,以保证配方颗粒的质量稳定。http://ng1.17img.cn/bbsfiles/images/2012/08/201208061349_381859_2379123_3.jpg

  • 【资料】羰基镍性质及其预防!

    羰基镍 Nickel carbonyl CAS:13463-39-3[color=#ff0000]理化性质[/color]具有霉味的无色至淡黄色易挥发液体。分子式C4-Ni-O4。化学式 Ni(CO)4。分子量 170.73。相对密度 1.318(17℃)。熔点 -19.3℃。沸点 43℃。闪点 -20℃。自燃点 93.33℃。蒸气密度 5.95(50℃)。蒸气压 53.32kPa(400mmHg 25.8℃)。蒸气与空气混合物可燃下限 2% 。水中溶解度为0.018g/100ml 不溶于稀酸、稀碱 溶于乙醇、苯、氯仿、丙酮、四氯化碳、王水、乙醚、硝酸。液态羰基镍侵蚀某些塑料、橡胶、涂层。空气中氧化,与氧化剂反应生成一氧化碳和相应的盐。遇热、明火、氧化剂易燃。20℃时,它的蒸气在空气和氧气中的分压达到2.00 kPa(15 mmHg)时爆炸 液态羰基镍在60℃时爆炸。不能与硝酸、氯、溴、可燃性蒸气共存。[color=#ff0000]消防措施[/color][color=#0000ff][size=5][sup]  [/sup][/size][/color]消防人员须穿戴全身防护服。用雾状水、泡沫、二氧化碳、干粉灭火。[color=#ff0000]储运须知[/color]包装标志:毒害品。包装方法:(I)类。高强度玻璃瓶充一氧化碳或其他不反应气体,气密封口,装在金属罐内,周围以惰性吸收材料衬填,外木箱或钢瓶装。储存条件:储存于阴凉、干燥、通风良好的仓库内。远离热源和火源。避光储存。仓库温度控制在28℃以下。搬运时轻装轻卸,防止容器破损。[color=#ff0000]泄漏处理[/color]切断一切火源,戴好防毒面具等全部防护用品。用不燃性分散剂制成的乳液刷洗。如无分散剂可用砂土吸收,倒至空旷地方掩埋。对污染地面用肥皂或洗涤剂刷洗,经稀释的污水放入废水系统。[color=#ff0000]接触机会[/color]羰基镍主要用于精炼镍、制造丙烯酸和甲基丙烯酸酯、有机合成的催化剂、作为钢和其他金属涂层、在冶金和电子工业中用于汽相扩散渗镀。当一氧化碳通入金属镍可形成不稳定的羰基镍。[color=#ff0000]侵入途径[/color]]主要经呼吸道吸入,也能经皮肤吸收。[color=#ff0000]毒理学简介[/color]人吸入TCLo: 7 mg/m3 LCLo: 30 ppm/30M。大鼠吸入LC50: 35 ppm/30M(244mg/m3)。小鼠吸入LC50: 67 mg/m3/30M。羰基镍为高毒物质。兔吸入浓度为 291mg/m^3 后 5分钟,发现镍在肺、血和肾的滞留量分别为 38.1 %、11.5%及 7.9%,肝内含量甚微。三天内约可随尿排出吸收镍的 62.2%。给大鼠 LD50 的剂量,经静脉、皮下、腹腔投毒后,24小时内脏器官肉眼检查无变化,第二天可见肺、肝脏肿大。肺部病变表现为肺水肿和灶性出血,肺血管周围有炎症细胞侵润,肺泡上皮细胞肥大和增生,肺泡壁增厚。肝脏为肝小叶中央中度淤血。中枢神经系统水肿,大脑半球毛细血管出血。约经二周后存活动物病理变化可趋好转。有人曾对一例接触羰基镍后13天急性中毒死亡的管道装配工人进行尸检。肺主要病变为肺实质由于成纤维细胞侵润而使很多区域硬变,只有很少量含有空气的软区。

  • 做气相时发现样品残留比较严重

    之前用庚酸做内标检测辛酸含量时,发现后进的样会受先进的样干扰。后来分别单独进辛酸和庚酸,发现辛酸里面会跑出庚酸的峰,庚酸里面会跑出辛酸的峰(都在1%左右),新开的辛酸、庚酸也是这样,基本可以排除辛酸庚酸被污染的可能。但是只进溶剂氯仿的话,不会有杂质峰。垫圈、衬管、柱子都换了新的,也没改善,不知道哪出了问题?

  • 【讨论】关于羰基值的再讨论

    【讨论】关于羰基值的再讨论

    [size=3]前面已经对羰基值发过帖子,没怎么解决,再发一次。2010版药典一部对羰基值的计算公式作了重大修改:[/size][font=宋体][size=3][img]http://ng1.17img.cn/bbsfiles/images/2010/05/201005252017_220628_1604723_3.jpg[/img]虽说对羰基值的计算公式作了修改,但具体到每味药材下,其限定值却没作修改。比如桃仁,其羰基值限定为11.请注意:设测得吸光度A=0.1(已经够小了),W=0.5g(附录中规定0.025-0.5g),最后计算得30.不合理。[/size][/font]

  • 27.7酸枣仁汤传统汤剂与配方颗粒汤剂中芒果苷、阿魏酸、甘草苷含量测定比较

    0.999),加样回收率在97.86%~99.71%之间,同一批饮片制备的两种汤剂中芒果苷、阿魏酸、甘草苷含量无明显差异,不同厂家生产的配方颗粒汤剂中芒果苷、阿魏酸、甘草苷含量差别较大。结论:配方颗粒可以代替传统饮片在酸枣仁汤中使用,但配方颗粒的制备应优化工艺条件,国家亦应尽快制定统一的质量标准,以保证配方颗粒的质量稳定。

  • 白酒分析专用柱:DM-Wax

    柱温:37 ºC ( 2 min ) - 70 ºC, 3ºC/min ;70 ºC ( 1min) - 130 ºC, 6ºC/min ;130 ºC - 220 ºC, 10 ºC/min ;220 ºC ( 10 min )载气:高纯氮, 1mL/min进样:260 ºC, 分流比30:1检测:FID, 260 ºChttp://www.dikma.com.cn/Public/Uploads/images/DM-Wax-1%20copy.png1. 乙醛;2. 丙醛;3. 异丁醛;4. 丙酮;5. 甲酸乙酯;9. 乙酸乙酯+ 乙缩醛;10. 甲醇;11. 2- 丁酮;12. 2- 甲基丁醛;13. 3- 甲基丁醛;14. 乙醇;15. 丙酸乙酯;16. 异丁酸乙酯;17. 二乙氧基异丁烷;18. 2- 戊酮;19. 仲丁醇;20. 丁酸乙酯;21. 正丙醇;25. 异戊酸乙酯;26. 二乙氧基-2- 甲基丁烷;27. 二乙氧基-3- 甲基丁烷;29. 异丁醇;30. 乙酸异戊酯;31. 仲戊醇;32. 戊酸乙酯;33. 正丁醇;36. 异戊醇;38. 己酸乙酯;40. 正戊醇;41. 3- 羟基丁酮;43. 己酸丙酯;44. 2- 庚醇;45. 庚酸乙酯;46. 乳酸乙酯;47. 正己醇;48. 己酸丁酯;49. 辛酸乙酯;51. 乙酸;52. 糠醛;55. 苯甲醛;56. 壬酸乙酯;57. 丙酸;58. 2.3- 丁二醇;( 左旋);59. 辛醇;60. 异丁酸;61. 2.3- 丁二醇;( 内消旋);62. 己酸己酯;63. 癸酸乙酯;64. 正丁酸;65. 异戊酸;66. 正戊酸;68. 正己酸;69. 苯丙酸乙酯;70. β- 苯乙;71. 庚酸;74. 十四酸乙酯;76. 辛酸;79. 棕榈酸乙酯;85. 油酸乙酯;86. 亚油酸乙酯

  • 羰基加氢产物醇气相分析出峰位置

    羰基加氢产物在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]中的出峰位置是在原料峰前还是峰后。。目前做的是二苯甲酮催化剂加氢。。就是想做羰基加氢生成醇。。具体还是不是很清楚产物位置

  • 羰基指数怎么测?

    最近要测羰基指数,样品为PTMEG(聚四亚甲基醚二醇)是是四氢呋喃的聚合物。测它的羰基指数怎么弄?一般找那个峰为基准?现在只知道有文献上写羰基指数CI=Ac=o/Aref..... 求高人指点

  • 【求助】测定甲醇中羰基化合物

    我们在测定甲醇中羰基化合物时,严格按照操作步骤进行,先制备无羰基甲醇,再按步骤一步一步进行,但当进行到加入氢氧化钠甲醇溶液时,过一会出现白色沉淀,如加入盐酸,沉淀又消失,为什么?白色沉淀是什么物质?

  • 27.7 酸枣仁汤传统汤剂与配方颗粒汤剂中芒果苷、阿魏酸、甘草苷含量测定比较

    0.999),加样回收率在97.86%~99.71%之间,同一批饮片制备的两种汤剂中芒果苷、阿魏酸、甘草苷含量无明显差异,不同厂家生产的配方颗粒汤剂中芒果苷、阿魏酸、甘草苷含量差别较大。结论:配方颗粒可以代替传统饮片在酸枣仁汤中使用,但配方颗粒的制备应优化工艺条件,国家亦应尽快制定统一的质量标准,以保证配方颗粒的质量稳定。 更多还原【关键词】 酸枣仁汤; 高效液相色谱法; 芒果苷; 甘草苷; 阿魏酸;

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制