当前位置: 仪器信息网 > 行业主题 > >

氯苯基丙醇标准

仪器信息网氯苯基丙醇标准专题为您提供2024年最新氯苯基丙醇标准价格报价、厂家品牌的相关信息, 包括氯苯基丙醇标准参数、型号等,不管是国产,还是进口品牌的氯苯基丙醇标准您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氯苯基丙醇标准相关的耗材配件、试剂标物,还有氯苯基丙醇标准相关的最新资讯、资料,以及氯苯基丙醇标准相关的解决方案。

氯苯基丙醇标准相关的论坛

  • 求助(S)-3-氨基-3-(4-氯苯基)丙酸甲酯的分析方法

    求助(S)-3-氨基-3-(4-氯苯基)丙酸甲酯的分析方法

    CAS:283159-95-5我用C18的柱子,流动相A、B分别是0.05%TFA的纯水、0.05%TFA的乙腈,流动相B的梯度是初始10%,5min升到60%并保持10min,15min后降到10%保持5min,谱图主峰分叉。[img=,690,184]https://ng1.17img.cn/bbsfiles/images/2024/01/202401271531592473_6839_4185279_3.jpg!w690x184.jpg[/img]请问(S)-3-氨基-3-(4-氯苯基)丙酸甲酯是手性化合物吗,需要什么类型色谱柱和流动相条件分析?

  • 3,4-二氯苯基异氰酸酯 工艺研发

    3,4-二氯苯基异氰酸酯连续化生产工艺研发王绪根 【摘要】:3,4-二氯苯基异氰酸酯(3,4-DCPI)是重要的有机反应中间体,产品主要用于脲类除草剂、农药合成和某些医药合成的中间体。近年由于需求量的增大,急需建立大规模连续化生产装置。本文结合实际情况,通过流程模拟和小试,设计出100吨/年中试生产装置,对中试装置进行安装和调试后,进行了中试,并对异氰酸酯反应动力学进行了研究。 首先,通过查阅文献和实际情况,制定了3,4-二氯苯基异氰酸酯连续化生产的流程:将3,4-二氯苯胺用甲苯溶解,然后将液体光气和3,4-二氯苯胺溶液通入冷反应器,再逐次经过热反应器1、2、3后,流入光化液储罐;确定了生产的主要约束条件和操作条件:系统负荷、光气配比、溶剂配比、系统压力、各反应器的温度和搅拌转速。通过ASPEN和PROⅡ软件模拟,并结合实际情况设计出了3,4-二氯苯基异氰酸酯的100吨/年连续化中试生产装置。 然后,在3,4-二氯苯基异氰酸酯中试生产装置各个设备制造出来后,进行设备安装和调试。在设备调试好之后,先用纯溶剂在拟定条件下进行试车操作。之后,进行了不同操作条件下中试试验。 最后,通过对中试试验结果的整理和分析,可认定3,4-二氯苯基异氰酸酯的连续化生产完全可行。并通过中试找到了3,4-二氯苯基异氰酸酯连续化生产的较优操作条件:在系统压力(表压)10~20KPa;系统负荷为3,4-二氯苯基异氰酸酯150吨/年;冷反应器温度30~40℃,冷反应器搅拌转速750转/分;第一热反应器温度80℃,第一热反应器搅拌转速200转/分;第二热反应器温度90~100℃,第二热反应器转速150转/分;第三热反应器温度120℃,第三热反应器搅拌转速100转/分时,装置运行良好。并进行了异氰酸酯反应动力学的研究。【关键词】:3、4-二氯苯基异氰酸酯 光气 反应器 反应动力学 【学位授予单位】:青岛科技大学

  • 苯基叔丁醇易形成脱水离子么?

    苯基叔丁醇易形成脱水离子么?

    这种苯基异丙醇易于形成脱水的分子离子峰么,大家有类似的谱图么?谢谢!http://ng1.17img.cn/bbsfiles/images/2012/12/201212221329_414443_1618372_3.png

  • 【求助】求教关于-邻氯苯基荧光酮

    各位大虾: 最近需要用到邻氯苯基荧光酮这种物质,可是查了很多药品公司都没有货,不知哪位大虾知道广州哪家公司有买或者能否告知具体的合成路线,有关这种物质的任何相关信息都可以! 先表示感谢!

  • 【求助】求助:一般使用的流动相是正己烷跟异丙醇?

    实验室新买了一个正相手性柱,其中柱子硅胶表面涂敷有纤维素-三(3,5-二甲苯基氨基甲酸酯),一般使用的流动相是正己烷跟异丙醇~~请问实验完成后使用什么流动相冲洗柱子呢??需要冲洗多久?柱子应该保存在异丙醇还是正己烷中呢??我们现在的流动相一般是正己烷:异丙醇=97:3,做完后先用异丙醇冲洗直至基线稳定,然后再用正己烷冲洗2-3小时~~

  • 寻找电子级别异丙醇的国家标准

    现在我们公司准备在做高纯度的异丙醇项目,作为技术部在找国家在高纯度异丙醇方面的标准资料作为参考。还设有就是国家标准查询的网站和机构有的话帮忙分享一下。

  • 2015版《化妆品安全技术规范》方法基础上对16种防晒剂异丙醇体系分析方法的开发——实际样品分析

    2015版《化妆品安全技术规范》方法基础上对16种防晒剂异丙醇体系分析方法的开发——实际样品分析

    [align=center][b]2015版《化妆品安全技术规范》方法基础上[/b][/align][align=center][b]对16种防晒剂异丙醇体系分析方法的开发——实际样品分析[/b][/align]按照2015版《化妆品安全技术规范》方法对苯基苯并咪唑磺酸等15种防晒剂进行分析时,第一法和第二法所使用的流动相体系均为[b]四氢呋喃-甲醇-水[/b]体系。该体系中,四氢呋喃的挥发性强,容易对人体造成伤害,并且四氢呋喃对PEEK材质的管线和配件有溶胀作用,易导致仪器损坏。在此,实验室在15种防晒剂分析方法的基础上,追加了甲酚曲唑三硅氧烷,并开发了[b]异丙醇-乙腈-水[/b]流动相体系下对16种防晒剂(15种防晒剂+ 甲酚曲唑三硅氧烷)的分析方法。该方法不含四氢呋喃,对实验人员和仪器伤害较少,更加环保。使用资生堂CAPCELL PAK C[sub]18 [/sub]MGII S5 4.6 mm i.d. × 250 mm色谱柱,通过调整梯度条件,在不含四氢呋喃的[b]异丙醇-乙腈-水[/b]流动相体系下,最终实现了16种防晒剂的良好分离。分析结果如图1所示。[align=center][img=,690,469]http://ng1.17img.cn/bbsfiles/images/2017/12/201712071729_01_2222981_3.png!w690x469.jpg[/img][/align][align=center]图1 防晒剂标准品分析图(MGII)[/align]注:图上所示数字为分离度。1:对氨基苯甲酸; 2:苯基苯并咪唑磺酸; 3:二苯酮-4和二苯酮-5; 4:二苯酮-3; 5:对甲氧基肉桂酸异戊酯6:4-甲基苄亚基樟脑; 7:奥克立林; 8:丁基甲氧基二苯甲酰基甲烷; 9:PABA乙基己酯;10:甲氧基肉桂酸乙基己酯; 12’:峰12的同分异构体; 11:水杨酸乙基己酯; 12:胡莫柳酯;13:甲酚曲唑三硅氧烷; 14:乙基己基三嗪酮; 15:亚甲基双-苯并三唑基四甲基丁基酚;16:双-乙基己氧苯酚甲氧苯基三嗪(按出峰顺序)[img=,690,220]http://ng1.17img.cn/bbsfiles/images/2017/12/201712071731_01_2222981_3.jpg!w690x220.jpg[/img]在以上液相方法基础上,进一步对混合标准系列溶液进行分析,绘制标准曲线,并对实际样品进行测定。在此,选用两种溶剂对样品(膏状样品)进行提取,并将实测值与配方值进行比较,同时进行加标回收实验,来考察不同溶剂的提取效果。[b]1. 标准曲线的绘制 [/b]取16种防晒剂标准储备溶液各10 μL(各防晒剂标准储备溶液按照2015版《化妆品安全技术规范》要求配制),使用稀释剂(流动相A / 流动相B = 30/ 70)分别稀释至1 mL,再使用异丙醇稀释1倍,制得[b]混合标准储备溶液[/b],浓度如表1所示。取混合标准储备溶液0 mL、0.20 mL、1.00 mL、5.00 mL、10.0 mL于10 mL容量瓶中,使用稀释剂(流动相A / 流动相B = 30/ 70)稀释至刻度,配制成[b]混合标准系列溶液[/b]。[align=center][img=,690,532]http://ng1.17img.cn/bbsfiles/images/2017/12/201712071732_01_2222981_3.png!w690x532.jpg[/img][/align][align=center][/align][align=left]取防晒剂混合标准系列溶液分别进样,以溶液浓度为横坐标、峰面积为纵坐标绘制标准曲线,各防晒剂标准曲线线性方程和相关系数如表2所示。各防晒剂组分线性关系良好。[/align][align=left][/align][align=center][img=,608,534]http://ng1.17img.cn/bbsfiles/images/2017/12/201712071733_01_2222981_3.png!w608x534.jpg[/img][/align][align=left][b]2. 实际样品中防晒剂分析[/b][/align][b][/b][align=left][b] [/b][/align][align=left][/align][align=left]我们对含有②苯基苯并咪唑磺酸、⑩甲氧基肉桂酸乙基己酯和⑪ 水杨酸乙基己酯3种防晒剂的实际样品进行分析。[/align][align=left]我们分别使用(1)四氢呋喃和(2)异丙醇作为提取溶剂对实际防晒剂样品进行提取处理,具体处理方法如下:[/align][align=left]样品处理:称取样品0.10 g于10 mL离心管,加入提取溶剂至刻度线,混匀,超声30 min,以11000 rpm离心15 min,取此溶液1 mL,再用70%流动相B稀释至10 mL,经0.22 μm滤膜过滤,滤液作为样品待测溶液。[/align][align=left][/align][align=left]分别取样品待测溶液进行上机检测,并将实测值和配方标识量进行比较,计算回收率(配),结果如表3所示,使用异丙醇提取可以得到和四氢呋喃相似的提取效果,3种防晒剂回收率均在90%-125%之间。[/align][align=left][/align][align=center][img=,690,244]http://ng1.17img.cn/bbsfiles/images/2017/12/201712071732_02_2222981_3.png!w690x244.jpg[/img][/align][align=left][b]3. 实际样品加标回收率[/b][/align][b][/b][align=left][b] [/b][/align][align=left]接下来进行加标回收率实验。向防晒剂实际样品中,添加②苯基苯并咪唑磺酸、⑩甲氧基肉桂酸乙基己酯、⑪ 水杨酸乙基己酯以及样品中未添加的⑧丁基甲氧基二苯甲酰基甲烷,进行加标回收率实验。结果如表4所示,加标回收率在75%-110%之间。除苯基苯并咪唑磺酸外,异丙醇提取的回收率均略高于四氢呋喃提取的回收率。[/align][align=center][/align][align=center][img=,385,307]http://ng1.17img.cn/bbsfiles/images/2017/12/201712071732_03_2222981_3.png!w385x307.jpg[/img][/align][align=center][/align][align=left]综上所述,使用资生堂CAPCELL PAK C[sub]18[/sub] MGII S5 4.6 mm i.d. × 250 mm色谱柱,在不含有四氢呋喃的[b]异丙醇-乙腈-水[/b]体系下,可以实现16种防晒剂的良好分离。使用异丙醇和四氢呋喃对实际样品(膏状样品)中3种防晒剂均能实现良好的提取效果。对其他剂型样品,以及其他防晒剂成分的提取回收情况待进一步考察。[/align]

  • 如何分离乙醇,异丙醇,二氯甲烷几种溶剂

    要检测,乙醇,异丙醇,二氯甲烷,甲苯,四种溶剂。用SH-RTX-5色谱柱,30m*0.32mm*0.25um分离效果不好,用WAX柱,百分百聚乙二醇色谱柱,30*0.53*0.25分离度也不好,分流比30,柱温40℃,流速也几乎调到最低标准了?,RTX-5设置的是1.2ml/min,wax柱设置的是3.0ml/min乙醇,二氯,异丙醇,三个都出的非常近。两种方法都是2.5-2.8分钟全部出峰了。而且有重叠

  • 用顶空进样气相色谱质谱检测土壤中的异丙醇,想做标准曲线但是异丙醇不出峰

    现在想用顶空做异丙醇的标准曲线,把异丙醇和乙酸乙酯、乙酸丙酯、乙酸丁酯做成了混标,参照土壤挥发性有机物HJ642标准设置的仪器条件,顶空进样器进样,平衡 温度80度,平衡时间30分钟,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]质谱仪检测,试了几次结果都是乙酸乙酯、乙酸丙酯、乙酸丁酯出峰,异丙醇不出峰。但是手动进样到[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]里4种都会出峰,所以真的太迷茫了。。。[img]https://simg.instrument.com.cn/bbs/images/default/em09509.gif[/img]

  • [转贴]二噁英、多氯联苯和氯丙醇的痕量与超痕量检测技术的研究

    二噁英、多氯联苯和氯丙醇的痕量与超痕量检测技术的研究 ——中国疾控中心营养食品所 吴永宁 李敬光 郑明辉 吴文忠 付武胜 张建清 赵云峰 陈左生 庄志雄 邵 兵二噁英、多氯联苯和氯丙醇是当今食品安全和环境科学领域关注热点,PCDD/Fs和PCBs为持久性有机污染物斯德哥尔摩公约中最重要的3类化合物。我国作为签约国在2004年全国人大批准履行,而在履约能力中首先需要具备的超痕量检测能力即使在发达国家也是少数实验室具备,成为一个国家分析水平的标志,已列入卫生部《食品安全行动计划》能力建设考核指标。本研究将稳定性同位素稀释质谱技术应用到我国食品安全和环境分析领域,针对不同目标化合物分别建立了高分辩磁质谱、四极杆低分辩质谱和离子阱串联质谱的标准化检测技术,特别是采用双同位素稀释同时测定4种氯丙醇的技术。通过对EPA1613/1668、FDA 4084和1/RM /31、AOAC2000.1等国际先进方法在食品(鱼、鱼油、奶粉和猪油)和环境(飞灰、土壤和底泥)样品中开展对比筛选和一系列实验室间协同性验证,提出符合国际规范的技术方案,起草并被颁布为国家和环境行业标准4项,起草待颁布标准5项;发表论著30余篇。先后参加涉及未知溶液、鱼、土壤与底泥、飞灰中PCDD/Fs和PCBs(共平面与指示性)的6次国际比对,均取得优异成绩(在136个实验室中名列前45名),使参加测试的二噁英实验室获得国际承认,成为剑桥同位素实验室鱼和土壤标准参考物的定值实验室。该课题意义重大,总体达到国际先进水平,利用双稳定性同位素进行酱油中单氯取代和双氯取代氯丙醇的同时测定方法属于原创性工作、居国际领先水平。在国内首次开展鱼贝类和土壤中污染的二噁英和多氯联苯同系物类型特征指纹库研究和酱油中氯丙醇的大规模调查,获得了中国总膳食二噁英暴露量,不仅证明所建立的方法实用、可行,也为我国履约摸清家底提供依据。首次以起草国身份参加国际食品法典委员会 (CAC) 酱油氯丙醇标准限量和二恶英减低措施的国际标准起草,全面提高了我国的食品安全科学地位。 获2005年中华医学科技奖二等奖

  • 2-(4-Boc-哌嗪)-2-(3-氯苯基)乙酸

    中文名称:4-[羧基-(3-氯苯基)-甲基]-哌嗪-1-羧酸叔丁酯盐酸盐名称:2-(4-Boc-哌嗪)-2-(3-氯苯基)乙酸【详情请咨询国肽生物】CAS号:885272-99-1别名:1-Piperazineaceticacid,a-(3-chlorophenyl)-4-[(1,1-dimethylethoxy)carbonyl]-分子式:C17H23N2O4Cl.HCl分子量:391.28946结构图:国肽生物主要提供:多肽合成、多肽定制、同位素标记肽、人工胰岛素、磷酸肽、生物素标记肽、荧光标记肽(Cy3、Cy5、Fitc、AMC等)、目录肽、偶联蛋白(KLH、BSA、OVA等)、美容肽、化妆品肽、多肽文库构建、抗体服务、糖肽、订书肽、药物肽、RGD环肽等。详情请咨询国肽生物

  • 我国有棒曲霉素和氯丙醇的限量标准吗?

    我国有棒曲霉素和氯丙醇的限量标准吗?

    2012年9月3日,新加坡发布2012年食品法规。新的食品法规对食品中棒曲霉素和氯丙醇的限量做了规定:http://ng1.17img.cn/bbsfiles/images/2012/10/201210092141_395625_1641058_3.jpg我国有这方面的限量标准吗?

  • 【转帖】溴硝丙醇等25种防腐剂 薄层色谱法

    1适用范围本法可快速检测化妆品中溴硝丙醇等25种防腐剂。2 原理化妆品中防腐剂经有机溶剂萃取、过滤、蒸发、定容后,用薄层色谱分离、显色剂显示斑点,与已知标准进行比较定性。3 试剂3.1 展开剂3.1.1 苯 丙酮(8 2)。3.1.2 氯仿 甲醇(9 1)。3.2 显色剂3.2.1 乙酚丙酮(1)吸取0.2ml乙酷丙酮,加0.3ml冰醋酸及15.4g醋酸铵溶于100ml水中。3.2.2 4-氨基安替吡啉。铁氰化钾(2)喷显剂Ⅰ:2%的个氨基安替吡啉的酒精溶液。喷显剂Ⅱ:8%铁氰化钾水溶液。3.2.3铬变色酸试剂(3):将1g铬变色酸钠(1,8-二羟基萘-3,6-二磺酸钠)溶于15ml水中,小心加入15ml硫酸。3.2.4重氮化联苯胺(4):(Ⅰ)联苯胺贮备液:将5g联苯胺及14ml 36%的盐酸加入到水中,并稀释至1L。(Ⅱ)亚硝酸盐溶液:10%的亚硝酸钠溶液,每日新配制。(Ⅲ)喷显剂;将20ml联苯胺溶液与20ml亚硝酸盐溶液在0℃下混合,并不停搅拌。此试剂可稳定2~3小时。3.2.5 碘蒸气:将3~4粒碘晶体放入约2L的烧杯中,在蒸汽浴上加热。把TLC板放在烧杯上方,使硅胶表面与碘蒸气接触。3.2.6 4-甲基-7-羟基香豆素(5):将20mg4-甲基-7-羟基香豆素溶于35ml乙醇中并以水稀释至100ml3.3防腐剂:商品级,按表2-3-23最大允许用量的1/5的浓度配制工作液(6)。表2-3-23 防腐剂的Rf 值及其显色特征和最大允许用量防腐剂(序号)*  Rf 值 检测方法 最大允许用量% C6H6-ACETONE(8 2) CHCl3-MeOH(9 1) UV I2 显色剂 溴硝丙醇(4-63) 0.47 0.57     (c),V (a),Y 0.1 丁基羟基甲苯(3-10) 0.79 0.83   X (d),Y 0.15 异丙基邻甲苯酚(4-32) 0.65 0.75   X (b),p (d),Y 0.1 洗必泰(4-44) 0.40 0.62 X     0.3 4-氯3-甲苯酚(4-55) 0.59 0.65   X   0.2 4-氯3,5-二甲苯酚(4-56) 0.60 0.67   X   0.5 脱氢乙酸(4-62) 0.15 0.26 X     0.6 2,4-二氯3,5-二甲苯酚(4-8) 0.65 0.75   X   0.1二氯酚(4-7) 0.50 0.62 X X   0.2 二甲克生(4-9) 0.56 0.53 X   (b),p (d),Y 0.2 咪唑烷基尿(4-27) 0.00 0.00   X (f),p (c),V (a),Y 0.6 六氯酚(4-24) 0.14 0.41 X X (b),p (d),Y 0.1 卤卡班(4-20) 0.53 0.67 X     0.3 三氯生(4-21) 0.74 0.81   X   0.3 羟甲基5,5-二甲基乙内酰尿(4-49) 0.23 0.59     (c),V (a),Y 0.2 没食子酯辛酯 0.12 0.22 X X   (0.1) 邻苯基苯酚(4-52) 0.88 0.79 X X   0.2 对羟基苯甲酸丙酯(4-46) 0.56 0.65 X X   0.4 间苯二酚(3-22) 0.39 0.34 X X   水扬酰替苯胺 0.65 0.72 X X (b),p (d),Y   四溴邻甲苯酚(4-31) 0.72 0.80 X   (b),G (d),Y 0.3 三溴沙伦(3-8) 0.60 0.69 X     1 三氯卡班(4-18) 0.55 0.70 X X   0.2 N-(三氯思虑在硫代)环已-4-烯-4-1,2-二羟基酰亚胺 0.70 0.83     (f),p 吡啶硫酮锌(4-33) 0.49 0.82 X XX   0.5 * 化妆品卫生标准(GB7916-87)中表3或表4中出现时的序号,如(4-63)即表4序号634 仪器4.1 薄层展开缸:玻璃缸25×6×4cm,带盖,用滤纸衬里。4.2 薄层板用玻璃板:20×20cm。4.3 硅胶:薄层层析用,内含产生荧光的物质或GF254硅胶。4.4 紫外光灯:能发射254nm波长。

  • 超净高纯电子化学试剂———异丙醇制备方法 !

    超净高纯电子化学试剂———异丙醇制备方法 梁 凯 (黑龙江省化工研究院,黑龙江 哈尔滨 150078) 摘 要:本文介绍了用含量98%的工业级异丙醇经过金属离子络合剂处理、脱水处理、微滤膜过滤、多级精馏、钠滤膜过滤制备超净高纯电子化学试剂———异丙醇的制备方法。该方法制备的超净高纯异丙醇符合半导体技术的芯片及硅园片的清洗和刻蚀的要求。 关键词:超净高纯异丙醇;金属离子络合剂;多级精馏;纳滤膜过滤 中图分类号:TQ224.23 文献标识码:A 文章编号:1002-1124(2011)07-0063-02 随着半导体技术的迅速发展,对超净高纯试剂的要求越来越高。在集成电路(IC)的加工过程中,超净高纯试剂主要用于芯片及硅园片表面的清洗和刻蚀,其纯度和清洁度对集成电路的成品率、电性能及可靠性有着十分重大的影响。超净高纯异丙醇作为一种重要的微电子化学品已经广泛用于半导体、大规模集成电路加工过程中的清洗、干燥等方面。随着 IC的加工尺寸已经进入亚微米、深亚微米时代,对与之配套的超净高纯异丙醇提出了更高的要求,要求颗粒和杂质含量降低 1~3 个数量级,达到国际半导体设备和材料组织制定的SEMI- C12标准,其中金属阳离子含量小于 0.1×10- 9,颗粒大小控制在 0.5μm以下。 目前,超净高纯异丙醇通常是以工业级异丙醇为原料纯化精致而成。精馏是工业化提纯异丙醇的主要方法,包括共沸精馏、萃取精馏等。但是用于微电子化学品工业的超净高纯异丙醇对其中金属杂质,颗粒大小含量和阴离子的要求十分苛刻,精馏工艺已经无法满足要求。 现有文献公布的超净高纯异丙醇的制备方法,以工业异丙醇为原料,以碳酸盐调节 pH 值,加入脱水剂,进行回流反应,经精馏、蒸馏、膜过滤,得到符合国际半导体设备和材料组织制定的SEMI- C12标准的超纯异丙醇。这一公开报道的制备方法无法稳定控制产品质量,特别是产品中金属离子含量以及颗粒杂质大小。

  • 间三氟甲基苯丙醇和杂质I的分离——CAPCELL PAK C18 MGII

    间三氟甲基苯丙醇和杂质I的分离——CAPCELL PAK C18 MGII

    [align=center][b]间三氟甲基苯丙醇和杂质I的分离[/b][/align]客户提供了间三氟甲基苯丙醇和相关杂质I,并反馈曾尝试使用反相C[sub]18[/sub]柱对两化合物进行分离,但未能得到基线分离结果。现客户希望本实验室选择合适色谱柱并对色谱条件进行优化,来实现间氟甲基苯丙醇和其相关杂质I的基线分离。首先,我们尝试使用中等极性的CAPCELLPAK C[sub]18[/sub] MGII色谱柱,在磷酸盐-乙腈体系中分析50 μg/mL的混标溶液及各单标溶液,通过调整流动相中水相和有机相比例为60:40时,50 μg/mL的混标溶液中,间三氟甲基苯丙醇和杂质I能实现基线分离,分离度为1.52(见图1)。同客户沟通,客户希望供试品溶液(当间三氟甲基苯丙醇浓度为1mg/mL,杂质I为1 μg/mL)中两化合物分离度大于1.50。[align=center][img=,422,132]http://ng1.17img.cn/bbsfiles/images/2018/04/201804031009027392_4941_2222981_3.png!w422x132.jpg[/img][/align][align=center][img=,656,427]http://ng1.17img.cn/bbsfiles/images/2018/04/201804031009243004_918_2222981_3.png!w656x427.jpg[/img][/align][align=center]图1 MGII分析混标及单标溶液结果[/align][align=left][img=,575,197]http://ng1.17img.cn/bbsfiles/images/2018/04/201804031009245664_7431_2222981_3.png!w575x197.jpg[/img][/align][align=left]在此实验基础上,进一步分析供试品溶液,结果发现由于间三氟甲基苯丙醇浓度过高,致使色谱峰展宽,杂质I与间三氟甲基苯丙醇的分离度下降,未能达到1.50的基线分离要求;进一步尝试通过升高柱温来改善分离度,结果如图2,在50°C时能够得到良好分离结果,分离度为1.59。[/align][align=left][/align][align=center][img=,650,418]http://ng1.17img.cn/bbsfiles/images/2018/04/201804031030364182_5088_2222981_3.png!w650x418.jpg[/img][/align][align=center]图2 MGII分析混标及单标溶液结果[/align][align=left]注: 峰上标数字为分离度。[/align][align=left][img=,575,195]http://ng1.17img.cn/bbsfiles/images/2018/04/201804031031319132_5141_2222981_3.png!w575x195.jpg[/img][/align][align=left][/align][align=left]为有更多的选择,我们也尝试了两款非C[sub]18[/sub]色谱柱,包括键合特殊官能团——金刚烷基的高极性色谱柱ADME和键合五氟苯基的PFP色谱柱。在使用PFP色谱柱分析50 μg/mL混标溶液时,发现两化合物峰重合,未能实现分离。但使用ADME分析混标溶液时,能够得到1.36的分离度(见图3)。[/align][align=left][/align][align=center][img=,620,423]http://ng1.17img.cn/bbsfiles/images/2018/04/201804031034384978_3594_2222981_3.png!w620x423.jpg[/img][/align][align=center]图3 PFP、ADME分析50 μg/mL混标溶液结果[/align][align=left]注: 峰上标数字为分离度。[/align][align=left][img=,552,214]http://ng1.17img.cn/bbsfiles/images/2018/04/201804031034366042_2199_2222981_3.png!w552x214.jpg[/img][/align][align=left][/align][align=left]尝试改善分离度,继续使用ADME色谱柱进行分析,通过降低有机相比例来延长保留,最终得到了1.50的分离度(见图4),与此同时对供试品溶液进行分析,发现由于主成分峰展宽未能得到基线分离结果(见图5)。[/align][align=left][/align][align=center][img=,658,430]http://ng1.17img.cn/bbsfiles/images/2018/04/201804031035399180_5905_2222981_3.png!w658x430.jpg[/img][/align][align=center]图4 ADME分析混标溶液结果[/align][align=center][/align][align=center][img=,657,435]http://ng1.17img.cn/bbsfiles/images/2018/04/201804031035148034_8911_2222981_3.png!w657x435.jpg[/img][/align][align=center]图5 ADME分析供试品溶液结果[/align]注: 峰上标数字为分离度。[align=left][img=,586,223]http://ng1.17img.cn/bbsfiles/images/2018/04/201804031035150115_8050_2222981_3.png!w586x223.jpg[/img][/align]

  • 迪马新产品——Inspire PFP 五氟苯基

    慕尼黑上海分析生化展,迪马科技最新推出了Inspire 苯基系列色谱柱,一直忙未给大家及时普及,今天来说说第一款Inspire PFP ( 五氟代苯基) 是Inspire 液相色谱柱家族新成员,针对分离极性化合物过程中的保留时间和分离度问题而特别设计。Inspire PFP 凭借其优异的选择性,可为极性化合物、复杂天然产物、位置异构体和其它相关化合物在C18 和C8 色谱柱上的分离提供一个替代和补充。Inspire PFP 具有U 型色谱分离特性,适用于正相、反相和亲水作用色谱三种分离模式,并具有多种作用机理,因而能够同时分离检测不同极性化合物的混合物,为目前难以解决的复杂极性和亲水性样品的分离分析提供了强有力的工具,可轻松解决其它色谱柱面临的分离难题,为用户实现强极性分析物的优异选择性提供一种更加便捷的途径。同时也为色谱工作者使用简单流动相,避免使用极端pH 条件和准备复杂流动相提供了可能性。Inspire PFP 色谱柱特点• 五氟代苯基硅烷键合在高纯硅胶基质上• 具有U 型色谱分离特性,适用于正相、反相和亲水作用色谱三种分离模式• 对极性化合物具有独特的保留能力• 良好的峰形、超高的柱效、分离度和使用寿命• 适用于芳环类化合物或长共轭体系化合物的分离• 优异的批次重现性增强位置异构体分离能力官能团位置的微小差异可以极大的影响分子性能,在许多情况下,传统的C18色谱柱根本无法扑捉到这种细微的差异。然而,Inspire PFP的多功能选择性却可以区分由于分析物内部微小位置变化而导致的分析物的空间位阻变化还是分析物的偶极矩偏移。色谱柱如图所示 规格 150 × 4.6 mm, 5 μm 流动相0.1% 甲酸乙腈溶液:0.1% 甲酸水溶液 = 40:60 流速1.5 mL/min 柱温室温 检测器 UV 254 nm 样品1. 3,4-二甲氧基苯酚 2. 2,6-二甲氧基苯酚3. 3,5-二甲氧基苯酚4. 2,6-二氟苯酚5. 2,4-二氟苯酚6. 2,3-二氟苯酚7. 3,4-二氟苯酚8.3,5-二甲基苯酚9.2,6-二甲基苯酚10.4-氯-3-甲基苯酚11.4-氯-2-甲基苯酚12.3,4-二氯苯酚13.3,5-二氯苯酚http://www.dikma.com.cn/u/image/2016/09/06/1473147613188048.jpg苯氧酸类化合物分子上卤素的加入可以从根本上增强化合物的极性,而极性的变化通常伴随着反相色谱柱在保留时间和分离能力上困难的增加。此时使用InspireTM PFP 是解决保留问题的最有效的方法。InspireTM PFP利用偶极-偶极和氢键作用更好地保留,区分和分离极性卤化化合物。色谱柱 如图所示规格 150 × 4.6 mm, 5 μm流动相乙腈:0.1% 甲酸水溶液 = 50:50流速1.0 mL/min柱温室温检测器UV 220 nm样品1. 苯氧乙酸2. 邻氯苯氧乙酸3. 对氯苯氧乙酸4. 2,4-二氯苯氧乙酸5. 2,4,5-三氯苯氧乙酸6. 2,4,5-三氯苯氧丙酸http://www.dikma.com.cn/u/image/2016/09/06/1473147817102957.jpg类固醇通过整合偶极-偶极、π-π和氢键机理,InspireTM PFP实现标准反相条件下极性化合物的最佳分离。色谱柱 如图所示 规格 150 × 4.6 mm, 5 μm 流动相甲醇:水 = 60:40 流速1.5 mL/min 柱温室温 检测器UV 254 nm 样品1.泼尼松龙3.地塞米松5.氢化可的松21-乙酸酯7.可的松-21-乙酸酯2.泼尼松4.皮质酮6.11-α羟孕酮8.11-酮孕甾酮http://www.dikma.com.cn/u/image/2016/09/06/1473148006619700.jpg甲基苯乙酮异构体目标分析物上的基团位置变化可以影响化合物的偶极矩,这种变化可以很容易被高电负性的氟原子和其它保留机理察觉,因此InpireTM PFP可以有效地用于分离甲基苯乙酮的位置异构体。色谱柱 如图所示规格 150 × 4.6 mm, 5 μm流动相甲醇:水 = 50:50流速1.0 mL/min柱温室温检测器UV 254 nm样品1. 邻 -甲基苯乙酮2. 对 -甲基苯乙酮3. 间 -甲基苯乙酮http://www.dikma.com.cn/u/image/2016/09/06/1473148212903667.jpg核苷酸和核苷色谱柱 如图所示规格 150 × 4.6 mm, 5 μm流动相0.1% 甲酸水溶液流速1.0 mL/min柱温室温检测器UV 220 nm样品1. 胞嘧啶2. 5'-CMP3. 5'-UMP4. 5'-GMP5. 尿苷6. 胸腺嘧啶 http://www.dikma.com.cn/u/image/2016/09/06/1473148405914511.jpg抗胃酸药色谱柱 如图所示规格 150 × 4.6 mm, 5 μm流动相乙腈:20 mM 磷酸氢二钾(pH 7.0) = 20:80流速1.0 mL/min柱温室温检测器UV 220 nm样品1.法莫替丁2.西咪替丁3.尼扎替丁4.雷尼替丁 http://www.dikma.com.cn/u/image/2016/09/06/1473148597658988.jpg氧化应激标记物色谱柱 如图所示规格 150 × 4.6 mm, 5 μm[/

  • 乙二醇是否不溶于异丙醇?

    不知道乙二醇是不是不溶于异丙醇,我做乙二醇,标准说是用2%的异丙醇溶液做溶剂,我理解成溶液中含2%异丙醇有没有错?我用的是含有2%异丙醇的二硫化碳溶液去做乙二醇的溶剂,但是不知道是不是乙二醇不溶于异丙醇,配好的溶液出现了分层,上层是澄清的,下层是混浊的溶液,想请问一下,这是怎么回事?

  • 【求助】急! 求GB/T 21059-2007 和能快速分离丙烯腈\苯乙烯\异丙醇混合物的色谱分析方法

    急求1、GB/T 21059-2007 塑料 液态或乳液态或分散体系聚合物/树脂 用旋转黏度计在规定剪切速率下黏度的测定 …… 全文2、快速分离丙烯腈\苯乙烯\异丙醇混合物的色谱分析方法其中异丙醇浓大约为50%、丙烯腈和苯乙烯约为5%以下请大虾们指教色谱柱型号、色谱条件、溶剂、内外标物质等等?需要自己装柱的也行,烦请告知固定相、担体、柱长、直径等。万分感谢!

  • 【分享】空气中异丙醇的测定方法 (直接进样)+(溶剂解吸进样)

    【分享】空气中异丙醇的测定方法  (直接进样)+(溶剂解吸进样)

    空气中异丙醇的测定方法 (一)聚乙二醇6000柱(直接进样)见正丙醇的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法(一)。(二)FFAP柱(溶剂解吸进样)1 原理空气中异丙醇用活性炭管采样后,用异丁醇的二硫化碳溶液解吸,经FFAP柱分离,用氢焰离子化检测器检测。以保留时间定性,峰高定量。2 仪器2.1 活性炭管:在长80mm、内径3.5~4.0mm、外径6mm的玻璃管中,分前后、两段装入150mg20~40目椰子壳活性炭,前段100mg,后段50mg,中间用玻璃棉或聚氨酯泡沫塑料隔开,两端用玻璃棉固定,套上塑料帽备用或熔封后保存。在装管前,应先将活性炭于300~350℃通氮气处理4h。2.2 采样泵,0~1L/min。2.3 微量注射器,100,10,1微升。2.4 具塞试管,5ml。2.5 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],氢焰离子化检测器,0.41ng异丙醇给出的信噪比不低于3∶1。色谱柱:柱长2m,内径3~4mm,不锈钢柱。FFAP:Chromosorb W AW担体=10∶100柱温:70℃汽化室温度:180℃检测室温度:180℃载气(氮气):35ml/min3 试剂3.1 异丙醇,色谱纯。3.2 解吸溶剂:1%(V/V)异丁醇的二硫化碳溶液。3.3 FFAP,色谱固定液。3.4 Chromosorb WAW担体,60~80目。4 采样在采样现场打开活性炭管,50mg端接采样泵并垂直放置,以0.2L/min的速度抽取2L空气。采样后将管的两端套上塑料帽,1周内分析。5 分析步骤5.1 对照试验:将未采过样的活性炭管(2.1,数量为样品总数1/10,至少为1支)按照样品的处理操作同样处理作为空白对照。5.2 样品处理:将活性炭管中的两段活性炭分别倒入具塞试管(2.4)中,加1ml解吸溶剂(3.2),密塞,不时振摇,解吸1h。5.3 标准曲线的绘制:于50ml量瓶中,先加入少量解吸溶剂(3.2),用1ml刻度吸管准确量取一定量异丙醇(于20℃时1ml异丙醇的质量为0.7851g)加入量瓶中,再加解吸溶剂(3.2)至刻度,配成一定浓度的贮备液。临用前,取一定量贮备液用解吸溶剂(3.2)稀释成浓度为1.0、2.0、4.0、10微克/?l的标准溶液。取1微升进样,测量保留时间及峰高。每个浓度重复3次,取峰高的平均值。以异丙醇的含量对峰高作图,绘制标准曲线。保 留时间为定性指标。5.4 测定:取1微升解吸溶液进样,用保留时间定性,用峰高定量。异丙醇色谱图见图35。[img]http://ng1.17img.cn/bbsfiles/images/2007/05/200705201517_52394_1625938_3.jpg[/img]6 计算X=(C1+C2)*1000/V0式中:X——空气中异丙醇的浓度,mg/m3;C1、C2——分别为从标准曲线上查出的炭管前、后段中异丙醇的含量,微克;V0——标准状况下的样品体积,L。7 说明7.1 本法的检测限为4.1×10-4?g(进样1?l液体样品);测定范围为10~5000mg/m3;当异丙醇浓度为492.5、985、1970、4925mg/m3时,变异系数分别为2.0%、2.4%、1.8%、2.4%。7.2 活性炭对异丙醇有理想的现场采样效率。100mg活性炭对异丙醇的穿透容量为9.12mg。实验条件下解吸效率平均为97.8%。 7.3 采样后将活性炭管两端套上塑料帽,于室温下贮存,至少可稳定1周。为保存更长时间,可将采样管两端熔封或低温冷藏。为避免活性炭管吸附其它有机蒸气,最好放于密闭容器中。7.4 现场湿度过大,以致在活性炭管中形成雾滴时,将严重影响采样的可靠性。此时应连接适宜的干燥管以降低湿度。7.5 采样现场共存醋酸乙酯、乙醇、苯等保留时间与异丙醇相近的物质时干扰测定。此时可通过变更色谱条件来排除。7.6 当使用不同厂家、不同型号、不同批号的活性炭时,应重新测定穿透容量和解吸效率。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制